July 2002 UILU-ENG-02-2206
DC-204

DESIGN, IMPLEMENTATION AND
TESTING OF ROUTING PROTOCOLS
FOR MOBILE AD-HOC NETWORKS

Binita Gupta

Coordinated Science Laboratory
1308 West Main Street, Urbana, IL 61801
University of Illinois at Urbana-Champaign

Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

i i i i i ion i i i i time for reviewing instructions, searching existing data sources;
ring burden for this collection of information is estimated to average 1 hour per response, including the €] ‘ >
::tt;:gri%p:ng]?narntaining the data needed, and completing and reviewing the collection of informatien. Send comment regarding this burden estimate or any other aspect of this

f i i i i i fferson
i i ion, i i i i is burden, to Washington Headquarters Services. Directorate for information Opgrations gnd Reports, 1215 Jef
collection of information, including suggestions for reducing this [9 q Paperwork Reduction Project (0704-0 188), Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget,
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 2002
4. TITLE AND SUBTITLE ‘ . 5. FUNDING NUMBERS
Design, Implementation and Testing of Routing Protocols for Mobile for Ad-Hoc
Networks
6. AUTHOR(S)
Binita Gupta
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING RGANIZATION
Coordinated Science Laboratory SiEOURIEEEE%R2~2206
University of Illinois at Urbana-Champaign (DC-204)
1308 W. Main St.
Urbana, IL 61801
3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

An ad-hoc network is a collection of wireless mobile hosts dynamically forming a network without the use of any preexisting
infrastructure or central coordinating entity. Multi-hop routing is used to enable communication between nodes in an ad-hoc network.
Many routing protocols have been proposed and studied for ad-hoc networks. Most of these studies are based on simulation results.
We believe that testing and validation of ad-hoc routing protocols on real test beds is necessary before they can be implemented in the
real world.

This thesis addresses two routing protocols, a proactive routing protocol, DSDV, and a reactive routing protocol AODV. It
provides implementation of DSDV and AODV routing protocols on the Linux kernel. It also provides a detailed specification of the
DSDV routing protocol. An improved version of DSDV called Adaptive DSDV has been developed for highly dynamic networks.
Adaptive DSD V is fully automatic in terms of configuring various DSDV parameters and completely obviates the need of hard coding
their values. The thesis also conducts a detailed investigation of issues involved with on-demand routing in ad-hoc networks. An Ad-
hoc Support Library (ASL) has been developed for implementing on-demand ad-hoc routing protocols. ASL is used to implement the
AODV routing protocol without making any changes to the Linux kernel code. The resulting implementation is more efficient than
many of the existing AODV implementations in terms of per-packet processing overhead. A real testbed of laptop computers has been
used for the purpose of testing and performance evaluation of the implemented routing protocols. The thesis also presents a novel
approach to enable inter-operability between proactive and reactive routing protocols in an hybrid ad-hoc network. The idea is to
provide a set of services which can be utilized by ad-hoc routing protocols to achieve inter-operability.

14. SUBJECT TERMS 15. NUMBER OF PAGES
163
16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Presctibed by ANSI Std. 239-18
298-102

DESIGN, IMPLEMENTATION AND TESTING OF ROUTING PROTOCOLS
FOR MOBILE AD-HOC NETWORKS

BY
BINITA GUPTA

B.Tech, Indian Institute of Technology, Kharagpur, 1998

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2002

Urbana, Illinois

ABSTRACT

An ad-hoc network is a collection of wireless mobile hosts dynamically forming a network
without the use of any preexisting infrastructure or central coordinating entity. Multi-hop
routing is used to enable communication between nodes in an ad-hoc network. Many routing
protocols have been proposed and studied for ad-hoc networks. Most of these studies are based
on simulation results. We believe that testing and validation of ad-hoc routing protocols on
real test beds is necessary before they can be implemented in the real world.

This thesis addresses two routing protocols, a proactive routing protocol, DSDV, and a
reactive routing protocol AODV. It provides implementation of DSDV and AODV routing
protocols on the Linux kernel. It also provides a detailed specification of the DSDV routing
protocol. An improved version of DSDV called Adaptive DSDV has been developed for highly
dynamic networks. Adaptive DSDV is fully automatic in terms of configuring various DSDV
parameters and completely obviates the need of hard coding their values. The thesis also
conducts a detailed investigation of issues involved with on-demand routing in ad-hoc networks.
An Ad-hoc Support Library (ASL) has been developed for implementing on-demand ad-hoc
routing protocols. ASL is used to implement the AODV routing protocol without making any
changes to the Linux kernel code. The resulting implementation is more efficient than many of
the existing AODV implementations in terms of per-packet processing overhead. A real test-
bed of laptop computers has been used for the purpose of testing and performance evaluation
of the implemented routing protocols. The thesis also presents a novel approach to enable
inter-operability between proactive and reactive routing protocols in an hybrid ad-hoc network.

The idea is to provide a set of services which can be utilized by ad-hoc routing protocols to

achieve inter-operability.

iii

Design, implementation and testing of routing protocols

for mobile ad-hoc networks

Approved by
Prof. P.R Kumar

Dedicated to...

my mother and father

iv

ACKNOWLEDGMENTS

I 'am grateful to my advisor, Prof. P. R. Kumar, for his valuable guidance and enthusiastic
support throughout the entire course of this thesis work. Ever since I have known him, he
has been a great source of inspiration to me for doing innovative research work. Constant
encouragement and motivation from him were keys to the successful completion of this thesis
research. I would also like to thank Prof. R. S. Sreenivas for his useful suggestions at various
stages of this thesis work.

I 'am indebted to my parents who have always inspired me to strive for excellence in every
field I have worked in. It would have been impossible to complete this thesis work to my fullest
satisfaction without their blessings and support.

I'would also like to thank my colleague Vikas Kawadia for his numerous handy tips during
the course of this project. Last but not the least, I would like to thank all my friends at UTUC

who made my stay here enjoyable and memorable during the period of this thesis project.

TABLE OF CONTENTS

CHAPTER PAGE
1 Introduction e 1
1.1 Background L e e e 1
1.2 Infrastructured Wireless Networks 2
1.21 Cellular Networks e 2

1.22 Mobile Internet 3

1.3 Infrastructure-less Wireless Networks 4
1.3.1 Media Access Control 6

132 Power Control e 7

1.33 Routing e 7

14 Thesis Layout o o e e 8

2 An Overview of Routing Protocols 10
2.1 The Basic Routing Schemes 10
2.1.1 Distance Vector Routing 10

212 Link State. e 11

213 SourceRouting 12

2.2 A Classification of Routing Protocols 12
2.3 Routing Protocols Used in the Internet 13
2.3.1 The Routing Information Protocol (RIP) 14

2.3.2 The Open Shortest Path First (OSPF) Protocol 15

2.3.3 The Border Gateway Protocol BGP4) 16

2.4 Routing in Ad-hoc Networks 16

3 Routing Protocols for Ad-hoc Networks 19
3.1 Proactive (Table-Driven) Protocols 20
3.1.1 Destination Sequenced Distance Vector (DSDV) 20

3.1.2 Clusterhead Gateway Switch Routing (CGSR) 21

3.1.3 Wireless Routing Protocol (WRP) 22

3.1.4 Global State Routing (GSR), 23

3.1.5 Fisheye State Routing (FSR) 23

3.1.6 Hierarchical State Routing (HSR) 24

vi

3.1.7 Optimized Link State Routing (OLSR) 26

3.1.8 Zone-based Hierarchical Link State Routing (ZHLS) 27

3.2 Reactive (On-Demand) Protocols 28
3.2.1 Ad-hoc On-demand Distance Vector (AODV) 29
3.2.2 Dynamic Source Routing (DSR) 29
3.2.3 Temporally Ordered Routing Algorithm (TORA) 31
3.2.4 Associativity Based Routing (ABR) 34
3.2.5 Signal Stability Routing (SSR) 35

3.3 Hybrid Routing Protocol 36
3.3.1 Zone Routing Protocol (ZRP) 36

The Destination Sequenced Distance Vector (DSDV) Protocol 38
4.1 Introduction. 38
4.2 Overview of DSDV Protocol 39
4.3 Message Formats e e e e e 40
4.3.1 Route Update (ROUTE-UPDATE) Message Format 40

4.4 DSDV Operation00t i e 41
44.1 Route Table Entry 41
4.4.2 Maintaining Sequence Numbers 42
4.4.3 Periodic Route Advertisement 43
4.4.4 Triggered Route Advertisement 44
4.4.5 Processing Route Update Messages 45
4.4.6 Handling Broken Links 46
4.47 Full Dump and Incremental Dump 47
4.4.8 Damping Fluctuations 47
4.4.9 Expiring and Deleting Routes i 50
4.4.10 Actions After Reboot 51
4411 DSDV Timers. oo i 52
4.4.12 Operationat Layer 2. 52
4.4.13 Extending Base Station Coverage 53

4.5 Configuration Parameters 53
4.6 Proof of Loop-free Property 54
4.7 Example of DSDV in Operation 55
Implementation of DSDV 59
5.1 The OS Routing Architecture i n i 59
5.2 Overview of the Implementation 61
5.3 Implementation Details 62
5.3.1 The Main Data Structures. 63
5.3.1.1 Routing TableEntry. 63

5312 RoutingTable 63

5.3.1.3 BroadcastEntry 63

5.3.1.4 Update Message v v i v it i 64

vii

5.3.1.5 Settling Time Entry 64

5.3.1.6 Settling Time Table 64

6317 TimerEntry 65

531.8 Timer Queue i i e 65

532 Modules 65
5.3.2.1 TheMain Module 65

5322 TheDsdvModule 65

5.3.2.3 The UpdateMessage Module 66

5.3.2.4 The RoutingTable Module 67

5.3.2.5 The Kernel Route Table (KRT) Module 68

5.3.2.6 The SettlingTimeTable Module 68

5.3.2.7 The TimerQueue Module 68

5.3.3 Configuration Parameters 69

6 Adaptive DSDV: Design and Implementation 70
6.1 Motivation 70
6.2 Design of Adaptive DSDV 71
6.2.1 The Periodic Update Interval 71
6.2.2 TheFull DumpInterval 72
6.2.2.1 The +/(2n) Law for the Full Dump Interval 73

6.3 Overview of the Implementation T4
6.4 Implementation Details 75
6.4.1 The Main Data Structures. 75
6.4.2 The Modules of A-DSDV 76
6.4.2.1 The Update Interval Module 76

6.4.2.2 The Full Dump Interval Module 76

6.4.3 A-DSDV Parameters oo it i e e 7

7 System Services for Ad-hoc On-demand Routing 78
7.1 Introduction e 78
7.2 Challenges in Reactive Ad-hoe Routing 79
7.3 A General Solution for On-demand Routing Protocol 80
7.4 TImplementation of ODRM in Linux o v i i i it e et 84
7.4.1 Design and Mechanisms 85
7.4.2 Implementation Details 87

7.5 ASL System Requirements o i 89
8 Ad-hoc On-demand Distance Vector Routing 90
8.1 Properties of AODV 90
8.2 Protocol Overview i e 91
8.3 Route Table Management, 91
8.4 Route Establishment 92
8.41 RouteDiscovery e 92

viii

8.4.2 Expanding Ring Search, 93

8.43 Forward Path Setup 94
8.4.3.1 Gratuitous RREP 95

8.5 Route Maintenance 96
8.6 Local Connectivity Management 97
8.7 Actions After Reboot 97
8.8 Multiple Interfaces 98
8.9 Subnet Routing 98
8.10 Security Considerations 99
8.11 Example of AODV in Action 100
AODV Implementation 102
9.1 Overview of the Implementation . .., 103
9.2 Features Supported 105
9.3 Implementation Details 105
9.3.1 Ad-hoc Support Library API 105
9.3.2 Main Data Structures 107
9.3.2.1 Routing TableEntry. 107

9.32.2 Routing Table 108

9.32.3 RouteRequest 108

9324 RouteReply 109

9.3.2.5 Unreachable Destination Entry 109

9.32.6 Route Error 110

9.3.2.7 Route Reply Acknowledgement 110

9.3.2.8 Pending Route Request List Entry 110

9.3.2.9 Pending Route Request List 111

9.3.2.10 Forward Route Request List Entry 111

9.3.2.11 Forward Route Request List 111

9.3.2.12 Local RepairEntry 111

9.32.13 Local Repair List 112

9.32.14 Black List Entry 112

9.32.15 Black List. 112

9.3.2.16 TimerEntry, 112

9.3.2.17 Timer Queue e 113

9.33 Modules 113
933.1 MainModule 113

9332 AodvModule. 113

9.33.3 RREQModule 115

9334 RREPModule 116

9335 RERRModule 116

9.3.3.6 Routing Table Module. 116

9.3.3.7 Pending Route Request Module 117

ix

9.3.3.8 Forward Route Request Module 117

9.3.3.9 Local RepairModule 117
0.3.3.10 Blacklist Module e 118
0.3.3.11 Timer QueueModule 118

10 Interoperability Support Services for Routing Protocols in Hybrid Ad-hoc
Networks i e e e e e e e e e 120
10.1 Motivation o i o e e e e e e e e e e e 120
10.2 Communication in a Hybrid Ad-hoc Network 121
10.3 Design and Mechanism o . it e e e 123
10.3.1 Route Discovery in a Hybrid Network 124
10.3.2 Example of Route Discovery 126
10.3.3 Route Maintenance v v v v v v v v v e e e e e e e e 129
11 Testing, Experimentation and Analysis 130
11.1 Test-Bed Setup o 0 e e e e 130
11.2 Functionality Testing o o i e 130
11.2.1 DSDV & . e e e e 131
11.2.2 Adaptive DSDV e 131
11.2.3 AODV . . . o e e e e e e 132
11.3 Performance Study e 133
11.3.1 Throughput o o o e e e 135
11.3.2 Routing Overhead 140
11.3.3 Adaptive Periodic Update Interval for A-DSDV 142
12 Conclusion e e e 144
REFERENCES e e 146

Figure

1.1
1.2
1.3

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

4.1
4.2

5.1
5.2
5.3

6.1
6.2

7.1
7.2

8.1
8.2

9.1
9.2

LIST OF FIGURES

Page
Hand-off in a Cellular Network o o i e i, 3
Mobile IP o 5
Example of an Ad-hoc Network 6
Categorization of Unicast Ad-hoc Routing Protocols 20
Example of CGSR routing from source node 1 to destination node 12. 22
Scope of Fisheye in an ad-hoc network 25
An example of clusteringin HSR, 26
Multipoint Relays in OLSR 28
Route Discovery m DSR 31
Route Creation in TORA. (Numbers in braces are (reference level, height)) . .. 33

Re-establishing route on failure of link 5-7. The new reference level is node 5. . . 33

An example of Ad-hoc Network 55
Mobility in an Ad-hoc Network 58
Routing Architecture of Unix-like Operating Systems 60
User-Space DSDV Routing Daemon 61
Modular Design of DSDV Routing Daemon 62
Average Cost of Full Dump L 74
Adaptive DSDV Routing Daemon 75
The general solution 83
Linux implementation structure 87
Route Discovery in AODV 100
Route Maintenance in AODV 101
AODV Routing Daemon e 103
Modular Design of AODV Routing Daemon 106

10.1 An example of hybrid ad-hoc network 122

10.2 Route discovery process in a hybrid ad-hoe network 127
11.1 Test-bed setup for performance studies 134
11.2 DSDV Throughput for co-located ad-hoc networks 135
11.3 DSDV Throughput for multihop ad-hoc networks 136
11.4 A-DSDV Throughput for co-located ad-hoc networks 137
11.5 A-DSDV Throughput for multihop ad-hoc networks 137
11.6 Throughput for AODV routing protocol 138
11.7 Throughput Comparison between DSDV and A-DSDV 139
11.8 Throughput for different routing protocols 140
11.9 Routing Overhead for co-located ad-hoc networks e e e e 141
11.10Routing Overhead for multihop ad-hoc networks 141
11.11Routing overhead for different routing protocols 142
11.12Variations in A-DSDV periodic update interval for 4 node ad-hoc¢ networks . . . 143
11.13A-DSDV Periodic update interval for a 5 node co-located ad-hoc network 143

Table

4.1
4.2
4.3
4.4

LIST OF TABLES

Page
Structure of the MHy forwarding table 56
Advertised Route Table by MH, 56
MH, forwarding table (updated) 57
MHy advertised table (updated). 58

xiii

CHAPTER 1

Introduction

1.1 Background

Since its emergence in the 1970’s, wireless communication between mobile users in the form
of mobile cellular systems has proliferated tremendously, while, on the other hand, interest in
and attention to infrastructureless communication has greatly increased. This is due to the re-
cent technological advances in cellular systems, notebook computers, personal digital assistants
(PDAs) and wireless data communication devices such as wireless modems and wireless LANSs.
This has resulted in wireless mobile systems with decreasing prices and increasing data rates,
which are the two main reasons for the rapid growth of wireless mobile computing.

There are several ways to enable wireless communication between mobile hosts. The first
approach is to let the existing cellular network infrastructure carry both the data and voice
traffic. The major problems which arise include the problem of hand-off, viz. how to smoothly
hand over a connection from one base station to another without noticeable delay or packet
loss. A restriction of cellular systems is that it is limited to places where such cellular network
infrastructure exists.

Another approach is to use the existing Internet for communication between mobile hosts.
One major difficulty that arises is due to the fact that the routing among the hosts in the
Internet is based on the hierarchical addressing of these hosts. So, as soon as a host leaves the

network it is configured for, it won’t be able to receive any data traffic sent to it. To solve this

problem the Mobile TP protocol [1] has been developed to support mobility at the IP layer.
This approach too requires infrastructure support for its proper functioning.

A third approach is to form an ad-hoc network among all the hosts wanting to communicate
with each other. This requires hosts in the ad-hoc network to relay data traffic for others in the
network. Thus, a host in an ad-hoc network also acts as a router. There are many advantages
of ad-hoc networks as compared to infrastructured networks. These include setup on-demand,
ease of deployment, fault tolerance, unconstrained connectivity and self-configurability.

Since ad-hoc networks do not rely on any pre-existing infrastructure, they can be deployed in
places with no infrastructure. This is useful in disaster recovery situations or scenarios with non-
existing or damaged communication infrastructure where rapid deployment of a communication
network is needed [2]. Ad-hoc networks can also be useful in situations such as conference site
where participants can form a temporary network without engaging the services of any pre-
existing network. In addition ad-hoc networks also offer a very promising solution for personal

area networks, sensor networks and home networking.

1.2 Infrastructured Wireless Networks

In this section we provide a brief overview of networks which require a preexisting infras-

tructure.

1.2.1 Cellular Networks

In a cellular network [3], the geographic area is split into cells. Such networks are character-
ized by a backbone of stationary nodes called base station (BS) or access point (AP). Each cell
is managed by one base station. Adjacent base stations typically operate on different channels
to prevent interference. Activities among different base stations are coordinated by Mobile
Switching Centers (MSCs). Mobile nodes within a cell communicate with their nearest base
station. A registration is performed with the nearest base station every time a mobile node is
first switched on. Seamless connectivity is ensured by the process of hand-off when a mobile

host moves from one cell to another. The base station continuously monitors the mobile host’s

Handoff

Figure 1.1 Hand-off in a Cellular Network

signal strength and passes this information to the MSC. When this signal strength drops below
a certain threshold, the MSC instructs the base station to perform a hand-off. This hands
over the management of the mobile host to another base station receiving a stronger signal.
Figure 1.1 depicts a simple cellular network illustrating the process of hand-off between two
access points. Such wireless network infrastructures are also commonly used inside buildings

and on campuses to establish wireless local area networks.

1.2.2 Mobile Internet

The Internet Protocol (IP) was designed with two assumptions in mind. First, a node’s
point of attachment is assumed to remain fixed, and, second, a node’s IP address identifies the
network to which it is attached. If a node could move around on the Internet without changing
its IP address, it would no longer be possible to correctly route datagrams to it based solely on
its IP address. To overcome this problem, the Mobile Internet Protocol [1, 4] was developed.
There are three basic entities defined in the protocol. The Mobile Node (MN), the Home Agent

(HA), and the Foreign Agent (FA). A Mobile Node is a host or a router that changes its point
of attachment from one network or subnetwork to another without changing its IP address.
The network for which the mobile node is originally configured for, is called the home network.
A Home Agent is a router on the mobile node’s home network. It maintains a repository of
current locations of all its mobile nodes, which it uses to relay datagrams to these nodes. A
Foreign Agent is a router on the foreign network that takes care of a Mobile Node while the
Mobile Node is away from its home network.

Mobility agents (Home Agents and Foreign Agents) advertise their presence by periodic
Agent Advertisements or beacons (Figure 1.2a). A “beacon” is a control message which is used
by a node to announce its own presence to the rest of the nodes in the network. A Mobile
Node receives these advertisements and determines whether it is on the home network or the
foreign network. If it detects that it has moved to a foreign network, it obtains a care-of-address
on the foreign network. The Foreign Agent then contacts the Mobile Node’s Home Agent to
register the new care-of address for the Mobile Node. Packets sent to the Mobile Node’s home
address are received by the Home Agent. These packets are then relayed from the Home Agent
to the Mobile Node using IP in IP encapsulation or tunneling (Figure 1.2b). The data packet
at the Home Agent is encapsulated with another IP header with destination field set to the
care-of-address of the Mobile Node. Upon receiving the packet, the Foreign Agent strips the
extra header off of the packet, and then forwards it to the mobile node. In the reverse direction,
packets initiated by the mobile node are directly sent to the intended recipienti, as routinely

done in IP.

1.3 Infrastructure-less Wireless Networks

Infrastructure-less networks, e.g., mobile ad-hoc networks allow a collection of mobile nodes
(MNs) to communicate with each other without the need of any preexisting infrastructure.
Each of the nodes has a wireless interface for communication over radio or infrared links. Every

node in an ad-hoc network serves as a router, and the network is said to be “peer-to-peer”

Home Network

{a) Mobile IP protocol

Original data packet sent to Mobile Node

Foreign Network

/\

IP address of
Foreign Agent

IP address of
Mobile Node

DATA

Encapsulated data packet sent from Home Agent to Foreign Agent

(b) IP in IP encapsulation

Figure 1.2 Mobile IP

Figure 1.3 Example of an Ad-hoc Network

network. Multiple hops may be used to connect a given source and destination. Figure 1.3
illustrates an ad-hoc network.

Mobile ad-hoc networks give rise to a number of interesting challenges due to possibly higher
transmission error rates, variable capacity links, limited communication bandwidth, broadcast
nature of communication, dynamically changing topologies and limited battery lifetime. Three
main issues which needs to be considered for correct and efficient functioning of mobile ad-hoc

networks are:
e Media Access Control
o Power Control

e Routing

1.3.1 Media Access Control

The wireless medium distinguishes itself from the wired medium by the fact that it is a
shared medium. Hence, transmissions can interfere with each other, causing collisions. The
Media Access Control (MAC) problem is to schedule transmissions online in a distributed
asynchronous manner so that packets reach their intended one hop neighbor recipients. The
standard MAC schemes from the wired world (e.g. Carrier Sense Medium Access with Collision

Detection (CSMA /CD) [5]) can not be employed in ad-hoc networks because of the well known

hidden and exposed terminal problems [6]. Thus, more elaborate schemes are needed for media
access control in ad-hoc networks. IEEE 802.11 protocol {7, 8] uses a four-way handshake in
the form of RT'S, CTS, DATA and ACK packets for each and every data packet. The SEEDEX
MAC protocol [9] employs a random schedule, driven by pseudo-random number generators, to

reduce collisions without making explicit reservations for each and every data packet.

1.3.2 Power Control

Power control problem is the problem of determining the power level at which a packet
should be transmitted in an ad-hoc network. Transmit power control is important in wireless
ad-hoc networks because it can impact the battery lifetime of mobile nodes, as well as the
traffic carrying capacity of the entire network. There are a number of protocols which have
been proposed for power control in ad-hoc networks. These can be loosely classified into three
categories. The first class comprises of strategies to find an optimal transmit power to control
the connectivity properties of the network or a part of it, which could be power per node, per
link or a single power level for the entire network. The second class of approaches could be called
power aware routing. Most schemes use the distributed Bellman-Ford algorithm with power as
the metric. The third class of approaches aim at modifying the MAC layer for achieving power

control. A more comprehensive discussion of power control can be found in [10].

1.3.3 Routing

Routing in an ad-hoc network is complicated by the fact that there are unique characteristics
of these networks that make traditional routing protocols inapplicable. Ad-hoc networks are
characterized by dynamic interconnection topology caused by node mobility. Additionally it is
required that such networks be self-configurable. Thus, a routing protocol is needed which can
dynamically discover the routes, while necessitating minimal configuration effort. Although
mobile computers in ad-hoc networks can be modeled as routers, existing routing protocols
would place too heavy a computational burden on these mobile hosts. Moreover, the conver-

gence characteristics of wire-line routing protocols are not good enough for the needs of ad-hoc

networks. The wireless access medium, the radio environment, also has special characteristics
that must be considered when designing routing protocols for ad-hoc networks. One example
of this is that unidirectional links may form when two nodes use different strengths for their
transmissions, allowing only one of the hosts to hear the other. Unidirectional links can also
result from the surrounding interference. Limited CPU, storage and battery capacity of the
mobile nodes are other important factors which should be taken into account while designing
an ad-hoc routing protocol.

A number of routing protocols have been proposed for Mobile Ad-hoc Networks (MANET) [11],
but very few of them have actually been implemented and tested on real systems.

Most of the studies on ad-hoc routing protocols are currently based on simulation data.
We believe that testing and validation of these routing protocols on real test beds is necessary
to understand the actual performance of these protocols. In view of this, this thesis provides
implementation of two existing ad-hoc routing protocols, DSDV and AODV, on the Linux
kernel. It details a fully automatic and self-configurable version of DSDV, called Adaptive
DSDV, for highly dynamic ad-hoc networks. This thesis also conducts an in-depth exploration
of issues involving on-demand ad-hoc routing protocols. An Ad-hoc Support Library (ASL) has
been developed to provide services for implementing on-demand ad-hoc routing protocols. The
thesis also presents a novel approach to enable inter-operability between proactive and reactive

routing protocols in an hybrid ad-hoc network.

1.4 Thesis Layout

The rest of this thesis is organized as follows. Chapter 2 provides a basic overview of various
routing mechanisms, and a summary of existing routing protocols in the Internet. Chapter 3
describes different ad-hoc routing protocols. Chapter 4 is an in-depth description of the DSDV
ad-hoc routing protocol. The implementation details for the DSDV protocol are described in
Chapter 5. Chapter 6 presents the design and implementation of the Adaptive DSDV (A-DSDV)
routing protocol. Chapter 7 discusses the various issues involved with on-demand routing

in ad-hoc networks and the Ad-hoc Support Library (ASL) in detail. Details about AODV

routing protocol are provided in Chapter 8. Chapter 9 provides a detailed description of the
implementation of AODV. Chapter 10 presents a novel idea to enable inter-operability between
proactive and reactive routing protocols in hybrid ad-hoc networks. Chapter 11 presents the

testing and experimentation results and their analysis. Chapter 12 concludes this thesis.

