
Implicit User Modeling for Personalized Search

Xuehua Shen, Bin Tan, ChengXiang Zhai
Department of Computer Science

University of Illinois at Urbana-Champaign

ABSTRACT
Information retrieval systems (e.g., web search engines) are criti-
cal for overcoming information overload. A major deficiency of
existing retrieval systems is that they generally lack user model-
ing and are not adaptive to individual users, resulting in inherently
non-optimal retrieval performance. For example, a tourist and a
programmer may use the same word “java” to search for different
information, but the current search systems would return the same
results. In this paper, we study how to infer a user’s interest from
the user’s search context and use the inferred implicit user model
for personalized search . We present a decision theoretic framework
and develop techniques for implicit user modeling in information
retrieval. We develop an intelligent client-side web search agent
(UCAIR) that can perform eager implicit feedback, e.g., query ex-
pansion based on previous queries and immediate result reranking
based on clickthrough information. Experiments on web search
show that our search agent can improve search accuracy over the
popular Google search engine.

Keywords
implicit feedback, personalized search, user model, interactive re-
trieval

1. INTRODUCTION
Although many information retrieval systems (e.g., web search

engines and digital library systems) have been successfully deployed,
the current retrieval systems are far from optimal. A major defi-
ciency of existing retrieval systems is that they generally lack user
modeling and are not adaptive to individual users [17]. This in-
herent non-optimality is seen clearly in the following two cases:
(1) Different users may use exactly the same query (e.g., “Java”) to
search for different information (e.g., the Java island in Indonesia or
the Java programming language), but existing IR systems return the
same results for these users. Without considering the actual user, it
is impossible to know which sense “Java” refers to in a query. (2)
A user’s information needs may change over time. The same user
may use “Java” sometimes to mean the Java island in Indonesia

Copyright is held by the author/owner.
.

and some other times to mean the programming language. With-
out recognizing the search context, it would be again impossible to
recognize the correct sense.

In order to optimize retrieval accuracy, we clearly need to model
the user appropriately and personalize search according to each in-
dividual user. The major goal of user modeling for information
retrieval is to accurately model a user’s information need, which is,
unfortunately, a very difficult task. Indeed, it is even hard for a user
to precisely describe what exactly is his/her information need.

What information is available for a system to infer a user’s infor-
mation need? Obviously, the user’s query (often a few keywords)
provides the most direct evidence. Indeed, most existing retrieval
systems rely solely on the query to model a user’s information need.
However, since a query is often extremely short, the user model
constructed based on a keyword query is inevitably impoverished .
An effective way to improve user modeling in information retrieval
is to ask the user to explicitly specify which documents are rele-
vant (i.e., useful for satisfying his/her information need), and then
to improve user modeling based on such examples of relevant doc-
uments. This is called relevance feedback, which has been proved
to be quite effective for improving retrieval accuracy [19, 20]. Un-
fortunately, in real world applications, users are usually reluctant
to make the extra effort to provide relevant examples for feedback
[11].

It is thus very interesting to study how to infer a user’s infor-
mation need based on any implicit feedback information, which
naturally exists through user interactions and thus does not require
any extra user effort. Indeed, several previous studies have shown
that implicit user modeling can improve retrieval accuracy. In [3],
a web browser (Curious Browser) is developed to record a user’s
explicit relevance ratings of web pages (relevance feedback) and
browsing behavior when viewing a page, such as dwelling time,
mouse click, mouse movement and scrolling (implicit feedback).
It is shown that the dwelling time on a page, amount of scrolling
on a page and the combination of time and scrolling have a strong
correlation with explicit relevance ratings, which suggests that im-
plicit feedback may be helpful for inferring user information need.
In [10], user clickthrough data is collected as training data to learn
a retrieval function, which is used to produce a customized ranking
of search results that suits a group of users’ preferences. In [25],
the clickthrough data collected over a long time period is exploited
through query expansion to improve retrieval accuracy.

While a user may have general long term interests and prefer-
ences for information, often he/she is searching for documents to
satisfy an “ad hoc” information need, which only lasts for a short
period of time; once the information need is satisfied, the user
would generally no longer be interested in such information. For
example, a user may be looking for information about used cars

in order to buy one, but once the user has bought a car, he/she is
generally no longer interested in such information. In such cases,
implicit feedback information collected over a long period of time
is unlikely very useful, but the immediate search context and feed-
back information, such as which of the search results for the cur-
rent information need are viewed, can be expected to be much more
useful. Consider the query “Java” again. Any of the following im-
mediate feedback information about the user could potentially help
determine the intended meaning of “Java” in the query: (1) The
previous query submitted by the user is “hashtable” (as opposed to,
e.g., “travel Indonesia”). (2) In the search results, the user viewed
a page where words such as “programming”, “software”, and “ap-
plet” occur many times.

To the best of our knowledge, how to exploit such immediate
and short-term search context to improve search has so far not been
well addressed in the previous work. In this paper, we study how to
construct and update a user model based on the immediate search
context and implicit feedback information and use the model to
improve the accuracy of ad hoc retrieval. In order to maximally
benefit the user of a retrieval system through implicit user model-
ing, we propose to perform “eager implicit feedback”. That is, as
soon as we observe any new piece of evidence from the user, we
would update the system’s belief about the user’s information need
and respond with improved retrieval results based on the updated
user model. We present a decision-theoretic framework for opti-
mizing interactive information retrieval based on eager user model
updating, in which the system responds to every action of the user
by choosing a system action to optimize a utility function. In a tra-
ditional retrieval paradigm, the retrieval problem is often to match
a query with documents and rank documents according to their rel-
evance values. As a result, the whole retrieval process is a simple
independent cycle of “query” and “result display”. In the proposed
new retrieval paradigm, the user’s search context plays an impor-
tant role and the inferred implicit user model is exploited immedi-
ately to benefit the user, even for browsing the results. The new
retrieval paradigm is thus fundamentally different from the tradi-
tional paradigm, and is inherently more general.

