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Abstract. Ubiquitous computing environments 
and the plethora of mobile devices that populate 
them have led to a global trend for remote collabo-
ration and interaction.  This trend demands seam-
less interfaces for remote interaction with these 
ubiquitous environments and their inhabitants. 
Existing applications for remote interactions are 
limited and typically require the user to mentally 
translate virtual avatars, tags, or names into real 
objects.  Location information from accurate loca-
tion sensing technologies, such as Ubisense, and 
other location sensing devices, facilitate enhanced 
interactions.  Fusing the location information with 
live video feeds from multiple standard pan-tilt 
cameras, we provide a seamless, easily reconfigur-
able, real-time interface for remote interactions 
within distributed ubiquitous environments.  Users 
interact with objects directly through the video 
feed itself.  In effect, our framework dynamically 
discovers all resources and programmable objects 
in the vicinity and allows remote users to interact 
with the environment and all of its resources and 
objects as if they were physically present in the 
environment.  

1   Introduction 

Ubiquitous computing allows the coupling of the 
physical world to the information world. Active 
spaces organize networked computer devices into a 
distributed system that coordinates its activities 
with its mobile users.  The human endeavors of 
creativity, learning, and collaboration in areas 
from science and engineering to art, music and the 
humanities become a crucible for new perspectives 
on how ubiquitous computing can impact society, 
facilitate collaboration, and serve users. Our re-
search on Active Spaces examines how ubiquitous 
computing can support various physical human 
activities by providing a middleware infrastructure 

that supports the construction and management of 
truly immersive ubiquitous computing environ-
ments.  We refer to our infrastructure as Gaia [2].  
In this paper, we present a framework that extends 
our infrastructure and enriches it with remote 
control, management, and programmability.   The 
goal of the framework is to offer remote users the 
ability to interact with active spaces and their 
contents, even if the users are located in an envi-
ronment where rich device connectivity is not 
available.  

 The framework integrates dynamic discovery, 
accurate location sensing, and live cameras to 
create a real-time, seamless, dynamic interface that 
allows remote users to interact directly with the 
active space, access services, utilize resources, and 
collaborate with other users.  

The majority of previous work focuses on local 
interaction within ubiquitous computing environ-
ments.  Lights, machines, and other devices and 
services turn on or perform certain actions when a 
user is close.  Specific device functionality can be 
restored or disabled depending on the proximity of 
specific users.  However, the plethora of mobile 
devices has led to a global trend for supporting 
remote collaboration and remote interactions with 
ubiquitous computing environments and the de-
vices and services contained within these envi-
ronments. This trend demands seamless interfaces 
for real-time, remote interaction with these 
ubiquitous environments.   

The existing applications for such interaction 
are limited.  Most primarily use statically drawn 
three-dimensional models that allow the user some 
control, but they do not really show what is going 
on in the room.  They do not allow the user to 
actually “see” people and objects; they just see 
tags, names, or virtual representations.  Actually 
seeing the people and dynamic objects in the room 
provides a much richer environment for interac-
tion.  Additionally, the user is able to detect and 
recognize more objects, thus facilitating interac-



tion with a larger set of dynamic and mobile ob-
jects.  Using the video feed itself, we also eliminate 
the initial overhead required for generating the 
three dimensional models.  Finally, current work is 
limited to a single ubiquitous environment, 
whereas we extend this interaction to a conglom-
eration of these environments.  

Location information from accurate location 
sensing technologies, such as Ubisense [12], and 
other location sensing devices, facilitates this en-
hanced interaction.  Fusing the location informa-
tion, provided from the MiddleWhere infrastruc-
ture [1], with live video feeds from standard pan-
tilt cameras, we provide a novel real-time interface 
for remote interaction within ubiquitous comput-
ing environments.  In fact, we extend this interface 
to aggregations of multiple ubiquitous computing 
environments, using multiple cameras, a central 
dynamic location database, and the Gaia middle-
ware infrastructure.  We provide a very simple 
interface using direct interaction with the video 
from the live camera feeds. 

Additionally, we provide multiple interfaces for 
defining objects within the room, both locally and 
remotely.  This is useful if the objects are non-
discoverable or simply user-defined hotspots.   
Using the location sensing devices themselves, we 
allow the user to simply outline the physical ob-
jects in the room.  This eliminates the need to 
define precise room structure and object location 
beforehand.  Additionally, no measuring or com-
plex mapping techniques are necessary since any-
one can outline a physical object.  

We divide the remainder of this paper as fol-
lows. Section 2 presents some related work. Sec-
tion 3 talks about our supporting infrastructure.  
Section 4 presents our architecture for the actual 
interface.  Section 5 describes the control flow 
protocol.  We conclude in Section 6 and present 
future work in Section 7. 

