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ABSTRACT 

 

Every year, millions of people use interest inventories to help them make educational and career 

choices. The present meta-analysis examines the criterion-related validity of interest inventories 

in predicting career choice outcomes, such as college major choice and occupational 

membership. This analysis of predictive hit rates incorporates over 75 years of research 

investigating the accuracy of interest inventories. Using a binomial-normal meta-analytic model 

to quantitatively estimate the overall hit rate, the present analysis found that measured interests 

attain an estimated predictive accuracy rate of 50.3% in successfully predicting career choice. 

Due to a substantial amount of true heterogeneity in effect sizes, we tested several potential  

moderators. In particular, the hit rate accuracy was moderated by concurrent versus predictive 

criterion assessment, criterion interest category, interest inventory, type of interest inventory 

scale, career choice criterion, method used to match criterion to a scale, and hit rate method. 

Additionally, the present study is an attempt to reintroduce base rates into the evaluation of 

predictive accuracy. Implications for future research are discussed.  
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CHAPTER 1: INTRODUCTION 

 

Students and adults often turn to interest inventories to help them make one of the most 

important decisions in their adult life: career choice. The importance of this decision is 

evidenced by the fact that millions of interest inventories are taken every year in the United 

States (ACT, 2009; Hansen, 1994; Morris, 2016). Interest assessment is a substantial industry 

that permeates the fields of education, counseling psychology, organizational psychology, and 

national testing. Interest inventories attempt to match an individual’s interests to those of various 

occupational groups (Anastasi, 1988; Prediger, 1977; Strong, 1943). Though many researchers 

have assessed and reviewed the criterion-related validity of these inventories (e.g., Campbell, 

1971; Clark, 1961; Kuder, 1977; McArthur, 1954; Spokane, 1979; Strong, 1943; Zytowski, 

1976), there has yet to be a quantitative review of these results.  

Several prominent interest researchers have provided estimates regarding the accuracy of 

inventories, but the estimates differ substantially. One of the earliest statements regarding the 

general accuracy of inventories came from John Holland (1973), who claimed that inventory 

predictions are only moderately efficient. In the 1980’s, two camps emerged. The more 

pessimistic camp regarded the validity of inventories as “mediocre” (e.g., Crites, 1984, p. 284), 

whereas the more optimistic side acknowledged a “substantial correspondence” between 

inventory scores and eventual occupational membership (e.g., Anastasi, 1988, p. 57). In the 

twenty-first century, estimates became more specific. For example, Fouad (1999) asserted that 

40% - 60% of individuals enter occupations that are predicted by their inventory scores. At the 

high end, Sullivan & Hansen (2004) claimed that as many as two-thirds of U.S. employees are in 

occupations that match their inventoried interests. 
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Although broad-reaching validity estimates have been made, it is unclear which 

estimates, if any, are accurate. Recently, Su (2018) has called for a quantitative summary of the 

existing literature on interest inventory hit rates. In the present paper, I review almost 100 years 

of research to establish a meta-analytic estimate of the predictive accuracy of interest inventories. 

I have three main objectives: to evaluate the criterion-related validity of interest inventories, to 

examine whether certain characteristics moderate the levels of validity, and to reintroduce base 

rates into the evaluation of predictive accuracy. In particular, I introduce more accurate base 

rates by which to compare the accuracy rates for Holland’s (1997) six interest categories. In this 

way, I provide a more accurate estimate of how well interest inventories predict college major 

choice and eventual occupational membership.  

Vocational Interest Assessment 

 An interest reflects liking of an object or activity (Strong, 1943). Interests are unique 

constructs in that they are contextualized (Rounds & Su, 2014). Vocational interests in particular 

are contextualized towards different types of occupations. Vocational interests are important 

predictors of job performance (Nye, Su, Rounds, & Drasgow, 2012; 2017), turnover intentions 

(Van Iddekinge, Roth, Putka, & Lanivich, 2011), and career success (Su, 2012). Critically, 

interests also predict educational and career choices (Dolliver & Worthington, 1981; Hansen & 

Neuman, 1999; Kuder, 1977; Strong, 1943). The focus of the present paper is to derive meta-

analytic estimates to quantify these latter relationships.  

Depending on the interest inventory, there are different assumptions about how best to 

relate interests to occupations. According to E. K. Strong (1927, 1943), interests are on a 

continuum from like to dislike. This continuum indicates that there should be a substantial 

relationship between inventory scores and eventual occupational membership. In other words, 
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high scores on an interest inventory should reflect occupations that fit an individual’s interests. 

Strong (1943) proposed that men continuing in an occupation will have higher interest scores in 

that occupation than in others, and men continuing in an occupation will have higher interest 

scores in that occupation than men in other occupations. In this way, it is proposed that interests 

are related to and discriminate between occupations.  

 Similar to Strong (1943), John Holland (1959) proposed a congruence assumption 

between people and work environments. Holland’s (1959, 1997) interest model contains six 

interest types: Realistic, Investigative, Artistic, Social, Enterprising, and Conventional, 

abbreviated as RIASEC. Realistic interests include hands-on activities, the outdoors, and 

practical and physical labor. Investigative involves analytics and scientific thinking. Artistic is 

characterized by creativity and interest in fine arts. Social revolves around helping and working 

with others. Enterprising involves persuasiveness and leadership. Finally, conventional involves 

organization and attention to details (Holland, 1959; 1997). Both people and environments can 

be classified according to these categories, so the congruence assumption poses that individuals 

are expected to seek out, remain in, and be satisfied in occupations that match their interest type.  

Strong’s (1927; 1943) propositions and Holland’s (1959; 1997) theory lead to two 

primary methods of interest inventory construction. Inventories such as the Strong Interest 

Inventory (SII; Donnay, Morris, Schaubhut, & Thompson, 2004; Harmon, DeWitt, Campbell, & 

Hansen, 1994) and Kuder Occupational Interest Survey (KOIS; Kuder, 1966) use empirical 

keying to differentiate between occupational groups. Empirical methods determine the items that 

most differentiate members of an occupational group from respondents in other occupations. 

These discriminating items form the occupational scale for that group. For example, if 

accountants in the norm sample endorse, “I enjoy playing an instrument” more than the rest of 
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the norm sample on average, then that item will be keyed on the Accountant scale. Inventories 

are then able to match an individual with an occupation when that person responds in a similar 

way to members of that occupation (Donnay et al., 2004).  

Through empirical scale development, items may not reflect the occupations to which 

they are keyed. Conversely, inventories such as the Self-Directed Search (SDS; Holland, Powell, 

& Fritzsche, 1994), Vocational Preference Inventory (VPI; Holland, 1985), and Revised Unisex 

Edition of the ACT Inventory (UNIACT-R; Swaney, Lamb, Prediger, & American College 

Testing Program, 1995) use a deductive approach to determine an individual’s interest group. 

Rather than data-based keying of occupational scales, rational/theoretical scale development 

involves the composition of items that align with each theoretical interest area (Burisch, 1984). 

Individuals receive a score for each interest area, and the interest area corresponding to the 

highest score is considered the individual’s high-point code, or primary interest. Depending on 

the level of specificity, individuals may receive a two-letter or three-letter high-point code 

corresponding to their second- and third-highest score areas, respectively. Interest congruence is 

assessed based on the degree of match between an individual’s primary interests and those of 

their occupation.  

Criterion-Related Validity 

 To examine the full range of the criterion-related validity of interest inventories, both 

concurrent and predictive validity studies are included in the present meta-analysis. To determine 

the concurrent validity of an interest inventory, the inventory is administered to a group of 

employees to determine whether the employees score highly on their own occupational scale 

(e.g. Dik & Hansen, 2004; Dolliver & Worthington, 1981; Donnay & Borgen, 1996). 

Alternatively, the inventory may be administered to students to compare their measured interests 
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to their current major (e.g. Gasser, Larson, & Borgen, 2007; Hansen & Neuman, 1999; Saladin, 

1995; Williams, 1972). By measuring the interests of people who are currently members of 

certain occupations or majors, this process determines how well the inventory discriminates 

between criterion groups. Ultimately, the level of concurrent validity indicates the degree of 

correspondence between individuals’ current occupations or majors and their matched inventory 

scales (Hansen & Neuman, 1999).  

 In predictive validity studies, the interest inventory is administered prior to collecting the 

criterion. The goal of these studies is to determine how well the inventory predicts the 

individual’s eventual occupation (e.g. Bartling & Hood, 1981; Hansen & Dik, 2005; McArthur, 

1954; Wiggins & Weslander, 1977), college major choice (e.g. Lunneborg, 1993; O’Neil & 

Magoon, 1977; Prediger & Johnson, 1979), or other criterion, such as vocational aspiration (e.g. 

