
The Role of Refactorings in API Evolution

Danny Dig and Ralph Johnson
Department of Computer Science

University of Illinois at Urbana-Champaign
201 N. Goodwin

Urbana, IL 61801, USA
{dig, johnson}@cs.uiuc.edu

Abstract

Frameworks and libraries change their APIs. Migrat-
ing an application to the new API is tedious and disrupts
the development process. Although some tools and ideas
[5, 14, 23, 26] have been proposed to solve the evolution
of APIs, most updates are done manually. To better under-
stand the requirements for migration tools we studied the
API changes of three frameworks and one library. We dis-
covered that the breaking changes are not random, but they
tend to fall into particular categories. Over 80% of these
changes are refactorings. This suggests that refactoring-
based migration tools should be used to effectively update
applications.

1. Introduction

Part of maintaining a software system is updating it to
use the latest version of its components. Developers like to
reuse software components because it lets them build a sys-
tem more quickly, but then the system depends on the com-
ponents that they reused. Ideally, the interface to a com-
ponent never changes. In practice, new versions of soft-
ware components often change their interfaces and so re-
quire systems that use the components to be changed before
the new versions can be used.

Software evolution has long been a topic of study [16].
Others [4, 19] have focused on why software changes; we
want to discover how it changes. Our goal is to reduce the
burden of reuse on maintenance. This requires either reduc-
ing the amount of change or reducing the cost of adapting
to change.

Although there are principles of software evolution that
are true for software in any language, programming lan-
guages have an impact on software evolution. We are par-
ticularly interested in the evolution of object-oriented sys-
tems. Classes contain a mixture of private and public meth-

ods. The public methods are the ones that are supposed to be
used by application programmers. The set of public meth-
ods of a class library make up its API (Application Pro-
grammer Interface). Changes to private methods and classes
do not pose a problem to application programmers; they
only care about changes to the API.

An important kind of change to object-oriented software
is a refactoring[8]. Refactorings are program transforma-
tions that change the structure of a program but not its be-
havior. Refactorings include changing the names of classes
and methods, moving methods and variables from one class
to another, and splitting methods or classes. A refactoring
that changes the interface of an object must change all its
clients to use the new interface. When a class library that is
reused in many systems is refactored, the systems that reuse
it must change. But often those developing the library do not
know all the systems that reuse it. The new version of the li-
brary is a refactoring from their point of view, but not from
the point of view of the application developers who are their
customers.

The original work on refactoring was motivated by
framework evolution. Opdyke [21] looked at the Choices
operating system and the kind of refactorings that occurred
as it evolved. Graver [12] studied an object-oriented com-
piler framework as it went through three iterations. Tokuda
and Batory [25] describe the evolution of two frame-
works, focusing on how large architectural changes can be
accomplished by a sequence of refactorings.

However, none of these studies determined the fraction
of changes that are refactorings. Of the changes that cause
problems for maintainers, what fraction are refactorings?
Are refactorings as important in practice as these authors
imply? The authors all discuss tool support, though usually
from the point of view of a library developer, not of a li-
brary user. However, CatchUp [13] is a tool that uses de-
scriptions of refactorings to help application developers mi-
grate their applications to a new version of a library. How
much of the component evolution can be expressed in terms

of refactorings? The only way to tell is to look at changes
in a component over time and to try to categorize them.

In this paper, we look at three frameworks and one li-
brary (see Table 1 and Section 2) that are developed by four
different groups. Three are commonly used open source and
one is a proprietary framework. All the case-studies are ma-
ture software, namely components that have been in pro-
duction for more than three years. By now they have been
proven themselves to be useful and therefore they acquired
a large customer base. At this stage, API changes have the
potential to break compatibility with a lot of older applica-
tions.

Eclipse Mortgage Struts log4j
3.0 1.2.4 1.3

Size(KLOC) 1,923 52 97 62
API Classes 2,579 174 435 349

BreakingChanges 51 11 136 38
ChangeLogs 24 - 16 4

Table 1. Size of the studied Frameworks and
Libraries. Size of the entire system is given
in thousands of lines of code. The number of
classes in API denote only those classes that
are meant to be reused. ChangeLogs mea-
sures the size (in pages) of documents de-
scribing the API changes. The logs were pro-
vided by the component developers.

We analyze and classify the API changes in the four
systems (Section 3). Some API changes like expansion of
the component through addition of new classes and meth-
ods will not affect existing users. We discard these type of
API changes and only focus on the API changes that break
compatibility with older applications. We learned out that
for the four systems we studied, 84%, 81%, 90% and 97%
of the API breaking changes are refactorings. Most API
changes occur as responsibility is shifted around classes
(e.g. methods or fields moved around) and collaboration
protocol changes (e.g. renaming or changing method signa-
ture). These results made us believe that refactoring plays an
important role as mature frameworks and libraries evolve.

2. Overview of the Case-Studies

This section describes briefly the frameworks that we
used as case-studies. We chose well known frameworks and
libraries from both proprietary and open source realm in or-
der to check whether the production environment affects the
type of API changes. The open source category gives some-
body easy access to the source code so that somebody can

reproduce our experiments. We were unbiased in the selec-
tion of the case studies, only concern being that the systems
would have decent documentation.

