
c© 2018 Sharon S. Tang

RESILIENCY OF HIGH-PERFORMANCE COMPUTING SYSTEMS: A
FAULT-INJECTION-BASED CHARACTERIZATION OF THE
HIGH-SPEED NETWORK IN THE BLUE WATERS TESTBED

BY

SHARON S. TANG

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Research Professor Zbigniew T. Kalbarczyk

ABSTRACT

Supercomputers have played an essential role in the progress of science and

engineering research. As the high-performance computing (HPC) community

moves towards the next generation of HPC computing, it faces several chal-

lenges, one of which is reliability of HPC systems. Error rates are expected

to significantly increase on exascale systems to the point where traditional

application-level checkpointing may no longer be a viable fault tolerance

mechanism. This poses serious ramifications for a system’s ability to guar-

antee reliability and availability of its resources. It is becoming increasingly

important to understand fault-to-failure propagation and to identify key ar-

eas of instrumentation in HPC systems for avoidance, detection, diagnosis,

mitigation, and recovery of faults.

This thesis presents a software-implemented, prototype-based fault injec-

tion tool called HPCArrow and a fault injection methodology as a means to

investigate and evaluate HPC application and system resiliency. We demon-

strate HPCArrow’s capabilities through four fault injection campaigns on

a Cray XE/XK hybrid testbed, covering single injections, time-varying or

delayed injections, and injections during recovery. These injections emulate

failures on network and compute components. The results of these campaigns

provide insight into application-level and system-level resiliencies. Across

various HPC application frameworks, there are notable deficiencies in fault

tolerance. Our experiments also revealed a failure phenomenon that was pre-

viously unobserved in field data: application hangs, in which forward progress

is not made, but jobs are not terminated until the maximum allowed time

has elapsed. At the system level, failover procedures prove highly robust

on small-scale systems, able to handle both single and multiple faults in the

network.

ii

To my mother and father, for their love and support.

iii

ACKNOWLEDGMENTS

The work presented here would not have been possible without the help and

support from my adviser, mentors, fellow colleagues, and friends here at the

University of Illinois at Urbana-Champaign.

First and foremost, I thank my adviser, Zbigniew Kalbarczyk, for his con-

stant guidance and unending patience throughout my graduate studies. I am

grateful for all the opportunities and advice he has given me to advance my-

self as a teacher and as a researcher. I also acknowledge my fellow DEPEND

colleagues Lavin Devnani, who was there in the trenches with me building

the foundations of this work, and Saurabh Jha for his technical guidance and

insights in this world of supercomputers.

I also thank my colleagues at the National Center for Supercomputing

Applications for providing assistance and resources on Blue Waters: Mike

Showerman, Gregory Bauer, Jing Li, and Bill Kramer. Special thanks also

go to my colleagues at Sandia National Laboratories, Jim Brandt and Ann

Gentile, for their technical insights and resources.

I acknowledge my support group for helping me in the non-technical spaces

of this work. This includes my dear friends on the ECE 391 staff holding the

line in 3026 ECEB; the ECE 199 staff; my Illinois family Janet Sanoica and

Gillian Smith; and most importantly my family. To my mom who always

answered my phone calls, to my dad who always picked me up from the

airport, and to my brother who always called me: Thank you for everything.

This research is part of the Blue Waters sustained-petascale computing

project, which is supported by the National Science Foundation (awards

OCI-0725070 and ACI-1238993) and the State of Illinois. Blue Waters is

a joint effort of the University of Illinois at Urbana-Champaign and its Na-

tional Center for Supercomputing Applications. This report is based upon

work supported by the Department of Energy, Office of Science, Office of

Basic Energy Sciences, under Award Number DOE 2015-02674. This thesis

iv

was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government nor any agency

thereof, nor any of their employees, makes any warranty, express or implied,

or assumes any legal liability or responsibility for the accuracy, completeness,

or usefulness of any information, apparatus, product, or process disclosed,

or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise does not necessarily constitute

or imply its endorsement, recommendation, or favoring by the United States

Government or any agency thereof. The views and opinions of authors ex-

pressed herein do not necessarily state or reflect those of the United States

Government or any agency thereof.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Fault Injection . 2
1.3 Related Work . 3
1.4 Contributions . 5
1.5 Challenges . 8
1.6 Thesis Organization . 10

CHAPTER 2 BACKGROUND . 11
2.1 System Architecture . 11
2.2 High-Speed Network . 14
2.3 Hardware Supervisory System 16
2.4 System Management Workstation 17
2.5 Lustre File Systems . 17
2.6 ALPS, TORQUE, and Moab 17
2.7 Fault Tolerance and Resiliency 18
2.8 Test and Development System 24

CHAPTER 3 METHODOLOGY . 28
3.1 Fault Models . 28
3.2 Benchmark Applications . 33
3.3 Fault Injection Toolkit: HPCArrow 36
3.4 Data Collected . 40

CHAPTER 4 EXPERIMENTS AND RESULTS 47
4.1 Experimental Setup . 47
4.2 Fault Injection Campaign I . 56
4.3 Fault Injection Campaign II 65
4.4 Fault Injection Campaign III 78
4.5 Fault Injection Campaign IV 83

CHAPTER 5 FUTURE WORK AND CONCLUSION 102
5.1 HPCArrow . 102
5.2 Application-Level Resiliency 103
5.3 System-Level Resiliency . 105

vi

5.4 Future Work . 107
5.5 Conclusion . 108

REFERENCES . 109

APPENDIX A JYC COMPONENT NAMES 113

APPENDIX B CRAY INJECTION COMMANDS 114

APPENDIX C JOB NAME PARTS 115

APPENDIX D APPLICATION CONFIGURATIONS 117

APPENDIX E FAULT INJECTIONS SELECTED 126

APPENDIX F CAMPAIGN I FULL SUMMARY 129

APPENDIX G CAMPAIGN II FULL SUMMARY 130

APPENDIX H CAMPAIGN IV DISTRIBUTIONS SUMMARY . . . 131

vii

CHAPTER 1

INTRODUCTION

1.1 Motivation

High-performance computing (HPC) has played an essential role in the progress

of many scientific and engineering fields that require massive amounts of

computations. These areas cover a wide spectrum from quantum physics to

molecular dynamics, brain modeling and simulations, weather and climate

research, and security. The machines used for these large amounts of compu-

tational work are large-scale, HPC systems, more commonly known as super-

computers. Current HPC systems are capable of petascale computing perfor-

mance, meaning they are able to perform one or more petaflops.1 However,

there remain many scientific problems that require computational resources

beyond what HPC systems currently offer. The United States Department

of Energy and other agencies across the world have begun conducting de-

velopment of the next generation of supercomputers, called extreme-scale or

exascale computing systems [1].

However, as the moonshot of the HPC community, exascale computing

faces several challenges. One challenge is reliability of HPC systems and

their tolerance against inevitable faults. It is expected that exascale systems

will incur excessively higher error rates [1], which has serious ramifications

for a system’s ability to guarantee reliability and availability of its resources.

Too many failures may hinder progress of computations or affect accuracy of

results because mean time between failures (MTBF) will decrease to the point

where traditional application-level checkpointing may no longer be a viable

fault tolerance mechanism. An increasing number of component failures may

also lead to other more complex scenarios of system failures. Thus it becomes

increasingly important for HPC vendors and facilities to understand fault-to-

1One petaflop is defined as one quadrillion floating point operations per second (flops).

1

failure scenarios and to identify key areas of instrumentation for avoidance,

detection, diagnosis, mitigation, and recovery of faults. It may no longer be

enough to solely analyze field data from live production systems. Several

months of field data may not fully capture all known or unknown failure

scenarios. This reliability challenge underscores a critical need for other

effective techniques to investigate and evaluate HPC system resiliency. One

such technique is fault injection.

This thesis presents a software-implemented, prototype-based fault injec-

tion tool called HPCArrow2 and a fault injection methodology as a means

to evaluate HPC system resiliency and to provide insight toward improv-

ing HPC fault tolerance. We target network and compute components as

our fault models. We demonstrate HPCArrow’s capabilities through four

fault injection campaigns executed on the Blue Waters3 small-scale 96-node

Cray XE/XK hybrid testbed system, covering single injections, time-varying

or delayed injections, and both single and multiple injections during recov-

ery. The results of these campaigns provide insight into application-level and

system-level resiliencies.

1.2 Fault Injection

Fault injection is a technique widely employed to study system resiliency and

reliability through deliberate and methodical introduction of faults into the

system. This method offers a couple advantages. (1) It provides control over

fault conditions, such as timing, location, system state, etc., and (2) it can

be automated to perform experiments in a repeated, reproducible manner.

Having such control and automation allows system designers to validate error

handling and fault-tolerant mechanisms, determine coverage of error detec-

tion and recovery mechanisms, reproduce failure scenarios observed in field

data, trace the fault-to-failure propagation paths, and identify reliability vul-

nerabilities and deficiencies [2]. Insight gleaned from fault injections can then

2HPCArrow was developed by Lavin Devnani and Sharon Tang (author). HPCArrow is
based on past work by Fei Deng and is part of the Holistic, Measurement-Driven Resilience
(HMDR) project, a collaboration between the University of Illinois at Urbana-Champaign
(UIUC); Sandia (SNL), Los Alamos (LANL), and Lawrence Berkeley (LBNL) National
Laboratories; and Cray Inc.

3Blue Waters is a petascale 26868-node Cray XE/XK hybrid system at the National
Center for Supercomputing Applications (NCSA) located in Urbana, Illinois.

2

be utilized to identify optimal places where the system can be instrumented

for detection of faults and mitigation of their effects.

Fault injection techniques can be hardware-based or software-based [2].

Hardware-based injections typically require specialized and expensive hard-

ware support. On the other hand, software-implemented fault injection

(SWIFI) techniques offer a degree of control in terms of injection location and

time and are less expensive to deploy. Additionally, on HPC systems, most

hardware functionality is visible through software, allowing software-based

fault injection techniques to emulate faults at various levels of the system,

including hardware. These advantages are the reasons for building a SWIFI-

based HPC fault injection tool in this work, allowing faults at the hardware

and network levels to be emulated.

1.3 Related Work

There has always been a need for understanding failure scenarios and the

ramifications of errors on HPC systems. Much of this understanding has

come from measurement-based analysis of field data collected from live pro-

duction systems. In [3], over 5 million HPC application runs on Blue Waters

were analyzed to understand the impact of system errors and failures on

applications and assess application fault tolerance. In [4], data and manual

reports from Blue Waters were used to investigate and characterize single-

node failures, system-level failovers, and system-wide outages. The resiliency

of the Gemini interconnect against faults, errors, and congestion and the im-

pact of recovery procedures were assessed using Blue Waters data in [5] and

[6] and using Titan4 data in [7].

However, all of these studies, utilizing field data, are thus constrained

to naturally occurring and known failure events. Basing understanding of

fault-to-failure paths solely on production data is limiting, especially when

multiple errors and failures occur simultaneously. Information about fault

locations, health of the system, and workload conditions can be incomplete

in field data, whereas our fault injection method can provide control over

the fault conditions and environment to bring clarity to the full fault-to-

4Titan is a petascale 18688-node Cray XK system at Oak Ridge National Laboratory
located in Oak Ridge, Tennessee.

3

failure paths. Furthermore, this production data must be collected over a

long period of time because specific instances of errors and failures may

occur infrequently. For example, Titan data was collected over the course

of one year to examine Gemini resiliency [7]. Fault injection can repeatedly

recreate the fault conditions and produce multiple instances of the same

failure scenario. Additionally, production data of petascale systems may not

fully reflect the conditions and scenarios that will arise on exascale systems.

Fault injection is useful not only for recreating failure scenarios observed in

production data, but also for simulating new scenarios that may not have

been encountered so far in current systems.

Other studies of HPC systems have analyzed resiliency behaviors through

methods such as stress testing. A microbenchmark application was developed

in [8] to stress the network and uncover performance problems on Titan’s

Gemini interconnect. In [9], standard benchmarks and scientific applications

were utilized to understand application performance and runtime consistency.

Our fault injector incorporates a similar idea in running a set of benchmarks

and scientific applications to emulate a workload environment that is similar

to real workloads on production systems. This use of real applications also

provides a perspective on the fault tolerance of HPC application framework

and helps to uncover any resiliency vulnerabilities.

Previous works have also featured software-based fault injection studies on

HPC systems, but these faults model low-level errors and target HPC appli-

cations. In [10], a hierarchical injection methodology is adopted, focusing on

assembly-level and register transfer level (RTL) or gate-level faults injected

into HPC applications. FlipIt is a LLVM-based compiler-level fault injection

tool, focused on memory bit-flip errors that target HPC applications [11].

It is tested on Blue Waters [11]. F-SEFI is a fault injector that focuses on

injection of soft errors targeting instructions of HPC applications and their

subroutines [12]. F-SEFI is tested on the QEMU virtual machine (VM) and

its hypervisor [12]. A machine learning framework is used in [13] to diag-

nose node-level anomalies while programs were used to stress a single node

of a multi-node HPC application. These injections were performed on VMs

as well as a Cray XC testbed. FINJ presented in [14] is a high-level fault

injection tool for HPC systems that targets a node via tasks, which can be a

benchmark or a fault-triggering program. This design allows FINJ to be inte-

grated with any low-level fault injection framework that can be triggered by

4

an executable program or a shell script [14]. FINJ is tested on a single-node

prototype system [14].

From among these HPC fault injection studies, there is a noticeable lack

of fault injections at the network level. Our fault injector, on the other hand,

not only generates faults at the node level, but also targets components at the

network level. While we do not look at fine-grained node-level aspects such as

memory congestion, our tool can be extended to include these programs de-

signed to stress node resources or to target application instructions. We also

evaluate application-level fault tolerance, using multiple HPC benchmarks

or applications, and we assess resiliency at the network and system levels by

analyzing network traffic data, system logs, and recovery behaviors. These

other fault injection studies also do not all inject on full production HPC sys-

tems; some inject on prototype systems or VMs. The injection experiments

presented in this thesis are all executed on a small-scale Cray XE/XK hybrid

testbed, similar to the one in [13]. Details of the experiment environment

are discussed later.

The work and results presented in this thesis are based on previous fault

injection experiments performed on a much larger 8944-node system called

Cielo.5 Those experiments were able to produce critical system failures due

to faults at the network level [15]. The work presented in this thesis extends

Cielo’s fault injection experiments to Blue Waters with the aim to recreate

similar failure scenarios. To the best of our knowledge, this work combined

with the work performed on Cielo is the largest fault injection study con-

ducted on HPC systems.

1.4 Contributions

The main goal of this research study is to evaluate the resiliency of HPC

systems in the presence of faults and to improve understanding of fault-to-

failure propagation and failure impact on the performances and behaviors of

HPC applications and systems. To that end, the key contributions of this

thesis include:

• Fault injection toolkit HPCArrow for large-scale HPC sys-

5Cielo was the (now retired) Cray XE petascale system developed jointly by LANL and
SNL under the Advanced Computing at Extreme Scale (ACES) partnership.

5

tems. We developed a fault injector that is system-independent, as

long as Python, a scripting language, is supported and as long as loca-

tions targeted for fault injection are accessible to software. HPCArrow

provides a controlled environment to inject one or more faults into

the system by executing system-specific commands. These commands

mimic failures of network and compute components: network links,

directional connections, compute nodes, and compute blades. HPCAr-

row also provides the ability to conduct fault injection experiments in

a repeatable, reproducible manner by being able to control timing and

location of faults. The injector is also able to restore failed compo-

nents back into service and return the system to a fault-free state. In

addition to simply injecting faults at user-specified times and locations,

HPCArrow can monitor network events in real time and conduct mul-

tiple injections during an automatic recovery process initiated by an

earlier fault injection. Injections are targeted at a user-specified recov-

ery stage. This injector is successfully used to perform four different

types of fault injection campaigns on a Cray XE/XK hybrid testbed

with a Gemini interconnect and can successfully provide insight into

fault-to-failure paths. It has also been verified to work on several Cray

XC systems that use the Aries interconnect, and fault injection exper-

iments are currently underway with SNL.

• A set of HPC applications configured and compiled to study

their susceptibility to network-level faults. A total of nine unique

applications, spanning three HPC application frameworks, were com-

piled and configured to run as real workloads on the system. These

frameworks include Charm++, Message Passing Interface (MPI), and

Partitioned Global Address Space (PGAS), all of which offer a wide

range of fault tolerance and other communication features. From the

results of the fault injection campaigns, we observed a variety of ap-

plication behaviors such as crashes, hangs, and no impact. We also

observed that certain frameworks are more susceptible to network-level

faults than others with Charm++ being the most susceptible and MPI

being the least.

• A set of fault injection experiments to demonstrate the sys-

tem and application behaviors in the presence of faults. Across

6

almost 300 fault injection experiments, we observed application crashes

and hangs caused by a simple failure of the network, despite success-

ful failover recovery procedures. These simple failures include a single

link fault or a single connection (multiple links) fault. Originally, we

expected all applications would be able to tolerate link and connection

faults due to there being other pathways to take once failover recov-

ery recomputes and installs new routes. Unexpectedly, however, many

applications were not fault tolerant against even these simple failures.

• Identification of an application failure behavior previously un-

seen in field data. Hung applications was one application-level be-

havior observed as response to network-level faults. This kind of behav-

ior due to simple faults had not been observed before in field data, but

our fault injector and methodology uncovered this somewhat alarming

phenomenon. Hung applications are a waste of system resources and

detract from availability and performance. Network and system logs

are insufficient to differentiate between application crashes and hangs.

Application logs and job scheduler information are the only indicators

of an application hang, but this can only be diagnosed and determined

after the fact. Real-time detection and handling of such behavior should

become a priority in future work.

• Understanding and assessment of HPC systems failover re-

sponses to network-level faults. Through HPCArrow, we are able

to inject single or multiple faults during an ongoing recovery proce-

dure triggered by a previous fault. This is achieved through real-time

monitoring of network events communicated in constantly updated and

rotated network logs. This allowed us to conduct a fault injection cam-

paign to observe and assess the failover mechanisms that respond to

failures in the network. These experiments showed a deeply robust

failover procedure that can handle all faults injected in our experi-

ments. Since we could not reproduce the deadlocks and system-wide

outages caused by fault injections on Cielo, we suspect that the win-

dow of recovery on our small-scale testbed is too short to allow any

propagation of faults throughout the network and system. Failovers

may also have a window of vulnerability that is either nonexistent or

too short to be targeted by faults on small-scale systems. However,

7

we do observe that simple network failures during recovery yield longer

recovery durations. Faults during failover cause the recovery process

either to automatically restart or to start a second recovery instance,

which in turn causes the recovery time to increase. An increased time

in failover recovery means an increase in the probability of the occur-

rence of additional failures, which may lead to catastrophic failures in

the system [5].

• Foundational work for a comparison study on two network

fabrics and their resiliency behaviors in the presence of faults.

The Aries Dragonfly interconnect is a more modern network fabric than

the Gemini interconnect. However, Aries still shares similar resiliency

mechanisms with Gemini. The work and results in this study have

laid the foundation for this next step of comparison between Aries and

Gemini. HPCArrow has already been extended to work on Cray XC

systems utilizing the Aries interconnect. Applications have also been

selected, compiled, and configured to run on Cray XC systems. Despite

some architectural and network differences, the same fault injection

methodology used in this study on Gemini also works on Aries.

1.5 Challenges

Throughout the course of this study, we encountered many very involved chal-

lenges that required mostly trial-and-error type approaches to solve. These

include:

• Compiling and configuring HPC applications to be scaled down

and to run for a desirable amount of time. While this work in-

volved nine unique applications, there is a much longer list of appli-

cations that we tried and failed to get running on the Cray XE/XK

testbed. This testbed is a small-scale system of 96 nodes,6 which is

much smaller than a large-scale production system like Blue Waters.

We suspect that many scientific applications are inherently too large

to run on small-scale systems. The applications we did manage to get

6For this research, we were limited to 64 nodes (top two chassis) on this one-cabinet
system as requested by NCSA.

8

working still required a great deal of configuration time to scale to

our various workload needs and to adjust to our experiment runtime

needs. Adjusting parameters is very difficult across nine applications

because some level of understanding of each application is necessary.

Because each HPC system may be outfitted with different software

versions and hardware components, porting applications from one sys-

tem to another is also nontrivial as it requires re-compilation and re-

configuration. This step of the experiment setup process is the most

time consuming. We are grateful for the help and insights of NCSA

application specialists on a couple of these applications.

• Limitations of development and of running statistically sig-

nificant number of experiments. Due to the need to have con-

trollable environments and repeatable experiments, the injector was

also equipped with the ability to restore the system back to a fault-

free state. This restoration is the warm swap process, which can take

up to 10 minutes, depending on the injected component. Given that

the fault injection occurs around five minutes into an application’s run

time, we decide to limit an experiment’s run time to be around 30

minutes. However, since all applications and their parameters cannot

be precisely adjusted in the same manner, some applications may take

around 40 minutes. In this work, an experiment can be as short as 33

minutes. If an experiment produces a hung application, that applica-

tion will not terminate until it hits the maximum amount of time, set

by us to be two hours. This amount of time severely limits the number

of experiments we can run. Additionally, two thirds of the testbed (top

two chassis) was reserved for us on certain days of the week for a time

period between 7pm and 7am as this was when other users were un-

likely to use the testbed. Our access to the SMW was further limited

due to requiring supervised root access, which extends our development

and test cycle significantly.

• Collecting the logs needed for analysis (network data, system

logs, application logs, injection logs, experiment logs). All the

logs necessary for analysis are scattered all over the system. Application

logs are stored on a user’s local account; network data is protected

behind privilege levels; and both system logs and injector logs sit on

9

the SMW, which requires root access. We developed a log collector

module in HPCArrow. Since our injector sits on the SMW, running in

the background, it is designed to collect all logs and transfer them to

our user accounts and modify privileges on a daily basis. This module

significantly cut our experiment and analysis time as we no longer had

to make daily trips to NCSA or wait on a system administrator to

package and send the logs to us.

• Small window of recovery that limits injections during recov-

ery. Because our Cray XE/XK testbed is a small-scale system, its

failover recovery duration is very short. Most recovery stages are less

than three seconds and there are delays due to recovery stage detection

and time to fault injection. This means that not all recovery stages

are good candidates to target for injection. Certain optimizations were

made to HPCArrow to remove as much unnecessary overhead as pos-

sible, which ensured that recovery stages lasting about two seconds or

more are still eligible targets for certain fault types.