Gottfredson & Holland, 1975; Spokane, 1979a). The time between inventory administration and 

obtainment of the criterion data ranges from a few weeks (Holland, Gottfredson, & Baker, 1990) 

to 25 years (Zytowski, 1974). Both concurrent and predictive validity studies are important to 

assess the degree to which interest inventories accurately relate to the criterion. 

 Hit rates. To quantify the validity of an inventory, researchers typically calculate the hit 

rate, or the percentage of correct predictions. This calculation requires every respondent’s career 

choice criterion group to be classified according to a scale on the inventory. The classification 

determines whether the inventory results predict the criterion group. Researchers then derive a 

hit calculation based on the scoring scheme of a particular inventory.  

For example, if an individual’s highest score is on the Accountant occupational scale, and 

the individual later works as an accountant, that is considered a hit. Similarly, if an individual’s 

highest score is in the Social category, and that individual is employed as an elementary school 
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teacher, that is also considered a hit because the occupation of elementary school teacher is 

classified as Social (Rounds, Armstrong, Liao, Lewis, & Rivkin, 2008). Essentially, the hit rate 

determines the percent of respondents that would be referred to their criterion group based on 

their inventory scores. Using these hit rates, I can assess the accuracy of various interest 

inventories in predicting career choice. 

Base rates. When evaluating the accuracy of a measure, it is important to compare the 

predictive rates to base rates (Bokhari & Hubert, 2015; Meehl & Rosen, 1955; Schmidt, 1974). 

Base rates describe the frequency of a group or outcome in the population of interest (Meehl & 

Rosen, 1955; Schmidt, 1974). However, the choice of this chance rate or frequency may come 

from several possibilities. For example, one may wish to examine the predictive accuracy of the 

Self Directed Search in predicting college major choice for females. The hit rate would be 

determined by matching each female’s highest interest area with the interest area of her major. 

Each time the highest interest area with the highest score (i.e., high-point code) matches the 

interest area of an individual’s major, this match is counted as a hit. There are several possible 

choices of chance rates by which to compare this predictive accuracy. The choice of base rate 

may be the proportion of all college students whose majors are classified within each interest 

area, the proportion of all females who major in each area, the chance of receiving the highest 

interest score on each scale based on the total number of possible scales, and so on.  

Many of the primary studies included in this analysis did not incorporate a base rate 

comparison. However, one base rate that was commonly used was a chance rate of 16.67%, or 

about 17%, for the six RIASEC interest categories (e.g., Hughes, 1972; Latona, Harmon, & 

Hastings, 1987; Lattimore & Borgen, 1999; Prediger, 1998). Although this base rate comparison 

is better than no comparison at all, there are problematic assumptions with the use of this base 
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rate. Namely this rate assumes equal chance of classification in any of the six interest categories. 

This equal chance is unlikely to be the case in reality.   

Since these hit rates determine the accuracy of interest inventories in predicting 

occupational membership and related criterion, a more accurate base rate derivation would be the 

proportions of the workforce that are employed in each interest area (Su, 2018). A recent study 

by DeCeanne, Lewis, and Rounds (2017) determined these base rates in the U.S. employment 

population by merging the Bureau of Labor Statistics’ (BLS) 2014 Employment Projection data 

with the occupational interest profiles from the Occupational Information Network (O*NET). 

The results of this study indicate that the employment distribution rates were not equal. Based on 

the distribution of over 150 million employees in the United States in 2014, the percentages of 

the population employed in each interest area are: 30.3% Realistic, 5.5% Investigative, 1.7% 

Artistic, 17.9% Social, 21.9% Enterprising, and 22.7% Conventional (DeCeanne et al., 2017). In 

other words, there is the highest chance of being employed in the Realistic area, and there is the 

lowest chance of employed in the Artistic area. These percentages can be used to evaluate the 

different effect size estimates for the RIASEC categories to determine whether the hit rates are 

higher than what would be expected by chance.  

For other moderator analyses, base rate derivations are more difficult. In a meta-analytic 

framework, there is an added level of difficulty in determining which base rates should be used 

because effect sizes are combined across studies that have different underlying chance rates. 

Most moderator analyses aggregate across inventories, scale types (i.e., occupational scales, 

RIASEC interest scales, etc.), and other study characteristics, so it would be difficult to 

determine a base frequency by which to compare the predictive accuracy of the inventories. 

Ultimately, one goal of the present study is to re-introduce base rates into the conversation of 
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predictive accuracy and urge further studies to take base rates into account for their specific 

samples, inventories, and methods of determining hit rates.    

The Present Study 

 The present study attempts to provide a quantitative summary of the criterion-related 

validity of interest inventories in predicting career choice. Broadly speaking, career choice 

includes choice of occupations, college majors or fields of study, vocational aspirations, and 

expressed vocational plans. I meta-analytically examine the accuracy of interest inventories in 

predicting these criteria both concurrently and predictively. Additionally, this study is an attempt 

to examine different characteristics that moderate the degrees of accuracy. 

 First, I examined differences in accuracies between concurrent hit rates and predictive hit 

rates. In line with previous meta-analyses of longitudinal vocational interest studies (Hoff, 

Briley, Wee, & Rounds, 2018; Low, Yoon, Roberts, & Rounds, 2005), I expect the criterion 

assessment time to behave similarly to test-retest intervals. In this case, concurrent validity 

studies have no test-retest interval period, whereas predictive validity studies have a range of 

test-retest intervals greater than zero. Recent meta-analyses indicate that interests tend to change 

over time (Hoff et al., 2018; Low et al., 2005). Thus, I expect that predictive validity studies will 

have lower predictive accuracies than concurrent validity studies since the time between interest 

measurement and criterion assessment is greater, so there is more time for changes in interests, 

majors, and jobs.  

I also included gender of the sample as a possible moderator of predictive accuracy. Most 

primary studies reported hit rates separately for male and female samples, indicating that it may 

be important to examine differences between gender groups. Meta-analytic evidence indicates 

that there are established gender differences in vocational interests (Su, Rounds, & Armstrong, 
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2009), which are also reflected in differences in employment rates for certain fields such as 

STEM (science, technology, engineering, and math) fields (Su & Rounds, 2015). Based on these 

gender differences, men and women may have different underlying base rates of working in 

different occupations or choosing different majors, so the predictive accuracies may also differ.  

Additionally, there is a long history of debate regarding the optimal way to score interest 

inventories and present career suggestions to males and females (Lamb & Prediger, 1979). Sex 

differences in interests influenced the development of interest inventory scales, particularly the 

occupational scales on the Strong Interest Inventory (SII; Harmon et al., 1994). The development 

of occupational scales for the SII involved the use of separate norm groups for males and 

females. For each occupational scale, an individual may be scored according to their same-sex 

norms, opposite-sex norms, standard-score or combined-sex norms, or raw scores. Various 

studies have utilized different norming techniques in calculating hit rates by gender (Betz & 

Wolfe, 1981; Cairo, 1982; Dik & Hansen, 2004; Dolliver & Worthington, 1981). Studies using 

other inventories, such as the ACT Interest Inventory (UNIACT-R; Swaney et al., 1995), have 

also compared the accuracy of different norming methods (Hanson, Noeth, & Prediger, 1977; 

Lamb & Prediger, 1979; Prediger & Lamb, 1981). In the present meta-analysis, I examine scale 

norming as a moderator of predictive accuracies to derive a quantitative estimate to inform this 

debate.  

In many instances, primary studies also reported hit rates separately for different 

RIASEC interest criterion samples (e.g., Gottfredson & Holland, 1975; Holland & Lutz, 1968; 

Mount & Muchinsky, 1978; Salomone & Slaney, 1978). Based on the different employment 

frequencies across the interest categories (DeCeanne et al., 2017), it is likely that there will be 

different hit rate accuracies between the RIASEC criterion groups. In particular, I predict that the 
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highest accuracy rates will be for the Realistic interest category since the largest majority of 

employees work in occupations classified as Realistic. In a similar way, the lowest hit rate 

accuracy will most likely be in the Artistic category since the smallest proportion of the 

population work in this interest sector.  

Aside from various sample characteristics, there are several other study characteristics 

that may moderate the predictive accuracy of interest inventories. One of these possible 

moderators is the interest inventory used. There were over 30 different interest inventories used 

in the body of literature included in the present meta-analysis, but several interest inventories 

were most often studied: the Strong Interest Inventory (SII, SVIB, SCII; Campbell, 1971; 

Harmon et al., 1994; Strong, 1981), the Self-Directed Search (SDS; Holland et al., 1994), the 

Vocational Preference Inventory (VPI; Holland, 1985), the ACT Interest Inventory (UNIACT; 

Swaney, 1995), the Campbell Interest and Skill Survey (CISS; Campbell, Hyne, & Nilsen, 

1992), and the Kuder Preference Record (KPR, KOIS; Kuder, 1970).  