For each framework we chose for comparison two major
releases that span large architectural changes. There are two
benefits to choosing major releases as comparison points.
First, it is likely that there will be lots of changes in between
the two versions. Secondly, it is likely that those changes
will be documented thus providing some starting point for a
detailed analysis of the API changes. This section ends with
a description of how we collected the data.

2.1. Eclipse Platform

Eclipse [eclipse.org] was initially developed by IBM
and later released to the open source community. Eclipse
Platform provides many APIs and many different smaller
frameworks. The key framework in Eclipse is a plug-in
based framework that can be used to develop and integrate
software tools. This framework is often used to develop In-
tegrated Development Environments (IDEs). The Eclipse
Platform is written in Java.

We chose two major releases of Eclipse, namely 2.1
(March 2003) and 3.0 (June 2004), the current official re-
lease. Eclipse 3.0 came with some major themes that af-
fected the APIs. The responsiveness theme ensured that
more operations run in background without blocking the
user. New APIs allow long-running operations like builds
and searches to be performed in the background while the
user continues to work.

Another major theme in 3.0 is rich-client plat-
forms. Eclipse was designed as a universal IDE. However
many components of Eclipse are not particularly spe-
cific to IDEs and can be reused in other rich-client ap-
plications (e.g. plug-ins, help system, update manager,
window-based GUIs). This architectural theme involved
factoring out IDE-specific elements. APIs heavily af-
fected by this change are those that made use of the filesys-
tem resources. For instance IWorkbenchPage is an
interface used to open an editor for a file input. All meth-
ods that were resource specific (those that dealt with
opening editors over files) were removed from the inter-
face. A client who opens an editor for a file should con-
vert it first to a generic editor input. Now the interface can
be used by both non-IDE clients (e.g. a mail client that ed-
its the message body) as well as IDE clients.

Currently, the best known instantiations of the frame-
work are the IDEs for Java (Java Development Tool), C/C++
(C Development Tool) and WebTools (for development of
Web-enabled applications). There are thousands of other in-
stantiations if one counts all the plug-ins ever developed for
the Eclipse platform.

2

2.2. Mortgage Framework

A large banking corporation in the Midwest has an im-
portant part of their business focused on mortgages. They
were building a Mortgage framework to leverage existing
financial expertise when writing new applications.

The Mortgage framework allows various banking appli-
cations developed within the company to communicate with
each other and with the existing legacy systems. The frame-
work receives requests from front-end systems or services,
evaluates their requirements and redirects the request to a
specific destination, or destinations such as a pricing engine
or closing cost engine. After receiving an appropriate re-
sponse, the framework refines it for a specific request chan-
nel and then forwards it back to the requestor.

When we visited the banking institution, they were final-
izing the integration between the mortgage framework and
another middleware framework developed independently at
another branch of the bank. Frameworks are designed for
extension not for integration [17]. As a result of the mar-
riage between the two frameworks, the application devel-
opers had to migrate the existing services. The company
reported that the whole integration and upgrading process
lasted a summer. At the time we write this, there are about
50 services that use the framework.

2.3. Struts Framework

Struts [struts.apache.org] is an open source framework
for building Java web applications. The framework is a vari-
ation of Model-View-Controller (MVC) design paradigm.
Struts provides its own Controller component and integrates
with other technologies to provide the Model and the View.

For the Model, Struts can interact with standard data
access technologies, like JDBC and EJB, as well as most
any third-party packages, like Hibernate, iBATIS, or Ob-
ject Relational Bridge. For the View, Struts works well with
JavaServer Pages, as well as Velocity Templates, XSLT, and
other presentation systems. Because of this separation of
concerns, Struts can help control change in a Web project
and promote job specialization.

We chose for comparison version 1.1(June 2003), a ma-
jor past release, and 1.2.4 (September 2004), the latest sta-
ble release. All the API changes reveal consolidation work
that was done in between the two releases. Framework de-
velopers eliminated duplicated code and removed unmain-
tained or buggy code..

2.4. log4j Library

log4j [http://logging.apache.org/log4j/] is a popular Java
library for enabling logging without modifying the appli-
cation binary. It allows the developer to control which log

statements are output with arbitrary granularity by using ex-
ternal configuration files. Logging does have its drawbacks.
It can slow down an application. If too verbose, it can cause
scrolling blindness. To alleviate these concerns, log4j is de-
signed to be reliable, fast and extensible.

log4j uses a logger hierarchy to control which log state-
ments are output. This helps reduce the volume of logged
output and minimize the cost of logging. The target of the
log output can be a file, an OutputStream, a java.io.Writer,
a remote log4j server or a remote Unix Syslog daemon log-
ger among many other output targets.

We chose for comparison version 1.2 (May 2002) and
version 1.3alpha6 (January 2005). The library passed
through an expansionary phase and it grew from 30KLOC
to 62KLOC. The library grew by improving on exist-
ing components (like Chainsaw, a visualization toolkit for
loggers) or adding new components (like support for plug-
ins as a way to extend the library).