1.6 Thesis Organization

The remainder of this thesis is organized as follows: In Chapter 2, we provide

background information on the architecture and system software of Cray

XE/XK systems with specific focus on Blue Waters, the Gemini interconnect,

and the system’s fault tolerance mechanisms. In Chapter 3, we introduce and

detail our fault injection methodology, detailing fault models, benchmark

applications run as workloads on the system, and the fault injector toolkit

HPCArrow. In Chapter 4, we describe our experimental setup and present

our four fault injection campaigns and their results. We conclude this work

in Chapter 5 with a summary discussion of results and suggestions for future

work.

10

CHAPTER 2

BACKGROUND

This chapter provides background information on the architecture and sys-

tem software of Cray XE/XK petascale systems, using Blue Waters as the

example. These machines are highly scalable supercomputers, able to deliver

one or more petaflops to scientific and engineering computing applications.

Blue Waters can deliver up to approximately 13.3 petaflops at peak speed

[16]. This chapter also includes background information on the fault-tolerant

features and mechanisms of Cray XE/XK systems, including fault detection

and recovery mechanisms.

This study is based on past works that have analyzed data generated by

Blue Waters [4],[6],[5] and fault injection experiments performed on Cielo [15].

This study contributes to that body of work by conducting fault injection

experiments on the Blue Waters test and development system called JYC,1

which is built and managed identically to Blue Waters. These heterogeneous

petascale systems, running on the Cray Linux Environment (CLE) oper-

ating system, combine the best of AMD’s multicore processors, NVIDIA’s

many-core graphics processing unit (GPU) accelerators, and Cray’s Gemini

interconnect.

2.1 System Architecture

A general Cray XE/XK system is organized into a hierarchy of cabinets,

chassis, blades, nodes, and links, as shown in Figure 2.1. At the highest level

are cabinets, physically arranged in rows and columns. Larger systems have

more rows. Each cabinet typically has an L1 cabinet controller, blower fan,

and power conversion electronics [5]. At the next level of granularity in the

hierarchy, each cabinet contains three chassis (also called cages). A chassis

1JYC is named for Jacques-Yves Cousteau.

11

Figure 2.1: Gemini hierarchy of a typical Cray HPC system.

consists of eight blades. Each blade consists of a network mezzanine card

that houses a pair of Gemini application-specific integrated circuits (ASIC),

which act as network routers [5]. The Gemini ASICs are connected such

that each blade provides a 1x4x1 network of nodes in the overall folded 3D

torus topology [17]. Thus each Gemini ASIC is shared between two nodes.

Additionally, each blade also packages four nodes, which can be XE, XK, or

service nodes.

2.1.1 Nodes

• Services nodes are primarily used as boot nodes for system-wide re-

boots, as system database (SDB) nodes to collect event logs, as MOM

nodes for scheduling jobs, as Lustre Filesystem Network (LNET) nodes

to handle metadata and file I/O data for file system servers and clients,

or as network gateway nodes to connect external networks through In-

finiband QDR IB cards [4]. Service nodes on Blue Waters can be hosted

on Cray XIO blades or Cray XE6 blades. Each XIO Service node con-

sists of a 6-core AMD Opteron 2435 “Istanbul” with 16 gigabytes (GB)

of DDR2 memory in 4 GB DIMMs protected by x4 Chipkill [4]. In this

study, we were asked to not target service nodes.

• XE nodes are two-socket compute nodes. On Blue Waters, XE nodes

are hosted on Cray XE6 blades with four nodes per blade. On each

12

(a) Cray XE6 Blade (b) Cray XK7 Blade

Figure 2.2: Cray XE6 and XK7 blade hardware.

node, both sockets are each occupied by a 16-core AMD Opteron 6276

“Interlagos” processor [16]; each Opteron holds 8 dual-core AMD Bull-

dozer modules, each of which has an 8x64 kilobyte (KB) L1 instruction

cache, a 16x16 KB L1 data cache, an 8x2 megabyte (MB) L2 cache,

and a 2x8 MB L3 cache [4]. With two 16-core Opteron 6276 proces-

sors, a node has a combined 64 GB of DDR3 RAM in 8 GB DIMMs,

protected by x8 Chipkill [4].

• XK nodes are two-socket GPU nodes. On Blue Waters, these nodes

are hosted on Cray XK7 blades with four nodes per blade. On each

node, one socket is equipped with one 16-core AMD Opteron 6272

“Interlagos” processor with 32 GB of DDR3 RAM in 8 GB DIMMs [16].

Note that an XK node has half the RAM of an XE node. The other

socket on the node contains an NVIDIA K20X “Kepler” accelerator

[16]. This GPU is the main difference between XK and XE nodes.

The accelerators house 2880 single-precision CUDA cores, 64 KB of L1

cache, 1536 KB of L2 cache, and 6 GB of DDR5 RAM memory that is

protected with ECC [4].

2.1.2 Blades

All blade types (XIO, XE6, XK7) are powered by four Cray Verty voltage

regulator modules, one for each node on the blade, and the power distribution

unit in a cabinet. Every blade also holds an L0 controller that monitors the

general health of the blades components. The two blades of interest in this

study are the XE6 and XK7, as shown in Figure 2.2a and 2.2b, respectively.

13

Figure 2.3: Cray Gemini interconnect with a folded 3D torus topology.
Each cube represents a Gemini ASIC. The folded aspect is depicted by the
loops (only three are drawn).

2.2 High-Speed Network

Communication on Cray systems occurs over the high-speed network (HSN).

There are various vendor proprietary network designs such as Cray’s Gemini

and Aries or IBM’s Blue Gene [5]. The work presented in this thesis focuses

on the Cray Gemini interconnect and the Gemini ASIC, the basic building

block of Blue Waters’ HSN. The ASICs are arranged in a folded 3D torus

topology [16], as shown in Figure 2.3. This folding minimizes the maximum

cable length to connect all nodes in a single dimension [8]. The advantages of

the Gemini interconnect include high performance on MPI applications and

filesystem traffic, hardware support for global address space programming,

and efficient implementation of programming languages on massively, parallel

systems such as HPCs [17].

2.2.1 Connections

On Blue Waters the network topology is of dimension 24x24x24 (X×Y×Z)

[16]. In the X and Z directions (rows and columns of cabinets, respectively),

every other cabinet is directly connected with loopback cables at the ends for

a full torus; the Y direction loops back from the top chassis to the bottom

chassis within a cabinet, connecting blades in the same dimension [8]. As

shown in Figure 2.4, each node on a blade is connected in the Y dimension,

which is called the mezzanine, and each node across blades is connected in

the Z dimension, which is called the backplane. Note that if there are more

14

Figure 2.4: A single cabinet with three chassis and eight blades per chassis.
The Y+/- and Z+/- connection directions are shown. The unlabeled X
dimension goes into and out of the page.

cabinets in the Z direction, cables will connect the nodes across blades in that

dimension. Connections in the X direction (not explicitly shown in Figure

2.4) are all cables.

As mentioned, each blade consists of a network mezzanine card that holds

two Gemini ASICs. Each of these ASICs communicates within the HSN in

six directions: X+, X-, Y+, Y-, Z+, and Z-. There are 10 torus connections:

two in each of X+, X-, Z+, and Z- directions (eight total) and one in each

Y+ and Y- directions (two total) [17].

2.2.2 Gemini ASIC Router

A Gemini ASIC consists of two network interface controllers (NICs), a net-

work link block, and a 48-port router [17]. Each NIC has its own Hyper-

Transport3 (HTC3) interface, which is used by a node to attach to the ASIC

and send its requests as packets through the HSN [17]. There is a network

link block that connects the NICs to the router and there is a supervisor

block that monitors the ASIC and connects to the L0 blade controller, which

in turn relays information to the Cray Hardware Supervisory System (HSS)

[17]. The ASIC router follows a tile-based design [17], using a 6x8 array of

15

Figure 2.5: The 6x8 array of tiles: eight are ptiles (P) and the other 40 are
ntiles, labeled by the connection direction.

tiles, eight of which are called ptiles and are reserved for the NIC. The rest,

40 ntiles, are left for the network connections [8]. Figure 2.5 depicts the 48

tiles and their assignments.

2.2.3 Links

Each tile in the ASIC router provides a link. According to Figure 2.5, there

are eight links each for the X+, X-, Z+, and Z- directions and four links

each for the Y+ and Y- directions. Thus each torus connection consists of

four links. Each link is mapped and uniquely identified on the Cray system

and logs by its physical location in the tile layout. Each link is comprised

of three single-bit bi-directional lanes, which means each torus connection is

comprised of 12 lanes [17].

2.3 Hardware Supervisory System

The HSS is a hardware and software system responsible for monitoring the

health of Cray Systems, detecting errors in its hardware components and

network, and mitigating these errors and their effects. It also controls system

startup and shutdown. The HSS contains HSS managers, which oversee

various monitoring responsibilities, including boot process, component states,

system routing, and more [18]. The HSS also includes the L0 blade and L1

cabinet controllers that monitor nodes and the HSN, respond to periodic

heartbeat requests, and log health data such as blade temperatures, power

16

supplies, network performance counters, and runtime software exceptions

[18]. The HSS communicates with these management controllers through

its own private network, which is separate from the HSN [18], and connects

them to the System Management Workstation (SMW).

2.4 System Management Workstation

The SMW orchestrates reliability, accessibility, and serviceability tasks, such

as recovery operations in response to failures, and it manages the HSS net-

work [18]. It is a single point of control for the HSS and provides a console

for system administrators to manage the Cray system [18]. Logs related to

the system health, such as HSS events or HSN failures, are stored on the

SMW. These logs are discussed in more detail in the next chapter. The fault

injections performed in this study are triggered from the SMW.

2.5 Lustre File Systems

Lustre provides a high-performance, highly scalable parallel distributed file

system [18]. It is deployed on many HPCs, including Blue Waters, which

houses three Lustre-based file systems with a little over 26 petabytes (PB)

of combined usable storage, 34 PB of combined raw storage, and about 1.1

terabytes (TB) per second of storage bandwidth [16]. Further detail on Blue

Waters’ file system and Lustre may be found in [9].

2.6 ALPS, TORQUE, and Moab

Jobs, which are comprised of applications that a user runs on an HPC sys-

tem, are scheduled, placed, and launched by a software suite that can vary

across HPCs. On Blue Waters, this suite includes the Cray Application Level

Placement Scheduler (ALPS) and the Terascale Open-source Resource and

Queue (TORQUE) Resource Manager integrated with the Moab Workload

Manager [19].

ALPS is the mechanism for application placement, launch, and manage-

ment [18]. Applications are either submitted through batch jobs or through

17

interactive sessions. ALPS also provides an Extensible Markup Language

(XML) interface in order for users to communicate batch job requirements

and components to third-party batch systems. The batch system on Blue

Waters uses a combination of TORQUE and Moab managers. TORQUE

manages the system resources by reserving them for jobs while Moab man-

ages batch job queuing or scheduling. Further detail on TORQUE, Moab,

and ALPs can be found in [20], [21], and [22], respectively.

2.7 Fault Tolerance and Resiliency

Failures in large scale systems are inevitable and expected, but applications

are still expected to survive and continue running. To account for the high

likelihood of errors, Cray systems are designed to provide several layers of

protection against errors in both hardware and software. The Gemini in-

terconnect, in particular, was designed to be fault tolerant against network

failures. This is achieved through hardware-level error checking and correc-

tions as well as through network hardware redundancy. In the inevitable

event of a failure, the system must be able to detect it, mitigate its effects,

and recover from it, ideally without requiring a full system reboot so as to

minimize system downtime. The system adds its own layers of fault tolerance

through the dimension ordered routing protocol, the HSS, and the failover

recovery and warm swap restoration procedures.

2.7.1 Hardware-Level Error Detection and Correction

Packets in the HSN are protected by a 16-bit cyclic redundancy check (CRC)

and Gemini links reinforce reliable traffic delivery via a sliding window pro-

tocol [17]. When a Gemini receives a packet, it checks the CRC and reports

if it is incorrect. Before a packet leaves a Gemini, during the transition from

router to NIC, the CRC is checked once more in order to detect any corrup-

tion from within the router itself [17], such as the routing table. If the CRC

fails, the packet is marked as bad, passed along, and then finally dropped

at the destination Gemini. Additionally, other error correcting code (ECC)

techniques, such as single error correction-double error detection (SEC-DED)

and Chipkill are used to detect and correct major errors in memory, data

18

paths, and processors [4]. All such error events are reported to and logged

by the HSS.

2.7.2 Network Hardware Redundancy

Redundancy is another common and effective technique to provide a fault-

tolerant network. As discussed previously, there are several directions of torus

connections with one redundant torus connection in each of the X+, X-, Z+,

and Z- directions. Each torus connection consists of four redundant links and

each link consists of three redundant bi-directional lanes. Packets traveling

through the HSN are spread out over the links by the Gemini adaptive routing

hardware [17]. If a lane fails, the adaptive routing hardware masks it out

and load balances the traffic over the remaining two lanes in a link [17].

2.7.3 Dimension Ordered Routing

The Gemini interconnect routes traffic based on dimension ordered routing.

In a faultless HSN, the protocol is as follows in order [23]:

1. Route traffic in X+/-, Y+, or Z+ directions, until the X dimension is

resolved and it reaches the X coordinate of the destination node

2. Route traffic in Y+/- or Z+ directions, until the Y dimension is resolved

and it reaches the Y coordinate of the destination node

3. Route traffic in Z+/- directions, until it reaches the Z coordinate and

the final destination node

In an HSN with one or more faults present, the routing can no longer

be the optimal path and traffic may become unbalanced, possibly leading

to network congestion and poorer application performance. Following the

protocol, if the network is trying to resolve in the X dimension, but finds

that it is blocked in both X+ and X- directions, it will try the Y+ direction

next. If that is blocked, then it attempts the Z+ direction [23].

Based on these rules, there are failures that may cause unroutable scenar-

ios, i.e. there are holes or gaps in the HSN that cannot be routed around. For

example, using the dimension ordered routing protocol, if two non-adjacent

19

All Lanes
Healthy

1 or 2
Lanes Down

All Lanes
Down (Link

Failed)

Lane Recovery

Degraded
Mode

Lane Failure
(at least 1

active lane)

Mode Exchanges
N Attempts

Recovery Failure

Lane Failure (no
active lanes)

Lane Failure (no
active lanes)

All Lanes
Recovered

Figure 2.6: State transition diagram for the lane recovery procedure.
Adapted from [6].

routers in a single Z dimension loop have failed, then the network is un-

routable. When this happens, recovery procedures that involve rerouting

will fail. Thus the routing algorithm automatically performs dimension or-

der retries if route computations continue to fail [23]. It will attempt different

permutations of dimension orders (e.g. YZX or ZYX, instead of the initial

XYZ). This feature can be disabled [23].

2.7.4 Lane Recovery

The redundancy of three lanes per link provides a level of network resiliency,

allowing the Gemini interconnect to tolerate up to two lane failures. The

HSN runs in degraded mode so that if a lane fails, the network can continue

functioning through the other two lanes, albeit at a reduced HSN bandwidth

[8]. Without running in degraded mode, a single lane failure would mean an

entire link would go down [23].

When a downed lane is identified, it is handled by the L0 blade controller

20

and logged in the SMW’s netwatch log [23]. In degraded mode, if all three

lanes fail, then the whole link containing the lanes is marked as inactive and

the link failover procedure, rather than lane recovery, is initiated [23]. If lane

recovery is unsuccessful, the L0 will invoke the lane recovery procedure a set

number of times (configurable parameter in a settings file) before giving up

[23]. The lane recovery procedure, as shown in Figure 2.6, attempts to bring

up all lanes on the channel; it does not target individual lanes for efficiency

[23].

While this lane bring-up procedure is a recovery mechanism supported

by the system, the ability to manually remove or take down specific lanes

in a link using system administrator commands is absent. Given this, we

currently do not have any means to trigger this automatic lane recovery in

a controlled environment. Thus we leave exploration of this fault and its

recovery mechanism out of this study.

2.7.5 Automatic Failover Recovery

When a link fails (or when all three lanes in a link go down), the L0 detects

the failure and handles it automatically by triggering the failover recovery

procedure [23]. There are many reasons a link may become unavailable,

including power loss to a Gemini mezzanine on a blade, power loss to a blade

itself, or power loss to a whole cabinet [23]. Link failures may also happen

due to faulty cables, routing table corruption, or software deadlock [6].

When the failover is triggered while the system is in an initial state with no

other failed components present, a series of recovery actions are automatically

executed as follows [23]:

1. Aggregate failures. Waits 10 seconds by default in case any more

link failures occur. If there are any more failures, the failed links will

be processed and added to a list.

2. Alive. Determines which blades are alive. If there is a failure due to

power loss to a blade, there will be no response to the alive request;

a 30-second timeout will occur instead for the powerless blade. If the

failure is due to a power loss to a cabinet, there will again be no response

to the alive request. Twenty-four blades timeout for 30 seconds and are

21

Initial, Watch
for Failures

Degraded
Mode

Aggregate
Failures

Pre-Quiescence
Network
Quiesced

Network
Unquiesced

Failover
Success

Failover Failed

No failures
detected

1-2 Lane
failures detected

Lane(s) masked

Link, Blade,
Mezzanine,
or Cabinet

failure detected

Wait T seconds
for any addi-
tional failures

T seconds
have passed Routes computed

Routes installed

Cross checks
passed

Failover finishes

Alive status
mismatched,

interrupt bounce
timeout, route

computa-
tion failed

Quiesce or route
installation failed

Cross checks
failed

Figure 2.7: State transition diagram for the automatic failover recovery
procedure. Adapted from [6].

22

removed from routing. Each failed LCB (up to 960 in a fully configured

system) is marked with an alert flag; each Gemini ASIC on each blade

in the failed cabinet is marked with an alert flag.

3. Route compute. Computes and stages new routes to the L0s.

4. Quiesce. Quiesces the network traffic (i.e. stop all network traffic

temporarily) and drains the network traffic.

5. Switch netwatch. Makes the netwatch daemon on blades use the

newly computed routes.

6. Down unused links. Takes down any links that are still active but

unused by the new routes.

7. Route install. Asserts the new routes in the Gemini ASICs.

8. Unquiesce. Allows all network traffic to resume.

9. Finish. Performs any final cleanup details to restore the system back

to its initial, fault-free state.

This automatic recovery process typically lasts for about 30 seconds. For

failure scenarios with power losses to the blade or whole cabinet, the recovery

procedure can take up to 60 seconds due the extra timeout time. On much

larger systems, this recovery process is expected to take much longer. For

example, on Cielo, which had almost 9000 nodes, one recovery took over

600 seconds [15]. Excluding recovery time, the failover processes for link,

connection, node, and blade failures are exactly the same.

Quiescing and draining the network traffic is important to avoid network

deadlocks, which may occur if there are still packets being routed while new

network routes are being installed. Usually, the failover process will avoid

disrupting and quiescing the network by instead masking any failed lanes

and operating in degraded mode. This, however, cannot be avoided in the

case of complete communication loss between two Gemini ASICs and in the

case of blade or whole cabinet failures.

Failover procedures can either succeed and restore the network paths,

which is called a successful failover. The other outcome is a failed failover,

23

which can leave the whole system in an unusable state, known as a system-

wide outage (SWO). Figure 2.7 shows a state diagram of this failover proce-

dure combined with the lane recovery procedure shown in Figure 2.6.

2.7.6 Warm Swap Restoration

The warm swap procedure is a recovery mechanism to manually add or dis-

able hardware components in a live system, without needing to restart the

system or otherwise impact other components of the system. Unlike the pre-

vious automatic recovery mechanisms discussed, this process must be manu-

ally initiated by a system administrator. In this work, we will use the word

restoration to refer to the warm swap procedure in order to differentiate from

the word recovery, which we will use to refer to the failover process.

The series of steps during a warm swap is nearly identical to that of the

failover procedure. The main difference is additional stages before the net-

work is quiesced. These new stages include clearing link alerts, testing the

rerouting, initialization of new links, and initialization of new blades (if per-

forming a blade warm swap). Every stage following network quiescence is

identical to those of the failover process. Figure 2.8 shows the state diagram

of a warm swap. This process typically takes about 60 seconds for links or

connections and 10 minutes for blades since the warm swap add command

performs a cold start on blades.

In this study, after each and every fault injection, the warm swap procedure

is invoked by the injector, which is running on the SMW. Warm swapping is

necessary to restore the component that was selected for take-down and to

return the system and HSN back to an uncongested, fault-free state.

2.8 Test and Development System

In this work, we conducted fault injection experiments on JYC, a single

cabinet Cray XE/XK hybrid testbed provided to us by NCSA. NCSA uses

JYC as a test and development system on which software and other changes

are tested and evaluated before deployment on Blue Waters. JYC shares all

the same hardware components (blades, nodes, links, Gemini ASICs, etc.),

systems (HSS, Lustre file system, etc.), and software suites and environments

24

Initial

Target
Component
in Service

Target
Component
Removed

from Service

Pre-Quiescence
Network
Quiesced

Network
Unquiesced

Blade
Cold Start

Warm
Swap Failed

Warm Swap
Success

System needs
to install a
new blade

System has
a failure

Warm swap
remove invoked

Warm swap
add invoked

Link alerts
cleared, routes
computed, and

new links/blades
initialized

Routes installed

Cross checks
passed and warm
swapping blade

Cross checks
passed and

warm swapping
link(s)/node

Blade reboot
succeeded

Alive status
mismatched,

interrupt bounce
timeout, route

computa-
tion failed

Quiesce or route
installation failed

Cross checks
failed

Figure 2.8: State transition diagram for the warm swap recovery procedure.
Adapted from [6].

(Cray Linux Environment, ALPS, TORQUE/Moab, etc.) as those of Blue

Waters. The main difference between JYC and Blue Waters is size.