CHAPTER 2

An Overview of Routing Protocols

A routing protocol is needed whenever a packet needs to travel multiple hops from its source
to its intended destination. A routing protocol has two main functions: discovery of routes for
various source-destination pairs, and the delivery of messages to their correct destinations.
While the first function is fairly complicated, the second function can be achieved in a straight
forward manner using the routing table data structure maintained inside the kernel. The more
difficult task is to populate this data structure with correct and relevant routing information.

There are a number of basic schemes to carry out this functionality.

2.1 The Basic Routing Schemes

There are three basic routing schemes which are employed in traditional routing protocols.

These are link state routing, distance vector routing and source routing [12].

2.1.1 Distance Vector Routing

The “distance vector” at a node can be regarded as a list of all the nodes in the network
along with the number of hops needed to reach the node, and the next node on the path. The
distance vector routing algorithm is also known as “Distributed Bellman-Ford” [13] algorithm
based on the names of its inventors. A distance-vector algorithm is a completely distributed
algorithm. Every node keeps a list of all known routes in a table called routing table. The

routing table contains entries for all the reachable destinations in the network. Each table

10

entry specifies values for how far away that destination is (the distance or cost), and what node
is the next hop on the route to that destination (the vector). Each node monitors the cost
of all of its outgoing links, but instead of broadcasting this information to all the nodes, it
periodically broadcasts to each of its neighbors an estimate of the shortest distance to every
other node in the network. This information is used by the receiving node to recalculate its
routing table. A “broadcast” of routing information means transmitting it on the IP limited
broadcast address, “255.255.255.255”.

Distance vector algorithms are computationally efficient, easy to implement, and require
much less storage space. However, these algorithms do not scale well because routing update
messages contain an entry for every node in the network. There are two main problems as-
sociated with distance-vector protocols. First, a distance-vector algorithm works fine only in
a static environment. If links or routers fail, the distance-vector routing approach converges
slowly due to the count to infinity problem [12, 14], in which inconsistencies arise because rout-
ing update messages propagate slowly across the network. Because of its slow convergence, the
protocol might not stabilize rapidly enough in a network where routes change rapidly. Second,
a distance vector protocol can result in the formation of both short-lived and long-lived routing
loops. The primary cause for this is that the nodes choose their next hops in a completely dis-
tributed manner based on information that can be stale. Many distance vector algorithms use
techniques called split horizon, poison reverse, triggered updates and hold down [12] to handle

routing loops, though not always successfully.

2.1.2 Link State

The “link state” is basically a snapshot of the graph of the complete network. In a link
state routing protocol, each node maintains a view of the complete network topology along
with a cost for each link. To keep these views consistent, each node periodically transmits
the link costs of its outgoing links to all other nodes in the network. This is done through
flooding the network with link status control messages. The “flooding” [13] ensures that all

the nodes participating in the routing protocol get a copy of the link-state information from all

11

the other nodes in the network. When any node receives this information, it updates its view
of the network topology and applies a shortest path algorithm to choose the next hop for each
destination.

One of the chief advantages of a link state algorithm is that each node computes routes
independently using the link state it has. Since the routes are computed locally, they are
internally consistent and so a link state protocol is guaranteed to converge. Also, because link
status messages carry information only about the direct links from a single node, the size of
these messages does not depend on the number of nodes in the network. This makes link state
protocols scale better than distance-vector routing protocols [14]. Some link costs in a node’s
view can be incorrect because of long propagation delays, partitioned networks, etc. Such
inconsistent network topology views can lead to the formation of routing loops. These loops
are however short-lived, because they disappear in the time it takes a message to traverse the

diameter of the network.

2.1.3 Source Routing

By source routing [15] we mean that each packet must carry the complete path that the
packet should take through the network from source to destination. The routing decision is
therefore made at the source node. The advantage of this approach is that it is easy to avoid
routing loops. The disadvantage is that each packet requires an overhead. Source routing is

not efficient for high mobility scenarios since the source supplied route may be inaccurate.

2.2 A Classification of Routing Protocols
Routing protocols can be further classified into several different ways.

e Centralized or Distributed
e Static or Adaptive

e Reactive or Proactive or Hybrid.

12

One way to categorize the routing protocols is to divide them into centralized and distributed
algorithms. In centralized routing algorithms, all routing decisions are made at a central node,
while in distributed algorithms, the route computation task is shared by all the nodes in the
network.

Another classification of routing protocols relates to whether they change routes in response
to the traffic input patterns. In static algorithms, the routes used by source-destination pairs are
fixed regardless of traffic conditions. They can only change in response to node or link failures.
This type of algorithm can not achieve high throughput under a broad variety of traffic input
patterns. Most major networks use some form of adaptive routing where the routes used may
change in response to congestion.

A third classification that is more related to ad-hoc networks is to classify the routing
algorithms as proactive, reactive or hybrid. Proactive protocols attempt to continually evaluate
the routes within the network, so that when a packet needs to be forwarded, the route is already
known and can be immediately used. The family of distance-vector protocols is an example
of a proactive scheme. Reactive protocols, on the other hand, invoke a route determination
procedure only on-demand. Thus, when a route is needed, some sort of global search procedure
is employed. The family of classical flooding algorithms belong to the reactive group. Hybrid
methods make use of both these schemes to provide a more efficient routing algorithm.

The advantage of the proactive schemes is that, when a route is needed, there is no delay
incurred in route determination. In reactive protocols, because route information may not be
available at the time a route request is received, a delay is incurred to determine a route, which
may be quite significant. Furthermore, the global search procedure of the reactive protocols
requires significant control traffic. Pure reactive routing protocols may not be applicable in

real-time applications.

2.3 Routing Protocols Used in the Internet

The Internet comprises of a large number of interconnected autonomous systems (ASs)

each of which constitutes a distinct routing domain. Such autonomous systems are usually run

13

by a single organization or administrative entity such as a company or university. The basic
idea behind autonomous systems is to provide an additional way to hierarchically aggregate
routing information in the large Internet, thus improving scalability. The routing problem
can then be divided into two parts: routing within a single autonomous system (intradomain
routing), and routing among autonomous systems (interdomain routing). Routing protocols
used for intradomain routing are known as interior gateway protocols (IGPs). Exchange of
routing information among autonomous systems is achieved through exterior gateway protocols
(EGPs). In addition to improving scalability, the AS model decouples the intradomain routing
that takes place in one AS from that taking place in another.

The two most common interior gateway protocols for the Internet are Routing Information
Protocol (RIP) [16, 14] and Open Shortest Path First (OSPF) [16, 14]. The first one is a
distance-vector protocol, while the later is based on the idea of link state routing. The Border

Gateway Protocol (BGP-4) [17] is the exterior gateway protocol currently used in the Internet.

2.3.1 The Routing Information Protocol (RIP)

Of all the interior gateway routing protocols, RIP is probably the most widely used. RIP
was ported to TCP/IP when LANSs first appeared in early 80s. The underlying RIP protocol
is a straightforward implementation of distance-vector routing. It partitions participants into
active and passive machines. Active routers advertise their routes to others; passive machines
listen and update their routes based on advertisements, but do not advertise themselves. A
router running RIP in active mode broadcasts routing update message every 30 seconds. Each
message consists of pairs, where each pair contains an IP network address and the distance to
that network. RIP uses the hop-count as the metric to measure the distance to a destination.
The hop count along a path from a given source to a given destination refers to the number of
routers that a datagram encounters along that path. All routes in RIP have timeouts associated
with them and are deleted if routing updates are not received for those destination networks

before the timeout.

14

Being a distance vector protocol, RIP does not guarantee freedom from routing loops. It
employs various techniques to reduce (but not eliminate) routing loops. These include split
horizon, poison reverse, triggered updates and hold down. While these techniques solve looping

for certain scenarios, they do not make RIP loop free for all possible network topologies.

2.3.2 The Open Shortest Path First (OSPF) Protocol

Open Shortest Path First (OSPF) [16] is a link state routing protocol with a complex set
of options and features. Sanctioned by the Internet Engineering Tast Force (IETF) [18], it is
intended to become Internet’s preferred interior gateway routing protocol. Some of the salient

features and advantages of OSPF are:

e Changes in an OSPF network are propagated quickly.

e OSPF is hierarchical, using area 0 as the top of the hierarchy. These areas can be used

to logically segment the OSPF network to decrease the size of routing tables.

e OSPF can fully support sub-netting, including Variable Length Subnet Mask (VLSM)

and non-contiguous subnets.

e After initialization, OSPF only sends updates of the routing table sections which have
changed; it does not send the entire routing table. OSPF periodically sends out “hello”

packets to check the status of other routers.

In general, Hello packets are used by the routers to announce their presence to the rest of the
network as well as to obtain routing information from their neighboring routers. A hello packet
typically contains the identity of the originating node, along with some other informations.
OSPF uses Dijkstra’s Shortest Path algorithm [19] to compute the shortest paths to all the
other nodes in the network. It uses the process of relazation to compute the shortest path from
a single source node to all other destination nodes in the network.

Some of the disadvantages of OSPF include its complexity and its demand on memory

and computation. Another disadvantage of OSPF arises in a scenario where an entire network

15

is running OSPF, but one link within it is “bouncing” every few seconds. In such a case
OSPF updates would dominate the network by informing every other router every time the

link changes state.

2.3.3 The Border Gateway Protocol (BGP 4)

The Border Gateway Protocol (BGP) [17, 16] is the exterior gateway protocol used in the
Internet. It is a very robust and scalable routing protocol. BGP uses TCP as its transport
protocol. BGP neighbors exchange full routing information when the TCP connection between
neighbors is first established. When changes to the routing tables are detected, the BGP routers
send to their neighbors information about only those routes that have changed. BGP routers
do not send periodic routing updates, and BGP routing updates advertise only the “preferred”
path to a destination network. BGP uses a number of attributes to determine the best route

when multiple paths exist to a particular destination.

2.4 Routing in Ad-hoc Networks

Traditional routing protocols are not suitable for ad-hoc wireless networks for the following

reasons:

e These protocols are designed for a static topology and would have problem converging to

a steady state in an ad-hoc network with a frequently changing topology.

e Traditional link state and distance-vector routing protocols are highly dependent on pe-
riodic control messages. This requires frequent exchange of large control packets among
the network nodes. This is not very desirable for ad-hoc networks because of scarce wire-
less transmission bandwidth. These protocols also maintain routes to every node in the

network, which consume a lot of available resources.

e Traditional routing protocols are too computationally intensive to be useful for ad-hoc

networks where nodes have limited CPU, memory and battery capacity.

16

e These protocols assume existence of bidirectional links for their functionality. In the

wireless radio environment this might not always be the case.

The routing protocols designed for ad-hoc wireless networks should possess certain properties
to meet their specific needs [20]. Following are some of the properties which are desirable for

ad-hoc routing protocols:

Distributed Operation: The routing protocol must be distributed in order to increase re-
liability. In a dynamic topology, as in ad-hoc networks, each node must be intelligent

enough to make routing decisions using other collaborative nodes.

Loop Free: The routing protocol should supply loop-free routes. This improves overall per-

formance by avoiding waste of transmission bandwidth or CPU consumption.

Demand Based Operation: The routing algorithm should adapt to the generated traffic
only on-demand. The protocol should only react when needed and periodic broadcast of
control information should be avoided for efficient utilization of available resources. The

obvious drawback of this is increased latency.

Proactive Operation: For certain systems, additional latency incurred due to on-demand
based routing might not be acceptable. Thus, if enough resources are available, a proactive

mode of operation must be supported.

Unidirectional Link Support: The radio environment can cause the formation of unidirec-
tional links. The designed routing protocol should be able to detect and utilize such

links.

Power Conservation: The nodes in an ad-hoc network can be laptops or thin clients, such
as PDAs, that are very limited in battery power, and therefore use some sort of stand-by
mode to save power. It is important that ad-hoc routing protocols have support for these

sleep modes.

17

Security: The radio environment is especially vulnerable to impersonation attacks. So, to
ensure the desired behavior from the routing protocol, some sort of preventive security
measures are required. Authentication and encryption is probably one alternative. The

problem here lies in the distribution of keys among the nodes in the ad-hoc network.

Multiple Routes: Multiple routes could be used to increase the traffic carried by the network,
and also to reduce the number of reactions to topology changes and congestion. If one
route has become invalid, it is possible that another stored route is still valid. This saves

the routing protocol from initiating a new route discovery.

Quality of Service Support: Some sort of Quality of Service support is probably necessary
to incorporate into these routing protocols. This depends on what these networks will be

used for, e.g., real time traffic.

None of the proposed routing protocols from MANET posses all of these properties. Since
many routing protocols are still under development, it is expected that they will support ex-
tended functionality in the future. Various MANET routing protocols are described in the next

chapter.

18

CHAPTER 3

Routing Protocols for Ad-hoc Networks

There are three categories of unicast ad-hoc routing protocols: proactive, reactive and hy-
brid [21]. Proactive or table-driven protocols attempt to maintain, at each node, consistent,
up-to-date information for all destinations. Examples are DSDV [22], CGSR [23], WRP [24],
FSR [25], GSR [26] etc. Reactive or on-demand protocols attempt to minimize overhead by
discovering routes only on-demand. Examples include AODV [27], TORA [28], DSR [29],
SSR [30] etc. Hybrid protocols combine aspects of proactive and reactive protocols. An ex-
amples is ZRP [31]. These protocols can be subdivided into two further categories, Flat and
Hierarchical. In flat routing schemes, each node maintains a routing table with entries for all
the nodes in the network. Such schemes do not scale well to large networks.

Hierarchical schemes scale well and can be used in large networks. In a hierarchical routing
scheme, a network consists of two kinds of nodes, endpoints and switches, or cluster heads.
Only endpoints can be sources or destinations of data traffic, and only cluster heads can perform
routing functions. To form the lowest level partitions in the hierarchy, endpoints choose the most
convenient switches to which they will associate by checking radio link quality. Autonomously,
they group themselves into cells around these switches. This is called “cell formation.” Each
endpoint is within one hop of the switch with which it is affiliated. The switches, in turn,
organize themselves hierarchically into clusters, each of which functions as a multihop packet-
radio network. First level cluster heads organize to form higher level clusters, and so on. This

procedure is called “hierarchical clustering.”

19

DSDV CGSR AODV CBRO

WRP FSR DSR DST
GSR HSR TORA

OLSR ABR

ZHLS SSR

Figure 3.1 Categorization of Unicast Ad-hoc Routing Protocols

The major advantage of hierarchical routing is the efficient utilization of radio channel
resources and the drastic reduction of routing table storage and transmission and processing

overhead. Figure 3.1 depicts the categorization of unicast ad-hoc routing protocols.

3.1 Proactive (Table-Driven) Protocols

These protocols require mobile nodes to maintain (one or more) routing tables containing
routing information to every other node in the network. Nodes respond to changes in the
network topology by propagating routing updates throughout the network in order to maintain
a consistent view of the network. These protocols differ in the method by which the topology
change information is distributed across the network, and the number of necessary routing

related tables.

3.1.1 Destination Sequenced Distance Vector (DSDV)

Destination Sequenced Distance Vector (DSDV) [22] is a distance vector routing protocol

where each node maintains a routing table and periodically broadcasts routing updates. The

20

advantage with DSDV over traditional distance vector protocols is that DSDV guarantees free-
dom from routing loops by the use of sequence numbering associated with every destination.

Details of DSDV are presented in Chapter 4.

3.1.2 Clusterhead Gateway Switch Routing (CGSR)

Clusterhead Gateway Switch Routing (CGSR) [23] uses as its basis the DSDV routing al-
gorithm. It differs from the DSDV routing protocol in the type of addressing and network
organization scheme employed. Instead of a flat network, CGSR is a clustered multihop mobile
wireless network with several heuristic routing schemes. A clusterhead is responsible for con-
trolling a group of ad-hoc nodes. A distributed clusterhead election algorithm is used to elect
a clusterhead. To avoid adversely affecting routing protocol performance by frequent cluster
head changes, a Least Cluster Change (LCC) clustering algorithm is used. Using LCC, cluster
heads only change when two cluster heads come into contact, or when a node moves out of
contact of all other cluster heads.

Since CGSR uses DSDV as the underlying scheme, it has much of the same overhead as
DSDV. However, it modifies DSDV by using a hierarchical cluster head-to-gateway routing
approach to route traffic from source to destination. Gateway nodes are nodes which are within
communication range of two or more cluster heads. A packet sent by a node is first routed to
its cluster head, and then the packet is routed from the cluster head to a gateway to another
cluster head, and so on until the cluster head of the destination node is reached. The packet is
then transmitted to the destination. Figure 3.2 illustrates an example of CGSR scheme. Each
node must keep a cluster member table to store the destination cluster head for each mobile
node in the network. These tables are periodically broadcasted using DSDV algorithm. Each
node also maintains a routing table which is used to determine the next hop in order to reach
the destination. On receiving a packet, a node consults its cluster member table and routing
table to determine the nearest cluster head along the route to the destination. Next the node
checks its routing table to determine the next-hop node to reach the selected cluster head. It

then transmits the packet to this node.

21

. Gateway Node

O Internal Node

Figure 3.2 Example of CGSR routing from source node 1 to destination node 12

3.1.3 Wireless Routing Protocol (WRP)

The Wireless Routing Protocol (WRP) [24] is a path finding algorithm, and is based on
distance vector routing. To avoid routing loops, each node in WRP communicates the dis-
tance and second-to-last hop (predecessor) information for each destination in the wireless
network. At each node a consistency check of the received predecessor information is done
to prevent routing loops. Each node in WRP maintains four tables: (a) distance table, (b)
routing table, (c) link-cost table, and (d) message retransmission list (MRL) table. Each entry
of the MRL contains the sequence number of the update message, a retransmission counter,
an acknowledgement-required flag vector with one entry per neighbor, and a list of updates
sent in the update message. The MRL records which updates in an update message need to be
retransmitted and which neighbors should acknowledge the retransmissions.

Mobiles inform each other of link changes through the use of update messages. An update
message is sent only between neighboring nodes and contains a list of updates (the destination,
the distance to the destination, and the predecessor of the destination), as well as a list of
responses indicating which mobile nodes should acknowledge the update. Mobile nodes send
update messages after processing updates from neighbors or detecting a change in links to one

of the neighbors. Upon receiving an update message, a node updates its distance table and

22

checks for new possible paths through other nodes. Any new paths are relayed back to the
original node. WRP uses hello messages for connectivity if there are no other messages to

indicate connectivity.

3.1.4 Global State Routing (GSR)

Global State Routing (GSR) [26] takes the idea of link state routing but improves it by
avoiding flooding of routing messages. In this protocol, each mobile node has knowledge of the
full network topology and maintains a Neighbor list, a Topology table, a Next Hop table and
a Distance table. The Neighbor list of a node contains the list of all its neighbors. For each
destination node, the Topology table contains the link state information as reported by the
destination and the timestamp indicating the time the destination generated this information.
For each destination, the Next Hop table contains the next hop to which the packet for this
destination must be forwarded. The Distance table contains the shortest distance to each
destination node. GRP uses a weight function to compute the distance of a link.

At the beginning, each node starts with an empty neighbor list and empty topology table.
The node learns about its neighbors by examining the sender field of each packet in the inbound
queue. Upon receiving a routing message, a node updates its topology table if the sequence
number of the message is newer than the sequence number stored in the table. The concept of
sequence number is borrowed from DSDV (see Chapter 4) and is used to distinguish stale links
from the new ones. The updated topology table is used to compute the shortest path from this
node to all other nodes in the network using Dijkstra’s algorithm [13, 19]. The mobile node
then rebuilds the routing table based on the newly computed topology and broadcasts the new
information to its neighbors. Since the global topology is maintained at each node, preventing

routing loops is easier.

3.1.5 Fisheye State Routing (FSR)

Fisheye State Routing (FSR) [25], an implicit hierarchical protocol, is an improvement over

GSR. It saves considerable amount of network bandwidth by using a “fisheye” technique to

23

reduce the size of update messages without seriously affecting routing accuracy. In routing,
the fisheye approach translates to maintaining accurate distance and path quality information
about the immediate neighborhood of a node, with progressively less details as the distance
increases.

In FSR, each node maintains a link state table based on the up-to-date information received
from neighboring nodes, and periodically exchanges it with its local neighbors only (no flooding).
While processing routing messages, entries with higher sequence numbers replace the ones with
smaller sequence numbers. Nodes use a fisheye approach while exchanging routing information.
Figure 3.3 illustrates the application of fisheye in a mobile, wireless network. The circles with
different shades of gray define the fisheye scopes with respect to the center node (node 11). The
fisheye scope is defined as the set of nodes that can be reached with a given number of hops.
Figure 3.3 shows three scopes for 1, 2 and >2 hops. Nodes are color coded as gray, black, and
white accordingly.

In FSR, entries in a routing table corresponding to nodes within the smallest scope are
propagated to the neighbors with the highest frequency. The rest of the entries are sent out
with lower frequency. Thus, by using different exchange periods for different entries in the
routing table, routing overhead is reduced. This strategy produces timely updates from near
stations but creates large latencies from stations afar. Even though the nodes do not have
accurate information about the distant nodes, the packet is routed correctly, because, when a
packet approaches its destination, it finds increasingly more accurate routing information as it

enters sectors with a higher fresh rate.

3.1.6 Hierarchical State Routing (HSR)

Hierarchical State Routing (HSR) [25] is a hierarchical link state based routing protocol.
The characteristic features of HSR are multilevel clustering and logical partitioning of mobile
nodes. The network is partitioned into clusters and a cluster head is elected as in cluster-based
algorithm. The Least Cluster Change (LCC) algorithm is adopted to reduce the number of

times the cluster head changes.

24

Figure 3.3 Scope of Fisheye in an ad-hoc network

Within a physical cluster, each node monitors the link status to each neighbor and broad-
casts it within the cluster. The cluster head summarizes this information within its cluster
and propagates it to neighboring cluster heads via gateways (nodes lying within more than one
cluster). The cluster heads at lower levels again organize themselves into clusters and so on.
Only the clusters at the lowest level consist of physical links. At higher levels only virtual links
exist. These virtual links can be viewed as a tunnel implemented through lower level physical
links. At higher levels the link state information of the virtual links is exchanged. A node
at each level floods to its lower level the information that it obtains after the algorithm has
run at that level. So the lower levels have hierarchical topology information. Each node has a
hierarchical address called hierarchical ID (HID) which is defined as the sequence of addresses
from the top hierarchy to the node itself. Figure 3.4 provides an example of clustering in HSR.
A gateway can be reached from the root via more than one path, so gateway nodes can have
more than one HID. A hierarchical address is enough to ensure delivery from anywhere in the
network to the host.

In addition nodes are also partitioned into logical subnetworks and each node is assigned
a logical address <subnet, host>. Each subnet has a location management server (LMS). All

the nodes of that subnet register their logical address with the LMS. These LMSs advertise

25

Level 2 Gateway Node

Cluster Head
Internal Node

Virtual Node
Virtual Link
Physical Link
<x,y,z> Hierarchical ID

=
&

Level 1

Level 0
(Physical
Level)

Figure 3.4 An example of clustering in HSR

their hierarchical addresses to the top levels and the upper level information is sent down to
lower LMSs. The transport layer sends a packet to the network layer with the logical address
of the destination. The network layer finds the hierarchical address of the destination LMS
from its LMS and then sends the packet to it. The destination LMS forwards the packet to
the destination. Once the source and destination know each other’s hierarchical address, they
can bypass the LMS and communicate directly. Since the logical address/hierarchical address

is used for routing, the protocol is highly adaptable to network changes.

3.1.7 Optimized Link State Routing (OLSR)

Optimized Link State Routing (OLSR) [32] is an optimized version of link state routing
protocol for ad-hoc networks. It improves performance by reducing the amount of information

sent in control messages. In a pure link state protocol, all the links with neighbor nodes are

26

declared and flooded throughout the entire network. OLSR uses a multipoint relaying technique
to efficiently and economically flood its control messages.

Each node in the network selects a set of nodes in its neighborhood, which retransmit its
packets. This set of selected neighboring nodes is called the multipoint relays (MPRs) of that
node (Figure 3.5). Nodes select their MPR set in such a way that the set covers (in terms of
radio range) all the nodes that are 2-hops away and the number of MPRs is minimized. Each
node also maintains a set of its neighbors which are called the MPR Selectors of the node, which
is the set of nodes which have chosen this node as MPR. Every broadcast message coming from
these MPR Selectors of a node is assumed to be retransmitted by that node.

Each node periodically transmits a Hello Message 2.3.2, which contains the list of neighbor-
ing nodes to which a bi-directional or a uni-directional link exist. These messages permit each
node to learn the knowledge of its neighbors up to two hops. Using this information, each node
then selects of its MPRs. These selected MPRs are indicated in future Hello messages with
the link status as MPR. This information helps nodes to build their MPR Selector table. Each
node also keeps a Neighbor table where it records the information about its one hop neighbors,
the link status with these neighbors, and a list of two hop neighbors to which these one hop
neighbors give access. This table is tagged by a sequence number which is incremented any
time the node updates its MPR set.

Each node also broadcasts specific control messages called Topology Control (TC) messages.
A TC messages are forwarded like usual broadcast messages in the entire network. TC message
sent by a node contains the MPR Selector set of that node. This information is used by the
nodes to build their topology table. The topology table is in turn used to compute the routing
table for all the nodes in the network. In route calculation, MPRs are used as the intermediate

nodes to form the route from a given node to any destination in the network.

3.1.8 Zone-based Hierarchical Link State Routing (ZHLS)

In Zone-based Hierarchical Link State Routing Protocol (ZHLS) [33], the network is divided

into non-overlapping zones. Unlike other hierarchical protocols, there is no zone-head. ZHLS

27

Figure 3.5 Multipoint Relays in OLSR

defines two levels of topologies - node level and zone level. A node level topology tells how
nodes of a zone are connected to each other physically. A virtual link between two zones exists
if at least one node of a zone is physically connected to some node of the other zone. Zone level
topology tells how zones are connected together. ZHLS specifies two types of Link State Packets
(LSP) - node LSP and zone LSP. A node LSP of a node contains its neighbor node information
and is propagated within the zone, whereas a zone LSP contains the zone information and is
propagated globally. So each node has full node connectivity knowledge about the nodes in its
own zone and only zone connectivity information about other zones in the network. So, given
the zone id and the node id of a destination, the packet is routed based on the zone id till it
reaches the correct zone. Then, in that zone, it is routed based on the node id. Since a <zone
id, node is> of the destination is sufficient for routing, the protocol is adaptable to changing

topologies.

3.2 Reactive (On-Demand) Protocols

These protocols take a “lazy” approach to routing. In contrast to table-driven routing
protocols, a list of all up-to-date routes is not maintained at every node. Instead the routes

are created as and when required. When a node requires a route to a destination, it invokes a

28

route discovery mechanisms to find a path to the destination. This process is completed once
a route is found, or a route could not be discovered after & maximum number of retries. Once
a route has been established, it is maintained by some form of route maintenance procedure
until either the destination becomes inaccessible along every path from the source, or until the

route is no longer desired.