2.5. Collecting the Data

Our case-study frameworks are considered medium to
large size (Mortgage is 50 KLOC, Eclipse is roughly 2 mil-
lion LOC). To tackle the API changes in such large systems
we could have used tools. For instance, Demeyer et. all [7]
describe how they used metrics tools to discover refactor-
ings. However, because of preserving backward compati-
bility, most API changes don’t happen overnight but fol-
low a long deprecate-replace-remove cycle. Therefore ob-
solete API can coexist with the new API for a long time.
This introduces enough noise that tools might have mislead
us about the exact kind of change that happened.

Consider for instance a change such as renaming class
Category to class Logger in Log4J. In order to main-
tain compatibility with old clients class Logger (the new
name) inherits from class Category. The constructor of
Category became protected so that users can’t create cat-
egories directly but invoke instead the creational method
getInstance(). This method returns instances of the
new class Logger. Any method in Category that re-
turned on object of type Category became deprecated.
Clients should replace all the references to Categorywith
references to Logger. The two classes still coexist, but
Category will be deleted eventually. Such a three-step
change would have been misinterpreted by a tool, but a hu-
man expert can easily spot this as a renaming.

For these reasons, we chose instead to do a manual
analysis of the API changes. Even for the larger frame-
works, this was feasible because we started from the change
logs that describe the API changes for each release. For
Eclipse we used its help system1, the documents called “In-

1 Section: Eclipse 3.0 Plugin Migration Guide

3

compatibilities between Eclipse 2.1 and 3.0” and “Adopt-
ing 3.0 mechanisms and API”. For Struts we studied the
“Release Notes” for version 1.2.42. For Log4J we studied
“Preparing for log4j version 1.3”3 .

Sometimes the documents would be vague, reading for
example “method M in class X is deprecated”. Because of
the deprecate-replace-remove cycle many types of changes
are masked by the deprecation mechanism. In those cases
we read and compared the two versions of the source code
in order to discover the intent behind the deprecation. When
a method is deprecated it merely delegates to its replace-
ment method. By reading the code we learned whether the
new method is just a renaming of the deprecated method,
whether the intent was to move the method to another class
or whether the deprecated method was replaced by a seman-
tically equivalent method that offers better performance. For
the Mortgage framework we interviewed the framework and
application developers and then studied the source code. We
classify all the breaking API changes from the case-studies
into structural and behavioral changes (qualitative analysis),
then we record how many times each type of change oc-
curred (quantitative analysis).

The current tool support [7, 27, 1, 11] for detecting and
classifying structural evolution is very limited: only a few
types of refactorings (mostly merging and splitting) were
attempted to be detected. Therefore, to do a comprehensive
qualitative analysis of the breaking changes, manual method
seems the only alternative. We double-checked our quan-
titative analysis by using a tool (Van [10]) and heuristics
(like in [7]). For each type of refactoring, we wrote queries
in Van that return those structures suspected of that spe-
cific refactoring. For instance, to detect changes in method
parameters’ types, we searched for methods that have the
same name in both versions of a class, have the same num-
ber of arguments, have the same return type but have differ-
ent signature. After analyzing and eliminating the false pos-
itives, the remaining candidates were found among those
that were already detected from the change logs. Van found
a few other places suspected of refactoring, but the num-
ber is less than 4% of those detected by starting from the
change logs. Also Van missed to detect some places where
a certain refactoring took place. This happened because of
the noise introduced by the deprecate-replace-remove cycle
described above. We could only cross reference our results
for Struts and log4j. The tool did not scale up for Eclipse
and we do not own the source code of proprietary Mort-
gage framework.

2 http://struts.apache.org/userGuide/release-notes-1.2.4.html
3 http://www.qos.ch/logging/preparingFor13.jsp

3. How APIs Change

This section describes the API changes that occurred in
the four case studies. First subsection talks about APIs and
what does it mean for an API change to break compati-
bility with applications. The subsection BREAKING API
CHANGES presents the empirical data gathered from the
breaking changes we noticed in the case studies. The fol-
lowing subsections analyze in detail two kinds of break-
ing changes, namely semantics-preserving changes (struc-
tural changes) and semantics-modifying changes (behav-
ioral modifications).

3.1. API Changes and Compatibility

API is the interface that a component provides to appli-
cation developers and its description is part of the compo-
nent’s documentation. The term has been extended to mean
any component that is supposed to be reused by clients and
thus is expected to be stable.

APIs make use of the visibility rules of the language
in which the component was implemented. For instance in
Java or C++ only members that are declared public or pro-
tected can be part of the API. However, not all classes or
class members that are public are intended to appear in
client code.

Usually there are no language features that distinguish
between public entities that are intended to be part of the
API and public entities that are not. Naming conventions
can be used to identify those components that are “pub-
lished” (to be reused) from those components that are “pub-
lic” but are not intended to be reused [6]. For instance,
Eclipse places a public class that is not API in a pack-
age with “internal” as a prefix. Such a class is fair game
to change without notice.

Over time changes are made to APIs or APIs’ behav-
ior. Depending on how they affect the existing applications,
these API changes can be classified as BREAKING API
CHANGES or NON-BREAKING API CHANGES.

A breaking change would cause an application built with
a version of the framework to fail under a different version.
If the problem is immediately visible, the application fails
to compile or link. However, the application might compile
fine but behave differently at run time. By behavior we mean
functional behavior, e.g. the set of observable outputs for a
given set of inputs. If the only observable difference is that
an application is slightly faster or slower or has a differ-
ent memory footprint we do not consider these changes to
be breaking the application4.

