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Abstract

Rates of reliable transmission of hidden information are derived for watermarking problems
involving parallel Gaussian sources, which are often used to model host images and audio sig-
nals. Constraints are imposed on the average squared-error distortion that can be introduced
by the information hider and by the attacker. When distortions are measured with respect to
the original host data, the optimal attack is the cascade of a bank of minimum-mean-squared-
error estimators for the host data and a bank of Gaussian test channels. The solution to the
watermarking game involves an optimal allocation of distortions by the information hider and
by the attacker to the different channels. While the resulting maxmin optimization problem
is nonconcave with respect to the maximizing variable, we present a reparameterization that
maps the original problem into a convex programming problem with separable cost function
and separable constraints. A fast algorithm is given for computing the optimal solution. For
each channel we derive analytical expressions for two asymptotic regimes: weak and strong host
signals. Finally we extend these results to the class of stationary Gaussian host signals with
bounded, continuous spectral density. This analysis provides an upper bound on watermarking
capacity for non-Gaussian host signals.

Index terms: Watermarking, game theory, channel capacity, rate-distortion theory, parallel
Gaussian channels, random processes.

*Work supported by NSF grants CCR 00-81268 and CDA 96-24396.



1 Introduction

The widespread dissemination of images, video, audio and text data on public communication net-
works raises intellectual-property and security issues that can be addressed using watermarking and
data hiding techniques. Other applications of data hiding include close captioning and embedding
of text and audio in images and video. These areas have seen the development of a plethora of
algorithms in the last five years [2, 3], but an information-theoretic treatment of the problem is
just emerging [4, 5, 6, 7, 8, 9]. In particular, a theory has recently been developed to establish the
fundamental limits of the watermarking (data hiding) problem depicted in Fig. 1 [4, 5].

In this framework, a message M is to be embedded in a length-N sequence SY = (S1,- -+, SN)
termed host data set, typically data from an host image, video, or audio signal. The embedding is
done using a cryptographic key. The resulting watermarked data X N = (X1,--+,Xy) are subject
to attacks that attempt to remove any trace of M from X%. The output of the attack is a sequence
YN = (Y1,-++,Yy). The decoder has access to Y'Y and the key and produces an estimate M for

the message that was transmitted.

The watermarking system should satisfy two basic requirements. The first is usually referred
to as transparency, or unobtrusiveness: the data set XV should be similar to S, according to
a suitable distortion measure. The second requirement is referred to as robustness: the hidden
message should survive the application of any attack (within a certain class) to XV. For instance,
there is typically a limit on the amount of distortion that an attacker is willing to introduce. A
watermarking system can be analyzed by defining a statistical model for SV and the key, a distortion
function, and specifying constraints on the admissible distortion levels for the information hider
and the attacker. In particular, we seek the mazimum rate of reliable transmission for M, over any

possible watermarking strategy and any attack that satisfy the specified constraints.

Following a brief review of background in Sec. 2, three related problems are considered in this
paper. First, in Sec. 3, capacity expressions are derived for Gaussian channels when all distortions
are evaluated with respect to the host data. The solution serves as a building block for the second
problem, in Secs. 4 and 5. There the source S can be decomposed as a parallel-Gaussian source,
with K channels carrying independent and identically distributed (i.i.d.) host data. In typical
applications, S would be a K-dimensional block of transform data (such as an 8 x 8 block of
discrete cosine transform coefficients, or a subtree of wavelet coefficients) from an host image,
video, or audio signal. In the third problem (Sec. 6), the source S is a stationary Gaussian random

process with bounded and continuous spectral density. The paper concludes with a discussion in
Sec. 7.

Notation. We use capital letters to denote random variables, small letters to denote their
individual values, and a superscript IV to denote length-N vectors. We let I(X;Y) denote the



mutual information between two random variables X and Y, and I(X;Y|Z) denote the conditional

mutual information between X and Y, conditioned on Z.

2 Background

2.1 Mathematical Model

The problems in Secs. 3—5 admit the following general description. The host-data source emits
an i.i.d. sequence of K-dimensional Gaussian random vectors S ~ N(0, R), where R is a K x K
correlation matrix. The distortion metric is the squared Euclidean distance d(z,y) = ||z — y||?, for
z,y € R,

In Sec. 3, we have K = 1. In Sec. 4, we assume that the correlation matrix is diagonal with
diagonal entries 0,%,1 < k € K, and denote it by X = diag{a,%}gzl. Equivalently, S may be
represented by means of K parallel Gaussian channels. The channel inputs are K independent
sources Sx,1 < k < K, each producing i.i.d. Gaussian random variables N (0,0,%). If the host-
signal correlation matrix is not diagonal, the problem can be reduced to the above case by means

of the Karhunen-Loeve transform, see Sec. b.

The message M of interest is uniformly distributed over the message set M, and is to be reliably
transmitted to the decoder. M is independent of S.

The decoder has access to side information. It is assumed that randomized watermarking codes
are used, and that the decoder knows the cryptographic key used to select the particular code
used. If the decoder has access to no other side information, the problem is referred to as blind
watermarking. If in addition the decoder has access to the original host signal, the problem is

referred to as private watermarking.

Maximum distortion levels are specified for the information hider and the attacker. Let
dV (N yN) = 7%,— Zi\_f__l d(zs, yi). A length-N watermarking code subject to distortion Dy is a triple
(M, fn,dn), where: M is the message set of cardinality |M|; fiv : RVE x M — RVK s the
encoder mapping and is subject to the distortion constraint

Z Z l—Allep('sN) dV(sV, fn (s, m)) < Dy; (2.1)
sNeRNK meM
and ¢y : RVE — M (resp. ¢y : RVE x RVE _, M) is the decoder mapping, producing the
decoded message ™ = ¢n(y") (resp. m = ¢n(yV,s")) for blind watermarking (resp. private wa-
termarking). The choice of fx induces a conditional probability density function (p.d.f.) p(z™|sM)
on the watermarked data.

A memoryless attack channel, subject to distortion Dy, is a conditional p.d.f. A(y|z), z,y €
R¥, subject to linear distortion constraints. The length-N extension of this channel is defined as



AN (yN |2y = ivzl A(yi|z;). Two types of distortion constraints are considered, giving rise to two

distinct classes of attack channels.

Type X. Constraint on Ed(X", Y
[ [a¥ @ MA@ e pla) ds ay < s (22)
Type S. Constraint on Ed(SN,YN):

/ / / AV (N MY AN (N ) p(a sV )p(s™) ds daN dyN < Do, (2.3)

For Type-S constraints, we normally require Dy > D1, so that the set of attack channels includes
YN = XN (no attack). The distortions for the information hider and the attacker are equal in this
special case. The scenario Dy < D; appears to have only limited practical interest; in fact, the set

of attack channels that satisfy (2.3) is empty if D is too small.

The rate of the watermarking code is R = % log |[M|, and the average probability of error is
Pon = 1 Zomem P@n (YY) #m | M =m) and Pey = o omem Pen (YN, 8Y) £ m | M =
m) for blind and private watermarking, respectively. A rate R is said to be achievable for distortions
(D1, Dy), if there is a sequence of codes subject to distortion D;, with rates Ry > R such that
P,y — 0 as N — oo, for any admissible, memoryless attack. The watermarking capacity is the

supremum of all achievable rates for distortions (Dj, D3).