3.2.1 Ad-hoc On-demand Distance Vector (AODV)

The Ad-hoc On-demand Distance Vector (AODV) [27] routing is a variation of the DSDV
routing protocol. It minimizes the number of required broadcasts by creating routes on an on-
demand basis, as opposed to maintaining a complete list of routes as in the DSDV algorithm.
AODV uses the procedures of route discovery and route maintenance to discover and maintain
routes to desired destinations in the network. AODV also applies a number of optimizations
to improve the packet latency and network throughput. The AODV protocol is explained in
detail in Chapter 8.

3.2.2 Dynamic Source Routing (DSR)

The Dynamic Source Routing (DSR) [29, 34] is an on-demand routing protocol in which the
source specifies the complete route. Mobile nodes maintain route caches containing the source
routes that they are aware of. A node updates entries in its route-cache as and when it learns
about new routes.

The two major phases of the protocol are: Route Discovery and Route Maintenance. When
the source node wants to send a packet to a destination, it looks up its route cache to determine
if it already contains a route to the destination. If it finds that an unexpired route to the
destination exists, then it uses this route to send the packet. But if the node does not have
such a route, then it initiates a route discovery process by broadcasting a route request packet.
The route request packet contains the address of the source and the destination, and a unique
identification number. Each intermediate node checks whether it knows of a route to the

destination. If it does not, it appends its address to the route record of the packet and forwards

the packet to its neighbors. To limit the number of route requests propagated, a node processes
the route request packet only if it has not already seen the packet, and its address is not already
in the route record of the packet. Nodes can also operate their network interface in promiscuous
mode, disabling the interface address filtering and causing the network protocol to receive all
packets that the interface overhears. These packets are scanned for useful source routes or route
error messages and then discarded.

A route reply is generated when either the destination or an intermediate node with current
information on a route to the destination receives the route request packet. A route request
packet reaching such a node already contains, in its route record, the sequence of hops taken
from the source to this node. Figure 3.6a shows the formation of the route record as the route
request travels through the network. If the route reply is generated by the destination, it places
the route record from the route request packet into the route reply packet. On the other hand,
if the node generating a route reply is an intermediate node, it appends its cached route to
the destination to the route record of the route request and puts that into the route reply. To
send the route reply packet, the responding node must have a route to the source. If it has a
route to the source in its route cache, it can use that. The reverse of route records can be used
if symmetric links are supported. If none of these cases is true, the node can initiate a route
discovery to the source and piggy back the route reply on this new route request. Figure 3.6b
shows propagation of route reply containing the route record from destination to the source
node.

In DSR, route maintenance is accomplished through the use of route error packets and
acknowledgements. Route error packets are generated at a node when the data link layer
encounters a fatal transmission problem. When a route error packet is received, the node in the
route error is removed from the route cache and all routes containing that node are truncated at
that point. Acknowledgement packets are used to verify the correct operation of the route links.
This also includes passive acknowledgements in which a node hears the next hop forwarding

the packet along the route.

30

Destination Destination
25 @
e

1-2-5

(a) Building of Route Record during (b) Propogation of the Route Reply with
Route Discovery the Route Record

Figure 3.6 Route Discovery in DSR.

3.2.3 Temporally Ordered Routing Algorithm (TORA)

and provides multiple routes for any desired source-destination pair.

The Temporally Ordered Routing Algorithm (TORA) [28] is an adaptive, efficient and

scalable distributed routing algorithm based on the concept of link reversal. It is source initiated

routing mechanism and depends on Internet MANET Encapsulation Protocol (IMEP) for other
underlying functions. The key design concept of TORA is that the control messages are localized
to a very small set of nodes near the occurrence of a topological change. To achieve this, nodes
maintain routing information about adjacent (1-hop) nodes. The protocol has three basic

functions: (i) Route creation, (i) Route maintenance, and (iii) Route erasure. Each node

maintains the following quintuple:

e Logical time of a link failure
e The unique ID of the node that defined the new reference level
e A reflection indicator bit

e A propagation ordering parameter or “height”

31

It provides only the

e The unique ID of the node

The first three elements collectively represent the reference level. A new reference level is
defined each time a node loses its last downstream link due to a link failure. The last two values
define the difference with respect to the reference level.

Route creation is done using QRY and UPD packets. The route creation algorithm starts
with the height of the destination set to 0, and all other node’s height set to NULL (i.e.
undefined). The source broadcasts a QRY packet with the destination node’s ID in it. A
node with a non-NULL height responds with a UPD packet that has its height in it. A node
receiving a UPD packet sets its height to one more than that of the node that generated the
UPD packet. A node with higher height is considered upstream and a node with lower height
downstream. In this way a directed acyclic graph (DAG) is constructed from the source to the
destination. Figure 3.7 illustrates the route creation process in TORA. In Figure 3.7a, node 5
does not propagate QRY from node 3 as it has already seen and propagated the QRY message
from node 2. In Figure 3.7b, the source node may have received a UPD each from node 2 and
3 but, since node 4 gives it lesser height, it retains that height.

When a node moves, the DAG route is broken and route maintenance is needed to reestablish
a DAG for the same destination. When the last downstream link of a node fails, it generates
a new reference level. This results in the propagation of that reference level by neighboring
nodes, as shown in Figure 3.8. Links are reversed to reflect the changes in adapting to the new
reference level. This has the same effect as reversing the direction of one or more links when
a node has no downstream links. In the route erasure phase, TORA floods a broadcast clear
packet (CLR) throughout the network to erase invalid routes.

In TORA there is a potential for oscillations to occur, especially when multiple sets of co-
ordinating nodes are concurrently detecting partitions, erasing routes, and building new routes
based on each other. Because TORA uses inter-nodal coordination, its instability problem is
similar to the “count-to-infinity” [12] problem in distance-vector routing protocols, except that

such oscillations are temporary and route convergence will ultimately occur.

32

(b) Height of each node updated as a result of UPD message

Figure 3.7 Route Creation in TORA. (Numbers in braces are (reference level, height))

Figure 3.8 Re-establishing route on failure of link 5-7. The new reference level is node 5.

33

3.2.4 Associativity Based Routing (ABR)

Associativity Based Routing (ABR) [35, 36] is a totally different routing approach for ad-hoc
networks. ABR defines a new metric for routing known as the degree of association stability.
It is free from loops, deadlocks and packet duplications. In ABR, a route is selected based on
the degree of association stability of mobile nodes. Each node periodically generates a beacon
to signify its existence. When a neighbor node receives a beacon, it updates its associativity
table. For every beacon received, a node increments its associativity tick with respect to the
node from which it received the beacon. Association stability means connection stability of
one node with respect to another node over time and space. A high value of the associativity
tick with respect to a node indicates low node mobility, while a low value may indicate high
node mobility. Associativity ticks are reset when the neighbors of a node or the node itself
move out of proximity. The fundamental objective of ARB is to find longer-lived routes. The
three phases of ARB are: (i) Route discovery, (ii) Route re-construction (RRC) and (iii) Route
deletion.

The route discovery phase is a broadcast query and await-reply (BQ-REPLY) cycle. The
source node broadcasts a BQ message in search of nodes that have a route to the destination.
A node does not forward a BQ request more than once. On receiving a BQ message, an
intermediate node appends its address and its associativity ticks with its neighbors to the
query packet. The next succeeding node erases its upstream node neighbors associativity tick
entries and retains only the entries concerned with itself and its upstream node. Each packet
arriving at the destination will contain the associativity ticks of the nodes along the route from
source to the destination. The destination can now select the best route by examining the
associativity ticks along each of the paths. If multiple paths have the same overall degree of
association stability, the route with the minimum number of hops is selected. Once a path has
been chosen, the destination sends a REPLY packet back to the source along this path. The
nodes on the path that the REPLY packet follows mark their routes as valid. All other routes

remain inactive, thus avoiding the chance of duplicate packets arriving at the destination.

34

The RRC phase consists of partial route discovery, invalid route erasure, valid route up-
dates and new route discovery depending on which node(s) along the route move. Source node
movement results in a new BQ-REPLY process because the routing protocol is source-initiated.
A route notification (RN) message is issued to erase the route entries associated with down-
stream nodes. When the destination moves, the destination’s immediate upstream node erases
its route. A localized query process LQ[H], where H refers to the hop count from the upstream
node to the destination, is initiated to determine if the node is still reachable. If the destination
receives the LQ packet, it selects the best partial route and sends a REPLY packet; otherwise,
the initiating node times out and backtracks to the next upstream node. An RN message is sent
to the next upstream node to erase the valid route and inform this node that it should invoke
the LQ[H] process. If this process results in backtracking more than halfway to the source, the
LQ process is discontinued and the source initiates a new BQ process.

When a discovered route is no longer needed, the source node initiates a route delete (RD)
broadcast. All nodes along the route delete the route entry from their routing table. The RD
message is propagated by a full broadcast, as opposed to a directed broadcast, because the

source node may not be aware of any route node changes that occurred during RRCs.

3.2.5 Signal Stability Routing (SSR)

The Signal Stability Based Adaptive Routing protocol (S8SR) [30] is an on-demand routing
protocol that selects routes based on the signal strength between nodes and a node’s location
stability. This route selection criteria has the effect of choosing routes that have “stronger”
connectivity. SSR comprises of two cooperative protocols: the Dynamic Routing Protocol
(DRP) and the Static Routing Protocol (SRP).

The DRP maintains the Signal Stability Table (SST) and Routing Table (RT). The SST
stores the signal strength of neighboring nodes obtained by periodic beacons from the link layer
of each neighboring node. The signal strength is either recorded as a strong or weak channel.
All transmissions are received by DRP and processed. After updating the appropriate table
entries, the DRP passes the packet to the SRP.

35

The SRP passes the packet up the stack if the node is the intended receiver. If not, it
looks up the destination in the RT table and forwards the packet. If there is no entry for the
destination in the RT, it initiates a route-search process to find a route. Route-request packets
are forwarded to the next hop only if they are received over strong channels and have not been
previously processed (to avoid looping). The destination chooses the first arriving route-search
packet to send back, as it is highly likely that the packet arrived over the shortest and/or
least congested path. The DRP reverses the selected route and sends a route-reply message
back to the initiator of route-request. The DRP of the nodes along the path update their RTs
accordingly.

Route-search packets arriving at the destination have necessarily arrived on the path of
strongest signal stability because the packets arriving over a weak channel are dropped at
intermediate nodes. If the source times out before receiving a reply, it changes the PREF
(preference) field in the header to indicate that weak channels are acceptable, since these may
be the only links over which the packet can be propagated.

When a link failure is detected within the network, the intermediate nodes send an error
message to the source indicating which channel has failed. The source then sends an erase
message to notify all nodes of the broken link and initiates a new route-search process to find

a new path to the destination.

3.3 Hybrid Routing Protocol

Hybrid protocols employ both reactive and proactive schemes to route packets within an
ad-hoc network. Such protocols are designed to have the advantages of both the reactive and

proactive routing techniques.

3.3.1 Zone Routing Protocol (ZRP)

The Zone Routing Protocol (ZRP) [31, 37] is a hybrid of reactive and proactive routing
protocols. It divides the network into several routing zones, where a zone is a local region

defined by a single parameter called zone radius measured in hops. ZRP uses two different

36

routing protocols, for routing within a zone and routing between zones. Nodes proactively
maintain routing information for nodes within their zone and reactively discover routes for
nodes outside their zones. The two routing mechanisms are referred to as Intrazone Routing
Protocol (IARP) and Interzone Routing Protocol (IERP) respectively.

TARP is the proactive component of ZRP. It operates inside the routing zone and learns
the routes to all the nodes within the zone. The particular protocol to be used is not specified
and can be any of the proactive routing protocol. A change in topology propagates information
only to nodes within affected zones.

IERP is the reactive component of ZRP and is used for finding routes between different
zones. When a node needs to send packets, it first checks to see if the destination is in the same
zone. If so, the path to the destination is known (through TARP), and is used to deliver the
packet. If the destination is not within the the source’s routing zone, the source sends a route
query to all the peripheral nodes. Peripheral Nodes are the nodes whose minimum distance
from the source node is the zone radius. Peripheral nodes in turn forwards the request if the
destination node is not within their routing zone. This procedure is repeated until the route
request reaches the zone containing the destination node. Either the destination node or some
other node within the zone of destination node replies to the query.

The route discovery in ZRP can be made much more efficient in terms of resource usage,
though at the expense of longer latency. Instead of querying simultaneously all the peripheral
nodes, these nodes can be queried either sequentially, one-by-one or in groups. Thus there is a

tradeoff between the cost and latency of the ZRP routing protocol.

37

CHAPTER 4

The Destination Sequenced Distance Vector (DSDV) Protocol

4.1 Introduction

The Destination-Sequenced Distance Vector (DSDV) [22] is an adaptation of the conven-
tional distance-vector routing protocol to the ad-hoc networks. It is based on the classical
Distributed Bellman-Ford (DBF) algorithm [13]. DSDV enables dynamic, self-starting, multi-
hop routing between participating mobile nodes wishing to establish and maintain an ad-hoc
network. It provides quick route convergence in an ad-hoc network with dynamically changing
topology. DSDV maintains routes to every node in the network, thus offering a route imme-
diately whenever it is needed. This avoids any latency associated with the route discovery
procedure. DSDV guarantees loop free routes using a novel scheme of destination provided
sequence numbering of routing update information.

Overall the DSDV protocol has the following properties:

e Loop-free at all instants

e Dynamic, multi-hop, self-starting

e Low memory requirements

e Quick convergence via triggered updates

e Immediate route availability for all destinations

38

e Fast processing time
e Minimal route trashing

e Reasonable network load.

This chapter provides detailed specifications of the DSDV protocol along with its function-

alities.

4.2 Overview of DSDV Protocol

DSDV is a proactive ad-hoc routing protocol which is based on the idea of distance-vector
routing. It offers freedom from routing loops using a scheme of numbering route table entries
by sequence numbers provided by the destination.

Each mobile node in the network maintains a routing table in which all of the possible
destinations within the network and the number of hops to each destination are recorded.
Each routing table entry is marked with a sequence number that is originally generated by the
destination node. The sequence numbers enable mobile nodes to distinguish stale routes from
the new ones, thereby avoiding the formation of routing loops. To maintain the consistency of
the routing tables, each node periodically transmits routing updates. Routing updates are also
transmitted immediately on receipt of significant new routing information. These are called
periodic and triggered routing updates, respectively. A ROUTE-UPDATE message is used to
send out route advertisements.

DSDV employs two types of route update packets to reduce the amount of information
sent out in these update messages. The first known as “full dump”, carries all the available
routing information. The second type, known as “incremental dump”, carries only the routing
information which has changed since the last full dump. Full dump packets are transmitted
infrequently during periods of occasional movements. DSDV also keeps data about the length
of time between the arrival of the first and the arrival of the best route, for each particular

destination. This is used to delay advertising routes which are about to change soon. DSDV

39

expires route table entries if routing updates are not received within the ROUTE_TIMEOUT

period.

4.3 Message Formats

4.3.1 Route Update (ROUTE-UPDATE) Message Format

0 1 2 3
012345678901234567890123456789¢01

[NP SO RO I T IR SU SN FOAUMIE PURDIE SO SR ST TS T S SURE TORE T SE SURNE SV SURNE TOUUUR ST SOV ST VPR SRUUOT T 1
T—r—T-Tr—-Tr—t-r-t+-t+-r—-—+-t+-+r—+-r-+—+t-+-+-t -+t -t—g—teip—t—p—a-i

[IR AP TRUNUON TRRUUY SUUIE RN UK SRR SORIOK NOROE SOUDIE SULIOE JUUUOT JUUENE EOVUN SRR SYRAS SN SR SO SURNNS SR SRS ORI SUUUOR SO SRR SO SRR WURNY T
==t -t ===t —t—t+—t+-+-i—+—t+—t—-t-t—t—t—t—t—t—t =t

FINURS TN SR TN S SO TS SO SUUNR DYRNVE SO S SO 1 F IR S RTINSO SUUT SOUSRT SSUURE SO CRURR TOVE YOS FUUNST WUVOOE NURN SUURE 1
=+ =+ t -t

QU SN SR T TOUUNE SUNY SRPE SR SURNR NN SOUN SOUIOT ST SUNVE S N SN SO SRR RIUE DUURY TORSY SUDE SR SUUNE SO TON ST R SR T |
t T t—+— t

The format of Route Update message is illustrated above. It contains the following fields:

Type 1

Reserve Sent as 0; ignored on reception.

Entries Count The number of destination entries included in the
update message; MUST be at least 1.

Destination IP Address
The IP address of the destination being advertised
by the mnode.

Destination Sequence Number

40

The sequence number in the route table for the
destination listed inm the previous Destination IP
Address field.

Destination Route Metric
The hop count in the route table for the destination

listed in the Destination IP Address field.

The Route Update message is used to send out periodic and triggered routing updates by
every node in the ad-hoc network running DSDV. When a node boots up, the Route Update

message will have only a single entry corresponding to the local node.

4.4 DSDV Operation

4.4.1 Route Table Entry

DSDV keeps routing information in a route table. The route table contains an entry for

every reachable destination in the network. Every route table entry contains following fields:

e Destination IP Address

e Destination Sequence Number

o Next Hop (next node on the path to the destination)

e Route Metric (number of hops needed to reach destination)
e Lifetime (expiration or deletion time of this route)

e Routing Flags

When a node comes up, it initializes its route table with an entry for itself. The destination
IP address and next hop are set to the node’s local IP address. The sequence number is set
to the locally maintained value of destination sequence number. The route metric (hop count)
is set to 0. The Lifetime is initialized to current time plus ROUTE_TIMEOUT value. The
structure of routing flags field is as shown below:

41

Routing Flags
0 1 2 3
01234567890123456789012345678801

icisl Reserved i
C Change Flag
s Stability Flag

Flag C is used when a node wants to make a decision about doing a full dump. Flag S
indicates the stability of a route. If set to 0, the route is not considered very stable and the

broadcast of any changes to the route is delayed to allow it to settle down.

4.4.2 Maintaining Sequence Numbers

The DSDV protocol uses sequence numbers to guarantee loop free routes. Every destination
is responsible for maintaining a sequence number for itself, called a “destination sequence
number.” A destination increments its sequence number every time it sends out a periodic
routing update message. The sequence numbers generated by the destination nodes are defined
to be even numbers. So, when doing periodic broadcast, a local node increments its sequence
number by 2. This is to distinguish this sequence number from the sequence number which
might be generated for this node by some other mobile node in the network. A node does not
increment its sequence number while sending out triggered update messages.

Every route table eritry at every node MUST include the latest information available about
the sequence number for the destination IP address stored in that entry. A node updates the
sequence numbers stored in its routing table entry whenever it receives new routing update
messages. The received sequence number for a destination is compared with the sequence
number value stored for that destination in the node’s route table. The received information
supersedes already stored information if it has a higher sequence number or a lower route metric

in case the two sequence numbers are same.

42

The only scenario in which a node may generate a new sequence number for a destination
besides itself is when it detects a broken link with one of its previous neighbors. In such
a circumstance, the node increments the sequence number for the broken node by 1. This
makes the generated sequence number an odd value. This is done so that any new information
generated by the destination node will have the next higher even value and will then supersede
this information.

In effect, a node may change the sequence number in the routing table entry of a destination

node only if:

o It is itself the destination node and is about to send a periodic route update message.

e It receives a periodic update message with the new information about the sequence number

for the destination node.

e The route towards the destination node breaks or expires.

4.4.3 Periodic Route Advertisement

The DSDV protocol requires each mobile node to periodically advertise the content of its
route table to each of its current neighbors. The advertisement must be made often enough to
ensure that all the mobile nodes have a consistent view of the network topology almost always.
This is even more important for networks which have a very high rate of topology changes. A
route update packet sent out by a node indicates which mobile hosts are accessible from that
node, the number of hops necessary to reach those mobile hosts, and the sequence numbers of
those hosts as known by the node.

Periodic route advertisement is done through the ROUTE-UPDATE message. A node
generates route update messages using either full dump or incremental dump (see Section 4.4.7).
A node scans through its route table to generate a ROUTE-UPDATE message. This message is
sent out on the IP limited broadcast address “255.255.255.255”, so that all the one-hop neighbors

receive this message. When a node reboots, its route table does not contain information about

43

any other node in the network. In such a scenario, the first periodic update message sent out
by the node will only contain a single entry corresponding to itself.

The node also sets a timer for PERIODIC_.UPDATE_INTERVAL time. The next periodic

update will be sent when this timer expires.

4.4.4 'Triggered Route Advertisement

Besides advertising route tables through periodic update messages, a node in DSDV also
sends out a route update message immediately after its own route table changes significantly.
This is called a triggered route advertisement. These updates are used to propagate the route
information as quickly as possible when there is any topology change within the network. A
ROUTE-UPDATE message is used to broadcast triggered route advertisement.

Like periodic route advertisements, the route update message generated by triggered ad-
vertisement can use either a full dump packet or an incremental dump packet (Section 4.4.7).
A node might delay the advertisement of some of these triggered update messages in order to
reduce the number of rebroadcasts of possible route entries that normally arrive with the same
sequence number (Section 4.4.8).

DSDV wuses the following rules to decide which route table changes should be considered
significant enough to trigger an update message. A triggered update is sent out if any of the

following listed conditions is true:

e If the node receives an update message containing an entry for a destination with a higher

sequence number than that stored in the nodes route table for that destination and

— The received entry has route metric set to INFINITY,
Or

— The route metric of the received entry is different from the value stored in the route
table (also see Section 4.4.8),
Or

44

— If the two route metrics are the same but the node from which the entry has been

received is different from the next hop value stored in the route table

e If the sequence number contained in the received entry is smaller than that stored in the

route table and the route metric of the received entry is set to INFINITY.

e If the received and stored sequence numbers are the same, but the received entry has a

smaller route metric.
o If the node receives an entry which does not exist in the route table.

e If an existing route breaks or expires.

A change in the sequence number only is not considered to be a significant change, so no
update message is sent out for such a change. Sequence number changes are broadcasted when

the next periodic advertisement is done.

4.4.5 Processing Route Update Messages

A node does not distinguish between a periodic route update message and a triggered route
update message while processing. Upon receiving the route update message, a node scans the
list of entries contained in it. For every non-local destination entry in this list, it looks for a
matching destination entry in its route table. If no such entry exists, it creates a new entry in
its route table corresponding to this destination based on the information received.

If the node already has an entry for the received destination in its route table, it is modified
only if:

e The received entry has a higher sequence number than the one stored in the route table
e The sequence numbers are the same but the received entry has a smaller route metric.

Whenever a new entry is created or an existing entry is updated, the next hop in the route

entry is assigned to be the node from which the update packet was received. The sequence

45

number and the route metric of the route table entry are set to the their corresponding received
values. The lifetime of the entry is set to the current time plus ROUTE.TIMEOUT value.
A node uses the rules mentioned in Section 4.4.4 to make a decision about sending out a

triggered route update message.

4.4.6 Handling Broken Links

Mobile hosts cause broken links as they move from place to place. There are two ways a

broken link may be detected in DSDV:

1. A broken link may be detected by a layer 2 protocol. For example in IEEE 802.11, the
absence of a link layer ACK or a failure to get a CTS after sending an RTS, even after the
maximum number of retransmission attempts, indicates a broken link to the neighboring

node.

2. If no broadcast is received by the ROUTE_TIMEOUT time from a former neighboring

node, then the link to that node is considered as broken.

In the second case, the lifetime field of the route table entry is used to detect the broken
links. Whenever a route entry expires, the route to that node is considered to be broken.

When a node detects a broken link to a neighboring node, it increments the node’s sequence
number in its route table entry by 1. It also sets the route metric for that node to INFINITY.
The Lifetime value for the node is set to current time plus DELETE_PERIOD. Route table
entries for other destination nodes using this neighboring node as next hop are also updated
to have an incremented sequence number, INFINITY route metric, and current time plus
DELETE_PERIOD as their lifetime.

The node then sends out a triggered route update message containing updated route table

information as mentioned in Section 4.4.4 .

46

4.4.7 Full Dump and Incremental Dump

To reduce the amount of routing overhead generated by route update messages, DSDV uses
two types of packets to send out these updates: full dump and incremental dump.

A full dump route update packet contains an entry for every route table entry and can require
multiple network protocol data units (NPDUs). The NPDU is the maximum size packet which
can be transmitted on a communication channel without fragmentation. During periods of
occasional movement full dump packets should be transmitted infrequently. Smaller incremental
dump packets are used to broadcast only those route table entries which have changed since
the last full dump. Incremental dump packets are expected to fit into a standard size NPDU,
thereby decreasing the amount of traffic generated. In general a node uses incremental dump
to sent out route updates.

A node does a full dump only in one of the following scenarios:

o If the node is sending out its first route update message.

o If the number of route table entries which have changed since the last full dump is greater
than or equal to FULL_.DUMP_FACTOR times the total number of entries in the route
table.

e If more than the MAX_FULL_ DUMP_TIMEOUT period has passed since the last full
dump.

The Routing Flags field in the route table entry is used to keep track of entries which have
changed since the last full dump. The first bit of the routing flags field is designated as “Change
Flag Bit.” When doing full dump, this flag bit is set/reset to 0 for all the route table entries.
Whenever an entry is updated in the route table, the change flag bit for that entry is set to 1.

4.4.8 Damping Fluctuations

DSDV employs a mechanism to damp fluctuations in the route tables. In an environment

where many independent nodes transmit routing information asynchronously, fluctuations could

47

develop. For example a node could receive two routes to the same destination with the same
sequence number, however, the one with the worse metric always arrives first. This would result
in the continuous outbursts of route update messages and fluctuations of the route tables.

DSDV uses the idea of settling time to damp fluctuations of route tables. The settling time
for a destination is defined as the time duration until the route to that destination becomes
stable. The idea is to predict a settling time value for each destination node and use that
to delay advertising changes to the route table entry of that destination node. This requires
each mobile node to keep a history of the weighted average time that routes to a particular
destination fluctuate until the route with the best metric is received.

DSDV stores settling time data in a Settling Time Table with the following fields, keyed by
the first field:

e Destination IP Address
e Last Settling Time
e Average Settling Time

e Last Receive Time

The Last Receive Time is the last timestamp when the route table entry for the Destination
IP Address was changed. This is needed to calculate the settling time for a destination node.
The Last Receive Time for the destination is set to the current system time under the following

circumstances:

e When an entry with a higher sequence number is received.
e When an entry with the same sequence number but smaller route metric is received.

e When the node receives an entry for a destination which is not in its route table.

In the last case, the node creates a new entry in its settling time table for that destination,

initializing both the Last Settling Time and Average Settling Time to 0.