We further propose specific techniques to capture and exploit two
types of implicit feedback information: (1) identifying related im-
mediately preceding query and using the query and the correspond-
ing search results to select appropriate terms to expand the current
query, and (2) exploiting the viewed document summaries to im-
mediately rerank any documents that have not yet been seen by the
user. Using these techniques, we develop a client-side web search
agent UCAIR (User-Centered Adaptive Information Retrieval) on
top of a popular search engine (Google). Experiments on web
search show that our search agent can improve search accuracy over
Google. Since the implicit information we exploit already naturally
exists through user interactions, the user does not need to make any
extra effort. Thus the developed search agent can improve existing
web search performance without additional effort from the user.

The remaining sections are organized as follows. In Section 2,
we discuss the related work. In Section 3, we present a decision-
theoretic interactive retrieval framework for implicit user modeling.
In Section 4, we present the design and implementation of an in-
telligent client-side web search agent (UCAIR) that performs eager
implicit feedback. In Section 5, we report our experiment results
using the search agent. Section 6 concludes our work.

2. RELATED WORK
Implicit user modeling for personalized search has been stud-

ied in previous work, but our work differs from all previous work
in several aspects: (1) We emphasize the exploitation of immedi-

ate search context such as the related immediately preceding query
and the viewed documents in the same query session, while most
previous work relies on long-term collection of implicit feedback
information [25]. (2) We perform eager feedback and bring the
benefit of implicit user modeling as soon as any new implicit feed-
back information is available, while the previous work mostly ex-
ploits long-term implicit feedback [10]. (3) We propose a retrieval
framework to integrate implicit user modeling with the interactive
retrieval process, while the previous work either studies implicit
user modeling separately from retrieval [3] or only studies specific
retrieval models for exploiting implicit feedback to better match a
query with documents [23, 27, 22]. (4) We develop and evaluate
a personalized Web search agent with online user studies, while
most existing work evaluates algorithms offline without real user
interactions.

Currently some search engines provide rudimentary personaliza-
tion, such as Google Personalized web search [6], which allows
users to explicitly describe their interests by selecting from pre-
defined topics, so that those results that match their interests are
brought to the top, and My Yahoo! search [16], which gives users
the option to save web sites they like and block those they dis-
like. In contrast, UCAIR personalizes web search through implicit
user modeling without any additional user efforts. Furthermore, the
personalization of UCAIR is provided on the client side. There are
two remarkable advantages on this. First, the user does not need to
worry about the privacy infringement, which is a big concern for
personalized search [26]. Second, both the computation of person-
alization and the storage of the user profile are done at the client
side so that the server load is reduced dramatically [9].

There have been many works studying user query logs [1] or
query dynamics [13]. UCAIR makes direct use of a user’s query
history to benefit the same user immediately in the same search
session. UCAIR first judges whether two neighboring queries be-
long to the same information session and if so, it selects terms from
the previous query to perform query expansion.

Our query expansion approach is similar to automatic query ex-
pansion [28, 15, 5], but instead of using pseudo feedback to expand
the query, we use user’s implicit feedback information to expand
the current query. These two techniques may be combined.

3. OPTIMIZATION IN INTERACTIVE IR
In interactive IR, a user interacts with the retrieval system through

an “action dialogue”, in which the system responds to each user ac-
tion with some system action. For example, the user’s action may
be submitting a query and the system’s response may be returning
a list of 10 document summaries. In general, the space of user ac-
tions and system responses and their granularities would depend on
the interface of a particular retrieval system.

In principle, every action of the user can potentially provide new
evidence to help the system better infer the user’s information need.
Thus in order to respond optimally, the system should use all the
evidence collected so far about the user when choosing a response.
When viewed in this way, most existing search engines are clearly
non-optimal. For example, if a user has viewed some documents on
the first page of search results, when the user clicks on the “Next”
link to fetch more results, an existing retrieval system would still
return the next page of results retrieved based on the original query
without considering the new evidence that a particular result has
been viewed by the user.

We propose to optimize retrieval performance by adapting sys-
tem responses based on every action that a user has taken, and cast
the optimization problem as a decision task. Specifically, at any
time, the system would attempt to do two tasks: (1) User model

updating: Monitor any useful evidence from the user regarding
his/her information need and update the user model as soon as such
evidence is available; (2) Improving search results: Rerank imme-
diately all the documents that the user has not yet seen, as soon
as the user model is updated. We emphasize eager updating and
reranking, which makes our work quite different from any existing
work. Below we present a formal decision theoretic framework for
optimizing retrieval performance through implicit user modeling in
interactive information retrieval.

3.1 A decision-theoretic framework
Let A be the set of all user actions and R(a) be the set of all

possible system responses to a user action a ∈ A. At any time, let
At = (a1, ..., at) be the observed sequence of user actions so far
(up to time point t) and Rt−1 = (r1, ..., rt−1) be the responses that
the system has made responding to the user actions. The system’s
goal is to choose an optimal response rt ∈ R(at) for the current
user action at.

