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ABSTRACT 

As surgery has become the standard-of-care for cancer, surgeons have been left underequipped to 

identify tumors in the operating room, causing many operations to end in positive margins and 

necessitating secondary treatments to remove remaining tumor tissue. Near-infrared fluorescence 

image-guided surgery utilizes near-infrared fluorescent markers and near-infrared sensitive 

cameras to highlight cancerous tissues. Unfortunately, state-of-the-art imaging systems are unable 

to handle the high dynamic range between strong surgical lighting and weak fluorescent emission 

and suffer from temperature-dependent co-registration error. To provide a cost-effective and 

space-efficient imaging system with sufficient dynamic range and no co-registration error, this 

work analyzes the required dynamic range for a single-sensor imaging system used for near-

infrared fluorescence image-guided surgery and reports the development of a single-chip snapshot 

multispectral imaging system that meets this specification. By monolithically integrating an 

asynchronous time-domain image sensor and pixelated interference filters, this system achieves a 

dynamic range of 120 dB without co-registration error in four channels across the visible and near-

infrared spectra. The imager can detect less than 100 nM of the FDA-approved fluorescent dye 

indocyanine green under surgical lighting conditions, making it a promising candidate for image-

guided surgery clinical trials. 
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CHAPTER 1 INTRODUCTION 

1.1 The Problem in the Operating Room 

While surgery has become the primary curative option for patients suffering from many types of 

cancer, surgeons are often ill-equipped to identify tumors during surgical resection. Despite major 

advances in preoperative and postoperative imaging modalities that make it possible to identify 

the location and shape of tumors with unprecedented precision, most surgeons are equipped only 

with the senses of sight and touch when differentiating healthy tissues from diseased tissue in the 

operating room. Unfortunately, the low visual contrast between the tumor edge and the 

surrounding healthy tissue means that incomplete resection is very common. Studies have shown 

that 21% of patients with oral cancer [2], 4%-40% of patients with prostate cancer [3], and 20%-

70% of patients with breast cancer who undergo surgery will have positive tumor margins, 

necessitating secondary surgeries and radiation treatments [4], [5]. Unfortunately, secondary 

surgeries are expensive and have limited success rates due to the difficulty of identifying diffuse 

microscopic cells through scar tissue, and radiation treatment is further associated with adverse 

effects. 

To provide surgeons with the critical information needed to make treatment-time decisions, 

an intraoperative imaging modality for identifying tumors and other anatomic features is needed. 

By combining near-infrared fluorescent (NIRF) molecular markers with near-infrared (NIR) 
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sensitive cameras, NIRF image-guided surgery (IGS) has arisen as a compelling option. Taking 

advantage of the low absorption coefficient of water and hemoglobin as well as the low auto-

fluorescence of tissue in the NIR spectrum, NIRF IGS enables the visualization of both untargeted 

and targeted probes at several millimeters depth in tissue with low background noise. The US Food 

and Drug Administration (FDA) has approved two NIRF dyes, indocyanine green (ICG) and 

methylene blue (MB), which are non-specific molecular markers commonly used to map sentinel 

lymph nodes and to assess blood perfusion [6]–[8], and many researchers are working to develop 

tumor-targeted molecular probes with several projects moving into advanced clinical trials. 

In response to the proliferation of NIRF IGS molecular markers, several research and 

industry groups have developed multispectral imaging systems for fluorophore detection, and the 

FDA has approved a variety of these camera systems for NIRF IGS applications [8]–[10]. Due to 

the cost and the bulk of these instruments, adoption has been limited to large clinical centers, but 

in addition to these logistical issues, two major technical issues have been observed. First, the 

specifications describing surgical light sources and the physics underlying NIRF markers generate 

a high dynamic range generally exceeding 100 dB between the very bright surgical lighting in the 

visible spectrum and the very dim fluorescent emission in the NIR spectrum [8], [11]. An imaging 

system with a lower dynamic range risks producing sub-optimal images or requires changes to the 

surgical protocol that can disrupt the surgical workflow. Second, the conventional optical 

architecture of the imaging systems requires a tree of beam splitters and image sensors to isolate 

spectral channels, yielding a complex optical train that is susceptible to co-registration error as 

optics expand and contract with temperature gradients [8], [12]. This temperature-dependent co-

registration error can result in improper resection of the tumor or iatrogenic damage to surrounding 

tissue. For proper integration into the operating room, then, these existing camera systems must 
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not only become smaller and simpler but must also be developed with the high dynamic range and 

low co-registration error demanded by NIRF IGS. 

1.2 A Solution from Natural Vision 

In the search for high performance image sensors for demanding applications, engineers have 

sought inspiration from many sources, but none has proven as deep or as rich as nature. Thanks to 

the wide range of contexts and threats that exist in the wild, natural selection has given rise to 

visual systems with diverse architectures and unique properties. For instance, animals have found 

countless ways to utilize spectral information, from the 4-channel vision of birds that enables 

detailed discrimination between plumage colors to the 12-channel vision of the mantis shrimp that 

facilitates rapid-fire color recognition—in both cases, their eyes have specifically developed to the 

task with extra cone cells and special photosensitive structures [13], [14]. Nonetheless, certain 

features like the ability to record scenes with high dynamic range and to adjust to changes in 

illumination have been prized across nearly all visual systems. A variety of mechanisms for 

modifying the sensitivity of photoreceptors have been proposed [15], but theories and experiments 

alike support both the local alteration of photosensitive structures in the eye and the temporal 

modulation of neural signals sent from the eye to the brain. Furthermore, it is necessary that visual 

information be spatiotemporally co-registered in all animals to permit decision-making, a task that 

is facilitated using compact and regular sensory architectures that permit data fusion using quick 

and simple neural pathways. 

As an example of these concepts, it is worthwhile to consider the compound eye of the 

morpho butterfly. Each of the eye-like units called ommatidia that compose the compound eye 

consists of a corneal lens and crystalline cone that collect and focus light, a tract of pigmented cells 

and nerve fibers that absorb colored light and transmit neural signals, and a stack of air and 
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cytoplasm known as a tapetal filter that serves as an optical interference filter that preferentially 

reflects different wavelengths [16], [17]. As light passes through the ommatidium, a fraction is 

absorbed by the pigmented cells, and of what remains, another fraction within the spectral band of 

the tapetal filter reflects off the air-cytoplasm stack and returns through the pigmented cells [18]. 

The light absorbed by the pigmented cells across the two passes generates a membrane potential 

on the neural fiber, and when the membrane potential reaches a critical threshold, a spiked signal 

is sent to the insect’s brain. As the light intensity grows larger, the membrane potential develops 

faster, and the frequency of the spikes increases unless temporally filtered by the feedback loops 

in the neural system [19]. Consequently, the combination of the interference filter’s structure and 

the pigmented filter’s spectral response determines the spectral band of the ommatidium, and the 

delay between the spikes that are generated by the incident illumination within these spectral bands 

encodes the light intensity at the ommatidium. With each ommatidium acting continuously and 

independently, the brain is constantly and asynchronously monitoring the environment’s 

brightness over a large range of light intensities to generate the co-registered and high dynamic 

range images that guide the butterfly through daily life. 

