
RandPeer: Membership Management for QoS Sensitive

Peer-to-Peer Applications

Jin Liang and Klara Nahrstedt

Department of Computer Science

University of Illinois at Urbana-Champaign

{jinliang, klara}@cs.uiuc.edu

Abstract

Many Peer-to-peer (P2P) applications such as me-
dia broadcasting and content distribution require a high
performance overlay structure in order to deliver satis-
fying quality of service (QoS). Previous approaches to
building such overlays either involve a shared contact
point, which results in non-scalable solutions, or rely
on gossip style membership dissemination, which lacks
QoS awareness. In this paper, we present a distributed
membership service called RandPeer, which manages
membership information on behalf of P2P applications,
and allows peers to locate good neighbors based on their
QoS characteristics. Using this service, P2P applica-
tions can easily construct their overlays in a scalable
and QoS aware fashion.

We have implemented RandPeer and experimented
in both local and wide area environments. Our results
show that (1) RandPeer is scalable and robust to highly
dynamic P2P memberships; (2) RandPeer has good
lookup performance, both in terms of response time and
the randomness of peer selection. The latter improves
load balancing and failure resilience of P2P applica-
tions; (3) when used to improve the performance of a
mesh based P2P overlay, RandPeer achieves 10% im-
provement in just 2 protocol rounds, which is more than
5 times faster than pure random neighbor selections.

1 Introduction

Unlike early file sharing applications such as Napster
and Gnutella, many recent P2P applications, including
live media broadcasting [1, 2, 3, 4, 5], high bandwidth
content distribution [6, 7], and real-time audio confer-
encing [8] require a high performance overlay structure
in order to deliver satisfying Quality of Service (QoS)
to the users. As a result, building high performance
overlays is an important task for these applications.

Ideally, if the characteristics of all the application
peers are known, a globally optimal structure can be
built using some deterministic algorithms [1, 9, 2]. This
holistic approach might produce the best possible over-
lay structure. However, it is not scalable. This is
because P2P applications often consist of large num-
ber of peers, which may join and leave at any time.
Maintaining consistent state for such dynamic systems
would incur too much overhead. Therefore, most re-
cent systems have adopted a localized approach, where
each peer joins the overlay by independently selecting
its neighbors, and neighbor failures are repaired by lo-
cal adjustment. Clearly, the performance of an over-
lay built this way depends critically on the ability of
individual peers to select good neighbors. Thus, the
question becomes how can individual peers select their
neighbors in a scalable and QoS aware fashion?

In some systems such as NICE [3] and Zigzag [4],
membership information is embedded in the overlay
structure. To select its neighbors, a joining peer first
contacts a well known rendezvous point, then succes-
sively probes existing peers until it finds its best posi-
tion in the overlay. While this approach allows peers to
locate good neighbors, it has two drawbacks. First, for
highly dynamic systems, the contact point can easily
become a bottleneck. Second, when the system is large,
a joining node may have to probe many peers before
finding its best position, which is also undesirable.

To address the scalability problem, many recent sys-
tems such as DONet [5], PRO [10] and later versions
of Narada [11] employ a gossip style membership man-
agement scheme similar to [12]. The idea is that each
peer maintains a small list (called the partial view)
of other members in the system, and periodically ex-
changes membership information with other peers. As
a result, the partial view represents a uniform sampling
of the whole system. Whenever a neighbor is needed,
it is selected randomly from the partial view.

Although the gossip scheme achieves scalability in

1

membership management, it is not suited for QoS
aware neighbor selection. This is because a randomly
selected peer in a large system is unlikely to have
the desired QoS characteristics (e.g., delay and band-
width). The gossip style membership management was
originally designed for probabilistic data dissemination
applications [12], which are themselves gossip based ap-
plications. It is not clear how the scheme can be modi-
fied to accommodate different application QoS require-
ments. In addition, because a peer can learn about
other peers indirectly (through gossip), it is difficult to
detect if some peers in the partial view have failed.

In this paper, in recognizing that QoS aware neigh-
bor selection, and hence membership management is
common to QoS sensitive P2P applications, we propose
to decouple membership management from P2P ap-
plications by designing a distributed membership ser-
vice called RandPeer. RandPeer allows decentralized
membership registration for peers, and enables efficient
lookup of other peers. In its basic form, RandPeer al-
lows the lookup of a peer that is randomly selected from
the entire system. Randomness in neighbor selection is
necessary in a P2P environment, because it avoids the
overhead for deterministic search of the best neighbor.
However, different from the gossip based scheme [12],
RandPeer can also cluster peers based on their QoS
characteristics. By restricting random peer selection
within specific QoS clusters, RandPeer achieves QoS
awareness in neighbor selection, while at the same time
preserves the efficiency offered by randomness.