In a retrieval system, the most important factor affecting the
optimality of the system’s response is naturally how well the re-
sponse addresses the user’s information need. Indeed, at any time,
we may assume that the system has some “belief” about what the
user is interested in, which we model through a term vector �x =
(x1, ..., x|V |), where V = {w1, ..., w|V |} is the set of all terms
(i.e., vocabulary) and xi is the weight of term wi. Such a term
vector is commonly used in information retrieval to represent both
queries and documents. For example, the vector-space model, as-
sumes that both the query and the documents are represented as
term vectors and the score of a document with respect to a query
is computed based on the similarity between the query vector and
the document vector [21]. In a language modeling approach, we
may also regard the query unigram language model [12, 29] or the
relevance model [14] as a term vector representation of the user’s
information need. Intuitively, �x would assign high weights to terms
that characterize the topics which the user is interested in.

Another component in our user model is the documents that the
user has already viewed. Obviously, even if a document is relevant,
if the user has already seen the document, it would not be useful
to present the same document again. We thus introduce another
variable S ⊂ D (D is the whole set of documents in the collec-
tion) to denote the subset of documents in the search results that
the user has already seen/viewed. In general, at time t, we may
represent a user model as M = (S, �x, At, Rt−1), where S is the
seen documents and �x is the system’s “understanding” of the user’s
information need.

To case choosing an optimal system response for any user ac-
tion a as a statistical decision problem, we introduce a loss function
L(a, r,M) ∈ �, defined on the space of responses (i.e., r ∈ R(a))
and user models. The loss function encodes our decision prefer-
ences and assesses the optimality of responding with r when the
current user model is M (in particular, the current belief of the
user’s information need is �x) and the current user action is a. Since
we can never be sure about the user’s information need �x, we treat
�x and M both as random variables. With such a set up, accord-
ing to Bayesian decision theory, the optimal decision at time t is to
choose a response that minimizes the Bayes risk, i.e.,

r∗t = argminr∈R(at)

�
M

L(at, r,M)P (M|U,D, At, Rt−1)dM
(1)

where P (M|U,D, At, Rt−1) is the posterior probability of the
user model given all the observations about the user U we have
made up to time t. The variable U refers to any user factors that we

want to model (e.g., readability).
Leaving aside how to define and estimate these probabilistic mod-

els and the loss function, we can see that such a decision-theoretic
formulation suggests that an optimal retrieval system should update
its belief about the user model (i.e., P (M|U,D, At, Rt−1)) in re-
sponse to every user action and always choose a response based on
the most current belief. For example, when a user clicks on a docu-
ment link to view its content, the action should trigger an update on
the system’s model about the user’s information need, based on the
assumption that the displayed information about this document is
attractive to the user and thus is indicative of the user’s information
need.

To simplify the computation of Equation 1, let us assume that the
posterior probability mass P (M|U,D, At, Rt−1) is mostly con-
centrated on the mode M∗ = argmaxM P (M|U,D, At, Rt−1).
We can then approximate the integral with the value of the loss
function at M∗. That is,

r∗t ≈ argminr∈R(at)L(at, r,M∗) (2)

= argminr∈R(at)L(at, r, S, �x∗, At, Rt−1) (3)

where �x∗ = argmax�x P (�x|U,D, At, Rt−1).
Thus, the decision theoretic framework suggests that, in order

to choose the optimal response to at, the system performs two
tasks: (1) compute the current user information model and obtain
�x∗ based on all the useful information. (2) choose a response rt to
minimize the loss function value L(at, rt, S, �x∗, At, Rt−1). Note
that our framework is quite general since we can potentially model
any kind of user actions and system responses. In most cases, as we
may expect, the system’s response is some ranking of documents,
i.e., for most actions a, R(a) consists of all the possible rankings
of the unseen documents, and the decision problem boils down to
choosing the best ranking of unseen documents based on the most
current user model. When a is the action of submitting a keyword
query, such a response is exactly what a current retrieval system
would do. However, we can easily imagine that a more intelligent
web search engine would respond to a user’s clicking of the “Next”
link (to fetch more unseen results) with a more optimized ranking
of documents based on any viewed documents in the current page
of results. In fact, according to our eager updating strategy, we may
even allow a system to respond to a user’s clicking of browser’s
“Back” button after viewing a document in the same way, so that
the user can maximally benefit from implicit feedback. These are
exactly what our UCAIR system does.

3.2 Loss functions
The exact definition of loss function L depends on the responses,

thus is inevitably application-specific. We now briefly discuss some
possibilities when the response is to rank all the unseen documents
and present the top k of them. Let r = (d1, ..., dk) be the top k
documents, S be the set of seen documents by the user, and �x∗ be
the system’s best guess of the user’s information need. We may
simply define the loss associated with r as the negative sum of
the probability that each of the di is relevant, i.e., L(a, r,M) =

−�k
i=1 P (relevant|di). Clearly, in order to minimize this loss

function, the optimal response r would contain the k documents
with the highest probability of relevance, which is intuitively rea-
sonable.

One deficiency of this “top-k loss function” is that it is not sen-
sitive to the internal order of the selected top k documents, so
switching the ranking order of a non-relevant document and a rel-
evant ones would not affect the loss, which is unreasonable. To
model ranking, we can introduce a factor of the user model – the
probability of each of the k documents being viewed by the user,

P (view|di), and define the following “ranking loss function”:

L(a, r,M) = −
k�

i=1

P (view|di)P (relevant|di)

Since in general, if di is ranked above dj (i.e., i < j), P (view|di) >
P (view|dj), this loss function would favor a decision to rank rel-
evant documents above non-relevant ones, as otherwise, we could
always switch di with dj to reduce the loss value. Thus the sys-
tem should simply perform a regular retrieval and rank documents
according to the probability of relevance [18].