2   Related Work 

Currently, most related work focuses on different 
methods for mapping rooms and their objects.  The 
actual interfaces focus primarily on virtual models, 
using virtual tags to represent objects and people.  
These methods require that tags or virtual objects 
be created for each object with which the user will 
interact, thus limiting the usability and increasing 

the configuration overhead.  Current interaction 
projects primarily include simple application mov-
ers, 3D virtual modeling, augmented reality tech-
niques, local location sensors, and virtual reality.  
Related modeling projects include three dimen-
sional static modeling, ray tracing and image proc-
essing. 

Biehl et al. [3] implemented a very basic inter-
face for moving applications from one dis-
play/machine to another.  This provides a useful 
interface, but it does not take into account the 
many other physical objects in the room – both 
static and dynamic.  Additionally, this service only 
works with applications specifically designed us-
ing the application framework developed by Ro-
man et al. [4].   Although the framework provides 
useful tools for application development within 
ubiquitous systems, it currently does not extend 
beyond the Gaia framework.  Finally, this ap-
proach completely ignores the dynamic state of the 
current environment. 

Glasberg et al. [5] developed a virtual interface 
for viewing and controlling PowerPoint presenta-
tions.  He is currently working on a three dimen-
sional virtual interface for more versatile interac-
tion with a room.  This provides a very nice inter-
face with the ability to traverse the virtual room 
and view objects from any angle and zoom-factor.  
However, this requires objects be defined and 
stored statically, and dynamic objects are not in-
cluded.  Additionally, you do not get a full view of 
the actual current events in the room. Furthermore, 
this approach forces the user to see the avatars 
statically implemented within the model for repre-
senting people and various objects.  Finally, the 
initial setup and configuration generally takes 
several days. 

Hosoya et al. [7] present an interesting interface 
for interaction with both remote and local objects.  
Using RF sensors, they keep track of static and 
dynamic objects in a room.  Using a video mirror 
image of the user’s locality, they overlay virtual 
tags representing the objects with which the user 
can interact.  This interface is interesting in that 
you can physically interact with the objects by 
obstructing their location in the mirrored video 
image.  However, this interface is limited in that it 
requires a fairly life-sized image for accurate in-
teraction with objects.  Additionally, it lacks the 
ability to actually see and physically recognize the 
desired remote objects, as we provide through the 



video feed; given that they must still create and 
configure avatars for interaction. 

AT&T Labs in Cambridge [8] use small sen-
sors, called Bats to track location and interact 
physically with the space.   Although this facili-
tates object tracking and local interaction, they 
have not developed any interface for remotely 
interacting with these objects.  Interaction takes 
place locally as the user manipulates these Bats.   

Butz et al. [9] developed an interesting method 
for interacting with local rooms using virtual real-
ity.  Using special virtual reality goggles, they use 
augmented reality techniques of overlaying the 
avatars and tags over the actual room that the user 
sees.  This is a great interface for local interaction, 
but it requires costly equipment, and it does not 
provide a method for remote interaction.   

Harle et al. [10, 11] attempt to produce accurate 
dynamic models of objects in ubiquitous environ-
ments by using various image-processing tech-
niques.  This is a useful, although somewhat com-
plicated method for environment mapping, but it 
does not provide any means for interaction.  In the 
future, we could use mapping techniques such as 
these to enhance our application detection features. 

3   Infrastructure 

We extend the Gaia infrastructure to enable remote 
interaction and collaboration with objects, re-
sources, and people in an active space.  The remote 
interaction features live video and a seamless in-
terface for interacting with objects and people.  
The interface can be accessed over the Internet, 
and it consists of a light client.  We currently plan 
to implement this client for mobile devices such as 
PDAs or smart phones.  We refer to the framework 
as “Active Interaction”.  Active Interaction utilizes 
Gaia services, including discovery, location, and 
communication primitives.  In this section, we 
briefly talk about these aspects of our infrastruc-
ture. 

3.1   Gaia 

In previous research, we developed Gaia.  Gaia is a 
distributed meta-operating system designed to 
facilitate ubiquitous computing.  Gaia provides the 
necessary infrastructure for a heterogeneous collec-

tion of devices to intercommunicate and coordinate 
themselves seamlessly into an active space.  We 
also introduced the notion of a super space. We 
define a super space as a collection of reflective 
and recursive active spaces that allow the man-
agement, operations and maintenance of large-
scale ubiquitous computing environments.  Active 
Interaction utilizes Gaia communication layer and 
kernel services to enable seamless interaction in-
terfaces.  