48

The settling time is computed by maintaining a running, weighted average over the most
recent updates of the routes, for each destination. Whenever a node receives an entry for a
destination containing a smaller metric with the same destination sequence number as the one
stored in the the route table entry for that destination, it computes the Last Settling Time and

Average Settling Time values as follows:

If(Average Settling Time == 0 && Last Settling Time == 0)
Last Settling Time = (Current Time - Last Recv Time)
else
if (Average Settling Time == 0)
Average Settling Time = Last Settling Time
Last Settling Time = (Current Time - Last Recv Time)
else
Average Settling Time = (Average Settling Time + Last Settling Time)/2
Last Settling Time = (Current Time - Last Recv Time)
end

end

Whenever a node receives an entry for a destination with a higher sequence number than the
one stored in the route table entry, it delays broadcasting the received information for that des-
tination if the Last Settling Time for that destination is non-zero. This is called delayed triggered
broadcast. The following formula is used to compute the value of DELAYED_UPDATE_INTERVAL,
which is the time interval for which the route update for the intended destination must be de-

layed:

if (Last Settling Time == 0)
broadcast immediately
else
if(Average Settling Time == 0)
DELAYED_UPDATE_INTERVAL = Last Settling Time
else

DELAYED_UPDATE_INTERVAL

(STL_AVG_FACTOR * Last Settling Time)+ \
((1 -STL_AVG_FACTOR) *Average Settling Time)

end

49

end

In reality the broadcast of route update message is delayed by STL_.TIME_FACTOR times
the DELAYED_UPDATE_INTERVAL to accommodate delays in the network.

In addition, DSDV defines a MAX_STL_TIME for every destination, which is the time
duration a route has to remain stable, before it is counted as truly stable. The second bit of the
Routing Flags in the route table entry is used to indicate the stability of that route. When a
route is first created, it is marked as stable (set “Stable Flag bit” to 1). At the time when settling
time is being calculated, if the Last Settling Time is less than the MAX_STL_TIME, then the
Stable Flag bit in the route table entry for that destination is set to 0. If the Last Settling
Time is greater than the MAX_STL_TIME, then this value is not used in the computation of
Average Settling Time and the Last Settling Time is set to MAX_STL_TIME. In this case the
Stable Flag bit is reset to 1. Whenever an entry with a higher sequence number is received for
this destination, its Stable Flag bit is set to 1 and the broadcast is delayed only if the old value
of Stable Flag bit was set to 0.

The MAX_STL_TIMF can be calculated adaptively for each destination based on the history
of previous settling time data for that destination, instead of using a statically configured value
for all the destinations.

To implement damping fluctuations, a node maintains two route tables. The first one
called Forward Route Table is used to forward all the data traffic received at the node. The
second route table called Broadcast Route Table is used to build and send out route update
messages. All the received routing information is applied to both the tables except when
a delayed broadcast is issued. In such a situation, routing updates are applied only to the
Forward Route Table. The two tables are synchronized when the delayed broadcast is actually

sent out.

4.4.9 Expiring and Deleting Routes

Every route table entry in DSDV has a lifetime field associated with it. A node sets the
lifetime value of a route table entry to ROUTE_TIMEOUT when that entry is created or

50

updated. If a node keeps receiving periodic updates for the destination entries in its route
table, the lifetime values of these entries are overwritten before they expire. However, if such
periodic updates are not received (due to broken links), then the route table entries expire. In
such a situation a node proceeds as stated in Section 4.4.6. A node resets the lifetime value for
its own entry to current time plus ROUTE.TIMEOUT periodically. A periodic timer is used
to detect expired route table entries. The lifetime of the local node’s route table entry is reset
every time this timer expires.

An expired route table entry is not deleted from the route table for DELETE_PERIOD
amount of time. This is done to ensure that the broken link information is sent out enough

number of times so that every mobile node in the network gets to know about it.

4.4.10 Actions After Reboot

A node participating in the ad-hoc network must take certain actions after reboot as it might
lose all sequence number records for all the destinations, including its own sequence number.
However, there may be neighboring nodes that are using this node as an active next hop. This
can potentially create routing loops. To prevent this possibility, each node on reboot waits for
DELETE_PERIOD amount of time. During this time, the node does not transmit any periodic
or triggered update messages. If the node receives route update messages from other nodes,
it creates route table entries using the received information. The node also updates its own
sequence number whenever it receives an update message containing an entry for its own IP
address. Thus, by the time a node comes out of its reboot waiting phase and becomes an active
router again, none of the nodes in the network will have an unexpired entry for this node. If
the final value of the local sequence number learnt during the reboot waiting phase is an even
number, the node uses that to send out its first periodic update message. Otherwise, if the
sequence number value is odd, the local sequence number is set to the next higher even number

and that is used to send out the update messages.

51

4.4.11 DSDV Timers

DSDV requires four different timers for its correct operation. These are REBOOT_TIMER,
PERIODIC_.UPDATE_TIMER, DELAYED_UPDATE_TIMER, and BROKEN_LINK_TIMER.
The first timer is set immediately after the node reboots (see Section 4.4.10). The PERI-
ODIC_UPDATE_TIMER is used to send out route update messages periodically. In case a node
wants to schedule a delayed triggered advertisement, it uses DELAYED_UPDATE_TIMER. The
BROKEN_LINK_TIMER is a periodic timer which is used to detect broken links and to delete

expired entries from the route table and settling time table.

4.4.12 Operation at Layer 2

DSDV routing protocol can also be implemented at layer 2 [13]. When DSDV is operated
at layer 2, Media Access Control (MAC) addresses [12] are stored in the route tables. Using
MAC addresses for routing tables does not introduce a new requirement. The difficulty is that
the Layer 3 network protocols provide communication based on the network addresses, and a
way must be provided to resolve these Layer 3 addresses into MAC addresses. Otherwise, a
multiplicity of different address resolution mechanisms would be needed and a corresponding loss
of bandwidth in the wireless medium would be observed whenever the resolution mechanisms
are utilized.

The solution is to include Layer 3 (network layer) protocol information along with the
Layer 2 information while operating DSDV at Layer 2. Each destination host would advertise
which Layer 3 protocol(s) it supports, and each mobile host advertising reachability to that
destination would include along, with the advertisement, the information about the Layer 3
protocols supported at that destination. This information would only have to be transmitted
when it changes, which occurs rarely. Changes would be transmitted as part of each incremental
dump. Since each mobile host could support several Layer 3 protocols, this list would have to

be variable in length.

52

4.4.13 Extending Base Station Coverage

Mobile computers will frequently be used in conjunction with base stations, which allow
them to exchange data with other computers connected to the wired network. By participating
in the DSDV protocol, base stations can extend their coverage beyond the range imposed by
their radio transmitters. When a base station participates in DSDV, it is shown as a default
route in the update messages transmitted by the mobile stations. In this way, mobile stations
within range of a base station can cooperate to effectively extend the range of the base station
to serve other stations outside the range of the base station, as long as those other mobile

stations are close to some other mobile station that is within range.

4.5 Configuration Parameters

This section provides default values for some important parameters associated with the

DSDV protocol operation.

Parameter Name Value

PERTODIC_UPDATE_TIMER_INTERVAL 2000 ms

BROKEN_LINK_TIMER_INTERVAL 1000 ms

ROUTE_TIMEOUT 5+PERIODIC_UPDATE_TIMER_INTERVAL
DELETE_PERIOD 5+PERIODIC_UPDATE TIMER_INTERVAL
MAX_FULL_DUMP_TIMEOUT 5+«PERIODIC_UPDATE_TIMER_INTERVAL
FULL_DUMP_FACTOR 0.6

STL_AVG_FACTOR 0.7

STL_TIME_FACTOR 2
MAX_STL_TIME PERIODIC_UPDATE_INTERVAL/4

A particular mobile node may wish to change some of these parameters, in particular PE-
RIODIC_UPDATE_TIMER_INTERVAL, FULL_.DUMP_FACTOR and STL.TIME.FACTOR.

Choice of these parameters may effect the performance of the DSDV routing protocol.

53

4.6 Proof of Loop-free Property

In this section we show that destination sequence numbering guarantees freedom from loops.

Let us consider a collection of N mobile nodes in steady-state i.e. route tables of all nodes
have already converged to the actual shortest paths. At this instant the next node indicators to
each destination induce a tree rooted at that destination. Thus, routing tables of all nodes in
the network can be collectively visualized as forming N trees, one rooted at each destination.
Let us focus on a specific destination d for the purpose of this discussion. p¢ is defined as the
next-hop for destination d at node i. s¢ is defined as the sequence number value for node d
stored at node i.

Potentially a loop may form each time node i changes its next-hop. This can happen in two
cases. First, when node i detects that the link to its next-hop is broken, the node sets the p¢ to
nil. Clearly, this action cannot form a loop involving node i. The second scenario occurs when

node i receives, from one of its neighbors &, a route to d and

o the new route contains a higher sequence number, i.e., s§ > s,

Or

o the sequence number s is same as s¢, but the received route has a shorter route metric.

In the first case, by choosing k as its next hop, node 7 cannot form a loop. This can be
deduced as follows. A node i propagates the sequence number s¢ to its neighbor only after
receiving it from its current next-hop. Therefore, at all times the sequence number value stored
at the next-hop is always greater or equal to the value stored at i. Starting from node i, if
we follow the chain of next-hop pointers, the sequence number values stored at visited nodes
would form a nondecreasing sequence. Now suppose node i forms a loop by choosing k& as its
next-hop. This would imply node i lies both before and after k in the chain. Since it lies after
k, we must have s§ < s?. But this contradicts our initial assumption that s¢ > s¢. Hence,

loop-formation cannot occur if nodes use newer sequence numbers to pick routes.

54

Figure 4.1 An example of Ad-hoc Network

The loop-free property holds in the second scenario due to the theorem proved in [38], which
states that in presence of static or decreasing link weights then distance-vector algorithm always

maintain loop-free paths.

4.7 Example of DSDV in Operation

Consider node M Hy in the ad-hoc network shown in Figure 4.1 . Table 4.1 shows a possible
structure of the forwarding table which is maintained at M Hy. The address of each Mobile Host
is represented as M H; and sequence numbers are denoted as SNNN_M H;, where SNNN is
a sequence number value. Also, suppose that there are entries for all other Mobile Hosts, with
sequence numbers SNNN _M H; at node M Hy. The install time field helps determine when to
delete stale routes. The install time field stores the absolute time when the route table entry
was created first. This field is updated every time the route table entry changes. The install
fleld corresponds to the Lifetime field mentioned in Section 4.4.1

From Table 4.1, we can see that all of the nodes become available to M Hy at about the
same time because, for most of them, their install time is about the same. We can also surmise
that none of the links were broken, because all of the sequence number fields have even digits
in their units place. Table 4.2 shows the structure of advertised route update message of node
MHyj.

Now suppose that M H; moves into the general vicinity of M Hs and M Hy, and away from
others (especially M Hs). The new internal forwarding table at M H; might then appear as

55

Table 4.1 Structure of the MH, forwarding table

Destination | Next Hop | Metric | Sequence Number | Install
MH; MH, 2 S406_MH; T001_MH4
MH, MHy 1 S128_ MHs T001 _MH,4
MHjs MH, 2 S564_MHg T001_MH4
MHy MH4 0 S710_MH4 T001_MH,4
MHj MHg 2 S392 MH;5 T002_MHy4
MHg MHg 1 S076_MHg T001.MH4
MH7 MHsg 2 S128_MHy T002_MH>
MHg MHg 3 S050_MHsg T002_MH,

Table 4.2 Advertised Route Table by MH,

| Destination | Metric

Sequence Number

MH; 2 S406_MH;
MH» 1 S128_ MH,
MHs 2 S564_MH3
MHy 0 S710_MH4
MHj; 2 S392_MHy
MHg 1 S076_MHg
MH; 2 S128_MH-,
MHg 3 S050_MHg

56

Table 4.3 MH, forwarding table (updated)

Destination | Next Hop | Metric | Sequence Number Install [
MH; MHg 3 S516_MH; T810_MH,
MH, MHs 1 S238_MH, T001.MH4
MHs; MH, 2 S674. MHjg T001_MH,4
MH, MH4 0 S820_MH, T001_MH,
MHs MHg 2 S502_.MHs T002_MH4
MHg MHg 1 S186_MHg T001_MH,4
MH-, MHjg 2 S238_MH, T002_MH4
MHsg MHg 3 S160_MHsg T002_MH4

shown in Table 4.3. Only the entry for M Hy shows a new metric, but in the intervening time,
many new sequence number entries have been received. The first entry thus must be advertised
in subsequent incremental routing information until the next full update occurs.

When M Hy moved into the vicinity of M Hs and M Hg, it triggered an immediate incremen-
tal routing information update which was then broadcast to M Hs. M Hg, having determined
that significant new routing information had been received, also triggered an immediate update
which carried along the new routing information for M Hy. M Hy, upon receiving this infor-
mation, would then broadcast it at every periodic update interval until the next full dump.
Figure 4.1 illustrates the logical propagation of a route entry from node M Hy to other nodes
in the network. M H; attaches a new sequence number to the route advertisement. Only the
relevant information for node M H; has been shown in Figure 4.1. The actual route update
messages broadcasted by each node would contain its entire route table, not just the information
for M H;.

The incremental advertised routing update at M Hy would have the form as shown in Ta-
ble 4.4. The information for M Hy comes first since it is doing the advertisement. The infor-
mation for MHy comes next, as M Hj is the only one that has any significant route changes

affecting it.

57

(x,y,Z) represents (destination address, sequence number, route metric (hop count))

Figure 4.2 Mobility in an Ad-hoc Network

Table 4.4 MH, advertised table (updated)
| Destination | Metric | Sequence Number |

MHy 0 S820_MH4
MH; 3 S516_MH;y
MHs 1 S238_MHs
Mhs 2 S674_MHsz
MHj5 2 S502_MHs
MHg 1 S186_MHg
MH; 2 S238_MH7
MHs 3 S160_MHg

58

CHAPTER 5

Implementation of DSDV

This chapter describes the details of our implementation of the DSDV routing protocol on
the Linux operating system. It starts by giving an overview of routing architecture for modern

Unix-like operating systems.

5.1 The OS Routing Architecture

Every operating system provides two modes of operations: a user space, where application
programs written by the users can be executed, and a kernel space, where only operations
unique to the operating system kernel can be executed. User space programs make use of
“system calls” to avail these services which can run only in the kernel space.

In most Unix-like operating systems, the routing functionality is divided into two parts [12].
The first part, called forwarding function, resides inside the operating system kernel and deals
with the task of directing packets to different outgoing network interfaces based on a table-
driven process. The in-kernel forwarding function maintains a kernel routing table (Figure 5.1b)
and consults this table before sending each packet to the corresponding “next-hop” neighbor
through the corresponding outgoing network “interface.”

The second part called routing function resides in the user space and is responsible for
populating the kernel routing table. This functionality is usually implemented by a user-space

routing daemon program (Figure 5.1a). The routing daemon engages in information exchange

59

Routing Function

user space

kernel space

Forwarding Function

route table
Gt Ao R

(a) Routing Architecture

(b) A typical kemel route table structure

Figure 5.1 Routing Architecture of Unix-like Operating Systems

with its peers at other nodes and employs some sort of routing protocol to compute the proper
routes.

The separation of these two functions allows an efficient packet flow inside the kernel without
incurring any context switch overhead, and yet provides the flexibility for adding or changing
the routing protocol. Placing the routing function outside the kernel has the advantage of
relieving the kernel of CPU or memory intensive tasks such as complex route computation or

long-duration route discovery.

60

DSDV Routing Daemon

dsdv route table

Transmitted Route
Update Messages

2

user space

keinel space

kernel route table

Received Route
Update Messages

Figure 5.2 User-Space DSDV Routing Daemon
5.2 Overview of the Implementation

The DSDV routing protocol is implemented as a user-space routing daemon program. Our
implementation was done on the Linux 2.4.17 kernel, but since the implementation requires no
changes inside the kernel, it would work as well on any other Linux kernel version. The entire
implementation has been done in C++.

Figure 5.2 illustrates the design of the DSDV daemon and its interactions with the kernel.
The user-space DSDV routing daemon is a sequential program and creates no parallel threads
or processes. The DSDV daemon maintains a local copy of the route table called dsdv route
table. This route table contains learnt routes to all the destinations in the ad-hoc network.
The routing daemon modifies this table whenever it receives new route update information on
the wireless interface. The DSDV daemon transmits its own routing information periodically
or in the event of significant changes to the dsdv route table. The dsdv route table is used to

modify the route table inside the kernel through ioctl() system calls. doctl() is a system call

61

DSDV Routing Daemon

Main Module

User space

kernel space

Transmitied Route
Update Messages

Received Route
Update Messages

Figure 5.3 Modular Design of DSDV Routing Daemon

which allows manipulating the kernel route table from the user space. Whenever there are any
significant changes in the dsdv route table, the corresponding entries in the kernel route tables

are also modified by the DSDV routing daemon.

5.3 Implementation Details

The DSDV protocol implementation is divided into a number of modules. Figure 5.3 depicts
a detailed modular design of DSDV routing daemon and how various modules interact with the
kernel. This section provides an in-depth view of the implementation of DSDV routing protocol.
It starts by describing the various data structures used. Different modules are explained in the

subsequent section..

62

5.3.1 The Main Data Structures

Following are the data structures maintained by DSDV. The list shows only the private

members of each class.

5.3.1.1 Routing Table Entry

The rtable_entry class defines the structure of a route table entry.

class rtable_entry {
u_int32_t dest_ip; /* ip address of the destination node */
u_int32_t mnext_hop; /* ip address of the next hop towards dest_ip */
u_int32_t dest_seq_num; /# destination sequence number for dest_ip */
u_int32_t rt_metric; /* number of hops to the destination */
u_int64_t lifetime; /% lifetime of this route entry */
u_int32_t routing flags; /* routing flags for the entry */

I

5.3.1.2 Routing Table

The DSDV Route table is defined by the class routingTable. It contains a map of rtable_entry
to store routes for the destination nodes. This map is keyed by the IP address of destination
node.

class routingTable{
map<u_int32_t,rtable_entry>rTableMap;
};

5.3.1.3 Broadcast Entry

The broadcast_entry class defines the structure of a single destination entry being transmitted
within the route update message.

class broadcast_entry{
u_int32_t dest_ip;
u_int32_t dest_seq_num;
u_int32_t rt_metric;

};

63

5.3.1.4 Update Message

The updateMessage class defines the structure of the route update message advertised by a
node in DSDV. It contains a list of broadcast_entry, one for each destination ip address being
advertised.

class updateMessage{

u_int8_t type; /* message type */

u_int8_t reservedi;

u_int8_t reserved?;

u_int8_t entries_cnt; /* number of destination entries being transmitted #/

list<broadcast_entry> brentry_list;
b
5.3.1.5 Settling Time Entry

The settlingTimeEntry class defines the structure of an entry to store the settling time data
for a destination node.

class settlingTimeEntry{

u_int32_t dest_ip; /* ip address of destination */
u_int32_t last_stl_time; /* last computed settling time #/
u_int32_t avg_stl_time; /#* average settling time */

u_int64_t last_recv_time; /* timestamp when route table entry for

* dest_ip was last updated/created #*/
ks

5.3.1.6 Settling Time Table

The settlingTimeTable class is used by DSDV to store the settling time data for different
destination nodes. It contains a map of settlingTimeEntry and is keyed by the IP address of
the destination node.

class settlingTimeTable{
map<u_int32_t,settlingTimeEntry>stlTimeMap;
¥

64

5.3.1.7 Timer Entry
The timer class gives the structure of each timer entry maintained by DSDV.

class timer{
u_int64_t timeout; /#* timeout for the timer */
timer_hfunc_t handler; /#* handler function */
void *data; /% data to be passed to handler function */

I H

5.3.1.8 Timer Queue

The class timerQueue gives the structure of the timer queue maintained by the DSDV

protocol. It contains a list of timer class entries.

class timerQueue{
list<timer> timerQ;

};

5.3.2 Modules

The DSDV implementation consists of seven major modules. Each of these modules are
explained below.
5.3.2.1 The Main Module

The Main module ties together all the other modules of the user space routing daemon.
It declares and initializes global data structures using command line arguments. It creates an
instance of dsdv class (Section 5.3.2.2) and calls its dsdv_daemon() function, which is the main

starting point of dsdv routing daemon.

5.3.2.2 The Dsdv Module

This module comprises the main thread of control inside the DSDV routing daemon. It

contains an object of class dsdvSocket as its member function. This class provides functions

65

to initialize dsdv socket which is used to send and receive route control informations. It also
provides interface functions to read and write data from/to dsdv socket.

The main control starts at dsdv_daemon() function. Member functions of dsdvSocket module
are used to initialize dsdv socket. This module also adds the local node’s route entry into dsdv
and kernel route tables. It then sets up a reboot timer and a periodic broken link timer and
enters into the main daemon loop. When the reboot timer expires, the node broadcasts its
first route update message and starts a periodic update timer. The periodic broken link timer
monitors the link status of neighboring nodes periodically to detect broken links.

When a packet arrives at dsdv socket, the node uses the first 8 bits in the packet to determine
the type of the packet. Only packets of type DSDV_PERIODIC_UPDATE are processed by the
routing daemon. If dsdv daemon receives a packet of desired type, it creates an updateMessage
object from it and calls the applyUpdates() function of that class to incorporate received routing
information into local route tables. A triggered route update message is sent out if needed.

Whenever a node needs to transmit a route update message, it calls the getChangedEntri-
esCnt() function of routeTable module to decide if the route update should use a full dump
packet. It then calls generateUpdateMessage() function of the same module to generate an
updateMessage object. The content of this object is copied into a send buffer and the packet is

broadcasted on the dsdv socket.

5.3.2.3 The UpdateMessage Module

As explained above (Section 5.3.1.4), this module defines the structure of the route update
message. It provides two main functionalities. First, it offers member functions to create an
updateMessage object from the incoming data buffer and vice versa. Second, the applyUpdates()
function of this module is responsible for extracting the useful informations from received route
updates and applying it to the local route tables. The logic of the applyUpdates() function is
as follows.

The applyUpdates() function scans through the received list of destination entries, and for

every received entry it looks for a matching destination entry in the dsdv route table. If an entry

66

does not already exist, it adds a new entry for the received destination into dsdv as well as
the kernel route tables. The later is achieved using the interface functions of kernel route table
module. On the other hand, if an entry does exist in dsdv route table, it compares the value of
the received sequence number with the value of stored sequence number for that destination.
If the received value is higher than the stored one, it updates the route table entry with the
new received information about next-hop, sequence number and route metric. The lifetime of
the entry is also updated to current time plus ROUTE_-TIMEOUT. The kernel route for this
destination is deleted (if it exists) and a new route is inserted in the kernel route table. A
delayed triggered route advertisement is scheduled if the received route metric is higher than
the stored one. Otherwise an immediate triggered broadcast is done. If the values of both the
sequence numbers are the same, then the existing route table entry is updated only if it has a
higher route metric than the received entry. If the node gets an entry with a smaller sequence
number that has an INFINITY route metric, it issues an immediate triggered route update to

send out its latest information.

5.3.2.4 The RoutingTable Module

This module is responsible for maintaining the dsdv route table. It defines three main
interface functions. The getChangesEntriesCnt() function scans the route table entries looking
for the Change Flag Bit. Tt returns the number of route table entries which have changed since
the last full dump.

The generateUpdateMessage() function creates the updateMessage object to be transmitted
during route advertisement. It first inserts the local node’s entry into the list. Then it scans
through the route entries in dsdv route table. If the full dump flag is set, it adds all the route
table entries to the list in updateMessage. Otherwise, for every route table entry, it checks the
Change Flag Bit and adds only those entries into the list for which this flag is set.

The refreshEntries() function is called every time a periodic broken link timer expires. This
function scans through the list of route table entries looking for expired entries (lifetime <

current time). If such an entry is found and has an INFINITY route metric, then this entry is

67

deleted from the route table. If the found entry has a route metric not equal to INFINITY, the
active route to this destination node is assumed to be broken. The kernel route table entry for
this destination is deleted and the route table entry is modified to set an INFINITY route metric
and incremented (+1) sequence number. If the expired route corresponds to a neighboring node
(route metric = 1), then the route table entries for all other destination nodes using this node
as the next-hop are also expired. These entries are also assigned an INFINITY route metric
and incremented destination sequence number. The kernel routes for these new destinations

are also deleted.

5.3.2.5 The Kernel Route Table (KRT) Module

This module provides functions to add and delete routes from the kernel route table. It
uses the doctl() system call to modify kernel routes. It takes an object of rtable_entry class as

an input, generates a struct rtentry object out of that, which is passed to the joctl() calls.

5.3.2.6 The SettlingTimeTable Module

This module is used to implement the damping fluctuations feature of the DSDV routing
protocol. It provides member function setAvgStiTime() to compute the values of last_stl_time
and avg-stl_Time as described in Section 4.4.8 of Chapter 4. It also provides an interface to set
the last_recv_time value for a destination node.

This module collaborates with the updateMessage module to accurately maintain data in the
settling time table. The value of last_recv_time is set inside updateMessage module whenever the
route table entry for a destination node is created /updated. The last_stl_time and avg_stl_time
values are also computed inside updateMessage module when an entry with the same sequence

number but smaller route metric is received for a destination.

5.3.2.7 The TimerQueue Module

The DSDV routing daemon uses the timerQueue module to maintain different timers. The

protocol maintains four different kinds of timer as stated in Section 4.4.11 of Chapter 4.

68

This module provides a universal handler function for all the timers, called schedule Timer().
This function is called when any of the timers expires and it in turn calls the handler functions
of all the expired timers. Last, it sets the system timer to the next unexpired timer value.

The set_timer() function is the generic function which is used to add new timer entries to
the timer queue. It also resets the system timer (if needed) to the smallest unexpired timer

value.

5.3.3 Configuration Parameters

The following values of DSDV configuration parameters have been in the current implemen-

tation:

#define PERIODIC_UPDATE_INTERVAL 2000

#define ROUTE_TIMEOUT 5+PERIODIC_UPDATE_INTERVAL
#define DELETE_PERIOD 5*PERTIODIC_UPDATE_INTERVAL
#define BROKEN_LINK_TIMER_INTERVAL 1000

#define MAX_FULL_DUMP_TIMEQOUT 5*PERIODIC_UPDATE_INTERVAL
#define FULL_DUMP_FACTOR 0.6

#define STL_AVG_FACTOR 0.7

#define STL_TIME_FACTOR 2

69

CHAPTER 6

Adaptive DSDV: Design and Implementation

6.1 Motivation

The DSDV [22] routing protocol has a number of configuration parameters. These include
the periodic update interval and the full dump interval.

Choice of some or all of these parameters affects the performance of the DSDV protocol.
It is very difficult to obtain optimal values for different DSDV parameters. Simulation results
with different sets of parameters might help to find out optimal values for these parameters.
But, it is not possible to exactly duplicate real life scenarios in the simulation world, and so
one can not set optimal parameter values to run DSDV protocol on a real test bed is still a big
challenge. Also, to a very great extent the choice of these parameters depends on the network
size and the rate of mobility within the network. Thus, even if optimal values are chosen for
these parameters based on some simulation data, these values would no longer be optimal when
the mobility pattern of the network changes or mobile nodes get added/deleted to/from the
ad-hoc network. What is needed is a mechanism to enable the network to automatically figure
out the values of these parameters based on the dynamics of the network currently and in recent
the past. This would obviate the need of hard coding the values of these parameters. Also,
the use of a dynamic algorithm to choose these parameter values would imply that optimal
parameter values are chosen for all kinds of networks irrespective of their sizes and mobility

patterns.