2.2 Watermarking Capacity

The paper [5] has shown that the watermarking capacity defined above is the value of a mutual-
information game between the information hider and the attacker, This result is stated in Theo-
rem 2.1 below. In order to minimize the payoff, the attacker designs an optimal memoryless attack
channel A(y|z) that satisfies the distortion constraint

| [ de) Aotz dody < D, (24)
under type-X constraints, and
] [ s awiaistalsists) dsdady < Dy (25)

under type-S constraints. In order to maximize the payoff, the information hider optimally designs

a covert channel Q(z,u|s), where U is an auxiliary R¥-valued random variable. The covert channel
satisfies the distortion constraint

///d(s,m)@(x,u|s)p(s) dxdsdu < Dj. (2.6)

4



We let Ax(D2), As(D2), and Q(Dy) be the set of channels that satisty the constraints (2.4), (2.5),
and (2.6), respectively. We omit the subscript X or S for results that apply to both Ax (D) and
As(Da).

For any arbitrarily complicated encoding scheme and memoryless attack, Theorem 2.1 upper
bounds the rate of reliable transmission for the information hider, under the assumptions that the

attacker knows fu, and that the decoder knows both fy and A.

Theorem 2.1 [5] Assume the decoder knows the attack channel. A rate R is achievable subject to
distortions (D1, Ds) if and only if R < C, where

J(Q, 4) (2.7)

max min
Qz,uls)eQ(Dr) A(ylzye.A(D2)

where
J(Q, A) = I(U;Y) = I(U;S) : for blind watermarking
(@, 4) = I{U;Y|S) : for private watermarking.

For private watermarking, U = X is optimal.

(2.8)

2.3 Gaussian Channels — Type-X Constraints

Assume that K =1, § ~ N(0,02), and d(z,y) = (x—y)? (squared-error distortion on the real line).
The capacity-achieving distributions have been explicitly calculated under the type-X distortion
constraints (2.2) [5]. The capacity is the same for both blind and private watermarking problems:

1 D L
oo Slog(1+E) ¢ i Dy<o®+ Dy, 2.9
0 : otherwise
where )
Dy -
=] - —_— > 1. .
I} ( Py Dl) >1 (2.10)

For small distortions (02 >> D1, Dy) we have § ~ 1, and so C ~ %log (1 + —g—;—), i.e., the capacity
expression is asymptotically independent of o2. The optimal attack is the Gaussian test channel
from rate-distortion theory [10], A(y|z) = N (87 z, 371 Dsy). The noise introduced by this optimal

attack channel is independent of the channel input.

For blind watermarking, the optimal covert channel Q(z,uls) is given by

X = S+2, (2.11)
U = Z+aS, (2.12)
where
a= —L—, (2.13)
D1+ BDy

and Z ~ N(0,D;) is independent of S. The optimal distribution Q(z,u|s) the same optimal
distribution that achieves capacity in a problem studied by Costa [11]. For private watermarking,
the optimal Q(z,uls) is given by (2.11), with U = Z or U = X.



3 QGaussian Channels — Type-S Constraints

For type-S distortion constraints, we show the optimal covert channel is similar to that given in
Sec. 2.3, but the optimal attack is no longer the Gaussian test channel. The optimal attack is now
the cascade of the minimum-mean-squared-error (MMSE) estimator of S followed by a Gaussian
test channel introducing the maximum possible distortion, see Fig. 2. The solution is stated in

Theorem 3.1.

Theorem 3.1 Let K = 1 and d(z,y) = (z — y)? be the squared-error distortion measure. Let
the distortion constraints for the information hider and the attacker be given by (2.6) and (2.5),

respectively. Assume that S ~ N(0,0?%) and that Dy > ﬁ%rZD—lDl'

(i) If Dy > o2, the optimal attack channel is giwen by Y = 0, and the watermarking capacity is
C=0.

(i) For blind watermarkmg with ~ Dl < Dy < o2, the optimal covert channel is given by (2.11)
(2.12), where o = 55 +D7 D= Dl —I— T—Dg, and Z ~ N(0,Dy) is independent of S.

(1ii) For private watermarking, the optimal covert channel is the same as with type-X constraints.

(iv) For both blind and private watermarking with ;zj_—ZD—Dl < Dy < 02, the optimal attack channel
A is given by Y = (X 4+ W)/B, where W ~ N(0,D) is independent of X, and = ;2——22—);

Fquwalently, A(y|z) = A*(y|§), where S = mX is the MMSE estimator for S given X, and

A* is the Gaussian test channel with distortion equal to D' = — DT DlDl -+ Ds.

(v) For both blind and private watermarking with gg—‘f—DlDl < Dy < 02, the watermarking capacity

is given by

1 D 1 -
C =T(0?,Dy,Dy) = ilog (1 + —5) = —2—10g <1 — Dl(—}— - i)) . (3.1)

Proof. See appendix.

Note #1. For Dy = 372+—DD1 (necessarily smaller than o ) the ad1n1s51ble set of attack
channels reduces to one single element, namely, the MMSE estimator Y = =5 T D —2—-X. This attack is

reversible, and C = oo in that case. For Dy < —r——Dl, the admissible set of attack channels is
empty.

Note #2. For small distortions (¢2 >> Dy, Ds), we have § ~ 1, D ~ Dy — Dy, and C ~
Llog (1 + Dzllel).




4 Parallel Gaussian Channels

In this section, we develop watermarking capacity expressions for parallel Gaussian channels, and

specialize the results to sparse signal models, which have been used in recent literature.

4.1 Main Result

First we prove that optimal watermarking and attack strategies decouple the K channels and make
use of Gaussian distributions in each channel, see Fig. 3. The power allocations for the information
hider and the attacker are denoted by di = {di,1 < k < K} and dp = {do,,1 < k < K},
respectively. Define the host-signal rates r, = 1/K, 1 < k < K. Later we shall see that channels

with same variance can be combined, yielding nonuniform {r}.

Lemma 4.1 The watermarking capacity for both blind and private parallel-Gaussian watermarking

games subject to distortion constraints (D1, Ds) is equal to

K
— ~ 2
C= maxrrclllznkz‘lrkl‘(ak,dlk,d%), (4.1)

dy

where

1 1
L(o}, dik, dor) = 5108 <1 — dug (-— - -—)) (4.2)
-1

dot O’,%
1 ot + dig dlk
= 2] k
2 Og( 0”% dgk (43)

and the mazimization and minimization are subject to the overall distortion constraints

> rkdy < Dy (4.4)

Z Tedor < Do (4.5)

and the inequality constraints (see Fig. 4)

0 < du (4.6)
2
z_o_k““dlk < dy (4.7)
0} + dig
dopy < o (4.8)

for 1 < k < K. The capacity-achieving distributions are of the form Q(zf,u|s¥) =
K

[Ty Qulzr, uklsk) and A(y*|z®) = HkK=1 Ax(yrlzr), where Qi and Ay are the capacity-achieving

distributions for a single Gaussian channel with distortion levels dyy, and dog, respectively.