A seemingly non-breaking change such as fixing a bug in
the framework might be a breaking change. If the applica-

4 We go with a loose definition of failure but in embedded systems our
notion of reliability might not be sufficient

4

tion developers worked around the bug, then when the bug
is removed from the framework the application might be-
have differently.

Although it is desirable to maintain compatibility with
older applications, sometimes it is too expensive. A frame-
work is backward compatible if changes in version 1.1
would allow applications built with older versions (say 1.0)
to function correctly under version 1.1.

Although there are a number of techniques used to facil-
itate some changes without breaking the clients[22], break-
ing API changes happen all the time. The next section fo-
cuses on these changes.

3.2. Breaking API Changes

From anecdotal experience with frameworks we noticed
that breaking changes are perceived as extremely disturb-
ing in the development life cycle of framework-based ap-
plications. The application engineers might be in the mid-
dle of development when the introduction of an updated
framework could adversely affect costs and schedules. Un-
less there is a high return-on-investment, application devel-
opers will not want to migrate to the new version of the
framework[15].

Table 2 lists the types of BREAKING API CHANGES

that we observed in the frameworks that we studied.
Based on how many times each type of change oc-
curred, we sorted the rows so that most popular changes ap-
pear first. The first column identifies the type of change.
Those changes in italic font are refactorings. The remain-
ing columns give the number of times each type of change
occurred in the frameworks. Columns Eclipse* (E*) and
Struts* (S*) deal with “recommended” changes. Frame-
work designers marked these as changes that will be
enforced in the next major release. Even though techni-
cally these are not breaking changes for the current release
(they were insulated by deprecation mechanism), we in-
cluded them to offer the trend of breaking changes that are
coming in next versions.

Next two sections categorize the changes in Table 2 ac-
cording to how they affect the semantics of the program.
The structural transformations are semantic-preserving
changes (refactorings) while the behavioral changes are
semantic-modifying.

3.3. Structural Transformations

Next we describe the types of structural changes that we
noticed in the studied frameworks (Table 2). We describe
the changes that occurred in the framework instead of giv-
ing prescriptions about how one developer should migrate
to the new version.

Type of change E E* M S S* L

Moved Method 16 13 - 11 28 9
Moved Field - 45 - 18 2 5

Deleted Method 2 2 - 24 32 -
ChangedArgumentType 5 - 4 18 4 11

Renamed Method 4 - - 16 5 8
Replaced Method Call 1 20 - 8 4 -

New Hook Method 4 2 2 7 - -
Extra Argument 3 2 2 1 1 -
Deleted Class - - - 9 - -
Renamed Field - - - 6 1 -

Changed Return Type 2 - 1 2 - 2
Renamed Class - 1 - 2 - 2
Method Object 3 - - - - -

Pushed Down Method 3 - - - - -
Moved Class - 2 - - - -

Pulled Up Method - - - 1 - -

New Method Contract 3 12 1 8 - 1
Impl.New Interface 1 - 1 5 - -

Changed Event Order 3 - - - - -
New Enum Constant 1 - - - - -

Table 2. Types of BREAKING API CHANGES

and the number of these changes in Eclipse
(E), Mortgage (M) , Struts (S) and log4j (L).
Eclipse* (E*) and Struts* (S*) denote recom-
mended changes, that is changes that will
become breaking changes in future releases.
Those changes in italic font (upper half of the
table) are refactorings.

To improve reusability and maintainability of the frame-
work, often times internal restructuring (refactoring) is
done. Refactorings affect only the structure of the code and
are meant to preserve the functional behavior of the frame-
work. Consider for instance what happens when a method
is renamed.

Framework designers rename an instance method in the
framework. They find and update all the callers and imple-
mentors of the method to reflect the new name. For the
framework itself this change is safe and does not mod-
ify its behavior. However, remote applications that call the
renamed method are broken. Thus a behavior-preserving
change (refactoring) for the framework might lead to a
breaking change for the application.

Most times application code is not available to frame-
work developers when they make structural changes. The
result is that applications might not compile with the new
version of the framework. Once the application developer
solves the compilation problems, the application should be-

5

have as it used to because these changes didn’t introduce
behavioral modifications.

MOVED METHOD. The most common way that instance
methods moved in Eclipse is by becoming class methods
(Java uses static access) in utility classes. The rationale was
to move the layer breaking methods into utility classes to
preserve the convenience of the old methods. Usually the
moved method will take the old home class as an extra ar-
gument. This will ensure that the moved method can access
certain members in the old home class.

In Struts, instance methods remain instance methods af-
ter they move to other classes. Old callers of the method ask
a factory method for an instance of the new home class and
then call the moved method. Other ways that methods got
moved are variations of the Move Method refactoring de-
scribed by Fowler[8].

MOVED FIELD. Encapsulation requires that the variables
that characterize the state of an object are not exposed.
However, sometimes fields are publicly exposed either be-
cause of convenience or because they represent constants.
When fields are placeholders for global constants usually
they are declared as class variables (in Java they have sta-
tic access). In Eclipse, Struts and log4j only fields that were
constants moved to another home class.