We have implemented the RandPeer service and
conducted experiments in both local and wide area
(PlanetLab [13]) environments. Our results show that
(1) RandPeer is scalable and robust to both bulk
and constant membership changes; (2) RandPeer has
good lookup performance, both in terms of response
time and randomness in peer selection. The former
is bounded by O(log log N), where N is the maximum
number of peers in the system, and the latter is close to
uniform distribution, which improves the load balanc-
ing and failure resilience of P2P applications; (3) when
used to improve the performance of a mesh based P2P
overlay, RandPeer achieves 10% improvement in just 2
protocol rounds, which is more than 5 times faster than
pure random neighbor selections. This demonstrates
the importance of QoS awareness in P2P neighbor se-
lections.

In the rest of this paper, we first describe the appli-
cation model that RandPeer targets in Section 2, then
present the detailed design of RandPeer in Section 3.
Section 4 is the evaluation results. Section 5 discusses
related research and Section 6 concludes the paper.

p2

S

RandPeer
Service Network

Registration
protocol p5

p1

p6 p4

p3

Lookup protocol

Figure 1. App. scenario that uses RandPeer

2 Application Model

In this paper, we consider QoS sensitive P2P appli-
cations such as live media streaming and high band-
width content distribution, which can be primarily
characterized by their large and dynamic memberships,
and their requirement on high performance overlay
structures. We assume the localized overlay construc-
tion and maintenance approach is used. This means
both the initial joining of a peer and the recovery from
a neighbor failure are done by individual peers select-
ing their neighbors. RandPeer provides support to such
applications by managing their membership in a scal-
able and robust way, and allowing peers to select neigh-
bors based on their QoS requirements.

Figure 1 shows how an example live P2P stream-
ing application can benefit from RandPeer. A single
source S in the application provides the live content
(e.g., Internet TV program). Other peers (receivers)
can join the system and stream the content from ei-
ther the source or other peers. In line with recent work
on P2P streaming [14, 10, 5], we allow each peer to
stream from multiple parent peers in order to better
utilize their residue bandwidth.

When a new peer (e.g., p6 in Figure 1) joins the sys-
tem, it needs to locate some other peers suitable as its
parents. Without a membership service, the source S
would necessarily become a shared contact point. With
RandPeer, however, each peer currently in the system
(including the source) can register with the service us-
ing a registration protocol, and a joining peer (p6) can
query the service 1 to lookup potential good parents,
and connect to these parents. At the same time, the
joining peer can register with the RandPeer service, so
that it can be located by other peers. Later, if a par-
ent fails or experiences degraded performance, a similar
lookup can be made to locate an alternative parent.

Thus we can see by decoupling membership manage-
ment from P2P applications, RandPeer greatly facili-
tates their development. The applications only need to

1RandPeer is a distributed service that consists of different
service nodes. We assume each peer knows about a service node
via some out of band information, in a way similar to using the
domain name service (DNS).

2

Table 1. System parameters
h max number of bits in a bin label
b number of bits in a peer ID/lookup key
B capacity of a leaf bin
N max number of peers in an application
m random ratio

invoke some stub code provided by RandPeer (which
executes the registration and lookup protocols), with-
out knowing how the registration information is orga-
nized, and how the lookup is performed. Since Rand-
Peer is offered as a service, it has the additional benefit
that a single service can be shared by multiple appli-
cations, and that the service can evolve (e.g., be re-
implemented for better performance) without changing
the applications, so long as the protocols for accessing
the service remain unchanged.

The challenge, however, is to design the service
so that it manages P2P membership information in
a scalable and robust manner, and allows efficient,
QoS aware neighbor selections. To meet the challenge,
RandPeer uses a distributed trie data structure to or-
ganize membership information for P2P applications,
and employs simple but robust protocols to dynami-
cally grow and shink the trie as peers join and leave 2.
Finally, RandPeer allows peers to translate their QoS
characteristics to QoS prefixes in their ids. This en-
ables RandPeer to cluster peers based on their QoS
prefixes. QoS aware neighbor selection can then be
achieved by restricting peer lookups to specific QoS
clusters.

3 Design of RandPeer Service

3.1 Membership Trie

RandPeer uses a trie data structure to organize
membership information for P2P applications. A trie
is basically a tree with its nodes labeled with 0, 1
strings 3. The label of the root is an empty string.
If a node has label l, its left child is labeled l0, and its
right child is labeled l1. Each node in the trie is called
a “bin”. Peer registration information is only stored at
leaf bins. We assume the maximum length of a label
is h, thus there are at most 2h leaf bins in a member-
ship trie (a list of the system parameters is given in
Table 1). Figure 2 shows an example membership trie.
Note the membership trie is a data structure within

2The dynamic nature of the membership information makes
the service significantly different from other services such as re-
source discovery, pub/sub, etc.

3For simplicity, we only discuss binary tries.

110

0 1

1000 01 11

......

... ...

192.174.xxx.xxx, 6022, ...
169.220.xxx.xxx, 6024, ...

meta data (IP, port, ...)peer id

00101
00111

000 001 010 011

registration information stored in bin 001

111

Figure 2. Membership trie

the RandPeer service to organize the registration in-
formation for application peers. It’s different from the
actual overlay network formed by the peers.