2.8.1 Architecture

Since it is a one-cabinet machine, JYC is constructed from a total of 96 dual-

socket AMD Opteron nodes organized across three chassis: 56 XE nodes,

28 XK nodes, and 14 service nodes. Figure 2.9 shows the system map of

components on JYC. On this machine, 12 of the 14 service nodes are hosted

on Cray XIO blades; the other two service nodes are hosted on a Cray XE6

blade along with two XE nodes. Additionally, the 56 XE nodes are all hosted

on 14 Cray XE6 blades and the 28 XK nodes are all hosted on seven Cray

XK7 blades. As illustrated in Figure 2.9, Chassis 0 (c0), the bottom chassis,

contains XE and service nodes: three blades are entirely service nodes while

a fourth blade comprises two more service nodes. No user is allowed to

run jobs on any service node. Chassis 1 (c1), the middle chassis, consists

of all XE nodes while Chassis 2 (c2), the top chassis, primarily consists of

XK nodes (28 out of 32 total). Due to being a one-cabinet machine, JYC’s

25

Gemini interconnect is also reduced by one dimension in the X+ and X-

directions as there are no other cabinets to cable to. Thus the number of

torus connections is reduced to six: one each in the Y+ and Y- directions

and two each in the Z+ and Z- directions.

2.8.2 System Mapping

These compute and network components each have a component name (cname).

Cabinets have an X and Y position in the physical machine layout. In the

case of JYC, its cabinet name is c0-0 since there it is only one cabinet. The

next level of components are chassis, which are identified by their vertical

position c[0-2] with c0 being the bottom chassis and c2 being the top. The

vertical position corresponds to the same Y dimension as in Figure 2.4. The

components that make up a chassis are blades, which are identified by their

position s[0-7] going from left (s0) to right (s7) in Figure 2.9. This is the same

as the Z dimension in Figure 2.4. There are two Gemini ASICs on each blade,

identified by their position g[0-1] with g0 as the bottom ASIC and g1 as the

top ASIC. On each blade, there are nodes, specifically four nodes per blade

or two nodes per Gemini ASIC. Nodes are identified by their position in the

Y dimension n[0-3] with n0 and n1 always connected to Gemini g0 and n2

and n3 always connected to Gemini g1. Additionally, each node is assigned a

unique decimal value, which serves as its unique node ID (nid000[0-96]) with-

out the need to specify cabinet, chassis, and blade locations. While links are

not depicted in Figure 2.9, they nevertheless have their own naming scheme

based on physical location as well: l[0-5][0-7]. This positional naming for

links comes from the ASIC router’s 6x8 tile array as shown in Figure 2.5.

This naming is explained in more detail in Figure A.1 in Appendix A.

26

Figure 2.9: System map of components on JYC. Black nodes are service
nodes; blue nodes are XE nodes; orange nodes are XK nodes. Chassis are
identified as c[0-2]; blades are identified as s[0-7]; and nodes are identified
as n[0-3] (component name). Each node is additionally labeled with a
unique decimal value, which serves as its node ID.

27

CHAPTER 3

METHODOLOGY

This chapter presents our fault injection methodology in assessing system re-

siliency in the presence of faults. Specifically, it details (1) the fault models

used to understand system behavior during failures (fault-to-failure scenar-

ios), (2) the benchmark applications chosen to run as workloads during fault

injection experiments, (3) the toolkit HPCArrow, designed to execute and

log the experiments, and (4) the data collected and processed for analysis

and assessment. This approach can be applied to any Cray system, only

requiring special consideration for application and execution setup because

implementation details are dependent upon each system’s configuration suite

(e.g. Python versions, compiler versions, Slurm vs. TORQUE job schedulers,

etc.).

3.1 Fault Models

We target network and compute components as our fault models. These

models involve failures in network links and connections as well as in com-

pute nodes and blades. This study considers both single faults and multiple

faults. A single-fault model involves only one fault injection during an ex-

periment, which is defined as the runtime window of a set of applications

running simultaneously on the system. A multiple-fault model involves two

or more faults. In our experiments, we inject up to two faults, with the second

fault deliberately injected during the automatic failover recovery procedure

initiated by the first fault being injected.

Production data from Blue Waters showed that the most common failures

were single/multiple node failures and link failures [4]. Over one-fourth of

the failures observed triggered automatic failovers [4]. These failures also led

to system-wide outages (SWOs) in which the whole system is unavailable

28

Figure 3.1: Link fault model, targeting a single link in a torus connection of
a Gemini ASIC. Two torus connections (lighter colored and marked by
black X’s) are not used as connections for the HSN, but instead used
internally to communicate with the nodes.

(e.g. user cannot log in, cannot access all data blocks of the file system, etc.)

[4]. Close to two-thirds of the SWOs are a result of failover procedures failing

and affecting re-routing of the Gemini network or access to the Lustre file

system [4]. It was also found that network failovers are frequent and that the

majority of these triggered failovers were due to lane failures [5]. The next

most frequent cause of failovers was link failures [5]. This is also confirmed

in studies of other HPC systems, such as Titan [7]. The lane fault model,

however, is not included in this study as there is no controlled way (e.g. a

Cray administrator command) to trigger lane faults at this time. This is left

for future work. Nevertheless, improving failover procedures is important

and this study aims to provide a methodology to assess resiliency of recovery

procedures.

3.1.1 Single Injection: Link

A link fault, as shown in Figure 3.1, models the failure of a network link

that connects two Gemini ASIC routers. We recreate this failure scenario

by sending a system administrator command to mark the status of the link

component as unavailable or removed from service. In real scenarios, this

status flag is typically modified to deactivate problem links. This process

29

effectively masks out any problem links and prevents further use. Traffic that

may have been using the problem link is then re-routed to use other links

on the same connection. A link failure on one Gemini ASIC also affects the

Gemini ASIC on the opposite end. The HSS is responsible for monitoring the

health of a Cray system for such failures. When the HSS detects a failure, it

feeds this information to a link failover manager on the SMW, thus triggering

the automatic failover [24].

The automated failover is expected to mask link failures without causing

any major interruption of the system. If the link failure leads to the discon-

nection of an ASIC, then the failover process needs to compute new routes

in order to reroute network traffic around the failed component, quiesce the

network (i.e. pause network traffic), install the newly computed network

routes on all ASICs, and finally unquiesce the network. As mentioned above,

it is possible for this failover process to fail.

This study does not explicitly model single-lane faults (due to a lack of a

method to directly cause such a failure). However, because there are three

lanes per link, a link failure is the same as three lane failures.

3.1.2 Single Injection: Connection

A connection fault models the failure of a network connection. Recall that a

connection, in a torus topology, such as Gemini, consists of either 8 links for

each X+, X-, Z+, Z- direction or 4 links for each Y+, Y- direction. Failing

a connection means failing or deactivating all the links between two Gemini

ASICs. This failure scenario is recreated by modifying the status flags of

all the links to be marked as unavailable or removed from service. Note

that from now on, what we call a connection refers to all links or all torus

connections in one connection direction, as shown in Figure 3.2.

The automated recovery process is the same as the link failover procedure,

which involves recalculating and rerouting network paths around the hole

created by the connection failure, quiescing the network, installing the new

network routes on all ASICs, and finally unquiescing the network. There are

some topologies that are unroutable and thus lead to a reroute failure [23],

but in general, no major system interruptions are expected.

30

Figure 3.2: Connection fault model, targeting one connection direction of a
Gemini ASIC. Two torus connections (lighter colored marked by black X’s)
are not used as connections for the HSN, but instead used internally to
communicate with the nodes. Note the distinction between a torus
connection and a connection direction.

3.1.3 Single Injection: Node

A node fault, as shown in Figure 3.3, models the failure of a compute node.

In this study, we were asked to not target service nodes due to their im-

portance for critical system services, but we do target XE and XK compute

nodes. We recreate this failure scenario by sending a system administrator

command that in turn sends a non-maskable interrupt (NMI) to the CPU to

cause it to hang. Any application running on this failed node would fail and

terminate. The failover process for a node is identical to that for a failed link

Figure 3.3: Node fault model, targeting one of the four nodes on a blade.
The blade shown is a Cray XE6.

31

Figure 3.4: Blade fault model, targeting the whole blade and its components
by turning of the voltage regulators. The blade shown is a Cray XE6.

or connection.

Additionally, there is also no automated method to reboot a single node,

which limits obtaining a statistically significant number of node failure ex-

periments. The only way to reboot a node is through our automated method

for rebooting a whole blade or through manual interaction with the SMW.

Neither situation is ideal for realistic (a whole blade is never rebooted for a

single failed node), repeated experiments given limitations on access to the

SMW. For these reasons, there are few node failure experiments in this work.

These node failure results are reported together with blade (multiple node)

failure results as we did not observe any difference in system or application

behavior between the two types of faults.

3.1.4 Single Injection: Blade

A blade fault models the failure of a blade, which consists of four compute

nodes, two Gemini ASICs, and six network connection directions or 40 net-

work links in total. When a blade is shut down, all these components are

marked as down, which means any application(s) running on the failed blade

would also prematurely terminate. We recreate this failure scenario by send-

ing a system administrator command that turns off the voltage regulator of

the mezzanine in the blade, as shown in Figure 3.4.

The automated recovery process is expected to reroute around the two

failed Gemini ASIC routers just as in the failover procedures for the previ-

ously discussed fault models.

32

3.1.5 Injection During Recovery

Injection during recovery is a model of multiple faults with one or more faults

injected during the failover recovery procedure of another single fault. One

goal of this study is to recreate the failed failover scenarios observed in Blue

Waters field data as well as the fault injections performed on Cielo. In those

systems, SWOs and network deadlocks were observed [6],[5],[15].

This model involves multiple faults, chosen from a combination of the

previously discussed single injection fault models. For example, a single

connection fault is injected as the initial fault to trigger a recovery process.

During recovery, a second connection fault is injected.

Behavior of the recovery processes when faults are injected during recovery

is not well documented nor understood. Subsequent chapters will discuss

results and observations of the system’s behavior and the resiliency of failover

processes under the stress of multiple faults.

3.2 Benchmark Applications

The main goal of this study is to assess the reliability and resiliency of HPC

systems in the presence of faults. One way to evaluate resiliency of HPC

systems is through observing the behavior of applications or benchmarks

running on the system. Being able to control applications running on the

system during experiments and having direct access to the applications’ log

outputs provides both a real-time monitor of application health as well as

a way to observe fault propagation through the rest of the system. This in

turn can help provide deeper insights of fault tolerance at the application and

system levels. To conduct fault injection experiments in environments that

are as realistic as possible, we chose various HPC benchmark applications to

generate varying levels of network and computational activity. The list of

benchmarks is shown in Table 3.1.

These applications were chosen to cover and evaluate resiliency of a spec-

trum of HPC programming frameworks, including Charm++, MPI, and

PGAS. These frameworks, in the context of fault tolerance, are discussed

in more detail in the following sections. These chosen applications cover

a wide range of scientific applications, such as particle physics, molecular

dynamics, and seismic simulations.

33

The applications are executed at varying node scales and tuned to run for

approximately 30 to 40 minutes, which is sufficient time for one fault injection

and its corresponding recovery and restoration processes. For example, the

whole blade recovery and restoration procedure can take about 10 minutes

to complete. All applications are scaled to run on 64 nodes or less. This in

turn limits the applications that we could compile and run simply because

certain applications require the resources of more nodes than the testbed can

provide.

Beyond the work presented in this study, future work aims to compare

reliability and resiliency features and behavior across HPC systems with dif-

ferent interconnect architectures, such as the Aries Dragonfly Interconnect.

While discussion of the Aries interconnect and its details are beyond the

scope of this thesis, that ongoing work enforced another constraint on the

applications that were chosen in the later campaigns of this study. HPC

systems and testbeds owned by different organizations are configured with

certain programming environments and various versions, a flexibility pro-

vided by Cray. This flexibility, however, means that some systems have

different compiler and module versions, which further limits the applications

that we could compile and run for the comparison fault injection experiments

on Aries systems.

3.2.1 Charm++

Charm++ is a parallel programming framework based on the C++ pro-

gramming language, actively developed and maintained by the Parallel Pro-

gramming Laboratory at the University of Illinois at Urbana-Champaign.

Its key novel concepts include a message-driven execution model and an

adaptive runtime system in charge of migratable work and data units [26].

The applications we selected under Charm++ (AMR, Kripke, LeanMD, and

NAMD) utilize the user-level Generic Network Interface (uGNI) API, a na-

tive low-level interface for Gemini hardware on Cray XE/XK systems, with

shared-memory optimization pthreads and Cray HugePages modules [27].

Charm++ maintains fault tolerance only through the checkpoint and restart

mechanism, making use of its novelty of migratable objects, but even the de-

velopers are skeptical whether this checkpoint/restart scheme is enough for

34

Table 3.1: Benchmark applications information [25].

Application Name Discipline Programming Model Languages Characteristics

Adaptive Mesh Refinement
(AMR)

Numerical
Analysis

Charm++
(SMP, HugePages over
uGNI)

C++ -

Anelastic Wave Propaga-
tion (AWP-ODC)

Seismic MPI
(PGI Environment)

Fortran,
C++

Structured Grid,
Sparse Matrix,
I/O

Kripke Particle
Physics

Charm++
(HugePages over uGNI)

C++ Structured Grid,
Dense Matrix

LeanMD Molecular
Dynamics

Charm++
(HugePages over uGNI)

C++ N-Body, FFT

MIMD Lattice Computa-
tion (MILC)

Particle
Physics

MPI
(Intel Environment)

C/C++ Structured Grid,
Sparse Matrix

Nanoscale Molecular Dy-
namics (NAMD)

Molecular
Dynamics

Charm++
(SMP over uGNI)

C++ N-Body, FFT

Pseudo-Spectral Direct Nu-
merical Simulations (PS-
DNS)

Fluid Dy-
namics

MPI
(Cray Environment)

Fortran Structured Grid,
FFT

Unified Parallel C Fourier
Transform (UPC-FT)

Numerical
Analysis

PGAS Unified Parallel C C FFT

exascale systems where failure rates are expected to increase significantly

[28],[29].

3.2.2 Message Passing Interface

The Message Passing Interface (MPI) is an efficient, scalable, and vendor-

independent specification for message-passing parallel programming libraries.

It is the industry standard for message passing parallel programs running on

virtually any parallel computing hardware platform, including HPC plat-

forms. MPI supports point-to-point and collective communication routines

[30]. There are multiple implementations of the MPI standard; our chosen

MPI applications, AWP-ODC, MILC, and PSDNS cover three implementa-

tions: PGI, Intel, and Cray, respectively.

The MPI Standard itself does not consider fault tolerance as a property

of the standard itself nor of any MPI implementation on its own. While the

developers assert that fault tolerance is a property of MPI programs cou-

pled with MPI implementations, the MPI Standard nevertheless still speci-

fies reliable communication [31]. This means that all MPI implementations

35

must detect and handle network faults (e.g. through retransmission of the

message, informing the application of the presence of an error, etc.). The

standard also specifies certain error handlers, but the handlers can either

be built in or user defined [31]. In general, the standard itself allows for

flexibility in implementation when it comes to fault tolerance. Suggestions

for writing fault-tolerant programs include checkpointing and use of MPI’s

intercommunicators to ensure survivability if one party has failed and ceased

communication [31].

3.2.3 Partitioned Global Address Space

The Partitioned Global Address Space (PGAS) is yet another parallel pro-

gramming model, but one that aims to combine the advantages of both

distributed-memory models (performance and locality) and shared-memory

models (simplicity and programmability) [32]. It provides a global address

space, which is shared and accessible by any process yet also partitioned such

that portions are local to each processing element, process, or thread [32].

There are various PGAS languages; this work focuses on Unified Parallel C,

a programming PGAS-like language descended from the C language [32].

It is known that PGAS applications are susceptible to network failures

[5]. This vulnerability stems from requiring atomic memory operations and

ordered message delivery [5]. Lost transactions during link failures, such as

loss of response, are not tolerated and can lead to a duplicate transaction

to be present. Messages that arrive out of order will also disrupt the ap-

plication’s forward progress. DMAPP is a communication library used by

UPC-FT. It provides remote memory access (RMA) between processes, but

it does not support error recovery in the presence of link failures, leaving it

up to applications to handle the error.

3.3 Fault Injection Toolkit: HPCArrow

To investigate the fault-to-failure propagation and the impact of faults on

systems and applications, we developed a SWIFI-based tool called HPCAr-

row. This toolkit systematically executes fault injections on Cray systems

with both Gemini and Aries interconnects. Fault injection experiments aim

36

Figure 3.5: Architecture environment of the fault injection experiments,
depicting the modules of the HPCArrow toolkit and their interactions
within the Cray System, including the final output logs.

to create failure scenarios that emulate actual permanent faults at the hard-

ware component level.

HPCArrow provides the advantage of a controllable and repeatable injec-

tion environment. The toolkit can inject one or more faults of any fault type

(link, component, node, blade) into either a random or user-specified location

at a random or user-specified time. It also supports the specific restoration

commands to automatically restore the system back to an unaffected, fault-

free state after each injection experiment. Note that restoration is different

from the system’s automatic failover recovery procedure. Failover is the sys-

tem’s response to mask out or reroute around the failed component(s) as

much as possible to minimize disruption of system service; it does not fix

the failed component itself. Restoration is a manual procedure for which a

system administrator is responsible. Restoration must be manually triggered

in order to return the failed component back into service.

This toolkit comprises three main modules, which are described in detail

in the next few sections. The workflow of the toolkit in tandem with the

target system is illustrated in Figure 3.5.

37

3.3.1 Workload Manager

Application workloads are configured, launched, and logged by the Workload

Manager module to simulate real network and computational activity on a

target system. An application can be launched at user-specified locations on

the target system and at various user-specified scales. Multiple applications

can be launched simultaneously as well.

In this study, the Workload Manager supports as small as two-node ap-

plications (smallest allowable size on JYC) up to 64 nodes at intervals of

powers of 2 (2, 4, 8, etc.). Due to NCSA restricting our system reservation

to the top two chassi, 64 nodes is the largest size available. Regardless of

scale, every application is configured for about 30-40 minutes of run time.

Every application has its own unique parameters to configure for scaling and

run time. See Appendix D for details on these parameters.

The various workload sizes, topology placement, node types, and application-

specific runtime parameters are enumerated in YAML configuration files that

can be easily modified or extended by the user. Through these configura-

tion files, the Workload Manager module can generate job submission scripts

tailored to support various target systems with different resource managers,

cluster job workload management packages, or job schedulers. Currently, it

supports Moab/TORQUE for JYC/Blue Waters.

3.3.2 Fault Injector

The Fault Injector module is responsible for performing the fault injections

by executing the system-specific commands to take down network or com-

pute components. This can be either a random selection of a component

(by the tool) or a user-specified component. These selection methods will

be discussed in further detail in Chapter 4. In the case of multiple fault

injections, this module handles timing the fault injections either based on a

user-specified delay or through monitoring system logs to inject faults during

recovery procedures. The injector is also responsible for invoking the appro-

priate restoration procedure corresponding to the fault that was injected.

Fault injection and system restoration are executed via system-specific

commands. In this work, those are Cray administrative commands, which

are issued from the SMW where this Fault Injector module runs in the back-

38

ground. The injector extracts both the user-specified target component(s)

and injection timing delay from the names of currently running jobs. It then

looks up the parameters and commands for performing both the injection and

restoration phases of the injection experiment and executes those commands.

Tables B.1 and B.2 in Appendix B detail the injection and restoration com-

mands, respectively. Throughout each experiment, the injector constantly

logs injection and restoration commands as well as standard output and er-

rors and stores these outputs in text files. These are the injector logs.

Because the fault injector calls Cray-specific administrative commands to

inject faults, this module can be modified to incorporate other low-level HPC

fault injection frameworks that can be triggered by an executable program

or shell script.

3.3.3 Injection Manager

The Injection Manager is a daemon-like module responsible for monitoring

the target system’s ALPS queue to ensure space for applications and that

no other unintended jobs are running during an injection experiment. This

module also watches for jobs started by pre-specified user(s). The presence

of jobs started by a pre-specified user signals the Injection Manager to ini-

tiate an injection experiment. If an injection is specified via the job names,

the Injection Manager parses the job name and subsequently triggers the

injection through the Fault Injector module. At a later pre-specified time,

the Injection Manager also collects the appropriate injection logs and system

logs that are on the SMW and inaccessible to a normal user. This workflow

is illustrated in Figure 3.6.

Due to restrictions of JYC usage for fault injections, the Injection Manager

ensures limited user intervention, meaning that we do not have to manually

run injection or restoration commands, nor do we have to be logged in on

administrator accounts on the SMW. To trigger an injection experiment as

a user, the target component type(s) and name(s) are specified in the job

names that are submitted to the job scheduler. The injection delay and re-

covery stage is also specified here as well. The Injection Manager, which is

monitoring the job queue from the SMW, parses the job names to determine

what type(s) of injection(s) to run and when. Figure C.1 in Appendix C out-

39

Start

Monitor job scheduler
queue for new jobs started

by pre-specified user(s)

Queue contains
user’s jobs?

Parse user-specified
information (injection type,
component name, delays,

etc.) from job name

Execute
injection

experiment?

Wait until Injec-
tion Delay elapses

Inject fault via Fault
Injector module

Wait until Restora-
tion Delay elapses

Collect injection and
system logs at a pre-
specified time per day

yes

no

yes no

Figure 3.6: Workflow of the Injection Manager module of the HPCArrow
toolkit. The Injection Manager continuously runs on the SMW like a
daemon and must be started by the system administrator.

lines the parts that the injector parses in order for us to remotely execute an

injection experiment without needing to have constant administrator privi-

leges and access to the SMW. A list of seen and injected jobs is kept by the

Injection Manager temporarily to ensure that it does not inject more than

once on the same set of jobs. In addition, the Injection Manager also ensures

that fault injections are only executed during the allocated reservation hours

and that all injection, system, and performance logs, which are normally

restricted behind system administrator privileges, are made available to a

pre-specified user via a log transfer script.

This Injection Manager is an optional module, tailored to our needs and to

workaround certain restrictions. The rest of HPCArrow can be run directly

on the SMW without running the Injection Manager. Similarly, the log

transfer script does not need the Injection Manager to run as it is a simple

shell script used to collect all logs.