70

The Adaptive DSDV (A-DSDV) protocol that we have developed addresses these issues
and provides a mechanism to adaptively and dynamically select the values of important DSDV

parameters.

6.2 Design of Adaptive DSDV

The Adaptive DSDV (A-DSDV) protocol is an extension of the DSDV routing protocol. It
addresses the issue of how to select optimal values of DSDV parameters irrespective of the size
of the network and the mobility patterns within the network. The goal of the protocol is to
provide a dynamic mechanism, to determine the values of main DSDV parameters, which is
adaptive to the changes in the network conditions. A-DSDV has been designed with the vision
of enabling a fully automatic version of the DSDV protocol without the need to set any hard
coded parameters.

The protocol provides adaptive mechanisms for the following DSDV parameters:

e Periodic Update Interval

e Full Dump Interval

6.2.1 The Periodic Update Interval

The periodic update interval is the most important parameter of the DSDV routing protocol.
The value of this parameter affects the aggregate routing overhead of the protocol. Setting this
parameter to a very low value results in too much routing overhead, while setting it to a very
high value results in slow convergence of the DSDV routing protocol.

The idea behind computing the periodic update interval adaptively as the network dynamics
change can be explained as follows. If a network is fairly stable in terms of node mobility, then
the periodic update interval should be large to avoid unnecessary rebroadcast of the same
routing information. On the other hand, if the rate of change of network topology is high for
the network, then periodic update interval should be small enough to ensure that all the mobile

nodes in the network get updated routing informations as soon as possible.

71

To compute the periodic update intervals adaptively, a mobile node follows these steps:

e It keeps a history of the last k periodic update intervals. It also keeps track of the number
of route table changes in each of those intervals. Let u; denotes the ith periodic update

interval and let n; denotes the number of route table changes during that update interval.

e The new periodic update interval is computed using the following formula.

1&
U= ——Z d (6.1)
kis

ang

where o represents the scaling factor for route table changes and it is set to 2.

e In case there are no routing updates in the network, the periodic update interval converges

to MAX_PERIODIC_UPDATE_INTERVAL.

The equation for computing the adaptive periodic update interval has been designed so that
update periods with very high number of route table changes tend to decrease the resulting
value of the new computed interval. The new periodic update interval is inversely proportional
to the number of route table updates in all the past k update periods. So, the higher the
number of routing changes, the smaller will be the value of next update interval. Thus the

algorithm fully adapts to the changes in the network topology, as desired.

6.2.2 The Full Dump Interval

The next important DSDV parameter addressed in the design of adaptive DSDV is the full
dump interval. A full dump consists of advertising all available routing informations. The full
dump interval is the time duration between two such successive route advertisements. If the
full dump route updates are sent very frequently, it results in a high routing overhead. On
the other hand, if the full dump interval is too large, then the size of incremental dumps will
eventually become large and it will consume a considerable amount of network bandwidth. This
increases the routing overhead, and thus is not desirable. Also, any newly added nodes in the
ad-hoc network might experience long delays before they receive all the routing informations.

This increases the overall convergence time of the routing protocol.

72

In the original DSDV, the full dump interval is not defined in the units of time. DSDV does

a full dump in the following two conditions:

e Whenever the number of modified routing table entries becomes more than the
FULL.DUMP_FACTOR times the total number of entries in the route table,
Or

e The time duration since last full dump becomes more than the
MAX_FULL DUMP_INTERVAL.

The A-DSDV protocol optimizes the first of these two conditions. The second condition is

retained as is.

6.2.2.1 The /(2n) Law for the Full Dump Interval

We provide a new “\/(2n) Law” for the length of the full dump interval, and show that it
is optimal.

The idea is to minimize the average cost of all dumps. Figure 6.1 illustrates the average cost
in each successive periodic update interval just after a full dump has been done. At interval
0, a full dump route advertisement was done. Let us also assume that the average cost of
an incremental dump increases linearly with time. After k incremental dumps, a full dump is
performed again, which advertises all the available route table entries (n). The average cost

(say Ck) of all routing updates after the last full dump is given by:

142434+ ————+k+n
= 2
Cr . (6.2)
k n
RS 63

k =+/(2n) — 1 minimizes the above cost function.
Thus we obtain the following theorem:
Theorem: The /(2n) law for the full dump interval
The average cost of route table updates is optimal when o full dumyp is done after every

V/(2n) — 1 incremental dumps.

73

Average cost of periodic updates

\

Periodic Update Intervals
Figure 6.1 Average Cost of Full Dump

This theorem has been employed in designing the following rule, which states when a node

should attempt a full dump of routing informations.

e Once the number of modified routing table entries reaches v/(2n) — 1 the node should do

a full dump.

Implementing this requires Adaptive DSDV to keep a running average of the value of n.

6.3 Overview of the Implementation

The A-DSDV has been implemented on top of the previously described implementation of
DSDV. It modifies DSDV to use adaptive periodic update intervals, and /(2n) Law for adver-
tising the full dump of routing information. Figure 6.2 illustrates the design of Adaptive DSDV
protocol highlighting the additional logical modules it adds to the DSDV routing protocol.

A-DSDV stores the MAX_UPDATE_HISTORY_CNT number of past periodic update in-
tervals along with the number of routing changes in each one of them. It uses this to compute

the values of update intervals dynamically. The protocol uses the newly computed value as

the value of DSDV parameter PERIODIC_.UPDATE_INTERVAL. Before doing a broadcast of

74

Adaptive DSDV Routing Daemon

user space l H

kernel space

//_\w Transmitted Route

Update Messages

kernel route table

Received Route
Update Messages

Figure 6.2 Adaptive DSDV Routing Daemon

routing informations, the 1/(2n) Law is applied to make a decision about doing a full dump of

available route information.

6.4 Implementation Details

6.4.1 The Main Data Structures

A-DSDV employs the following additional data structures to implement its functionalities.

class updateIlntervald{
u_int32_t interwval; /* duration of the update interval */

u_int32_t rUpdateCnt; /+# number of routing updates in during this interval */

1
deque<updateInterval> qUpdatelnterval; /# queue to store the history of update intervals */
u_int32_t avg_N; /# running average of the number of route table entries */

The values of the past k periodic update intervals are stored in a queue of update intervals

called qUpdateInterval. Each entry is an object of type updatelnterval and also stores the

75

number of route table updates during that interval. Variable avg.N is used to keep a running

average of the number of entries in the routing table. The protocol initializes this to 0.

6.4.2 The Modules of A-DSDV

The Adaptive DSDV functionality is split into two logical modules: Update Interval module
and Full Dump Interval module.

6.4.2.1 The Update Interval Module

This module is responsible for computing the adaptive periodic update intervals. It main-
tains a global variable to record the time of the last periodic route update. When a periodic
update message is transmitted, this variable is used to record the value of the current peri-
odic update interval. A global variable called num_routing_updates is incremented every time a
route table entry is modified. This variable is stored in qUpdateInterval, along with the value
of current periodic update interval. The num_routing_updates is reset to 0 whenever a periodic
update is sent out. The module uses equation(6.1) to compute the value of new periodic update
interval and uses this to set the next periodic update timer.

DSDV is modified to define the value of PERIODIC_UPDATE_INTERVAL as the output of
this module. All other DSDV parameters defined in terms of PERIODIC_UPDATE_INTERVAL

are also modified to use the adaptively computed value of the update interval.

6.4.2.2 The Full Dump Interval Module

This modules is called just before transmitting a periodic route update packet. It uses the
v/ (2n) Law to determine if a full dump should be done. Let us assume that ¢y denotes the
current system time. The module employs the following formula to compute the average value

of n.

avg-N = {8+ agv_N} + {{1 — B} * teurr, } (6.4)

76

where 3 denotes the fraction used for computing the running average for the value of n, and
is called RUNNING_AVG_.FRACTION.

Before transmitting a route update message, the full dump module is invoked. It scans the
route table to count the number of modified route table entries since the last full dump. The
first bit of the routing flags in the route table entry is used for this purpose. If the number
of modified route table entries are more than /(2n), then the module returns true and DSDV
protocol broadcasts a full dump of available routing information. If the module returns false,

only modified route table entries are transmitted.

6.4.3 A-DSDV Parameters

Though A-DSDV is designed to make DSDV free of hard coded parameters, it introduces
some new parameters. Different choices for these parameters however do not drastically change
the performance of A-DSDV protocol and it is considerably easier to come up with default
values for these parameters.

MAX_PERIODIC_UPDATE_INTERVAL 10000 ms
RUNNING_AVG_FRACTION 0.4
MAX_UPDATE_INTERVAL_HISTORY_CNT 10 /* number of past periodic

77

CHAPTER 7

System Services for Ad-hoc On-demand Routing

7.1 Introduction

Most of the MANET routing protocol studies are simulation based [39, 40, 41], with very
few real implementations. One of the goals of this thesis is to provide implementations of some
of the MANET routing protocols and conduct studies on real test beds. Validating MANET
algorithms in real systems is necessary for their proliferation in the real world. However, some
of the MANET routing protocols require sophisticated system-level programming which makes
the task of implementing these routing protocols fairly difficult.

Most of the proactive ad-hoc routing protocols fit very nicely into the Routing Architecture
described in Section 5.1 of Chapter 5. These protocols can be easily implemented as user-space
daemons without requiring any special support from the operating system or the kernel. This
is however not true in general for reactive routing protocols. Such protocols often employ new
routing models or have special requirements that are not directly supported by current operating
systems. This makes it a tough job to carry out the implementation of these MANET routing
protocols.

The core reason for having such difficulties in implementing reactive ad-hoc routing proto-
cols is the lack of system support and programming abstractions in general purpose operating
systems (such as Unix/Linux). Without proper systems support and convenient programming

abstractions, implementors are forced to do low-level system programming, and often end up

78

making unplanned changes to the system internals in order to gain the additional functionality
required for reactive ad-hoc routing. Not only is this a non-trivial task, but in practice it can
also lead to unstable systems, incompatible changes (caused by different implementations), and
undeployable solutions. For example, if an ad-hoc network implementation requires a special
version of the OS kernel, fewer users will be willing to install it.

This chapter addresses some of these issues and develops system support and programming
abstractions needed to facilitate reactive MANET routing protocol implementations and de-
ployment. This work has been done jointly with two other authors [42]. The solution provides
a set of system services which meet the requirements of most of the reactive ad-hoc routing
protocols. The new programming abstractions also allow easy programming of reactive ad-hoc

routing protocols without the need for doing low-level systems programming.

7.2 Challenges in Reactive Ad-hoc Routing

Reactive on-demand ad-hoc routing protocols do not fit into the traditional software ar-
chitecture for performing routing on Unix-like operating systems (Section 5.1). This is due to
the fact that they are based on a different routing model than the proactive routing protocols.
Such protocols discover routes as needed instead of maintaining a route table containing routes
to every other destination in the network.

Normally, each packet going through the kernel forwarding function will be matched against
the kernel route table. If no entry matches its destination, the kernel will drop the packet
immediately. However, this is exactly what should not be done in order to implement on-
demand ad-hoc routing protocols, (e.g., DSR [29] and AODV [27]). In on-demand ad-hoc
routing, not all routes will exist apriori; they must be “discovered” when needed. In such cases,
the correct behavior should be: To notify the ad-hoc routing daemon of a route request, and
to withhold the packet until the discovery finishes, and route table has been updated.

These on-demand protocols typically maintain a cache of recently used routes in user space
to optimize the route discovery overhead. Each entry in this user space route cache has an

associated timer, which needs to be reset when that route is used. The entry is deleted (both

79

from the user space route cache and the kernel routing table) when the timer for that entry
expires. The trouble is that the user space routing daemon has no way of finding out when a
route is used in the kernel because no record is available of the time when a route was last used.

To summarize, we identify the following system capabilities required for on-demand mobile

ad-hoc routing:
1. To identify the need for a route request.
2. To notify ad-hoc routing daemon of a route request.
3. To queue outstanding packets waiting for route requests.
4. To re-inject them after route discovery, and
5. To refresh timers in the user space route cache when routes are used in the kernel.

Unfortunately, none of the current general purpose operating systems (including Linux)
meet these requirements. The next section provides a general solution for the issues raised
here. It proposes this solution to be included in all future OS internals so that reactive ad-hoc

routing can be easily supported.

7.3 A General Solution for On-demand Routing Protocol

A general solution is developed to support on-demand routing in general purpose operating
systems. The purpose is to suggest modifications to these operating systems so that ad-hoc
routing can be easily supported in the future. Enhancements to the current packet-forwarding
function are proposed with the following mechanisms.

First, an additional flag should be added to each kernel route entry to denote whether it is
an on-demand entry. An on-demand route entry is said to be deferred if it has empty next-hop
or interface fields, meaning that the route is yet to be discovered. Instead of getting dropped as
in normal packet forwarding, packets matching a deferred route will be processed by a special

module, which implements the desired behavior as deseribed in Section 7.2. It is not necessary

30

to include every possible on-demand destination in the route table. Flagging a subnet-based
route or the default route as on-demand can serve the same purpose.

Second, a new on-demand routing module (ODRM) should be added to complement the
kernel packet-forwarding function and implement the desired on-demand routing functionalities.
When it receives a packet for a deferred route, the module first notifies the user-space ad-hoc
routing daemon of a route request for the packet’s destination. Then, it stores the packet in a
temporary buffer and waits for the ad-hoc routing daemon to return with the route discovery
status. Once this process finishes and the corresponding kernel route table entry is populated,
the stored packets are removed from the temporary buffer and re-injected into packet forwarding
path.

Next, a timestamp field needs to be added to each route entry to record the last time this
entry was used in packet forwarding. This timestamp can be used to retire a stale route that
has not been used for a long time.

Finally, we should provide a programming abstraction (API) so that these new mechanisms
can be conveniently used in an ad-hoc routing daemon program. The API should contain the

following functions:

e int route_add(addr_t dest,
addr_t next_hop, char *dev);
int route_del(addr_t dest);
Basic routines to add or delete an on-demand entry from kernel route table. To add a
deferred route entry, specify next_hop to be 0. (Here, addr_t is a generic type for the

network address, such as unsigned long for IPv4 address.)

e int open_route_request();
int read_route_request(int fd, struct route_info *r_info);
ODRM notifies the ad-hoc routing daemon about the route requests in the form of an
asynchronous stream. The first function returns a file descriptor for this stream and the
second function fills in information about the route requests in the second argument,

struct route_infox* which is defined as follows :

81

struct route_info {
addr_t dest;
addr_+t src;
u_int8_t protocol;

I H

This information is provided to enable the routing daemon to implement protocol se-
mantics correctly. For example a different action may be warranted if the packet was
generated locally rather than being forwarded for some other host. This can be deduced
from the src field of struct route_info. Similarly, some protocols may need to know if

the packet for which a route request was received was a TCP packet or a UDP packet.

The file descriptor semantics allow the ad-hoc routing daemon to use either an event-
driven or a polling strategy. The second function blocks until the next route request

becomes available.

int route_discovery_done(addr_t dest, int result);
This informs the ODRM that a route discovery for the given destination has completed and
the kernel route table populated. The result field indicates whether the route discovery

was successful or not.

int query_route_idle_time(addr_t dest, int valid_flag);
Given a destination, this returns the idle time recorded in the kernel route table for this
entry (elapsed time since the last use of the route). The valid_flag is used to differentiate

between the return values.

valid_flag Interpretation
1 Idle time since a packet was last forwarded to dest
0 Idle time since a packet was last received from the dest

int close_route_request(int £d);

This function is called by the routing daemon when it no more desires to receive any more
route requests. This enables the ODRM to free the memory used up by packets already
queued up and close the fd.

82

Packet-Routing Function

User
Space
Kemnel
Space
Packet-Forwarding Function
Route table
- Pidestination| next-hop |interfac
packets in 10.1.1.1 {192.168.1.1] geth0
10.2.2.2 - -
10.2.2.3 10.2.2.4

packets out

Network interface devices I ethO l

Figure 7.1 The general solution

® int set_route_auto_timeout(addr_t dest,
int sec);

This function lets the ODRM delete a route automatically if not used for the given time.

Figure 7.1 illustrates the architecture and components for this general solution. The shaded
parts implement the proposed general solution..

Implementing this architecture in a Unix-like modern operating system usually requires
moderate changes to the system internals. For example, the kernel route table data structure
can be expanded with a new column to hold the last-use timestamp. The extra “on-demand”
bit can be accommodated in the existing rt_flags field. The ODRM module can use a simple
hashed table to store and process deferred-routing packets. The route-request stream can be
implemented using a socket or a special file (such as in the /proc file system). Finally, the API
can be implemented as a user-space programming library.

It is debatable whether the ODRM functionality should be implemented outside the kernel
and whether it is better to queue all deferred-routing packets in user-space. The advantage of

doing so in user space is that it reduces the kernel complexity and memory usage. If the routing

83

protocol requires prolonged route discovery procedure, it will be more efficient to buffer packets
outside the kernel. The disadvantage is the need to copy every deferred-routing packet from
kernel to user-space and to re-inject it back to the kernel when the routes are ready, but it can
be argued that such overhead is insignificant compared with the time and overhead incurred in
an average route discovery. A user-space ODRM function does impose two new requirements:
The ability for the kernel to pass an arbitrary network packet including headers to user-space
(i.e., not generated by or destined to this host), and the ability for the user-space module to
re-inject the same packet into the kernel intact. The former may require system-dependent
mechanisms such as a special device driver, but the latter can use the raw socket interface that

is common to most Unix-like operating systems.

7.4 Implementation of ODRM in Linux

A long-term objective is to implement, this solution in common operating systems and make
it the standard in future versions. However, the immediate goal is to make it available to current
Linux 2.4 users because getting changes accepted into a standard release is a time consuming
process. Although it is not too difficult to modify Linux 2.4 kernel code to implement this,
it would be better if the services described in Section 7.3 could be provided without making
such changes. This strategy certainly has practical value as fewer users are willing to modify
their operating systems. To do this efficiently needs a careful design, which is described in this
section.

Unlike many other Unix-like operating systems, Linux provides several flexible mechanisms
for extending the kernel functionalities. These include loadable modules, where a new kernel
function can be inserted into a running kernel without recompiling or rebooting, and a packet
filtering and mangling facility called Netfilter [43]. In particular, Netfilter provides a set of hooks
in the kernel networking stack where kernel modules can register callback functions, and can
change/mangle each packet traversing through the corresponding hooks. The implementation
of system services uses only these two Linux mechanisms and it does not make any changes to

the standard kernel code.

84

7.4.1 Design and Mechanisms

In the current Linux implementation, the ODRM functionality is implemented in user-
space to reduce the kernel complexity and memory requirements. There are two possible ways
to implement this functionality in user space. It can be implemented as a shared library which
exposes an API. Any routing daemon wishing to use this functionality will link this library with
its code. Another approach is to implement the ODRM functionality as a separate daemon
program (Ad-hoc Support Daemon) which communicates with the routing daemon using some
inter-process communication mechanism like sockets. Both approaches have their pros and
cons. The library approach is definitely more efficient because it does not have the overhead
of inter-process communication. However, any bug in the library is likely to crash the routing
daemon also. The library approach gives a more natural picture of the ODRM functionality as
system services, i.e, the API is available as a direct function call once the appropriate header
files are included.

This functionality has been implemented as a library called the Ad-hoc Support Library
(ASL) or ibASL. ASL implements the API described in Section 7.3. The rest of this section
explains the implementation of the different issues described in Section 7.2 and 7.3.

To solve the problem of identifying the need for a route request, we need to filter all packets
for which there exists no route. Without modifying the routing table structure, there is no
simple way to do that in the kernel. This has been accomplished with an unused local tunnel
device called Universal TUN/TAP (tun) as the “interface” device for these destinations. To

catch packets for all such destinations, a default route can be used which can be setup like this:

ifconfig tun 127.0.0.2 netmask 255.255.255.255 \
broadcast 127.0.0.2 up

route add default dev tun

TUN/TAP is a virtual tunnel device that makes available all received packets to a user-space
program through the /dev/net/tun device. In current implementation, this device is opened

by a call to open_route_request(); hence it receive all packets that the kernel writes to tun,

85

i.e., all packets for which there is no route. This also solves the problem of passing and storing
packets in user-space.

Whenever a new packet is read from /dev/net/tun, the ad-hoc routing daemon which
has opened a route request gets notified on that fd. It can read the details of the route
request through read_route_request() and can then initiate route discovery for the requested
destinations. These packets are temporarily queued in a hashed table keyed by the destination
IP address. This functionality is implemented in the Ad-hoc Support Library. Since the buffer
is in user-space, a large buffer is available to queue packets. This means that packets would not
be lost even if the route discovery delays are large.

The next issue is to re-inject packets back into the IP stack after a successful route discovery.
The mechanism used is a raw socket!. A packet sent through a raw socket will be inserted as
is (bypassing any IP and header processing) to the kernel output chain just before the packet-
forwarding function. Here, a raw socket is used to send the queued packets out. These packets
are appropriately routed in kernel using the newly discovered routes.

Now let us look at the last problem mentioned in Section 7.2, to refresh entries in the
user space route cache when a route is used. Since we are not making changes to the kernel
route table, the only way is to maintain a separate timestamp table for each entry in the
route table. A simple kernel module called route_check is designed to maintain this table
and register it at Netfilter’s POST_ROUTING hook (after route table lookup and before entering
the physical network interface). This means that every outgoing packet will pass through this
module. It simply peeks at the packet header and updates the corresponding timestamp value.
This timestamp information is made available to user-space programs using an entry in the
/proc file system. The query_route_idle_time() function exposed by the ASL APT reads this
file (/proc/asl/route_check) to determine the idle time for a destination. The ad-hoc routing
daemon can check the freshness of a route by reading this file, and delete the stale routes from

the kernel route table accordingly.

'Raw sockets are normally used to handle packets that the kernel does not support explicitly. The ping
program, for example, uses raw sockets to generate ICMP packets.

86

; Packet~Routing Function

Ad-hoc Routing daemon

User Space

Kernel Space

N

Raw socket TUNMTAP

Orpor

!
3
]
:
]
.i Packet—F orwarding Function E
])
!

Kemel Routing table
destinati fext~hop | interface
10.1.1.1 1192.168.1.1] ¥ ethQ

10.2.2.2 | 127.0.02 tun @
10.2.2.3 102.24 ethl ®

packets in

11:41:31

POST_ROUTING

packets out
cth0

Figure 7.2 Linux implementation structure

7.4.2 Implementation Details

Figure 7.2 illustrates the structure of our implementation. The two main components are
the user space library ASL and the kernel module route_check. The library implements the
API described in Section 7.3. We now briefly describe how we implement these function in our
library.

route_add() and route_del() functions add or delete routes to the kernel using the ioct1()
interface. When the user indicates that the route be a deferred route by specifying an empty
next-hop, the device for the route is automatically made to be tun. open_route_request()
initializes the tun device, the raw socket, the data structures to queue the deferred packets
and also inserts the route_check module in the kernel. The data structure to store the pack-
ets is a hash table of queues, keyed by the destination IP address. This function returns the
descriptor of the tun device which can be monitored using a polling or event driven strat-
egy. read_route_request() blocks reading from this tun device. When a packet is received on
tun, this function stores the packet and delivers information about the packet in the form of

struct route_info. The return value of the function indicates if a route discovery is already

87

in progress for this destination. Based on this the routing daemon initiates route discovery
and calls route_discovery_done() upon completion of this process. If route discovery was suc-
cessful then this function retrieves the packets for that destination from the storage and sends
them out on the raw socket. If route could not be found then the packets are thrown away
and the memory used for them is freed. query_route_idle_time() reads the last_use_time
for that destination from /proc/asl/route_check and returns the idle time. This needs to be
called whenever the routing daemon has to make a decision to expire routes from its user space
route cache. close_route_request () simply shuts down all the sockets, frees all the memory for
storing the packets and removes the route_check module from the kernel.

The following is a pseudocode of a typical routing daemon which uses this library:

aslfd = open_route_request()
route_add(default,0) /* add deferred route */
loop /#* this could be select or poll */
wait for imput from {aslfd or other fd’s}
if input from aslfd
dest = read_route_request()
if(route request is new)
do route discovery for dest
if successful
add route for dest to kermel
route_discovery_done(success)
else
route_discovery_done(failure)
end
else
continue
end
end
if dinput from other fd’s
process according to protocol semantics
/*call before expiring routes/

query_route_idle_time()

88

end
end

close_route_request ()

7.5 ASL System Requirements

The Ad hoc Support Library (ASL) uses several features exclusive to the Linux 2.4 kernel.

The following are required for ASL to work:

e Kernel version greater than 2.4.3
e Loadable module support in the kernel
e TUN/TAP support in the kernel.

e Netfilter software and support in the kernel.

We have used ASL to implement the AODV routing protocol.

Chapter 9.

89

Details are provided in

CHAPTER 8

Ad-hoc On-demand Distance Vector Routing

The Ad-hoc On-demand Distance Vector (AODV) [27, 44] routing protocol is intended for
use by mobile nodes in an ad-hoc network. It not only offers quick adaptation to dynamic link
conditions, but also incurs low processing and memory overhead. It uses destination sequence
numbers to ensure freedom from routing loops at all times (even in the face of anomalous
delivery of routing control messages), avoiding problems (such as “counting to infinity” [12])

associated with classical distance vector protocols.

8.1 Properties of AODV

The AODV routing algorithm is an on-demand routing algorithm, meaning that it builds
routes between nodes only as needed by source nodes and maintains them only as long as
necessary. AODV is loop free at all times, even while repairing broken links. This loop freedom
is accomplished through the use of sequence numbers. The concept of sequence numbers in
AODV is same as the sequence numbering used in the DSDV routing protocol. The only
difference is that the AODV does not differentiate between even and odd sequence numbers,
while DSDV does. Every node maintains its own monotonically increasing sequence numbers,
which it increases every time it sends out a new route request. This sequence number ensures
that the most recent route is selected whenever the route discovery procedure is executed.
AODV utilizes the process of route discovery and route maintenance to discover and manage

routes in a mobile ad-hoc network.

90

AODV currently require symmetric links between neighboring nodes. It utilizes an enhanced
version of the traditional route table to store and maintain routes to the destination nodes. It
also provides quick deletion of invalid routes through the use of a special route error message.
AODV responds to topological changes that affect active routes in a quick and timely manner.
It builds routes from routing control messages with only a small amount of overhead, and no
additional network overhead. Finally, AODV does not place any additional overhead on data
packets because it does not utilize source routing. The AODV protocol supports both unicast
and multicast communication abilities. Here we focus on the unicast features of AODV routing

protocol.

8.2 Protocol Overview

AODYV is a pure on-demand ad-hoc routing protocol. It uses the route request /route reply
discovery cycle to discover routes to new destination nodes. Route Requests (RREQs), Route
Replies (RREPs), and Route Errors (RERRS) are the three main message types used by AODV.
When a route to a destination is needed, node broadcasts a RREQ message. A node in the
network having a “fresh enough” route to that destination replies back with a RREP message.

The RERR message is used to notify other nodes in the event of a link break.

8.3 Route Table Management

AODYV stores information about all known routes to the destination nodes in a route table.