Proof. The host-data source may be viewed as a blockwise memoryless scalar source with block
length K, where data within any given block SK = (81,83,--+,S9k) are independent (but not
identically distributed). The class A(Dg) may be similarly viewed as a set of blockwise memoryless
attack channels. Hence we can apply Prop. 8.2 in [5], which states that the optimal blockwise
memoryless channel is memoryless: A(y™ |27) = H,[C{:l Ap(yg|mi). Conversely, a straightforward
extension of Prop. 4.2 in [5] shows that under the assumption of a memoryless attack channel, the
optimal covert channel is also memoryless: Q(z,u|s¥) = H{il Qr(xk, uk|sg). In other words,
the optimal pair of information hiding and attack strategies leaves the K channels decoupled. Let
di = E|Sy, — Xi|? and do, = E|Y; — X3 |? be the distortion levels in channel k under these optimal
strategies. The distortion levels dy = {d1x} and d2 = {dos} satisfy the constraints (4.4)—(4.8). The
capacity-achieving distributions Qj and Ay are obtained by applying Theorem 3.1 with distortion
levels dyj and dog. These distributions are Gaussian. The resulting capacity for channel & is given
by (4.2), and the total capacity is given by (4.1). 0

It remains to optimally allocate the powers di = {dix} and dy = {dar} between the K channels.
Theorem 4.3 below reduces this problem to a simple convex/concave programming problem and

presents its solution. The proof of Theorem 4.3 uses the following lemma.

Lemma 4.2 The function I‘(ag,dlk,dgk) in (4.2) is convez in dyig and is convex in dog, over the
set defined by the inequality constraints (4.6)-(4.8).

Proof: see appendix.

The main ideas used in the proof of Theorem 4.3 are:

1. The payoff function Zszl rkF(a,%, di, doy) is additive over k, and so are the distortion con-
straints (4.4) and (4.5). The other 3K constraints (4.6) (4.7), and (4.8) apply to each channel
separately.

2. For any dj, the constrained minimization problem is reformulated as the dual maximization

problem maxy,>oq(d1, A2); where the dual variable Ay > 0 corresponds to the distortion
constraint (4.5).

3. A closed-form solution for each optimal doj, is derived in terms of di; and .

4. The function ¢(dy, Az) is nonconcave with respect to dy, but a reparameterization is found

that makes the cost function concave.

[

. The constraint set is still convex under the reparameterization above. The maximization prob-
lem,is converted to a dual minimization problem miny, <g7(A1, X2), where the dual variable

fw”"”‘“’”"”;\”{”"g 0 corresponds to the distortion constraint (4.4).



6. We have C' = maxy,>0miny; <o r(A1, A2) where 7 is strictly convex in A;. This maxmin

problem is solved using a standard numerical algorithm.

A numerical optimization algorithm based on these properties is described in Appendix D. The
dual variables A\; and Ay represent sensitivity parameters with respect to changes in distortion levels
D1 and Dg.

Theorem 4.3 The optimal power allocations dy, dy for the watermarking game in Lemma 4.1 are
as follows. If Zle rka,% < Dy, the optimal attack is dop = O']% Vk; dy 15 arbitrary, and C = 0.
If Z?:l rka,% > Dy, the watermarking game admits a unique solution. For each 1 < k < K, the
optimal doy, is zero if a,% = 0; otherwise doy, is the unique root of the fourth-order polynomial

Ao 4 1 2 3 5 9 A3 1 1
.) = —doy, — =22 ) do Ao+ A — — 242 .
Picldar) = —g o +(U4 02) 2+ | A2+ A= 5 [ da” + N T dog +

4 1 o? 2 2 202 2
(4.9)
in the semi-open interval (0,02]. The optimal dyy, is given by
2 2711
dig = [1/(2X ado”) +1/dgy, — 1/0%] . (4.10)

The Lagrange multipliers Ay < 0 and Aoy > 0 are such that the distortion comstraints (4.4) and
(4.5), respectively, are satisfied with equality.

Proof: see appendix.

4.2 Properties of Solution

1. (Symmetry). If U,‘Z = (712 for some k # [, then dix = dy; and doy, = dg;. This follows directly
from (4.9), as the polynomials py and p; are identical: we have the same optimization problem,
and hence the same solution, in channels k& and I. Hence the problem can be reduced to one
involving distinct channel variances {03} and nonuniform host-signal rates {ry}, where 7, is

the fraction of channels that have variance 0. Theorem 4.3 holds for arbitrary {r;}.

2. (Bounds on Optimal power allocation). The right side of (4.10) is strictly increasing in dgy.
From (4.8) and (4.10), we have:

dig < 22907, (4.11)

4.3 Asymptotics of Weak Channels

It is shown below that if o7 — 0, the bounds (4.8) and (4.11) become tight.



Proposition 4.4 If 0,% — 0 for some channel k, the optimal power allocations in that channel are

dor, ~ oF —3\a0t, (4.12)

dig ~ 2\o0f, (4.13)
and the contribution of channel k to capacity is linear in 0,% :

[(0, dig, doi) ~ 3\30t. (4.14)

Proof. When a,% — 0, the polynomial (4.9) is asymptotic to

1 5 1 1
pr(dor) ~ —pdo® — =—5dop® — ———dop + T

) 4.15
oy 20,2C 2)\20]7; A9 ( )

Due to (4.8), the only possible asymptotic balance that satisfies py(dai) = 0 is between the last
two terms of (4.15). This yields dgy ~ o2. The next order term will be needed to derive (4.14).
Writing dgj, ~ 0,% + aog and substituting this expression for doy in (4.15), we obtain a = —3)\y;
hence (4.12) follows. In (4.10), the first term in brackets dominates the sum; hence (4.13) follows.
Finally, the contribution of channel k to capacity is obtained from (4.2), (4.12) and (4.13):

1
T(of; dug, dog) ~ =5 log(1 — 2220%(32))

~ 33X}

4.4 Asymptotics of Strong Channels

Proposition 4.5 If a,% — oo for some channel k, we have Ay + Ao < 0, and the optimal power
allocations are given by

1
dop, ~ ————r 4.16
o 2(A1 + Ag) (4.16)
Ag
dig, —_— 4.17
H 221(A1 + Ag) (.17
The contribution of channel k to capacity is
1 Al
(02, dig, dog) ~ =1 ) 4.1
(0%, dik, dog) 518 Ty (4.18)

10



Proof. If 02 — oo, the polynomial equation (4.9) reduces to a quadratic equation in day (the

cubic and quartic terms vanish because dgy, is bounded from above):

3 A 1
pr(dar) ~ (M1 + Ao)dox® + (5 + Xi) doy, + oy (4.19)

The quadratic expression in the right side has two roots at —X15 and — 2(/\1—1+>\25 The first is negative,
so the second must be positive. Hence the first part of the claim.