DELETED METHOD. Typically this happens after a method
is renamed or moved to another class. For compatibility rea-
sons, framework producers support both the old and new
method for a while. After all the references to old method
were replaced, the method is deleted since it’s a remnant of
the obsolete API.

CHANGED ARGUMENT TYPE. We observed several kinds
of argument type changes.

1. The type of a method argument is replaced with its
supertype in order to make the method more general.
This change might or might not break an existing ap-
plication depending on whether the application calls
any methods that are not visible through the super-
type’s interface.

2. The type of method argument is replaced by another
type while the relationship between the two is ag-
gregation. This is often the case when replacing a
primitive type with an object type (e.g. in Java re-
place int with Integer). Another special case is re-
placing a type with a collection that contains sev-
eral elements of the previous type. In order to regard
these changes as automated refactorings, one needs to
know how to access the member from the wrapper and
how to get the proper wrapper for a member. In the
Mortgage framework the method process(String
message) changed to process(Envelope e)
with Envelope encapsulating the message. Callers

of process() will have to pass an Envelope instead
which is obtained from a factory method. The imple-
mentors of process() should augment their imple-
mentation to match the new type. They will first obtain
the String message out of the Envelope.

RENAMED METHOD, RENAMED CLASS and RENAMED

FIELD are used to give intention revealing, self-explanatory
names to methods, classes and class fields. These refactor-
ings are well described in refactoring catalogs (see [8]).

REPLACED METHOD CALL. The clients of a method
should call another method that is semantically equiv-
alent and is offered in the same class. When there
are no more callers to the original method, it is
usually deleted. In Struts for example, clients of
FieldChecks.validateRange(...) should call
instead FieldChecks.validateIntRange(...).

NEW HOOK METHOD. Framework producers factor out
a method to provide “hot spots” that are to be special-
ized by subclasses (see Template Method in [9]). They add
a new hook method in the super class (usually as an ab-
stract method) that all non-abstract subclasses must over-
ride. We illustrate this with an example from Struts. Method
validate() in class ValidatorForm calls the newly
introduced method getValidationKey():

public ActionErrors validate(
ActionMapping mapping,
HttpServletRequest request) {

...
String validationKey =

getValidationKey(mapping, request);
...

}

public String getValidationKey(
ActionMapping mapping,
HttpServletRequest request) {

return mapping.getAttribute();
}

Subclasses override getValidationKey() to pro-
vide the desired behavior. It might happen that an existing
subclass already has a method with the same signature as
the newly introduced hook method. In this case the method
provided by the inheritor gets captured by the parent class
even though the inheritor did not intend this (see Method
Capture in [24]). Using a refactoring tool to perform this
change would warn one when method capture happens.

EXTRA ARGUMENT. Often two methods signatures are
very similar, they only differ by an argument. The two meth-
ods do similar things but one method can do extra things
by making use of the extra argument. When eliminating
duplicated code, usually the method with fewer arguments

6

will be replaced by the one with more arguments. For the
call sites of the displaced method, this change appears as if
the method gained one more argument. The callers of the
old method with fewer arguments will have to call the new
method and pass a default value for the extra parameter.

Developers of the Mortgage framework decided that
database connections should be reused from a connection
pool rather then being created every time a database oper-
ation was required. In order to persist an object one would
call the following method in the framework:

boolean persist(BusinessObject)

Inside persist method a database connection would
be created. The later version of this method looks like:

boolean persist(BusinessObject,
DBConnection)

When a web service calls this method it will pass along
an existing database connection (in case that it owns one).
When the null object is passed, persist method will cre-
ate a connection on the fly.

DELETED CLASS. Framework producers delete a class
when it is no longer supported or maintained due to lack of
resources or because the implementation is too buggy. In
Struts several classes acted like containers for particular ob-
jects. The container’s name would suggest that it contains
objects of a certain kind(e.g. ActionMappings holds a col-
lection of ActionMapping objects). In a later version the
containers are superceded by general-purpose collec-
tion classes and then deleted.

CHANGED RETURN TYPE. This change is very sim-
ilar to CHANGED ARGUMENT TYPE. We observed
one interesting type change in Eclipse. The return type of
IJavaBreakpointListener.breakpointHit(...)
was changed from boolean to integer to allow listener’s to
vote “don’t care” in addition to “suspend” and “don’t sus-
pend”. A refactoring tool can only swap primitive types if
there is a translation map between the values of the two dif-
ferent types.

METHOD OBJECT. This is a variation on Method Object
described by Beck [3] and we’ll illustrate it with an example
from Eclipse. In class AbstractDocumentProvider,
the modifier of saveDocument() method changed to fi-
nal so that subclasses cannot override it anymore. A new
method called doSaveDocument() was introduced
and all the code from saveDocument() moved to the
new method. A DocumentProviderOperation
object offers an execute() method that dele-
gates to doSaveDocument(). The new imple-
mentation of saveDocument() creates an in-
stance of the DocumentProviderOperation

What changes How Callers Implementors

Precondition weaken compatible broken
Precondition strengthen broken compatible

Postcondition weaken broken compatible
Postcondition strengthen compatible broken

Table 3. Effects of Changing Method Contract
on Callers and Implementors

and then calls its execute() method. All previ-
ous implementors of saveDocument() must override
doSaveDocument() instead.