3.4 Data Collected

To assess the impact of the proposed fault injections on both the system and

its running applications, we collect and analyze system-generated logs, mon-

itoring and performance data, application outputs, and injection experiment

40

logs. This data is provided by various collection and aggregation services,

including the fault injection toolkit that was discussed in the previous sec-

tion. The data generated by applications launched on the system without

injections or presence of any faults were used as our golden outputs in order

to compare against for the later fault injection experiment outputs. These

golden logs and outputs were also used to identify the most utilized compo-

nents on which to inject faults. Analysis of all this data collectively provides

a quantifiable way to observe and describe system and application behavior

in the presence of faults.

3.4.1 Event Analysis: LogDiver

The system logs that we collect are generated by Cray logging daemons that

are always running on the system at various levels, including the SMW and

cabinet and blade controllers. They are typically started during system boot,

although some may need to be manually turned on by the system adminis-

trator. These logs contain information on the network, system, hardware

components, and the SMW itself. Table 3.2 describes the specific system

logs collected and analyzed for this work.

To parse and identify the events and information necessary to evaluate

resiliency, we use a tool called LogDiver.1 It is a tool designed for analyzing

application-level resiliency in extreme-scale environments based on system

and hardware error logs on Blue Waters [34]. In this work, we utilize Log-

Diver to extract network failover recover stages and hardware errors to verify

the completion statuses of recoveries and restorations, and to diagnose both

abnormal application terminations (crashes and hangs) and recovery failures.

To accomplish this, LogDiver filters based on pre-configured regular expres-

sions (regex) that match with pre-specified events of interest in the collected

system logs. The regexes were assembled from manual inspection of events

in collected logs.

1LogDiver was developed by Catello Di Martino and Saurabh Jha at the University of
Illinois at Urbana-Champaign (UIUC) based off of data produced by Blue Waters.

41

Table 3.2: Cray system logs [33] collected and analyzed in this work.

Log Name Description

commands All commands, excluding xtdiscover, executed on the
SMW.

events HSS-wide events, health and heartbeats, and sequence
identifiers; recorded by the event router.

hwerrlog Hardware error events in the ASIC network chip; the
xthwerrlogd daemon monitors for these errors.

netwatch Link control block (LCB) and router errors; the xtnet-
watch daemon monitors the system HSN faults inter-
connect for these errors.

nlrd HSN failures, recovery actions taken and phases in event
of failures, warm swap requests, and HSN congestion;
the network link resiliency daemon (nlrd) monitors blade
controllers for these events.

smwmessages SMW hardware and environmental history.

xtdiscover Output from running xtdiscover command on the SMW,
used to detect Cray system hardware components and to
capture changes in hardware configurations in the HSS.

Netwatch Events

The xtnetwatch daemon collects interconnect metadata from the system

HSN, logging link control block (LCB) and router errors. Such events, de-

scribed in Table 3.3, include mode exchanges, transmitting and receiving

packets, inactive links, bad send EOP error, send packet length error, and

routing table corruptions.

Nlrd Events

The xtnlrd daemon logs interconnect failures, recovery actions taken in re-

sponse to those failures, and details of each phase of recovery. It also logs

warm swap stages and network congestion events. The events of interest,

described in Table 3.4, include the recovery stages of the failover protocols,

which were discussed in the previous chapter. This information is used to

verify the success of failovers and warm swaps or detect abnormal network

responses to fault injections.

42

Table 3.3: Netwatch error events of interest during analysis.

Event Description

Link Inactive A link has failed and has been marked as inactive.

Bad Send EOP error On Gemini interconnects, each packet is divided into
24-bit physical units (phits), always with the last phit
of a packet serving as the end of packet phit [17]. A
corrupted packet will have its end of packet phit marked
to be discarded at its destination.

Send Packet Length error The length of a packet does not match with the expected
length at the packet’s destination.

Routing Table Corruption
error

Every router contains a routing table, which holds the
forwarding information for incoming packets. An incom-
ing packet is matched to the routing table entry using
its destination. If a routing table is corrupted, pack-
ets may reach incorrect destinations, link failures may
occur, and network congestion may arise.

Table 3.4: Nlrd network and recovery events of interest during analysis.

Event Description

Link Failed A link has failed.

ASIC Failed An ASIC router has failed. Typically seen when a blade
fails.

Link Recovery Successful A link failover finished successfully. This is a generic
message even for blade and connection failures since
they all involve link failures.

Link Recovery Failed A failover failed.

Network Quiesced All traffic is temporarily suspended and any in-flight
packets are drained from the network.

Network Unquiesced All traffic is allowed to resume.

Throttle The network is experiencing congestion and all blades
are instructed to throttle traffic.

Unthrottle Network congestion has been handled and all blades are
instructed to unthrottle network bandwidth.

Warm Swap Successful A warm swap restoration procedure finished success-
fully.

Warm Swap Failed A warm swap restoration procedure failed to restore a
component back into service.

43

Hwerrlog Events

The xthwerrlogd daemon monitors and logs for hardware error events that

occur on ASIC network chips. The errors of interest, described in Table 3.5,

are related to network deadlocks observed in field data [15]. Netwatch events

are also reported in these hardware logs.

Table 3.5: Hardware error events of interest during analysis.

Event Description

LB Lack of Forward Progress Traffic flow is stopped through a NIC and packets are
discarded. This may indicate a severe network issue if
this error is generated across the entire network. It is
not critical if contained in a small set of routers.

NIF Squashed from Tile Request Packets are squashed due to failed consistency checks
(e.g. ECC, CRC, misroute). This may indicate packet
corruption or bad routing.

ORB RAM Scrubbed Upper/Lower
Entry

If a network request times out, it is scrubbed or removed
from the Output Request Buffer (ORB). ORB can free
the upper 64 entries or the lower 64 entries of the ORB
RAM as shown in the names. This is a transient hard-
ware error, but if continuously generated in the logs, it
could mean a severe problem with the network, such as
a deadlock.

ORB Request with No Entry A response packet is received, but does not correspond
to a request entry in the ORB RAM. This is a critical
error as it may indicate a routing table corruption.

Receiver 8b10b Error This indicates a transmission error.

SSID Response RequestTimeout This error can result from failed HSN components, a
failure of the node to which the request was sent, or a
transient error that results in a packet being discarded.
It could also result from severe network congestion and
can be an indication of a network deadlock when it per-
sists over a long period of time.

SSID Response Protocol Error This is a complex error, sometimes indicating network
problems. It can be seen during network re-routing trig-
gered by quiescing. It can also be triggered by process
termination interrupting the Gemini low-level protocol.

SSID Detected Misrouted Packet The destination field in the packet does not match the
endpoint at which the packet has been received. This
can be caused by a routing problem in the network or a
mis-addressed packet (bad/invalid NIC address).

SSID Stale on Response, SSID Stale A warm swap restoration procedure finished success-
fully.

44

3.4.2 Network Performance Counters

Many Cray systems, including Blue Waters, are beginning to utilize a high

fidelity, global system monitoring module called OVIS,2 which aims to de-

tect and diagnose abnormal system behavior or limitations and to provide

system-level insight into resource utilization (e.g. how the network is utilized,

stressed, or congested). OVIS contains a service called the the Lightweight

Distributed Metric Service (LDMS), which collects and transports network

performance data [35]. This service logs numerical network performance

(throughput in bytes/second) in the X+, X-, Y+, Y-, Z+, and Z- directions

for each Gemini on the target system. In this study, LDMS is configured

to sample traffic data (in bytes/second) at one-second intervals. Due to low

overhead, LDMS can be deployed across an entire HPC platform without

any significant detrimental impact on the system itself [35]. However, LDMS

is not resilient against network failures (due to needing to aggregate data

collected on each node) and node failures (the service itself runs on service

nodes). Data is collected by on-node daemons and held in memory on a node

until they are overwritten by the next sample. It is pulled from memory by

other daemons via RDMA. During node failures, the data collected by on-

node daemons are lost if memory is overwritten or lost. During failures in

the HSN, i.e. during a network quiescence, data points that would have been

collected in that period are dropped.

In this work, we use LDMS network data for guiding component injection

selection in our fault injection campaigns on JYC. Based on traffic data from

pre-run applications, we select components with the maximum throughput

traffic in order to ensure that a single component injection will yield the most

impact on the system. We also utilize LDMS network data for diagnosing

abnormal application behavior (e.g. observing whether there is traffic during

application hangs).

Figure 3.7 shows an example timeplot of LDMS traffic data collected for

one normal (i.e. without injections or abnormal system behavior) run of a

Charm++ NAMD application on 4 nodes. Based on this plot, we can visually

see that the connection direction with the highest traffic is the Z- direction

on node nid00060.

2The OVIS Project is developed by SNL in collaboration with NCSA and Cray Inc.

45

Figure 3.7: Example of LDMS traffic data collected for one run of a NAMD
application without injection.

3.4.3 Application Outputs and Injection Logs

Having various applications running on the system is also key to assessing

resiliency of application frameworks in the presence of faults. Every work-

load run information is redirected from stdout and stderr to one or more

logs. These application-specific outputs may contain information such as

timestamps, computation steps and timings, exit statuses, and any abnor-

mal or critical errors. Information reported by the ALPS is also redirected

into these logs. These include network quiescence and throttling events when

automatic failure recoveries or manual warm swap procedures are invoked.

The Injection Manager module also outputs it own set of injection logs,

collecting book-keeping information regarding injection experiments. This

includes timestamps, jobs running on the queue, jobs and/or components

selected for injection, and redirected information from stdout and stderr on

the SMW.

We use these application and injection logs as another avenue of informa-

tion to correlate system-level failures and recoveries to fault injection events

that occur during workload runs. They also help diagnose the causes of

abnormal application behaviors and termination as other studies on HPC

failures do not have such detailed information about application behavior

and failures.

46

CHAPTER 4

EXPERIMENTS AND RESULTS

This chapter details fault injection campaigns conducted on Blue Waters’

96-node JYC testbed. A campaign consists of a set of experiments that are

thematically unified in injection type (number of injections), fault selection

methodology, fault model types, fault injection timing (either seconds after

all applications start or during user-specified recovery stages), and applica-

tions. These are outlined for each campaign in Table 4.1 and discussed in

detail in this chapter.

Across the fault injection campaigns on JYC, a total of 321 experiments

were executed, collected, and analyzed. Out of 321, 30 were baseline runs

without injections, which were used as the golden outputs or data as com-

parison reference for later experiments’ outputs. The remaining were fault

injection experiments. These experiments spanned seven months and took

about 9030 node-hours.1 The following sections detail the experimental

setup, which covers application configurations and injection selection meth-

ods applied across the campaigns. Each campaign and its results are then

presented in separate sections.

4.1 Experimental Setup

4.1.1 Applications and Topology Configurations

As discussed in the previous chapter, applications are used as one perspective

to assess system resiliency under the stress of faults. This portion of the

experiments necessitates a great deal of setup time, including compilation

1A node-hour is a unit of work that an HPC node performs in one hour. More generally,
this means that an application ran for a Walltime of t hours on n nodes, e.g. two nodes
running 0.5 hour each = one node-hour.

47

Table 4.1: Summary of fault injection campaigns.

Fault Injection
Campaign I

Fault Injection
Campaign II

Fault Injection
Campaign III

Fault Injection
Campaign IV

Injection Selection
Method

Random Traffic-based Traffic-based Traffic-based

Injection Type Single Single Single Multiple
(During Recovery)

Fault Types Link
Connection
Node
Blade

Link
Connection
Blade

Link
Connection
Blade

Link-Connection
Connection-Link
Blade-Link
Link-Blade
Connection-Blade

Injection Timing 220 s 220 s 600 s
1200 s

220 s (1st)
Recovery Stages (2nd)

Application Set Set I Set II Set II Set II

and parameter adjustments for scale, node types, and time. See Appendix

D for details on these parameters. Due to the duration of failover and warm

swap procedures, which can take about 10-15 minutes for a single blade

fault, applications were preconfigured to run for about 30 to 40 minutes.

Applications are also preconfigured with a Walltime, which specifies the

maximum amount of time the application can run regardless of completion

of computations. This parameter is set to be two hours for all application

runs across the four campaigns. Combined, these two constraints dictate

the duration of experiments: one experiment run can be as fast as about 33

minutes and another as long as two hours. This upper bound, which is often

reached by certain applications and faults, is the limiting factor on running

a statistically significant number of repeated experiments.

In total, nine different applications were compiled and executed on JYC.

These nine were split and mixed to construct two sets of applications: one

used in Campaign I as a proof of concept and the other used in all subsequent

campaigns. Applications are varied in workload sizes (i.e. the number of

nodes they run on), which are powers of two, ranging from as small as two

nodes up to 64 nodes. These limitations are set by JYC scheduler (two nodes)

and NCSA restrictions (2 chassis = 64 nodes). Applications are also varied

in placement around the system. While fault injections are limited to the top

two chassis of JYC to avoid disrupting service nodes as requested by NCSA,

applications are still placed in the bottom chassis in some configurations to

watch for fault propagation.

48

Figure 4.1: Application Configuration 1 on JYC for Fault Injection
Campaign 1. Grayed-out nodes are unused nodes.

Application Set I. Campaign I features six applications: AMR (SMP),

AMR (HugePages), AWP-ODC, LeanMD (HugePages), Kripke (HugePages),

and UPC-FT. Campaign I consisted of five various application topology lay-

outs or configurations, covering various workload sizes, topology placements,

and topology density of applications. Figure 4.1 shows an example configura-

tion of how applications were laid out in Configuration 1. Grayed out nodes

are unused nodes. Refer to Appendix D for the other four configurations

used in Campaign I.

Application Set II. Campaign II also features six applications: AMR

(HugePages), LeanMD (HugePages), Kripke (HugePages), MILC, NAMD

(SMP), and PSDNS. Note that three of them (MILC, NAMD, and PSDNS)

are unique from those executed in Campaign I. From this set of applications,

we constructed three various application topology layouts or configurations,

covering various workload sizes, topology placements, and topology density of

applications. Figure 4.2 shows an example configuration of how applications

were laid out in the Dense Configuration, filling up nearly every compute

49

Figure 4.2: Dense Application Configuration on JYC for Fault Injection
Campaign 2. Grayed-out nodes are unused nodes.

node of the JYC system (grayed-out nodes are unused nodes or service nodes

that cannot be used by users). The change from five different configurations

to three is simply due to time constraints and the need to run the same

experiments repeatedly. These same applications and configurations used in

Campaign II are reused in Campaigns III and IV to maintain consistency

and repeatability. Refer to Appendix D for the other two configurations

constructed from this set of applications.

4.1.2 Injection Selection Method

Random Selection

Faults in Campaign I were injected on randomly selected components. HP-

CArrow’s Injection Manager monitors the system job queue and assembles

a list of jobs currently running. It randomly selects a job from the list and

then, depending on the fault type and the workload size, it randomly selects

50

Table 4.2: Random injection selection method for each fault type, which
depends on the number of nodes an application is running on.

of
Nodes

of
Geminis

Fault Type

Link Connection Blade

2 1 Random outgoing link
from Gemini

Connection in random
direction from Gemini

Blade containing the
Gemini

4 2 One random link of
links between the 2
Geminis

Random connection
direction of connec-
tions from either
Gemini

Blade containing the 2
Geminis

8 4 One random link of
links between 2 blades
where workloads are
running

Random connection
direction of connec-
tions between 2 blades
where workloads are
running

Random blade of 2
blades where work-
loads are running

32 16 One random link of
links between any 8
blades where work-
loads are running

Random connection
direction of connec-
tions between 8 blades
where workloads are
running

Random blade of 8
blades where work-
loads are running

64 32 One random link of
links between 2 chas-
sis

Random connection
direction of con-
nections between 2
chassis

Random blade of 2
chassis’ blades (16 to-
tal)

a component on which the targeted job is running. Table 4.2 enumerates

the selection process for each fault type. For example, if the user specifies a

link injection, then a random job is selected. If the targeted job is running

on four nodes, then it covers two Geminis’ worth of links. A random link

from among the links between the two Geminis is selected for take-down or

injection.

Traffic-Based Selection

For Campaigns II, III, and IV, the selection process of a target component

was based on the maximum utilization of network components over the course

of five no-injection runs of an application configuration. This methodology

focuses solely on the components that utilize the most network resources.

This ensures that we choose the fault injections with maximal impact on the

system and on the applications running on it.

As discussed in the previous chapter, LDMS logs traffic throughput (in

51

Table 4.3: Targeted injection selection method for each fault type, which is
only dependent on traffic data, not number of nodes or Geminis.

of
Nodes

of
Geminis

Fault Type

Link Connection Blade

- - Link of connection
with highest through-
put

Connection with high-
est throughput

Blade attached to con-
nection with highest
throughput

bytes/second) in the X+, X-, Y+, Y-, Z+, and Z- directions2 for each Gem-

ini on the target system. Each of the three workload configurations were run

without injections and profiled, using the LDMS data, to determine which ap-

plications and corresponding connection directions generated the most traffic

on the network. On a time series plot of the LDMS data, connection compo-

nents with the maximum throughput activity can be visually identified and

selected for injection.

For links and blades, the methodology is similar. While LDMS data only

tracks traffic at the connection direction granularity, the same traffic data can

easily be re-used and extended to determine which links and blades to target.

In particular, the links that form the connection with the highest throughput

are target candidates; the blades that are attached to the connection with

the highest throughput are target candidates. Table 4.3 enumerates the

selection process for each fault type. This method is independent of the

workload size or number of Geminis, but it must be computed offline from

golden outputs. The Injection Manager does not do anything beyond monitor

the job queue and trigger the fault injection whose injection type, fault type,

and component name are user-specified. Future work should involve real-

time monitoring of live LDMS data and real-time component selection based

on the workloads running on the HPC system.

To illustrate, we discuss a NAMD Charm++ application running on 16

nodes. Figure 4.3 shows time series plots of the traffic throughput over the

course of the workload’s execution on each of the 16 nodes (the graph is

truncated to 6 nodes for readability). Note that since JYC is a one cabi-

net system, the plots leave out the X+/- connection directions. The target

2LDMS only tracks at the granularity of connections. It does not track utilization of
specific links themselves.

52

component can be identified by visually finding the node with the connection

direction that has the highest sustained traffic throughput. In this case, there

are two pairs of candidates: nodes nid00032 and nid00033, corresponding to

Gemini c0-0c1s0g1, as well as nodes nid00060 and nid00061, corresponding

to Gemini c0-0c1s1g0, show the highest sustained throughput in the Z+ and

Z directions, respectively. Since they are roughly similar, either Gemini is

a suitable target candidate. Here, Gemini c0-0c1s0g1 is arbitrarily chosen,

which means the Z+ connection (c0-0c1s0g1,Z+) is targeted for the connec-

tion fault injection on this NAMD application. Since the Z+ connection has

eight possible links, three links are randomly pre-selected: in this case, we

chose c0-0c1s0g1l01, c0-0c1s0g1l10, and c0-0c1s0g1l27. If it were the Y+

direction, which has four links, three links would still randomly be chosen

as well. For the node injection, one of the two nodes is arbitrarily chosen.

And finally, for the blade injection, the blade that houses the Gemini c0-

0c1s0g1 is targeted, which in this case is c0-0c1s0. See Appendix E for all

the components that were targeted using this traffic-based selection method.

4.1.3 Experiment Timeline

In a fault injection campaign, running an experiment requires a couple pre-

steps. Prior to execution, a user configures and builds an application set

through HPCArrow’s Workload Manager module. The user specifies the

injection type, fault type(s), component name(s), recovery target stage (if

needed), and timing delay (if needed) through the applications’ job names.

Figure 4.4 illustrates the timeline of an experiment once preconfiguration

is completed and the applications begin to run. At time T = 0, the user-

selected applications are submitted to ALPS to be run on JYC. The Fault

Injector module waits until F seconds have elapsed before injecting the first

fault. F is composed of two delays: F = P + D. For our experiments, P is

pre-set by us to be 120 seconds. This is to allow time for all the applications

to complete initialization and settle into a steady state flow of computations.

The injector then waits an additional D seconds, a delay that is by default 100

seconds or specified by the user in the job name. For all campaigns, except

for Campaign III, we leave the delay as its default value. After this, the user-

specified fault is injected. After R seconds have elapsed, the failover recovery

53

Figure 4.3: LDMS traffic data for every connection direction is plotted for
each node on which a NAMD Charm++ application using 16 nodes
(truncated to six for readability) runs. The traffic based selection method
chooses the highest throughput connection. Such candidates are on nodes
nid00032, nid00033, nid00060, and nid00061.

54

T < 0

Preconfiguration

T > End

Log collection

time

Applications
reach

computational
steady state

Applications
launched

T = 0

Fault
injected

T = F

Automatic
recovery
initiated

T = F + R

Manual
restoration

invoked

T = F + R + M

Applications
terminate

End

Figure 4.4: A general single injection experiment timeline for Campaigns
I-III.

T < 0

Preconfiguration

T > End

Log collection

time

Applications
reach

computational
steady state

Applications
launched

T = 0

Fault
injected

T = F

Automatic
recovery
initiated

T = F + R

Recovery
stage

detected
Second fault

injected

Manual
restorations

invoked

T = F + R + M

Applications
terminate

End

Figure 4.5: A general injection during recovery experiment timeline for
Campaign IV.

procedure is automatically triggered by the SMW. R is the time it takes for

the SMW to respond to the fault and is not configurable from our end. It

is usually instantaneous, taking no more than a second for failover to begin.

The failover computes new routes to reroute around the fault while quiescing

the HSN. It installs the new routes and then finally unquieces the HSN. An

application may crash, hang, or continue as usual during failover. Failover

usually takes about 30 seconds. In the case of an injection during recovery

experiment, the injector watches for a target recovery stage in the network

logs and injects a second fault upon detection during this 30 second window

as shown in Figure 4.5. At time T = F + R + M , the Fault Injector module

invokes the manual restore procedure to re-initialize the failed component

and warm-swap it back into service. During the warm swap procedure, new

routes are computed, the HSN is quiesced, the new routes are installed, and

the HSN is unquiesced again. M is pre-set by us to be 200 seconds, which

gives the failover ample time to complete. The experiment ends when all

jobs in the application set terminate, usually between 30-40 minutes or up

to two hours (in the case of a hung application).

55

4.2 Fault Injection Campaign I

The purpose of Campaign I3 was to serve as a proof of concept for our

fault injection methodology and to observe JYC’s behavior and resiliency

to the simplest of failures, single fault injections. Target components were

randomly selected as discussed in previous sections. Six different benchmark

applications from Application Set I were run during these experiments. The

experiences and results gained from this set of experiments helped to refine

the methodology and experimental setup for later campaigns.