Now (4.10) yields
1 1

~ — -,
2hador?  dok
whence (4.17). Using (4.2), (4.17) and (4.16), we obtain (4.18). O

-1
dig

4.5 Spike processes

Recently Weidman and Vetterli have introduced a simplified model for sparse signal compression
[12]. The signal is decomposed into a set of significant components and a set of insignificant compo-
nents. This model can also be used to derive approximate closed-form expressions for watermarking
capacity. Assume there exists an integer K* < K such that 0",% — oo for 1 <k < K* and 02 — 0
for K* < k < K. From Prop. 4.4, the optimal power allocations tend to zero in the weak channels
(K* < k < K). From Prop. 4.5, the optimal power allocations djj; and dop in the strong channels
(1 <k < K*) tend to a constant value, which is independent of & and must therefore be equal to
Dy /a and Dsy/a, respectively:
. A *

dig — { é)l/a dor — { é)?m éf‘i fé(K, (4.20)
where a = 21{21 T, € (0,1] is the fraction of significant samples of the host signal. The contribution
(4.2) of a strong channel (1 < k < K*) to capacity becomes

1 D
F(U%,dlk,dgk) ~ —2—10g <1 + ﬁ) . (421)

From (4.20), we obtain

D
=2~ dy, 1<k<K?

a
1 D
2X9 Dy — Dy
where the last line is due to the asymptotic equality of (4.18) and (4.21). Hence

= Di2(2D2/D1 —2)71, (4.22)

Solving (4.16) (with do, = Da/a) for A1, we obtain a similar expression:

a -
—A = E(ZDZ/Dl -1 L (4.23)

~s

A2

11



5 Correlated Gaussian Sources

So far we have assumed the host-data vector § € R¥ has diagonal correlation matrix. Assume now
this correlation matrix is nondiagonal, and denote it by R. The solution to the watermarking game
with squared-error distortion levels Dy and Dg in this case is simply obtained by diagonalizing S
using the Karhunen-Logve transform, thereby converting the problem to one involving independent
parallel Gaussian channels and the same distortion levels Dy and Ds, see Fig. 5. Then by direct

application of Theorem 4.3, we obtain

Proposition 5.1 Let d(z,y) = ||z — y||? be the squared Buclidean distortion measure in RE, As-
sume that S ~ N(0,R). Let & = diag{cl} be a K x K diagonal matriz with the eigenvalues of
R on the diagonal. The watermarking game subject to distortion constraints (D1, D) is equivalent
to a parallel Gaussian watermarking game with channel variances {0’,%} , and distortion constraints

(Dy,Dy). The solution to this game is given in Theorem 4.3.

If the Gaussian assumption on S is relaxed, we can obtain upper bounds on capacity. One
key result in the proof is [5, Prop. 8.3], which can be extended to continuous alphabets under the
regularity conditions of [5, Sec. 6].

Proposition 5.2 Consider the blind and private watermarking problems with squared-error dis-
tortion d(z,y) = ||z — |, z,y € RX. If S is non-Gaussian with correlation matriz R, the
watermarking capacity is upper-bounded by the capacity given in Prop. 5.1.

Proof. Assume without loss of generality that the components of the vector S are uncorrelated
with variances {02,1 < k < K}. (If {Si} are correlated, apply the proposition to TS, where T is
the Karhunen-Logve transform). It is sufficient to prove the proposition for private watermarking,
because capacity for blind watermarking can only be lower. Moreover, it is sufficient to prove
the proposition for host-signal distributions of the product form p(s) = I—[,{il p(sk), because any
dependency between the components S would reduce capacity [5, Prop. 8.3].

By Prop. 8.3 in [5], the capacity-achieving p.d.f’s under p(s) are separable: mw(z|s) =
[T, mp(as]se), and A(ylz) = T, Ai(yrlzx). For any fixed power allocation di,ds, one can
seek optimal channels {7, A} subject to distortion constraints {dyx,dor}. We find it convenient
to write the payoff function using these channels as j(pg,d;,ds); capacity is the solution to the
optimal power allocation problem C = maxy, ming, 7(ps,d1,ds).

Let p% be the Gaussian distribution with the same second-order statistics as pg. The capacity
under pg is equal to C* = maxg, ming, j(p%,di,ds); let di,d5 be the resulting optimal power
allocations. Also let d;,dy be the optimal power allocations under pg. We have

C :j(p57d1)d2) Sj(ps>d1:d§) SJ(P§>dl,d§) < j(pg’ T,d;) ="
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where the first inequality is because dy is optimal under ps and dj, the second is obtained by
applying Theorem 5.1(ii) in [5] (more exactly a routine extension of that result to the case of

Type-S constraints) to each channel, and the third is because df, d3 are optimal under p%. a.

6 Stationary Gaussian Processes

Assume now that S is a d-dimensional stationary Gaussian process in Z% with zero mean and

continuous spectral density v(f), f € Q = [—%, %]d. It is assumed that v is bounded away from zero
and infinity: v = minfeqv(f) > 0, and 7 = maxseq v(f) < co. First we define the watermarking

game with maximum distortion levels D; and Do, and then derive its solution.

6.1 Blockwise Memoryless Approximation

The spectral representation theorem states that any stationary process can be represented as an
integral of independent processes indexed by f € Q. Moreover, given a stationary Gaussian process
with bounded, continuous spectral density, one may construct a sequence of blockwise memoryless
approximations (indexed by block length K) to the original stationary process. This approximation
can be made arbitrarily accurate in a relative-entropy sense, as stated in Lemma 6.1 below. This

allows us to relate the current problem to that studied in Sec. 5.

Let R, be the correlation matrix of the vector S™ for n > 1. For any N > 1, let Rg n
be the block-diagonal matrix with the first |N/K | blocks equal to Rk, and the last block equal
t0 Ry miod i, 1f N mod K # 0. Let P}(V denote the Gaussian distribution with zero mean and
correlation matrices Ry n, for all N > 1.

Lemma 6.1 The relative entropy between the actual distribution PN of SV and its blockwise-

memoryless approzimation P}(V tends to zero in the following sense:
. . 1 -
lim lim ]—V—D(PNHPIJ(V) = 0. (6.1)

K-—oc0o N/K-+c0

Proof. See appendix.

6.2 The Stationary-Gaussian Watermarking Game

Prop. 5.1 gives the solution of the watermarking game for blockwise-memoryless Gaussian processes:

K
1
K , : 2
oK) — max min kgbll"(ak, dig, dok) (6.2)
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where K is the blocklength, 0,%,1 < k < K are the eigenvalues of the correlation matrix Ry, and
dy and dy are K-vectors that satisfy the constraints (4.4) ~ (4.8).

We show that lim g — 0 CE ) is the value of a game in which the payoff is a functional of two
power-allocation functions di = {d1(f), f € Q} and da = {da(f), f € O}

Theorem 6.2 As K — oo, the sequence CE) converges to the following limit:

Ce = mpxmin | TW(), (1), do() o (63
where the subscript on C stands for “continuous”, and di and dy satisfy the two distortion con-
straints

|awna < b (6.4
|apa < b (6.5)
and the infinite set of constraints
0 < di(f), (6.6)
v(f)di(f) d 67
S < ), (67
do(f) < v(f), (6.8)

for all f € €.

Proof. see appendix.

Note. Helly’s theorem in game theory [19, Ch. 2] would be a standard tool for establishing a
correspondence between the game (6.3) and the sequence of finite-dimensional approximations (6.2).
However, this theorem is not applicable here, because the Helly metric p(dy, d5) = supy, |H(d1, d2)—
H(dy,dy)| (where H(dy,ds) denotes the payoff function in (6.3)) is unbounded everywhere *.