To address the problems inherent in existing instruments for NIRF IGS while aspiring to 

the advantages of natural vision systems like the morpho butterfly eye, I have developed a new 

imaging system that replaces conventional voltage-domain image sensors with a unique 

asynchronous time-domain image sensor. The issue of high dynamic range is mitigated in two 

ways: (1) by using a time-domain pixel design that essentially permits individual pixels to 

dynamically select an integration time appropriate for the lighting conditions and (2) by using an 

asynchronous system design that allows each pixel to independently report values using an 

address-event representation readout scheme. Sensitivity to both visible light and NIR light as well 
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as elimination of temperature-dependent co-registration error is accomplished by monolithically 

integrating the image sensor with four types of pixelated interference filters. These filters are tuned 

for high transmission over the blue, green, red, and NIR spectra and for high optical densities 

outside of these spectral bands. This architecture enables a single-chip snapshot multispectral 

imaging system that exhibits a dynamic range of ~120 dB and a maximum signal-to-noise ratio of 

~56 dB. The imaging system is capable of imaging clinically relevant concentrations of less than 

100 nM of the FDA-approved NIRF dye ICG. 

1.3 The Structure of This Thesis 

The main content of this thesis is divided into two chapters. In Chapter 2, the dynamic range of 

the surgical site in the operating room is explored in detail, and a lower bound is established on 

the dynamic range induced by the light sources used in NIRF IGS and the basic properties of 

biological tissue. In Chapter 3, a bio-inspired, asynchronous, time-domain, multispectral imager is 

presented that provides the high dynamic range, minimal co-registration error, compact size, and 

low cost demanded by NIRF IGS, and the imager is evaluated to demonstrate its high compatibility 

with NIRF IGS. 
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CHAPTER 2 AN ANALYSIS OF THE DYNAMIC RANGE OF THE 
OPERATING ROOM 

2.1 Origin of the High Dynamic Range 

In NIRF IGS, the surgical site is illuminated with both visible light and NIR light, and a special 

camera captures co-registered images that depict the gross anatomy and the location and shape of 

specific structures (e.g., tumor tissue). An overview of this imaging setup is provided in Figure 

2.1. On the one hand, the visible light that is produced by surgical lamps will simply reflect off the 

tissue and be collected and registered by the camera. On the other hand, the NIR light that is often 

generated by narrowband LEDs or beam-expanded lasers must transmit into and scatter through 

the tissue, excite the fluorophore, and scatter through and transmit out of the tissue to be collected. 

An outline of the optical paths experienced by the light is provided in Figure 2.2. The differences 

in the light sources used to illuminate the patient and the fluorophores and the asymmetries in the 

optical paths experienced by the visible light and the NIR light conspire to create a high dynamic 

range scene. In this scene, the visible signal that merely provides the context of the surgical site is 

very strong and the NIR signal that actually demarcates the relevant structures is very weak. If a 

single image sensor is used to visualize both the visible reflection and the NIR emission, the image 

sensor must support a sufficiently high dynamic range between the color channels and the NIR 
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channel. Otherwise, the surgical environment must be modified, or the image quality will suffer. 

Since these two options unacceptably impede the surgical workflow during demanding procedures, 

it is important to quantify the difference between signals and verify that sensors are compatible. 

In general, the physical models of the light-tissue interaction that are required for an 

accurate computation of the dynamic range are very complex, and ongoing research is being 

conducted towards applying these models to this problem. Fortunately, though, simple 

computations can facilitate a rough bound on the dynamic range that indicates that most cameras 

are incapable of being used for NIRF IGS. These computations involve the determination of the 

 

Figure 2.1: Overview of the imaging setup for NIRF IGS. (a) State of surgical site days to 

minutes before surgery when dye is administered. (b) State of surgical site immediately before 

surgery when dye has bound to target. (c) Configuration of light sources and camera during 

surgery. 
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photon fluxes produced by the light sources and the contributions of these photon fluxes to 

meaningful signal at the image sensor, and they are outlined over the next few sections. 

Before commencing this discussion, it is worth noting that there are many factors that 

contribute to the dynamic range of the operating room, and by properly selecting these factors, it 

is possible to develop a model where the dynamic range is arbitrarily high. To guide this analysis 

towards meaningful conclusions, the assumptions have generally been selected to determine a best-

case dynamic range. To make this discussion even more concrete, we will consider the use of 

commercially available surgical lamps for visible illumination and the use of a 780 nm beam-

expanded laser for NIR excitation. This configuration is similar to the NIRF IGS setup used for 

sentinel lymph node mapping with the fluorescent dye ICG, which represents a very realistic 

scenario. 

2.2 Determining the Photon Fluxes from Light Sources 

While federal agencies such as the US FDA reserve the right to control the distribution and 

application of medical devices, these agencies rely on international standards to define the 

 

Figure 2.2: Optical path experienced by visible light and NIR light during NIRF IGS. 
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technical requirements that manufacturers must follow [20]–[22]. The International 

Electrotechnical Commission (IEC) has published a variety of standards including relevant 

standards for NIRF IGS that describe the general-purpose surgical lighting needed to illuminate 

patients during surgery and the NIR LED/laser sources needed to excite fluorophores during 

imaging. In IEC 60601-2-41, the IEC specifies the brightness and spectrum that surgical lamps 

must provide to be used in the operating room. In particular, surgical lamps must provide an 

illuminance between 40 klx and 160 klx, a color temperature between 3,000 K and 6,700 K, and a 

color rendering index between 85 and 100 [23]. In IEC 60825-1, the IEC specifies that the 

irradiance of NIR LED/laser sources must be kept below a lower threshold to be eye-safe (i.e., to 

be used without safety glasses) and a higher threshold to be skin-safe (i.e., to be used without skin 

protection) with the two thresholds varying as a function of the wavelength. For example, a 780 

nm LED/laser source that has been sufficiently expanded must provide an irradiance below 

54.85 mW/cm2 to be eye-safe and an irradiance below 289.09 mW/cm2 to be skin-safe [24]. Taken 

together, these requirements specify the illumination conditions present in the operating room, and 

they can be used to derive quantities needed to compute the dynamic range. To promote a best-

case analysis, the gap between the visible lighting and the NIR lighting will be narrowed by 

considering the visible illumination at its minimum permissible value of 40 klx and the NIR 

illumination at its maximum permissible value of 289.09 mW/cm2. 

2.2.1 Properties of Visible Illumination 

To compute the number of photons generated by a surgical lamp, it is necessary to know the 

spectrum of the surgical lamp. Historically, surgical lamps utilized incandescent bulbs with broad 

spectra produced via blackbody-like emission ranging from the visible spectrum into the infrared 

spectrum. Unfortunately, though, these bulbs generated a large amount of radiated heat and 

exploded unpredictably upon failure, risking burns to and contamination of the surgical area. As a 
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result, modern surgical lamps have shifted to LED bulbs that produce white light by mixing the 

spectral contributions of a narrow-band blue LED and a broader-band yellow phosphor. To the 

benefit of surgeons and patients alike, these bulbs produce very little heat, do not catastrophically 

fail, and generally offer greater flexibility in spectral response. 