4.2.1 Summary Results

In Campaign I, there was a total of 63 experiments on JYC. Out of 63, 18

were baseline runs without injections. The remaining 45 were injection exper-

iments: 13 link injections, 16 connection injections, and 16 blade injections.

Recall that the first step of the random selection method is to randomly

select an application before randomly selecting a component. Each fault is

thus injected into a component that is utilized by an application A. From the

perspective of application A, we call this a direct injection. Thus, an indirect

injection would be a fault that is injected on a component that application

A is not directly utilizing.

In the presence of faults, direct or indirect, applications can behave in

various ways. In this work, we focus on an application’s run status and run

time. An application’s run status refers to whether the application com-

pleted its computations without impact. Specifically, the outcomes are (1)

crash, which is when an application terminates prematurely or abnormally,

(2) hang, which is when an application makes no forward progress, (3) silent

data corruption, which is when the application runs to completion, but its

outputs do not match the golden outputs, or (4) no impact.

Table 4.4 and its corresponding plot in Figure 4.6 show only the application

run statuses as a result of direct injections. All applications in this campaign

experience no impact as a result of indirect injections. Thus we focus here

only on direct injections. See Appendix F for the full summary, including

indirect faults.

3Development and execution of Campaign I was a joint effort with Lavin Devnani, who
also presents the work from Campaign I in his thesis [36].

56

Figure 4.6: Summary percentages of Campaign I’s direct injections and
application run statuses, grouped by fault type and benchmark. Refer to
Table 4.4 for counts.

57

Table 4.4: Summary of Campaign I, showing the outcomes (Crash, Hang,
No Impact) of applications that are directly injected with various fault
types (Blade, Connection, Link). See Appendix F for the full summary,
including indirect faults.

Benchmark Application Fault Type
Run Status #(%)

Crash Hang No Impact

Charm++
(HugePages)

AMR
Blade 2 (100.0) 0 0

Connection 0 0 2 (100.0)

Kripke

Blade 1 (100.0) 0 0

Connection 0 1 (100.0) 0

Link 0 2 (100.0) 0

LeanMD

Blade 3 (100.0) 0 0

Connection 2 (100.0) 0 0

Link 0 1 (100.0) 0

Charm++
(SMP)

AMR

Blade 5 (100.0) 0 0

Connection 5 (100.0) 0 0

Link 4 (100.0) 0 0

MPI AWP-ODC

Blade 3 (100.0) 0 0

Connection 0 0 3 (100.0)

Link 0 0 3 (100.0)

PGAS UPC-FT

Blade 2 (100.0) 0 0

Connection 2 (66.67) 0 1 (33.33)

Link 3 (100.0) 0 0

4.2.2 Failure Scenarios

In this campaign, we covered single fault types from link to blade. While

components are chosen randomly, we still repeat experiments. For each of

the five application configurations from Set I, we run each of the fault in-

jection types three times each. In this section, we present case experiments

for a single injection on a compute component and a single injection on a

network component. For each case, we examine resiliency behaviors at the

application, network, and system levels.

58

Blade and Node Faults

For all blade and node injections, it is expected that an application using

the targeted blade or node will crash simply because one or more compute

components are not available. These fault injection outcomes are reflected

in Table 4.4 and Figure 4.6 in which every direct blade injection always led

to an application crash. We present a case blade fault experiment here.

In Experiment 42, blade c0-0c2s5 was targeted. Recall that when a blade is

taken out of service, the two Gemini ASICs (c0-0c2s5g0, c0-0c2s5g1) housed

by the blade fail as well, causing a cascade of link failures across all outgoing

links and links connected at the other ends. Thus 40 link failures were

expected to be observed.

This blade fault directly impacted and prematurely terminated the 32-node

AWP-ODC application running on the top chassis. All other applications

continued to run to completion as normal. The targeted application’s outputs

reported several instances of Generic TCP Error across nodes 74, 75, 84,

and 85. The following message was also logged, which is typically generated

when a node or blade fails with some hardware error (e.g. memory check

error) [37]:

[NID 00064] 2018-03-15 21:50:03 Apid 614720 killed. Received node

event ec_node_failed for nid 74

Figures 4.7 and 4.8 illustrate the timeline of events at the experiment level

(application and injection timings and durations) and at the network level,

respectively. From t = 0 to t = 341.205, there was a sustained flow of traffic

across all eight blades that AWP-ODC was running on as shown by the blue

line in Figure 4.8a. At t = 341.205, the blade fault was injected, which caused

Gemini c0-0c2s5g0 and c0-0c2s5g1 to fail in every connection direction. This

caused the application to die as can be observed more clearly in Figure 4.8b

when all traffic died after the fault injection. In response, all network traffic

was quiesced while the automatic failover rerouted around the failed blade.

This failover completed at t = 391.0. Traffic for the network resumed across

the system for non-impacted applications except for the Geminis that the

killed application had been running on. At t = 543, the injector initiated

the warm swap procedure, which completed at t = 967.732 and successfully

returned the blade back into service. The spike was likely residual traffic

leftover from before the fault.

59

Figure 4.7: Timeline of Experiment 42 with a single blade injection. The
digits after each application name indicate the number of nodes the
application ran on.

Examining network recovery logs as shown in Table 4.5 confirmed the

normal completion of the failover recovery and the warm swap restoration.

There were 40 link failures as expected, one successful link recovery (all links

are handled in one recovery process), and one successful warm swap. From

the hardware error logs, there were a variety of errors, some with an enormous

count. The SSID Request Timeouts, SSID Response Protocol, SSID Detected

Misrouted Packet, ORB RAM Scrubbed, NIF Squashed Request Packet,

and NW (netwatch) errors all indicate network packets being dropped or

misrouted intentionally by the routing algorithm due to the blade failure.

All of these errors were transient and disappeared once failover successfully

completed, leaving no indication of any critical problems in the system and

network.

Link and Connection Faults

For single link and single connection faults, outcomes of application run

statuses were more varied, especially for Charm++ and PGAS applications.

Crashes were observed among AMR (SMP), LeanMD, and UPC-FT. Even

more surprising, hangs were observed for link and connection injections into

Kripke and LeanMD. In this section, we present a case experiment of a single

link injection that results in an application crash. We leave examination and

discussion of the hang case for the next section on Campaign II.

60

(a) Cumulative traffic plot of Experiment 42 with a single blade injection.

(b) Traffic plot of a 32-node AWP-ODC application run in Experiment 42, with
focus on two out of the four nodes on the injected blade (left out for readability
and space).

Figure 4.8: Traffic plots of Experiment 42 with a single blade injection.

61

Table 4.5: Summary of system logs for Experiment 42 (single blade fault).

Event Count

Link Failed 40

Link Recovery Successful 1

NetUnthrottle 2

Quiesced 1

SetThrottleMask 2

Throttle 2

Unquiesced 1

Warm Swap Successful 1

ORB RAM Scrubbed Lower Entry 24

ORB RAM Scrubbed Upper Entry 24

SSID Detected Misrouted Packet 52

SSID Request Timeout 7497

SSID Response Protocol 105

NIF Squashed Request Packet 44

NW Exchange from SUPR to RUN 10

NW Link Went Inactive 40

NW Send EOP Bad 10

In Experiment 46, link c0-0c2s0g0l17 was targeted. Recall that when a

link is taken out of service, the link on the other end (c0-0c2s7g0l27) is also

taken down. Thus we expected two links to fail in this experiment.

This link fault directly impacted and prematurely terminated the 32-node

UPC-FT application running on the top chassis. All other applications con-

tinued to run to completion as normal. The targeted application’s outputs

reported instances of DMAPP RC TRANSACTION ERROR: Transaction failed

across nodes c0-0c2s0n0 and c0-0c2s7n2, which contain the failed links as

shown below:

PE 480: ERROR: dmapp_syncid_wait(hdl): DMAPP_RC_TRANSACTION_ERROR

: Transaction failed.

PE 15: ERROR: dmapp_syncid_wait(hdl): DMAPP_RC_TRANSACTION_ERROR:

Transaction failed.

[NID 00064] Apid 618722: initiated application termination

This error means that the network transaction completed with an error

state, either a non-recoverable transaction error or a transient error, such

as network error, uncorrectable memory error, or resource shortage [38]. In

short, the link fault naturally caused transactions to fail. The rest of the log

messages record the application crash.

Figures 4.9 and 4.10 illustrate the timeline of events at the experiment level

and at the network level, respectively. From t = 0 to t = 440.584, there was

62

Figure 4.9: Timeline of Experiment 46 with a single link injection.

a sustained flow of traffic across all eight blades that UPC-FT was running

on as shown by the blue line in Figure 4.10a. At t = 440.584, the link fault

was injected, which caused the application to die as shown by the red and

blue lines in Figure 4.10a4 flattening. This is more apparent when looking

at traffic for the Gemini (two nodes) whose link was injected on in Figure

4.10b. In response to the fault, all network traffic was quiesced while the

automatic failover rerouted around the failed link. This failover completed

at t = 479.0. Traffic for the network resumes across the system for non-

impacted applications. The warm swap procedure completed at t = 700.65

and successfully returns the blade back into service.

Examining network recovery logs as shown in Table 4.6 confirmed the

normal completion of the failover recovery and of the warm swap restoration.

There were two link failures as expected, one successful link recovery, and

one successful warm swap. From the hardware error logs, we observed errors

similar to those in the blade fault experiment discussed above. However,

since there were only two link failures, the frequency of these events are

much less in this case. Overall, the network and system recovered without

any residual critical errors.

4It may seem odd that the cumulative traffic plot shows that the single UPC-FT ap-
plication had more overall traffic than the rest of the applications. This is due to many
nodes not having the LDMS data collector enabled by the system administrator at the
time.

63

(a) Cumulative traffic plot of Experiment 46 with a single link injection.

(b) Traffic plot of a 32-node UPC-FT application run in Experiment 46, with
focus on one Gemini (two nodes shown) whose link was targeted for injection.

Figure 4.10: Traffic plots of Experiment 46 with a single link injection.

64

Table 4.6: Summary of system logs for Experiment 46 (single link fault).

Event Count

Link Failed 2

Link Recovery Successful 1

NetUnthrottle 2

Quiesced 1

SetThrottleMask 2

Throttle 2

Unquiesced 1

Warm Swap Successful 1

ORB RAM Scrubbed Lower Entry 9

ORB RAM Scrubbed Upper Entry 9

SSID Request Timeout 69

SSID Response Protocol 1

NW Exchange from SUPR to RUN 1

NW Link Went Inactive 2

4.3 Fault Injection Campaign II

Campaign I was the proof of concept for our fault injection approach and for

our injector tool HPCArrow. However, the randomness of experiments and

the limited number of experiments provided little sense of predictability in

terms of application and system behavior, especially in the presence of link

and connection faults. Our research project was also expanding to consider

other more modern HPC systems, such as the Aries interconnect. Thus,

there are two main reasons for this second fault injection campaign.

The first reason is related to the modification of the injection selection

methodology from random (Campaign I) to network traffic-based (Campaign

II and onward). This provided two benefits. (1) Fault injection on the com-

ponents with the highest throughput traffic ensures that such faults will cause

the most impact on the system. (2) This traffic-based selection method led

to further development of HPCArrow’s capabilities to allow for user-specified

target components. This in turn created a better mechanism for reproducible

experiments as we can now rerun the exact same scenarios repeatedly. Unlike

in Campaign I, where each “repeated” experiment can still vary randomly

in the targeted application and exact component, in Campaign II, each in-

jection is exactly repeated five times, down to the targeted application and

component.

The second reason is the need for a more direct comparison between sys-

tems with Gemini and Aries interconnects as part of future work of this

65

project. Maintaining as many parameters (e.g. applications, methodology,

etc.) constant across systems is necessary for comparing resiliency of Gem-

ini versus Aries interconnects. This necessity for comparison as well as for

applications that generate high traffic on the HSN led to the construction of

Application Set II. Applications from this set are ones that we could compile,

scale, and run on both the Gemini and Aries testbeds given to us by NCSA

and SNL, respectively.

4.3.1 Summary Results

There was a total of 157 experiments on JYC. Out of 157, 30 were baseline

runs without injections. The remaining 127 were injection experiments: 52

link injections, 38 connection injections, and 37 blade injections.

Table 4.7 and its corresponding plot in Figure 4.11 summarize these exper-

iments and results. Once again, they show only the application run statuses

as a result of direct injections. The general observation that indirect injec-

tions have negligible impact on applications remained mostly true, except

for a few cases of indirect injections causing unusual behavior. However,

there is reason to believe that other factors led to these unique cases, such

as secondary failures that occurred naturally in the system. Therefore, their

statistics are left out of the summary table (see Appendix G for the full table

summary), but we still discuss these cases in a separate section below. Addi-

tionally, all failovers and warm swaps executed in response to fault injections

completed successfully. There is one case in which a warm swap on a blade

failed, which is also discussed below.

4.3.2 Failure Scenarios

As in Campaign I, Figure 4.11 also shows that a direct blade injection always

caused the targeted application to fail. What also stands out is that any

connection injection on Charm++ applications (AMR, Kripke, LeanMD, and

NAMD) always caused either a crash or hang scenario. MPI applications

(MILC and PSDNS) appear to be the most resilient of the bunch, with a

few exceptions for MILC, which experienced crashes due to link injections.

We discuss several interesting cases and examine resiliency behaviors at the

66

Figure 4.11: Summary percentages of Campaign II’s direct injections and
application run statuses, grouped by fault type and benchmark. Refer to
Table 4.7 for counts.

67

Table 4.7: Summary of Campaign II, showing the outcomes (Crash, Hang,
No Impact) of applications that are directly injected with various fault
types (Blade, Connection, Link). See Appendix G for the full summary,
including indirect faults.

Benchmark Application Fault Type
Run Status #(%)

Crash Hang No Impact

Charm++
(HugePages)

AMR

Blade 5 (100.0) 0 0

Connection 6 (60.0) 4 (40.0) 0

Link 3 (75.0) 1 (25.0) 0

Kripke

Blade 5 (100.0) 0 0

Connection 5 (83.33) 1 (16.67) 0

Link 0 2 (25.0) 6 (75.0)

LeanMD

Blade 5 (100.0) 0 0

Connection 3 (60.0) 2 (40.0) 0

Link 0 5 (55.56) 4 (44.44)

Charm++
(SMP)

NAMD

Blade 5 (100.0) 0 0

Connection 1 (20.0) 4 (80.0) 0

Link 1 (9.09) 10 (90.91) 0

MPI

MILC

Blade 5 (100.0) 0 0

Connection 0 0 7 (100.0)

Link 4 (36.36) 0 7 (63.64)

PSDNS

Blade 12 (100.0) 0 0

Connection 0 0 4 (100.0)

Link 0 0 10 (100.0)

application, network, and system levels.

MPI: Crashes

While MPI applications AWP-ODC from Campaign I and PSDNS from Cam-

paign II both showed strong fault tolerance against link and connection fail-

ures, the MILC application was the only MPI application to show suscep-

tibility to link failures. It was expected for MILC to resume once failover

unquiesces and finishes, but it instead crashed over one third of the time for

the same reason as shown below:

su3_rhmd_hisq: dmapp_c_sync.c:298: _dmappi_c_process_cqe_werror:

Assertion ‘0’ failed.

68

Figure 4.12: Timeline of Experiment 67 with a single link injection.

A rough stack trace produced by Abnormal Termination Processing (ATP),

a Cray debugging utility, revealed the application was in the middle of an

Allreduce function, preparing reduced results to distribute to all processes.

A wait function was invoked to wait for completion of an RMA request and

then a test function to test for request completion. It is this test function

that failed. Without the source code of the the system messaging layer, it

is unclear what the assertion was looking for. We can only speculate that

ultimately, an RMA request could not be completed due to the link failure

and this caused MILC to trip over this assertion and die.

We present Experiment 67 where a 16-node MILC application was targeted

by failing link c0-0c1s1g0l00. Figures 4.12 and 4.13 illustrate the timeline of

events at the experiment level and at the network level, respectively. We

observe traffic patterns similar to those of crashes in 4.13a, where at t =

274.92, the link fault was injected, at t = 312, failover completed, and at

t = 526.414, warm swap completed. The combined network recovery and

hardware error logs report is shown in Table 4.8 with nothing out of the

ordinary.

Charm++: Hangs vs. Crashes

Campaign I had produced scenarios in which Charm++ applications were

observed to hang and make no forward progress following a link or connection

fault, despite the scheduler reporting the job as “running.” Campaign II

69

(a) Cumulative traffic plot of Experiment 67 with a single link injection targeting
a 16-node MILC application.

(b) Traffic plot of a 16-node MILC application run in Experiment 67, with focus
on a Gemini (two nodes shown) whose link was targeted for injection.

Figure 4.13: Traffic plots of Experiment 67 with a single link injection.

70

Table 4.8: Summary of system logs for Experiment 67 (single link fault).

Event Count

Link Failed 2

Link Recovery Successful 1

NetUnthrottle 2

Quiesced 1

SetThrottleMask 2

Throttle 2

Unquiesced 1

Warm Swap Successful 1

SSID Request Timeout 4

NW Exchange from SUPR to RUN 5

NW Link Went Inactive 2

Sender Packet Timeout 6

Receiver EOP Bad 3

Receiver CC1 Bad 3

Receiver PIC Error 3

reproduced and corroborated these observations with repeated experiments.

In some hang cases for NAMD, such as in Experiment 220, NAMD did not

output any error messages. In other cases, it continuously wrote the following

warning to its logs until NAMD was terminated by ALPS for hitting the

Walltime:

Warning: GNI_PostRdma: ioctl(GNI_IOC_POST_RDMA) returned error -

Invalid argument at line 161 in file rdma_transfer.c

The Charm++ runtime framework logs this warning when an invalid ar-

gument is encountered in a RDMA transaction. However, since this was

a warning and did not trigger any abnormal terminations in the way that

crashes do, the ATP utility did not provide any stack traces. In the one

NAMD crash scenario due to a connection fault, the ATP reported a similar

error: [498] registerFromMempool; err=GNI RC INVALID PARAM.

NAMD traffic as shown in Figure 4.14 died after the link injection (c0-

0c1s0g1l01) at t = 342.004 and never resumed following failover completion

at t = 380 or warm swap completion at t = 603.834. This pattern mirrored

that of crashes. The traffic plots show up to 7200 seconds (two hours) to

highlight that the reported running time of NAMD was two hours, as depicted

in Figure 4.15, yet there was no traffic over the network for the majority of

this time. Hardware error logs are similar to previously discussed examples.

For completion, it is still provided in Table 4.9.

During hangs and crashes, Kripke also sometimes reported the same exact

71

(a) Cumulative traffic plot of Experiment 220 with a single link injection
targeting a 16-node NAMD application.

(b) Traffic plot of a 16-node NAMD application run in Experiment 220, with
focus on a Gemini (two nodes shown) whose link was targeted for injection.

Figure 4.14: Traffic plots of Experiment 220 with a single link injection.

72

Figure 4.15: Timeline of Experiment 220 with a single link injection.

Table 4.9: Summary of system logs for Experiment 220 (single link fault).

Event Count

Link Failed 2

Link Recovery Successful 1

NetUnthrottle 2

Quiesced 1

SetThrottleMask 2

Throttle 2

Unquiesced 1

Warm Swap Successful 1

ORB RAM Scrubbed Lower Entry 3

ORB RAM Scrubbed Upper Entry 3

SSID Request Timeout 37

NW Exchange from SUPR to RUN 1

NW Link Went Inactive 2

73

warning as hung NAMD applications. In one scenario, Kripke crashed due a

segmentation fault during a memory copy invoked from the Charm++ PUP

(Pack/UnPack) library, which is used to pack an array, structure, or object

into a memory buffer.

PUP::fromMem::bytes(void*, unsigned long, unsigned long, PUP::

dataType)@pup_util.C:165

__cray_memcpy_INT@0x2042d315

ATP Stack walkback for Rank 74 done

Process died with signal 11: ’Segmentation fault’

LeanMD hang instances behaved similarly to NAMD hangs in terms of

GNI PostRdma warning messages and incomplete computational step out-

puts. None of the crashes due to connection faults produced a stack trace to

analyze.

AMR (HugePages) hangs produced no output. However, its crash messages

varied wildly, such as the memory copy segmentation fault seen for Kripke.

AMR also tripped over an assertion as shown below:

Reason: Assertion "msg_nbytes > 0" failed in file machine.c line

2239.

aborting job:

This assertion failure was due to a SMSG send failure, meaning a network

packet had been dropped in-flight to its destination Gemini. AMR (SMP)

crash instances all reported this same error as well.

Across all of our analysis methodologies, there was no indicator to differ-

entiate between a hang or a crash scenario. The only telltale sign that an

application had hung was that the ALPS continued to report the application

as “running” while no further computations were logged in the application’s

outputs. Eventually when the maximum allowed time had elapsed, the ALPS

terminated the job. This creates an interesting detection problem in that

from the system side, there is no obvious indication of a hung application.

Indirect Injections

Campaign II is the only campaign with failure scenarios in which an appli-

cation failed even though it was not a direct target of an injection. The only

application to exhibit this behavior was PSDNS.

74

We present Experiment 85, which used the set of applications and place-

ments from the Sparse Configuration. In this experiment, a link injection on

c0-0c2s0g1l42 directly targeted a four-node AMR application in the top chas-

sis. While AMR crashed as result, a four-node PSDNS application placed in

a different chassis, the middle one, also crashed before completing its com-

putations. The error reported in its logs is simply:

lib-4205 : UNRECOVERABLE library error

The program was unable to request more memory space.

This error message indicated that during one of PSDNS computational

steps, it tried to allocate memory, but was evidently unable to request more.

Sometimes this might indicate that the application’s problem size is too

large to be handled by four nodes. However, this application had been run

close to 100 times throughout this campaign, including ten baseline runs and

four direct injection runs, without premature terminations. Only five such

instances of UNRECOVERABLE library error occurred and none were caused

by direct injections. So this error was unlikely solely due to the problem size

itself.