I examined the different hit rates derived from each of these interest inventories, as well 

as the remainder of the interest inventories grouped into an “Other” category for the purpose of 

analyses. Since these interest inventories have different methods of scale construction, different 

theoretical orientations, different types and numbers of scales, and various other distinctions 

between them, it is important to consider the different inventories as a moderator. Additionally, 

these inventories have different reputations and frequencies of use, so examining the differential 

accuracies may by inventory may serve as a proxy for quality (Su et al., 2009). Relatedly, I also 

examined the different types of scales (i.e., occupational scales, basic interests/area scales, 

RIASEC interest scales, and specialty scales such as medical specialties) as a potential moderator 

due to the variety in specificity levels and differences in scale construction methods.  
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In our broad inclusion of career choice criterion, there were several different types of 

criterion that were utilized in the primary studies. I included studies that predicted occupational 

membership, college major choice, vocational aspirations, or expressed career plans. Since these 

specific criterion categories varied across studies, I examined criterion as a potential moderator 

as well. 

Like the choice of criterion, researchers were faced with several methodology choices 

while designing these criterion-related validity studies. Two important decisions included the 

method used to match each criterion choice to a scale on the inventory, and the method used to 

determine a hit, or correct prediction. In each of these cases, there were a wide variety of choices 

made across the studies. I examined both the criterion-scale match method and the hit rate 

calculation method as possible moderators as these choices could impact the stringency and 

quality of conclusions drawn. 

Finally, I examined publication status as a possible moderator. In our search of the 

literature, I located both published and unpublished studies. In particular, unpublished studies 

were primarily drawn from dissertations, research reports, and interest inventory manuals. I 

included this variable as a potential moderator to test whether higher hit rate accuracies were 

published in peer-review journals compared to the hit rate accuracies reported in unpublished 

outlets.  
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CHAPTER 2: METHODOLOGY 

 

Literature Search 

 To identify studies for the present meta-analysis, I searched for published and 

unpublished studies that investigated the criterion-related validity of interest inventories in 

predicting career choice. In the Fall of 2015, I searched for relevant articles on the PsycINFO 

database, Proquest Dissertations, and Google Scholar using combinations and variations of the 

following search terms: interest inventories, occupation, validity, concurrent validity, predictive 

validity, evidence, hit rate, predictive efficiency, and vocational interests as predictors. I also 

searched through available technical manuals for interest inventories, the American College 

Testing (ACT) Research Reports, and relevant book reviews for possible citations or data 

references. Finally, the reference lists of all relevant studies were examined for possible cross-

referenced studies. This process resulted in 335 possible studies after eliminating duplicate 

search results and titles and abstracts that were clearly unrelated (i.e. did not use an interest 

inventory, etc.).  

Inclusion Criteria 

 I included studies in the meta-analysis if they met several criteria. First, at minimum, 

studies needed to use at least one interest inventory and needed to provide a sample size. Second, 

I included studies that either explicitly provided a hit rate or provided data by which to calculate 

the percentage of correct predictions (i.e., number of participants who received a hit and total 

number of participants). Studies that reported other metrics of criterion-related validity (e.g., 

correlations between two inventories, Tilton’s percent overlap, etc.) were excluded. Third, 

studies needed to use interest inventory scores as predictors of a career choice criterion, 
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including occupational membership, occupational group or industry, college major choice or 

field of study, vocational aspirations or preferences, or expressed occupational plans. Studies that 

used predictors other than interest inventories (e.g., expressed career choice, skills, values, etc.) 

were excluded. Additionally, studies that predicted criterion other than career choice were 

excluded. Finally, studies needed to be published in English.  

I conducted the literature search and independently retrieved each study. A total of 151 

studies met the inclusion criteria. Among these studies, there were several instances in which the 

same sample of participants was used multiple times. When multiple studies analyzed the same 

sample of participants, these studies were coded as a single “composite” study. For example, if 

five studies used the same sample of participants, these five were coded as a single study so they 

would not be counted multiple times in the meta-analysis.  

Each of these composite studies contributed a single overall effect size to the meta-

analysis. To attain the single effect size, I calculated a sample-size weighted effect size using the 

sample size from each study included in the composite. With the composites coded as a single 

study, there were a total of 130 unique studies with 345 unique samples (N = 309,033). These 

studies yielded a total of 1,965 hit rates.  

Study Variables  

Hit rate. The effect size in this study was the hit rate, or percentage of correct 

predictions. In particular, this percentage refers to the number of correct predictions made by the 

interest inventory out of the total number of predictions made. In cases where a primary study 

listed the hit percentage, this percentage was recorded directly. In cases where a primary study 

did not report the hit percentage, this percentage was calculated using the information provided. 
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Aggregation of effect sizes. In most cases, a single study reported several hit rates. For 

example, studies often reported a hit rate for males and a hit rate for females, in which case these 

would be considered two unique samples. Additionally, studies often reported several hit rates 

for the same sample, such as an overall female hit rate, as well as hit rates for different sub-

samples of females with different types of majors. In total, there were 1,965 hit rates reported. 

To address the issue of non-independence, I first aggregated hit rates at the sample level 

by computing a sub-sample weighted hit rate for each unique sample. For the example described 

above, the sub-samples of females in different majors were aggregated to one female hit rate for 

the sample. This aggregation process resulted in 345 sample-level hit rates.  

Then, I derived a sample-size weighted composite hit rate at the level of each study. For 

the example described above, males and females from the same study were aggregated to one 

study hit rate. This aggregation process resulted in 130 independent study-level hit rates. As a 

sensitivity analysis of the independence assumption for the overall meta-analysis of hit rates, I 

meta-analyzed both the 345 sample-level and 130 study-level hit rates and compared the effect 

size estimates from each method. Similarly, for each moderator analysis, hit rates were first 

aggregated at the sample-level within each moderator category. Then, these sample hit rates were 

aggregated using the same weighted-average technique to derive one study-level hit rate per 

moderator category.  

Large sample. One large primary study (Prediger, 1998) included a college-bound 

sample of students with a total N = 126,194. All reported results include this sample. However, 

due to the relatively large weight of the effect size of that study and its potential impact on 

results, all results were also computed without this sample. The results of the moderator analyses 

that were computed without this sample are reported in Table 3. 
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Criterion assessment time. Concurrent validity studies assessed the criterion at the same 

time in which the inventory was administered. Predictive validity studies administered the 

inventory and then assessed the criterion at a later time. For predictive validity, follow-up times 

ranged from one week to 25 years (M = 6.04 years, SD = 4.60 years).  

Year of publication. The present analysis included studies published from 1939-2014. 

Year of publication was included as a continuous moderator, and a visual representation of 

study-level hit rates by year is presented in Figure 1. 

Gender. For gender, I coded each hit rate as coming from a female, male, or mixed-

gender sample. Moderator analyses of gender focused on the estimation of hit rates for males and 

females separately rather than including the mixed-gender hit rates to ensure all samples 

included in the moderator test were non-overlapping. 

Scale norming. Some studies used norming methods to calculate individual scores to be 

used for validation purposes. Possible norming methods included: same-sex, cross-sex, 

standard/combined-sex, or raw scores. Studies that did not explicitly report the scoring method 

were not included in this moderator analysis. For single-gender samples, the norming method 

was coded into one of the four categories listed. For mixed-gender samples, hit rates based on 

female-normed and male-normed scores were excluded from the moderator analyses because 

these could not be classified as same-sex or cross-sex. In other words, the same-sex and cross-

sex categories included single-gender samples only.  

RIASEC criterion interest. For studies that used inventories with Holland’s (1959; 

1997) RIASEC scales (i.e., Strong, SDS, VPI, ACT Inventory, etc.) as predictors, hit rates were 

recorded separately for each of the six criterion groups. In most cases, these hit rates were 
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reported for separate samples of participants, so these hit rates were first aggregated at the level 

of six unique samples prior to being aggregated at the study level.  

Occupation/major. Some studies reported separate hit rates for specific occupations or 

college majors. I coded occupations and majors into RIASEC categories using the Occupational 

Information Network’s (O*NET) Interest Profiles (Rounds et al., 2008). These coded 

occupations were included together in the RIASEC sample hit rate analysis.   

Interest inventory. There were a variety of interest inventories included in these 

analyses. The most commonly used inventories included the Strong Interest Inventory (SII, 

SVIB, SCII; Campbell, 1971; Harmon et al., 1994; Strong, 1981), the Self-Directed Search 

(SDS; Holland et al., 1994), the Vocational Preference Inventory (VPI; Holland, 1985), the ACT 

Interest Inventory (UNIACT; Swaney, 1995), the Campbell Interest and Skill Survey (CISS; 

Campbell, Hyne, & Nilsen, 1992), and the Kuder Preference Record and Kuder Occupational 

Interest Survey (KPR, KOIS; Kuder, 1966; 1970). All other interest inventories were grouped 

together in an “Other” category for the meta-analyses that included interest inventory as a 

moderator. Some examples of inventories included in this category are the Geist Picture 

Inventory (Geist, 1959), the Ohio Vocational Interest Survey (OVIS; D'Costa, Winefordner, 

Odgers, & Koons Jr, 1970), the Medical Specialty Preference Inventory (MSPI; Zimny, 1980), 

and the Minnesota Vocational Interest Inventory (MVII; Clark & Campbell, 1965).  