To register its membership with the trie, a peer must
randomly select a peer id of b bits (b ≥ h) for itself.
This peer id determines which leaf bin the peer should
register with. Specifically, it should register with the
leaf bin whose label is a prefix of its peer id. Clearly,
given a peer id, there exists a unique leaf bin whose
bin label is a prefix of the peer id. As an example, in
Figure 2, peers 00101 and 00111 should register with
bin 001, because this is the leaf bin whose label is a
prefix of their peer ids. Similarly, a peer with id 10010
should register with leaf bin 10.

The membership trie is a dynamic data structure.
Each leaf bin has a capacity B, which means it can
store at most B registration entries. If there are more
than B peers registered with a leaf bin (with a label
l), the bin can be split into two leaf bins (with labels
l0 and l1, respectively). All peers previously registered
with bin l are now informed to register with its children
bins. If later the total number of peers registered with
l0 and l1 drops to below B/2, the two leaf bins can be
merged again. The split of bins ensures that no leaf bin
is overloaded by too many registrations, and the merge
of bins improves the lookup performance by removing
sparsely populated leaf bins.

RandPeer is built on top of a distributed hash table
(DHT), therefore we use consistent hashing to map the
logic membership trie to the RandPeer service nodes.
Figure 3 shows how the mapping is done. The bot-
tom of the figure shows the RandPeer service network,
which consists of distributed RandPeer service nodes 4.
Given a bin in the membership trie (e.g., bin 1001 in
Figure 3), we use a consistent hashing function such as
SHA1 [16] to map it to a unique number in the DHT

4The RandPeer nodes self-organize into an overlay, which is
a ring if Chord [15] is used as the DHT.

3

SHA1() service node

r4 r1

r2

RandPeer

1001

r3

Figure 3. Mapping from membership trie to
RandPeer nodes

key space. This number is called the bin id of the bin.
The “successor” [15] of this bin id (which is node r2 in
this case) is responsible for maintaining the state in the
bin. Since each application has its membership trie, to
avoid conflict between the membership bins of different
applications, we assume each application has a unique
application id, and include it in the hashing process.
To send a message to bin 1001, a peer can obtain its
bin id using the same mapping process, and send the
message to a nearby RandPeer node. The message is
then routed (using the underlying DHT routing mecha-
nism) to the RandPeer node (e.g., r2), which processes
the message.

3.2 Registration Protocol

Due to the dynamic nature of P2P memberships,
RandPeer takes a soft state approach to membership
management. Specifically, the registration information
for each peer has a life time. It must be refreshed
periodically (by Register messages), otherwise it will
time out and be removed from its leaf bin.

When a new peer begins to register, it must first
locate its leaf bin. This can be done by walking down
the trie, starting from the root bin, until a leaf bin is
reached. However, this would suffer from the shared
contact problem of NICE [3] and Zigzag [4]. There-
fore, RandPeer uses the binary search algorithm de-
scribed in Section 3.3 to quickly locate the leaf bin for
a peer in O(log log N) steps. Once the leaf bin is lo-
cated, the peer begins to periodically send Register

messages to its leaf bin. The leaf bin is expected to
send a RegisterOK message back, unless it has been
marked for split or merge (to be discussed below). In
this case a RegisterGoDown or RegisterGoUp message
is sent back, and the peer will move to its new leaf bin.

Each Register message contains the peer id of a
peer and some meta information such as its IP address
and port number. This information is stored in the
leaf bin as illustrated in Figure 2. Each RegisterOK

message also contains the meta information previously
registered under the peer id. This can be used to detect

label bits = TryRegister(peer id) //locate initial leaf bin
bin label = peer id � (b − label bits)
bin id = SHA1(app id, bin label)
while(true)

send message(Register, bin id, meta info)
msg = receive message() //reply message from leaf bin
if msg.type == RegisterOK

if msg.is leader == true
if msg.num entries ≥ B SendSplitMsg()
else if msg.num entries < B/4 SendMergeMsg()

end if
else

if msg.type == RegisterGoDown label bits + +
else label bits −−

bin label = peer id � (b − label bits)
bin id = SHA1(app id, bin label)

end if
sleep //wait till next protocol period

end while

Figure 4. Registration Protocol

if two peers have chosen the same peer id.

The information stored at each interior bin (e.g., the
height of the subtree rooted at the interior bin) is also
soft state. Therefore, each leaf bin and interior bin
(except the root) also needs to periodically refresh its
parent bin using a Refresh message.

Bin Split/Merge. To dynamically grow and
shrink the membership trie, our registration protocol
relies on the coordination between RandPeer and the
application peers for bin split/merge. Each leaf bin
has a leader peer, which is the peer with the smallest
peer id in the bin. The leader peer of a leaf bin is
responsible for initiating the bin split/merge process.
Each RegisterOK message contains a bit indicating if
the peer is the leader peer. It also contains the num-
ber of registration entries in the bin. If the leader peer
finds the number of entries ≥ B, it will send a Split

message to the bin. If the bin accepts the message, it
will mark itself for split. Any peer that attempts to
register with such a bin will receive a RegisterGoDown

message, which causes the peer to register at a lower
level and new leaf bins to be created. The “marked
for split” state is a temporary state and the bin will
become an interior bin after a short time.