3.2   Discovery 

Active Interaction utilizes some of the features of 
the Olympus Discovery Service in Gaia [13] to 
discover all entities that exist in a given spatial 
region, their properties and exact coordinates.  The 
Olympus Discovery Service supports semantic 
discovery (using ontologies), as well as spatial 
queries.   

3.3   Ubisense and MiddleWhere 

A key issue in Active Interaction is to provide a 
method to obtain accurate locations of objects and 
people, so that a remote interface can track and 
depict these entities accurately.  We currently 
employ Ubisense location technology to obtain 
accurate 3D location information.  Ubisense is a 
unidirectional UWB (Ultra Wide Band) location 
platform that uses a bidirectional TDMA (Time 
Division Multiple Access) control channel.  RFID 
tags transmit UWB signals to networked readers 
and are located using “angle of arrival” and “dif-
ference of arrival” techniques.  Ubisense has an 
accuracy of 6 inches with 95% confidence.  The 
tags can be attached to various objects and people 
throughout the spaces, thus providing very useful 
information about any mobile object’s location. 

Even though Ubisense provides very useful and 
accurate location information, it is not currently 
available in all rooms or active spaces.  Moreover, 
it is possible that other accurate location technolo-
gies are deployed in the future.  Therefore, to be 
independent of the location technology being used, 
we rely on the MiddleWhere location infrastruc-
ture [1].  MiddleWhere provides a middleware 
layer that stores and updates location information 
in real-time.  It aggregates location information 
from various location technologies and provides a 



uniform interface for obtaining location informa-
tion.  Additionally, it includes information about 
the accuracy of the location sensing devices.  
Therefore, given the location of an object, we can 
determine how accurately to rely on that data. 

4   Active Interaction Architecture 

Active Interaction consists of the following pri-
mary components.  A CameraController runs for 
each camera located within the spaces.  The Cam-
eraControllerApp provides the graphical user 
interface.  The SuperCamController provides the 
necessary interfaces for extending this service to 
super spaces.  Finally, we describe our simple 
interface for defining non-discoverable objects and 
hotspots in the rooms.  See Figure 1 for the overall 
component infrastructure for the application. 

4.1   CameraController 

The CameraController implements the various 
device drivers necessary for controlling the differ-
ent camera models, including the different inter-

faces for interacting with them.  The interface for 
these camera controls is made public using 
CORBA.  Any user or application, wishing to 
remotely control or access the cameras, simply 
makes the appropriate CORBA function call (han-
dled transparently by Active Interaction).  The 
camera controllers implement the necessary trans-
formations for converting between the camera 
coordinate system and the coordinate system used 
by the location infrastructure.  We discuss the 
process for the actual object detection and distinc-
tion in the Object Selection section below.  Addi-
tionally, the camera controllers do the primary 
location queries for tracking individuals and ob-
jects.  The tracking does not require any image 
processing; it relies on the conglomeration of loca-
tion sensing devices provided by the MiddleWhere 
infrastructure. 

4.2   SuperCamController 

The SuperCamController provides a single inter-
face for interacting with and viewing objects 
through multiple active spaces.  In order to facili-
tate mobile object tracking, we provide a single 
web, HTTP interface for monitoring these video 

Figure 1.  Interaction between the various application components and the middleware infra-
structures. 



streams. The controller selects and broadcasts the 
appropriate video stream depending on which 
camera most appropriately displays the desired 
objects or people.  Users view this video feed using 
this web interface, or any graphical user interface 
capable of viewing Motion JPEG video streams.  
When an object moves between spaces, or between 
camera regions, the super controller determines 
the best active space and camera for tracking or 
interacting with the objects, and then updates the 
video stream automatically, and transparently, 
changing it to reflect the new camera’s view.  The 
CameraControllerApp is notified of this change as 
well, thus allowing it to seamlessly communicate 
with the camera whose video the user is viewing. 

4.3   CameraControllerApp 

The CameraControllerApp provides the primary 
graphical user interface for the remote interaction 
with the active spaces.  The actual video feed is the 
primary component of the interface.  Through this 
video window, the remote user can interact with 
objects in the spaces.  Several tabbed dialogs pro-
vide methods for manually controlling the cameras 
and location-related functionality.  Additionally, 
this application provides the necessary interface to 
the camera controllers for selecting objects located 
within the real-time video display.   We present 
the control flow for these interactions in section 5 
below. 

The video display primarily supports Motion 
JPEG streams, but we have also implemented 
support for standard DV inputs as well.  Currently, 
we are trying to implement this display using 
OpenGL to provide support for the augmented 
reality and video overlays – discussed in the re-
lated and future work sections. 