Depending on the user’s retrieval preferences, there can be many
other possibilities. For example, if the user does not want to see
redundant documents, the loss function should include some re-
dundancy measure on r based on the already seen documents S.

Of course, when the response is not to choose a ranked list of
documents, we would need a different loss function. We discuss
one such example that is relevant to the search agent that we im-
plement. When a user enters a query qt (current action), our search
agent would attempt to expand the query (i.e., adding new words to
the query) based on the preceding query qt−1 in case qt−1 and qt

are related. In this case, a response r can be any subset of terms T
in our vocabulary V . Note that the ultimate system response would
be documents retrieved using the expanded query, but if our search
system relies on some standard algorithm/search engine to actually
carry out search, the system’s major decision would be really on
the choice of terms for query expansion.

Our loss function thus should be defined on T . One possibility
is

L(a, r,M) = L(qt, T, S, �x∗, At, Rt−1)

= −δ(related(qt−1, qt)) ×
|V |�
i=1

δ(freq(ti, rt−1) ∗ freq(ti, r
′
t) > θ)

+(1 − δ(related(qt−1, qt)))|T |
where δ(x) is an indicator function, which is equal to 1 if x is

true and 0 otherwise. freq(ti, rt−1) is the frequency of term ti in
the results for the previous query and freq(ti, r

′
t) is the frequency

of term ti in the “tentative” retrieval results for the current query
qt without query expansion. θ is a frequency threshold. This loss
function basically says that if the two queries are related, then the
loss is smaller if we add to T a term ti which has a high frequency
in both the previous query results and the tentative results for the
current query, whereas if the two queries are unrelated, then the
loss is the smallest if we let T be the set of terms in qt . It is not
hard to see that according to this loss function, the optimal decision
rule of choosing the subset of terms to be added to qt would be to
first decide whether the two queries are related. If they are, add
the overlapping terms in the retrieval results of the two queries to
T , but if they are not, do not add any term to T . Whether the two
queries are related can be decided based on some standard retrieval
formula, which essentially matches each query’s retrieval results to
see if their similarity is sufficiently high.

While this loss function is fairly heuristic, it shows the possibility
of using our framework to model different kinds of responses.

3.3 Implicit user modeling
Implicit user modeling is captured in our framework through

the computation of �x∗ = argmax�x P (�x|U,D, At, Rt−1), i.e., the
system’s current belief of what the user’s information need is. Here
again there may be many possibilities, leading to different algo-
rithms for implicit user modeling. We now discuss a few of them.

First, when two consecutive queries are related, the previous
query can be exploited to enrich the current query and provide more
search context to help disambiguation. For this purpose, instead of
performing query expansion as we did in the previous section, we
could also compute an updated �x∗ based on the previous query and
retrieval results. The computed new user model can then be used to
rank the documents with a standard information retrieval model.

Second, we can also infer a user’s interest based on the sum-
maries of the viewed documents. When a user is presented with a
list of summaries of top ranked documents, if the user chooses to
skip the first n documents and to view the (n+1)-th document, we
may infer that the user is not interested in the displayed summaries
for the first n documents, but is attracted by the displayed summary
of the (n + 1)-th document. We can thus use these summaries as
negative and positive examples to learn a more accurate user model
�x∗. Here many standard relevance feedback techniques can be ex-
ploited [19, 20]. Note that we should use the displayed summaries,
as opposed to the actual contents of those documents, since it is
possible that the displayed summary of the viewed document is
relevant, but the document content is actually not. Similarly, a dis-
played summary may mislead a user to skip a relevant document.
Inferring user models based on such displayed information, rather
than the actual content of a document is an important difference
between UCAIR and some other similar systems.

In UCAIR, both of these strategies for inferring an implicit user
model are implemented.

4. UCAIR: A PERSONALIZED
SEARCH AGENT

4.1 Design
In this section, we present a client-side web search agent called

UCAIR, in which we implement some of the methods we discussed
in the previous section for performing personalized search through
implicit user modeling. UCAIR is a web browser plug-in that acts
as a proxy for web search engines. Currently, it is only imple-
mented for Internet Explorer and Google, but it is a matter of engi-
neering to make it running on other web browsers and interact with
other search engines.

The issue of privacy is a primary obstacle for deploying any real
world applications involving serious user modeling, such as per-
sonalized search. For this reason, UCAIR is strictly running as a
client-side search agent, as opposed to server-side software. This
way, the captured user information always resides on the computer
that the user is using, thus the user does not need to release any in-
formation to the outside. Client-side personalization also allows the
system to easily observe a lot of user information that may not be
easily available to a server. Furthermore, performing personalized
search on the client-side is more scalable than on the server-side,
since the overhead of computation and storage is distributed among
clients.

As shown in Figure 1, the UCAIR toolbar has 3 major compo-
nents: (1) The (implicit) user modeling module captures a user’s
search context and history information, including the submitted
queries and any clicked search results and infers search session
boundaries. (2) The query modification module selectively im-
proves the query formulation according to the current user model.
(3) The result re-ranking module re-ranks any unseen search results
immediately whenever the user model is updated.