Each route table entry contains the following fields:

e Destination IP Address
e Destination Sequence Number
e Interface

e Hop Count (number of hops needed to reach destination)

91

e Last Hop Count

e Next Hop

e List of Precursors

e Lifetime (expiration or deletion time of the route)

¢ Routing Flags.

The Last Hop Count field is used to prevent uncontrolled dissemination of RREQ messages.
The Precursor list for a destination is the list of nodes which use the local node as next-hop
towards that destination. This information is used to disseminate RERR messages to affected

nodes in case of a link breakage.

8.4 Route Establishment

As long as the end points of a communication connection have valid routes to each other,
AODV does not play any role. Whenever a new route is needed, AODVs route selection

mechanisms come into play. AODV uses RREQ and RREP messages to discover new routes.

8.4.1 Route Discovery

When a source node desires to send a packet to some destination node and does not already
have a valid route to that destination, it initiates a route discovery process. To begin such a
process, the source node creates a RREQ packet. In addition to the source node’s IP address,
its current sequence number, hop count, and a broadcast ID, the RREQ also contains the latest
sequence number for the destination node which the source node is aware of. The source node
increments its own sequence number each time it sends out a route request. The IP address of
the source node and broadcast ID uniquely identifies a RREQ packet. The Source node also
sets the hop count value to zero. After creating the RREQ packet, the source node broadcasts

the packet to its neighboring nodes. A timer is then set to wait for the RREP packet.

92

A node receiving a RREQ packet first checks to determine if it has received a RREQ with
the same source IP address and broadcast ID in the recent past. If yes, it discards the received
RREQ. On the other hand if it is a new RREQ, the node proceeds as explained next. The node
creates a reverse route entry to the source IP address in its route table if it does not already
have one. If an entry for the source node already exists, then it is modified in two cases. First, if
the received RREQ contains a higher sequence number for the source node than the one stored
in the route table entry for the source node. Second, if the received sequence number is same as
the stored sequence number for the source node, and the hop count specified by RREQ plus one
is smaller than the existing hop count value in the route table entry for the source node. The
sequence number and hop count information for reverse route entry is copied from the received
RREQ packet. This route entry is assigned an updated lifetime value and will be deleted if
not used within the specified lifetime. A node discards all the RREQ messages received over a
unidirectional link without any processing.

The node receiving a RREQ generates a route reply (RREP) if it is either the destination
node or if it has an active route to the destination node with the corresponding sequence number
greater than or equal to the destination sequence number contained in the RREQ packet. When
either of these conditions is satisfied, the node does not rebroadcast the RREQ. Otherwise, the
node updates and broadcasts the RREQ packet to its neighboring nodes. The RREQ update
involves incrementing the hop count field in the RREQ packet to account for the new hop

through this node.

8.4.2 Expanding Ring Search

Each time a node initiates route discovery for some new destination, it must broadcast a
RREQ across the entire network. For a small network, the impact of this flooding is minimal.
However,for a large network the impact may become increasingly detrimental. To prevent
network-wide dissemination of RREQs, the source node should use an expanding ring search
technique, which allows a search of increasingly larger areas of the network, if a route to the

destination is not found. In an expanding ring search, the source node sets the Time to Live

93

(TTL) value of RREQ packet to an initial value of TTL_.START. If an expired route to the
destination exist, then the initial TTL value is set to Last Hop Count plus TTL_INCREMENT.
RREP timer is set based on the current value of TTL being used. If no route reply is received
and the timer expires, the TTL value is incremented by TTL.INCREMENT in the subsequent
attempts until it reaches TTL_.THRESHOLD. After this the RREQ is broadcasted to the entire
network. The number of times RREQ can be broadcasted across the entire network is limited

by the RREQ_RETRIES parameter.

8.4.3 Forward Path Setup

Eventually, the RREQ will reach a node which is the destination node itself or an interme-
diate node which has a “fresh enough” route to the destination. If an intermediate node has a
route entry for the desired destination, it determines whether the route is current by comparing
the destination sequence number in its own route entry to the destination sequence number in
the RREQ. If the RREQ sequence number for the destination is greater than that recorded by
the intermediate node, the intermediate node must not use its recorded route to respond to the
RREQ. Instead, it just rebroadcasts the RREQ. The intermediate node can reply only if it has
an active route to the destination node with the corresponding sequence number greater than
or equal to the destination sequence number contained in the RREQ packet.

If the node does have an active route to the destination, it creates a RREP packet. The
destination IP address and the source IP address are copied to RREP packet from the received
RREQ packet. The processing of RREQ packet is slightly different, depending on whether the
node is itself the requested destination, or it is an intermediate node with an admissible route to
the destination. The two cases are described below. Once the RREP is created, it is unicasted
to the next-hop on the reverse route towards the source of the RREQ packet.

If the node generating RREP is the destination itself, it updates its own sequence number to
the maximum of its current sequence number and the destination sequence number contained

in the RREQ. The resulting sequence number is placed in the RREP packet. The node also

94

puts a zero hop count value in the RREP packet. The lifetime of the supplied route is set to
the local node’s own lifetime value.

If an intermediate node generates a RREP message, it copies the last known value of the
sequence number for the destination into the RREP packet. The hop count value from the route
table entry is also placed into the generated RREP. The node also updates the precursor lists
for the source and destination IP addresses. The next hop in the source route entry is added
to the precursor list of the destination route entry. Also, the next hop towards the destination
node is added to the precursor list of the source node’s route table entry. The intermediate
node might also generate another RREP packet called Gratuitous RREP.

By the time a RREQ packet arrives at a node that can supply a route to the destination,
a reverse path has been established to the source of the RREQ. As the RREP travels back to
the source, each node along the path sets up a forward pointer to the node from which the
RREP came, updates its timeout information for route entries to the source and destination,
and records the latest destination sequence number for the requested destination. As the RREP
is forwarded back towards the node which originated the RREQ message, the hop count field
is incremented by one at each hop. Thus, when the RREP reaches the source, the hop count
represents the distance, in hops, of the destination from the source node. The source node then

uses this route to send out the queued data packets.

8.4.8.1 Gratuitous RREP

After a node receives a RREQ and responds with a RREP, it discards the RREQ. If inter-
mediate nodes reply to every transmission of a given RREQ, the destination does not receive
any copies of it. In this situation it does not learn of a route to the source node. This could
cause the destination to initiate a network-wide route discovery (for example, if the source is
attempting to establish a TCP session). If the destination node needs to learn the route to
the source node, the source node sets a “Gratuitous RREP” flag in the RREQ packet. If, in
response to a RREQ packet with the “Gratuitous RREP” flag set, an intermediate node returns

95

a RREP, it also unicasts a gratuitous RREP to the destination node to supply it with a route

for the source node.

8.5 Route Maintenance

Once a route has been discovered for a given source-destination pair, it is maintained as
long as needed by the source node. Movement of nodes within the ad-hoc network affects only
the routes containing those nodes. Such a path is called an active path. Movement not along
an active path does not trigger any protocol action. If the source node moves during an active
session, it can reinitiate route discovery to establish a new route to the destination. When
either the destination or some intermediate node moves, there could be two different actions
taken, depending upon the features supported by the protocol.

The node upstream of the link break may choose to repair the link locally. This is called
local repair. An upstream node decides to do this only if the destination was no further than
MAX_REPAIR_TLL hops away. To repair the link break, the node increments the sequence
number for the destination and then broadcasts a RREQ for that destination. If the node
receives a RREP before the RREP timer expires, it adds the new route to its route table. Also,
if the hop count for the new route is more than the old route, the node receiving the RREP sends
out a special route error (RERR) message to the precursor nodes of this route. This message
is tagged with a special flag and contains the new information about the destination. An
intermediate node forwards this RERR message without deleting the route to the destination.
When it reaches the source node, the node might decide to reinitiate a route discovery. On the
other hand, if the node does not receive a RREP at the end of discovery period, it proceeds as
follows.

If the upstream node does not decide to perform a local repair or if it does not get back a
RREP for the local repair attempt, it node sends out a RERR message to the affected source
node. It lists each of the destinations that are now unreachable because of the loss of the link.
The upstream node then transmits the RERR (either through unicast or broadcast) to the

nodes in the precursor list (if any) of the destination node. When the neighbors receive the

96

RERR, they mark their route to the destination as invalid by setting the hop count for the
destination as i/NFINITY and in turn propagate the RERR to their precursor nodes. When a

source node receives the RERR it can reinitiate a route discovery if the route is still needed.

8.6 Local Connectivity Management

A node keeps track of its connectivity with its neighboring nodes. This information is
obtained from the broadcasts sent by the neighbors. Whenever a node receives a broadcast
from a neighbor, it updates its local connectivity information by creating/updating the route
table entry for that node. Nodes in AODV also use a special kind of RREP message called
Hello Message to supply connectivity information. The hello message contains the identity of
the originating node and the lifetime value for the route to that node. The purpose of hello
messages in AODV is similar to what standard hello packets are used for, viz. to provide
connectivity information. If a node has not broadcasted any control packets within last hello
interval time, it broadcasts to its neighbors a hello message, containing its own IP address and
current sequence number. This message is prevented from being re-broadcasted outside the
neighborhood of the node because it contains a TTL value of 1. The failure to receive any
transmission from a previous neighbor in the (allowed_hello_loss * hello interval) time duration
is an indication that the connectivity with the neighbor is lost. This is considered as a broken
link and the node initiates processing as mentioned in Section 8.5. Broken links can also be
detected using link layer feedbacks. For example, in IEEE 802.11, absence of a link layer ACK
or failure to get CTS after sending RTS, even after the maximum number of retransmission

attempts, indicates loss of the link to this active next hop.

8.7 Actions After Reboot

After reboot, a node would have lost its own sequence number as well as the sequence
numbers for other destinations in the network. Since, the neighboring nodes may be using this

node as an active next hop, this might create routing loops. To prevent this possibility, each

97

node on reboot waits for delete_period time, during which it does not send out any RREPs. If the
node receives a RREQ, RREP or RERR control packet, it creates route entries as appropriate
given the sequence number information in the control packet. If the node receives a data packet
for some other destination, it broadcasts a RERR and resets the waiting reboot timer to expire
after current time plus delete_period. Thus, by the time a node comes out of the waiting phase
and becomes an active router again, none of its neighbors will be using it as an active next hop
any more. A node’s local sequence number gets updated if it receives a RREQ for itself from
some other node, as the RREQ always carries the maximum destination sequence number seen

en route.

8.8 Multiple Interfaces

AODV is designed to operate on nodes having multiple interfaces. It is designed to operate
smoothly over wired, as well as wireless, networks. To make this possible, the interface over
which packets arrive must be known to AODV whenever a packet is received. This includes
the reception of RREQ, RREP and RERR messages. In AODV, whenever a packet is received,
the interface on which that packet was received is recorded in the route table entry for that
neighbor, along with all the other appropriate information. Similarly, whenever a route to a
new destination is learnt, the interface through which the destination can be reached is also
recorded into the destination’s route table entry. When multiple interfaces are available, a
node transmitting a RREQ message broadcasts that message on all the interfaces that have

been configured for operation in the ad-hoc network.

8.9 Subnet Routing

In case of subnet routing, a route to any one of the nodes in the collection is nearly as good
as a route to any other node. Thus, route information to all of the nodes can be summarized

by a single route table entry, and route aggregation is possible.

98

To work with AODV, routes to the subnet have to be assigned a destination sequence num-
ber. For a subnet, all that is needed is that one of the nodes on the subnet takes responsibility
for creating and managing subnet sequence numbers. If there is a router on the subnet already,
that node is the logical choice, if not, some other node has to be assigned this function as well
as the function of forwarding traffic for other nodes on the subnet. The node managing the
sequence number is called the subnet leader, and it must be considered the default router for
all subnet nodes.

Nodes on the subnet forward RREQ to the subnet leader. The subnet leader creates a
reverse route to its subnet nodes in the same way as to any other node in the network. RREP
messages through any node on the subnet must be sent back to the source though the subnet

leader.

8.10 Security Considerations

Currently, AODV does not specify any special security measures. Routing protocols, how-
ever, are prime targets for impersonation attacks. These attacks include transmitting RREPs
with false routing information resulting in malicious denial of service to the destination and/or
malicious inspection and consumption of traffic intended for delivery to the destination. Addi-
tionally, wireless transmission is inherently insecure. Packets are received by anyone within the
transmission range, and if they are not encrypted, they can also be read by anyone. To protect
against these attacks, authentication techniques involving generation of unforgeable and cryp-
tographically strong message digests or digital signatures can be used. It is expected that, in
environments where security is an issue, IPSec authentication headers will be employed along
with the necessary key management to distribute keys to the members of the ad-hoc networks
using AODV.

99

(a) Propogation of Route Request

QO
S D

o @

(b) Reverse Path Formation

- —» Reverse Routes
> — Forward Routes

Timeout ™

(¢) Forward Path Formation

Figure 8.1 Route Discovery in AODV

8.11 Example of AODV in Action

Figure 8.1 illustrates the route discover procedure in AODV. Source node S requiring route
to destination node D broadcasts a RREQ message. The RREQ message is forwarded by the
intermediate nodes (Figure 8.1a). Each node receiving the RREQ message creates a reverse
route to the source as shown in Figure 8.1b. Destination node D identifies that the RREQ
message is intended for it. It generates a RREP message with the latest known route information
and unicasts it along the reverse route towards source S. Every node forwarding RREP creates

a forward route to the destination node D. This is depicted in Figure 8.1c.

100

O @ Destnation

(a) Broken Link detection

O

O v Destination

(b) Newly Discovered Route

Figure 8.2 Route Maintenance in AODV

The route maintenance procedure of AODYV is illustrated in Figure 8.2. The original path
from the source to the destination is through nodes 1, 2 and 3. Suppose node 3 then moves
to location 3’, causing a break in the connectivity with node 2. Node 2 notices this break and
sends a RERR to node 1. Node 1 marks this route as invalid and then forwards the RERR to
the source. On receiving the RERR, the source node determines that it still needs the route,
and so it reinitiates a new route discovery. Figure 8.2b shows the new found route though node
4.

101

CHAPTER 9

AODYV Implementation

We begin by describing some prior implementations of the AODV routing protocol [45, 46,
47, 48]. The AODV-UCSB [45] is the implementation of AODV developed at the University of
California at Santa Barbara. It achieves the on-demand functionality by copying every packet
from the kernel space to the user space. By matching these packets against the entries in the
user-space route cache, AODV-UCSB identifies the packets for which there exists no route and
initiates route discovery. There are two obvious drawbacks of this approach: every packet has
to cross the address space twice, inducing much overhead, and for every packet the routing is
done twice as well, once in the user-space and once again in the kernel. The implementation
of AODV developed at Uppasala University (AODV-UU) [46] also suffers from the similar
drawbacks. Kernel-AODV [47] implementation from NIST has been implemented as a single
kernel module. This approach is not very desirable, as complex protocol processing can slow
the kernel, hog the memory, and crash the whole system if there is a serious bug in the routing
protocol.

The AODV routing daemon (AODV-UIUC) implemented by us does not suffer from any
of these drawbacks. AODV-UIUC is much simpler, cleaner, and more efficient than any of the
existing implementations of AODV routing protocol.

This chapter describes the implementation details of the AODV-UIUC routing protocol.

The protocol has been implemented as a user-space routing daemon on the Linux operating

102

AODYV Routing Daemon

aodv route table

user space
kernel space

raw sockits

Network

Interface Kf_\\

Figure 9.1 AODV Routing Daemon

kernel route table

system. The current implementation version supports all the features of AODV draft 10 [44].

The implementation is done in C++ and on Linux kernel 2.4.17.

9.1 Overview of the Implementation

Figure 9.1 gives the design of the user space AODV implementation. The AODV routing
daemon maintains a copy of the route table in the user space called aodv route table, which it
uses to modify the main kernel route table.

The routing daemon utilizes the services offered by the Ad-hoc Support Library (ASL)
described in Chapter 7. The routing daemon starts by opening a route request with the ASL.
This action returns the tun file descriptor, used by ASL to read packets from the tun device, to
the routing daemon. The tun device is configured by ASL so that a data packet with no valid
kernel route for it is sent on this tun device. Thus whenever an unrouted packet is received

at tun device, the routing daemon gets to know about this. It calls the read_route_request()

103

function of ASL to decide if a route discovery needs to be initiated for the destination node
in the received packet. ASL maintains a queue of all the packets received at tun device and
for which the route discovery procedure is in progress. If the queue already contains a packet
destined to that particular destination node, then a new route discovery is not needed. On the
other hand, if there is no pending packet in the ASL queue, the routing daemon is instructed
by ASL to start a new route discovery.

The AODV routing daemon broadcasts a RREQ packet and sets up a timer to wait for the
RREP. It uses the expanding ring search technique to prevent uncontrolled dissemination of
RREQ messages. If the timer times out, the routing daemon rebroadcasts the RREQ message
with an increased TTL value. The rebroadcast of RREQ can be done up to RREQ_RETRIES
number of times. If a RREP is received within allocated number of RREQ retries attempt, the
routing daemon inserts a new route for the destination in aodv route table as well as kernel
route table. It then returns a “route found” status to the ASL. ASL then reinjects all the
packets, queued for that particular destination, into the kernel using raw sockets. On the other
hand, if a RREP is not received within the timeout limit, the routing daemon returns a “no
route” status to ASL. ASL then discards all the packets queued for that destination.

The AODV Routing daemon implements hello messages to keep track of neighborhood
connectivity. Whenever the daemon receives the first hello message from one of its neighbors,
it starts a broken link timer for that neighbor with the timer interval as allowed_hello_loss *
hello-interval. This timer is reset every time a new aodv control packet is received from that
neighbor. If this timer expires, then the link to the neighbor is assumed to be broken. The IP
address of this neighbor as well as any other destination node using this neighboring node as
the next hop, is then put into a list of locally repairable destination nodes. If a data packet
is received for any of these destination nodes in near future, a local repair attempt is made to
discover another route. If the local repair attempt fails at a node, it generates a RERR message

and sends it to all the nodes in the precursor list of the destination node.

104

9.2 Features Supported

The current version of the AODV routing daemon is fully compliant with the Version 10
of AODV draft [44]. Following are the features supported in the current implementation of
AODV:

e Route Request/Route Reply discovery
o Gratuitous Route Reply

e Route Reply Acknowledgement

¢ Route Error Messages

e Hello Messages

e Local Repair

e Unidirectional Links

e Actions after reboot.

9.3 Implementation Details

This section provides more details regarding the implementation of AODV routing daemon.
The implementation is divided into a number of modules. Figure 9.2 illustrates all the major
AODV modules and their interaction with the kernel. The current implementation uses the
system services support provided by the Ad-hoc Support Library (ASL) to implement reactive
ad-hoc routing functions. The AODV daemon has been implemented as a sequential program

and it does not create any new threads or processes.

9.3.1 Ad-hoc Support Library API

Our AODV implementation utilizes the Ad-hoc Support Library API functions to capture

un-routable data packets, queue these packets and reinject them back into the kernel once the

105

AODV Routing Daemon

Main Module

user space

kemel space

raw sockets

Network
Interface

kernel route table /

Figure 9.2 Modular Design of AODV Routing Daemon

106

desired route has been discovered. The following are the ASL API functions used by the AODV

routing daemon.

e int open_route_request();

Opens and returns tun file descriptor to the routing daemon.

® int read_route_request(int fd, struct route_info *r_info);
Provides relevant information to the routing daemon in struct route_infox to start the

route discovery.

e int route_discovery_done(addr_t dest, int result);

Returns the result of route discovery (success or failure) to the ASL.

e int query_route_idle_time(addr_t dest, int valid_flag);

Returns the idle time for the given destination.

e int close_route_request(int £d);

Used to shut down all communication with ASL.

More details about the functionalities offered by these API functions are described in Chap-
ter 7.

9.3.2 Main Data Structures

Our AODV implementation maintains the following data structures. Only private members

are shown for every class.

9.3.2.1 Routing Table Entry

The rtable_entry class defines the structure of a route table entry. The last_hop_count field

is needed to prevent uncontrolled dissemination of RREQ messages.

class rtable_entry{

u_int32_t dest_ip; /* ip address of the destination node */

107

u_int32_t dest_seq_num; /* destination sequence nimber for dest_ip */

unsigned int interface; /* network interface for this route */

u_int8_t hop_cnt; /* number of hops to the destination */

u_int8_t last_hop_cnt;

u.int32_t next_hop; /* ip address of the next hop towards dest_ip #/
list<u_int32_t> precursors; /% list of precursor node ip addresses */
u_int64_t lifetime; /* lifetime of this route entry */

u_int32_t routing_flags; /* routing flags for the entry %/

};

9.3.2.2 Routing Table

The AODV Route table is defined by class routingTable. It contains a map of rtable_entry
to store routes for the destination nodes. This map is keyed by the IP address of destination

node.

class routingTable{
map<u_int32_t,rtable_entry>rTableMap;
}

9.3.2.3 Route Request

The structure of route request (RREQ) message is defined by the RREQ class.

class RREQ{
u_char type:8; /* message type, set to AODV_RREQ */
u_char J:1, /* reserved for multicast */
R:1, /* reserved for multicast */
G:1, /* gratuitous RREP flag */

resexrvedl:b;

u_char reserved2:8;

u_int8_t hop_cnt; /* number of hops from source to the current node processing RREQ */
u_int32_t rreq_id; /* id of this RREQ */
u_int32_t dest_ip; /* IP address of destination for which route is needed*/

u_int32_t dest_seq_num; /* sequence number of destination node */

u_int32_t src_ip; /* IP address of the node generating RREQ */

108

u_int32_t src_seq_num; /* sequence number of the source node #*/

};

G is the gratuitous RREP flag and, if set, indicates that a gratuitous RREP should be

unicast to the destination IP address. Reserved fields are currently ignored.

9.3.2.4 Route Reply

The RREP class defines the structure of a route reply (RREP) message.

class RREP{
u_char type:8; /* message type, set to AODV_RREP #/
u_char R:1, /#* reserved for multicast */
A:1, /* RREP acknowledgement flag */

reservedl:6;

u_char reserved2:3,

prefix_size:5;

u_int8_t hop_cnt; /% number of hops from source to the destination #*/
u_int32_t dest_ip; /* IP address of destination for which route is supplied */
u_int32_t dest_seq_num; /* sequence number of destination node #*/

u_int32_% src_ip; /* IP address of the node originating RREQ */

u_int32_t lifetime; /* lifetime of the supplied route */

The A field is set if the link over which the RREP is being forwarded is unreliable or
unidirectional. A node receiving RREP with this flag set, sends an acknowledgement back to

the node from which the RREP was received.

9.3.2.5 Unreachable Destination Entry

Class unrchDest defines the structure of a single entry in the route error message.

class unrchDest {
u_int32_t dest_ip;
u_int32_t dest_seq_num;

};

109

9.3.2.6 Route Error

The structure of a route error message is defined by RERR class. It contains a list of
unrchDest objects. No delete flag is set when a node has performed local repair of a link, and

upstream nodes should not delete the route in this case.

class RERR{
u_int8_t type; /* message type, set to ADDV_RERR %/
u_int8_t N:i, /* No delete flag */

reservedl:7;

u_int8_t reserved2;

u_int8_t dest_cnt; /* number of unreachable destinations #*/
list<unrchDest> unreachable_dest; /* list of unreachable destinations */

};

9.3.2.7 Route Reply Acknowledgement

This class defines the structure of Route Reply Acknowledgement (RREP ACK) message.
It is sent by a node when A flag is set in RREP.

class RREP_ACK{
u_char type:8; /* message type, set to AODV_RREP_ACK */
u_char reserved:8;

};

9.3.2.8 Pending Route Request List Entry

This class defines the structure of a single RREQ entry waiting for the RREP. retries and
ttl fields are required for implementing expanding ring search technique.
class rreq_list_entry{

RREQ rreqlb; /* copy of the RREQ object broadcasted */

u_int32_t retries; /* number of times RREQ is broadcasted with maximum TTL value */

int ttl; /#* current value of TTL used */

110

9.3.2.9 Pending Route Request List

An instance of this class is used to store all pending RREQs at the source node for which
a RREP is anticipated. This is needed so that RREQs can be transmitted again in case
RREPs were not received on time. It consists of a list of rreq_list_entry objects each one storing
information about a single pending RREQ.
class rreqPendingList{

list<rreq_list_entry> rreq_list;

};

9.3.2.10 Forward Route Request List Entry

To avoid reprocessing RREQs, a node stores information about recently processed RREQs.
This class defines the structure of information stored for each received RREQ,
class fw_rreg_entry {

u_int32_t src_ip; /* IP address of node originating RREQ */

u_int32_t rreq_id; /# unique ID of the RREQ */

u_int64_t lifetime; /* lifetime associated with this entry */

};

9.3.2.11 Forward Route Request List

This list is used to store the recently processed RREQ messages to avoid reprocessing them

again.

class fwRregList{
list<fw_rreq_entry> fw_rreq_list;

};

9.3.2.12 Local Repair Entry

This class stores the information about a single destination node for which local repair can
be done. Storing IP address of the destination node is enough to perform a local repair for that

node.

111

class local_repair_entry{
u_int32_t dest_ip; /% IP address of the locally repairable node */
¥

9.3.2.13 Local Repair List
This stores the list of all the destination nodes for which a local repair can be done.

class localRepair{
list<local_repair_entry> local_repair_list;
¥

9.3.2.14 Black List Entry

If a node detects a unidirectional link to a neighboring node, it adds that node to a list
called “blacklist”. Any RREQ received from a node in the blacklist set is dropped. This entry

defines the structure of all the information stored for a single node in the blacklist.

class blacklist_entry {
u_int32_t dest_ip; /* IP address on the blacklist node */
u_int64_t lifetime; /* timeout for this entry */

L

9.3.2.15 Black List
This is the list where data about all the blacklist nodes are stored.

class blacklist{
list<blacklist_entry> bList;
};

9.3.2.16 Timer Entry

AODYV uses same timer handling mechanism as used in DSDV. This class defines the struc-

ture of a single timer entry.

112

class timer{
u_int64_t timeout; /# timeout of the timer entry */
timer_hfunc_t handler; /* handler function for the timer */

void *data; /* data passed to the handler function */

};

9.8.2.17 Timer Queue
This is the queue of the timer maintained by AODV routing daemon.

class timerQueue{
list<timer> timerQ;

+;

9.3.3 Modules

The AODV routing daemon consists of eleven main modules. These modules cooperate
to implement different AODV features. Following is an in-depth description of each of these

modules.

9.3.8.1 Main Module

The main module ties together all the other modules of the AODV routing daemon. It
parses command line arguments and uses these to initializes global flags. It also declares other
global data structures like the routing table, pending route request list, forward route request
list, local repair list, black list and timer queue. It creates an instance of aodv class and calls

its aodv_daemon() function, which is the main starting point of the AODV routing daemon.

9.3.3.2 Aodv Module

This is the module which defines the main flow of control inside AODV daemon. The
processing starts at function aodv_daemon(). It contains an array of file descriptors and their
associated handler functions. The array of descriptors includes an aodv socket, which is used

to transmit and receive all AODV control messages, and the tun descriptor returned by ASL.