To compute the photon flux of an older lamp, it is assumed that the surgical lamp uses an 

incandescent bulb with a color rendering index of 100 and a color temperature of 4,000 K, and to 

compute the photon flux of a newer lamp, it is assumed that the surgical lamp uses a white LED 

with a color rendering index of 90 and a color temperature of 4,000 K. In both cases, the area of 

illumination is assumed to be circular with a 22.86 cm diameter. Determined from an extensive 

market evaluation, these values are both consistent with commercial systems and compliant with 

international standard [25]. Computing the spectrum of a blackbody radiator at the appropriate 

temperature in the former case [26] and using a representative spectrum generated from 

commercial components in the latter case [27], [28], it is possible to predict the normalized 

spectrum of the lamp, and scaling this spectrum to achieve a target illuminance over the surgical 

field, it possible to compute the spectral radiant flux density of the light bulb in watts per meter 

squared per nanometer. Determining the energy of a photon at each wavelength using the Planck-

Einstein relationship and dividing the spectral radiance through by the energy per photon, it is 

possible to compute the spectral photon flux density in photons per second per meter squared per 

nanometer. By computing the integral under and the average of the spectral photon flux density, it 

is possible to compute the total photon flux density and the average wavelength across the visible 

spectrum. For an illuminance of 40 klx, this corresponds to a total photon flux density of 

~4.39 × 1016 ph·s-1·cm-2 and an average wavelength of ~569 nm for an incandescent bulb and to 

a total photon flux density of ~3.81 × 1016 ph·s-1·cm-2 and an average wavelength of ~570 nm 



11 

 

for a white LED. As should be expected, these two light sources are very similar in important 

properties, so without loss of generality, the results for the white LED will be used in further 

computations since they are more relevant to conventional surgeries. 

2.2.2 Properties of NIR Excitation 

To compute the number of photons generated by the laser source, straightforward computations 

are required. Knowing that the wavelength of the laser source is 780 nm, the energy of each photon 

can be computed using the Planck-Einstein relationship, and knowing that the irradiance of the 

laser source is 289.09 mW/cm2, the photon flux density can be computed by division. Ultimately, 

this corresponds to a photon flux density of ~1.14 × 1018 ph·s-1·cm-2 at a wavelength of 780 nm. 

2.3 Modeling the Optical Paths of Light 

When the visible light and the NIR light interact with the tissue before collection at the camera, a 

few basic optical processes will determine how much optical power is lost and how much is sensed. 

Among these processes are reflection and transmission at the air-tissue boundary, absorption and 

scattering within the tissue, and fluorescence due to the fluorophore. 

2.3.1 Reflection and Transmission 

At the boundary between the air and the tissue, light will undergo both reflection and transmission 

due to the impedance mismatch between the two materials. In the case of reflection, a fraction of 

the light that is incident on the boundary will be redirected into the incident medium, while in the 

case of transmission, a fraction of the light will be transferred into the emergent medium. Both 

phenomena are predicted by the Fresnel equations which state that the reflectance 𝑅, the ratio of 

light redirected backwards, and the transmittance 𝑇, the ratio of light transported forwards, are 

given by 
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𝑅 = |

𝑛1 − 𝑛2

𝑛1 + 𝑛2
|

2

 and 𝑇 = 1 − 𝑅 
(2.1) 

where 𝑛1 is the refractive index of the incident medium, 𝑛2 is the refractive index of the emergent 

medium, and the incident angle is 90° [29]. 

In reality, there may be other boundaries within the tissue, such as boundaries between 

tissue types, where reflection and transmission will occur. For the most part, the variation in 

refractive index within the tissue will be smaller than the sharp change in refractive index at the 

air-tissue boundary, so reflections will be correspondingly smaller. However, additional 

reflections in the visible spectrum will increase the measured intensity by giving transmitted light 

a second chance to reach the camera, while additional reflections in the NIR spectrum will decrease 

the measured intensity by redirecting light along paths that do not reach the fluorophore or the 

camera. Consequently, these additional boundaries will be neglected in an effort to find the best-

case dynamic range so that the visible signal is minimized and the NIR signal is maximized. 

2.3.2 Absorption and Scattering 

Throughout the bulk of the tissue, light will undergo absorption and scattering due to the 

interaction of the photons with the tissue. In the case of absorption, photons are consumed when 

energy is transferred to the tissue and dissipated as heat, and in the case of scattering, the paths of 

photons are modified due to gradients in the refractive index of the tissue. Both phenomena are 

predicted by the Beer-Lambert Law which states that the transmittance 𝑇, the ratio of light that is 

neither absorbed nor scattered, is given by 

 𝑇 = 𝑒−(𝜇𝑎+𝜇𝑠)ℓ (2.2) 

where 𝜇𝑎 is the absorption coefficient of the tissue, 𝜇𝑠 is the scattering coefficient of the tissue, 

and ℓ is the thickness of the tissue [29]. 
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While this equation implies a symmetry between absorption and scattering, an important 

distinction should be made: Absorption results in the actual loss of photons, whereas scattering 

results in the mere redirection of photons. Consequently, absorbed photons will never contribute 

to a signal, but scattered photons could be collected by an imaging array during data capture. 

However, the scattering of light results in the loss of spatial information which produces image 

blur and other detrimental effects, so deep tissue imaging techniques remove these scattered 

photons using spatial filtering [30]. As a result, these scattered photons will be eliminated from 

the computations, and absorbed photons and scattered photons will be treated on equal footing. 

2.3.3 Fluorescence 

In the presence of a fluorophore, light at one wavelength may excite the fluorophore and cause it 

to emit light at another wavelength during the process of fluorescence. In general, fluorescence is 

a complicated non-linear optical process that involves a stochastic interaction between the 

fluorophore and a collection of photons and phonons. However, in many cases, it is sufficiently 

described by a simple statistical model: When a photon is absorbed by the fluorophore, a 

fluorescent photon is generated with some probability described by the quantum yield Φ of the 

fluorophore. 

Unfortunately, this simplification does not address two complexities. First, fluorophores 

exhibit finite absorption coefficients, so light will be absorbed within finite volumes of tissue and 

not at individual points in the tissue. Since a best-case approximation of the dynamic range is 

required and a finite absorption coefficient increases the dynamic range by weakening the NIR 

signal, this complexity is mitigated by assuming an infinite absorption coefficient so that all 

excitation photons are consumed and any emitted photons are generated at the boundary between 

the tissue and the fluorophore. Second, the propagation directions of fluorescent photons will be 

determined by the orientation and the organization of the fluorophores, so the resultant distribution 
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of propagation directions could range from very anisotropic if the fluorophores are highly 

structured to very isotropic if the fluorophores are randomly ordered. To incorporate this effect 

using a physically meaningful approximation, it is expected that the fluorophores are arbitrarily 

oriented so that they emit isotopically, and it is assumed that the only photons reaching the camera 

are those emitted in a cone that extends from the fluorophore to the camera. To model this process, 

a quantity called the collection efficiency 𝐶 is defined that represents the fraction of fluorescent 

photons that the camera collects and is computed by dividing the solid angle accepted by the 

camera with the solid angle of a sphere. If the camera and the fluorophore are separated by a long 

distance as is necessary during surgery, the emitted light must be nearly parallel to the axis between 

the camera and the fluorophore to be collected, so the solid angle subtended by the narrow cone 

between the two is used to compute the collection efficiency. 