In UCAIR, we consider four basic user actions: (1) submitting a
keyword query; (2) viewing a document; (3) clicking the “Back”
button; (4) clicking the “Next” link on a result page. For each

Search
Engine
(e.g.,

G
oogle)

Search H
istory

Log
(e.g.,pastqueries,

C
licked results)

Q
uery

M
odification

R
esult

R
e-R

anking

U
ser

M
odeling

R
esult B

uffer

U
C

A
IR

U

ser
query

results

view

query

results

F
igure

1:
U

C
A

IR
architecture

of
these

four
actions,

the
system

responds
w

ith,
respectively,

(1)
generating

a
ranked

list
of

results
by

sending
a

possibly
expanded

query
to

a
search

engine;
(2)

updating
the

inform
ation

need
m

odel
�x

;(3)
reranking

the
unseen

results
on

the
currentresultpage

based
on

the
current

m
odel

�x
;

and
(4)

reranking
the

unseen
pages

and
generating

the
nextpage

of
results

based
on

the
currentm

odel
�x

.
B

ehind
these

responses,
there

are
three

basic
tasks:

(1)
D

ecide
w

hether
the

previous
query

is
related

to
the

currentquery
and

if
so

expand
the

currentquery
w

ith
usefulterm

s
from

the
previous

query
or

the
results

of
the

previous
query.

(2)
U

pdate
the

inform
ation

need
m

odel
�x

based
on

a
new

ly
clicked

docum
ent

sum
m

ary.
(3)

R
erank

a
set

of
unseen

docum
ents

based
on

the
current

m
odel

�x
.

B
elow

w
e

describe
our

algorithm
s

for
each

of
them

.

4.2
Session

B
oundary

D
etection

and
Q

uery
E

xpansion
To

effectively
exploit

previous
queries

and
their

corresponding
clickthrough

inform
ation,U

C
A

IR
needs

to
judge

w
hether

tw
o

ad-
jacent

queries
belong

to
the

sam
e

search
session

(i.e.,
detect

ses-
sion

boundaries).
E

xisting
w

ork
on

session
boundary

detection
is

m
ostly

in
the

contextof
w

eb
log

analysis
(e.g.,[8]),and

uses
statis-

tical
inform

ation
rather

than
textual

features.
Since

our
client-side

agent
does

not
have

access
to

server
query

logs,
w

e
m

ake
session

boundary
desions

based
on

textualsim
ilarity

betw
een

tw
o

queries.
B

ecause
related

queries
do

not
necessarily

share
the

sam
e

w
ords

(e.g.,“java
island”

and
“travel

Indonesia”),
it

is
insufficient

to
use

only
query

text.
T

herefore
w

e
use

the
search

results
of

the
tw

o
queries

to
help

decide
w

hetherthey
are

topically
related.Forexam

-
ple,for

the
above

queries
“java

island”
and

“travelIndonesia”’,the
w

ords
“java”,“bali”,“island”,”indonesia”

and
”travel”

m
ay

occur
frequently

in
both

queries’
search

results,yielding
a

high
sim

ilarity
score.

W
e

only
use

the
titles

and
sum

m
aries

of
the

search
results

to
cal-

culate
the

sim
ilarity

since
they

are
available

in
a

retrieved
search

result
page

and
fetching

the
full

text
of

every
result

page
w

ould
significantly

slow
dow

n
the

process.
To

com
pensate

for
the

terse-
ness

of
titles

and
sum

m
aries,

w
e

retrieve
m

ore
results

than
a

user
w

ould
norm

ally
view

for
the

purpose
of

detecting
session

bound-
aries

(typically
50

results).
T

he
sim

ilarity
betw

een
the

previous
query

q ′
and

the
current

query
q

is
com

puted
as

follow
s.L

et{
s ′1 ,s ′2 ,...,s ′n

′ }
and{

s
1 ,s

2 ,...,s
n }

be
the

result
sets

for
the

tw
o

queries.
W

e
use

the
pivoted

norm
al-

ization
T

F-ID
F

w
eighting

form
ula

[24]
to

com
pute

a
term

w
eight

vector
�s

i
for

each
result

s
i .W

e
define

the
average

result�s
a

v
g

to
be

the
centroid

of
allthe

resultvectors,i.e.,
(�s

1
+

�s
2

+
...

+
�s

n
)/

n
.

T
he

cosine
sim

ilarity
betw

een
the

tw
o

average
results

is
calculated

as

�s ′a
v
g ·�s

a
v
g / �

�s ′ 2a
v
g ·�s

2a
v
g

Ifthe
sim

ilarity
value

exceeds
a

predefined
threshold,the

tw
o

queries
w

illbe
considered

to
be

in
the

sam
e

inform
ation

session.
If

the
previous

query
and

the
current

query
are

found
to

belong
to

the
sam

e
search

session,
U

C
A

IR
w

ould
attem

p
to

expand
the

current
query

w
ith

term
s

from
the

previous
query

and
its

search
results.

Specifically,
for

each
term

in
the

previous
query

or
the

corresponding
search

results,
if

its
frequency

in
the

results
of

the
current

query
is

greater
than

a
preset

threshold
(e.g.

5
results

out
of

50),then
the

term
w

ould
be

added
to

the
current

query
to

form
an

expanded
query.

In
this

case,U
C

A
IR

w
ould

send
this

expanded
query

rather
than

the
original

one
to

the
search

engine
and

return
the

results
corresponding

to
the

expanded
query.C

urrently,U
C

A
IR

only
uses

the
im

m
ediate

preceding
query

for
query

expansion;
in

principle,w
e

could
exploitallrelated

pastqueries.

4.3
Inform

ation
need

m
odelupdating

Suppose
at

tim
e

t,
w

e
have

observed
that

the
user

has
view

ed
k

docum
ents

w
hose

sum
m

aries
are

s
1 ,...,s

k .
W

e
update

our
user

m
odelby

com
puting

a
new

inform
ation

need
vectorw

ith
a

standard
feedback

m
ethod

in
inform

ation
retrieval

(i.e.,R
occhio

[19]).
A

c-
cording

to
the

vector
space

retrievalm
odel,each

clicked
sum

m
ary

c
i

can
be

represented
by

a
term

w
eight

vector
�c
i

w
ith

each
term

w
eighted

by
a

T
F-ID

F
w

eighting
form

ula
[21].

