
Active Interaction: Live Remote Interaction through Video Feeds

Jeffrey Naisbitt, Jalal Al-Muhtadi, Roy Campbell
{ naisbitt@uiuc.edu, almuhtad@cs.uiuc.edu, rhc@cs.uiuc.edu }

Department of Computer Science
University of Illinois at Urbana-Champaign

Champaign, Illinois, USA

Abstract. Ubiquitous computing environments
and the plethora of mobile devices that populate
them have led to a global trend for remote collabo-
ration and interaction. This trend demands seam-
less interfaces for remote interaction with these
ubiquitous environments and their inhabitants.
Existing applications for remote interactions are
limited and typically require the user to mentally
translate virtual avatars, tags, or names into real
objects. Location information from accurate loca-
tion sensing technologies, such as Ubisense, and
other location sensing devices, facilitate enhanced
interactions. Fusing the location information with
live video feeds from multiple standard pan-tilt
cameras, we provide a seamless, easily reconfigur-
able, real-time interface for remote interactions
within distributed ubiquitous environments. Users
interact with objects directly through the video
feed itself. In effect, our framework dynamically
discovers all resources and programmable objects
in the vicinity and allows remote users to interact
with the environment and all of its resources and
objects as if they were physically present in the
environment.

1 Introduction

Ubiquitous computing allows the coupling of the
physical world to the information world. Active
spaces organize networked computer devices into a
distributed system that coordinates its activities
with its mobile users. The human endeavors of
creativity, learning, and collaboration in areas
from science and engineering to art, music and the
humanities become a crucible for new perspectives
on how ubiquitous computing can impact society,
facilitate collaboration, and serve users. Our re-
search on Active Spaces examines how ubiquitous
computing can support various physical human
activities by providing a middleware infrastructure

that supports the construction and management of
truly immersive ubiquitous computing environ-
ments. We refer to our infrastructure as Gaia [2].
In this paper, we present a framework that extends
our infrastructure and enriches it with remote
control, management, and programmability. The
goal of the framework is to offer remote users the
ability to interact with active spaces and their
contents, even if the users are located in an envi-
ronment where rich device connectivity is not
available.

 The framework integrates dynamic discovery,
accurate location sensing, and live cameras to
create a real-time, seamless, dynamic interface that
allows remote users to interact directly with the
active space, access services, utilize resources, and
collaborate with other users.

The majority of previous work focuses on local
interaction within ubiquitous computing environ-
ments. Lights, machines, and other devices and
services turn on or perform certain actions when a
user is close. Specific device functionality can be
restored or disabled depending on the proximity of
specific users. However, the plethora of mobile
devices has led to a global trend for supporting
remote collaboration and remote interactions with
ubiquitous computing environments and the de-
vices and services contained within these envi-
ronments. This trend demands seamless interfaces
for real-time, remote interaction with these
ubiquitous environments.

The existing applications for such interaction
are limited. Most primarily use statically drawn
three-dimensional models that allow the user some
control, but they do not really show what is going
on in the room. They do not allow the user to
actually “see” people and objects; they just see
tags, names, or virtual representations. Actually
seeing the people and dynamic objects in the room
provides a much richer environment for interac-
tion. Additionally, the user is able to detect and
recognize more objects, thus facilitating interac-

tion with a larger set of dynamic and mobile ob-
jects. Using the video feed itself, we also eliminate
the initial overhead required for generating the
three dimensional models. Finally, current work is
limited to a single ubiquitous environment,
whereas we extend this interaction to a conglom-
eration of these environments.

Location information from accurate location
sensing technologies, such as Ubisense [12], and
other location sensing devices, facilitates this en-
hanced interaction. Fusing the location informa-
tion, provided from the MiddleWhere infrastruc-
ture [1], with live video feeds from standard pan-
tilt cameras, we provide a novel real-time interface
for remote interaction within ubiquitous comput-
ing environments. In fact, we extend this interface
to aggregations of multiple ubiquitous computing
environments, using multiple cameras, a central
dynamic location database, and the Gaia middle-
ware infrastructure. We provide a very simple
interface using direct interaction with the video
from the live camera feeds.