2.4 Computing the Dynamic Range 

With the properties of the light sources and the optical paths determined, it is possible to compute 

the dynamic range in the operating room. The dynamic range 𝐷𝑅 is defined as the ratio of the 

maximum intensity 𝐼max and the minimum intensity 𝐼min present in the scene: 

 𝐷𝑅 = 𝐼max/𝐼min (2.3) 

The maximum intensity 𝐼max is defined by the visible illumination 𝐼out,vis that reaches the camera. 

This value is determined by the light intensity 𝐼in,vis produced by the surgical lamps as well as the 

reflectance 𝑅vis,air-to-tis at the tissue-air boundary. It is computed as 

 𝐼out,vis = 𝑅vis,air-to-tis𝐼in,vis (2.4) 

The minimum intensity 𝐼min is defined by the NIR illumination 𝐼out,nir that reaches the camera. 

This quantity is determined by the light intensity 𝐼in,nir produced by the laser source as well as the 

transmittance 𝑇nir,air-to-tis across the air-tissue boundary, the transmittance 𝑇nir,to-fluor through the 
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tissue to the fluorophore despite absorption and scattering, the quantum yield Φ of the fluorophore, 

the transmittance 𝑇nir,from-fluor  from the fluorophore through the tissue despite absorption and 

scattering, the transmittance 𝑇nir,tis-to-air  across the tissue-air boundary, and the collection 

efficiency 𝐶 of the lens. 

 𝐼out,nir = 𝐶𝑇nir,tis-to-air𝑇nir,from-fluorΦ𝑇nir,to-fluor𝑇nir,air-to-tis𝐼in,nir (2.5) 

Therefore, the dynamic range can be written as 

 
𝐷𝑅 =

𝐼out,vis

𝐼out,nir
=

𝑅vis,air-to-tis𝐼in,vis

𝐶𝑇nir,tis-to-air𝑇nir,from-fluorΦ𝑇nir,to-fluor𝑇nir,air-to-tis𝐼in,nir
 

(2.6) 

where the various parameters are functions of the tissue, the fluorophore, and the imaging setup. 

The reflectances and transmittances at the boundaries can be determined from the refractive 

indices of the air and the tissue, and the transmittances through the tissue can be determined from 

the absorption coefficient, the scattering coefficient, and the depth of the tissue. In general, the 

refractive indices and various coefficients are functions of the wavelength. For simplicity, though, 

it is assumed that the wavelength of the visible illumination is the average wavelength computed 

from the surgical lamp, and it is assumed that the wavelength of the NIR illumination is the 

excitation wavelength of the laser source. Since the optical properties of many tissues do not vary 

extensively across the visible spectrum or between the excitation wavelength and the emission 

wavelength in the NIR spectrum (for reasonably small Stokes shifts), this is a reasonable 

assumption. As an example, we can consider adipose tissue which has a refractive index of 1.478 

at 570 nm, a refractive index of 1.469 at 780 nm, an absorption coefficient of 1.01 cm-1 at 780 nm, 

and a scattering coefficient of 11.16 cm-1 at 780 nm [31], [32]. Using a refractive index of unity 

for air, the reflectances and transmittances can thus be determined as a function of tissue depth. 

The quantum yield is computed from measurements of real fluorophores, and for ICG, it takes a 
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value of 2.58% [33]. The collection efficiency is determined from the geometry of the imaging 

setup, but for large distances between the tissue and the camera, it can be computed for a narrow 

cone with a sufficiently small subtended angle (e.g., 1 degree). 

By sweeping the depth of the tissue and computing the dynamic range at each depth using 

the equations and quantities described in this section, a plot of dynamic range versus tissue depth 

can be generated. As shown in Figure 2.3, this analysis indicates that a dynamic range of ~90 dB 

is needed for a fluorescently labeled structure at the surface of the tissue, and the dynamic range 

only increases for larger depths. This result proves troubling in light of the optoelectronic 

characterization of state-of-the-art imagers: Most sensors exhibit dynamic ranges that are bounded 

to 80 dB which is well short of the best-case dynamic range of ~90 dB required for NIRF IGS 

 

Figure 2.3: Dynamic range needed to capture both the visible signal generated by light 

reflection from tissue and the NIR signal generated by fluorescent emission from fluorophore 

at different depths. The light sources that are simulated are modeled on realistic surgical lamps 

and laser sources, and the tissue optics are modeled on adipose tissue. 
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[34]. Provided that surgical lighting is not dimmed during the operation of these cameras, it is 

likely that these systems are capturing sub-optimal images and are missing critical detail in the 

NIR channel. To ensure that the full extent of fluorescently labeled structures is detected, it is 

necessary to use alternative architectures for imaging sensors that push the available dynamic 

range beyond that required in application. 
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CHAPTER 3 A BIO-INSPIRED, ASYNCHRONOUS, TIME-DOMAIN 
MULTISPECTRAL IMAGING SYSTEM 

3.1 Issues with Reducing the Dynamic Range of the Scene 

To combat the high dynamic range of the operating room, there are a few different options, but if 

the fluorescent signal is too weak, it is reasonable to search for ways to improve the fluorophore 

providing the signal. Days to minutes before surgery using NIRF IGS, this fluorophore is 

administered such that during surgery a greater concentration of fluorescent molecules will be 

found in tumor cells than in surrounding tissue. The duration and location of the administration 

process is determined by the molecular marker’s type and its kinetics. For untargeted molecular 

markers, the distribution of the dye may be dictated by the enhanced permeability and retention 

effect, a phenomenon in which small molecules are accumulated and retained in tumors due to the 

dense and disorderly vasculature and the sparse lymphatics associated with tumor growth [35]. For 

targeted molecular markers, fluorescent molecules are conjugated to special structures so that the 

composite probe can preferentially target tumor characteristics such as increased glucose uptake 

and elevated growth factor interaction [36], [37]. Depending on the binding behavior and the 

hydrodynamic size of the probes, molecular markers may be cleared by the kidney, the liver, or 

other pathways over time frames of varying length, and this clearance behavior will determine 

whether local injection is required or whether global administration can be tolerated [38]. As long 
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as proper procedures are followed, tumors can be highlighted at any location in the body, meaning 

that fluorescent signals can originate from deep within tissues. 

A variety of fluorescent dyes have been proposed and examined by both academics and 

companies alike. Early applications relied on the surgeon’s eyes to discriminate the fluorescent 

signal from the background scene, so fluorescent dyes with visible emission were required. 