R
occhio

com
putes

the
centroid

vector
of

allthe
sum

m
aries

and
interpolates

itw
ith

the
originalquery

vector
to

obtain
an

updated
term

vector.T
hatis,

�x
=

α
�q

+
(1−

α
)
1k

k
�i=

1

�c
i

w
here

�q
is

the
query

vector
and

α
is

a
param

eter
that

controls
the

influence
ofthe

clicked
sum

m
aries

on
the

inferred
inform

ation
need

m
odel.

In
our

experim
ents,

α
is

setto
0
.5.N

ote
thatw

e
update

the
inform

ation
need

m
odelw

henever
the

user
view

s
a

docum
ent.

4.4
R

esult
R

eranking
In

general,w
e

w
antto

rerank
allthe

unseen
results

as
soon

as
the

user
m

odelis
updated.

C
urrently,U

C
A

IR
im

plem
ents

reranking
in

tw
o

cases,corresponding
to

w
hen

a
user

clicks
on

the
“B

ack”
and

“N
ext”

buttons
in

the
Internet

E
xplorer.

In
both

cases,the
current

(updated)
user

m
odelw

ould
be

used
to

rerank
the

unseen
results

so
thatthe

user
w

ould
see

im
proved

search
results

im
m

ediately.
To

rerank
any

unseen
docum

ent
sum

m
aries,

U
C

A
IR

uses
the

standard
vector

space
retrieval

m
odel

and
scores

each
sum

m
ary

based
on

the
sim

ilarity
ofthe

resultand
the

currentuserinform
ation

need
vector

�x
[21].

Since
im

plicitfeedback
is

not
com

pletely
reli-

able,w
e

bring
up

only
a

sm
allnum

ber
(e.g.

5)
of

highestreranked
results

to
be

follow
ed

by
any

originally
high

ranked
results.

5.
E

V
A

L
U

A
T

IO
N

O
F

U
C

A
IR

W
e

now
presentsom

e
results

on
evaluating

the
tw

o
m

ajorU
C

A
IR

functions:
selective

query
expansion

and
resultreranking

based
on

user
clickthrough

data.

5.1
Sam

ple
results

T
he

query
expansion

strategy
im

plem
ented

in
U

C
A

IR
is

inten-
tionally

conservative
to

avoid
m

isinterpretation
ofim

plicituserm
od-

els.
In

practice,
w

henever
it

chooses
to

expand
the

query,
the

ex-
pansion

usually
m

akes
sense.In

Table
1,w

e
show

how
U

C
A

IR
can

successfully
distinguish

tw
o

differentsearch
contexts

for
the

query

Google result (user query = “java map”) UCAIR result (user query =“java map”)
previous query = “travel Indonesia” previous query = “hashtable”
expanded user query = “java map Indonesia” expanded user query = “java map class”

1 Java map projections of the world ... Lonely Planet - Indonesia Map Map (Java 2 Platform SE v1.4.2)
www.btinternet.com/ se16/js/mapproj.htm www.lonelyplanet.com/mapshells/... java.sun.com/j2se/1.4.2/docs/...

2 Java map projections of the world ... INDONESIA TOURISM : CENTRAL JAVA - MAP Java 2 Platform SE v1.3.1: Interface Map
www.btinternet.com/ se16/js/oldmapproj.htm www.indonesia-tourism.com/... java.sun.com/j2se/1.3/docs/api/java/...

3 Java Map INDONESIA TOURISM : WEST JAVA - MAP An Introduction to Java Map Collection Classes
java.sun.com/developer/... www.indonesia-tourism.com/ ... www.oracle.com/technology/...

4 Java Technology Concept Map IndoStreets - Java Map An Introduction to Java Map Collection Classes
java.sun.com/developer/onlineTraining/... www.indostreets.com/maps/java/ www.theserverside.com/news/...

5 Science@NASA Home Indonesia Regions and Islands Maps, Bali, Java, ... Koders - Mappings.java
science.nasa.gov/Realtime/... www.maps2anywhere.com/Maps/... www.koders.com/java/

6 An Introduction to Java Map Collection Classes Indonesia City Street Map,... Hibernate simplifies inheritance mapping
www.oracle.com/technology/... www.maps2anywhere.com/Maps/... www.ibm.com/developerworks/java/...

7 Lonely Planet - Java Map Maps Of Indonesia tmap 30.map Class Hierarchy
www.lonelyplanet.com/mapshells/ www.embassyworld.com/maps/... tmap.pmel.noaa.gov/...

8 ONJava.com: Java API Map Maps of Indonesia by Peter Loud Class Scope
www.onjava.com/pub/a/onjava/api map/ users.powernet.co.uk/... jalbum.net/api/se/datadosen/util/Scope.html

9 GTA San Andreas : Sam Maps of Indonesia by Peter Loud Class PrintSafeHashMap
www.gtasanandreas.net/sam/ users.powernet.co.uk/mkmarina/indonesia/ jalbum.net/api/se/datadosen/...

10 INDONESIA TOURISM : WEST JAVA - MAP indonesiaphoto.com Java Pro - Union and Vertical Mapping of Classes
www.indonesia-tourism.com/... www.indonesiaphoto.com/... www.fawcette.com/javapro/...