Additionally, we provide multiple interfaces for
defining objects within the room, both locally and
remotely. This is useful if the objects are non-
discoverable or simply user-defined hotspots.
Using the location sensing devices themselves, we
allow the user to simply outline the physical ob-
jects in the room. This eliminates the need to
define precise room structure and object location
beforehand. Additionally, no measuring or com-
plex mapping techniques are necessary since any-
one can outline a physical object.

We divide the remainder of this paper as fol-
lows. Section 2 presents some related work. Sec-
tion 3 talks about our supporting infrastructure.
Section 4 presents our architecture for the actual
interface. Section 5 describes the control flow
protocol. We conclude in Section 6 and present
future work in Section 7.

2 Related Work

Currently, most related work focuses on different
methods for mapping rooms and their objects. The
actual interfaces focus primarily on virtual models,
using virtual tags to represent objects and people.
These methods require that tags or virtual objects
be created for each object with which the user will
interact, thus limiting the usability and increasing

the configuration overhead. Current interaction
projects primarily include simple application mov-
ers, 3D virtual modeling, augmented reality tech-
niques, local location sensors, and virtual reality.
Related modeling projects include three dimen-
sional static modeling, ray tracing and image proc-
essing.

Biehl et al. [3] implemented a very basic inter-
face for moving applications from one dis-
play/machine to another. This provides a useful
interface, but it does not take into account the
many other physical objects in the room – both
static and dynamic. Additionally, this service only
works with applications specifically designed us-
ing the application framework developed by Ro-
man et al. [4]. Although the framework provides
useful tools for application development within
ubiquitous systems, it currently does not extend
beyond the Gaia framework. Finally, this ap-
proach completely ignores the dynamic state of the
current environment.

Glasberg et al. [5] developed a virtual interface
for viewing and controlling PowerPoint presenta-
tions. He is currently working on a three dimen-
sional virtual interface for more versatile interac-
tion with a room. This provides a very nice inter-
face with the ability to traverse the virtual room
and view objects from any angle and zoom-factor.
However, this requires objects be defined and
stored statically, and dynamic objects are not in-
cluded. Additionally, you do not get a full view of
the actual current events in the room. Furthermore,
this approach forces the user to see the avatars
statically implemented within the model for repre-
senting people and various objects. Finally, the
initial setup and configuration generally takes
several days.

Hosoya et al. [7] present an interesting interface
for interaction with both remote and local objects.
Using RF sensors, they keep track of static and
dynamic objects in a room. Using a video mirror
image of the user’s locality, they overlay virtual
tags representing the objects with which the user
can interact. This interface is interesting in that
you can physically interact with the objects by
obstructing their location in the mirrored video
image. However, this interface is limited in that it
requires a fairly life-sized image for accurate in-
teraction with objects. Additionally, it lacks the
ability to actually see and physically recognize the
desired remote objects, as we provide through the

video feed; given that they must still create and
configure avatars for interaction.

AT&T Labs in Cambridge [8] use small sen-
sors, called Bats to track location and interact
physically with the space. Although this facili-
tates object tracking and local interaction, they
have not developed any interface for remotely
interacting with these objects. Interaction takes
place locally as the user manipulates these Bats.

Butz et al. [9] developed an interesting method
for interacting with local rooms using virtual real-
ity. Using special virtual reality goggles, they use
augmented reality techniques of overlaying the
avatars and tags over the actual room that the user
sees. This is a great interface for local interaction,
but it requires costly equipment, and it does not
provide a method for remote interaction.

Harle et al. [10, 11] attempt to produce accurate
dynamic models of objects in ubiquitous environ-
ments by using various image-processing tech-
niques. This is a useful, although somewhat com-
plicated method for environment mapping, but it
does not provide any means for interaction. In the
future, we could use mapping techniques such as
these to enhance our application detection features.

3 Infrastructure

We extend the Gaia infrastructure to enable remote
interaction and collaboration with objects, re-
sources, and people in an active space. The remote
interaction features live video and a seamless in-
terface for interacting with objects and people.
The interface can be accessed over the Internet,
and it consists of a light client. We currently plan
to implement this client for mobile devices such as
PDAs or smart phones. We refer to the framework
as “Active Interaction”. Active Interaction utilizes
Gaia services, including discovery, location, and
communication primitives. In this section, we
briefly talk about these aspects of our infrastruc-
ture.