Fluorescein sodium, the chemical used in the first instances of nontargeted and targeted 

fluorescence surgical imaging, has been used in the visualization of brain tumors and colorectal 

tumors, and 5-aminolevulinic acid, a precursor that stimulates the in vivo production of the 

fluorescent molecule protoporphyrin IX, has been explored as an option for a variety of central 

nervous system tumors [6]. While providing a major benefit in terms of surgical complexity by 

eliminating the need for a separate imager, visible fluorophores are ultimately limited in efficacy 

by the high absorption coefficient, scattering coefficient, and autofluorescence exhibited by tissues 

in the visible spectrum, factors that limit the contrast between the fluorescence and the background 

[39]. 

As a result, most research has turned to the development of fluorescent dyes with NIR 

emission. The two fluorescent markers that have been approved by the US FDA, MB and ICG, are 

untargeted compounds that received approval before the advent of fluorescence imaging but have 

found applications ever since for their track record of safety and NIR emission. MB, a dark blue 

chemical with 680 nm fluorescence, was used for many years as a visible contrast agent and has 

been used more recently for the localization of pancreatic tumors, and ICG, a dark green chemical 

with 820 nm fluorescence, has been used to study blood perfusion and to locate sentinel lymph 

nodes [40]. In the hopes of boosting the quantum yield, increasing the spectral performance, and 
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improving the overall flexibility of fluorescent dyes, a variety of other chemicals are being 

explored, but none have been approved for clinical use. 

Due to the factors that have been discussed, the potential depth of tumor tissue, the optical 

properties of intervening tissue, and the limitations on the availability of fluorescent dyes place a 

limit on the imaging performance possible in the operating room. Any imaging system must be 

designed to overcome these limitations in order to provide high-quality images in a practical 

package. 

3.2 Techniques to Increase the Dynamic Range of the Sensor 

The dynamic range of an image sensor is computed as the ratio of the maximum measurable signal 

to the minimum measurable signal which correspond to the measurements under very strong 

illumination and very weak illumination, respectively. For ordinary CMOS image sensors, the 

factors that determine the dynamic range are well understood. Under strong illumination, the 

dynamic range is limited by the maximum photocharge that can be accumulated on the photodiode 

which is in turn determined by the reset voltage and the junction capacitance. Assuming that the 

fabrication process is fixed, this relationship means that the dynamic range can be improved by 

either increasing the reset voltage or increasing the photodiode area; however, power consumption 

and area requirements as well as absolute maximum voltage thresholds practically limit the 

potential for improvement. Under weak illumination, the dynamic range is generally limited by 

the reset noise and the readout noise which can be reduced with correlated double sampling and 

other noise-sensitive techniques. If noise sources are sufficiently minimized, though, the minimum 

signal may become a single electron—imposing a fundamental limit on the dynamic range. As a 

result, most techniques for extending the dynamic range focus on boosting the maximum 
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detectable signal since it can theoretically be increased without bound instead of reducing the 

minimum detectable signal since it is limited by physics. 

To overcome the firm bounds on the dynamic range of conventional CMOS image sensors, 

researchers have sought simple modifications to the standard pixel structure to extend the dynamic 

range in other ways. Well adjustment and multiple sampling have been popular approaches since 

the only changes that are needed are changes to the peripheral circuitry that controls the reset and 

readout of the pixel array [41]. 

In well adjustment sensors, the gate voltage of the reset transistor is modulated from a large 

value to a small value during the integration time, causing the potential barrier between the 

photodiode and the supply to vary from a small value to a large value and inducing a corresponding 

increase in the well capacity with time [42]. In low light conditions, the accumulation of 

photocharge will be slower than the growth in the well capacity, leading to a normal change in the 

photovoltage, but in high light conditions, photocharge will accumulate faster than the well 

capacity grows, causing the excess photocharge to spill over into the supply and enforcing a ceiling 

on the photovoltage. By properly controlling the well capacity, a non-linear transfer function from 

photocurrent to photovoltage can be created that can artificially compress the dynamic range of 

the scene and increase the dynamic range of the image. While the implementation is relatively 

straightforward since a single voltage is swept with time, a theoretical decrease in signal-to-noise 

ratio and a practical increase in noise due to the well adjustment pose a risk of degradation of small 

signals. 

In multiple sampling sensors, the non-destructive measurement of the photocharge on the 

photodiode is exploited to enable multiple readouts of the image sensor within a single integration 

time [43], [44]. Since low light pixels will saturate slowly while high light pixels will saturate 
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quickly, it is likely that every pixel will be well exposed in at least one frame from these multiple 

exposures, so pixel-level or image-level exposure fusion can be used to combine these low 

dynamic range frames to produce a single high dynamic range image. Although exposure fusion 

promises to increase signal-to-noise ratio through temporal averaging, the implementation of the 

full system is difficult since a high-speed readout chain is required to support sequential 

measurements and sufficient logic and memory are required for real-time image processing. 

To overcome the inherent difficulties that are present in man-made designs, attention has 

been drawn to natural vision systems that exhibit high dynamic ranges and robust operation, and 

experts have tried to reproduce this biological performance with electronic circuits. These so-

called neuromorphic architectures trace back to the synthetic retina developed by Mead and 

Mahowald that reproduced the complex of photoreceptor cells, horizontal cells, and bipolar cells 

entwined in the human eye with a network of photodetectors, transistors, and resistors 

implemented in silico [45]. While this chip succeeded at its mimicking act so well that it suffered 

from optical illusions, it found little traction in actual application due to its impractical architecture 

[46]. Nonetheless, its success at mapping biological structures to electronic networks has served 

as the inspiration for many technologies that aim to make the imaging process more adaptive and 

more efficient [47]. 

A common approach to this task replaces the linear response of an ordinary photodiode 

with the logarithmic response observed in many animals [48]. By pairing a reverse-biased 

photodiode capable of converting a photon flux into a photocurrent and a sub-threshold transistor 

capable of converting a linearly varying photocurrent into a logarithmically varying photovoltage, 

a logarithmic readout can be induced with few modifications to standard pixels. Although this 
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technique is successful at extending the dynamic range of image sensors, workarounds are required 

to mitigate the high sensitivity to device mismatch cause by sub-threshold operation. 

A different approach attempts to encode light intensity not in the absolute magnitude of a 

voltage signal across a photodiode but in the relative frequency of voltage pulses, thereby 

simulating neuron-to-neuron communication [49]. By comparing the voltage across a photodiode 

with a fixed threshold and resetting the photodiode when the threshold is surpassed, an intensity 

signal can be encoded in the reset signal: When the light is bright, the voltage will decay to the 

threshold quickly, causing an increase in the reset rate of the pixels due to an increase in the 

frequency of the reset signal, but when the light is dim, the voltage will decay to the threshold 

slowly, leading to a low pixel reset rate and slow reset signal frequency. However, the delay lines 

needed to generate the reset signals lead to high pixel-to-pixel mismatch in the output frequencies 

that are harder to calibrate than ordinary fixed pattern noise. 