Since this was an indirect injection, we present only PSDNS’s traffic plot

as shown in Figure 4.16 and its system report in Table 4.10. While PSDNS

may appear to complete within the expected time window of 30-40 minutes,

it does indeed crash at around t = 2087 according to the ATP stack trace

and PSDNS’s log outputs. However, the experiment timeline as shown in

Figure 4.17 reports the time of link injection at t = 290.049, the time of

failover completion at t = 329, and the time of warm swap completion at

t = 544.498. All of these events are far removed in time from the time of

PSDNS’s crash. Similarly, in the other four instances of PSDNS crashing, the

application crashed very early in its run (about 80-90 seconds) with the same

UNRECOVERABLE library error, even before a fault injection had occurred.

These four instances were repeated in back-to-back runs of the same link

injection experiment in the same night.

It may be possible that the link injections had no causal impact that led

to PSDNS’s crashes and that there may be some other underlying issue that

was not reported to the system. It may also be possible that memory was not

properly freed, causing memory across four nodes to run out; it is unclear at

this point what might lead to such behavior. Future work should investigate

75

Table 4.10: Summary of system logs for Experiment 85 (single link fault).

Event Count

Link Failed 2

Link Recovery Successful 1

NetUnthrottle 2

Quiesced 1

SetThrottleMask 2

Throttle 2

Unquiesced 1

Warm Swap Successful 1

ORB RAM Scrubbed Lower Entry 7

ORB RAM Scrubbed Upper Entry 7

SSID Request Timeout 297

NW Exchange from SUPR to RUN 1

NW Link Went Inactive 2

collecting data on memory utilization, similar to traffic data for the network.

We should also develop a fault model for memory congestion at the node

level.

Warm Swap Failure

Lastly, we present a case in which a warm swap restoration for a blade

injection failed to bring a blade back into service. Running applications

from the Medium Configuration, Experiment 160 injected a blade fault on

blade c0-0c2s5 at t = 276.492, targeting an eight-node Kripke application.

At t = 319, the failover completed and at t = 858, the warm swap process

terminated with a failure.

From our own injector’s logs, the following is reported for the blade warm

swap commands:

ERROR: xtbounce command to initialize links timed out

ERROR: Timeout during xtbounce link initialization

FAILURE: Warm swap command failed.

The warm swap add command had failed due to an xtbounce that was

meant to initialize the links on the blade that was being added back into

service. The xtbounce timed out instead, causing the whole process to fail.

A variant xtbounce command had to be called manually on the SMW by the

system administrator in order to successfully warm swap the blade back into

service.

76

Figure 4.16: Traffic plot of a four-node PSDNS application run in
Experiment 85 that was not a target of the single link injection.

77

Figure 4.17: Timeline of Experiment 85 with a single link injection.

It is likely another error had interfered with the xtbounce underneath

the hood. While it was the warm swap process that was disrupted in this

experiment, this particular case reflects the spirit of Campaign IV and its

goal to disrupt the failover process with injections during recovery.

Application Run Times

In this last section of Campaign II, we present one final result in Figure 4.18.

In the presence of fault injections, applications were observed to have statis-

tically significant increased run times on average compared to applications

that ran without any fault injections in the system. This holds true across

all applications, despite the crash cases observed. This result demonstrates

the performance impact of even a single fault on the system and how critical

fault detection and fault tolerance is in HPC systems.

4.4 Fault Injection Campaign III

In this campaign, experiments maintain single fault injections, still using ap-

plications from Set II. However, the main difference is varying the time at

which faults are injected. All applications have about a 30 minute window.

Campaigns I and II only focused on injecting in the first 10 minutes of an

application’s running time. Campaign III injects during the middle 10 min-

utes and the last 10 minutes. With regard to results, there is nothing new

78

Figure 4.18: Distributions of application run times in Campaign II,
comparing applications that ran in the presence of fault injections versus
those that ran in a fault-free system.

79

Table 4.11: Full summary of Campaign III, showing the outcomes of
applications that in the presence of (direct and indirect) faults.

Benchmark Application Fault Type
Run Status #(%)

Crash Hang No Impact

Charm++
(HugePages)

AMR Connection 8 (80.0) 2 (20.0) 0
Kripke Connection 0 0 10 (100.0)

Link 0 0 10 (100.0)
LeanMD Blade 0 0 10 (100.0)

Connection 0 0 10 (100.0)
Link 0 0 10 (100.0)

Charm++
(SMP)

NAMD Connection 0 0 10 (100.0)
Link 2 (20.0) 8 (80.0) 0

MPI

MILC Blade 10 (100.0) 0 0
Connection 0 0 10 (100.0)

PSDNS Blade 0 0 10 (100.0)
Connection 0 0 10 (100.0)
Link 0 0 10 (100.0)

uncovered by varying the fault injection delay that has not already been cov-

ered in the previous sections. Thus this section only presents the summary

results.

4.4.1 Summary Results

There was a total of 30 experiments on JYC: 10 link injections, 10 connection

injections, and 10 blade injections. The link injections targeted the 16-node

NAMD application from the Medium Configuration; the connection injec-

tions targeted the four-node AMR application from the Sparse Configura-

tion; and finally, the blade injections targeted the 16-node MILC application

from the Dense Configuration. Table 4.11 and Figure 4.19 show the full

summary of these experiments. Half of the experiments were injected with

a 600 second delay while the other half were injected with a 1200 second

delay. Figures 4.20a and 4.20b illustrate the timelines of a 600 second delay

single blade injection experiment and a 1200 second delay link injection ex-

periment, respectively. Experiment 241 targets a 16-node MILC application

while Experiment 240 targets a 16-node NAMD application.

80

Figure 4.19: Summary percentages of Campaign III’s injections (direct and
indirect) and application run statuses, grouped by fault type and
benchmark. Refer to Table 4.11 for counts.

81

(a) Timeline of Experiment 241 with a 600 second delayed blade injection.

(b) Timeline of Experiment 240 with a 1200 second delayed link injection.

Figure 4.20: Timeline plots of Campaign III experiments.

82

4.5 Fault Injection Campaign IV

Campaign IV’s focus shifted away from assessment of application fault tol-

erance to evaluation of system resiliency. One of the main mechanisms for

fault tolerance on HPC systems is its failover recovery procedures, which

attempts to mitigate any ramifications of faults or failures and to minimize

any disruptions of service. To evaluate failovers, multiple fault injections are

required: one fault to trigger a failover and at least one other fault to inject

during failover. The warm swap procedure is not targeted in this work, al-

though the injection methodology developed here would work the same for

injections during warm swap.

The main challenge in this campaign is the tight time window of the failover

recovery process due to JYC being a small-scale system. Failover on JYC

only lasts for 30 seconds in total while containing about 16 main stages with

nine minor stages. This time window varies from system to system, de-

pending upon the scale of the system: the larger the system, the longer the

recovery window. For example, on Blue Waters and other large-scale pro-

duction systems, this can last over 600 seconds [15]. A secondary challenge

in this campaign is determining when to inject the second fault. In an ideal

case, having the the ability to select any stage of recovery and promptly in-

ject a fault requires real time monitoring of failovers. Network related events

and errors are captured by the xtnlrd daemon and reported in the nlrd logs,

which are stored on the SMW and rotated daily. We take advantage of the

fact that once we inject the first fault, there is always a failover that im-

mediately triggers in response. As soon as the injector triggers a fault, it

begins to monitor the most current nlrd log based on date and check for the

appropriate output line corresponding to the target stage. Once it detects

the stage, it then injects the second fault.

In this section, we present the results of our injection during recovery

experiments and illustrate the challenges of injecting on a small-scale system

like JYC.

4.5.1 Summary Results

First, we present the summary results of initial injection during recovery ex-

periments in order to determine the feasibility of these experiments on JYC.

83

In total, 71 injection during recovery experiments were performed and sum-

marized in in Table 4.12. Four injection during recovery experiments are not

counted in Table 4.12 because they involved multiple faults during recovery

whereas Table 4.12 only shows experiments involving a single fault during

recovery. The bulk of the direct injections shown in Table 4.12 involved

combinations of link, connection, and blade injections. There are no indirect

injections that led to any unusual behaviors and all failovers and warm swaps

completed without issue.

The target recovery stages included Alive, Route Compute, Route Install,

and Switch Netwatch. These were initially chosen due to the critical nature

of each stage and due to scenarios observed in field data. Route Compute

involves computing and rerouting around the current faults in the HSN.

If this computation is based on an incorrect state of the HSN, then many

packets will likely be incorrectly routed. Route Install and Switch Netwatch

are similarly critical in that introducing a new fault during these stages will

make the installed routes incorrect and obsolete. Lastly, the Alive stage

checks which components are alive. Injecting during this stage may corrupt

the alive statuses. In short, the goal is to confuse and corrupt the system’s

view of the network.

We first ran these experiments without information on recovery stage du-

rations and delays, all of which affect the time to recovery stage detection

and the time to fault injection. Post-experiment analysis revealed that based

on durations and time to detection and injection, certain stages are better

candidates to target than others. The next several sections discuss this anal-

ysis and present case scenarios on failover behaviors as well as late injections,

which we call injection misses.

4.5.2 Duration of Recovery Stages

Using the data collected from Campaign II, which provided 127 data points

of completed failover procedures, we measure the windows of time for each

recovery stage. These durations are captured and calculated from lines in

nlrd logs that announce the current recovery stage. For example:

1 2018-10-25T19:18:56.006931-05:00 SMWTDS 31595 2018-10-25 19:18:55

SMWTDS 31597 ***** dispatch: current_state quiesce *****

84

Table 4.12: Summary of Campaign IV, showing the outcomes of
applications that are directly injected either by the first fault or the fault
during recovery.

App
Fault Type

Recovery Stage
Run Status #(%)

1st Fault 2nd Fault Crash Hang No Impact

LeanMD Blade Link route compute 1 (100.0) 0 0
MILC Connection Blade alive 0 0 1 (100.0)

down unused links 0 0 1 (100.0)
route compute 0 0 1 (100.0)
route install 0 0 1 (100.0)
switch netwatch 0 0 1 (100.0)

Link Blade alive 0 0 1 (100.0)
down unused links 1 (50.0) 0 1 (50.0)
route compute 1 (100.0) 0 0
route install 0 0 1 (100.0)
switch netwatch 0 0 1 (100.0)

Connection Connection alive 0 0 1 (100.0)
route compute 0 0 1 (100.0)
route install 0 0 1 (100.0)
switch netwatch 0 0 1 (100.0)

Link Connection alive 1 (50.0) 0 1 (50.0)
route compute 2 (100.0) 0 0
route install 1 (100.0) 0 0
switch netwatch 2 (100.0) 0 0

Connection Link alive 0 0 1 (100.0)
route compute 0 0 2 (100.0)
route install 0 0 1 (100.0)
switch netwatch 0 0 1 (100.0)

Link Link route compute 1 (100.0) 0 0
route install 1 (100.0) 0 0
switch netwatch 1 (100.0) 0 0

NAMD Connection Connection alive 0 1 (100.0) 0
route compute 0 2 (100.0) 0
route install 1 (50.0) 1 (50.0) 0
switch netwatch 0 2 (100.0) 0

Link Connection alive 1 (50.0) 1 (50.0) 0
route compute 0 2 (100.0) 0
route install 0 3 (100.0) 0
switch netwatch 0 2 (100.0) 0

Blade Link route compute 0 1 (100.0) 0
Connection Link route compute 0 1 (100.0) 0

route install 0 1 (100.0) 0
switch netwatch 0 2 (100.0) 0

Link Link alive 0 2 (100.0) 0
down drain 0 1 (100.0) 0
route compute 0 3 (100.0) 0
route install 0 3 (100.0) 0
switch netwatch 0 2 (100.0) 0

PSDNS Connection Blade alive 1 (100.0) 0 0
down unused links 1 (100.0) 0 0
route compute 1 (100.0) 0 0
route install 1 (100.0) 0 0
switch netwatch 1 (100.0) 0 0

Link Blade alive 1 (100.0) 0 0
down unused links 2 (100.0) 0 0
route compute 1 (100.0) 0 0
route install 1 (100.0) 0 0
switch netwatch 1 (100.0) 0 0

Link Link route install 0 0 1 (100.0)
switch netwatch 0 0 1 (100.0)

85

2 2018-10-25T19:18:57.007881-05:00 SMWTDS 31595 2018-10-25 19:18:56

SMWTDS 31597 ***** dispatch: current_state quiesce_drain *****

To calculate the duration of a stage, we take the difference of the first

timestamps between two log lines. For example, in the log snippet shown

above, the duration of the Quiesce stage would be calculated by taking the

first timestamp of line 1 and subtracting it from the first timestamp of line

2. Note that there is a second timestamp in the same log lines, which will be

discussed in detail later. Here, since we only care about the relative difference

and the first time stamp has more precision (microseconds), we use the first

timestamp.

Figure 4.21 shows the distribution of durations for the 15 main stages.

Each fault type is represented by its own separate graph. The final 16th stage,

Initial, is left out as this is the system’s natural, fault-free state. Injecting

during the Initial stage would be outside the failover recovery period. The

main differences across the fault types are the distributions of the Alive

stage, which has a larger variation for blades; the Switch Netwatch stage,

which has a larger variation for connections; and the Route Install stage,

which has practically no variation for connections as compared to the other

fault types. The main takeaway across all distributions is that the vast

majority of stages are less than three seconds (note that the boxplots are

displayed in milliseconds), which does not leave much room for detection

and reaction. Certain stages are inherently impossible to inject on due to the

short duration, such as Switch Netwatch with a median of 103 microseconds

or Set Alerts with a median of 508 microseconds.

86

(a) Distributions of recovery stage durations. These were captured during single
link fault failovers.

(b) Distributions of recovery stage durations. These were captured during single
connection fault failovers.

Figure 4.21: Distributions of recovery stage durations for each fault type.

87

(c) Distributions of recovery stage durations. These were captured during single
blade fault failovers.

Figure 4.21: Continued.

4.5.3 Latency of Injection During Recovery

Given that the windows of recovery stages are brief, verifying how quickly

the injector can detect the target recovery stage and react in time to inject

is necessary for assessing the injector’s capabilities. There are several delays

that contribute to this latency between the start of the recovery stage and the

injection of the second fault as shown in Figure 4.22. These delays include

the time W that it takes for the nlrd daemon to generate and write the target

stage’s log message, the time D that it takes for the injector to detect the

target stage via the nlrd logs, and the time I that it takes for the injector

to react and inject the second fault. If the average time to detection plus

the average time to injection is beyond the third quartile of a recovery stage

duration distribution, then it is highly unlikely to have a successful injection

in this stage. Each of these contributors to the latency is discussed in the

following sections.

88

time

Target stage
begins

T = 0

Stage written
to log

T = W

Injector
detects
stage

T = D

Injector
triggers

fault

T = D + I

Target stage
ends

T =End

Time to
write
to log

Time to
detection

Time to
injection

Figure 4.22: Delays that contribute to the latency between occurrence of a
target recovery stage and a fault injection.

Delay Between Stage and Log Message

To select a specific stage to target, we require real-time monitoring of all

failover procedures. As previously mentioned, network events are stored

in the nlrd logs. These logs are the only source of information about the

system’s network recovery stages that the injector toolkit may access. An

example output from an nlrd log is provided as follows:

2018-10-25T19:19:20.026178-05:00 SMWTDS 31595 2018-10-25 19:19:19

SMWTDS 31597 ***** dispatch: current_state finish *****

2018-10-25T19:19:20.026188-05:00 SMWTDS 31595 2018-10-25 19:19:19

SMWTDS 31597 do_finish: Re-enabling throttle daemon...

2018-10-25T19:19:20.026203-05:00 SMWTDS 31595 2018-10-25 19:19:19

SMWTDS 31597 INFO: 24 out of 24 L0s are alive

Nlrd logs are the only system logs we examine in this work that have two

timestamps in a single log line. There is a chain of generating and forwarding

of messages that is dictated by the rsyslog, which contains forwarding rules

on the SMW that place incoming messages into their final corresponding log

files. Messages that are sent to rsyslog are then forwarded and included in

its entirety, including the original message’s header (e.g. timestamp), as the

message body in a new message with a new timestamp. Thus the first, outer

timestamp is an artifact of rsyslog while the second, inner timestamp is closer

to the event. The challenge that arises here is that the precision of the inner

timestamp is at the level of seconds while the outer timestamp’s precision

is at the level of microseconds. In the log outputs shown above, the event

happened approximately at 19:19:19 (hour:minute:second) while the message

was placed in its final log location at around 19:19:20.

89

Figure 4.23: Distribution of the delay between recovery stage occurrence
and its corresponding log message written to the nlrd log. This is an upper
bound estimation. See Appendix H for the summary statistics.

It is difficult to precisely measure the delay caused by this phenomenon,

from the occurrence of the event itself, to the event’s log message being gen-

erated, and finally to the event’s log message being forwarded and placed into

the final SMW location. To give an upper limit on this delay, we examined

over 7000 lines from nlrd logs collected during Campaign II, selecting lines

that only report the current state as shown in the example nlrd log mes-

sages and calculating the difference between the two reported timestamps.

We assume the second, inner timestamp is at zero microseconds and that it

is the time of the actual event occurrence. There is no means to measure

the delay between the actual event occurrence to its originally generated log

message. This upper limit distribution is shown in Figure 4.23.

On average, it takes about one second from the event’s original log message

to it being forwarded and written into its final destination. This, however,

can take as long as almost two seconds! Most recovery stages are sub-three

seconds, which leaves little time for the injector itself to react.

Delay Between Stage Detection and Fault Injection

To detect the target stage, the stage during which we intend to inject a fault,

we implemented a simple log watcher in Python, similar to performing the

tail -F *.log UNIX command. To avoid any unnecessary overhead, we

do not spawn a new thread or process for the watcher. The watcher routine

90

(a) Distributions of time from the
event’s original log message to the
target stage being detected by the
injector. See Appendix H for the
summary statistics.

(b) Distributions of time from the
target stage being detected to the
second fault injection. See Appendix H
for the summary statistics.

Figure 4.24: Distributions of time to detection and time to injection.

starts immediately after the first fault is injected and reads lines out of the

nlrd log as they are being written. If a target stage is detected, then the in-

jector immediately sends the appropriate fault command, which is prepared

even before the first fault is initiated to reduce overhead. If a target stage is

never reached, the watcher “times out” after a certain number of iterations

while reading the log file. This number of iterations is precomputed before-

hand in order to reduce the overheads of using any timeout functionalities or

any library that relies on the system time.

Certain latencies, however, cannot be completely avoided as the watcher

still must spend time to check every line for the proper substring, the injec-

tor’s logger must log the time it detected the target stage, and the injector

itself must send the fault command to the system. The injector’s logger does

not log when the command is sent (to avoid unnecessary overhead), but it

does record it once the command returns with a status.

We provide another upper bound on the time from the event’s original

log message to the target stage being detected by the injector and the time

from target stage detection to the second fault injection in Figures 4.24a and

4.24b, respectively.

Time to Detection. In Figure 4.24a, the reactions to both fault types

examined (link and connection) on average take around 1.43 seconds, but

can take over 2.7 seconds at worst. Note that the second, inner timestamp

was used to calculate the time to detection. The watcher itself is reasonably

91

fast, about a couple milliseconds on average, in detecting when the final log

message is written to the nlrd log.

Time to Injection. In Figure 4.24b, note the stark contrast between

injecting a link fault, which on average takes a couple hundred milliseconds,

versus a connection fault, which on average takes about 1.4 seconds. This is

due to the fact that for connection faults, multiple commands must be sent to

fail all the links in a torus connection direction (four for the Y+/Y- directions

or eight for the Z+/Z- directions). For link faults (and blade faults), only

one command is sent.

Based on these analyses, it becomes evident that in addition to recovery

stages that are inherently impossible to inject on, there are also stages with

durations that are still too short to accommodate the time to detection and

time to injection. Since time to detection takes about 1.4 seconds and time

to inject a connection fault takes about another 1.4 seconds, there are few

stages for a connection injection to succeed in terms of being timely. It will

likely only succeed for Down Unused Links, Down Drain, Alive2, and Quiesce

Drain stages. This limits possible injections into critical stages to link and

blade injections.

4.5.4 Recovery Behavior and Resiliency to Faults

In this section, we review case experiments to highlight the resiliency behav-

iors of failover in the presence of multiple faults as well as to illustrate once

more the challenge of the small window of recovery on small-scale HPC sys-

tems such as JYC. Each case is presented with an experiment timeline of the

applications, injections, failover recoveries, and warm swap restorations. An

entire experimental timeline ends when the system is restored to a fault-less

state and all applications terminate, which typically happens at about 30-40

minutes of run time. Each case is also presented with a more fine-grained

time scale graph, focusing in on each experiment’s failover recovery timeline

and depicting when the two faults are injected, the timings and durations

of recovery stages, and the overall failover behavior. The warm swap stages

are left out of these recovery timeline graphs as they are not the targets of

injections in this campaign.

92

Double Failovers: Fail and Restart

In experiment 251, two link faults were injected into the system, with the

second during the crucial Route Compute stage. The experiment timeline of

the injection, recovery, and warm swap events is shown in Figure 4.25. Note

that only one warm swap may be invoked at any given time on the system.

In this scenario, after the second link fault was successfully injected during

the proper stage, the failover recognized the fault immediately, prematurely

terminated the current failover, and restarted the failover process. This be-

havior is shown in Figure 4.26 when the failover jumped to the Finish stage

after the Check Route Compute stage. The nlrd logs showed the following

messages:

2018-10-25T19:18:39.982166-05:00 SMWTDS 31595 2018-10-25 19:18:39

SMWTDS 31597 ***ERROR***: Link recovery operation failed; error

11

2018-10-25T19:18:39.982181-05:00 SMWTDS 31595 2018-10-25 19:18:39

SMWTDS 31597 Error string was: Link resiliency operation aborted

due to hardware failure during route computation

This disproves our previous speculation that if we disturb the route com-

putations, then the system would find itself installing invalid routes and thus

be in an invalid state. However, it seems that the system can recognize

a failed or corrupted Route Computation stage and is able to restart the

failover without further issue. This fail and restart behavior is only observed

for the Route Compute stage.