3.1 Gaia

In previous research, we developed Gaia. Gaia is a
distributed meta-operating system designed to
facilitate ubiquitous computing. Gaia provides the
necessary infrastructure for a heterogeneous collec-

tion of devices to intercommunicate and coordinate
themselves seamlessly into an active space. We
also introduced the notion of a super space. We
define a super space as a collection of reflective
and recursive active spaces that allow the man-
agement, operations and maintenance of large-
scale ubiquitous computing environments. Active
Interaction utilizes Gaia communication layer and
kernel services to enable seamless interaction in-
terfaces.

3.2 Discovery

Active Interaction utilizes some of the features of
the Olympus Discovery Service in Gaia [13] to
discover all entities that exist in a given spatial
region, their properties and exact coordinates. The
Olympus Discovery Service supports semantic
discovery (using ontologies), as well as spatial
queries.

3.3 Ubisense and MiddleWhere

A key issue in Active Interaction is to provide a
method to obtain accurate locations of objects and
people, so that a remote interface can track and
depict these entities accurately. We currently
employ Ubisense location technology to obtain
accurate 3D location information. Ubisense is a
unidirectional UWB (Ultra Wide Band) location
platform that uses a bidirectional TDMA (Time
Division Multiple Access) control channel. RFID
tags transmit UWB signals to networked readers
and are located using “angle of arrival” and “dif-
ference of arrival” techniques. Ubisense has an
accuracy of 6 inches with 95% confidence. The
tags can be attached to various objects and people
throughout the spaces, thus providing very useful
information about any mobile object’s location.

Even though Ubisense provides very useful and
accurate location information, it is not currently
available in all rooms or active spaces. Moreover,
it is possible that other accurate location technolo-
gies are deployed in the future. Therefore, to be
independent of the location technology being used,
we rely on the MiddleWhere location infrastruc-
ture [1]. MiddleWhere provides a middleware
layer that stores and updates location information
in real-time. It aggregates location information
from various location technologies and provides a

uniform interface for obtaining location informa-
tion. Additionally, it includes information about
the accuracy of the location sensing devices.
Therefore, given the location of an object, we can
determine how accurately to rely on that data.

4 Active Interaction Architecture

Active Interaction consists of the following pri-
mary components. A CameraController runs for
each camera located within the spaces. The Cam-
eraControllerApp provides the graphical user
interface. The SuperCamController provides the
necessary interfaces for extending this service to
super spaces. Finally, we describe our simple
interface for defining non-discoverable objects and
hotspots in the rooms. See Figure 1 for the overall
component infrastructure for the application.

4.1 CameraController

The CameraController implements the various
device drivers necessary for controlling the differ-
ent camera models, including the different inter-

faces for interacting with them. The interface for
these camera controls is made public using
CORBA. Any user or application, wishing to
remotely control or access the cameras, simply
makes the appropriate CORBA function call (han-
dled transparently by Active Interaction). The
camera controllers implement the necessary trans-
formations for converting between the camera
coordinate system and the coordinate system used
by the location infrastructure. We discuss the
process for the actual object detection and distinc-
tion in the Object Selection section below. Addi-
tionally, the camera controllers do the primary
location queries for tracking individuals and ob-
jects. The tracking does not require any image
processing; it relies on the conglomeration of loca-
tion sensing devices provided by the MiddleWhere
infrastructure.

4.2 SuperCamController

The SuperCamController provides a single inter-
face for interacting with and viewing objects
through multiple active spaces. In order to facili-
tate mobile object tracking, we provide a single
web, HTTP interface for monitoring these video

Figure 1. Interaction between the various application components and the middleware infra-
structures.

streams. The controller selects and broadcasts the
appropriate video stream depending on which
camera most appropriately displays the desired
objects or people. Users view this video feed using
this web interface, or any graphical user interface
capable of viewing Motion JPEG video streams.
When an object moves between spaces, or between
camera regions, the super controller determines
the best active space and camera for tracking or
interacting with the objects, and then updates the
video stream automatically, and transparently,
changing it to reflect the new camera’s view. The
CameraControllerApp is notified of this change as
well, thus allowing it to seamlessly communicate
with the camera whose video the user is viewing.