113

open.route_request() function of ASL is called to obtain tun file descriptor. These descriptors
are obtained/created inside aodv_init() function, which is called from aodv_daemon().

After initialization, the module registers to listen for various system signals. It then starts a
reboot timer and a periodic refresh timer. The first is to ensure that the routing daemon waits
for DELETE_PERIOD time just after reboot, before sending out any RREP. This is needed to
avoid possibility of any routing loops. The second timer is used to periodically check for stale
entries in different tables and lists maintained by the AODV routing daemon. This includes the
route table, forward route request list and the list containing blacklist nodes. The module then
enters into main routing daemon loop, waiting on aodv socket and tun file descriptor, returned
by ASL.

If a data packet for some destination is received at tun descriptor, aodv module calls
read-route.request() function of ASL to decide if a route discovery needs to be initiated. If
ASL has not already queued a packet for this destination, it signals aodv module to start a
route discovery. ASL returns source IP, destination IP and protocol field of the data packet to
aodv module in struct route_info. If the packet was generated locally, aodv module sends out
a RREQ packet. It creates a RREQ packet utilizing interface functions of RREQ class. This
RREQ packet is added to the pending list of RREQs. The aodv module starts a timer to wait
for the RREP to come. The TTL of the outgoing RREQ is set using the expanding ring search
technique. This RREQ packet is then transmitted to the local broadcast address. When a
RREP is not received as expected, aodv module retransmits the RREQ up to a maximum of
RREQ_RETRIES times. If a RREP is received within this limit, it calls route_discovery_-done()
API function of ASL with ASL_.ROUTE_FOUND result to signal that a route has been suc-
cessfully discovered. However, if no RREP is received, it returns a status of ASL.NO_.ROUTE
to the ASL.

On the other hand, if the source of the data packet was some other node in the network, the
aodv module checks to see if the destination is in the local repair list. If yes, then the link to the
destination is recently broken. In such a scenario, the module tries to repair the link locally. It

generates a new RREQ message for the destination and broadcasts it to its neighboring node.

114

It also starts a timer to wait for the RREP for this local repair attempt. If the timer expires,
the node generates a RERR message containing an entry for the destination and sends it to the
nodes in the precursor list of that destination. However, if a RREP is received but the newer
hop count to the destination is larger than the old value, the module sends out a RERR to the
precursors of the destination node with the N flag set. If the node is not in the local repair list,
a ASL_NO_ROUTE result is sent to ASL.

If the module receives data on aodv socket, it first examines the source address of the
received packet. All the packets from the local node are discarded. If the received data is not
generated locally, the module looks at the first 8 bits of the received packet to determine the
type of the message. The message type should be one of the AODV_RREQ, AODV_RREP,
AODV_RERR and AODV_RREP_ACK. Further processing of these messages are handled by
the corresponding modules.

Any time a new route is added to the aodv route table in the form of a reverse route,
a forward route or on the receipt of a hello message, the aodv daemon always returns a
ASL_ROUTE_FOUND to the ASL, so that any pending packets for the destination would

be routed as soon as possible.

9.3.3.3 RREQ Module

A received RREQ message is handed over to this module for further processing. This module
first checks to see if the RREQ was received over a unidirectional link. If yes, the packet is
discarded. It calls the neighborUpdate() function of routeTuble class to create/update an entry
for the node from which the RREQ is received. It looks for the RREQ in the forward route
request list. If the RREQ is already there, the current RREQ is ignored. If the RREQ is not
already processed, a new entry for the RREQ is created in the forward RREQ list. The module
also creates a reverse route to the source of the RREQ. If the RREQ was destined for the local
node, it calls the interface function of RREP class to generate a RREP. Otherwise, a RREP is
generated if the node has a valid route to the destination. The generated RREP is sent to the
next-hop node towards the source of RREQ. The module also generates a gratuitous RREP

115

message if the incoming RREQ had its G flag set. In all other cases, the module rebroadcasts

the received RREQ after incrementing the hop count.

9.3.3.4 RREP Module

All the received RREP messages are passed on to this module. This module is responsible
for further processing of these RREP messages. The module sends out a RREP-ACK message
if the received RREP has its A flag set. It creates/updates the entry for the neighboring node
from which the RREP was received. It also creates a forward route for the destination node
in the received RREP message. If the local node is not the intended receives of the RREP,
it unicasts the RREP to the next-hop along the path to the source node after updating the
precursor lists of source and destination route table entries. If the RREP is meant for the node

itself, the node does not do any more processing.

9.3.3.5 RERR Module

This module is responsible for handling RERR messages received by the AODV routing
daemon. This module first creates a RERR object from the received packet buffer. It also
creates/updates the neighboring node entry. If the received RERR message has the N flag set,
then the module transmits the RERR message to the list of precursor nodes in the route table
entry for the destination IP in the RERR message. The route for the destination node is not
invalidated. On the other hand, if the N flag is not set in the RERR message, the module creates
another RERR message. This new message consists of those destinations in the received RERR
for which there exists a corresponding entry in the aodv routing table and has the transmitter
of the received RERR as the next hop. The newly created RERR message is transmitted to

the list of precursor nodes of the destinations in the new RERR message.

9.3.3.6 Routing Table Module

This module is responsible for updates to the aodv route table as well as to the kernel route

table. It provides neighborUpdate() function to create or modify the route table entry to the

116

neighboring node every time an AODV control message is received. It also implements functions
to create or update reverse and forward routes. The refreshEntries() member function of this
module is called whenever the periodic refresh timer expires. For any route table entry which has
expired, the module calls query_route_idle_time() API function of ASL to determine the idle time
for this route entry. If the idle time is equal to or more than the ACTIVE_ROUTE_TIMEOUT
value, then this route entry is made invalid by modifying the hop count and the sequence
number values. However, if the idle time is less than the ACTIVE_ROQUTE_TIMEOUT, then
the lifetime of the route entry is updated.

9.3.3.7 Pending Route Request Module

Whenever a node broadcasts a RREQ message, it stores that message in a list of RREQs
called rregPendingList. The Pending Route Request module is responsible for maintaining this
list. Every entry of the list stores the number of times that RREQ has been broadcasted
(retries value), the current value of TTL and the actual RREQ packet. An entry from this list
is removed when the RREP for the destination is received or when maximum number of RREQ

retries have been attempted.

9.3.3.8 Forward Route Request Module

To avoid processing a RREQ multiple times, whenever a node receives a new RREQ packet,
it stores the source IP address and the route request ID in a list. This list is called for-
ward route request list (fwRregList). Each entry in this list is assigned a lifetime equal to
PATH.TRAVERSAL_TIME. When a RREQ is received, a node first checks if it has a similar
RREQ entry in the forward route request list. If yes, the received RREQ is discarded. The

periodic refresh timer monitors this list for stale entries and removes them..

9.3.3.9 Local Repair Module

Nodes in an ad-hoc network monitor their neighbors for continued connectivity information.

The current implementation of AODV uses hello messages to supply connectivity information.

117

When a node first gets a hello packet from one of its neighbor, it initiates a broken link timer for
that neighboring node. This timer is reset whenever any packet is received from that neighbor.
If this timer expires, the link to the neighbor is assumed to be broken. The neighboring node
is then put into the list of locally repairable nodes. All the other destinations nodes with their
next hop as the neighboring node are also put into the list of locally repairable nodes. This
list is called the localRepair list, and is managed by the Local Repair module. If a data packet
is received for any of the locally repairable nodes within the near future, the node transmits a

RREQ to repair the broken link.

9.3.3.10 Blacklist Module

An ad-hoc network may contain unidirectional links. It is possible that the transmission of
a RREP fails over a unidirectional link. Thus the source node will not receive the RREP. The
same scenario might happen with every RREQ retransmission attempt also. This is possible
even if a bidirectional route exists between the source and the destination, because in AODV
any node acts only on the first RREQ with the same RREQ ID and source IP address.

To prevent this problem, the Blacklist module maintains a list (called blacklist) of neighbor-
ing nodes to which unidirectional links exist. Whenever transmission of a RREP message fails,
the next hop of the failed RREP message is added to the “blacklist”. Such a failure is detected
by the absence of a route reply acknowledgement (RREP-ACK) message. A node ignores all
RREQs received from any node in its blacklist set. The periodic refresh timer examines entries

in this list and removes then after BLACK_LIST timeout.

9.3.3.11 Timer Queue Module

The AODV routing daemon uses the timerQueue module to maintain different timers. This
module provides a universal handler function for all the timers, called scheduleTimer(). This
function is called when any of the timers expires and it in turn calls the handler functions of
all the expired timers. Last, it sets the system timer to the next unexpired timer value. The

set_timer() function is the generic function which is used to add new timer entries to the timer

118

queue. It also resets the system timer (if needed) to the smallest unexpired timer value. The
Timer Queue module also provides functions to remove RREP and RREP_ACK timer from the

queue of the timers.

119

CHAPTER 10

Interoperability Support Services for Routing Protocols in

Hybrid Ad-hoc Networks

10.1 Motivation

Currently a number of routing protocols exist for mobile ad-hoc networks. Some of these
protocols are proactive in nature, maintaining routing information for all the other nodes in
the network, while some are on-demand based, discovering routes only when needed. There is
a third category of protocols called hybrid protocols. These protocols employ both reactive and
proactive schemes to come up with better optimized routing protocols for MANET.

No single category of MANET routing protocols qualify for the one-size-fits-all proverb.
While proactive routing protocols guarantee immediate route availability, they do not scale
well. Also broadcast of periodic route update messages consume a considerable amount of
network bandwidth. On the other hand, reactive routing protocols have a significant amount
of initial delay involved for route determination. Also most of these reactive protocols employ
global flooding of route request to discover a route. This could require significant control traffic
and hence could consume a considerable amount of scarce wireless bandwidth. However, these
protocols scale well as the size of the routing control messages is not dependent on the size of
the network.

We believe that the two main categories of ad-hoc routing protocols, proactive and reactive,

are going to co-exist in the forth coming future. Thus, some kind of mechanism is needed to

120

enable them to inter-operate with each other. We could imagine an ad-hoc network where some
of the nodes are running proactive routing protocols and others are running reactive routing
protocols. We call this a hybrid ad-hoc network and the nodes in such a network are classified
as reactive nodes and proactive nodes based on the type of routing protocols being run at these
nodes. In a hybrid ad-hoc network, it is required that the two categories of nodes be able
to talk to each other for the correct and efficient functioning of the network. For example,
a hybrid network could be partitioned if reactive nodes are not able to communicate with
proactive nodes. Thus, it is desirable to develop schemes for enabling inter-operability between
the reactive and proactive ad-hoc routing protocols. Currently, no such scheme exists in the
MANET community.

We have conducted research to develop mechanisms for supporting inter-operability between
proactive and reactive ad-hoc routing protocols. This lead to the development of Interoperabil-
ity Support Services (ISS) Regime for hybrid ad-hoc networks. ISS can be utilized to enhance
existing reactive and proactive ad-hoc routing protocols to enable them to talk to each other
with very little modifications. The idea is to provide a set of API functions which can be used
by the existing proactive and reactive ad-hoc routing protocols to achieve inter-operability with
each other. The ISS approach to provide inter-operability is both elegant and clean as it re-
quires minimal modifications to the ad-hoc routing daemon’s code and does not require any
modification to the existing kernel code. This chapter explains the main design principle behind

Interoperability Support Services (ISS).

10.2 Communication in a Hybrid Ad-hoc Network

An hybrid ad-hoc network consists of nodes, some of which might be running a proactive
routing protocol (proactive nodes) while others might be running a reactive routing protocol
(reactive nodes). Nodes in a hybrid network are divided into groups of proactive nodes. Each
such group is called a proactive island. A single proactive island comprises of all those proactive
nodes which are capable of communicating with each other using routes consisting of only

proactive nodes. A proactive island might just consist of a single proactive node. These proactive

121

© Reactive nodes
Proactive nodes

""" Routes maintained by
proactive nodes

—— Connectivity between
reactive nodes

i i
Proactive Island Proactive Island

Figure 10.1 An example of hybrid ad-hoc network

122

islands are scattered in a pool of reactive nodes which we call a reactive sea. Connectivity
between two proactive islands is achieved by intermediate reactive nodes in the reactive sea.
Figure 10.1 illustrates an example of a hybrid ad-hoc network depicting proactive islands and
reactive sea.

For communication to be possible in such a hybrid network, a routing path might need to
pass though the nodes in the reactive sea and in the proactive islands. Special mechanisms
are needed to discover and maintain such routing paths as nodes on such a routing path do
not understand each other’s routing protocol. Also, when a link breaks within the network,
the broken link notification might need to be sent to the nodes in multiple proactive islands
through the intermediate nodes in the reactive sea. This is the problem of route maintenance.
Thus, following are the two main issues which need to be addressed to enable communication

within a hybrid ad-hoc network:

e How to discover a route passing through proactive islands and reactive sea.

e How to maintain these routes efficiently.

10.3 Design and Mechanism

Proactive nodes in an island maintain route tables entries for all the other proactive nodes
in the same island. Every proactive node also maintains route table entries for all the reactive
nodes which are one-hop away from any of the nodes in the proactive island. These entries
are created, when proactive nodes receive hello messages (see Chapter 2) from the neighboring
reactive nodes, and are marked with REACTIVE flag to differentiate them from route table
entries for the proactive nodes. The design of Interoperability Support Services (ISS) adds three
new message types. These are route discovery notification (RD_NOTIFY), route found notifi-
cation (RF_NOTIFY) and route lost notification(RLINOTIFY). The two main data structures
maintained by ISS are route reply table and notification table. ISS also maintains a queue in

the user-space to store data packets for which routes need to be discovered.

123

This section presents design ideas for the route discovery and route maintenance procedures

employed by ISS to discover and maintain routes in an hybrid ad-hoc network.

10.3.1 Route Discovery in a Hybrid Network

If a proactive node needs to send a data packet to another proactive node within its own
island or to a reactive node in the one-hop neighborhood of its proactive island, it already
has a route to the destination node. It uses this route to send out the data packet. On the
other hand, if the proactive node needs to communicate with a node for which it does not
have a route, there should be some kind of route discovery procedure which is initiated. To
start this, the proactive node uses a new kind of message called route discovery notification
(RDNOTIFY) message. The node sends out this message to all the reactive nodes in the
one-hop neighborhood of the proactive island. A route discovery notification message contains
the address of the destination node for which the route needs to be discovered. A reactive node,
on receiving such a notification message starts a route discovery procedure for the destination
IP address specified in the RD_NOTIFY message, if it does not already have a route to the
destination. It broadcasts a route request (RREQ) message. This message might need to be
passed through both proactive and reactive nodes, to reach the destination or an intermediate
node with a route for the destination.

Every proactive node maintains a route reply table. Every entry in the route reply table
contains the IP address of the destination node, list of IP addresses of the source nodes which
require a route to that destination, and the list of IP addresses of the next-hops to these source
nodes. When a proactive node receives a route request message from one of the reactive nodes
(this is determined by the REACTIVE flag in the route table entry), it creates an entry in its
route reply table. The source and destination IP addresses are obtained from the route request
packet. The next-hop field is set to the IP address of the node from which the RREQ was
received. If the node does not have a route for the destination node, it modifies the received
route request, to make the source address as its own IP address, and sends out this route

request to all the reactive nodes in the one-hop neighborhood of its proactive island. This can

124

be done as every node in the proactive island maintains route table entries for all the one-hop
reactive neighbors. This action is taken by a proactive node every time a route request crosses
the boundary of reactive sea and the proactive island. When a proactive node receives a route
request from anot‘her proactive node, it just forwards it to the next hop along the targeted
reactive node. When the route request passes through the reactive nodes, they create reverse
routes [44] to the source in the route request packet and broadcast the route request if needed.
Thus the reactive nodes bordering the proactive island will have reverse routes to the proactive
nodes in the island.

The route request finally reaches either the destination node or a node with a “fresh enough”
route to the destination. If this node is a proactive node, it looks for an entry in its route reply
table for this destination node. It then sends out a route found notification (RF.NOTIFY)
message to every node in the next-hop list for this destination node. The route found notification
message also contains the IP address of the source node to which a route reply should be sent.
A reactive node, upon receiving this notification message, creates a route entry in its route
cache for the destination node, setting the next-hop field to the IP address of the node from
which the notification message is received. It then creates a route reply for the destination node
and sends it to the source node specified in the RD_NOTIFY message. On the other hand, if
the node having a route to the destination is a reactive node, it creates a route reply message
and sends it to the next hop on the path to the source node, specified in the route request
message. Note that this source IP address may be different from the IP address of the node
which originated the route request, as proactive nodes along the route request path modify the
source address in the route request message.

When a proactive node receives a route reply message, it checks its route reply table for an
entry to the destination node. If such an entry is found, it sends out the route reply to every
node in the list of source nodes stored in the entry. Before transmitting the route reply, the
source IP address in the route reply is changed to the source IP address stored in the route
reply table entry. Once the route reply has been forwarded to a source node, the corresponding

entry in the route reply table is deleted. Eventually, the route reply reaches the reactive node,

125

which originated the route request. The reactive node then creates a route table entry for the
destination node in its route cache.

Every reactive node maintains a notification table. Each entry in the table stores the IP
address of the destination node, a list of IP addresses of the proactive nodes which have sent
route discovery notification (RD_NOTIFY') message for this destination node, and the list of
TP addresses of the next-hops to these proactive nodes. When a reactive node receives a route
reply for the destination node, it generates a route found notification (RF_-NOTIFY) message
and transmits it to all the proactive nodes in the notification table entry for this destination
node, by forwarding it to the next-hop node along the path to the proactive node. The next-
hop proactive node receiving RF_NOTIFY message establishes a route to the destination node,
setting the reactive node, from which the RF_NOTIFY message was received, as the next-hop
towards the destination. This route is propagated to other nodes in the proactive island, and
eventually the source node seeking a route to the destination gets this route. All the data
packets stored for this destination are transmitted on the newly discovered route. If at the
reactive node, the notification table does not contain an entry for the destination IP address in
the route reply packet, then the route discovery was initiated by locally generated data packets.
In such a case the new route is used to transmit all the locally stored data packets. Even if
an entry for the destination node exists in the notification table, there could be some locally
generated data packets for that destination. Thus, upon receiving the route reply, the reactive
node always checks if it has any data packets queued locally for the destination IP address and

transmits them using the newly discovered route.

10.3.2 Example of Route Discovery

Figure 10.2 depicts an example of the route discovery process in an hybrid ad-hoc network.
Source node S generates a data packet for destination node D. It does not have a route to
D. It generates a RD_NOTIFY message and sends it to all the reactive nodes (including Ry
and Rj) in one-hop neighborhood of this proactive island. This example illustrates the route

discovery done by node R;. On receiving the RD_NOTIFY message, node Ry creates an entry

126

Proactive nodes

@ Reactive nodes
-~ RD. NOTIFY Message
== RF NOTIFY Message
—> Route Request Message

---» Route Reply Message

Proactive Island Proactive Island

(a) Route discovery in hybrid ad-hoc network

Destination | List of Sources| List of Next Hops Destination | List of Sources) List of Next Hops| | Destination | List.of Sources] List of Next Hops

D | S 13 D | R R, b | R,
(b) Notification table atlﬂ (c) Route reply table atP2 (d) Route reply table at]ﬁ’1

Figure 10.2 Route discovery process in a hybrid ad-hoc network

127

in its notification table for destination node D, with the source IP address set to the IP address
of node S and the next-hop address set to the IP address of node P, (Figure 10.2b). R; then
generates a route request (RREQ) message for destination D and broadcasts it. Figure 10.2a
depicts a typical path taken by the route request to travel to the destination D. Node P
receives this route request message. It creates an entry in its route reply table for destination
D. The source IP address is set to the received source IP address in the route request (Ry).
The next-hop address is set to Ro (Figure 10.2¢). P» also changes the source IP address in the
route request to its own IP address. It then transmits the RREQ to all the reactive nodes in the
one-hop neighborhood (including Rsz). Rjs re-broadcasts the route request. Node Py receives
this route request from node Ry. It creates an entry for the destination D in its route reply table
setting the source IP address to the received source IP address in the route request, which is
P,. The next-hop address is set to R4 (Figure 10.2d). Node P also changes the source address
in the route request to its own IP address and forwards it to node Rs, along with other reactive
nodes. Eventually, the destination node D receives the route request.

Destination D generates a route reply and sends it to node Rs. The source IP address in
the route reply (RREP) is set to P4 (same as the source IP address in the received route request
message). Node Rs has a reverse route to Py and forwards the RREP packet on that. Node Py
on receiving the RREP, consults its route reply table to find an entry for the destination D. An
entry is found with source IP as P» and next-hop as Ry (Figure 10.2d). It modifies the RREP
to change the source IP to P» and sends it to the node Rs. Node R4 has a reverse route to P
and it uses that to forward the route reply packet to P». On receiving the route reply packet,
node P» looks at the entry for destination D in its route reply table (Figure 10.2¢c). Using
that it changes the source IP of RREP to R; and forwards this RREP to node Rs. Finally
node R receives this reply. It consults its notification table to find an entry for destination D
(Figure 10.2b). It then transmits a RF_NOTIFY message to the source node S by forwarding it
to the next-hop node P;. Upon receiving this message, node P creates a route for destination
D in its route table with R as next hop. It then circulates this route to all the nodes in its

proactive island. When the RFE_NOTIFY message reaches source node S, it knows that a route

128

to the destination D has been discovered. Node S eventually gets this route, as it is propagated
by node P; to the entire proactive island. It then transmits all the data packets queued for

destination D.

10.3.3 Route Maintenance

If a reactive node detects a link break, it broadcasts a route error (RERR) message. This
RERR message is sent to all the predecessor nodes affected by this link breakage. If a proactive
node receives a RERR message for some destination node D, it deletes the route table entry
for that destination. The new information is sent immediately to all the nodes in the proactive
island through triggered route update message. The received RERR message is also transmitted
to all the reactive nodes in the one-hop neighborhood of the proactive island. These reactive
nodes propagate the topology change information contained in the RERR message to the other
effected nodes.

If a proactive node (say node k) leaves the proactive island, some proactive node in the
island detects the link break with this node k. The proactive node then transmits a route lost
notification (RL_NOTIFY') message to all the reactive nodes in the one-hop neighborhood of
the proactive island. This topology change information will propagate further, if any of these

reactive nodes possess an active route to the node k.

129

CHAPTER 11

Testing, Experimentation and Analysis

The implementations of DSDV, A-DSDV and AODV were tested on a real test bed of
laptop computers. Both multihop and co-located experiments were performed to test the im-
plementations. A real test bed performance study was also conducted for all the three routing

protocols.

11.1 Test-Bed Setup

The test bed used for experimental studies consisted of 6 Compaq Presario laptops. Each
of these laptops were equipped with Cisco Aironet 350 wireless card. The first phase of testing
was done in a co-located manner, where all the 6 laptops were lying on a single desk. This
was followed by multiple hops experiments, where the 6 laptops were scattered all over the
Coordinated science lab (CSL) to establish a multihop ad-hoc network.

The two main purposes of testing were to ensure the correctness of the implementations

and to conduct a performance analysis of the implemented routing protocols.

11.2 Functionality Testing

The DSDV, A-DSDV, and AODV routing protocol implementations were tested for their
correctness. Both co-located and multihop experiments were conducted for all the three imple-

mentations to test out various protocol features.

130

11.2.1 DSDV

The following tests were performed to test out the DSDV implementation.

Periodic Updates: This tests that the periodic routing update messages were generated and

processed correctly.

Triggered Updates: This tests that the triggered routing update messages were generated

and processed correctly.

Full Dump and Incremental Dump: This tests that the full dump routing update mes-
sages were generated only under the conditions specified by the DSDV routing protocol.

All other routing update messages used incremental dump packets.

Damping Fluctuations: This tests that the settling time data is used to delay advertising

changes to an unstable route.

Broken Links and Route Expiry: This test was done to ensure that when a node leaves
the network, one of its predecessor nodes detects the broken link, forwards the broken
link information to other nodes in the network, and the route entry, for the node which

has left the network, eventually expires at every node in the network.

Actions After Reboot: This test was done to ensure that any node waits for DELETE_PERIOD
time after reboot, before sending out its first route update message, to avoid the possibility

of formation of any routing loops.

11.2.2 Adaptive DSDV

Adaptive DSDV (A-DSDV) was tested to make sure that the values of periodic update
intervals were computed adaptively as the network dynamics changes. A log was created to
monitor the changes in the periodic update intervals. Testing also confirmed that in a static
network, the periodic update interval converges to the maximum specified value for the update
interval. Testing was also performed to ensure that the 1/(2n) law was followed while carrying

out full dump of routing informations.

131

11.2.3 AODV

The following tests were conducted to test the correctness of AODV implementation:

Route request/Route reply discovery cycle: This tests that a route request (RREQ) is
broadcasted by a source node, whenever a route is needed. This RREQ is processed
correctly by all the intermediate nodes and eventually a route reply (RREP) is generated
by a node possessing an unexpired route to the destination. The generated RREP is
correctly processed and forwarded to the source node by the other intermediate nodes.

This involves testing both single hop and multiple hops route discovery cycles.

Gratuitous RREP: This tests that an intermediate node replying to a RREQ also generates
a gratuitous RREP, if the G flag is set in the RREQ packet.

Route Reply Acknowledgement: This tests that a node generates a route reply acknowl-
edgement (RREP-ACK) and transmits it back to the node from which the RREP was
received, if the received RREP has its 4 flag set.

Hello Messages: This tests that if hello messages are enabled, a node sends out these messages
every HELLO_INTERVAL seconds. A node also creates route table entries for neighbors
from which hello messages are received. This test also ensures that a node starts a broken

link timer for every such neighbor.

Broken Link and Local Repair: This tests that if hello messages are not received from a
previous neighbor, then the node assumes that the link is broken. It puts the destination
node into the local repair list and attempts a local repair if a data packet is received

within the timeout period.

Route Error: This tests that a node generates a route error (RERR) message whenever a local

repair attempt fails or whenever it receives a RERR message from one of its neighbors.

Unidirectional Links: This test ensures that a node drops all the RREQ packets from a

neighboring node with which it has a unidirectional link.

132

Actions After Reboot: This test ensures that a node waits for DELETE_PERIOD time
after reboot, before acting as a full blown router, to avoid the possibility of formation of

any routing loops.

All of these tests were performed in both co-located and multihop ad-hoc networks.

11.3 Performance Study

A detailed performance evaluation of DSDV, A-DSDV, and AODV was conducted in co-
located as well as multihop ad-hoc networks. Performance analysis was done only for static
ad-hoc networks. A traffic generator application (traffic) was used to generate traffic at a
specified rate. The following parameters of the Cisco Aironet 350 cards were configured while

conducting performance studies.

Txpower: This defines the packet transmission power level of the card. It was set to 100mW

throughout the entire experimentation.

Card Bit Rate: This defines the speed at which the card transmits the bits over the wireless
medium. Three different values (1Mbps, 5.5Mbps and 11Mbps) were used for this pa-
rameter. The card bit rate was set to the rate at which the traffic was generated by the

traffic generator.