The payoff function in (6.3) is continuously Fréchet differentiable within the feasible set defined
by the constraints (6.4)—(6.8) on d; and dy. The solution to this game is given by the following
proposition, whose proof parallels that of Theorem 4.3, using Fréchet derivatives instead of ordinary
derivatives [13].

Proposition 6.3 The game (6.8) subject to the constraints (6.4) — (6.8) admits the following
solution. If [qv(f)df < D, the optimal attack is do = v, dy is arbitrary, and C = 0. If

'For any given da, one can construct a subset Q. of  with positive measure and a feasible di such that the
difference between the left and right sides of the inequality constraint (6.7) is arbitrarily small for all f € Q., thereby
making H(dy,d2) arbitrarily large.
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Jov(f)df > D, the game admits a unique solution. For each f € Q, the optimal dao(f) is zero if
v(f) = 0; otherwise da(f) is the unique root of the fourth-order polynomial

A 1 22 5 Vo (M, 3 1 oL
pf<”>=?2<27>”4+(ﬁm’wf))”“(““‘zv(f)) +(A2+z ““mw(f)) +<26A§>

in the semi—open interval (0,v(f)]. The optimal di(f) is given by
di(F) = [1/@2%d3() + 1do(f) —1/w(D] T, feQ (6.10)

The Lagrange multipliers Ay < 0 and Ay > 0 are such that the distortion constraints (6.4) and
(6.5), respectively, are satisfied with equality.

The solution satisfies a symmetry property analogous to Property 1 in Sec. 4.2:
Property 6.4 If there exist f, f € Q such that v{(f) = v(f"), then di(f) = di(f') fori=1,2.

6.3 Example: AR(1) Process

We present a numerical solution to the watermarking game for one-dimensional, first-order, autore-
gressive models with zero mean, unit variance and correlation coefficient p € [0,1). The method
of proof of Theorem 6.2 suggests the following approach. A uniform discretization of the range
of logv into K = 256 channels is used to compute capacity using the algorithm in Appendix D.
Fig. 6 shows capacity as a function of p when D; = 0.1 and Dy = 0.2. Observe the monotonic
reduction in capacity as p tends to 1, due to the fact that the spectral representation of the process
is increasingly sparse. Fig. 7 shows the optimal power allocations and the contribution of each
channel to capacity for three examples: p = 0.05, p = 0.5, and p = 0.95. The gradual decay of the
power allocations as v(f) decreases (f increases) is consistent with the weak-channel asymptotics
in Sec. 4.3. The saturation of the power allocations as v(f) becomes large (f — 0) relative to D
and Ds is consistent with the strong-channel asymptotics in Sec. 4.4. Fig. 8 shows the reduction

in capacity as a function of Ds.

Other examples arising in image watermarking are presented in the paper [14].

7 Discussion

Optimal power allocation is a classical information-theoretic topic, arising in areas such as chan-
nel capacity and rate-distortion theory. For parallel Gaussian sources, the solution to the the
optimization problems arising in the two above-mentioned areas is fairly simple and is given by

the famous waterfilling and reverse-waterfilling formulas, respectively [10]. A significant challenge
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in watermarking for parallel-Gaussian sources comes from the game-theoretic formulation of the
watermarking problem. The resulting optimization problem is maxmin rather than a simple max-
imization or minimization problem. The solution is more involved but still consistent with the
notion, originally formulated by Cox et al. [1], that ”watermarks should be hidden in perceptually

significant signal components.”

In our initial investigation of this problem, we sought an expression for capacity of parallel
Gaussian channels under the type-X constraints (2.4) for the attacker. This can be done using an
approach similar to the one outlined above Theorem 4.3. In this case however, we have been unable
to find a reparameterization similar to the one used in Step 4, that would reduce the problem to
a convex programming problem. Numerical implementation of the solution shows that significant
power may be allocated by both the information hider and the attacker to weak channels (unlike the
results in Sec. 4.3). This result may seem counterintuitive but makes sense from a game-theoretic
point of view: the allocation of resources by the information hider to weak channels does force the
attacker to use a similar strategy under type-X constraints and hence “waste” valuable power that
might be better invested otherwise. This suggests that type-X constraints are less natural than

type-S constraints, as no such conterintuitive solution exists in the problems studied in this paper.

Acknowledgements. The authors are grateful to T. Bagar for helpful discussions regarding game
theory in infinite-dimensional spaces.
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A Proof of Theorem 3.1

(a) For Dy > 02, the attack Y = 0 is admissible, in which case the value of the payoff function
(2.8) is J = 0, which clearly achieves the required minimum; so C=0.

(b) Blind Watermarking. Assume now that Dy < o2

rem 5.2 in [5]. If the attack channel is as specified in (iv), it follows immediately from [11, 5, 7]

The proof parallels that of Theo-

that the covert channel that maximizes (2.8) is the one given in (ii). Conversely, if the covert
channel is as specified above, the optimal attack channel A is the one that minimizes U;Y).
We have I(U;Y) > I(U;Y*) where (U, X,Y*) is Gaussian with the same second-order statistics
as (U,X,Y). Now minimize I(U;Y) over all Gaussian distributions that satisfy the distortion
constraint E(S —Y)? < Da.

Because (X,Y) is jointly Gaussian, there exist two positive constants B and D and a random
variable W ~ N(0, D) independent of X, such that ¥ = 8~1(X + W) 2 BV, Since I(U;Y) =
I(U; V), we have

1 D

For the attack channel Y = 7'V to be admissible, we need the following condition on D:

Dy > E(S-Y)
= E(S-V/B)?
Y B(S(L-1/8) - 2/8 - W/B)

—
PN

Y 521 -1/B)% + (D + D)/B>

where (a) is because V = S+ Z + W, and (b) follows from the independence of 5, Z and W. We
then obtain
D < =Dy + 2Dy — (B —1)%02 (A.2)

The right hand side of (A.1) is minimized over D by choosing 3 that maximizes §2Dy—(8~1)%02

and D that achieves equality in (A.2). Hence
o2
B= —172 (A.3)
Substituting in (A.2), we obtain the largest admissible value of D as
o2
=-D e D, ———Ds. (A.4)

Hence the payoff for all admissible attacks channels is lower bounded by (A.1) where D is given by

(A.4). The attack channel Y = 871X + W) with 8 and D given by (A.3) and (A.4) achieves that
bound and hence is optimal. The value of C' follows immediately.
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Next we show that this optimal attack channel is the cascade of the MMSE estimator and a
Gaussian test channel. We briefly outline the proof. Let S = p%l—XAbe the MMSE es‘fimator
of § given .X, and apply the Gaussian test channel with distortion E(S -Y)? =D to §. This
Gaussian test channel can be viewed as the cascade of an AWGN channel with distortion level vD'

1

and a multiplicative constant y~*, where

D/U2 + I

= (A.5)

yl=1-D'fol=1-

For this system and the optimal system Y = (X + W)/f to be equivalent, v and D’ must satisfy

the two following conditions:

g = o (A.6)

2D = 4D (A7)
corresponding to equality of the constants that multiplies X and of the additive noise powers,
respectively. Substituting the value of 8 from (A.3) into (A.6), we obtain

4
v = 7= D;(UZ D (A.8)
Substituting the values of 8, D and v from (A.3), (A.4) and (A.8) into (A.7), we obtain
o2
D' = —le + Ds. (A.9)

It can then be verified by substitution that the values of v and D" in (A.8) and (A.9) satisfy the
condition (A.5).