4.3 CameraControllerApp

The CameraControllerApp provides the primary
graphical user interface for the remote interaction
with the active spaces. The actual video feed is the
primary component of the interface. Through this
video window, the remote user can interact with
objects in the spaces. Several tabbed dialogs pro-
vide methods for manually controlling the cameras
and location-related functionality. Additionally,
this application provides the necessary interface to
the camera controllers for selecting objects located
within the real-time video display. We present
the control flow for these interactions in section 5
below.

The video display primarily supports Motion
JPEG streams, but we have also implemented
support for standard DV inputs as well. Currently,
we are trying to implement this display using
OpenGL to provide support for the augmented
reality and video overlays – discussed in the re-
lated and future work sections.

The CameraControllerApp is a thin client, pro-
viding a basic interface for interaction. The com-
putations and any intensive network communica-
tions all take place remotely, within the active
space itself. Therefore, we can implement this
interface on smaller, more mobile devices such as
smart phones or PDAs.

4.4 Manually Defining Objects and Hotspots

We developed and are currently implementing the
infrastructure for defining objects and hotspots that

are not automatically discovered by the location
infrastructure. We define hotspots as objects or
locations in the active spaces, with which the user
can interact. Any object or spot in a room can
have any functionality associated with it. This
enhances our framework by allowing further inter-
action. First, we can define objects and hotspots
by physically manipulating the Ubisense tags.
Second, we are currently working on an interface
for defining these hotspots through the video feed
itself.

The Ubisense tags have buttons on them that
trigger events. The user can define the start and
stop points for defining object or hotspot dimen-
sions using these simple buttons. In order to de-
fine a new object within an active space, the user
simply holds the tag in a corner of the object and
presses a button to signal the start of the object
detection method. The user then traces the object
while holding the button and releases the button
when the object has been defined. The informa-
tion from the Ubisense tag generates a polyhedron,
which we associate with a name and interaction
interface. This information is stored in the loca-
tion database within the MiddleWhere infrastruc-
ture, thus seamlessly integrating it with the dy-
namically discovered objects.

Additionally, we are currently developing an in-
terface for outlining hotspots using the video feed
interface itself. In order to define a new hotspot,
the user enters a “hotspot definition mode” so that
the application does not attempt to recognize the
region as a currently defined object. Similar to
selecting an object, the user can outline a region
within the video feed. A new polyhedron is cre-
ated, and the user supplies a name and interface
for the object.
 We still need to complete the implementation of
the interface for defining what the object is, and
what forms of interaction are available for the
object. However, the infrastructure is in place, and
object recognition is available. In the future, we
plan to use existing image processing techniques,
as described in the Related Work section, to pro-
vide more accurate methods for dynamic object
definition and tracking.

5 Control Flow Protocol

The control flow for the remote interaction con-
sists of object selection, lookup of object definition
and interface, and finally remote invocation or
interaction. See Figure 2 for the control flow
graph and Figure 3 for a screenshot of the graphi-
cal user interface.

5.1 Object Selection

The primary method for interaction is through
basic mouse-clicks. Using a mouse, the user clicks
on one of the various objects in the CameraCon-
trollerApp’s video window. Whether the user left-
clicks or right-clicks, results in different actions as
in the subsection below. The CameraController-
App then communicates the window’s x, y infor-
mation to the corresponding camera controller.

5.2 Lookup of Object Definition & Interface

The CameraController uses the point received
from the CameraControllerApp to calculate the
corresponding camera coordinates in terms of its
internal pan and tilt degrees. The controller then
converts this information to a directional vector, in
terms of the real-world Cartesian coordinates of
the location infrastructure. This vector represents
the direction of the selected object from the cam-

era’s location. We only compute the directional
vector since the actual magnitude of the vector,
corresponding to the depth of distance from the
camera, is impossible to determine without more
advanced image processing techniques, triangulat-
ing with multiple cameras, or using expensive
stereo cameras. We find that the directional vector
is sufficient anyway, given the accuracy with
which the user can select objects within the real-
time video window.

Using this vector, the CameraController then
constructs a spatial query, which it sends to the
location infrastructure. It can optimize the query
by limiting it to the region surrounding the vector.
Depending on the accuracy of the location infor-
mation, the region can be enlarged to ensure more
accurate object selection as well. MiddleWhere
returns all the objects within this specified region.
Note that MiddleWhere keeps an updated list of all
objects in the space using the discovery framework
described previously.