PUSHED DOWN METHOD. A service is no longer offered
by the superclass but only by subclasses. Thus we say that
the corresponding method was pushed down in the class hi-
erarchy.

MOVED CLASS. A class is moved to a different package in
order to increase the cohesiveness of that package.

PULLED UP METHOD. A method is moved in the parent
class so that everyone can take advantage of the superclass
logic.

3.4. Behavioral Modifications

We saw that structural transformations preserve the be-
havior of the framework but might cause applications to fail
to compile. In contrast to these, behavioral modifications in
the framework might cause the application to compile fine
with the new version. However, the application won’t be-
have the same since the new version uses different assump-
tions.

NEW METHOD CONTRACT. A contract is an agreement
between the method provider and its clients [20]. The pre-
condition is what the method assumes to be true before ex-
ecution. A postcondition is what a method guarantees to be
true after the method body has executed successfully (pre-
suming that the precondition holds). In frameworks, due to
extensive usage of callbacks (hook methods), with regard
to contracts we must consider two types of method clients:
callers and implementors.

Des Riviers [22] shows the effect of strengthening or
weakening preconditions and postconditions on clients of
a method in Table 3. The first column identifies what part
of the contract changes. The second column gives the di-
rection of change: strengthening or weakening the contract.
The next two columns show whether the change is back-
wards compatible or it breaks existing method clients.

Consider the following method offered by the Collection
interface:

7

/** @param coll a non-null Collection

*/
public boolean addAll(Collection coll);

Designers think about weakening the precondition so
that it’s acceptable to pass a null object. The callers of this
method are not affected. However, an implementor like the
one below will throw a NullPointerExceptionwhen
it sends size() message to a null object:

public boolean addAll(Collection coll){
//an implementation
int size= coll.size();
....

}

If the precondition were strengthened (e.g. passed col-
lection should not be shorter than a threshold), some exist-
ing callers of the method might not fulfill the requirements
thus causing some faulty behavior. The existing implemen-
tors will not be affected since they assumed less than what
is offered now.

IMPLEMENT NEW INTERFACE. Developers of the frame-
work replace the interface implemented by a class with a
different interface (with different contracts). Or they add
a new interface to the ones a class already implements. In
Struts, the latest version of class LabelValueBean im-
plements a new interface, namely Comparable. The
class now overrides methods compareTo(Object),
equals(Object) and hashCode(). Older appli-
cations that compared instances of this class for equal-
ity might behave differently now that the class provides its
own way for equality checks.

CHANGED EVENTS ORDER. Similar to orchestra conduc-
tors, frameworks control the code contributed by applica-
tions. Usually the applications just respond when the con-
ductor gives them the signal to participate. When the ap-
plication make assumptions about the order in which the
events are generated it is fallible to any change in the se-
quence of events. For instance in Eclipse 3.0, selection
of items in tables and trees generates the event sequence
MouseDown-Selection-MouseUp. In version 2.1 the event
order was different under some platforms with Selection
event being generated first, i.e. the sequence Selection-
MouseDown-MouseUp.

NEW ENUMERATION CONSTANT. This change af-
fects clients that rely on the set of all possible fields in
an enumeration. In Eclipse 2.1, IStatus is an enumera-
tion with four constants: OK, INFO, WARNING and ER-
ROR. Some clients used a switch case statement to check
all the values of an enumeration. They treated the ER-
ROR case in the default branch of the switch state-
ment. Eclipse 3.0 adds a new constant, namely CAN-
CEL. When CANCEL is passed around, the old clients will

Framework # Breaking Changes % Refactorings

Eclipse 51 84%
Eclipse* 99 87%
Mortgage 11 81%

Struts 136 90%
Struts* 77 100%
Log4J 38 97 %

Table 4. Ratio of refactorings to all breaking
API changes. Eclipse* and Struts* denote rec-
ommended changes (changes that will be-
come breaking changes in future releases).

trap the new constant in their default branch thus treat-
ing it like the ERROR case.

MISCELLANEOUS. Besides API changes there are other
types of changes that might cause component-based appli-
cations to malfunction. Some of these changes might be:
deployment changes, classloader order changed, changes
to build scripts and other configuration files, data format
and interpretation changes. We noticed changes in the XML
configuration and metadata files in all three studied frame-
works. However, these changes are beyond the scope of this
paper.

Table 4 is a summary of Table 2. First column lists the
frameworks we studied. As we did in Table 4, Eclipse* and
Struts* denote recommended changes, that is changes that
will become breaking changes in the next official release.
The second column gives the total number of breaking API
changes (both structural and behavioral). The last column
shows how many of the breaking API changes are refactor-
ings.

Our findings suggest that most API breaking changes are
small structural changes. This makes sense because large
scale changes lead to clients abandoning the framework. For
a framework to stay alive, it should change through a series
of rather small steps, mostly refactorings.