If a leader peer finds the number of entries in a leaf
bin to be too small (e.g., < B/4), it will send a Merge

message to the parent bin. If the Merge message is
accepted, the parent bin is marked for merge. If a bin
marked for merge receives a Refresh message from its
child bin, it will reply with a Terminate message. The
child will then respond to any Register message with

4

a RegisterGoUp message, telling the peers to register
with a higher level. The “marked for merge” state is
also temporary and the bin will become a leaf bin after
a short time.

Both the Split and Merge message may or may not
successfully mark the bin. For example, the message
may be lost, or for Merge messages, the other child of
the parent bin may not be a leaf bin. For example, in
Figure 2 if the leader peer of bin 10 sends a Merge mes-
sage to bin 1, it will be ignored. This is because bin 11
is not a leaf, which means there may be more than B
peers registered under the subtree rooted at bin 1. As
a result, after a leader peer has sent a Split or Merge
message, it continues with its normal registration pro-
cess. If the split/merge is successful, the leader peer
will be notified to go up or down, just like other peers.
If it is not successful, the leader peer will retry peri-
odically, at a low frequency, as long as the condition
for split/merge remains. This approach greatly simpli-
fies the protocol between the RandPeer service and the
application peers. It also makes the protocol robust,
because the eventual success of bin split/merge is not
affected by the loss of one or more messages.

The registration protocol (as executed by the reg-
istration stub at each peer) is shown in Figure 4. In
Figure 4, TryRegister uses the binary search algorithm
in Section 3.3 to quickly locate the initial leaf bin. b
and B are the system parameters as given in Table 1.

3.3 Random Peer Lookup

In this subsection, we present the algorithm to
lookup a random peer that is currently registered with
RandPeer. Random peer lookup avoids the overhead of
deterministic search, and improves load balancing and
failure resilience of P2P applications. In the next sub-
section, we will describe how RandPeer clusters peers
for QoS aware neighbor selections.

To look up a random peer, a peer generates a ran-
dom lookup key of b bits, and sends a Lookup message
to the leaf bin whose label is a prefix of the lookup key.
The leaf bin will return the registration information of
the registered peer whose id immediately follows the
lookup key. For example, in Figure 2, if the lookup key
is 00100, the Lookup message will be sent to bin 001.
Since the peer id 00101 is the one that immediately
follows the lookup key, the registration information for
this peer will be returned.

To quickly locate the leaf bin, we use an algorithm
similar to binary search. Initially, the query peer sends
a Lookup message to a bin whose bin label is a pre-
fix of the lookup key, and has a length (label bits) of
h/2. If the bin is a leaf bin, a LookupOK message is

label bits = h/2
step size = label bits/2
bin label = lookup key � (b − label bits)
bin id = SHA1(app id, bin label)
while(true)

send message(Lookup, bin id, lookup key)
msg = receive message()
if msg.type == LookupOK

return msg.result
if msg.type == LookupGoUp label bits –= step size
else label bits += step size
bin label = lookup key � (b − label bits)
bin id = SHA1(app id, bin label)
if step size > 1 step size /= 2

end while

Figure 5. Lookup Protocol

returned, together with the lookup result. Otherwise
a LookupGoDown or LookupGoUp message is returned,
depending on if the bin is an interior bin, or does not
exist. The query peer will then change the label bits
(with exponentially decreasing step size), and retry
other bins. The lookup protocol as executed by the
query peer is shown in Figure 5.

It is possible that the lookup key is larger than any
peer id stored in the leaf bin. In this case, no peer
is returned in LookupOK and the querying peer should
try the “next” leaf bin. What it does is to increase the
lookup key, so that it just falls out of the current leaf
bin, and repeat the lookup process. As an example,
in Figure 2, if a peer generates a random lookup key
01111, the Lookup message will be sent to leaf bin 011.
If every peer registered in the bin has an id smaller than
01111, the query peer will increase the lookup key to
10000, which just falls out of the bin 011. This time
the Lookup message will be sent to leaf bin 10, and the
first peer in this bin will be returned.

Clearly the protocol in Figure 5 can locate a leaf bin
in O(log h) steps. Since h = O(log N), where N is the
maximum number of peers in the system, it means the
protocol can locate the leaf bin in O(log log N) steps,
regardless the number of peers currently in the system.
To further improve the lookup performance, we can let
each interior bin record the minimum height of its left
and right subtrees. When a Lookup message is received
by an interior bin, it will return the minimum height of
its subtree together with the LookupGoDown message.
The query peer can use this information to reach the
leaf bin more quickly.