Criterion. For the present meta-analysis, I included studies with criterion related to 

career choice. Possible criteria included occupation, college major/field of study, vocational 

aspiration or preference, or expressed occupational choice. All other possible criteria were 

excluded (e.g., expressed career choice, skills, values, etc.).  
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Criterion-scale matching method. An important aspect of evaluating the criterion-

related validity of interest inventories involves choosing which scale on the inventory matches or 

most closely resembles the criterion. There are different methods of matching an occupation or 

major to a scale on the inventory, and the matching method depends on the type of scale. For 

RIASEC scales, researchers matched the criterion according to the most appropriate RIASEC 

category. For occupational scales, the criterion may be either directly matched to a scale (e.g., 

the occupation of accountant matched to the Accountant occupational scale) or indirectly 

matched to an occupational scale (e.g., the occupation of business analyst matched to the 

Accountant scale). I coded which matching method was used in each study. The match methods 

were grouped into the following categories: direct match, indirect match, mixed direct and 

indirect matches, matching the criterion to a RIASEC scale, matching the criterion to another job 

family grouping, or other methods. 

Inventory scale type. Hit rates were calculated for different types of inventory scales: 

occupational scales, basic interest or other area scales, specialty scales (e.g. medical specialties), 

or RIASEC scales. Hit rates from combined sets of scales were not included in the moderator 

analysis.  

Calculation of hit rates. In each primary study, a “hit” was defined in a particular way. 

For analyses, these various hit rate calculations were classified into one of six methods. One way 

to calculate hits was based on a cut score, where each person who scored above the cut score on 

their matched scale was considered a hit. Typically, studies used a McArthur (1954) cut score of 

a standard score of 40 or above on the matched occupational scale, or the equivalent standard 

scores for other types of scales. A second hit rate calculation method was based on RIASEC 

high-point codes, where a hit was recorded when an individual’s interest high-point code 
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matched the high-point code of their criterion (i.e. college major, occupation, etc.). In other 

words, a person received a hit when their highest inventory score was on the same RIASEC scale 

as the classification for their occupation, college major, or other criterion.  

In a third method, some studies defined a hit as scoring highest on one’s own scale 

relative to all other scales. For example, if an accounting major scored highest on the Accountant 

occupational scale, that would be considered a hit. Fourth, hits were sometimes determined based 

on the inclusion of the relevant scale score in a certain top proportion of scores. For example, 

some studies indicated that a hit was recorded if an individual’s matched scale score was in the 

top 6% of all their scores, top five highest scores, or some other proportion-based distinction. 

Fifth, a smaller number of studies determined a hit by comparing an individual’s score to a 

reference or norm group. For example, if an individual’s score on their own scale was among the 

top 10% of the norm group scores on that scale, that would be considered a hit.  

Finally, some studies used the inventory scale scores as predictor sets in a discriminant 

function analysis to predict the criterion group for each individual. Discriminant analysis is a 

methodology typically used to predict a categorical criterion outcome from a set of predictor 

variables, so this methodology is well-suited to predict occupational membership from a set of 

interest scores (Betz, 1987; Donnay & Borgen, 1996). If the discriminant analysis resulted in the 

prediction of the correct criterion group, that prediction was considered a hit. 

Three-category distinctions. Some hit rate calculations included three categories, or 

levels, of hits based on stringencies of different cut scores, different high-point codes, or other 

distinctions. For example, a common categorical hit distinction was based on the McArthur 

method of scoring (McArthur, 1954). A standard score above 45 on the correct occupational 

scale was an “excellent” hit, a standard score of 40-44 was a “good” hit, and all scores below 40 
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were considered a “miss.” A related distinction was McArthur (1954) levels by rank, in which 

relative ranks of the scores were also considered at different levels. Another categorical 

distinction was based off of high-point codes: an “excellent” hit was when the criterion matched 

a person’s highest RIASEC score (high-point code) on the inventory, a “good” hit was when the 

criterion matched the person’s second highest RIASEC score, and anything else was considered 

a “miss.” Other categorical hits existed as well. 

For these three-category distinctions, it was possible to recode the hit categories into a 

single-category structure to match the existing hit calculations described previously. For 

example, for the McArthur (1954) categories, summing the “excellent” and “good” hit categories 

resulted in a single hit rate that could be classified as a cut score/McArthur hit rate. For high-

point codes, the “excellent” hit rate of the first-letter high-point match could be classified as a 

high-point match. In this way, three-category hit classifications were recoded into single hit 

rates.  

 Publication status. The publication status of the sample was coded dichotomously as 

published or unpublished. Unpublished studies included dissertations, unpublished data in 

interest inventory manuals, and research reports. To investigate the possibility of publication 

bias, I also examined the funnel plot in Figure 2.  

Analytical Approach 

 The criterion-related validity of interest inventories in predicting career choice was 

assessed via the meta-analytic estimation of hit rates. All statistical analyses were carried out in 

R using the metafor package (Viechtbauer, 2010). Due to the heterogeneity of the sample, each 

moderator was analyzed in an independent mixed-effects meta-regression analysis. Maximum 
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likelihood estimation was utilized for all effect size estimates. Weights for each effect size were 

equivalent to the inverse of the random-effects variance.  

Since hit rates are represented as percentages, or proportions, I used a binomial-normal 

logistic meta-regression model (Stijnen, Hamza, & Özdemir, 2010). This model is a specialized 

case of a generalized linear random- or mixed-effects meta-analytic model. This model is most 

appropriate for the analysis of proportions because hit rates are based on dichotomous event 

counts: each person is either considered a hit (p) or not a hit (1-p). As such, hit rates are assumed 

to follow a binomial distribution (Stijnen et al., 2010). 

 Each proportion was transformed with a logit transformation, or log-odds of the 

proportion, prior to being entered into the meta-analysis. To meet the assumption of normality, 

all statistical tests were based on these log-odds. The logit can be calculated as L = log[p/(1-p)], 

where p is the proportion of correct predictions in each sample (Lipsey & Wilson, 2001; Sutton, 

Abrams, Jones, Sheldon, & Song, 2000). This transformation is used to extend the end-points of 

the proportion distribution to negative and positive infinity. By extending the ends of the scale in 

this manner, ceiling and floor effects are eliminated because all real numbers are included in the 

distribution.  

In the logit formula, a hit proportion of p = 1 is problematic because of the resulting 

denominator of 1-p = 0. Similarly, hit proportions of p = 0 resulted in a log[0]. This calculation 

results in a logit of negative infinity, which cannot be meta-analyzed. In these cases, a value of ½ 

was added to the problematic entry to allow the logit formula to calculate a real number value. 

This solution is the default treatment in the metafor package because a common solution for zero 

cell counts is to add a small, non-negative constant to the problematic cell (Viechtbauer, 2010).  
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Finally, each meta-analytic estimate was back-transformed for interpretation of the final 

estimates and confidence intervals. The back transformation used the formula p = [eL/(1+eL)] 

(Lipsey & Wilson, 2001; Sutton et al., 2000).  
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CHAPTER 3: RESULTS 

 

 To derive an overall estimate of the accuracy of interest inventories in predicting career 

choice, I first analyzed the full set of weighted hit rates for all studies included in the analysis (k 

= 130, N = 309,033). The overall meta-analytic hit rate estimate at the study level is 50.3% (95% 

CI = [47.3, 53.4],  = .694, I2 = 99.52%). As a sensitivity check for the assumption of 

independence of effect sizes, I also derived a sub-sample weighted hit rate for every unique 

sample (k= 345). This analysis allowed for the inclusion of multiple unique samples per study. 

The sample-level meta-analytic hit rate estimate is 49.7% (95% CI = [47.2, 52.3],  = .94, I2 = 

99.3%).  

 To account for the largest primary study (Prediger, 1998; N = 126,194), results were also 

computed without this sample. I first re-analyzed the full set of study-level hit rates (k = 129, N = 

182,839). The overall meta-analytic hit rate estimate at the study level without Prediger’s (1998) 

large sample is 50.4% (95% CI = [47.4, 53.5]), so results only changed by a magnitude of .1. 

Similarly, I also re-analyzed the full set of sample-level hit rates (k = 344, N = 182,839). The 

overall meta-analytic hit rate estimate at the sample level without Prediger’s (1998) large sample 

is 49.8% (95% CI = [47.2, 52.3]), so once again results only changed by a magnitude of .1. 