While these more practical image sensors suffer from a variety of issues, they are further 

limited by a synchronous readout scheme in which rows and columns are read out one by one at a 

fixed rate. In contrast, natural vision systems are constantly measuring the light intensity and 

adapting to the scene. With the introduction of the address-event representation into the sensing 

literature, a new breed of image sensors closed this gap by implementing pixels that independently 

detect light intensity and asynchronously report measurements to a central controller. With the 

development of the dynamic vision sensor (DVS) by Lichtsteiner et al. [50] and the asynchronous, 

time-based image sensor (ATIS) by Posch et al. [51], the performance of natural vision systems 

and the practicality of man-made camera systems were married, producing imagers that exhibit 

both high dynamic range and high signal-to-noise ratios due to the pixel-level adaptation of the 

imaging process while retaining compatibility with standard digital signal processing workflows. 
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Due to these features, they show great promise for imaging applications in demanding 

environments, and they have served as a basis for a new imaging sensor for NIRF IGS. 

3.3 A Multispectral Imager for High Dynamic Range Imaging 

In light of the observations that have been presented over the past few chapters and sections, I have 

developed a new imaging system for NIRF IGS that is aimed at solving the practical issues in the 

operating room. At the heart of this imaging system is an asynchronous time-domain image sensor 

that enables simultaneous imaging of very bright and very dim channels. As shown in Figure 3.1, 

it combines time-domain pixels and additional logic as part of an asynchronous system that reports 

pixel values to an image processor as they become available, eliminating the need for a fixed 

integration time and frame rate. This image sensor is integrated with pixelated interference filters 

to enable simultaneous imaging of both color and NIR channels at high dynamic range and without 

temperature-dependent co-registration error. 

The pixel architecture was developed to free the pixel from the dynamic range constraints 

imposed by a fixed integration time [52]. In a traditional voltage-domain pixel, a capacitor is reset 

to a known voltage at the beginning of each integration period, and the voltage remaining on the 

capacitor after accumulation of photoelectrons is measured at the end of each integration period. 

In the time-domain pixel used in this imager, though, pixels no longer report the voltage after a 

fixed integration time but instead report the time at which the voltage exceeds certain thresholds. 

While a single threshold can be used as illustrated in Figure 3.2a and Figure 3.2b, reset noise can 

be eliminated through correlated double sampling if every pixel reports the times at which the 

voltage exceeds a high threshold and a low threshold and the system measures the difference 

between the times. This functionality is accomplished using the circuit shown in Figure 3.2c. The 

n-well/p-sub photodiode PD and the reset transistor M1 provide a photovoltage that is compared 
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to a reference voltage using the two-stage comparator formed by M2 – M6 and by M7 and M9. 

Hysteresis is provided by M10 and M11, providing noise immunity that prevents glitches at the 

output, and power reduction is provided by M8, shutting off current in the second stage when the 

voltage threshold has been exceeded in the first stage. When the pixel is reset, the threshold voltage 

is set to a high reference voltage; when the high reference voltage has been exceeded, the threshold 

voltage is set to a low reference voltage; and when the low reference voltage is exceeded, the pixel 

 

Figure 3.1: (a) Block diagram of the sensor’s architecture. The pixelated interference filters 

are monolithically integrated with the time-domain pixels for multispectral discrimination. The 

pixels communicate with the arbiters, encoders, and controllers at the periphery of the imaging 

array which pass pixel data to the image processor. (b) Cross-sectional scanning electron 

microscope image of the pixelated interference filters. Many thin film layers with different 

dielectric constants are used to tune the spectral response and increase the optical density of 

the stop bands. [© 2018 IEEE] 
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enters an idle state. When the voltage exceeds either threshold, an exposure event occurs at the 

output that triggers system logic responsible for measuring pixel values. The pixels were placed 

with a pitch of 30-by-30 µm and exhibited a fill factor of 20%. 

The system architecture was developed to permit individual pixels to independently and 

asynchronously report their values [53]. It consists of a 302-by-240 pixel array as well as the 

necessary address-event representation logic to permit every pixel to request global resources and 

transmit values using a four-phase handshake protocol. The structure of the system is shown in the 

block diagram in Figure 3.1a. When a pixel undergoes an exposure event, i.e., discharging below 

 

Figure 3.2: (a) Example of a time-domain pixel with a single threshold voltage. (b) Time 

diagram of the example pixel’s response to bright and dark scenes. (c) Schematic of the time-

domain pixel with two threshold voltages used in this image sensor. [© 2018 IEEE] 
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the high threshold voltage or low threshold voltage, the pixel begins negotiations with two 

arbitration and encoding units. First, the pixel pulls down the “Y-Request” row bus and waits for 

a response on the “Y-Acknowledgement” row bus indicating that the row address of the pixel has 

been encoded. Second, the pixel pulls down the “X-Request” column bus and waits for a response 

on the “X-Acknowledgement” column bus indicating that the column address of the pixel has been 

encoded. If multiple pixels in a row request row address encoding simultaneously, their row 

addresses and column addresses will be encoded at the same time, reducing the demand on the 

arbiters and ensuring system responsiveness. When both addresses are encoded, the complete 

address is transmitted to an off-chip processor that logs the address and the timestamp of the event, 

and the pixel can be reset for the next exposure. The full system was implemented using a standard 

180 nm mixed-signal CMOS process on a 9.9-by-8.2 mm die with a 77%/23% split between the 

active area and support circuitry. Timestamps are generated using a 1 MHz counter that provides 

1 µs resolution, and facilities are provided for tuning the threshold voltages to optimize 

performance. 

To provide spectral discrimination across three color channels and an NIR channel, the 

pixel array was monolithically integrated with a pixelated filter array constructed from a repeating 

2-by-2 pixel pattern of blue, green, red, and NIR interference filters. An SEM image of the 

pixelated filter array is shown in Figure 3.1b. The interference filters were fabricated via physical 

vapor deposition of multiple thin-film dielectric layers with different refractive indices. Using 

finite element methods, light propagation through the dielectric stack was simulated, and applying 

iterative optimization to select the materials, e.g., SiO2 and TiO2, as well as the number and 

thickness of the dielectric layers, passband shapes were tuned to provide a proper spectral response 
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for NIRF IGS and similar applications. This structure enables a single-chip snapshot multispectral 

imaging system that is free from temperature-dependent co-registration error. 

3.4 Optoelectronic Characterization 

In a traditional voltage-domain pixel, the dynamic range is limited by the voltage supply and the 

full well capacity on the high side and the reset noise and readout noise on the low side. As a result, 

dynamic ranges for conventional imagers are practically limited to between 65 and 80 dB [34]. In 

the time-domain pixel used in this imager, though, the dynamic range is limited by the shortest 

integration time possible (which occurs at maximum photocurrent) and the longest integration time 

possible (which occurs at minimum photocurrent when dark current dominates). Consequently, 

dynamic ranges up to 140 dB have been achieved with this pixel architecture, and a dynamic range 

of 120 dB was measured with this sensor [53]. As a side effect of this measurement scheme, the 

signal-to-noise ratio of the time-domain pixel differs from that of a voltage-domain pixel: Since 

every pixel is completely discharged regardless of photon flux, the signal-to-noise ratio at low and 

high light intensities alike is shot noise limited. As shown in the plot of signal-to-noise ratio in 

Figure 3.3d, this leads to a broad and flat region where the signal-to-noise ratio hovers near 56 dB 

for more than 4 decades of light intensities. 