(c) Private Watermarking. The proof parallels that of Theorem 5.1 in [5]. If the attack
channel is as specified in (iv), it follows immediately from Step 1 of that theorem that the covert
channel that maximizes (2.8) is the one given in (ii). Conversely, if the covert channel is given by
(ii), consider any given attack channel A(y|z). Let a = %i[")i—’{]], V=aoaY,and W=V -X. It

follows from this definition that E[XW] = 0. The distortion constraint (2.4) takes the form

Dy > E(Y — 8)? = E[(a — 1)S + aZ + aW]* = (a — 1)?0? + a’D; + > E(W?). (A.10)
Proceeding as in [5], we obtain
1 Dy
J > I A Z N = ~l PR
21z 2+ W) =3 Og(1+E(W2))’

where W* is a Gaussian random variable that has zero mean and the same variance as W. The
inequality above is satisfied with equality if W is Gatissian and independent of X. The lowest
possible bound is obtained by maximizing E(W?) subject to the constraint (A.10), where a € R.
After some algebra, we obtain E(W?) = D and a = § specified in (iv). The attack channel in (iv)
satisfies the lower bound with equality. a
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B Proof of Lemma 4.2

The proof of convexity with respect to dyj is immediate from (4.2). In order to prove convexity

with respect to dgy, we verify the sign of second derivatives of (4.3). Let

2
A Jr
i kg, (B.1)
k Uﬁ‘i‘dlk 1k

The admissibility conditions (4.7) (4.8) can be written as a; < dog < o7. From (4.3) we obtain

LT dig ag
C = -—~Z’r log< . (1_3;))’
oc 1 ay,
Odge 2 "dp(dok —an)’
o2C _ Tpag 2dop —ay
Bdy.? 2 dop’(dog — ap)?’
which is strictly positive for all doj > . O

C Proof of Theorem 4.3

Let D denote the feasible set for dy = {d1x}, i.e., the set of dy that satisfy (4.4) and (4.6). Given
dy, let Dy(dy) denote the feasible set for dy = {dax}, i.e., the set of do that satisfy the 2K + 1
linear constraints (4.5), (4.7) and (4.8). Because Dy(d;) depends on dy, the feasible set for the pair
(d1,do) is said to be nonrectangular. We follow the general approach developed by Shimizu and

Aiyoshi [22] for solving maxmin problems with nonrectangular feasible sets.

The proof of the first statement of the theorem (case Zi{:l T2 < Dy) is immediate. The proof
of the more interesting case Ele rkai > Dy is as follows.

Step 1. First we fix the power allocation d; for the information hider and derive the optimal power
allocation dy for the attacker. These parameters minimize the convex ? cost function (4.1) subject
to the convex constraint do € Da(d1). According to the strong duality theorem [21], the solution

to the constrained minimization problem is given by

K
(0%, dig, d di, A .
dzéglzndl Zm ity Ak, dak) = gr;agéq( 1, A2) (C.1)
where As is the dual variable,
(dl, )\2) Hlln £2(d1, d2, )\2) (62)

Zper Lemma 4.2
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is the dual function, and

K K K
Lo(di,da, Aa) = > 7el(0%, dur, dog) + Ao <Z Trdok — D2> + Y prdak

k=1 k=1 k=1
K K
1 o +d d
= -3 Z rylog (—’“—Tl—li d1k> + Ao (Z Trdok — D2) + > mdak
Tk 2k k=1 =1
1
= constant — 5 Zrk log <1 — E—> + A9 (Z Trdop — D2> + Z prdoiC.3)
k=1 k=1 k=1

is the Lagrangian. Here ay is given in (B.1), and {u} are Lagrange multipliers representing the
constraints (4.7) and (4.8). If Ay = 0, Ly is monotonically decreasing in dgy, and so the minimizing
doy, is equal to o for all k. (I’(a,%, dig, dog) = 0 in that case). But then D, redar = > rkai > Do.
This would violate the distortion constraint (4.5), so we must have Ay > 0: the distortion constraint

(4.5) must be satisfied with equality.
The partial derivative of Lo with respect to dgy is given by

oLy, 1 ag

= L R VY,
Bdyy 2" Moe(dog — ag) ko

and 0Ls/0dg;, = 0 at the solution. If the constraints dgp < 0,3 and dg;, > aj are inactive, then
wr = 0, and the condition 9Ls/ddgy, = 0 implies that doy, satisfies the quadratic equation

a
dgk - akdgk - ﬁ = (. (04)

The only positive (and hence potentially admissible) solution of (C.4) is
Qg ak
dojy = &
2% =5 Al T o 2)\2 (C.5)

which satisfies the constraint (4.7). If the root (C.5) is admissible, it coincides with the solution,
due to the convexity of Lo with respect to dog. If the root is nonadmissible, then the solution is

dor, = 0. To summarize, denote the minimizer of (C.3) by

2
- . . a/k ak) 2
dgk(dlk,/\g)—mm 74" 4 +§—}\—2, Ok ¢ 1SkSK (CG)
Then
q(dy, Aa) = La(dy, da(dy, M), Aa). (C.7)
If doy, < o2, equations (C.4) and (B.1) respectively yield
o = 2 + dok (CS)
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and
dy, = (1/a, — 1/o}) ™. (C.9)

Substituting 1/ay from (C.8) into (C.9), we obtain (4.10), restated below for convenience:
72 7 2]t
du = [1/(2>\2d2k) + 1/ doy — 1/0,4 .

The condition dgj, < o is equivalent to di < 2\20%. We can thus rewrite (C.6) as

. af | ap . 4
dop (dup, Ao) = G/ ge  dip < 2\0] (C.10)
J,% : else.

Step 2. Next we derive an expression for d; that achieves the maximum in (4.1), subject to the

constraint d; € D;. Write
K
C = max min rel (02, dig, dog
d1€Dy dzEDz(,(h)kZ:l (k> A1k dak)

= max maxqg(di, Ao
d1E€D1 A2>0 q( ’ )

= di, A A1
R g ol ) (e

where the second equality uses (C.1). We have F(a,%,dlk,cfgk(dlk, A2)) =0 for dyy > 2)\20,% (cigk =
U,%). So without loss of optimality, we restrict our search for the optimal dyj, to the interval [0, 2)\20%].
Step 2a. The cost function g(dy, Ag) is nonconcave with respect to di. However, define the

reparameterization
A1 (di, A2) = dag(dik, Aa), 0 < dyy < 2X00, Ao >0 (C.12)

which is a strictly increasing and hence invertible (given Ag) mapping. Let

= A -
g(di, A2) = q(di(d, A2), o)
= Ly (dl (Jh )‘2)7 Jla /\2)
K ) ) K
= > rl(0%, dik(dirs Ao, duk) + Ao (Z rrdy, — D2> : (C.13)

The second equality follows from (C.7) and (C.12). Note that while g(di, A2) is concave in Mg,
q~(d~1, A2) does not necessarily have this property.