Noticeably, the overall study-level and sample-level hit rate estimates are nearly 

identical. The primary difference is a lower value for  at the study level, which is the square root 

of the total between-study variability in effect sizes (Borenstein, Hedges, Higgins, & Rothstein, 

2011). Since the study-level hit rates aggregate across samples, the hit rates naturally reflect less 

variation than the hit rates at the sample level. In both cases, the I2 estimates are nearly 100%. I2 

reflects the proportion of variance in effect sizes that reflects true variation, rather than sampling 
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error (Borenstein, Higgins, Hedges, & Rothstein, 2017). These estimates indicate that almost all 

of the variation in effect sizes is due to true variation. As a result, I then proceeded with a mixed-

effects meta-regression model to examine various moderators that may explain the heterogeneity 

in effect sizes.  

Sample and Study Characteristics 

 The results for the moderator analyses are presented in Table 1. Each moderator was 

examined in an independent meta-regression analysis. For each moderator, hit rates were 

aggregated using sample-size weighted average hit rates within each moderator category for each 

study. Additionally, the significance test of moderators in each case was based on the logit-

transformed proportions that were entered into the meta-analysis. In some cases, the logit 

confidence intervals for different moderator categories are non-overlapping, indicating 

significant differences, but the back-transformed proportions could still have overlapping 

confidence intervals based on the calculations used. In other words, it is important to take the test 

of moderators into account in order to determine significant differences because these meta-

analytic differences may not always be reflected in the back-transformed proportion results.  

Time. I examined time as a potential moderator in two ways. Namely, I estimated hit 

rates separately for concurrent and predictive studies, and I regressed the effect sizes onto 

publication year. First, as shown in Table 1, concurrent studies (k = 90, N = 242,564) have a 

higher estimated predictive accuracy rate than predictive studies (k = 62, N = 63,924). The test of 

moderators is significant (QM (df =1) = 4.46, p<.05). Interest inventory scores accurately predict 

career choice in an estimated 54.6% (95% CI = [51.7, 57.5]) of cases when the inventory and 

criterion are measured at the same time. On the other hand, the accuracy rate is only 40.3% (95% 

CI = [36.5, 44.2]) when interests and the criterion are assessed at different time points.  
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For all moderators that included Prediger’s (1998) large college-bound sample, I re-

calculated the moderator results without this sample. The moderator results without this sample 

are presented in Table 3. Like the overall meta-analytic estimate, every moderator estimate only 

changed by a magnitude of .1 except for the concurrent versus predictive criterion assessment. In 

this analysis, the estimates changed more substantially when Prediger’s (1998) college-bound 

sample was removed. As shown in Table 3, concurrent studies (k = 89, N = 116,370) still have a 

higher estimated predictive accuracy rate than predictive studies (k = 62, N = 63,924). The 

estimated hit rate for concurrent studies went from 54.6% (95% CI = [51.7, 57.5]) to 52.9% 

(95% CI = [49.1, 56.6]), and the estimated hit rate for predictive studies went from 40.3% (95% 

CI = [36.5, 44.2]) to 46.4% (95% CI = [42.0, 50.9]). Despite the relatively larger magnitude of 

estimated effect size changes, the test of moderators is still significant (QM (df =1) = 4.68, 

p<.05), so the moderator test ultimately does not change in interpretation.  

In addition to concurrent versus predictive criterion assessment, I also examined 

publication year. The earliest year of publication in the present meta-analysis is 1939 (Dyer, 

1939), and the most recent studies were published in 2014 (Burns, 2014a,b). The median 

publication year is 1979. Figure 1 shows a visual display of hit rates by publication year, with the 

size of points reflecting the sample size as a measure of precision. As shown in Figure 1, there 

appears to be a slight negative trend over time in the raw data. However, the test of moderators in 

the meta-regression analysis is not significant (QM (df =1) = 2.57, p = .11), indicating that hit 

rate accuracies do not significantly differ across time of publication.   

Gender and norming. One of the primary sample characteristics of interest in the 

present meta-analysis is gender. These results are displayed in Table 1. For gender, the test of 

moderators is not significant (QM (df =1) = .47, p = .49). The estimated hit rate for males (k = 
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87, N = 51,851) is 51.1% (95% CI = [47.2, 55.1]), and the estimated hit rate for females (k = 68, 

N = 42,384) is 49.0% (95% CI = [44.6, 53.5]). Counter to our initial expectation, there is no 

significant difference between males and females in the accuracy of interest inventories in 

predicting career choice outcomes.  

Related to gender, I also examined different accuracy rates based on how the inventories 

were norm-scored. Again, the test of moderators is not significant (QM (df =3) = 6.79, p = .08). 

As shown in Table 1, there are differences in the predictive accuracies of different types of 

normed scores, but the confidence intervals overlap. Based on the directional trends of the hit 

rate estimates, the norming methods that are most effective are same-sex norms (k = 27, N = 

37,054) with a hit rate of 54.0% (95% CI = [47.2, 60.6]) and combined-sex norms (k = 13, N = 

14,059) with a hit rate of 60.4% (95% CI = [50.8, 69.2]). Although the differences do not reach 

the level of significance, the effect size estimates convey more accuracy than cross-sex norms (k 

= 11, N = 4,413) with a hit rate of 43.2% (95% CI = [33.2, 53.9]) and the use of raw scores (k = 

8, N = 27,454) with a hit rate of 46.0% (95% CI = [34.3, 58.2]).  

Interest categories and base rates. There are some differences in the hit rates between 

the RIASEC criterion groups, and the test of moderators is significant (QM (df = 5) = 12.57, 

p<.05). As shown in Table 1, the highest hit rates appear to be for Investigative criterion groups 

(k = 62, N = 26,945) with a hit rate of 50.0% (95% CI = [45.1, 54.9]), Realistic criterion groups 

(k = 45, N = 9,391) with a hit rate of 49.0% (95% CI = [43.1, 54.9]), and Social criterion groups 

(k = 48, N = 17,998) with a hit rate of 45.5% (95% CI = [40.0, 51.2]). The Artistic (k = 42, N = 

12,133) hit rate of 39.2% (95% CI = [33.5, 45.2]) is considerably lower than Investigative, 

Realistic, and Social, as I expected based on the distribution of employees in the workforce 

(DeCeanne et al., 2017).  
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Ultimately, the RIASEC hit rates describe the percent of correct predictions made by the 

inventories regarding the high-point code of each person’s occupation, major, vocational 

aspiration, or expressed choice. To most accurately compare the RIASEC employment base rates 

to RIASEC hit rates, I examined the meta-analytic hit rate estimates specifically for the subset of 

studies predicting occupational membership. Using this subset, I can compare the accuracies of 

the interest inventories in predicting occupational high-point codes relative to the frequencies of 

employment in each interest category in the general population.  

The results of this analysis are presented in Table 2. In addition to the RIASEC 

occupational hit rates, the proportions of the U.S. population employed in each interest area are 

presented (DeCeanne et al., 2017). In the last column, I took these base rates into account by 

subtracting the employment distribution base rates from the original hit rate estimates 

(Worthington & Dolliver, 1977). For example, the Realistic (k = 13, N = 2,930) occupational hit 

rate of 53.9% (95% CI = [42.4, 65.1]) has an accuracy of 23.6% above and beyond the 

employment base rate of 30.3%. In other words, the chance of guessing that someone works in a 

Realistic occupation is roughly 30% based on the employment distribution, so the interest 

inventories correctly predict Realistic occupational membership about 24% greater than chance. 

The more people that are employed in an interest area, the higher the chance rate of correctly 

predicting that a person works in that interest category.  

Conversely, interest categories with relatively smaller proportions of the population are 

more difficult to predict by chance. Since Investigative (k = 29, N = 9,998) has a relatively small 

base rate of 5.5%, the occupational hit rate of 57.2% (95% CI = [49.7, 64.4]) has the highest hit 

rate of 51.7% after subtracting the base rate. Furthermore, although Artistic (k = 12, N = 848) has 

the lowest occupational hit rate of 40.4% (95% CI = [29.3, 52.7]), the adjusted hit rate of 38.7% 
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is actually higher than the adjusted hit rates for Realistic (23.6%), Social (34.7%), Enterprising 

(23.2%), and Conventional (25.4%) after taking into account the base rates. These comparisons 

provide some evidence regarding the importance of base rates in validity studies (Bokhari & 

Hubert, 2015; Meehl & Rosen, 1955; Schmidt, 1974).  