The quantum efficiencies of the color and NIR channels were measured by projecting the 

tunable narrowband output of a monochromator onto the imager and examining the response as 

the output was scanned across wavelengths. As shown in the plots of quantum efficiency and 

optical density in Figure 3.3a and Figure 3.3b, the blue, green, red, and NIR channels exhibit peak 

quantum efficiencies of ~3.4%, ~12.9%, ~16.5%, and ~12.9 % at 476, 559, 659, and 706 nm, 

respectively. The maximum in optical density observed at ~785 nm is attributed to a discrete laser 
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notch blocking filter located between the lens and the imager that is used to eliminate the strong 

excitation source used in NIRF IGS. In general, the quantum efficiencies are low because the 

imager was fabricated using a standard mixed-signal process and not a special image sensor 

process, meaning the efficiencies could be easily improved by substituting the optimized structures 

provided by a specialized process. 

The fixed-pattern noise (FPN) of the color and NIR channels was measured by projecting 

the uniform broadband output from a halogen lamp coupled to an integrating sphere onto the 

imager and examining the variation in response across the area of the imager. To reduce the effects 

of FPN, the gains and offsets of every pixel were computed and applied as part of a flat field 

 

 

Figure 3.3: Optoelectronic characterization graphs of the imaging system. (a) Quantum 

efficiency. (b) Optical density. (c) Fixed-pattern noise. (d) Average signal-to-noise ratio across 

all channels. [© 2018 IEEE] 
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calibration algorithm. Figure 3.3c illustrates the FPN after calibration as a function of the 

difference between the high threshold and the low threshold at every pixel, i.e., the integration 

voltage swing. The FPN was bounded at less than 2% for all channels. 

3.5 Near-Infrared Fluorescence Sensitivity 

To illustrate the imaging system’s capabilities, QDot 800, a solution of fluorescent quantum dots 

that absorbs photons at 780 nm and remits photons at 800 nm, was poured into a vial and imaged 

under surgical illumination produced by an LED panel and a 780 nm laser. A snapshot image of 

the vial of QDot 800 as well as a vial of deionized water is provided in Figure 3.4. While the color 

channels provide a good indication of where the vials are located, the NIR channel clearly 

distinguishes between the QDot 800, which provides substantial fluorescence signal, and the 

deionized water, which provides no fluorescence signal. Furthermore, the overlaid image where 

the color-mapped NIR channel and the color channel are superimposed indicates that the channels 

are spatially matched with no co-registration error. 

To examine the camera’s sensitivity to a clinically relevant fluorescent dye, the minimal 

detectable concentration of ICG was measured. Three serial dilutions of ICG in deionized water 

were produced at concentrations ranging from 10 mM down to 10 nM, and three additional samples 

 

Figure 3.4: Sample images showing the color and near-infrared vision capabilities of the 

asynchronous time-domain image sensor. The scene contains two vials filled with deionized 

water (left) and QDot 800 (right). Left: Color image of the scene. Center: Near-infrared image 

of the scene. Right: Overlaid view of the near-infrared image in a false linear colormap and 

the color image. [© 2018 IEEE] 
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of deionized water were collected as control data. To mimic the ambient environment present 

during NIRF IGS, the three sets of solutions were imaged under 50 klx visible illumination from 

a custom LED panel and 20 mW/cm2 NIR illumination from a filtered and diffused 780 nm laser. 

The pixel values across the three sets were clustered by concentration value to minimize error. The 

detection limit and the minimal detectable concentration were defined according to the 

International Union of Pure and Applied Chemistry (IUPAC) standard with a confidence level of 

99.86% [54]. The minimal detectable concentration was found to be 100 nM which compares well 

with clinical dosages. 
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CHAPTER 4 CONCLUSION 

4.1 Summary of This Work 

NIRF IGS can provide surgeons with the information needed to identify tumor margins during 

surgical resection in real time, minimizing the need for costly and intensive follow-up treatments. 

Unfortunately, FDA-approved NIRF imaging systems suffer from issues with cost, size, limited 

dynamic range, and unpredictable co-registration error that have limited adoption. In this thesis, 

the dynamic range of a single-sensor camera that solves these problems was determined, and a 

novel imager based on the morpho butterfly’s eye that meets this requirement was presented. This 

imaging system monolithically integrates an asynchronous time-domain image sensor and 

pixelated interference filters to provide three color channels and an NIR channel with a single-chip 

snapshot architecture. This imaging system provides a dynamic range of 120 dB and is free from 

temperature-dependent co-registration error. Furthermore, it can detect clinically relevant 

concentrations of FDA-approved NIRF dyes, making it a promising candidate for NIRF IGS 

applications. 

4.2 Future Work 

While the camera in this thesis has shown promise for NIRF IGS, there are several improvements 

that could be made and additional studies that could be run that would extend the system’s 

performance and evaluate its efficacy. 
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4.2.1 Improvements to the Image Sensor Design 

Since the image sensor in this imaging system was fabricated using a standard CMOS mixed-

signal process instead of a specialized CMOS image sensor process, pixels were laid out with 

general-purpose silicon structures instead of the high-performance components seen in modern 

cameras. Consequently, a migration between processes would immediately present several 

opportunities for improvement. First, optimized photodiodes could be employed which would 

boost the quantum efficiency by better matching the depth of the depletion region to the location 

of the photocharge generation and expand the dynamic range by limiting the dark current produced 

at surface defects. Second, trench isolation could be implemented which would improve the optical 

density of the NIR channel by decreasing the electrical crosstalk from the visible pixels to the NIR 

pixels. Coupled with changes at the circuit level to improve the readout noise, these modifications 

would lower the smallest measurable NIR signal, pushing the minimum detectable fluorophore 

concentration lower and improving the detection of deep and diffuse tumor cells. 

4.2.2 Improvements to the Signal Processing Pipeline 

While the asynchronous event stream generated by this time-domain image sensor is substantially 

different from the synchronous rectangular images produced by conventional voltage-mode image 

sensors, the timestamps of events are ultimately discretized to a fixed frame rate and mapped to an 

ordinary image. As a result, there is an inherent inefficiency in the data processing pipeline since 

fluorophore detection must occur in a transformed measurement space instead of the original 

measurement space. At a more fundamental level, though, the conversion between domains could 

conceal information that is obvious in the events but is obscured in the images. For example, 

knowledge of temporal variations in the light source or the fluorophore emission may be easy to 

incorporate into a series of timestamps but may be difficult to apply to an array of grayscale values. 
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Therefore, a more cohesive workflow on the time-domain data could enable more efficient and 

more effective signal processing that could benefit system performance. 

4.2.3 Additional Studies 

While the measurement of the minimum detectable fluorophore concentration and the preliminary 

images from animal experiments appear promising, further work is required to verify this image 

sensor’s usefulness for NIRF IGS. In particular, the generation of a receiver-operator curve for 

fluorophore detection in a mouse model would facilitate the prediction of system performance on 

larger populations, and the examination of fluorescently labeled tissues in human subjects would 

help to identify practical issues with system integration in the operating room. 