Under the reparameterization (C.12), the feasible set Dy is mapped to the set

K
Dy = {07»1 ; Zdelk(@mM) < Dl} : (C.14)

k=1
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‘We have

max q(dy, A2) = max §(dy, \2). (C.15)
d1€D1 dieDy

Step 2b. Here we show that the function §(dy, Ag) in (C.13) is concave in dy, and that Dy is a

convex set. To show the first part, it is sufficient to show that the function

~ A ~ ~
Fduk) =T(07, dig(dig, A2), dak) (C.16)
is concave. Applying successively (4.2) and (4.10) twice, we obtain
- 1 -~ o .
fldi) = —zlog (dlk(dlk P—dy+ 1/01@)
1 _ ;
= log (2A2d§kd1k 1) (C.17)

1 . .
= 5log (1 200di(1 ~ di/o?)) .

where dyj, = dig (cil;g, Az). Note that f(Jlk) = f(o2— Jlk) The first and second derivatives of f are
given by
12Xl —2dy/0})

o ~ / | C.18
JRCTY) 21+ 2Xod1y,(1 — dig/o}) .

) 1 21+ 2hady (1 — dug/0R)] — [2Aa(1 — 2d1e/0})]
k) = 3 = =
2 (142X od1p(1 — di/o}))?
< 0.
Hence f is strictly concave. Moreover, f(0) = f(cZ) = 0, and f has a unique maximum at
Jlk = %0129

For short write g(dy) = dig(dig, A2). The function g is monotonically increasing, with g(0) = 0
and g(ag) = 2/\20243. We now show that g is strictly convex, which implies that the feasible set
Dy ={d : Zszl rkg(dlk) < Dy} is strictly convex. Indeed we have

; di
gld) = e C.19
1/(2)\2)+d1k—d%k/0% ( )
21 (1/(2X2) + dui, — di /o}] — dfy (1 — 2d11/0})
[1/(2X2) + d — diy /072
d%k + Jl]g/)\g

= [/@%) + du — @y foT (C.20)

o'(dw) = [@dus +1/2)[L/(200) + duk = A2 /B - 20 + duk /M) [1/(200) + du — By /o]
x(1 = 2du/o})] /11/(20) + dus — &y /)"
(2/0)d3, +1/(2)3)

[1/(2X2) + dig — d3y /o)
> (0.

QI(JM) =
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Step 2c. Now define the second dual function

7‘()\1, )\2) = max ﬁl ((il, )\1, /\2) (021)
dy

which is convex in A; (but nonconcave in Ag.) The function £; in (C.21) is the Lagrangian

K
L£1(d1, M1, M) 2 G(di, Ae) + M1 <Z Tpdik(di, A2) — Dl)
=1

K K K
= rel (0}, dir(dik, Aa), dig) + Az (Z rrdie — D2> + X <Z ridie(dik, A2) — D1> :

k=1 k=1 k=1
(C.22)
From the strong duality theorem, we have
max §(dy, A2) = min r(Ag, Ag). (C.23)
di1€D1 A=0
From (C.11), (C.15) and (C.23), we have
C = max min 7(A1, A2). (C.24)

A220 A1 <0

Step 2d. We now evaluate (C.21). The Lagrangian (C.22) is to be maximized with respect to

di.
First we show by contrapositive that the optimal Ay < 0. If Ay = 0, then d; that maximizes
(C.22) is given by
=Ty [f/(czlk)+)\2} =0, 1<k<K,
A1=0
where f(-) and g(-) are specified in (C.16) and (C.19). Using (C.18) in the equation above, we get

ddyk

1 201 - 26Z1k/0'l%)
214 2/\Qcilk(1 - Cillc/alz)

+ >\27

2dyy, - duge

0 = 1———§£+1+2A2dlk<1—~%‘>,
T Ok

- 1 A2 =

= 1+d <)\2—;E>*U—id1k,

(1+/\2cim) (1—%%), 1< k<K,

k

The only admissible root of this equation is cilk = U,%. But this means cfgk = a,%,, Vk, and thus

Dy, = Zszl rpdor = fo:l 0%, which violates our initial assumption above Step 1. So A; < 0,
and the distortion constraint (4.4) is active.
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Therefore, we necessarily have A\; < 0, We now show that the choice dix = 0 cannot be a
maximizer of (C.22). Write (C.22) as

K K K
L1(d1, A, M) = ZT‘kf(CZm) + Ao <Z rrdig — D2> + A1 <Z rrg(dig) — Dl) . (C.25)

k=1 k=1 k=1

From (C.25), (C.18) and (C.20), we have

=1 f'(0) + iAo + T A1g (0) = 2r A9 > 0.

Hence the maximizing Jlk must be strictly positive. For this reason we have not included a La-
grangian term corresponding to the inequality constraints (4.6), as those constraints are necessarily

inactive.

Step Ze. Next we explicitly identify the optimal dy. We have

oL . :
2L =l (dw) + e+ Mg (du))
Oday,
a — 2dqy /a2 d2, + dyp /o2
ER O 17 SN € S
2 1/(2/\2)+d1k(1—d1k/0k) [1/(2>‘2)+d1k—d1k/0k]
b L ~
G 5 > Pe(dik)

[1/(22) + dig — d2, /o]

where (a) follows from (C.18) and (C.20), and pg(-) in (b) is the fourth-order polynomial defined in
(4.9). By the strict concavity of the Lagrangian, the gradient of £ with respect to dy has a unique
root. This implies that dyj, is the unique root of pr(-) in the interval (0, J,%). O

D Algorithm for Computing Capacity

In this section, we present an algorithm to solve the maxmin problem (C.24). The method is based
on iterative one-dimensional optimization techniques and applies to the nontrivial case | i{__d ’)”kO',% >
D,
Consider the Lagrangian (C.22). For a given (A, As) pair, let di(A1, Ag),d2(A1, A2) be the
solution to the game
I%?Xn}ziznc(dl’ da; A1, Ag) (D.1)

which is explicitly stated in Theorem 4.3: for 1 < k < K, do (A1, A2) is the unique root of the
fourth-order polynomial (4.9) in the interval (0,07), and dygx(A1, Ao) is given by (4.10).

Now, using the result above, our goal is to find optimal pair (A1, A2) pair in the sense of (C.24).

Let A1(Ag) be the solution to (C.23) for a given Ag. The algorithm consists of an inner loop and an
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outer loop. The inner loop solves the inner convex minimization problem (C.23), i.e., finds 5\1()\2)
for a given Ag. The outer loop solves the problem

maxr (5\1 (A2) 7/\2) ,

in an iterative fashion. For both loops, we employ the “Golden Section” method to solve the
one-dimensional optimization problem. This method assumes that the cost function is strictly
unimodal in a pre-defined finite interval. The Golden Section method also uses function values
only for the iteration (unlike some other methods that require derivatives), thereby avoiding errors

due to numerical derivation. For more details on the algorithm, we refer the reader to [23].