Interest inventory and scales. Table 1 shows the results of the moderator analyses for 

interest inventories and for scale type. There is quite a bit of variation in the hit rate estimates by 

inventory, and the test of moderators is significant (QM (df = 6) = 17.87, p<.01). The highest hit 

rates are the Strong (k = 61, N = 41,061) hit rate estimate of 53.8% (95% CI = [49.5, 58.1]), the 

Kuder Preference Record (KPR, KOIS; k = 7, N = 5,262) hit rate estimate of 56.3% (95% CI = 

[43.6, 68.1]), and the Campbell Interest and Skill Survey (CISS; k = 5, N = 566) hit rate estimate 

of 64.2% (95% CI = [49.2, 76.9]). All of these estimates are significantly higher than the ACT 

Interest Inventory (UNIACT; k = 17, N = 199,656) hit rate estimate of 39.4% (95% CI = [32.3, 

47.1]).  The pattern of inventory hit rates may reflect the specificity of the scale types such that 

more narrow occupational scales match the bandwidth of occupations and produce higher hit 

rates than those of the more general RIASEC interest scales.  

Indeed, the results of the scale analysis support this pattern. Again, the test of moderators 

is significant (QM (df = 4) = 18.29, p<.01). As shown in Table 1, occupational scales (k = 53, N 

= 19,686) have the highest hit rate estimate of 57.5% (95% CI = [52.4, 62.4]), followed by basic 

interest scales (k = 27, N = 42,532) with a hit rate estimate of 55.9% (95% CI = [48.9, 62.7]). 

Conversely, RIASEC interest scales (k = 64, N = 250,818) have the lowest estimated hit rate of 

43.8% (95% CI = [39.3, 48.4]). In general, these results support the assertion that the more 

specific the scale, the higher the predictive accuracy. 
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Criterion. In the investigation of career choice, several possible criterion categories were 

predicted in the primary studies. These criterion categories included occupation, college major, 

vocational aspiration, and expressed vocational plan. As shown in Table 1, the hit rate estimates 

for vocational aspiration (k = 28, N = 148,132) at 45.4% (95% CI = [39.3, 51.7]) and expressed 

plan (k = 21, N = 50,339) at 42.5% (95% CI = [35.7, 49.7]) are at similar accuracy levels. 

However, the hit rate estimates for occupation (k = 55, N = 51,377) at 52.8% (95% CI = [48.3, 

57.3]) and major (k = 47, N = 51,992) at 51.6% (95% CI = [46.8, 56.5]) are somewhat higher 

than the other less concrete criterion choices. Overall, the test of moderators is significant (QM 

(df = 3) = 8.05, p<.05). 

Hit rate methods. Researchers had several methodological choices to make in the design 

of their studies. One methodological choice involved how best to match the criterion to a scale 

on the interest inventory. For the hit rate analysis of criterion-scale match method, the test of 

moderators is significant (QM (df = 4) = 25.68, p<.01). Interest inventories have the highest 

predictive accuracy rates when the criterion is directly matched to an inventory scale (k = 35, N = 

15,191), with a hit rate estimate of 59.1% (95% CI = [53.3, 64.7]) and when there is a mix of 

directly-matched and indirectly-matched criterion (k = 25, N = 9,435) with a hit rate estimate of 

60.6% (95% CI = [53.7, 67.0]). These hit rates may be contrasted with the slightly lower 

predictive accuracy rate when each criterion is indirectly matched to a scale (k = 26, N = 16,154), 

which produces a hit rate estimate of 54.0% (95% CI = [46.9, 61.0]). However, all of these 

criterion-scale match methods produce higher hit rates than that of high-point matching. When 

the criterion is matched to a RIASEC scale (k = 62, N = 245,558), the hit rate estimate is 43.8% 

(95% CI = [39.6, 48.1]).   
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Additionally, researchers had to determine a method for defining a prediction as a “hit” in 

each primary study. Some methods of hit calculation were more stringent than others. Although I 

do not have specific base rates for comparison, there is an expectation that more stringent hit 

calculation methods will have lower estimated hit rates. The test of moderators for hit calculation 

method is significant (QM (df = 5) = 75.04, p<.01). Two of the most liberal hit calculation 

methods include counting a hit when a person’s matched scale score is among some top 

proportion of all their scores (e.g., top 6% of scores) or counting a hit when a person scores 

higher or on their own scale than a reference or norm group scores on average. As expected, the 

hit rate for the top proportion of scores method (k = 14, N = 18,904) is 68.2% (95% CI = [60.1, 

75.4]), and the hit rate for the reference group comparison method (k = 7, N = 2,018) is 71.1% 

(95% CI = [59.8, 80.2]). Both of these methods result in high predictive accuracies because it is 

relatively “easy” to attain a hit with these calculations compared to some of the other calculation 

methods. 

Similarly, many studies impose a cut score for the matched scale, which is typically the 

McArthur (1954) recommended cut-score for occupational scales. This cut score/McArthur 

method (k = 41, N = 14,836) has a similarly high estimated hit rate of 62.3% (95% CI = [57.4, 

67.1]). This method of hit calculation does not take into account individuals’ scores on other 

scales, so it is possible that although some individuals are counted as a hit based on their score 

on a particular scale, they may have scored even higher on other scales. In this way, this hit 

calculation method does not account for the relative ranks of a person’s inventory results, so this 

method is fairly liberal as well. 

On the other hand, a few methods do take into account the relative ranking of scores on a 

person’s matched scale compared to their scores on all the other scales. These methods are more 
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stringent hit calculations because the relevant scale scores are no longer evaluated independently. 

Two such rank-based hit calculations are RIASEC high-point code matches and attainment of the 

highest score on one’s own matched scale. The RIASEC high-point code method counts a hit 

when a person’s highest inventory score is on the same RIASEC scale as their criterion, so this 

method considers the rank of the six RIASEC scores. For this reason, researchers have 

sometimes compared this high-point code hit rate to a base rate of 16.67% because there are six 

scale scores. The RIASEC high-point code method (k = 52, N = 214,854) has an estimated hit 

rate of 43.7% (95% CI = [39.3, 48.2]). Not surprisingly, this hit rate is nearly identical to the hit 

rate for other RIASEC moderator distinctions (i.e., RIASEC scales and RIASEC criterion-scale 

matching), and this hit rate is lower than the less stringent hit rate calculation methods.  

For the hit calculation method of attaining the highest score on one’s own scale (k = 31, N 

= 31,474), the estimated hit rate is 40.7% (95% CI = [35.2, 46.5]). Not surprisingly, this hit rate 

is the lowest of all hit calculation methods because it imposes the most strict qualifications for 

counting a prediction as a hit. The last hit calculation method is discriminant analysis, which 

predicts an individual’s criterion group using each of their inventory scale scores as predictors 

(Betz, 1987; Donnay & Borgen, 1996). The hit method of correct predictions from discriminant 

analysis (k = 21, N = 52,816) has an estimated hit rate of 42.1% (95% CI = [35.4, 49.0]). The 

base rate of for this method would be contingent on the number of scale scores and the number 

of criterion groups being predicted, so there may be some variability in the underlying hit rates in 

the primary studies. However, as expected, this hit rate is lower than several of the less stringent 

methods since discriminant analysis requires the exact prediction of one’s own criterion group.  

Test for publication bias. To test for possible publication bias, I examined the hit rates 

for published and unpublished studies separately as a potential moderator of hit rate accuracies. 
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Publication status was dichotomized, with unpublished studies including doctoral dissertations, 

research reports, and unpublished data reported in interest inventory manuals. The results of 

these analyses are provided in Table 1. The test of moderators is not significant (QM (df = 1) = 

2.99, p = .08). The estimated hit rate for published studies (k = 102, N = 219,835) is 51.4% (95% 

CI = [48.0, 54.8]), and the hit rate for unpublished studies (k = 31, N = 85,866) is 45.2% (95% CI 

= [39.2, 51.3]).  

Additionally, the funnel plot in Figure 2 displays the back-transformed proportion 

estimates on the x-axis plotted by their corresponding standard errors on the y-axis. Although 

there are slight asymmetries in certain spots, there does not appear to be a strong case for 

publication bias because there is not a large portion of asymmetry on either side of the overall 

estimated effect size.  
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CHAPTER 4: DISCUSSION 

 

Objective One: Quantitative Hit Rate Estimate 

 The present meta-analysis is the first quantitative summary of the criterion-related 

validity of interest inventories in predicting career choice. There is a long history of research on 

the predictive accuracy of interest inventories. This rich body of literature dates back almost 100 

years and spans across the fields of industrial/organizational psychology, counseling, education, 

and standardized assessment. The studies included in this meta-analysis provided validity data 

for 345 samples with almost 2,000 hit rates. By deriving quantitative summaries of these hit 

rates, I hope to shed light on the predictive accuracy of interest inventories and possible ways 

that predictive accuracy can be maximized.  