In the above registration/lookup protocol, both the
peer registration id and lookup key are randomly se-
lected, and a peer is returned if its id immediately fol-

5

lows a lookup key. It is well known such an approach
may not result in uniformly random peer selection. In
fact, with high probability, some peers may be selected
t times more often than other peers [15], where t is
logarithmical in the current system size. This is be-
cause even though each peer selects an id randomly,
the resulting membership trie may not be perfectly bal-
anced. There are many load balancing techniques that
can address the problem [17, 18]. For simplicity, we
use a simple heuristic to improve the randomness of
the lookup result. Each time a random peer is needed,
we look up the m peers whose ids immediately follow
the lookup key, we then randomly choose one from the
m peers to be the final random peer. m is called the
random ratio of the lookup. Since each leaf bin visited
may contain multiple entries following the lookup key,
looking up m peers does not significantly increase the
lookup overhead.

3.4 QoS Aware Neighbor Selection

The basic membership registration and lookup pro-
tocols described above allow the lookup of random
peers. To build high performance overlays, however,
we may want to look up peers based on some given
QoS metrics. This can be achieved by combining ap-
plication specific QoS metrics with peer id and lookup
key selection. Specifically, the id of a peer is divided
into a QoS prefix and a random suffix. The QoS pre-
fix encodes its QoS characteristics, and determines the
possible set of leaf bins that the peer can register with.
If two peers have the same QoS characteristics, they
will be automatically clustered under the same subtree
in the membership trie. When a peer needs to look up
some other peer, it generates a random key with the
desired QoS prefix. The lookup result of such a key is
likely to be a peer with the desired QoS characteristics.

As an example, suppose a P2P application wants to
minimize the average delay between neighboring peers,
we can use a QoS prefix (e.g., 5 bit binary string) for
each peer that indicates its geographical location 5.
When a peer needs to look up a neighbor, it gener-
ates a lookup key that has the same prefix as its own
peer id. The result of such a lookup is likely to be
a peer that is close by. As another example, suppose
a P2P application wants to select neighbors based on
their access bandwidth, we can use a prefix to encode
the access bandwidth of the peers. To look up a peer
that has certain access bandwidth, we can generate a
lookup key with the specific prefix. The prefix can also
encode multiple QoS metrics, so that we can lookup a

5Such prefixes can be generated, for example, using the land-
mark binning technique introduced in [19].

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500
Robustness of RandPeer to bulk joins and departures

nu
m

be
r

of
 p

ee
rs

time (seconds)

all peers
peers in stable state
peers in transient state

Figure 6. Robustness of RandPeer to bulk
joins and departures

peer that is not only close by, but also has the desired
access bandwidth.

We note that RandPeer provides the ability to clus-
ter application peers based on their QoS prefixes, and
to lookup neighbors from a specific cluster of peers.
However, it is up to the application to decide how its
QoS metrics should be translated into QoS prefixes.
Different applications may have different QoS require-
ments and different translation schemes. All these are
transparent to the registration and lookup protocols.

4 Performance Evaluation

We have implemented RandPeer on top of the
Chord [15] code that we obtained from the I3
project [20]. Since RandPeer can be implemented us-
ing any DHT, in our evaluation, we focus on the perfor-
mance of RandPeer itself, instead of that of the under-
lying DHT. Specifically, we want to examine (1) the
scalability and robustness of RandPeer to highly dy-
namic P2P memberships; (2) the performance of ran-
dom peer lookup, both in terms of response time and
the randomness of the lookup result; (3) the impact
of QoS aware neighbor selection on the performance of
P2P overlays. Most of our experiments are run in a
local environment, which means the RandPeer service
is started on a single machine. For the lookup perfor-
mance experiments, we also deploy RandPeer on about
20 PlanetLab [13] nodes. For all experiments, we set
h = 16, b = 32 and B = 16.

4.1 Robustness of RandPeer

Figure 6 shows the performance of RandPeer for
bulk peer joins and departures. A peer is said to be
in stable state, if its leaf bin is not under split or merge

6

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800

1000

1200
Robustness of RandPeer to constant membership changes

nu
m

be
r

of
 p

ee
rs

time (seconds)

all peers
peers in stable state
peers in transient state

Figure 7. Robustness of RandPeer to con-
stant joins and departures (churns)

process. Otherwise it is said to be in transient state.
We first register 1024 peers with the RandPeer service.
After the system is stabilized, we register another 1024
peers simultaneously at time 95. This causes many leaf
bins to be split, and the corresponding peers to regis-
ter with new leaf bins. However, after only about 70
seconds, all the peers successfully settled down with
their new leaf bins. Note in our implementation, each
peer refreshes its membership about every 10 seconds.
This means for a bulk join of 1024 peers, our system
stabilizes in only about 7 protocol periods. This is due
to the quick join process described in Section 3.2. At
time 205, all the new peers are killed at the same time.
Figure 6 shows that after about 40 seconds, their reg-
istration entries are timed out. This causes some leaf
bins to be merged and the peers to register higher in
the membership trie. However, it takes only about 30
seconds for these peers to reach stable state again. The
40 second delay is caused by two facts. First, the reg-
istration timeout value is set to a little more than 20
seconds, in order to tolerate occasional message losses.
Second, to prevent frequent bin split/merge process, a
leader peer will send a Split or Merge message after
the condition for split/merge has been true for two pro-
tocol periods. Although this causes some delay in bin
split/merge, it improves the stability of RandPeer.