Double Failovers: Back-to-Back

In experiment 270, two link faults were injected into the system, with the

second during the Down Unused Links stage, which is the stage with the

longest duration. The experiment timeline is shown in Figure 4.27. In this

scenario, the first failover completed successfully and the second failover im-

mediately followed, skipping over the Initial stage that normally is present in

a completed failover. The system was able to recognize that a separate fault

occurred during the Down Unused Links stage and initiated a second failover

to handle the second fault immediately after the first failover completed. In-

jecting during many of the recovery stages, such as Route Install, Quiesce

93

Figure 4.25: Timeline of Experiment 251 with two link injections, depicting
when they are injected, when their failover procedures begin and complete,
and when the warm swap restorations begin and complete.

Drain, or Down Drain, produces these back-to-back failovers response as

shown in Figure 4.28. In other words, this is the most common observed

response to injections during recovery.

Single Failover

In experiment 253, two link faults were injected into the system, with the

second during the Alive stage, a stage in the early pre-quiescence period

of the recovery timeline. The experiment timeline is shown in Figure 4.29.

Note that there is only one failover process. In this experiment, after the

link fault was successfully injected during the proper stage, the fault was

recognized immediately and was added to the list of failed components. The

failover process continues as usual and does not require a second failover.

This behavior is shown in the experiment’s recovery timeline in Figure 4.30.

While the Alive stage may be checking for the status of blades, there is

still a background mechanism in the xtnlrd daemon to detect future faults.

Additionally, this case demonstrates that the failover does not need to restart

since the recovery process is still in its earlier stages. At this point, the

failover has not yet used the old list of failed components to compute new

routes. Injecting during the Alive2 stage also produces the same failover

behavior.

94

Figure 4.26: Breakdown of Experiment 251’s fail and restart recovery
timeline, depicting two link injections, with the second during the Route
Compute stage. Faults are highlighted in red and stages are highlighted in
blue (first failover) and green (second failover).

95

Figure 4.27: Timeline of Experiment 270 with two link injections, depicting
when they are injected, when their failover procedures begin and complete,
and when the warm swap restorations begin and complete.

Injection Misses

Experiment 276 is presented in this section to illustrate an injection miss,

which is a scenario in which the injector fails to inject during the proper

target stage. There are no detrimental effects on the system of an injection

miss. Either the fault is caught by a subsequent recovery stage or it becomes

a second fault after the initial recovery completes. In the latter scenario, a

new failover starts in response to the second fault.

Experiment 276 involved an initial connection fault and a second link fault,

targeting the Switch Network stage. In this scenario, the injector failed to

inject during the Switch Netwatch stage and instead injected during the

subsequent Down Unused Links stage as shown in Figure 4.31. Switch Net-

watch is one of the near impossible stages to inject during because of its

microsecond-level durations. Like in Experiment 270, the first failover pro-

cess completed successfully, but instead of returning to the Initial stage, the

second failover commenced to handle the second link fault. All injections

intended for Switch Netwatch ended up being caught in the Down Unused

Links stage, which typically lasts over 10 seconds.

96

Figure 4.28: Breakdown of Experiment 270’s double failover recovery
timeline, depicting two link injections, with the second during the Down
Unused Links stage. Faults are highlighted in red and stages are
highlighted in blue (first failover) and green (second failover).

97

Figure 4.29: Timeline of Experiment 253 with two link faults, depicting
when they are injected, when their failover procedures begin and complete,
and when the warm swap restorations begin and complete.

Multiple Injections During Recovery

To further demonstrate HPCArrow’s capabilities to inject multiple faults,

we conducted four experiments involving multiple faults injected during a

single failover and during a series of failed failovers (all but the last failover

procedure fails). For these experiments, we run the Dense Configuration with

faults targeting PSDNS and MILC applications.

Injections into the same recovery stage. In one experiment, we tar-

geted the Alive stage with eight link faults during the same recovery stage of

a single recovery procedure. A second experiment injected four connection

faults. Ultimately, all failovers succeeded and recovery behavior matched

what we observed with only a single injection during recovery.

Injections into recovery procedure initiated in response to fail-

ure of proceeding failover. For two experiments, we targeted the Route

Compute stage because it is the only stage, as previously shown, that is

immediately terminated by the system upon detection of additional faults

and automatically restarted as a new failover. Instead of injecting multiple

faults all at once, we injected one link fault for each Route Compute stage

of a restarted failover (in response to the proceeding failed failover). One

experiment involved a total of 16 link faults (the other experiment involved

eight faults), each fault injected during the Route Compute stage and caus-

ing the current failover to terminate and restart. In total, 15 failovers were

98

Figure 4.30: Breakdown of Experiment 253’s recovery timeline, depicting
two link faults, with the second during the Alive stage. Faults are
highlighted in red and stages are highlighted in blue (first failover).

99

Figure 4.31: Breakdown of experiment 276’s recovery timeline, depicting
two link faults, with the second failing to inject in the Switch Netwatch
stage. Faults are highlighted in red and stages are highlighted in blue (first
failover) and green (second failover).

100

Figure 4.32: Distributions of the recovery durations of single fault
experiments (Campaign II) versus multiple faults during recovery
experiments (Campaign IV). Refer to Appendix H for the summary
statistics.

terminated and restarted. The 16th and final failover ultimately succeeded

and the system did not suffer any permanent problems.

Increased Failover Recovery Time

By restarting the failover or by starting a second failover, the recovery time

of should inevitably increase. An increased time in failover recovery means

an increase in the probability of the occurrence of additional failures, which

may eventually lead to catastrophic failures in the system. According to [5],

if the recovery time exceeds 300 seconds, the probability of additional failures

raises to 0.8.

As shown in Figure 4.32, failovers that occurred during the single fault

injection experiments of Campaign II had recovery durations of about 39

seconds. Failovers that occurred during the injection during recovery experi-

ments of Campaign IV had recovery durations of about 76 seconds, which is

close to double the durations in Campaign II. There is a clear increase of re-

covery time as expected, which in turn increases the probability of additional

failures occurring.

101

CHAPTER 5

FUTURE WORK AND CONCLUSION

In this chapter, we summarize the results and observations of all four fault

injection campaigns. We provide discussions on these observations, suggest

future work in this space, and conclude this thesis.

5.1 HPCArrow

We developed a SWIFI toolkit called HPCArrow as a means of studying fault

tolerance and resiliency on HPC Cray systems by systematically executing

fault injections on network and compute components. The advantages of

this tool are its abilities to provide a controllable injection environment and

perform experiments that are automated and repeatable.

HPCArrow’s Fault Injector module can inject link, connection, node, and

blade faults by running on the SMW and issuing Cray commands. It per-

forms single or multiple injections at random or at user-specified locations

and times. In terms of multiple injections, all injections following the first

fault can be triggered either during recovery or after recovery. For injec-

tions during recovery, this module can monitor network events in real time

and conduct single or multiple injections during recovery, targeting a user-

specified recovery stage. The injector is also responsible for performing warm

swaps to return injected components back into service and restore the system

to a fault-less state.

The Workload Manager module can compile, pre-configure, and submit

applications to be launched on the system, all based on user-configurable

YAML files. Currently, HPCArrow supports Moab/TORQUE as the resource

and workload managers. It also supports Slurm [39] in preparation for fault

injections on Aries systems.

Should the tool be needed by users without root access on the SMW, the

102

Injection Manager module allows remote triggering of injections, up to two

injections at this time. The Injection Manager is also responsible for launch-

ing the log transfer script that gathers all system, hardware, and injection

logs and transfers them to a location accessible to our user accounts.

HPCArrow’s capabilities are successfully demonstrated through four dif-

ferent types of fault injection campaigns on JYC. Our tool provides insight

into application-level resiliency, system-level recovery behaviors, and fault-

to-failure propagation paths. It has also been verified to work on several

Cray XC systems that use the Aries interconnect.

5.2 Application-Level Resiliency

Across four fault injection campaigns, we ran nine different applications,

covering various HPC programming frameworks. These include Charm++,

MPI, and PGAS. Throughout the course of this study, we observed various

behaviors at the application level in response to faults injected into the sys-

tem. The behavior common to all is the increase in application run time

during injection experiments as opposed to running on a normal, fault-free

system. The more failures, the longer the run time. In addition to hav-

ing increased run time, applications were also observed to crash or hang.

These unexpected behaviors highlight a fault tolerance deficiency among

these frameworks in that these applications cannot tolerate simple failures

of the network, even if recovery is successful. At the framework level, we

summarize their unique observations below.

5.2.1 Charm++

Of the three programming frameworks, Charm++ showed the most suscepti-

bility to faults, particularly to failures in communication paths and packets.

Across AMR, Kripke, LeanMD, and NAMD, we observed all of these appli-

cations experiencing crashes or hangs. By injecting a single connection fault,

we can guarantee failure, either a crash or hang, of any of these Charm++

applications. Even a single link failure can cause any of these applications,

aside from AMR (SMP), to hang quite frequently.

103

5.2.2 MPI

Opposite of Charm++, MPI holds up as the most resilient programming

framework observed in this study. In terms of direct link or connection in-

jections, both AWP-ODC and PSDNS applications experienced no adverse

effects and were able to resume computational progress once the failover

rerouted around the injected faults. There were several instances of PSDNS

crashes due to running out of memory space across four nodes. The appli-

cation had been properly scaled and the errors occurred either long after or

some time before the fault injection, so it may be possible that the fault

injection was not responsible for directly causing the errors and crashes ex-

perienced by PSDNS. This phenomenon was also local in time, occurring

repeatedly only during one night of experiments.

MILC, however, was shown to crash only due to link injections with er-

ror messages indicating packet drops or problems processing the data in the

packet. Surprisingly, MILC does not display any adverse effects due to con-

nection injections, even though connection injections are the equivalent of

multiple and successive link faults.

5.2.3 PGAS

Lastly, the single PGAS application, UPC-FT, also showed susceptibility to

link and connection failures, often crashing in the presence of a single fault.

This, however, is expected as PGAS is known to be vulnerable to failures in

the network.

5.2.4 Discussion

Across all of these applications and frameworks, there are varying levels of

susceptibility to network-level failures and to disruptions in their communi-

cation paths. The common story behind these observed failures is packet

drops and loss of these transactions, which then cause applications to fail

their assertions, to experience segmentation faults, or to pass around invalid

arguments. In these crash scenarios, the onus falls partially on application

programmers to write more fault-tolerant programs. An example would be

retrying failed transactions for a short time before timing out. On the sys-

104

tem side, if the network can be globally quiesced, then a global broadcast

that can tell all compute node threads to pause may be a viable option to

safeguard applications against network failures.

Application hangs are phenomena that were previously unobserved in

measurement-based analysis on production data. This hanging behavior is

unique to the Charm++ applications in our experiments. However, it is un-

clear what conditions can lead to a crash or hang. Application logs, traffic

data, and system logs show similar trends and outputs for crash and hang

behavior outcomes and offer no indicators to differentiate between the two.

The only indication of an application hang is that it is reported as “run-

ning” beyond its usual execution run time and eventually hits the two-hour

Walltime. In that time, no forward progress is made and the application’s

computations are left incomplete.

These indications, however, can only be detected through offline analysis

and diagnosis. Future work should investigate real-time detection of hanging

applications on the system side so that the system can either inform the user

or terminate the application itself. A hung application is a waste of system

resources, reducing system efficiency, and a waste of the unaware user’s time

and money. Other avenues of system information to detect application hangs

in real time will need to be explored, such as CPU usage during the hung

period. Additional information such as memory usage will also be helpful

in diagnosing the PSDNS crashes. Application writers should also consider

developing more fault-tolerant programs since programming frameworks like

MPI leave responsibility of fault tolerance to the programmers.

5.3 System-Level Resiliency

In additional to application-level resiliency, this work also endeavored to eval-

uate system-level resiliency and its responses to failures in the network and

compute hardware. Across all fault injection campaigns and nearly 300 fault

injection experiments, all failovers and warm swaps were reported to have

completed successfully. While Campaigns I-III provided some understanding

of failovers, injection during recovery experiments in Campaign IV were in-

tentionally designed to provide insight into failover behaviors, recreate failure

scenarios observed in other studies, and assess overall resiliency.

105

In all 71 injection during recovery experiments, every failover recovery and

warm swap restoration completed successfully. Combinations of link, con-

nection, and blade injections were attempted across various stages, including

Route Compute, Route Install, Alive, Switch Netwatch, Down Unused Links,

and several more unintended stages due to injection misses. These injection

misses were experiments that failed to inject during the proper target stage.

These unintended stages included Alive2, Quiesce Drain, Check Route In-

stall, and Down Unused Links.

Based on results, the system’s failover process is quite robust, having mech-

anisms to cancel or fail the currently running failover and restart a new one,

such as shown in the Route Compute injections. The failover can also defer

the handling of the second fault until after the first failover completes, as

shown in most other stage injections. For injections during earlier stages,

such as Alive or Alive2, the currently running failover can handle the second

failure without needing to start a second failover process as new routes have

yet to be computed. These observations point to the likelihood that even in

the presence of more than two faults, the failover process will still behave

similarly and encounter no further issue on JYC. Additionally, by restarting

the failover or starting a second failover, the recovery time does inevitably

increase. An increased time in failover recovery means an increase in the

probability of the occurrence of additional failures, which may lead to catas-

trophic failures in the system. According to [5], if the recovery time exceeds

300 seconds, the probability of additional failures raises to 0.8.

The mentioned injection misses were predominantly due to connection in-

jections, due to the brief durations of many recovery stages and the nature

of having multiple commands to send, which causes a delay in the time to

injection. The small time window of recovery stages, which is a property

of a small-scale system, coupled with the latency of the injector to detect

target recovery stages and to inject the second fault makes this campaign

highly challenging. We suspect that these are the main culprits for why we

cannot reproduce the failure scenarios (e.g. network deadlocks) observed in

field data from large-scale production systems. While there may be slight

optimizations still available in the injector code (e.g. a queue based logging

system), the recovery window and the inherent delay of the SMW’s logging

leave little room for improvement. Any optimization in the injector would

likely be negligible. There is simply not enough time for faults to propagate

106

throughout the system and create adverse effects on JYC.

5.4 Future Work

The future of this work has many branches, including further development

of HPCArrow to support a variety of software and systems beyond Cray,

deeper investigation of hung applications and real-time detection of such

phenomenon, more fault models such as memory and network congestion,

and more experiments on multiple faults scenarios.

Future work has already begun towards resiliency comparisons between

Gemini and Aries interconnects. HPCArrow currently can support fault in-

jections on Aries interconnects and Cray XC machines. This development

occurred using SNL’s Cray XC testbeds, Voltrino and Mutrino, and fault

injection experiments are currently underway. Aries and Gemini are not

exactly one-to-one mappings due to architectural differences. For example,

there are four types of links on Aries (green, blue, black, and tweak) as op-

posed to the general link on Gemini. Despite this, the fault models remain

generally the same. The same LDMS traffic data and system logs can still be

collected since these are still Cray systems. However, again, due to architec-

tural differences in the network fabric, analysis code will need to be altered

and tailored to the components that LDMS is measuring. Ultimately, the

fault injection approach remains the same and we can retain the automation,

control, and reproducible advantages that HPCArrow provides. Expanding

to other systems beyond Cray may be possible as long as topology mappings

are provided per system and there are software mechanisms to induce fail-

ures, recover, measure traffic, and monitor system behaviors and responses to

failures. Since HPCArrow is built using Python, it may be as easy as includ-

ing more system-specific commands. Separate programs or scripts written to

trigger faults can also be incorporated into HPCArrow. Applications are a

major overhead in porting HPCArrow to other systems as benchmarks will

need to be recompiled and reconfigured for each system and their software.

Since this work could not cause failed failovers and reproduce critical sys-

tem errors, future work in the space of injections during recovery should

involve testing and running these experiments on larger scale systems. Our

hypothesis is that since small-scale HPC systems have such short windows of

107

recovery, there is not enough time for failures and their effects to propagate

throughout the system. Large-scale systems such as Blue Waters have much

longer windows of recovery time. A related hypothesis is that there may be

a window of vulnerability in the failover procedure that is either nonexistent

or very short in duration on small-scale systems, but much longer on large-

scale systems. One way to test these hypotheses on a small-scale system

like JYC would be to investigate methods to create artificial delays during

the recovery stages. Another avenue of investigation is to determine whether

such a window of vulnerability exists by examining data generated by large-

scale systems and then to quantify a relationship between this window of

vulnerability and the system scale.

5.5 Conclusion

In this work, we developed a software-implemented fault injection tool called

HPCArrow as well as a fault injection methodology that can be used to

assess fault tolerance and resiliency of HPC systems. We demonstrated HP-

CArrow’s capabilities through four fault injection campaigns, covering single

injections, time-varying or delayed injections, and injections during recovery.

These injections induce failures on network and compute components. This

fault injection tool and methodology can be expanded to other systems. It

has currently been extended to Cray XC systems and Aries interconnects.

In addition to demonstrating HPCArrow, these campaigns also provided in-

sights into application-level resiliency and system-level resiliency. There are

notable deficiencies in fault tolerance across various HPC application frame-

works, most severely for Charm++ applications. Our experiments revealed

a failure phenomenon of application hangs in which forward progress is not

made, but jobs are not terminated until the maximum allowed time has

elapsed. At the system level, failover procedures are very robust and able to

handle both single and multiple faults in the network, having an arsenal of

responses to these various scenarios.

108

REFERENCES

[1] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. A. Debardeleben, P. C. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy,
S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley,
and E. V. Hensbergen, “Addressing failures in exascale computing,”
Int. J. High Perform. Comput. Appl., vol. 28, no. 2, pp. 129–173, May
2014. [Online]. Available: http://dx.doi.org/10.1177/1094342014522573

[2] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques
and tools,” Computer, vol. 30, no. 4, pp. 75–82, April 1997.

[3] C. D. Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer, “Measuring
and understanding extreme-scale application resilience: A field study
of 5,000,000 HPC application runs,” in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, June
2015, pp. 25–36.

[4] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop,
and W. Kramer, “Lessons learned from the analysis of system
failures at petascale: The case of Blue Waters,” in Proceedings
of the 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, ser. DSN ’14. Washington,
DC, USA: IEEE Computer Society, 2014. [Online]. Available:
https://doi.org/10.1109/DSN.2014.62 pp. 610–621.

[5] S. Jha, V. Formicola, C. D. Martino, M. Dalton, W. T. Kramer,
Z. Kalbarczyk, and R. K. Iyer, “Resiliency of HPC interconnects: A
case study of interconnect failures and recovery in Blue Waters,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–1, 2017.

[6] S. Jha, V. Formicola, Z. Kalbarczyk, C. D. Martino, W. T. Kramer,
and R. K. Iyer, “Analysis of Gemini interconnect recovery mechanisms:
Methods and observations,” Cray User Group, pp. 8–12, 2016.

109

[7] M. Kumar, S. Gupta, T. Patel, M. Wilder, W. Shi, S. Fu, C. Engelmann,
and D. Tiwari, “Understanding and analyzing interconnect errors and
network congestion on a large scale HPC system,” in 2018 48th An-
nual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), June 2018, pp. 107–114.

[8] M. A. Ezell, “Understanding the impact of interconnect failures
on system operation,” Jan 2013. [Online]. Available: https:
//cug.org/proceedings/cug2013 proceedings/includes/files/pap140.pdf

[9] K. Chadalavada and R. Sisneros, “Analysis of the Blue Waters file sys-
tem architecture for application I/O performance,” Cray User Group,
Jan 2013.

[10] C.-K. Chang, S. Lym, N. Kelly, M. B. Sullivan, and M. Erez,
“Evaluating and accelerating high-fidelity error injection for HPC,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, ser. SC ’18.
Piscataway, NJ, USA: IEEE Press, 2018. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3291656.3291716 pp. 45:1–45:13.

[11] J. Calhoun, L. N. Olson, and M. Snir, “FlipIt: An LLVM based fault
injector for HPC,” in Euro-Par Workshops, 2014.

[12] Q. Guan, N. Debardeleben, S. Blanchard, and S. Fu, “F-SEFI: A fine-
grained soft error fault injection tool for profiling application vulnera-
bility,” in 2014 IEEE 28th International Parallel and Distributed Pro-
cessing Symposium, May 2014, pp. 1245–1254.

[13] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. M. Brandt, V. J. Leung,
M. Egele, and A. K. Coskun, “Diagnosing performance variations in
HPC applications using machine learning,” in ISC, 2017.

[14] A. Netti, Z. Kiziltan, O. Babaoglu, A. Srbu, A. Bartolini, and A. Borgh-
esi, “FINJ: A fault injection tool for HPC systems,” 08 2018.

[15] V. Formicola, S. Jha, D. Chen, F. Deng, A. Bonnie, M. Mason,
J. Brandt, A. Gentile, L. Kaplan, J. Repik, J. Enos, M. Showerman,
A. Greiner, Z. Kalbarczyk, R. Iyer, and W. Kramer, “Understand-
ing fault scenarios and impacts through fault injection experiments in
Cielo,” in Cray User Group, May 2017.

[16] “Blue Waters user portal — system summary.” [Online]. Available:
https://bluewaters.ncsa.illinois.edu/hardware-summary

[17] R. Alverson, D. Roweth, and L. Kaplan, “The Gemini system intercon-
nect,” in 2010 18th IEEE Symposium on High Performance Intercon-
nects, Aug 2010, pp. 83–87.

110

[18] Managing System Software for Cray XE and Cray XT Systems,
S239331 ed., Cray, Inc, 2010.

[19] “Blue Waters user portal — running your jobs.” [Online]. Available:
https://bluewaters.ncsa.illinois.edu/running-your-jobs

[20] “TORQUE resource manager.” [Online]. Available: http://www.
adaptivecomputing.com/products/torque/

[21] “Moab cloud HPC suite.” [Online]. Available: http://www.
adaptivecomputing.com/moab-hpc-basic-edition/

[22] M. Karo, R. Lagerstrom, M. Kohnke, and C. Albing, “The application
level placement scheduler,” Cray User Group, May 2006.

[23] Network Resiliency for Cray XE and Cray XK Systems, S0032d ed.,
Cray, Inc, 2014.