 The first objective in the present study was to quantitatively derive an estimate of the 

criterion-related validity of interest inventories. The present meta-analysis found that the overall 

accuracy rate of interest inventories in predicting career choice is 50.3%. This estimate indicates 

that across all inventories, criterion, and other sample and study characteristics, roughly half of 

all individuals are in occupations and majors that would be predicted by their interest inventory 

scores. This meta-analytic estimate aligns with several reviews of the predictive accuracy of 

interest inventories (Anastasi, 1988; Fouad, 1999). Overall, this robust hit rate estimate 

demonstrates a fairly substantial correspondence between measured interests and career choice 

outcomes. Importantly, the values of  and I2 indicated substantial amounts of true variance in 

population effect sizes. Due to the large amount of true heterogeneity, we analyzed several 

potential moderators in an attempt to explain the differences in effect sizes. 
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Objective Two: Moderators of Predictive Accuracy 

 The second objective in the present study was to examine various sample and study 

characteristics that might moderate the levels of criterion-related validity. Although the overall 

meta-analytic hit rate demonstrates considerable validity of interest inventories, the meta-

analytic tests also demonstrated that quite a few moderators exist that explained some of the 

heterogeneity in population effect sizes. Namely, the predictive accuracy rates were moderated 

by concurrent versus predictive criterion assessment, criterion RIASEC category, interest 

inventory, type of scale, type of career choice criterion, criterion-scale match method, and hit 

rate calculation method. Noticeably, the majority of the moderators are drawn from study and 

methodological design choices rather than sample characteristics.  

The primary sample characteristic that was examined as a moderator was gender. 

Surprisingly, given prior demonstrations of sex differences in interests (Su et al., 2009), gender 

did not moderate the predictive accuracy rates of interest inventories. In other words, it appears 

as though interest inventories predict career choices of males and females with essentially the 

same degree of precision. Despite gender differences in inventory construction and norm groups, 

both genders may ultimately receive viable career choice recommendations from interest 

inventories.  

Based on the results of the study characteristics that moderated the predictive accuracy 

rates, some recommendations can be made regarding the most accurate ways to score and predict 

career choice. Although the differences in scale norming did not reach the level of significance, 

the hit rate effect sizes indicate that some norming methods produce more accurate results than 

others. Namely, interest inventory scoring that uses either same-sex norming or combined-sex 

norming results in more accurate predictions than raw scores or cross-sex norms. Combined-sex 
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norms have a predicted accuracy of about 60%, which indicates that norm groups do not 

necessarily need to be separated by gender in the future. This is a potentially beneficial finding 

because combined samples have the capability to use larger sample sizes when the two gender 

groups are included in the same sample.  

Additionally, although there are many available interest inventories, some have higher 

predictive accuracies than others. In general, there appears to be a pattern of higher hit rates for 

inventories that use more specific scale types such as occupational scales compared to broad-

band RIASEC scales. However, an alternative explanation may be the theoretical orientation 

underlying these inventories. Occupational scales are typically derived empirically, whereas the 

RIASEC scale are developed using the rational/theoretical method (Burish, 1984; Holland, 1959; 

1997; Strong, 1943). These different scale construction methods may lead to variations in the 

predictive accuracies of the inventories.  

Another notable finding is the disparity in meta-analytic effect size estimates between 

different methods of calculating hit rates. The pattern of results indicates that more stringent hit 

calculations result in lower hit rates, as would be expected. This finding has implications for 

future research and counseling applications. By using a more liberal hit calculation, hit rates may 

be artificially inflated if base rates are not taken into account. For example, hit calculations using 

a cut score method should take into account an individual’s frequency of scoring above that cut 

score on any scale. In other words, the base rate involves an individual’s profile level. There are 

many documented discussions of response bias in interest inventory responding (Jackson, 1977; 

Prediger, 1998). Individuals who have a tendency to choose the extreme scale-points will have 

elevated interest profiles (Prediger, 1998), which also elevates their chances of scoring above the 

cut score on their matched scale. Ultimately, it would be beneficial for future studies to calculate 
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hits using more stringent methods and to compare those hit rates to the appropriate base rates that 

would be expected by chance.   

Assessment of publication bias. To address the possible existence of publication bias, I 

included publication status as a moderator, as well as including a funnel plot of study effect sizes 

(see Figure 2). Although there were slight differences in the hit rate estimates for published 

(51.4%) and unpublished studies (45.2%), the test of moderators was not significant, and the 

confidence intervals were overlapping. Based on these results, there does not appear to be much 

evidence of publication bias. Since hit rates are not typically evaluated based on statistical 

significance, publication bias was not necessarily expected in this set of studies. Regardless, 

these quantitative results suggest that similar predictive accuracies tend to be found in both 

published and unpublished data. The funnel plot in Figure 2 also supports the results found in the 

moderator analysis of publication status that publication bias does not seem to be an issue. 

Despite slight asymmetries, there does not appear to be a pattern of asymmetry or a large gap of 

missing results, so I concluded that there is no systematic evidence of publication bias.  

Objective Three: Incorporate Base Rates into Predictive Accuracy 

 The third objective of the present study was to underscore the importance of 

incorporating base rates into the evaluation of predictive accuracy. In line with recommendations 

(Bokhari & Hubert, 2015; Meehl & Rosen, 1955; Schmidt, 1974), base frequencies or chance 

rates of occurrence should be taken into account when drawing conclusions about an 

instrument’s predictions. For instance, suppose an instrument could accurately predict whether a 

coin will land on heads or tails in about 40% of all coin-flip trials. In other words, the instrument 

will correctly predict the outcome for four out of every ten coin flips. This accuracy rate on its 

own may be evaluated as being fairly good, but the base rate in this case is 50% across trials. By 



36 

 

taking the base rate into account, the instrument does not predict coin toss outcomes any better 

than chance (and in fact does worse than chance in this particular example).  

 Many of the primary studies included in the present meta-analysis did not consider base 

rates when drawing conclusions about inventory predictions. For those that did, the most 

common base rate used was 16.67% for the six RIASEC categories. However, as mentioned 

previously, this base rate assumes equal chance of employment in any of the interest categories. 

For prediction of employment in Holland’s (1997) RIASEC categories, I argue that the most 

accurate base rates are population rates of employment within each interest category.  

In the present case, I utilize the U.S. employment distribution rates derived by DeCeanne 

et al. (2017) as base rates by which to compare the accuracy of inventories predicting RIASEC 

occupational membership criterion. In doing so, I found that although the hit rate for Artistic 

occupations (39.2%) was the lowest on its own, this hit rate reflects the relatively small 

proportion of employees that work in that interest area. Relative to its small base rate of 

employment, interest inventories preform about 38% better than would be expected by chance. 

Similarly, the hit rate for Realistic occupations (49.0%) was one of the highest on its own, but 

this hit rate also reflects the high rate of employment in this interest category. After taking the 

base rate into account, interest inventories predict occupational membership in Realistic 

occupations about 24% better than chance. Ultimately, base rates help to tell the full story of how 

accurate the interest inventories truly are in these cases.  

Limitations and Future Directions 

 The present study is the most comprehensive evaluation of the criterion-related validity 

of interest inventories in predicting career choice. The meta-analytic hit rate estimates represent 

quantitative summaries of studies over an extensive timespan (1939-2014) incorporating a large 
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total sample of individuals (N = 309,033). One of the primary strengths of this study is the 

incorporation of both concurrent and predictive studies to derive an estimate of the full criterion-

related validity spectrum.  

 However, there are several limitations to the present work. First, many existing meta-

analyses of vocational interests examine the effect size metrics of correlations or mean 

differences (e.g., Hoff et al., 2018; Nye et al., 2012; Su et al., 2009; Van Iddekinge et al., 2011). 

On the other hand, the present meta-analysis is a quantitative summary of hit rates. Correlations 

and mean differences have less subjectivity of measurement than hit rates because these metrics 

are statistically-based calculations. On the other hand, hit rates represent the percent of correct 

predictions, but a “correct” prediction may be determined in different ways across different 

studies. Indeed, I include this degree of variation as a possible moderator through the 

examination of different hit calculation methods, and there are differences in the predictive 

accuracies across multiple methods of defining a hit. Essentially this moderator analysis 

indicates that not all hit rates are created equal, so this imposes a limitation on the precision of 

inferences that can be drawn. Nonetheless, a quantitative summary of these hit rates is still a 

necessary and important contribution to the existing literature on interest inventory validity.  

 Another limitation is the lack of a base rate metric by which to directly compare the 

majority of the moderator analyses included in this study. Although the present study explicitly 

draws attention to the importance of including base rates in evaluations of predictive accuracy, I 

do not have a precise method of deriving base rates for most analyses due to the aggregation of 

effect sizes across various study characteristics. I urge the inclusion of base rates in future 

predictive studies and encourage the use of accurate base rates that match the frequencies of the 
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criterion being predicted. The interpretations of the meta-analytic hit rate results found in the 

current study must be made without these chance rate comparisons in most cases.   