Figure 7 shows the robustness of RandPeer to con-
tinuous peer joins and departures (churns). We reg-
ister 2048 peers with RandPeer. Initially half of the
peers are registered and in stable state. Starting from
time 20, all peers begin to switch between on and off
states. Both on and off periods are exponentially dis-
tributed with a mean of 300 seconds. When off peers
come back, they will register with new peer ids. Fig-
ure 7 shows that initially some peers are affected by the
joining and departure of other peers. However, after
time 150, most nodes are settled in stable state, even

0 2 4 6 8 10 12
0

50

100

150

200

250
Histogram of pure random selection

nu
m

be
r

of
 p

ee
rs

number of times returned

Figure 9. Histogram of pure random selection.

though during each second there are about 7 node join
and departure events. This is because each leaf bin
can accommodate a range of peer registrations, thus
the joining and leaving of a peer does not necessarily
cause a bin split/merge. The delay of bin split/merge
described above also avoids unnecessary splits/merges.

4.2 RandPeer Lookup Performance

For P2P applications, it is likely that many peers are
potential good neighbors for a given peer (for example,
they all have the same prefix in their ids). In this case,
we should return each peer with equal probability, in
order to improve load balancing and failure resilience
of the applications. Figure 8 shows the randomness of
RandPeer lookup results. For this experiment, we reg-
ister 1024 peers with the RandPeer service, and then
perform 4096 random lookups. Figure 8(a) shows that
when the random ratio m is 1, the returned peers are
very unevenly distributed. For example, about 200
peers are never selected, while some peers are selected
more than 20 times. Figure 8(b) shows that when m is
2, the randomness of the returned peers is still not uni-
formly distributed. However, Figure 8(c) shows that
when m = 8, the randomness of the lookup results is
much better. Only about 20 peers are not selected, and
most peers are selected between 1 and 7 times. In fact,
Figure 9 shows the histogram of perfect (uniformly dis-
tributed) random selections. We can see Figure 8(c) is
very close to pure random selections.

Another aspect of the lookup performance is the re-
sponse time. To examine the response time of Rand-
Peer lookups, we deploy RandPeer on about 20 Plan-
etLab nodes (mostly located in North America). Each
time we register a given number of peers with Rand-
Peer, and perform 200 random peer lookups, using dif-
ferent random ratio m. We record the average num-
ber of DHT lookups (each Lookup message incurs one

7

0 5 10 15 20 25
0

50

100

150

200

250
Histogram of RandPeer lookup result (m=1)

number of times returned

nu
m

be
r

of
 p

ee
rs

(a) m = 1

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150
Histogram of RandPeer lookup result (m=2)

nu
m

be
r

of
 p

ee
rs

number of times returned

(b) m = 2

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

160

180

200
Histogram of RandPeer lookup results (m = 8)

number of times returned

nu
m

be
r

of
 p

ee
rs

(c) m = 8

Figure 8. Randomness of RandPeer lookup results

256 1024 2048
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Number of DHT lookups for a RandPeer Lookup

number of peers registered

nu
m

be
r

of
 D

H
T

 lo
ok

up
s

m = 1
m = 2
m = 4
m = 8

Figure 10. Number of DHT lookups for a Rand-
Peer lookup

DHT lookup) that is needed, and the actual delay (in
milliseconds) to get the result. The number of DHT
lookups reflects RandPeer’s performance independent
of the underlying DHT. The delay reflects the perfor-
mance of our particular implementation.

Figure 10 shows the number of DHT lookups needed
for a RandPeer lookup. First we can see that larger
random ratio involves more DHT lookups. This is be-
cause we need to locate m peers in order to produce a
random lookup result. However, even for m = 8, only
3 or 4 DHT lookups are needed. Second, the number of
DHT lookups is the largest when there are 256 peers in
the system, and the smallest when there are 2048 peers.
The reason is that when there are 256 peers, the leaf
bins have a bin label of 5 to 6 bits. According to the
lookup protocol in Figure 5, a query peer will first try
a bin with label bits = h/2 = 8, then label bits = 4,
and then reach the leaf bin. So on average, it takes a
little more than 3 DHT lookups (for m = 1). When the

system has 1024 peers, the leaf bins have 7 to 8 bits.
Therefore, the query either succeeds on the first mes-
sage, or takes 2 or 3 messages (using the height infor-
mation). When there are 2048 peers, the leaf bins have
8 to 10 bits. Therefore, most lookups take only 1 or 2
messages. These results show that judicious selection
of the initial label bits in the lookup protocol (e.g., us-
ing cached label bits from previous lookups) may have
an impact on the lookup performance. However, we do
not explore this further in this paper.

The delay results are not shown here for space rea-
sons. However, most of the RandPeer lookups take just
200 to 300 milliseconds. Even for 256 peers and m = 8,
we can locate a random peer in about 380ms. We be-
lieve this is acceptable for a control plane operation.
Note the Chord code we used is not locality aware. If
we use some other DHT such as Pastry [21], we would
expect even better lookup delays.