For Struts and log4j we analyzed what percentage of
all API changes (including addition of new API) are rep-
resented by refactorings (see Table 5). We used Van [10] to
learn the number of addition and deletion of API classes and
methods. Row ‘AlOtherAPIChanges’ sums the API meth-
ods that were added or deleted from classes that exist in
both versions, the number of API classes that were added
or deleted in between the two versions, and the number
of breaking API changes that are not refactorings. Row
‘Percentage of Refactorings’ depicts how many of all API
changes (including non-breaking changes) are refactorings.
Row ‘Impact of Refactorings’ depicts how many of all
changes that affect existing customers are refactorings. The
table shows that even though refactorings are a small per-

8

Struts Log4J
Refactorings 123 37

All Other API Changes 325 920
Percentage of Refactorings 27.4% 3.8%

Impact of Refactorings 90% 97%

Table 5. Impact of refactorings. Even though
the ratio of refactorings to all other API
changes (including addition of API) is small,
the impact of refactorings upon existing
clients is large.

centage of all API changes (including addition of API),
they have a large impact upon compatibility with existing
clients. Therefore, migration tools should focus on carry-
ing out these types of changes.

4. Related Work

To our knowledge no quantitative study has been pub-
lished about the kind of API changes that occur in frame-
works and libraries. Several categories of related work can
be distinguished and will be provided below.

Bansiya [2] and Mattson [18] used metrics to assess the
stability of frameworks. Their metrics can only detect the
effect of changes in the framework and not the exact type of
change (e.g. they observed that method argument types have
been changed between subsequent versions whereas we ob-
serve whether they changed because of adding/removing of
parameters or because of changing the argument types).

Mattson and Bosch [19] identified four evolution cat-
egories in frameworks: internal reorganization, changing
functionality, extending functionality and reducing func-
tionality. Our findings confirm all four of the evolutions they
have been describing.

There exists some limited tool support for detecting and
classifying structural evolution. Detection of class split-
ting and merging was the main target of tools described in
[7, 27, 1, 11]. Clone detection can be used to detect some
refactorings like renaming or moved method. Since none of
these tools attempted to find all types of structural evolu-
tion, we had to analyze the changes manually.

Tool support for upgrading applications has been a long
time interest. [5, 14, 23] discuss different annotations within
the component’s source code that can be used by tools to
upgrade applications. However, writing such annotations is
cumbersome. A more appealing approach would be if tools
could generate this information.

Henkel and Diwan [13] describe CatchUp, a research
prototype of a refactoring-based migration tool. We are col-
laborating with our colleagues from University of Colorado

to turn CatchUp into a full-feature, reliable tool. CatchUp
is integrated with the Eclipse development environment and
uses a record and playback technique. As the component de-
velopers refactor their code, CatchUp records the refactor-
ings. Along with the new version of the component, its de-
velopers ship this log of refactorings. When an application
developer upgrades to a new version, CatchUp will play-
back on the client code all the refactorings that were shipped
with the framework. Our paper provides the motivation that
refactoring-based migration tools are likely to be useful in
the migration task due to the large number of refactorings
that occur during component’ evolution.

As an alternative to refactorings, Steyaert et. all [24] in-
troduce the notion of Reuse Contracts to guarantee struc-
tural and behavioral compatibility between frameworks and
instantiations. On the same base line, Tourwe and Mens[26]
introduce metapatterns and their associated transformations
to document the framework changes. Because of the rich
semantics carried in such documentation, automated sup-
port for application migration can be possible. We agree
that refactoring alone cannot solve all the migration prob-
lems. However, automated refactoring is supported by most
recent IDEs. We showed that refactorings can effectively
describe over 80% of the breaking API changes that actu-
ally occur in component evolution.

5. Conclusions and Future Work

API changes have an impact on applications. One might
argue that library engineers should maintain old versions of
the library so that applications built on those versions con-
tinue to run. However, this results in version proliferation
and high maintenance costs for the producer. In practice, it
is application engineers who adapt to the changes in the li-
brary.

We looked at one proprietary and two open source frame-
works and one library and learned what changed in be-
tween versions. Then we analyzed those changes in detail
and found out that in the four case studies 84%, 81%, 90%
and respectively 97% of the API changes that break existing
applications are structural, behavior-preserving transforma-
tions (refactorings).

There are several implications of our findings. First,
they disprove the opinion that high and low-level struc-
ture of public components are stable. Second, they con-
firm that refactoring plays an important role in the evolution
of frameworks and libraries. Third, they offer a ranking of
refactorings based on how often they were used in four sys-
tems. Refactoring vendors should prioritize to support the
most frequently used refactorings. Fourth, they suggest that
component producers should document the changes in each
product release in terms of refactorings. Because refactor-
ings carry rich semantics (besides the syntax of changes)

9

they can serve as explicit documentation for both manual
and automated upgrades. Fifth, migration tools should fo-
cus on support to integrate into applications those refactor-
ings performed in the component. Our future work aims to
produce such migration tools based on refactorings.

Refactoring engines guarantee that the structural changes
they perform won’t break the applications. A migration tool
based on refactoring engines (like CatchUp[13]) should be
able to do most of the tedious job of upgrading to a new ver-
sion. The application developers will have to carry only a
small fraction (less than 20%) of the remaining changes.
These are changes that require the human expertise. Fu-
ture work will evaluate how much of the migration effort
is saved by using a refactoring-based migration tool.

Our findings cannot prove without a doubt that the ma-
jority of breaking API changes are refactorings, but they
give us the confidence that this is the trend. More research
and case studies are needed to formally prove our position.