 The future of interest inventory research should focus on the continued improvement of 

measurement and test development, and the present results can help to inform decisions such as 

scoring, specificity of scale composition, and the use of combined-sex norm groups. Future 

research should also direct attention to the different hit rates between interest inventories. In 

particular, research should attempt to differentiate between the competing explanations of scale 

specificity and theoretical orientation as having potential effects on predictive accuracies.  
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CHAPTER 5: CONCLUSION 

 

 The present meta-analysis demonstrated that interest inventories have a substantial level 

of criterion-related validity in predicting career choice. Specifically, interest inventories 

accurately predict individuals’ career choices about half the time. This prediction rate indicates 

that measured interests are important predictors of both educational and occupational 

membership. Importantly, the hit rates are moderated by several characteristics, including the 

amount of time between inventory administration and criterion measurement, the interest 

category of the criterion, the particular interest inventory used, the type of scale on the inventory, 

the particular type of career choice criterion, the method used to match criterion to a scale, and 

the hit rate calculation method. Overall, these results shed light on the predictive accuracy of 

interest inventories in predicting career choice, as well as the different conditions under which 

accuracy rates may be expected to decrease or increase.  
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TABLES 

Table 1. Hit Rate Estimates for Sample and Study-Design Characteristics 

Variables k n Hit Rate 95% CI  I2 

Validity Type     .701 99.4 

     Concurrent 90 242,564* 54.6% [51.7, 57.5]   

     Predictive 62 63,924 40.3% [36.5, 44.2]   

Gender     .733 98.54 

     Males 87 51,851 51.1% [47.2, 55.1]   

     Females 68 42,384 49.0% [44.6, 53.5]   

Scale Norming     .702 99.19 

     Same-sex  27 37,054 54.0% [47.2, 60.6]   

     Cross-sex 11 4,413 43.2% [33.2, 53.9]   

     Combined-sex/Standard 13 14,059 60.4% [50.8, 69.2]   

     Raw scores 8 27,454 46.0% [34.3, 58.2]   

Interest category      .765 97.35 

     Realistic 45 9,391 49.0% [43.1, 54.9]   

     Investigative 62 26,945 50.0% [45.1, 54.9]   

     Artistic 42 12,133 39.2% [33.5, 45.2]   

     Social 48 17,998 45.5% [40.0, 51.2]   

     Enterprising 49 11,937 40.2% [34.9, 45.7]   

     Conventional 40 9,135 43.2% [37.1, 49.4]   

Inventory     .671 99.31 

     Strong 61 41,016 53.8% [49.5, 58.1]   

     SDS 14 7,915 43.3% [34.7, 52.3]   

     UNIACT 17 199,656 39.4% [32.3, 47.1]   

     Kuder 7 5,262 56.3% [43.6, 68.1]   

     VPI 14 19,474 46.2% [37.6, 55.0]   

     Campbell 5 556 64.2% [49.2, 76.9]   

     Other 24 25,339 52.4% [45.5, 59.2]   

Scale Type     .736 99.48 

     Occupational Scales 53 19,686 57.5% [52.4, 62.4]   

     Basic Interests/Areas 27 42,532 55.9% [48.9, 62.7]   

     Specialty scales 6 3,843 45.5% [31.3, 60.4]   

     RIASEC 64 250,818 43.8% [39.3, 48.4]   
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Table 1 cont’d. 

 

Variables k n Hit Rate 95% CI  I2 

Criterion     .663 99.07 

     Occupation 55 51,377 52.8% [48.3, 57.3]   

     Major 47 51,992 51.6% [46.8, 56.5]   

     Aspiration 28 148,132 45.4% [39.3, 51.7]   

     Expressed plan 21 50,339 42.5% [35.7, 49.7]   

Criterion-Scale Match      .690 99.35 

     Direct match 35 15,191 59.1% [53.3, 64.7]   

     Indirect match 26 16,154 54.0% [46.9, 61.0]   

     Mixed (McArthur) 25 9,435 60.6% [53.7, 67.0]   

     Matched by RIASEC 62 245,558 43.8% [39.6, 48.1]   

     Matched by job family 10 13,843  49.4% [38.7, 60.2]   

Hit Calculation     .651 99.27 

     Highest score 31 31,474 40.7% [35.2, 46.5]   

     High-point codes 52 214,854 43.7% [39.3, 48.2]   

     Top proportion of scores 14 18,904 68.2% [60.1, 75.4]   

     Cut score/McArthur 41 14,836 62.3% [57.4, 67.1]   

     Vs. reference group 7 2,018 71.1% [59.8, 80.2]   

     Discriminant analysis 21 52,816 42.1% [35.4, 49.0]   

Publication Status     .690 99.42 

     Published 102 219,835 51.4% [48.0, 54.8]   

     Unpublished 31 85,866 45.2% [39.2, 51.3]   
 

Note: Total k= 130; total N= 309,033; SDS= Self Directed Search, UNIACT = Unisex Edition of the ACT 

Inventory, Kuder = Kuder Preference Record, VPI = Vocational Preference Inventory, Campbell = Campbell 

Interest and Skill Survey. 

*One large primary study (Prediger, 1998) included a college-bound sample of students with a total n= 

126,194. Reported results include this sample, but all results were also computed without this sample. The 

results of the moderator analyses that were computed without this sample are reported in Table 3. The only 

moderator analysis with significant levels of change was for the analysis by Validity Type. 
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Table 2. Comparison of RIASEC Occupational Hit Rates and Base Rates of Employment in 

Each RIASEC Category 

Interest Category k n Hit Rate 95% CI 

Base Rate 

Employment 

Hit Rate – 

Base Rate 

     Realistic 13 2,930 53.9% [42.4, 65.1] 30.3% 23.6% 

     Investigative 29 9,998 57.2% [49.7, 64.4] 5.5% 51.7% 

     Artistic 12 848 40.4% [29.3, 52.7] 1.7% 38.7% 

     Social 15 4,079 52.6% [42.0, 63.1] 17.9% 34.7% 

     Enterprising 17 4,034 45.1% [35.4, 55.1] 21.9% 23.2% 

     Conventional 13 1,530 48.1% [36.7, 59.7] 22.7% 25.4% 
 

Note: Base rate employment percentages are drawn from DeCeanne et al. (2017) using employment 

distributions in the U.S. workforce in 2014.  
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Table 3. Moderator Analyses Without Prediger (1998) College-Bound Sample 

Variables k n Hit Rate 95% CI  I2 

Validity Type     .702 99.15 

     Concurrent 89 116,370 52.9% [49.1, 56.6]   

     Predictive 62 63,924 46.4% [42.0, 50.9]   

Inventory     .674 99.04 

     Strong 61 41,016 53.8% [49.5, 58.1]   

     SDS 14 7,915 43.3% [34.6, 52.3]   

     UNIACT 17 73,462 39.5% [32.1, 47.4]   

     Kuder 7 5,262 56.3% [43.6, 68.2]   

     VPI 14 19,474 46.2% [37.6, 55.1]   

     Campbell 5 556 64.2% [49.1, 77.0]   

     Other 24 25,339 52.4% [45.5, 59.2]   

Scale Type     .739 99.27 

     Occupational Scales 53 19,686 57.5% [52.4, 62.4]   

     Basic Interests/Areas 27 42,532 55.9% [48.9, 62.7]   

     Specialty scales 6 3,843 45.5% [31.3, 60.4]   

     RIASEC 63 124,624 43.9% [39.4, 48.5]   

Criterion     .665 98.94 

     Occupation 55 51,377 52.8% [48.2, 57.3]   

     Major 47 51,992 51.6% [46.8, 56.5]   

     Aspiration 27 21,938 45.7% [39.4, 52.1]   

     Expressed plan 21 50,339 42.5% [35.7, 49.7]   

Criterion-Scale Match      .693 99.05 

     Direct match 35 15,191 59.1% [53.3, 64.7]   

     Indirect match 26 16,154 54.1% [46.9, 61.1]   

     Mixed (McArthur) 25 9,435 60.6% [53.7, 67.1]   

     Matched by RIASEC 61 119,364 43.9% [39.6, 48.3]   

     Matched by job family 10 13,843 49.4% [38.7, 60.2]   
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Table 3 cont’d. 

 

Variables k n Hit Rate 95% CI  I2 

Hit Calculation     .653 99.00 

     Highest score 31 31,474 40.7% [35.2, 46.5]   

     High-point codes 51 88,660 43.8% [39.4, 48.3]   

     Top proportion of scores 14 18,904 68.2% [60.1, 75.4]   

     Cut score/McArthur 41 14,836 62.3% [57.3, 67.1]   

     Vs. reference group 7 2,018 71.1% [59.8, 80.2]   

     Discriminant analysis 21 52,816 42.1% [35.4, 49.1]   

Publication Status     .691 99.21 

     Published 101 93,641 51.5% [48.1, 55.0]   

     Unpublished 31 85,866 45.2% [39.2, 51.3]   
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FIGURES 

Figure 1. Hit Rates by Publication Year 
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Figure 2. Funnel Plot of Study-Level Hit Rate Estimates 
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