4.3 Impact of QoS Aware Neighbor Selection

To examine the impact of QoS aware neighbor se-
lection on P2P applications, we simulate a mesh based
P2P application, and see how RandPeer can help re-
duce the average delay between neighboring peers.

For this experiment, we use the BRITE [22] topol-
ogy generator to generate a two level hierarchical net-
work topology that consists of 10000 nodes. We then
randomly select a subset of nodes as peers in the P2P
application. We also randomly select several landmark
nodes and use the binning technique in [19] to gener-
ate landmark vectors as prefixes for the peers. We use
two bits to encode the delay of a node to each land-
mark node. Peers will generate their ids with the given
prefixes and register with the RandPeer service.

For each experiment, we first build a pure random

8

0 50 100 150 200 250 300
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
Performance improvement for random mesh overlay

no
rm

al
iz

ed
 a

ve
ra

ge
 li

nk
 d

el
ay

time (seconds)

landmark=0
landmark=3
landmark=4

Figure 11. Performance improvement for an
application of 1024 peers

mesh of the peers. After that, each peer can periodi-
cally (with an average of 20 seconds) select a random
peer and replace its worst neighbor with the selected
peer, if the selected peer is closer (has a smaller de-
lay) than the worst neighbor. We use two methods for
peer selection. The first uses no landmarks, which cor-
responds to pure random selection. The second uses
RandPeer to select a node with the same prefixes. Ev-
ery 5 seconds, we evaluate the overall average link de-
lay of the mesh, and compare it with that of the initial
random mesh.

Figure 11 shows the performance ratio for 1024
peers. We can see that using landmark vectors to clus-
ter the peers can improve the performance of the ap-
plication much faster than pure random peer selection
(landmark=0). For example, it takes about 50 seconds
for the application to reduce the average link delay to
90% of the initial mesh, if 3 landmark nodes are used.
It takes only 40 seconds (two evolvement rounds) if 4
landmarks are used. However, for pure random peer se-
lection, even after 250 seconds, the delay improvement
is still less than 10%. By that time, RandPeer has im-
proved the performance of the application by 15% if 3
landmarks are used, and 19% if 4 landmarks are used.

Figure 12 shows similar results for a larger system of
4096 peers, except the initial performance improvement
of RandPeer is even faster. This is because the larger a
system is, the less likely that a randomly selected peer
would be a good neighbor. By clustering peers based
on their characteristics such as geographical location,
RandPeer can focus on a much smaller set of peers and
return much better peers on average.

5 Related Work

A lot of research on DHTs [15, 21] has attempted to
build a generic “routing layer” for large distributed ap-

0 50 100 150 200 250 300
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

time (seconds)

no
rm

al
iz

ed
 a

ve
ra

ge
 li

nk
 d

el
ay

Performance improvement of random mesh overlay

landmark=0
landmark=3
landmark=4

Figure 12. Performance improvement for an
application with 4096 peers

plications. While this has benefited many distributed
applications, the multi-hop routing of DHTs is undesir-
able for QoS sensitive P2P applications such as media
streaming. For these applications, we believe a better
way is to provide some control plane service to facil-
itate the applications, while allow the applications to
manage their own overlay construction, based on their
own QoS requirements.

Membership management is a control plane ser-
vice that can greatly benefit QoS sensitive P2P ap-
plications. Previous approaches either require global
membership information [1, 2, 9], or embed member-
ship information in the overlay structure [3, 4], both
of which would introduce scalability problems. The
gossip style membership management adopted by re-
cent systems [5, 10, 11] can not be easily modified to
accommodate different application QoS requirements.
In contrast, we have shown that RandPeer achieves
both scalability and QoS aware neighbor selections for
P2P applications. Some previous work such as Col-
lectCast [14] directly uses DHT to store membership
information of some peers (e.g., all the peers that have
a particular video file). This scheme lacks the adaptive
property of a dynamic trie data structure. As a result,
some DHT nodes might be overloaded if many peers
have the same video file.

Our use of a trie data structure for membership
management bears resemblance to recent research on
supporting range query over DHTs such as PHT [23,
24, 25]. However, the highly dynamic nature of mem-
bership information means that our protocol must be
designed with robustness in mind. For example, we rely
on the periodical retry of leader peers and the marking
of membership bins to achieve bin split/merge, which
results in very simple and robust protocols, yet at the
same time avoids the concurrency problem of PHT [24].

9

6 Conclusion

We have presented the design and evaluation of the
RandPeer membership management service for QoS
sensitive peer to peer applications. RandPeer achieves
scalable and decentralized membership management by
using a trie data structure and map the trie to an un-
derlying distributed hash table (DHT), and it enables
QoS aware neighbor selection by clustering application
peers based on their QoS characteristics. Our experi-
ment results in both local and wide area environments
verified that RandPeer is highly robust to dynamic P2P
memberships, and has good random peer lookup per-
formance. Further, when used for neighbor selection
in a mesh based P2P applications, RandPeer achieves
much faster performance improvement than pure ran-
dom neighbor selections, especially for large systems.