Next, the controller intersects this list of objects
with the directional vector. Generally, this returns
a single object, however objects can appear in front
of each other from the camera’s perspective.
Therefore, in order to determine which object we
should select, the controller simply compares the
distances of these objects from the camera itself.
The object with the shortest distance from the
camera is the one selected, and this object is re-
turned to the CameraControllerApp along with
various properties and its available IDL interac-
tions and corresponding LUA scripts (described
below).

Figure 2. Control flow protocol for remote interaction. Describes the steps involved in the user interac-
tion with a remote object.

5.3 Remote Invocation or Interaction with
Objects

Obviously, different objects facilitate or require
different forms of interaction. The available inter-
faces and interactions for each object are stored
within the object returned from the location infra-
structure. These interfaces are defined as CORBA
IDL objects. For our framework, we support a
default action for any object discovered or defined.
If the user left-clicks on the object, the default
action is performed - if one has been defined.
Otherwise, we treat it as a right-click. When the
user right-clicks, a context-menu with the avail-
able options is displayed. This menu is primarily a
list of all the defined interactions available through
the object. Primarily, this list represents items
corresponding to the IDL interface for the object.
Additionally, more advanced interactions are
available using LUA scripts [14]. LUA is a script-
ing language that, among other features, provides
simple interfaces for interacting with IDL inter-
faces through CORBA and Gaia. Complicated
interactions with objects that require invoking a
series of different operations can be represented
with LUA scripts. The CameraControllerApp
itself uses the object reference to communicate and
interact directly with the selected object. For ex-
ample, we can turn lights on, control computers
and displays, or perform any other user-defined or
system-defined action. Given the applications
running on a machine, we could interact directly
with them as well, provided they implement an
IDL interface.

The control flow for interacting with people is
the same; however, the actual interaction with
people is treated slightly different, given that more
work may need to be done in order to determine
the appropriate action. The list of available inter-
actions depends on the resources available within
the active space containing the user. The simplest
action would be to have the camera start tracking
that person through the active space, or active
spaces as desired. As stated previously, we have
already successfully implemented this feature.
However, since we are trying to use the location
information to facilitate remote interaction, we
also provide several other options. We are cur-
rently working on their integration with Active
Interaction. First, we automatically obtain general
information about the person and his preferred
methods for contact. If the person has defined

preferences for forms of contact, we can automati-
cally select the appropriate device for contacting
and communicating with the person. If the person
has not specified a preferred form of contact, we
can manually select the contact method from a list
of available methods, such as a cell phone, email,
text message, or Voice over IP (VoIP). This list
would be dynamically updated depending on the
specific active space and its corresponding re-
sources, including any resources the people in the
room introduce.

Bresler [14] et al. is currently developing a
framework for Voice over IP within the Gaia infra-
structure. By integrating this service within our
framework, we can automatically communicate
with the remote person through whatever audio
devices are available within the active space, in-
cluding speakers, cell phones, or PDAs.

6 Conclusion

Integrating the video feeds from multiple cameras
with accurate location sensing, we have developed
Active Interaction, an innovative application for
remote interaction with static and dynamic objects
within active spaces. By interacting directly with

Figure 3. CameraControllerApp screenshot. Note,
the user could interact with the light, displays, speak-
ers, or the person in the figure.

the objects as they are seen through the video
feeds, and using the MiddleWhere infrastructure,
we are able to seamlessly and dynamically add
objects and immediately detect them without gen-
erating any avatars or visual representations of the
objects. No additional work, such as avatar or
model generation, is needed for the user to interact
with new objects since they are automatically dis-
covered by the infrastructure and added to the
location database. Additionally, the interface is
more natural since users do not need to mentally
translate avatars and tags into objects – they see
the objects themselves. This provides a useful,
seamless interface for remote interaction with
ubiquitous environments and their resources.

7 Future Work

Currently, a prototype of the Active Interaction
framework is implemented. This prototype allows
interaction with limited devices and services only,
and serves as a proof of concept. It allows interac-
tion with any objects discovered by Gaia’s seman-
tic discovery service. However, we still need to
provide a mechanism for alerting the user as to
which objects support interaction. Additionally,
we need to improve the mechanism for determin-
ing appropriate forms of interaction with people
located within the space.