RTS Threshold: RTS/CTS adds a handshake before each packet transmission to make sure
that the channel is clear. This parameter sets the size of the smallest packet for which a
node sends RTS. T'wo values were used for this parameter. A value of ‘1’ ensures that the
RTS/CTS handshake will be performed for all the packets transmitted. A value equal to
‘2312’ switches off the RT'S/CTS handshake.

The traffic generator was run on each node in the network for one minute, pumping data
at the specified data rate. The number of correctly received packets were recorded at each

node in the network. The throughput was computed as the ratio of the sum total of all the

133

(2) Co-located ad-hoc network

]
o @ & ® ©

(i) 4 node network (i) 5 node network

(iii) 6 node network

(b) Multihop ad-hoc networks

Figure 11.1 Test-bed setup for performance studies

correctly received packets to the total time for which the traffic was generated (one minute in
our case). During each simulation interval, every node records the total number of bytes of all
the routing control packets transmitted by the node. This quantity was defined as the local
routing overhead of each node. The routing overhead for the entire network was computed by
taking the sum total of the local routing overheads for every node in the network.

The metrics considered while conducting performance analysis were throughput and routing
overhead. Figure 11.1 depicts the ad-hoc network setup used for performance testing. Fig-
ure 11.1a shows the co-located ad-hoc network, while the Figure 11.1b shows the multiple hops

ad-hoc networks of 4, 5 and 6 nodes used while conducting performance experiments.

134

o oo ' hadu;!ed IMbps '——6-»
AT ooz SoMbes e
4000] c000 4 .-»;;,-L,;(\/ /,; \\ m%?ﬁ?ﬁ =
500 - ' ‘ \\‘:
é 3000 4 § e u';
§ 2500 g 3000
] b
% 2000 4 z
z =z 2000 o
1500
1000 1000 - — U
e
1 2 3 H s 3 7 ; o : 2 s a 5 v 7 . s
Network Size (number of nodes) Network Size (number of nodes)
(a) Network Throughput with RTS/CTS en- (b) Network Throughput with RTS/CTS dis-
abled abled

Figure 11.2 DSDV Throughput for co-located ad-hoc networks

11.3.1 Throughput

To better study the throughput variations of the ad-hoc routing protocols, we also conducted
the throughput experiments with the routes hardcoded into the kernel routing table. This set of
experiments were classified as hardcoded experimentation. The throughput results of different
routing protocols were compared with the data obtained from the hardcoded experimentations.

First, we present throughput data individually for the DSDV, A-DSDV and AODYV routing
protocols, as compared to the throughput data for the hardcoded experiments. Then we do
a comparison of throughput results of DSDV and A-DSDV routing protocols. Finally, the
throughput results of all the three routing protocols are compared together.

Figure 11.2 presents the network throughput for the DSDV routing protocol as compared
to the network throughput for the hardcoded experiments. The throughput results are pre-
sented for ad-hoc networks of different sizes and at different traffic rates. The results shown
in Figure 11.2 correspond to co-located ad-hoc networks. Figure 11.2(a) presents the DSDV
throughput with RT'S/CTS handshake enabled, while the Figure 11.2(b) gives the throughput
data without the RT'S/CTS handshake. The throughput in general decreases as the number of

nodes inereases in the network. At lower traffic rates, the throughput performance of DSDV

135

4000
hardeoded Mbps —+— |- hardooded 1M
dsdy TMbpS =%

Mbps fardcodod 5.5Mbps %+
hardcoded 5.5bps. -+ 3500
e 5.5MDpS —G— dsdv 5.5Mbps -

o
g
8

3000

2000 - / \ \
o\
1500 - &

1000

.
/

g
!

Neotw ork Thwoughput (kbps}
8
g
\\\ .
* g
"
Notwork Throughput {kbps),
T~
x

g
g

g
3

500

Network Size {rumber of nodes) Network Size (number of nodes)

(a) Network Throughput with RTS/CTS en- (b) Network Throughput with RTS/CTS dis-
abled abled

Figure 11.3 DSDV Throughput for multihop ad-hoc networks

is almost the same as for the hardcoded experimentations. At higher traffic rates, the DSDV
routing protocol shows lower throughput than the hardcoded experiments. This is evident
from 5.5Mbps and 11Mbps plots in Figure 11.2(a) and Figure 11.2(b). DSDV still achieves
throughput results very close to the hardcoded throughput data most of the time, sometimes
even surpassing the hardcoded value. The major drops in the DSDV throughput at high traffic
rates could be because of the fact that some of the routing update packets might be getting
delayed or lost due to high data traffic. This might lead to the expiration and deletion of routes
and hence a drop in the network throughput. Figure 11.3 shows throughput data for mul-
tihop ad-hoc networks running the DSDV routing protocol. The comparison with hardcoded
results are made for IMbps and 5.5Mbps traffic rates. The DSDV routing protocol shows better
throughput performance than the hardcoded experiments most of the time.

Figure 11.4 illustrates the throughput performance of the Adaptive DSDV (A-DSDV) rout-
ing protocol for co-located ad-hoc networks, as compared to the throughput results for the
hardcoded experiments. The throughput results are shown for 1Mbps and 5.5Mbps traffic rates.
Figure 11.4(a) illustrates the throughput data for A-DSDV routing protocol with RTS/CTS en-
abled, while the throughput data without the RT'S/CTS handshake is depicted in Figure 11.4(b).
At 1Mbps traffic rate, A-DSDV shows throughput performance results almost same as the hard-

136

Nebwork Throughput {kbps)

L : . . . L . .
4500 hardcoded Mbps- —+— hardcodad TMbps ——t—-
&ﬁd\s’ ;mbm o a-dsdv mbps P
o0 a3y 5 EMbpS — 8 R S omiibs Lo
5000
3500 - L
o, —
e T § 4000
3000 . B———a F =5
______ Aty O
y S— § B
2500 ~ / § 2000 4
/ £ NS N
z

Network Throughput (kbps)

EOE
//
N

m’\

E/’//
1 > s i 5 s 7 o s : > s N s s 7 4
Network Size (number of nodes) Nelwork Size {nixnber of nodes)
(a) Network Throughput with RTS/CTS en- (b) Network Throughput with RT'S/CTS dis-
abled abled

Figure 11.4 A-DSDV Throughput for co-located ad-hoc networks

4000 X N
6000 hardeoded TMbps ——
hardooded 1Mbpg ~tem 4 a-dsdv mﬁ ——X—
Mdﬂ-‘tw‘}Mbps e hardcoded 11Mbps -2
3500 wdsov 11Mbpa —o— [adscv 11Mbps 21
5000 4
3000 of
x 4000
2500 b

3000 4

Network Throughput {kbps)

1500 4

10007 1004 4
o
500 [— T L
1 2 :IQ A; ; -] ; 8 9 1 'II ;
Network Size (number of nodes) Network Size (number of nodes)
(a) Network Throughput with RTS/CTS en- (b) Network Throughput with RTS/CTS dis-
abled abled

Figure 11.5 A-DSDV Throughput for multihop ad-hoc networks

137

Network throughput with RTS/CTS enabled
goo I 1 1 I 1 I 1

850 ~ o

7
)
=
5
o
5
3 800 4 hardcoded 1Mbps —-— o
& dodv tMbps ~--x---
E
¥
:
2
750 -
700 T T T T T T T
1 2 3 4 5 6 7 8 9

Netwaork Size (number of nodes)

Figure 11.6 Throughput for AODV routing protocol

coded results. At higher traffic rates, A-DSDV shows lower throughput than the throughput
results for the hardcoded experiments for some of the cases (2,3 and 4 node networks in Fig-
ure 11.4(a)). However, for most of the cases, it achieves throughput results very close to the
throughput results for the hardcoded experiments, even exceeding the hardcoded values in cer-
tain scenarios (5 and 6 node networks in Figure 11.4(a)). The reason for drops in A-DSDV
throughput at higher traffic rates could be the same as the one for DSDV routing protocol, viz.
loss of or delay in routing update messages at higher traffic rates, resulting in the deletion of
certain routes. Figure 11.5 represents the throughput results of A-DSDV routing protocol for
multihop ad-hoc networks. As expected, for lower traffic rates, the throughput results for A-
DSDV routing protocol is almost same as that for the hardcoded experiments. At higher traffic
rates, A-DSDV exhibits throughput performance very close to the hardcoded results most of
the time. For certain cases, at higher traffic rates, A-DSDV shows better throughput data than
the hardcoded results (3 and 4 node networks in Figure 11.5(b).

Figure 11.6 shows throughput results of AODV routing protocol as compared to the through-
put data for the hardcoded experiments. The results are shown for 1Mbps traffic rate. The

138

Nétwoik froughput with RTS/CTS disabled Netwark throughput wilh RTS/CTS disabled
s \ : s 2 1 "

so00 dadv 1Mbps I—o— 6000 - "
ardsdy Mbps ~3- \ e
dadv 5.5Mbps a-dgdv TMbpa ~=-emm
adsdv 5.5Mbps e PR
5000 000 / \ adsdy 5.5MbpS —B—
§ 4000 § 4000 / 3
E 3000 g 3000 / :."') %,
= & B
g E TS
2 2000 2 12000
1000 1oc0 \\,
4 =
,,,,,,,, -)
e
1 2 3 4 £ & 7 8 9 1 2 3 4 5 é ; 17 a
Netioik Size {rumber.ol nodes} Network Size (number of nodes)
(a) Network Throughput for co-located net- (b) Network Throughput for multihop net-
works works

Figure 11.7 Throughput Comparison between DSDV and A-DSDV

AODV routing protocol shows throughput results almost similar to the throughput results of
the hardcoded experiments.

Figure 11.7 presents the comparison of throughput for the DSDV and A-DSDV routing
protocols at different traffic rates. Figure 11.7(a) shows the throughput comparison for co-
located ad-hoc networks, while Figure 11.7(b) shows the throughput comparison for multihop
ad-hoc networks. For both co-located and multihop ad-hoc networks, at lower traffic rates, the
measured throughput for A-DSDV is better than the DSDV for most of the time. At higher
traffic rates also, A-DSDV achieves better throughput than DSDV in most of the cases. Even for
the cases where the A-DSDV throughput is smaller than the DSDV throughput, the difference
is not much. Thus A-DSDV exhibits throughput performance better than or equal to DSDV
most of the time.

Figure 11.8 shows the throughput data for DSDV, A-DSDV, AODV and the hardcoded
experiments. AODV routing protocol performs very close to the hardcoded throughput results.
A-DSDV comes very close to the AODV performance results. Also, on an average, A-DSDV
performs better than the DSDV routing protocol. The performance of the DSDV protocol is
worst of all the four plots. This could be because of the fact that the frequent periodic route

update messages in DSDV consume a considerable amount of network bandwidth. This is not

139

Network throughput with RTS/CTS enabled

900 1 L] 1 i 1] 1

850 - -
_§- 800 hardcoded 1Mbps —+— o
= dsdv 1Mbps ==-X=-~
5 a-dsdv 1Mbps ---%---
a aodv 1Mbps &=
[*)]
g 750 F
F
x e
g 700 - x’l -

650 o

X
600] ¥ T T L 1 ¥
1 2 3 4 5 6 7 8 9

Network Size {number of nodes)

Figure 11.8 Throughput for different routing protocols

the case with A-DSDV as it reduces the frequency of route update messages for static ad-hoc

networks.

11.3.2 Routing Overhead

Figure 11.9 shows the comparison of routing overheads between DSDV and A-DSDV rout-
ing protocols for co-located ad-hoc networks, at different traffic rates. Figure 11.9(a) shows the
routing overhead data with RTS/CTS enabled, while Figure 11.9(b) illustrates the routing over-
head data with RT'S/CTS disabled. At all the traffic rates, the routing overhead of A-DSDV is
substantially smaller than the routing overhead of DSDV routing protocol. This is because for
a static network, the frequency of periodic route update messages is much smaller for A-DSDV
routing protocol as compared to DSDV routing protocol. This effectively reduces the routing
overhead for the A-DSDV protocol. Also, routing overhead for A-DSDV is somewhat higher
with RT'S/CTS handshake enabled than without the RTS/CTS handshake. Figure 11.10 illus-
trates the routing overhead data for DSDV and A-DSDV for multihop networks. As expected,
A-DSDV has much smaller routing overhead as compared to the DSDV protocol. Figure 11.11

140

Routng Oveshead { as % of roceived data)

Routing Overhead (as % of received data)

: ; ! ! ’ : ! n;sdv 1Mbps ‘—o—
0.3 ~ dsdy F 0.3 a-dsdv IMbps ——-—~ o
X dsdv 5.5Mbps -~
a-dsdv 5.5Mbps s 5.5Mi Rt
oo iibps 5 I8+ v o
0.25 b = 025
g
0.2+ 2 § 0.2 4 L
3
0.15 F i 0,15
]
2
g
a1 4 r~ SDA 14
]
z
0.05 - o 0.05 4
1 ; I'! g 1 I7 ; 9
Network Size {number of nodes) Notwork Size (number of nodes)
(a) Routing Overhead with RTS/CTS enabled (b) Routing Overhead with RT'S/CTS disabled
Figure 11.9 Routing Overhead for co-located ad-hoc networks
0.8 1 L 0.4
e s b I 035 1 I
dsdv 5.5Mbpy - -
07 1 o M ae [Fl
adsdy 11Mbps - -0+ g 029
0.5 = g
2 0.25 F
o5 F 3
ﬁ 0.2 - F
] | ‘g 0.15 o o
0.3 4 - 5
E
0.2 N g 214 L
0.1 5 L 0.05 -
] T
1 7 8 g 1 2
Neotwork Size {number of nodes) Notwoxk Size {number.of nodes)
(a) Routing Overhead with RT'S/CTS enabled (b) Routing Overhead with RT'S/CTS disabled

Figure 11.10 Routing Overhead for multihop ad-hoc networks

141

I3 1

dsdv 1Mbps —+——
a-dsdv 1Mbps —-X--~ -
aodv 5.5Mbps ---%---

0.3

0.25

0.2 -

0.15

0.1 4

Routing Overhead (as % of received data)

0.05

Network Size {number of nodes)

Figure 11.11 Routing overhead for different routing protocols

shows routing overhead for AODV, DSDV and A-DSDV for co-located ad-hoc networks with
IMbps traffic rate. DSDV has the highest routing overhead, followed by AODV. A-DSDV

displays the lowest routing overhead characteristics.

11.3.3 Adaptive Periodic Update Interval for A-DSDV

Figure 11.12 shows the variations of periodic update interval at every node for a 4 node
ad-hoc network running A-DSDV routing protocol. The periodic update interval data for both
co-located and multihop networks are shown. The value of the periodic update interval for all
the 4 nodes finally converges to MAX_PERIODIC_UPDATE_INETERVAL value specified by
A-DSDV protocol (10 seconds in our case). Figure 11.13 shows similar results for a co-located
ad-hoc network of 5 nodes. In this case also, the value of the periodic update interval converges

to MAX_PERIODIC_.UPDATE_INTERVAL for all the 5 nodes.

142

A-DSDV periadic update interval for anetwork of 4 nodes

i 2 :

A-DSDV perioxdic. updato inletval for a nework of 4 nodes

Periodic Updale Interval {in ms)

10000 ~ 10000
O 1 =g
N000 2 ~+xt---
node 3 ~-K-e-
nodo 4 —&-
8000 o 8000 -|
4
£
3
5000 r é 6000 4
i
4000 - § 4000+
5
a
2000 4 L 2000 -u\u
s M ® 20 3 4 s 4 10
Number of periodic updale interval Number of periadic updale interval
(a) Periodic update interval for a co-located (b) Periodic update interval for a multihop net-
network work

Figure 11.12 Variations in A-DSDV periodic update interval for 4 node ad-hoc networks

A-DSDV periodic update interval for a network of 5 nodes

10000 A T
node 1 —+—
i node2 --x—--
i noded ---%
i node4 g
8000 : node 5 ~-m-- L
& H
g i
£ i
s
<
£ 5000)
=
2
o
g
>
3 4000 - -
2
@
8
2000 4 -
».\
..
s O R O S oo~ W . WP
T 1

5 10 25

Number of periodic update interval

Figure 11.13 A-DSDV Periodic update interval for a 5 node co-located ad-hoc network

143

CHAPTER 12

Conclusion

We have provided implementations of DSDV ad-hoc routing protocol on the Linux kernel.
We also provide a detailed specification of DSDV routing protocol. An improved version of
DSDV routing protocol called Adaptive DSDV (A-DSDV) has been designed and implemented.
A-DSDV provides a fully automatic version of the DSDV routing protocol in terms of configuring
various DSDV parameters. This completely obviates the need of hardcoding values for any of
the DSDV parameters.

We have done an in-depth exploration of issues involved with on-demand routing in ad-hoc
networks. An Ad-hoc Support Library (ASL) has been developed to provide system services for
on-demand routing in mobile ad-hoc networks. The AODV routing protocol has been imple-
mented using ASL. The resulting AODV implementation (AODV-UIUC) is much simpler and
cleaner than many of the existing AODV implementations. AODV-UIUC is also more efficient
than other existing implementations of AODV in terms of per packet processing overhead, and
it does not require any modifications to the Linux kernel code.

We have also conducted an in-depth performance study of DSDV, A-DSDV and AODV
routing protocols on a real test bed consisting of 6 laptop computers equipped with Cisco
Aironet 350 wireless cards. The performance experimentations have been conducted both for
co-located and multihop ad-hoc networks. The analysis of experimental results shows that the
A-DSDV routing protocol performs better than or equal to the DSDV routing protocol, in terms
of throughput, most of the time. The AODV routing protocol exhibits maximum throughput

144

performance. Also, the throughput results for the A-DSDV routing protocol matches closely
with the throughput data for AODV. In terms of routing overhead, A-DSDV shows better
performance than the DSDV routing protocol. Also, for co-located ad-hoc networks, the routing
overhead incurred by A-DSDV is smaller than both the DSDV and AODYV routing protocols.
We have also presented a novel approach to enable inter-operability between reactive and
proactive routing protocols in an hybrid ad-hoc network. An Inter-operability Support Services
(ISS) module has been designed to provide services to enable inter-operability between proactive
and reactive ad-hoc routing protocols. The ISS module can be utilized to enhance the existing
ad-hoc routing protocols to support inter-operability with minimal modifications to the routing

daemon code.

145

REFERENCES

[1] Phil Roberts and Basavraj Patil (chairs), “IETF IP Routing for Wireless/Mobile Hosts
(Mobile IP) working group,” http://www.ietf.org/html.charters /mobileip-charter.html.

(2] “IEEE Workshop on Disaster = Recovery Networks,” Jun 2002,
http://comet.ctr.columbia.edu/diren.

[3] Jochen H. Schiller, Mobile Communications, chapter 4, pp. 84-91, Addison-Wesley, Pear-
son Education Limited, 2000, ISBN: 9814053392.

[4] Charles E. Perkins, Bobby Woolf, and Sherman R. Alpert, Mobile IP Design Principles
and Practices, Prentice Hall PTR, first edition, January 1998, ISBN: 0201634694.

[5] “IEEE 802.3 CSMA /CD (Ethernet) working group,”
http://grouper.ieee.org/groups/802/3 /.

[6] Chane L. Fullmer and J.J. Garcia-Luna-Aceves, “Solutions to Hidden Terminal Problems
in Wireless Networks,” in Proceedings of ACM SIGCOMM, Cannes, France, 1997.

[7] “IEEE 802.11 Working Group for Wireless LANs,”
http://grouper.ieee.org/groups/802/11 /main.html.

[8] Bob O’Hara and Al Petrick, IEEE 802.11 Handbook: A Designer’s Companion, Standards
Information Networks IEEE Press, 1999, ISBN: 0738118559.

[9] Robert Rozovsky and P. R. Kumar, “SEEDEX: A MAC protocol for ad hoc networks,”
in Proceedings of The ACM Symposium on Mobile Ad Hoc Networking and Computing,
MOBIHOC, 2001.

146

[10] Swetha Narayanaswamy, Vikas Kawadia, R. S. Sreenivas, and P. R. Kumar, “Power control
in ad-hoc networks: Theory, architecture, algorithm and implementation of the COMPOW

protocol,” in European Wireless Conference, 2002.

[11] Joseph Macker and Scott Corson (chairs), “Mobile Ad hoc Networks (MANET) Charter,”
http://www.ietf.org/html.charters /manet-charter.html.

[12] Larry L. Peterson and Bruce S. Davie, Computer Networks A Systems Approach, Morgan
Kaufmann, San Francisco, CA, 2000, ISBN: 1558605770.

[13] Dimitri Bertsekas and Robert Gallager, Data Networks, Prentice Hall, Englewood Cliffs,
New Jersey, 1987, ISBN: 0131968254.

[14] Douglas E. Comer, Internetworking with TCP/IP Principles, Protocols and Architecture,
vol. 1, Prentice Hall of India, New Delhi, 2000, ISBN: 8120310535.

[15] Eugene Blanchard, Introduction to Networking and Data Communications, chapter 42,

2001, Online Book.

[16] Christian Huitema, Routing in the Internet, vol. 1, Prentice Hall, Englewood Cliffs, New
Jersey, 1995, ISBN: 0131321927.

[17] Bassam Halabi, Internet Routing Architecture, Cisco Press, New Riders Publishing, Indi-
anpolis, IN, 1997.

[18] “The Internet Engineering Task Force (IETF) homepage,” http://www.ietf.org.

[19] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press
and McGraw Hill, 2000, ISBN: 0262032937 .

[20] Charles E. Perkins, Ad Hoc Networking, Addison-Wesley, Pearson Education Limited,
New Jersey, 2001, ISBN: 0201309769.

[21] E. Royer and C-K. Toh, “A review of current routing protocols for ah hoc mobile wireless

networks,” IEEE Personal Communication, vol. 6, no. 2, pp. 46-55, April 1999.

147

[22]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Charles E. Perkins and Pravin R. Bhagwat, “Highly dynamic destination-sequenced dis-
tance vector routing (DSDV) for mobile computers,” in Proceedings of ACM SIGCOMM,
London, U.K., September 1994, pp. 234-244.

C. Chiang, H. Wu, W. Liu, and M. Gerla, “Routing in Clustered Multihop, Mobile Wireless
Networks,” in The IEEE Singapore International Conference on Networks (SICON), April
1997, pp. 197-211.

Shree Murthy and J. J. Garcia-Luna-Aceves, “An Efficient Routing Protocol for Wireless
Networks,” ACM Mobile Networks and Applications Journal, Special issue on Routing in
Mobile Communication Networks, vol. 1, no. 2, pp. 183-197, October 1996.

A. Iwata, C. Chiang, G. Pei, M. Gerla, and T. Chen, “Scalable routing strategies for
ad-hoc wireless networks,” IEEE Journal on Selected Areas in Commaunications, August

1999.

X. Chen, L. Qi, and D. Sun, “Global and superlinear convergence of the smoothing
Newton method and its application to general box constrained variational inequalities,”

Mathematics of Computation, vol. 67, no. 222, 1998.

Charles E. Perkins, Elizabeth M. Royer, and Samir Das, “Ad hoc on demand distance
vector routing,” in Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems
and Applications, New Orleans, LA, February 1999, pp. 90-100.

Vincent D. Park and M. Scott Corson, “A highly adaptive distributed routing algorithm
for mobile wireless networks,” in Proceedings of IEEE INFOCOM, Kobe, Japan, April
1997.

David B. Johnson and David A. Maltz, “Dynamic source routing in ad hoc wireless
networks,” in Mobile Computing, Tomasz Imielinski and Hank Korth, Eds., vol. 353.
Kluwer Academic Publishers, 1996.

R. Dube, C. Rais, K. Wang, and S. Tripathi, “Signal stability based adaptive routing (ssa)

for ad hoc mobile networks,” in IEEE Personal Communication, February 1997.

148

[31]

[32]

[33]

[34]

[36]

[37]

[38]

[39]

Zygmunt Haas, “A new routing protocol for the reconfigurable wireless networks,” in

Proceedings of the IEEE Int. Conf. on Universal Personal Communications, October 1997.

P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, and A. Qayyum nd L. Viennot, “Op-
timized link state routing protocol for ad hoc networks,” in IEEE INMIC, Pakistan, 2001.

M Joa-Ng and L.-T. Lu, “A peer-to-peer zone based two-level link state routing for mobile
ad hoc networks,” in IFEE Journal on Selected Areas in Communication, Special issue on

Ad-Hoc Networks, August 1999.

D. Maltz, J. Broch, and D. Johnson, “Experiences designing and building a multi-hop wire-
less ad hoc network testbed,” Technical Report CMU-CS-99-116, School of Computer Sci-
ence, Carnegie Mellon University (http://www.monarch.cs.cmu.edu/papers.html), March

1999.

Chai-Keong Toh, “A novel distributed routing protocol to support ad hoc mobile com-
puting,” in Proceedings of IEEE 15th Annual International Conference on Computers and

Communications, Phoenix, March 1996, pp. 480-486.

C.-K. Toh, “Long-lived ad-hoc routing based on the concept of associativity,” March 1999,
Internet Draft of IETF MANET Working Group.

Z.J. Haas and M. R. Pearlman, “The Zone Routing Protocol (ZRP) for ad hoc networks,”
August 1998, IETF Internet Draft, Mobile Ad hoc Network (MANET) Working Group.

J. M. Jaffe and F. H. Moss, “A responsive distributed algorithm for computer networks,”

in IEEE Transcations on Communications, July 1982.

S. Das, R. Castaneda, and J. Yan, “Simulation based performance evaluation of mo-
bile, ad hoc network routing protocols,” ACM/Baltzer Mobile Networks and Applications
(MONET) Journal, pp. 179-189, July 2000.

149

[40] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network routing protocols,” in Mobile

Computing and Networking, 1998, pp. 85-97.

[41] Samir R. Das, Charles E. Perkins, and Elizabeth M. Royer, “Performance comparison
of two on-demand routing protocols for ad hoc networks,” in Proceedings of the IEEE

Conference on Computer Communications (INFOCOM), March 2000, pp. 3-12.

[42] Vikas Kawadia, Yongguang Zhang, and Binita Gupta, “System services for implementing

ad hoc routing protocols,” in International Workshop on Ad Hoc Networking, 2002.
[43] “Netfilter /Iptables homepage,” http://www.netfilter.org.

[44] C. E. Perkins, E. M. Royer, and Samir R. Das, “Ad hoc on-demand distance vector rout-
ing,” January 2002, IETF Internet Draft, draft-ietf-manet-aodv-10.txt, work in progress.

[45] “AODV Implementation at University of California, Santa Barbara,”
http://moment.cs.ucsh.edu/AODV /aodv.html.

[46] “AODV Implementation at Uppasala University,” http://www.docs.uu.se/ henrikl/aodv.

[47] “Kernel AODV at National Institute of Standards and Technology (NIST),”
http://w3.antd.nist.gov/wetg/aodv_kernel.

[48] Elizabeth M. Royer and Charles E. Perkins, “An implemenatation study of the aodv

»

routing protocol,” in Proceedings of the IEEE Wireless Communications and Networking

Conference, Chicago, IL, September 2000.

150

	02-2206a.pdf
	02-2206b.pdf