References

[1] Yang hua Chu, Sanjay G. Rao, and Hui Zhang, “A
case for end system multicast,” in Proceedings of ACM
SIGMETRICS, June 2000.

[2] Venkata N. Padmanabhan, Helen J. Wang, and
Philip A. Chou, “Distributing streaming media con-
tent using cooperative networking,” in NOSSDAV’02,
2002.

[3] Suman Banerjee, Bobby Bhattacharjee, and Christo-
pher Kommareddy, “Scalable application layer multi-
cast,” in Proceedings of ACM SIGCOMM’02, August
2002.

[4] Duc A. Tran, Kien A. Hua, and Tai Do, “Zigzag: An
efficient peer-to-peer scheme for media streaming,” in
IEEE INFOCOM’03, 2003.

[5] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-
Shing Peter Yum, “DONet: A data-driven overlay
network for efficient live media streaming,” in IEEE
INFOCOM’05, Miami, FL, 2005.

[6] Jeannie Albrecht Dejan Kostic, Adolfo Rodriguez and
Amin Vahdat, “Bullet: High bandwidth data dissem-
ination using an overlay mesh,” in SOSP’03, 2003.

[7] John W. Byers, Jeffrey Considine, Michael Mitzen-
macher, and Stanislav Rost, “Informed content deliv-
ery across adaptive overlay networks,” in Proceedings
of ACM SIGCOMM’02, August 2002.

[8] Roger Zimmermann and Leslie S. Liu, “Active: Adap-
tive low-latency peer-to-peer streaming,” in MMCN
05, 2005.

[9] Minseok Kwon and Sonia Fahmy, “Topology-aware
overlay networks for group communication,” in NOSS-
DAV 2002, May 2002.

[10] Reza Rejaie and Shad Stafford, “A framework for ar-
chitecting peer-to-peer receiver-driven overlays,” in
NOSSDAV’04, 2004.

[11] Yang hua Chu, Aditya Ganjam, T. S. Eugene Ng, San-
jay G. Rao, Kunwadee Sripanidkulchai, Jibin Zhan,
and Hui Zhang, “Early experience with an inter-
net broadcast system based on overlay multicast,” in
Proceedings of USENIX Annual Technical Conference,
Boston, MA, June 2004.

[12] P. Th. Eugster, R. Guerraoui, S. B. Handurukande,
A.-M. Kermarrec, and P. Kouznetsov, “Lightweight
probabilistic broadcast,” ACM Transactions on Com-
puter Systems (TOCS), vol. 21, no. 4, pp. 341–374,
November 2003.

[13] “Planetlab,” http://www.planet-lab.org/.

[14] Mohamed Hefeeda, Ahsan Habib, Dongyan Xu,
Bharat Bhargava, and Boyan Botev, “CollectCast: A
peer-to-peer service for media streaming,” in ACM
Multimedia’03, 2003.

[15] Ion Stoica, Robert Morris, David Karger, M. Frans
Kaashoek, and Hari Balakrishnan, “Chord: A scalable
peer-to-peer lookup service for internet applications,”
in Proceedings of ACM SIGCOMM’01, 2001.

[16] “RFC 3174, us secure hash algorithm 1 (sha1),”
http://www.ietf.org/rfc/rfc3174.txt.

[17] Gurmeet Singh Manku, “A randomized ID selection
algorithm for peer-to-peer networks,” in ACM PODC
2004, July 2004.

[18] John Byers, Jeffrey Considine, and Michael Mitzen-
macher, “Simple load balancing for distributed hash
tables,” in IPTPS’03, February 2003.

[19] Sylvia Ratnasamy, Mark Handley, Richard Karp, and
Scott Shenker, “Topologically-aware overlay construc-
tion and server selection,” in INFOCOM’02, 2002.

[20] “Internet indirection infrastructure (i3) web site,”
http://i3.cs.berkeley.edu.

[21] Antony Rowstron and Peter Druschel, “Pastry: Scal-
able, distributed object location and routing for large-
scale peer-to-peer systems,” in Middleware 2001,
November 2001.

[22] Alberto Medina, Anukool Lakhina, Ibrahim Matta,
and John Byers, “BRITE: An approach to universal
topology generation,” in In Proceedings of the Inter-
national Workshop on Modeling, Analysis and Simu-
lation of Computer and Telecommunications Systems-
MASCOTS ’01, 2001.

[23] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph
Hellerstein, and Scott Shenker, “Brief announcement:
Prefix hash tree,” in ACM PODC’04, July 2004.

[24] Yatin Chawathe, Anthony LaMarca, Sriram Ramab-
hadhran, Sylvia Ratnasamy, Joseph Hellerstein, and
Scott Shenker, “A case study in building layered DHT
applications,” Tech. Rep. IRS-TR-05-001, Intel Re-
search, January 2005.

[25] Jun Gao and Peter Steenkiste, “An adaptive proto-
col for efficient support of range queries in dht-based
systems,” in IEEE ICNP 2004, October 2004.

10