The CameraControllerApp is a thin client, pro-
viding a basic interface for interaction.  The com-
putations and any intensive network communica-
tions all take place remotely, within the active 
space itself.  Therefore, we can implement this 
interface on smaller, more mobile devices such as 
smart phones or PDAs. 

4.4   Manually Defining Objects and Hotspots 

We developed and are currently implementing the 
infrastructure for defining objects and hotspots that 

are not automatically discovered by the location 
infrastructure.  We define hotspots as objects or 
locations in the active spaces, with which the user 
can interact.  Any object or spot in a room can 
have any functionality associated with it.  This 
enhances our framework by allowing further inter-
action.  First, we can define objects and hotspots 
by physically manipulating the Ubisense tags.  
Second, we are currently working on an interface 
for defining these hotspots through the video feed 
itself. 

The Ubisense tags have buttons on them that 
trigger events.  The user can define the start and 
stop points for defining object or hotspot dimen-
sions using these simple buttons.  In order to de-
fine a new object within an active space, the user 
simply holds the tag in a corner of the object and 
presses a button to signal the start of the object 
detection method.  The user then traces the object 
while holding the button and releases the button 
when the object has been defined.  The informa-
tion from the Ubisense tag generates a polyhedron, 
which we associate with a name and interaction 
interface.  This information is stored in the loca-
tion database within the MiddleWhere infrastruc-
ture, thus seamlessly integrating it with the dy-
namically discovered objects. 

Additionally, we are currently developing an in-
terface for outlining hotspots using the video feed 
interface itself.  In order to define a new hotspot, 
the user enters a “hotspot definition mode” so that 
the application does not attempt to recognize the 
region as a currently defined object.  Similar to 
selecting an object, the user can outline a region 
within the video feed.  A new polyhedron is cre-
ated, and the user supplies a name and interface 
for the object. 
  We still need to complete the implementation of 
the interface for defining what the object is, and 
what forms of interaction are available for the 
object.  However, the infrastructure is in place, and 
object recognition is available.  In the future, we 
plan to use existing image processing techniques, 
as described in the Related Work section, to pro-
vide more accurate methods for dynamic object 
definition and tracking. 



5   Control Flow Protocol 

The control flow for the remote interaction con-
sists of object selection, lookup of object definition 
and interface, and finally remote invocation or 
interaction.  See Figure 2 for the control flow 
graph and Figure 3 for a screenshot of the graphi-
cal user interface. 

5.1   Object Selection 

The primary method for interaction is through 
basic mouse-clicks.  Using a mouse, the user clicks 
on one of the various objects in the CameraCon-
trollerApp’s video window.  Whether the user left-
clicks or right-clicks, results in different actions as 
in the subsection below.  The CameraController-
App then communicates the window’s x, y infor-
mation to the corresponding camera controller.   

5.2   Lookup of Object Definition & Interface 

The CameraController uses the point received 
from the CameraControllerApp to calculate the 
corresponding camera coordinates in terms of its 
internal pan and tilt degrees.  The controller then 
converts this information to a directional vector, in 
terms of the real-world Cartesian coordinates of 
the location infrastructure.  This vector represents 
the direction of the selected object from the cam-

era’s location.  We only compute the directional 
vector since the actual magnitude of the vector, 
corresponding to the depth of distance from the 
camera, is impossible to determine without more 
advanced image processing techniques, triangulat-
ing with multiple cameras, or using expensive 
stereo cameras.  We find that the directional vector 
is sufficient anyway, given the accuracy with 
which the user can select objects within the real-
time video window. 

Using this vector, the CameraController then 
constructs a spatial query, which it sends to the 
location infrastructure.  It can optimize the query 
by limiting it to the region surrounding the vector. 
Depending on the accuracy of the location infor-
mation, the region can be enlarged to ensure more 
accurate object selection as well.  MiddleWhere 
returns all the objects within this specified region.  
Note that MiddleWhere keeps an updated list of all 
objects in the space using the discovery framework 
described previously. 

Next, the controller intersects this list of objects 
with the directional vector.  Generally, this returns 
a single object, however objects can appear in front 
of each other from the camera’s perspective.  
Therefore, in order to determine which object we 
should select, the controller simply compares the 
distances of these objects from the camera itself.  
The object with the shortest distance from the 
camera is the one selected, and this object is re-
turned to the CameraControllerApp along with 
various properties and its available IDL interac-
tions and corresponding LUA scripts (described 
below). 

Figure 2.  Control flow protocol for remote interaction.  Describes the steps involved in the user interac-
tion with a remote object. 