Table 1: Sample results of query expansion

“java map”, corresponding to two different previous queries (i.e.,
“travel Indonesia” vs. “hashtable”). Due to implicit user modeling,
UCAIR intelligently figures out to add “Indonesia” and “class”,
respectively, to the user’s query “java map”, which would other-
wise be ambiguous as shown in the original results from Google
on March 21, 2005. UCAIR’s results are much more accurate than
Google’s results and reflect personalization in search.

The eager implicit feedback component is designed to immedi-
ately respond to a user’s activity such as viewing a document. In
Figure 2, we show how UCAIR can successfully disambiguate an
ambiguous query “jaguar” by exploiting a viewed document sum-
mary. In this case, the initial retrieval results using “jaguar” (shown
on the left side) contain two results about the Jaguar cars followed
by two results about the Jaguar software. However, after the user
views the web page content of the second result (about “Jaguar
car”) and returns to the search result page by clicking “back” but-
ton, UCAIR automatically nominates two new search results about
Jaguar cars (shown on the right side), while the original two results
about Jaguar software are pushed down on the list (unseen from the
picture).

5.2 Quantitative Evaluation
To further evaluate UCAIR quantitatively, we conduct some user

studies on the effectiveness of the eager implicit feedback compo-
nent. It is a challenge to quantitatively evaluate the potential per-
formance improvement of our proposed model and UCAIR over
Google in an unbiased way [7]. Here, we design a user study,
in which participants would do normal web search and judge a
randomly and anonymously mixed set of results from Google and
UCAIR at the end of the search session; participants do not know
whether a result comes from Google or UCAIR.

We recruited 6 graduate students for this user study, who have
different backgrounds (3 computer science, 2 biology, and 1 chem-
istry). We use query topics from TREC 1 2004 Terabyte track [2]
and TREC 2003 Web track [4] topic distillation task in the way to
be described below.

An example topic from TREC 2004 Terabyte track appears in
Figure 3. The title is a short phrase and may be used as a query
to the retrieval system. The description field provides a slightly
longer statement of the topic requirement, usually expressed as a
single complete sentence or question. Finally the narrative supplies
additional information necessary to fully specify the requirement,
expressed in the form of a short paragraph.

Initially, each participant would browse 50 topics either from

1Text REtrieval Conference: http://trec.nist.gov/

<top>

<num> Number: 716

<title> Spammer arrest sue

<desc> Description: Have any spammers
been arrested or sued for sending unsolicited
e-mail?

<narr> Narrative: Instances of arrests,
prosecutions, convictions, and punishments
of spammers, and lawsuits against them are
relevant. Documents which describe laws to
limit spam without giving details of lawsuits
or criminal trials are not relevant.

</top>

Figure 3: An example of TREC query topic, expressed in a
form which might be given to a human assistant or librarian

Terabyte track or Web track and pick 5 or 7 most interesting topics.
For each picked topic, the participant would essentially do the nor-
mal web search using UCAIR to find many relevant web pages by
using the title of the query topic as the initial keyword query. Dur-
ing this process, the participant may view the search results and
possibly click on some interesting ones to view the web pages, just
as in a normal web search. There is no requirement or restriction
on how many queries the participant must submit or when the par-
ticipant should stop the search for one topic. When the participant
plans to change the search topic, he/she will simply press a button
to evaluate the search results before actually switching to the next
topic.

At the time of evaluation, up to 30 highly ranked results from
Google and UCAIR (some are overlapping) are randomly mixed
together so that the participant would not know whether a result
comes from Google or UCAIR. These are the results that the user
would have seen had he/she decided to continue the search with
Google and UCAIR, respectively. The participant would then judge
the relevance of these results. We measure precision at top n (n =
5, 10, 20, 30) documents of Google and UCAIR. We also evaluate
precisions at different recall levels.

Altogether, 368 documents judged as relevant from Google search

Figure 2: Screen shots for result reranking

results and 429 documents judged as relevant from UCAIR by par-
ticipants. Scatter plots of precision at top 10 and top 20 documents
are shown in Figure 4 and Figure 5 respectively (The scatter plot
of precision at top 30 documents is very similar to precision at top
20 documents). Each point of the scatter plots represents the preci-
sions of Google and UCAIR on one query topic.

Table 2 shows the average precision at top n documents among
32 topics. From Figure 4, Figure 5 and Table 2, We see that the
search results from UCAIR are consistently better than those from
Google by all the measures. Moreover, the performance improve-
ment is more dramatic for precision at top 20 documents than that
at precision at top 10 documents, indicating that implicit feedback
with clickthrough data helps recall more than the precision at top
ranks, which makes sense intuitively, and is similar to what hap-
pens in pseudo feedback.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

UCAIR prec@10

G
oo

gl
e

pr
ec

@
10

Scatterplot of Precision at Top 10 Documents

Figure 4: Precision at top 10 documents of UCAIR and Google

The plot in Figure 6 shows the precision-recall curves for UCAIR
and Google, where it is clearly seen that the performance of UCAIR
is consistently and considerably better than that of Google at all
levels of recall.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

UCAIR prec@20

G
oo

gl
e

pr
ec

@
20

Scatterplot of Precision at Top 20 documents

Figure 5: Precision at top 20 documents of UCAIR and Google

Ranking Method prec@5 prec@10 prec@20 prec@30
Google 0.538 0.472 0.377 0.308
UCAIR 0.581 0.556 0.453 0.375