The availability of powerful migration tools will change
things for the component designers as well. Without fear
that they break the clients, the designers will be bolder in
the kind of changes they can make to their designs. Given
this new found freedom, designers won’t have to carry bad
design decisions made in the past. They will purge the de-
sign to be easier to understand and reuse.

References

[1] G. Antoniol, M. Di Penta and E. Merlo: An Automatic Ap-
proach to Identify Class Evolution Discontinuities, in Pro-
ceedings of the 7th International Workshop on Principles of
Software Evolution (IWPSE’04).

[2] J. Bansiya: Evaluating Application Framework Architecture
Structural and Functional Stability, in Object-Oriented Appli-
cation Frameworks: Problems and Perspectives, M. E. Fayad,
D. C. Schmidt, R. E. Johnson (eds), Wiley & Sons, 1999.

[3] K. Beck:Smalltalk Best Practice Patterns, Prentice Hall, 1997

[4] N. Chapin, J. Hale, K. Khan, J. Ramil, and W.-G. Than: Types
of software evolution and software maintenance, in Journal of
Software Maintenance 13(1): 3-30 (2001)

[5] K. Chow and D. Notkin: Semi-Automatic Update of Appli-
cations in Response to Library Changes, in Proceedings of
ICSM ’96, pp 359-368

[6] S. Demeyer, S. Ducasse, O. Niestrasz: Object-Oriented
Reengineering Patterns, Morgan Kaufmann Publishers, 2003

[7] S. Demeyer, S. Ducasse, O. Nierstrasz: Finding Refactorings
via Change Metrics, in Proceedings of OOPSLA’00, pp166-
177

[8] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts : Refac-
toring: Improving the Design of Existing Code, Addison-
Wesley, 1999

[9] E.Gamma, R. Helm, R. Johnson, J. Vlissides: Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995

[10] T. Girba , S. Ducasse and M.Lanza: Yesterday‘s Weather:
Guiding Early Reverse Engineering Efforts by Summarizing
the Evolution of Changes, in Proceedings of ICSM ’04, pp
40-49

[11] M. Godfrey and L. Zou: Using Origin Analysis to Detect
Merging and Splitting of Source Code Entities, in IEEE Trans-
actions on Software Engineering, vol 31(2), 2005, pp. 166-181

[12] J. Graver: The Evolution of an Object-oriented compiler
framework in Software, Practice & Experience archive 22(7):
519-535 (1992) published by Wiley & Sons

[13] J. Henkel and A. Diwan:CatchUp! Capturing and Replaying
Refactorings to Support API Evolution, to appear in Proceed-
ings of ICSE ’05

[14] R. Keller and U. Hlzle: Binary Component Adaptation, in
Proceedings of ECOOP ’98

[15] M. Laitinen:Framework Maintenance: Vendor Viewpoint, in
Object-Oriented Application Frameworks: Problems and Per-
spectives, M. E. Fayad, D. C. Schmidt, R. E. Johnson (eds),
Wiley & Sons, 1999.

[16] B.P. Lientz and E.B. Swanson: Software maintenance man-
agement: a study of the computer application software in 487
data processing organizations, Addison-Wesley, 1980.

[17] M. Mattsson, J. Bosch, and M. Fayad: Framework Inte-
gration. Problems, Causes, Solutions, in Communications of
ACM 42(10): 80-87 (1999)

[18] M. Mattson and J. Bosch: Three Evaluation Methods for
Object-Oriented Frameworks Evolution - Application, Assess-
ment and Comparison, Research report 1999:20, Department
of Software Engineering and Computer Science, University of
Karlskrona/Ronneby, Sweden, 1999

[19] M. Mattson and J. Bosch: Frameworks as Components: A
Classification of Framework Evolution, in Proceedings of
NWPER98 Nordic Workshop on Programming Environment
Research, Ronneby, Sweden, August 1998, pp. 16-74

[20] B. Meyer: Design by Contract, Prentice Hall, 2005
[21] W. F. Opdyke and R.E. Johnson: Refactoring: An Aid in

Designing Application Frameworks and Evolving Object-
Oriented Systems, in Proceedings of Symposium on Object-
Oriented Programming Emphasizing Practical Applications
(SOOPPA ’90)

[22] J. Des Riviers: Evolving Java-based APIs, O.T.I,
http://www.eclipse.org/eclipse/development/java-api-
evolution.html

[23] S. Roock and A. Havenstein: Refactoring Tags for automatic
refactoring of framework, in Proceedings of Extreme Pro-
gramming Conference ’02

[24] P. Steyaert, C. Lucas, K. Mens, T. D’Hondt: Reuse Con-
tracts: Managing the Evolution of Reusable Assets, in Pro-
ceedings of OOPSLA ’96, 268-285

[25] L. Tokuda and D. Batory:Evolving Object-Oriented Designs
with Refactorings, in Journal of Automated Software Engi-
neering 8: 89120 (2001)

[26] T. Tourwe and T. Mens:Automated support for framework-
based software, in Proceedings of ICSM ’03, pp 148- 157

[27] F. Van Rysselberghe and S. Demeyer: Reconstruction of Suc-
cessful Software Evolution Using Clone Detection, in Pro-
ceedings of the International Workshop on Principles of Soft-
ware Evolution (IWPSE ’03), pp 126-130

10