5.3 Remote Invocation or Interaction with 
Objects 

Obviously, different objects facilitate or require 
different forms of interaction.  The available inter-
faces and interactions for each object are stored 
within the object returned from the location infra-
structure.  These interfaces are defined as CORBA 
IDL objects.  For our framework, we support a 
default action for any object discovered or defined.  
If the user left-clicks on the object, the default 
action is performed - if one has been defined.  
Otherwise, we treat it as a right-click.  When the 
user right-clicks, a context-menu with the avail-
able options is displayed.  This menu is primarily a 
list of all the defined interactions available through 
the object.  Primarily, this list represents items 
corresponding to the IDL interface for the object.  
Additionally, more advanced interactions are 
available using LUA scripts [14].  LUA is a script-
ing language that, among other features, provides 
simple interfaces for interacting with IDL inter-
faces through CORBA and Gaia.  Complicated 
interactions with objects that require invoking a 
series of different operations can be represented 
with LUA scripts.  The CameraControllerApp 
itself uses the object reference to communicate and 
interact directly with the selected object.  For ex-
ample, we can turn lights on, control computers 
and displays, or perform any other user-defined or 
system-defined action.  Given the applications 
running on a machine, we could interact directly 
with them as well, provided they implement an 
IDL interface. 

The control flow for interacting with people is 
the same; however, the actual interaction with 
people is treated slightly different, given that more 
work may need to be done in order to determine 
the appropriate action.  The list of available inter-
actions depends on the resources available within 
the active space containing the user.  The simplest 
action would be to have the camera start tracking 
that person through the active space, or active 
spaces as desired.  As stated previously, we have 
already successfully implemented this feature.  
However, since we are trying to use the location 
information to facilitate remote interaction, we 
also provide several other options.  We are cur-
rently working on their integration with Active 
Interaction.  First, we automatically obtain general 
information about the person and his preferred 
methods for contact.  If the person has defined 

preferences for forms of contact, we can automati-
cally select the appropriate device for contacting 
and communicating with the person.  If the person 
has not specified a preferred form of contact, we 
can manually select the contact method from a list 
of available methods, such as a cell phone, email, 
text message, or Voice over IP (VoIP).  This list 
would be dynamically updated depending on the 
specific active space and its corresponding re-
sources, including any resources the people in the 
room introduce. 

Bresler [14] et al. is currently developing a 
framework for Voice over IP within the Gaia infra-
structure.  By integrating this service within our 
framework, we can automatically communicate 
with the remote person through whatever audio 
devices are available within the active space, in-
cluding speakers, cell phones, or PDAs. 

6   Conclusion 

Integrating the video feeds from multiple cameras 
with accurate location sensing, we have developed 
Active Interaction, an innovative application for 
remote interaction with static and dynamic objects 
within active spaces.  By interacting directly with 

Figure 3.  CameraControllerApp screenshot.  Note, 
the user could interact with the light, displays, speak-
ers, or the person in the figure. 



the objects as they are seen through the video 
feeds, and using the MiddleWhere infrastructure, 
we are able to seamlessly and dynamically add 
objects and immediately detect them without gen-
erating any avatars or visual representations of the 
objects.  No additional work, such as avatar or 
model generation, is needed for the user to interact 
with new objects since they are automatically dis-
covered by the infrastructure and added to the 
location database.  Additionally, the interface is 
more natural since users do not need to mentally 
translate avatars and tags into objects – they see 
the objects themselves.  This provides a useful, 
seamless interface for remote interaction with 
ubiquitous environments and their resources. 

7   Future Work 

Currently, a prototype of the Active Interaction 
framework is implemented.  This prototype allows 
interaction with limited devices and services only, 
and serves as a proof of concept.  It allows interac-
tion with any objects discovered by Gaia’s seman-
tic discovery service.  However, we still need to 
provide a mechanism for alerting the user as to 
which objects support interaction.   Additionally, 
we need to improve the mechanism for determin-
ing appropriate forms of interaction with people 
located within the space.  

The interaction with users in the space through 
VoIP is not fully complete at this time, as the VoIP 
component of Gaia is still under development.   

Additionally, we need to provide a usable inter-
face for the different interactive methods, such as 
writing text, speaking, broadcast video, or other 
user-defined interactions, and gauge the effective-
ness and ease of these interfaces by conducting 
usability studies.  

Finally, we plan to provide a remote interface 
that would enable keyboard and mouse redirection 
to the remote machines or services using Clicky 
[6].  This would allow live remote interaction with 
applications that do not implement IDL interfaces.  
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