E Proof of Lemma 6.1

Let 7,,n € 7Z be the correlation sequence for the process S. By our assumptions on the spectral
density v, v is continuous, and 1/7 < v~ < 1/y. Let tp, = [, v f)ed?™ df, n € Z denote
the inverse Fourier transform of v~ !, and T be the N x N Toeplitz matrix with entries ¢,_p,,0 <
n,m < N. The sequences of matrices Ty and R]"Vl are asymptotically equivalent [17, 18], i.e.,
they are uniformly bounded (by 1/v) in strong norm, and impy_,c ||Ry — Ri n||lrs = 0, where
||Al|grs = Tr(AT A)1/? denotes the Hilbert-Schmidt (weak) norm of a matrix.

The relative entropy between the Gaussian distributions PV and P}{V is given by [16, 17]

N 1 1 1
D(PM||PR) = 5 Indet R NRy' - 5+ §TT(RK,NR;,1)
= Mndet Riew — Tindet By — & + STr(Ry y BT
- 9 K,N Zne N 2‘!"2— ’I“( K,NN)
where
—1—111dtR = 1ldtR O(1/N
N et g N = Fe ndet fixg + ( / )a
1
—Indet Ry ~ /lny(f)df,
N Q
T’T‘(RK’NR;,I) ~ TT‘(RK’NTN), as N — oo.
Now

A
a;=(RenTN)u, 0<I<N
is a periodic sequence with period equal to K:

K~l-1
=Y ratn, 0<I<K,

n=—]
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1
Hence o1

1 _ 1
NTT(RK,NRNl) ~ 74 Z o) = Zwl{,nrntn
=0 nez

where

A 1—|—n—|:n<K
Wi { = Inl

- 0 : else

is a triangular window function. Defining Wi (f) = 3, wine 2™ and v (f) = (v * Wk )(f) for
f € Q, and applying Parseval’s identity, we obtain

1 _ vi (f)
NI RNRR) ~ Dt = [ 2 ar
n€L
and so
1 vians 1 1 1 l/VK(f)
— = |— — — =4 = df. E.1
A}EnOOND(P Pz ) 2[ /anu(f)df—i-KlndetRK 2+2 ) if (E.1)
Now limg o %ln det Rx = [oInv(f)df [16]. Also limg . [ Vf(%) df = 1, because vi con-
verges uniformly to v over  (by continuity of v), and v(f) is bounded away from zero. Hence (6.1)
follows. O

F  Proof of Theorem 6.2
Given two K-dimensional vectors 7 = {r;}f_| and s = {8}/, let

CH(r,s) = i T(si, dig, dog). F.1
(r,s) rr(li?x%n;m (S, A1k, dok) (F.1)

View the value of the game (6.2) as a function of the length-K vector & = {¢2,1 < k < K} and
write it as CK )(%l, ¥). This function is continuous:
VE, X, Ve >0, 3k >0 ¢ max |- <6x = |ICHF (K11, %) — cCEN(KL )| < e

(F.2)
Also note the following result from Toeplitz theory [16]: v < a,% <vfor1<k<K.

Likewise, view the value of the game (6.3) as a functional of v and write it as C'(v). This

functional is absolutely continuous with respect to the sup norm on v:

Yo,/ Ve > 0,36 >0 : suplv(f) =V (f)|<d = |Cv)—C0)| <e. (F.3)
feq

Choose € arbitrarily small and let 0 = min(é;,dx), where . and dx are given by (F.3) and
(F.2), respectively. Define a partition {P;,1 <4 < I} of [, 7], where max; |P;| < 6. The collection
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of sets A; = {f : v(f) € B}, and A; = {k : 0,% € P;},1 <i < I are partitions of the sets Q and
{1,2,-+-, K}, respectively. For each 1 <14 < I, let s;, f;, and k; be arbitrary elements of P;, A;, and

A;, respectively. Define the vectors s, r and 7 with components {s;,1 < i < I'}, {|A;],1 < i < I}
and {|A;],1 < < I}, respectively.

Construct the following piecewise-constant approximations to v and X:

vpn = Z S'iXQi(f)a fe‘Q )
1<LT

Sa = > sixa, k), 1<k<Ky,
1<5<T

where xp denotes the characteristic function of a set D. By construction, we have
|C(v) = Clvayl <€ and |CENKTILE) — CUNK™IL, T | < (F.4)

Let di and dy denote the optimal power-allocation functions under va. Property 6.4 implies

that the optimal dy, dp is piecewise-constant over {A;}:
d = Zdl(fi)XAi»
dy = i@(fi)xm-
We obtain |
Cln) = [ Ta(f) (), dal))df
= > AT (si, da(f), do( £3))

1<i<I
= CU(z,s). (F.5)
Similarly to (F.5), we have
0 (51, 5a) = 0Oz, 5). (7.6)

Next we use (the multidimensional extension of) the Kac-Murdock-Szegé theorem, which states
that the asymptotic distribution of the eigenvalues o} satisfies the property [15] [16, p. 64]:

K00

r-lKh%— h )d F.7
m oD = [ notdr (F.7)

for any continuous function h defined over the interval [v, 7]. Applying this result ® to h = xp;, 1 <

i < I, we obtain limg ,oo7 = r. By continuity of C) with respect to its first argument, we

*While the indicator function of a set is not continuous everywhere, the Kac-Murdock-Szegd theorem is in fact
applied to an elementary modification of this function, where the variation is made arbitrarily small [17].
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have lim g _,co CU (7, s) = CU)(r,s). Combining this result with (F.4), (F.5), and (F.6), proves the

claim. O
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Figure 1: The watermark communication problem. In blind watermarking applications, the host
data SY are not available at the decoder; in private watermarking applications, they are.

I vp

—®
g —@

Attack Channel A(ylx)

Figure 2: Optimal watermarking and attack strategies for i.i.d. Gaussian host data S ~ N(0,0?)
under type-S distortion constraints. The optimal covert channel is given in Theorem 3.1; the

optimal attack channel is the cascade of the MMSE estimator of S given X and a Gaussian test
channel.
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Figure 3: Optimal watermarking and attack strategies for parallel Gaussian channels Sp ~
N0, U,%), 1 < k € K. The channels are decoupled, with optimal embedding and attack strate-
gies in each channel as in Fig. 2. The optimal power allocation between channels is given by
Theorem 4.3.

Figure 4: Nonconvex, shaded region represents values for dy; and dy;, that satisfy the constraints
(4.6) (4.7) (4.8). Distortions constraints are not represented in this figure.
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Figure 5: Decomposition of host signal S into K independent channels, using the Karhunen-Loéve
transform 7.
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Figure 6: Watermarking capacity for AR(1) processes with unit variance, correlation p, and distor-
tion levels D1 = 0.1 and Dy = 0.2.

32



Intormation hidar power

[ 50 100 150 200 260 ano
Channels

(a) dix vs k

[+ 50 100 150 200 250 300
Channets.
(b) dak vs k
10" T T T
't
oy
|
E
k]
i
5107}
=
z
g
&
«Q
107
0 . ) L n .
o 50 100 150 200 250 300

Channels

(c) Crvs k

Figure 7: Three AR(1) process with unit variance, correlations p = 0.05, 0.5 and 0.95, and distortion
levels D; = 0.1 and Dy = 0.2. (a), (b) Optimal power allocations for the information hider and the
attacker; (c) resulting capacities as a function of frequency.
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Figure 8: Watermarking capacity for AR(1) processes with unit variance, correlation p = 0.95,
D1 = 0.1, and Dy ranging from Dy to 5D;.
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