Improvement 8.0% 17.8% 20.2% 21.8%

Table 2: Table of average precision at top n documents for 32
query topics

6. CONCLUSIONS
In this paper, we studied how to exploit implicit user modeling to

intelligently personalize information retrieval and improve search
accuracy. Unlike most previous work, we emphasize the use of im-
mediate search context and implicit feedback information as well
as eager updating of search results to maximally benefit a user. We
presented a decision-theoretic framework for optimizing interac-
tive information retrieval based on eager user model updating, in
which the system responds to every action of the user by choos-
ing a system action to optimize a utility function. We further pro-
pose specific techniques to capture and exploit two types of implicit
feedback information: (1) identifying related immediately preced-
ing query and using the query and the corresponding search results
to select appropriate terms to expand the current query, and (2)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

recall

pr
ec

is
io

n
Precision−Recall curves

Google Result
UCAIR Result

Figure 6: Precision at top 20 result of UCAIR and Google

exploiting the viewed document summaries to immediately rerank
any documents that have not yet been seen by the user. Using these
techniques, we develop a client-side web search agent (UCAIR)
on top of a popular search engine (Google). Experiments on web
search show that our search agent can improve search accuracy over
Google. Since the implicit information we exploit already naturally
exists through user interactions, the user does not need to make any
extra effort. The developed search agent thus can improve exist-
ing web search performance without any additional effort from the
user. We plan to distribute UCAIR for public use in the summer of
2005.

7. ACKNOWLEDGEMENT
We thank the 6 participants of our evaluation experiments. This

work was supported in part by the National Science Foundation
grants IIS-0347933 and IIS-0428472.

8. REFERENCES
[1] S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman,

and O. Frieder. Hourly analysis of a very large topically
categorized web query log. In Proceedings of SIGIR 2004,
2004.

[2] C. Clarke, N. Craswell, and I. Soboroff. Overview of the
TREC 2004 terabyte track. In In Proceedings of The
Thirteenth Text Retrieval Conference(TREC2004), 2004.

[3] M. Claypool, P. Le, M. Waseda, and D. Brown. Implicit
interest indicators. In Proceedings of Intelligent User
Interfaces 2001, pages 33–40, 2001.

[4] N. Craswell, D. Hawking, R. Wilkinson, and M. Wu.
Overview of the TREC 2003 web track. In In Proceedings of
The Twelfth Text Retrieval Conference(TREC2003), 2003.

[5] W. B. Croft, S. Cronen-Townsend, and V. Larvrenko.
Relevance feedback and personalization: A language
modeling perspective. In Proeedings of Second DELOS
Workshop: Personalisation and Recommender Systems in
Digital Libraries, 2001.

[6] Google Personalized. http://labs.google.com/personalized.
[7] D. Hawking, N. Craswell, P. B. Thistlewaite, and D. Harman.

Results and challenges in web search evaluation. Computer
Networks, 31(11-16):1321–1330, 1999.

[8] X. Huang, F. Peng, A. An, and D. Schuurmans. A new
dynamic web log session boundary detection based on
statistical language modeling. Journal of the American
Society for Information Science and Technology,
55(14):1290–1303, 2004.

[9] G. Jeh and J. Widom. Scaling personalized web search. In
Proceedings of WWW 2003, 2003.

[10] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of SIGKDD 2002, 2002.

[11] D. Kelly and J. Teevan. Implicit feedback for inferring user
preference: A bibliography. SIGIR Forum, 2003.

[12] J. Lafferty and C. Zhai. Document language models, query
models, and risk minimization for information retrieval. In
Proceedings of SIGIR’01, pages 111–119, Sept 2001.

[13] T. Lau and E. Horvitz. Patterns of search: Analyzing and
modeling web query refinement. In Proceedings of the
Seventh International Conference on User Modeling, 1999.

[14] V. Lavrenko and B. Croft. Relevance-based language models.
In Proceedings of SIGIR’01, pages 120–127, Sept 2001.

[15] M. Mitra, A. Singhal, and C. Buckley. Improving automatic
query expansion. In Proceedings of SIGIR 1998, 1998.

[16] My Yahoo! http://mysearch.yahoo.com.
[17] G. Nunberg. As google goes, so goes the nation. New York

Times, May 2003.
[18] S. E. Robertson. The probability ranking principle in ı̊.

Journal of Documentation, 33(4):294–304, Dec. 1977.
[19] J. J. Rocchio. Relevance feedback in information retrieval. In

The SMART Retrieval System: Experiments in Automatic
Document Processing, pages 313–323. Prentice-Hall Inc.,
1971.

[20] G. Salton and C. Buckley. Improving retrieval performance
by retrieval feedback. Journal of the American Society for
Information Science, 41(4), 1990.

[21] G. Salton and M. J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, 1983.

[22] X. Shen, B. Tan, and C. Zhai. Context-sensitive information
retrieval using implicit feedback. In Proceedings of SIGIR
2005, 2005.

[23] X. Shen and C. Zhai. Exploiting query history for document
ranking in interactive information retrieval (poster). In
Proceedings of SIGIR 2003, 2003.

[24] A. Singhal. Modern information retrieval: A brief overview.
Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 24(4):35–43, 2001.

[25] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web
search based on user profile constructed without any effort
from users. In Proceedings of WWW 2004, 2004.

[26] E. Volokh. Personalization and privacy. Communications of
the ACM, 43(8):84–88, 2000.

[27] R. W. White, J. M. Jose, C. J. van Rijsbergen, and
I. Ruthven. A simulated study of implicit feedback models.
In Proceedings of ECIR 2004, pages 311–326, 2004.

[28] J. Xu and W. B. Croft. Query expansion using local and
global document analysis. In Proceedings of SIGIR 1996,
1996.

[29] C. Zhai and J. Lafferty. Model-based feedback in KL
divergence retrieval model. In Proceedings of the CIKM
2001, 2001.