[24] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray
XC series network,” Tech. Rep. White Paper WP-Aries01-1112,
2012. [Online]. Available: https://www.cray.com/sites/default/files/
resources/CrayXCNetwork.pdf

[25] “Blue Waters user portal — benchmarks.” [Online]. Available:
https://bluewaters.ncsa.illinois.edu/benchmarks

[26] L. V. Kale and S. Krishnan, “Charm++: A portable concurrent object
oriented system based on C++,” SIGPLAN Not., vol. 28, no. 10,
pp. 91–108, Oct 1993. [Online]. Available: http://doi.acm.org/10.1145/
167962.165874

[27] Y. Sun, G. Zheng, L. V. Kal, T. R. Jones, and R. Olson, “A uGNI-based
asynchronous message-driven runtime system for cray supercomputers
with Gemini interconnect,” in 2012 IEEE 26th International Parallel
and Distributed Processing Symposium, May 2012, pp. 751–762.

[28] “Charm++: Parallel programming framework.” [Online]. Available:
http://charm.cs.illinois.edu/manuals/html/charm++/21.html

[29] “Parallel views: Newsletter of the parallel programming laboratory.”
[Online]. Available: http://charm.cs.uiuc.edu/docs/PPLnewsletter
fall2012-forweb.pdf

[30] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the mpi message passing interface
standard,” Parallel Comput., vol. 22, no. 6, pp. 789–828, Sept 1996.
[Online]. Available: http://dx.doi.org/10.1016/0167-8191(96)00024-5

111

[31] W. Gropp and E. Lusk, “Fault tolerance in message passing interface
programs,” The International Journal of High Performance Computing
Applications, vol. 18, no. 3, pp. 363–372, 2004. [Online]. Available:
https://doi.org/10.1177/1094342004046045

[32] G. Almasi, PGAS (Partitioned Global Address Space) Languages.
Boston, MA: Springer US, 2011, pp. 1539–1545.

[33] “SMW daemons, processes, and logs.” [On-
line]. Available: https://pubs.cray.com/content/S-2565/
CLE%206.0.UP07/xctm-series-boot-troubleshooting-guide/
smw-daemons-processes-and-logs

[34] C. D. Martino, S. Jha, W. Kramer, Z. Kalbarczyk, and R. K. Iyer,
“LogDiver: A tool for measuring resilience of extreme-scale systems and
applications,” in Proceedings of the 5th Workshop on Fault Tolerance
for HPC at eXtreme Scale, ser. FTXS ’15. New York, NY, USA: ACM,
2015. [Online]. Available: http://doi.acm.org/10.1145/2751504.2751511
pp. 11–18.

[35] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan,
M. Showerman, J. Stevenson, N. Taerat, and T. Tucker, “The
lightweight distributed metric service: A scalable infrastructure
for continuous monitoring of large scale computing systems and
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’14. Piscataway, NJ, USA: IEEE Press, 2014. [Online]. Available:
https://doi.org/10.1109/SC.2014.18 pp. 154–165.

[36] L. R. Devnani, “Fault injections on mission critical systems,” M.S. the-
sis, University of Illinois at Urbana-Champaign, 2018.

[37] “Blue Waters user portal — FAQ.” [Online]. Available: https:
//bluewaters.ncsa.illinois.edu/faq

[38] XC Series GNI and DMAPP API User Guide, S-2446 ed., Cray, Inc,
2017.

[39] “Slurm workload manager.” [Online]. Available: https://slurm.
schedmd.com/

112

APPENDIX A

JYC COMPONENT NAMES

Table A.1: JYC component names for each component type. * means this
is our naming convention for identifying connections in this work as there is
no real cname for connections on the system.

Component
Type

Component Name Description

Cabinet c0-0 Cabinet 0 (row 0-column 0)

Chassis c0-0c2 Chassis 2 in Cabinet 0

Blade c0-0c0s5 Blade 5 in Chassis 0 of Cabinet 0

Node c0-0c1s3n3 Node 3 on Blade 3 in Chassis 1 of Cabinet 0

Gemini c0-0c2s1g0 Gemini 0 on Blade 1 in Chassis 2 of Cabinet
0

Link c0-0c2s1g1l16 Link 16 (row 1, col 6 in tile array) on Gemini
1 on Blade 1 in Chassis 2 of Cabinet 0

*Connection c0-0c2s1g1,Z- Z- Connection (two torus connections) on
Gemini 1 on Blade 1 in Chassis 2 of Cabi-
net 0

113

APPENDIX B

CRAY INJECTION COMMANDS

The following tables detail the commands executed by HPCArrow’s Injection

Manager on the SMW. Note that the restoration commands in Table B.2

must be run as the crayadm user on the SMW.

Table B.1: Cray fault injection commands executed by HPCArrow.

Fault Type Command Additional Information

Link

Connection

xtmemio -w ::{gemini} {0x0006000128 |

(link row << 22) | (link col << 19)} 2

0

{gemini}: Target Gemini’s cname.

{link row} and {link col}: Row and column (from

tile array) of target link For example, a target

link "c0-0c1s0g1l27" parameters are:

{gemini} = "c0-0c1s0g1"

{link row} = 2

{link col} = 7

For connections, the command is repeated for each

link in the target connection direction. This

would be repeated 4x for Y+/Y- connections or 8x

for Z+/Z- connections.

Node xtnmi {node} {node}: Target node cname.

For example, {node} = "c0-0c2s0n3"

Note: Must run as crayadm

Blade rsh -l root {blade} "/opt/bin/i2c

2:0x60/2=0x02,0x00"

{blade}: Target blade cname.

For example, {blade} = "c0-0c2s0"

Table B.2: Cray warm swap restoration commands executed by HPCArrow.

Fault Type Command Additional Information

Link xtwarmswap -s {link}, {link end} -p p0 {link}: Target link cname

{link end}: Target link’s other end cname

Connection xtwarmswap -s {links} -p p0 {links}: Comma separated list of links to

restore from target connection. The other ends

of target connection must also be specified.

Node xtbootsys --reboot -L CNL0 {node} {node}: Target node cname.

Note: Requires an interactive terminal session

on the SMW.

Blade Remove: xtwarmswap --force --remove

{blade}
Add: xtwarmswap --add {blade}
Boot: xtcli boot CNL0 {blade}

{blade}: Target blade cname. Remove, add, and

boot commands must be executed in sequence.

114

APPENDIX C

JOB NAME PARTS

Due to restricted access to the SMW, we extended HPCArrow’s function-

ality to allow us to remotely trigger injections as normal JYC users. To

achieve this, we remotely communicate with HPCArrow’s Injection Manager

via the job names of applications that we submit to the job scheduler. All

applications of a run are specified with the same trailing string in the job

name.

Figure C.1 provides an example job name submitted to JYC and broken

down into its parts. The parts are explained below. Note that * means it

is required, otherwise the injection does not execute. For more than two

injections, this method is not scalable due to limitations on the length of job

names.

Figure C.1: Breakdown of the parts of an example job name submitted to
the ALPS.

App Name*

The name of the application. This is pre-populated by the Workload

Generator.

Nodes*

The number of nodes the application is running on. This is pre-

populated by the Workload Generator.

Configuration Name*

The name of the configuration set of applications that was submitted

together. This is pre-populated by the Workload Generator.

115

Injection Type*

Tells the injector to perform single or multiple injection(s). User-

specified. If not specified, the injection cancels.

First Fault Type*

Tells the injector what type of component to initially fail. User-specified.

If not specified, the injection cancels.

First Fault Cname*

Provides the first fault’s cname, which defines the component’s phys-

ical location in the system. User-specified. If not specified, a random

component of the specified fault type is selected.

Second Fault Type

Tells the injector what type of component to fail second if performing

multiple injections.

Second Fault Cname

Provides the second fault’s cname.

Recovery Stage

Tells the injector to fail the second component during recovery. If not

specified and a second fault is still specified, the injector will inject the

fault after recovery. Note “stage” must be specified to indicate fault

during recovery.

Injection Delay

Tells the injector to fail the first fault after some delay time (in seconds)

from the start of the experiment. This delay only applies to the second

fault injection if it is not a recovery injection.

116

APPENDIX D

APPLICATION CONFIGURATIONS

In this work, nine unique applications are compiled and configured to run

as workloads on JYC. Campaign I uses a subset of these nine, Application

Set I: AWP-ODC, AMR (SMP, HugePages), Kripke (HugePages), LeanMD

(HugePages), and UPC-FT. Campaigns II to IV use a different subset, Appli-

cation Set II: AMR (HugePages), Kripke (HugePages), LeanMD (HugePages),

MILC, NAMD (SMP), and PSDNS. For each set, applications are selected,

scaled, and placed on the JYC system map. This is a configuration. Cam-

paign I uses five configurations drawn from Set I: Configuration 1 to 5.

Campaigns II to IV draw from Set II to create three configurations: Dense,

Medium, and Sparse Configurations.

Application Name

The name of the benchmark. Charm++ applications are distinguished

between symmetric multiprocessing (SMP) and HugePages.

Application Size

The number of nodes that the application is running on.

Node Type

The node type the application is using: XE, XK, or both.

Processes Per Node (PPN)

Cray XE nodes support 32 processes; XK nodes support 16. If an

application runs on a combination of XE and XK nodes, then the PPN

is limited by the node with the smallest number of processes.

Node IDs

The name identifiers of nodes on which the application runs.

Application Specific Parameters

Benchmark-specific parameters to adjust for scaling and run time.

117

Table D.1: Application Set I, Configuration 1 parameters.

App Name App Size Node Type PPN Node IDs Parameters

AWP-ODC 32 XE 16 32-63 NX = NY = NX = 712
NPX = NPY = NPZ = 8

Kripke
(HugePages)

8 XK 16 66-69,90-93 NITER = 13

LeanMD
(HugePages)

8 XK 16 72-75,84-87 steps = 1900

UPC-FT 4 XE 32 72-75,84-87 steps = 1900
NX = 4
NY = 32

Figure D.1: Application Set I, Configuration 1 JYC system mapping.

118

Table D.2: Application Set I, Configuration 2 parameters.

App Name App Size Node Type PPN Node IDs Parameters

AMR
(HugePages)

4 XE 32 2,3,28,29 ITERATIONS = 175

AMR (SMP) 32 XE 32 32-63 ITERATIONS = 800

AWP-ODC 2 XE 32 32-63 NX = NY = NX = 368
NPX = NPY = NPZ = 4

Kripke
(HugePages)

4 XE 32 6,7,24,25 NITER = 13

LeanMD
(HugePages)

2 XE 32 11,20 steps = 950

LeanMD
(HugePages)

4 XE 32 12,13,18,19 steps = 1775

UPC-FT 32 XE/XK 16 64-95 steps = 76000
NX = 32
NY = 16

Figure D.2: Application Set I, Configuration 2 JYC system mapping.

119

Table D.3: Application Set I, Configuration 3 parameters.

App Name App Size Node Type PPN Node IDs Parameters

AMR
(HugePages)

2 XE 32 60,61 ITERATIONS = 95

AWP-ODC 4 XK 16 74,75,84,85 NX = NY = NX = 364
NPX = NPY = NPZ = 4

LeanMD
(HugePages)

4 XE 32 6,7,24,25 steps = 1775

UPC-FT 2 XE 32 16,17 steps = 12500
NX = 2
NY = 32

Figure D.3: Application Set I, Configuration 3 JYC system mapping.

120

Table D.4: Application Set I, Configuration 4 parameters.

App Name App Size Node Type PPN Node IDs Parameters

AMR
(HugePages)

2 XE 32 16,17 ITERATIONS = 95

AWP-ODC 32 XE/XK 16 64-95 NX = NY = NX = 712
NPX = NPY = NPZ = 8

Kripke
(HugePages)

2 XE 32 2,3 NITER = 13

UPC-FT 8 XE 32 34-37,58-61 steps = 32000
NX = 8
NY = 32

Figure D.4: Application Set I, Configuration 4 JYC system mapping.

121

Table D.5: Application Set I, Configuration 5 parameters.

App Name App Size Node Type PPN Node IDs Parameters

AMR (SMP) 64 XE/XK 16 32-95 ITERATIONS = 800

AWP-ODC 2 XE 32 18,19 NX = NY = NX = 368
NPX = NPY = NPZ = 4

UPC-FT 4 XE 32 6,7,24,25 steps = 21500
NX = 4
NY = 32

Figure D.5: Application Set I, Configuration 5 JYC system mapping.

122

Table D.6: Application Set II, Dense Configuration parameters.

App Name App Size Node Type PPN Node IDs Parameters

AMR
(HugePages)

2 XE 32 20,21 ITERATIONS = 95

Kripke
(HugePages)

4 XE 32 6,7,24,25 NITER = 14

LeanMD
(HugePages)

16 XE 32 40-55 steps = 7000

MILC 2 XE 32 16,17 NX = NY = NZ = NT = 16
Trajectories = 2

MILC 16 XE 32 32-39,56-63 NX = NY = NZ = NT = 32
Trajectories = 1

NAMD (SMP) 4 XE 32 6,7,24,25 numsteps = 10700

PSDNS 4 XE 32 12,13,18,19 dims: 4 32
nsteps = 46

PSDNS 32 XE/XK 32 64-95 dims:16 64
nsteps = 320

Figure D.6: Application Set II, Dense Configuration JYC system mapping.

123

Table D.7: Application Set II, Medium Configuration parameters.

App Name App Size Node Type PPN Node IDs Parameters

AMR
(HugePages)

4 XE 32 12,13,18,19 ITERATIONS = 175

Kripke
(HugePages)

8 XK 16 72-75,84-87 NITER = 13

LeanMD
(HugePages)

8 XK 16 64-67,92-95 steps = 1900

MILC 4 XE 32 2,3,28,29 NX = NY = NZ = NT = 16
Trajectories = 4

NAMD (SMP) 16 XE 32 32-39,56-63 numsteps = 40500

PSDNS 8 XE 32 44-51 dims: 8 32
nsteps = 100

Figure D.7: Application Set II, Medium Configuration JYC system
mapping.

124

Table D.8: Application Set II, Sparse Configuration parameters.

App Name App Size Node Type PPN Node IDs Parameters

AMR
(HugePages)

4 XK 16 64,65,94,95 ITERATIONS = 175

Kripke
(HugePages)

8 XK 16 70,71,88,89 NITER = 14

LeanMD
(HugePages)

2 XE 32 48,49 steps = 950

MILC 4 XE 32 78-81 NX = NY = NZ = NT = 16
Trajectories = 4

NAMD (SMP) 4 XE 32 36,37,58,59 numsteps = 10700

PSDNS 4 XE 32 42,43,52,53 dims: 4 32
nsteps = 46

Figure D.8: Application Set II, Sparse Configuration JYC system mapping.

125

APPENDIX E

FAULT INJECTIONS SELECTED

The following tables list the components that were targeted during Cam-

paigns II to IV based on LDMS traffic data. For each configuration in Appli-

cation Set II, every application is examined. For each application, the Gemini

and corresponding torus connection direction with the highest throughput is

selected as the base target component for a connection fault. The link, node,

and blade faults simply follow from selection of the target Gemini and con-

nection. Note that for NAMD in the Medium Configuration and MILC in

the Dense Configuration, there is a second row. These are the targets for

injections during recovery, based on the Gemini targeted in the first fault

and the traffic data on that same Gemini.

Table E.1: Target components of the Dense Configuration for each fault
type, selected based on the highest throughput connection direction for
application runs without any injections.

App Name Connection Links Blade

LeanMD (HugePages) c0-0c1s6g1,Z- c0-0c1s6g1l07
c0-0c1s6g1l17
c0-0c1s6g1l22

c0-0c1s6

MILC c0-0c1s1g0,Z+ c0-0c1s1g0l00
c0-0c1s1g0l25
c0-0c1s1g0l35

c0-0c1s1

c0-0c1s1g0,Z- c0-0c1s1g0l21 -

PSDNS c0-0c2s1g1,Z- c0-0c2s1g1l16
c0-0c2s1g1l21
c0-0c2s1g1l32

c0-0c2s1

126

Table E.2: Target components of the Medium Configuration for each fault
type, selected based on the highest throughput connection direction for
application runs without any injections.

App Name Connection Link(s) Blade

Kripke (HugePages) c0-0c2s5g0,Z- c0-0c2s5g0l06
c0-0c2s5g0l07
c0-0c2s5g0l20

c0-0c2s5

LeanMD (HugePages) c0-0c2s1g1,Z- c0-0c2s1g1l06
c0-0c2s1g1l20
c0-0c2s1g1l32

c0-0c2s1

NAMD (SMP) c0-0c1s0g1,Z+ c0-0c1s0g1l01
c0-0c1s0g1l10
c0-0c1s0g1l27

c0-0c1s0

c0-0c1s0g1,Y- c0-0c1s0g1l10 -

PSDNS c0-0c1s6g0,Y+ c0-0c1s6g0l55
c0-0c1s6g0l56
c0-0c1s6g0l57

c0-0c1s6

127

Table E.3: Target components of the Sparse Configuration for each fault
type, selected based on the highest throughput connection direction for
application runs without any injections.

App Name Connection Links Blade

AMR (HugePages) c0-0c2s0g1,Y- c0-0c2s0g1l42
c0-0c2s0g1l51
c0-0c2s0g1l52

c0-0c2s0

Kripke (HugePages) c0-0c2s3g1,Y- c0-0c2s3g1l50
c0-0c2s3g1l51
c0-0c2s3g1l52

c0-0c2s3

LeanMD (HugePages) c0-0c1s7g0,Y+ c0-0c1s7g0l55
c0-0c1s7g0l56
c0-0c1s7g0l57

c0-0c1s7

NAMD (SMP) c0-0c1s2g1,Y- c0-0c1s2g1l42
c0-0c1s2g1l51
c0-0c1s2g1l50

c0-0c1s2

MILC c0-0c2s7g0,Y+ c0-0c2s7g0l45
c0-0c2s7g0l55
c0-0c2s7g0l57

c0-0c2s7

PSDNS c0-0c1s5g0,Y+ c0-0c1s5g0l45
c0-0c1s5g0l56
c0-0c1s5g0l57

c0-0c1s5

128

APPENDIX F

CAMPAIGN I FULL SUMMARY

Table F.1: Full summary of Campaign I, showing the outcomes of
applications in the presence of (direct and indirect) faults.

Benchmark Application Fault Type
Run Status #(%)

Crash Hang No Impact

Charm++
(HugePages)

AMR

Blade 2 (22.22) 0 7 (77.78)

Connection 0 0 9 (100.00)

Link 0 0 9 (100.00)

No Injection 0 0 9 (100.00)

Kripke

Blade 1 (10.00) 0 9 (90.00)

Connection 0 1 (10.00) 9 (90.00)

Link 0 2 (20.00) 8 (80.00)

No Injection 0 0 9 (100.00)

LeanMD

Blade 3 (23.08) 0 10 (76.92)

Connection 2 (15.38) 0 11 (84.62)

Link 0 1 (7.69) 12 (92.31)

No Injection 0 0 12 (100.00)

Charm++
(SMP)

AMR

Blade 5 (83.33) 0 1 (16.67)

Connection 5 (83.33) 0 1 (16.67)

Link 4 (66.67) 0 2 (33.33)

No Injection 0 0 6 (100.00)

MPI AWP-ODC

Blade 3 (18.75) 0 13 (81.25)

Connection 0 0 16 (100.00)

Link 0 0 16 (100.00)

No Injection 0 0 15 (100.00)

PGAS UPC-FT

Blade 2 (12.50) 0 14 (87.50)

Connection 2 (12.50) 0 14 (87.50)

Link 3 (18.75) 0 13 (81.25)

No Injection 0 0 15 (100.00)

129

APPENDIX G

CAMPAIGN II FULL SUMMARY

Table G.1: Full summary of Campaign II, showing the outcomes of
applications in the presence of (direct and indirect) faults.

Benchmark Application Fault Type
Run Status #(%)

Crash Hang No Impact

Charm++
(HugePages)

AMR

Blade 5 (15.62) 0 27 (84.38)

Connection 6 (15.79) 4 (10.53) 28 (73.68)

Link 3 (5.77) 1 (1.92) 48 (92.31)

No Injection 0 0 30 (100.0)

Kripke

Blade 5 (13.51) 0 32 (86.49)

Connection 5 (13.16) 1 (2.63) 32 (84.21)

Link 0 2 (3.85) 50 (96.15)

No Injection 0 0 30 (100.0)

LeanMD

Blade 5 (13.51) 0 32 (86.49)

Connection 3 (7.89) 2 (5.26) 33 (86.84)

Link 0 5 (9.62) 47 (90.38)

No Injection 0 0 30 (100.0)

Charm++
(SMP)

NAMD

Blade 5 (13.51) 0 32 (86.49)

Connection 1 (2.63) 4 (10.53) 33 (86.84)

Link 1 (1.92) 10 (19.23) 41 (78.85)

No Injection 0 0 30 (100.0)

MPI

MILC

Blade 5 (9.26) 0 49 (90.74)

Connection 0 0 55 (100.0)

Link 4 (6.45) 0 58 (93.55)

No Injection 0 0 40 (100.0)

PSDNS

Blade 13 (22.03) 0 46 (77.97)

Connection 0 0 55 (100.0)

Link 5 (7.58) 0 61 (92.42)

No Injection 0 0 40 (100.0)

130

APPENDIX H

CAMPAIGN IV DISTRIBUTIONS
SUMMARY

Table H.1: Summary statistics for the Nlrd Log Delay, Time to Detection
(link vs. connection), Time to Injection (link vs. connection), Recovery
Durations (single fault vs. multiple faults) reported in Campaign IV. All
numbers are reported in seconds except for Count.

Distribution Name Injection or
Fault Type

Count Mean Std Min 25% 50% 75% Max

Nlrd Log Delay - 7072 1.004627 0.400815 0.046389 0.730470 1.000891 1.285352 1.987961

Time to Detection Blade 11 0.297091 0.084562 0.227000 0.244000 0.255000 0.318000 0.502000

Connection 28 1.429964 0.584833 0.252000 1.043750 1.436500 1.795000 2.771000

Link 28 1.405214 0.699859 0.224000 0.823500 1.310000 1.869250 2.793000

Time to Injection Blade 11 0.297091 0.084562 0.227000 0.244000 0.255000 0.318000 0.502000

Connection 28 1.425679 0.761596 0.475000 0.647750 1.387500 2.139250 2.975000

Link 28 0.336893 0.459619 0.116000 0.129250 0.141000 0.212500 1.849000

Recovery Durations Single 127 39.883707 2.648896 35.040480 38.029916 39.044034 41.035962 51.047644

Multiple 56 66.665411 15.441623 35.027203 55.065860 76.079558 78.078578 84.081822

131