 



35 

 

REFERENCES 

[1] S. Blair, M. Garcia, N. Cui, and V. Gruev, “A 120 dB, asynchronous, time-domain, 

multispectral imager for near-infrared fluorescence image-guided surgery,” in 2018 IEEE 

Biomedical Circuits and Systems Conference (BioCAS), 2018, pp. 1–4. 

[2] A. L. Luryi, M. M. Chen, S. Mehra, S. A. Roman, J. A. Sosa, and B. L. Judson, “Positive 

surgical margins in early stage oral cavity cancer,” Otolaryngol. Neck Surg., vol. 151, no. 

6, pp. 984–990, Dec. 2014. 

[3] M. S. Cookson and S. S. Chang, “Margin control in open radical prostatectomy: What are 

the real outcomes?” Urol. Oncol. Semin. Orig. Investig., vol. 28, no. 2, pp. 205–209, Mar. 

2010. 

[4] B. A. Virnig, T. M. Tuttle, T. Shamliyan, and R. L. Kane, “Ductal carcinoma in situ of the 

breast: A systematic review of incidence, treatment, and outcomes,” JNCI J. Natl. Cancer 

Inst., vol. 102, no. 3, pp. 170–178, Feb. 2010. 

[5] L. Jacobs, “Positive margins: The challenge continues for breast surgeons,” Ann. Surg. 

Oncol., vol. 15, no. 5, pp. 1271–1272, May 2008. 

[6] A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst, C. J. H. van de Velde, and J. V. 

Frangioni, “Image-guided cancer surgery using near-infrared fluorescence,” Nat. Rev. Clin. 

Oncol., vol. 10, no. 9, pp. 507–518, Sep. 2013. 

[7] M. Garcia, M. A. Zayed, K. Park, and V. Gruev, “Near-infrared angiography for critical 

limb ischemia in a diabetic murine model,” J. Biomed. Opt., vol. 22, no. 4, p. 046006, Apr. 

2017. 

[8] M. Garcia et al., “Bio-inspired imager improves sensitivity in near-infrared fluorescence 

image-guided surgery,” Optica, vol. 5, no. 4, p. 413, Apr. 2018. 

[9] A. V. DSouza, H. Lin, E. R. Henderson, K. S. Samkoe, and B. W. Pogue, “Review of 

fluorescence guided surgery systems: identification of key performance capabilities beyond 

indocyanine green imaging,” J. Biomed. Opt., vol. 21, no. 8, p. 080901, Aug. 2016. 

[10] M. Garcia, K. Kauffman, T. Davis, R. Marinov, and V. Gruev, “A 1280 by 720 by 3, 250 

mW, 24 fps hexachromatic imager for near-infrared fluorescence image-guided surgery,” 

in 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1–5. 

[11] S. L. Jacques, “Optical properties of biological tissues: A review,” Phys. Med. Biol., vol. 

58, no. 11, pp. R37–R61, May 2013. 

[12] S. B. Mondal et al., “Binocular Goggle Augmented Imaging and Navigation System 

provides real-time fluorescence image guidance for tumor resection and sentinel lymph 

node mapping,” Sci. Rep., vol. 5, no. 1, Jul. 2015. 



36 

 

[13] J. Withgott, “Taking a bird’s-eye view…in the UV,” Bioscience, vol. 50, no. 10, pp. 854–

859, Oct. 2000. 

[14] H. H. Thoen, M. J. How, T.-H. Chiou, and J. Marshall, “A different form of color vision in 

mantis shrimp,” Science, vol. 343, no. 6169, pp. 411–3, Jan. 2014. 

[15] J. M. Valeton and D. van Norren, “Light adaptation of primate cones: An analysis based on 

extracellular data,” Vision Res., vol. 23, no. 12, pp. 1539–1547, Jan. 1983. 

[16] W. H. Miller, G. D. Bernard, and J. L. Allen, “The optics of insect compound eyes,” Science, 

vol. 162, no. 3855, pp. 760–767, Nov. 1968. 

[17] M. Srinivasarao, “Nano-optics in the biological world: Beetles, butterflies, birds, and 

moths,” Chem. Rev., vol. 99, no. 7, pp. 1935–1962, 1999. 

[18] W. H. Miller, “Ocular optical filtering,” in Comparative Physiology and Evolution of Vision 

in Invertebrates (Handbook of Sensory Physiology, Vol. 7/6/6A), 1st ed., H. Autrum, Ed. 

Springer, Berlin, Heidelberg, 1979, pp. 69–143. 

[19] J. Keat, P. Reinagel, R. C. Reid, and M. Meister, “Predicting every spike: A model for the 

responses of visual neurons,” Neuron, vol. 30, no. 3, pp. 803–817, May 2001. 

[20] Code of Federal Regulations Title 21 §878.4580: Surgical lamp. United States: Code of 

Federal Regulations, 2018. 

[21] Code of Federal Regulations Title 21 §1040.10: Laser products. Code of Federal 

Regulations, 2018. 

[22] Code of Federal Regulations Title 21 §1040.11: Specific purpose laser products. Code of 

Federal Regulation, 2018. 

[23] International Electrotechnical Commission, “Medical electrical equipment - Part 2-41: 

Particular requirements for the safety of surgical luminaires and luminaires for diagnosis 

(IEC 60601-2-41:2000),” 2000. 

[24] International Electrotechnical Commission, “Safety of laser products - Part 1: Equipment 

classification, requirements and user’s guide (IEC 60825-

1:1993+AMD1:1997+AMD2:2001 CSV),” 2001. 

[25] Meditek, “Comprehensive review of the most popular surgical lights in Canada,” 2017. 

[Online]. Available: https://www.meditek.ca/comprehensive-review-popular-surgical-

lights-canada/. [Accessed: 19-Nov-2018]. 

[26] R. A. Serway, C. J. Moses, and C. A. Moyer, Modern Physics, 3rd ed. Belmont, CA: 

Brooks/Cole—Thomson Learning, 2005. 

[27] Lumileds, “Luxeon 3030 2D line datasheet,” 2018. [Online]. Available: 

https://www.lumileds.com/products/mid-power-leds/luxeon-3030-2d. [Accessed: 19-Nov-

2018]. 

[28] Lumileds, “Luxeon 3014 datasheet,” 2018. [Online]. Available: 

https://www.lumileds.com/products/mid-power-leds/luxeon-3014. [Accessed: 19-Nov-

2018]. 

[29] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. Hoboken, NJ: Wiley-

Interscience, 2007. 

[30] C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid 

media including coherence-gated imaging,” J. Phys. D. Appl. Phys., vol. 36, no. 14, pp. 

R207–R227, Jul. 2003. 

[31] I. Y. Yanina, E. N. Lazareva, and V. V. Tuchin, “Refractive index of adipose tissue and 

lipid droplet measured in wide spectral and temperature ranges,” Appl. Opt., vol. 57, no. 17, 

p. 4839, Jun. 2018. 



37 

 

[32] A. N. Bashkatov, É. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of 

the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc., vol. 

99, no. 5, p. 836, 2005. 
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