The interaction with users in the space through
VoIP is not fully complete at this time, as the VoIP
component of Gaia is still under development.

Additionally, we need to provide a usable inter-
face for the different interactive methods, such as
writing text, speaking, broadcast video, or other
user-defined interactions, and gauge the effective-
ness and ease of these interfaces by conducting
usability studies.

Finally, we plan to provide a remote interface
that would enable keyboard and mouse redirection
to the remote machines or services using Clicky
[6]. This would allow live remote interaction with
applications that do not implement IDL interfaces.

References

[1] Ranganathan, A., Al-Muhtadi, J., Chetan, S., Camp-
bell, R., Mickunas, M.D.: MiddleWhere: A Middleware
for Location Awareness in Ubiquitous Computing Ap-

plications. Presented at 5th International Middleware
Conference (Middleware 2004) (2004)
[2] Roman, M., Hess, C.K., Cerqueira, R., Campbell,
R.H., Nahrstedt, K., M.: Gaia: A Middleware Infrastruc-
ture to Enable Active Spaces. Pervasive Computing
Magazine, vol. 1 (2002) 74-83
[3] Biehl, J.T., Bailey, B.P.: ARIS: An Interface for
Application Relocation in an Interactive Space. Proceed-
ings of Graphics Interface (2004) 107-116
[4] Roman, M., Ho, H., Campbell, R., "Application
Mobility in Active spaces," presented at 1st International
Conference on Mobile and Ubiquitous Multimedia,
Oulu, Finland, 2002.
[5] Glasberg, M. S.: ActivePresentation: A Software
Infrastructure for Presentation Control in ActiveSpaces.
In Proceedings of the Joint WebMedia/LA-Web 2004
Conference, Ribeirão Preto, São Paulo, Brazil (2004),
Portuguese only.
[6] Andrews, C., Sampemane, G., Weiler, A., Campbell,
R.: “Clicky: User-centric input for Active Spaces”.
UIUC Technical Report: UIUCDCS-R-2004-2469,
UILU-ENG-2004-1770.
[7] Hosoya, E., Kitabata, M., Sato, H., Harada, I, No-
jima, H., Morisawa, F., Mutoh, S., Onozawa, A.: “A
Mirror Metaphor Interaction System: Touching Remote
Real Objects in an Augmented Reality Environment.”
Proceedings of the Second IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR
2003).
[8] Addlesee, M., Curwen, R., Hodges, S., Newman, J.,
Steggles, P., Ward, A., Hopper, A.: "Implementing a
sentient computing system." IEEE Computer 34 (2001)
50-56
[9] Butz, A., Hollerer, T., Feiner, S., MacIntyre, B.,
Beshers, C.: "Enveloping Users and Computers In a
Collaborative 3D Augmented Reality." International
Workshop on Augmented Reality (IWAR), (October,
1999).
[10] Harle, R., Hopper, A.: "Dynamic World Models
from Ray-tracing." Proceedings of the Second Interna-
tional Conference on Pervasive Computing and Com-
munications, IEEE, March 2004.
[11] Harle, R., Ward, A., Hopper, A.: "Single Reflection
Spatial Voting: A Novel Method for Discovering Re-
flective Surfaces Using Indoor Positioning Systems."
Proceedings of the First International Conference on
Mobile Systems, Applications, and Services (MobiSys
2003), ACM, May 2003.
[12] UbiSense, "Local position system and sentient
computing." http://www.ubisense.net/.
[13] Ranganathan, A., Chetan, S., Al-Muhtadi, J.,
Campbell, R.H., Mickunas, M.D.: "Olympus: A High-
Level Programming Model for Pervasive Computing
Environments," presented at IEEE International Confer-
ence on Pervasive Computing.

[14] Anwar, Z., Bresler, J., Chan, E., Campbell, R.H.,
"A VoIP Communication System for Siebel Center,
UIUC Tech report, 2005.
[15] Ierusalimschy, R., Henrique de Figueiredo, L.,
Filho, W.C.: "Lua - an extensible extension language,"
Software Practice & Experience, volume 26, no. 6,
1996.

