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ABSTRACT

People structure and represent their data in many different ways. One factor to consider in

choosing between different representations is how the structure will affect the effectiveness of

algorithms that run over the data. In fact, before sophisticated analytics can be performed,

one must usually go through a data preparation phase, where the structural representation

of the data is changed to be more suitable for the particular analytics procedure that will

be performed. This is necessary because individual analytics algorithms are effective only

for certain kinds of structural representations of their input data. Unfortunately, analytics

algorithms do not come with a clear description of their desired representation. Hence,

time and expertise is required to identify and materialize a suitable representation for each

analytics task. In this dissertation, we address this issue in data preparation.

Our first contribution focuses on the concept of design independence, in which the intent

is to create an analytics algorithm that is effective regardless of the choices of data repre-

sentations. The benefit of becoming more design independent is that it will reduce or, in

the most favorable outcome, remove the cost of manually finding and preparing the most

effective structure or schema for the data. In this part of our work, we consider common

variations of data source structure that preserve its content. For the analytics task of similar-

ity search, we propose an algorithm that satisfies the design independence property against

the studied variations. We then generalize our findings for other structural variations, and

prove that it is design independent with respect to these structural variants. We show that

humans find its answers at least as desirable as those provided by existing similarity search

algorithms.

In the case where design independence is not achievable, we address the data preparation

issue by proposing an algorithm that finds a cost-effective structure to be imposed on an

unstructured dataset. Under this approach, structural information is added to the data

source to improve the effectiveness of an algorithm running over the data. We leverage the

information from an existing domain of concepts or an ontology to add structure to the data

collection in the form of annotations. Because each concept may require different amounts

of resources and time in annotating and/or maintaining the data source, we would like to

find a set of affordable concepts that improves the effectiveness of an algorithm the most.

This is called the cost-effective conceptual design problem. Previous works on this topic

assumed that a domain of concepts is simply an unorganized set of concepts. However,

real-world domains are often organized, in the form of taxonomies for example. Hence, in
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this dissertation, we explore a new version of the cost-effective conceptual design problem,

using taxonomies of concepts and considering multi-concept queries.
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CHAPTER 1: INTRODUCTION

Before data can be queried and analyzed, developers must refine and manipulate it so that

it can be effectively used in various tasks including data analytics. Generally, the tasks of

data preparation include both data cleaning and data validation. In the case of data collected

from multiple sources, the task also includes manipulation and transformation of data and its

metadata. In fact, it has been known and agreed in the research community that one of the

most important parts and most time-consuming and difficult processes in any data science

project is data preparation [1]. However, available resources and time for preparing data

are limited. Over large-scale databases, database managers have to choose which actions to

perform during data preparation to ensure the effectiveness of future analytics tasks over

the data. In many cases, changes to the structure of the data are involved.

The information needs of users over structured data range from seeking exact answers to

precise queries to searching for entities or patterns similar to a given query [2–5], discovering

interesting patterns [6–13], or predicting relationships and concepts [5, 14, 15]. Meanwhile,

available datasets have also become more heterogeneous and more complex. Research com-

munities have proposed numerous supervised and unsupervised algorithms to solve these

exploration and analytical tasks over structured data such as similarity query processing,

inexact pattern matching or relationship prediction [2, 5, 14, 16]. Since the properties of

interesting and desirable answers are not precisely defined in such queries, these algorithms

use intuitively appealing heuristics to choose answers that are interesting and most likely

to satisfy users. In many cases, choices of database structure affect the heuristic results.

Hence, researchers and developers have to spend their time and resources in converting those

data into the desired structure for their algorithms to be effective.

To see why choices of data structure affect the results of database analytics, consider the

excerpts of Freebase1 in Figure 1.1(b) and the excerpts of IMDb2 in Figure 1.1(a), which

is a database harvested mainly from information in Wikipedia about entities and their re-

lationships, from the same set of movies, their characters and the actors who played them,

respectively. Figure 1.1(b) shows the same set of entities and relationships as Figure 1.1(a).

It differs with Figure 1.1(a) only in terms of how it represents relationships between char-

acters, movies and actors, in which it connects them to a common node labeled starring.

Database researchers have recognized that different, i.e., non-isomorphic, structures can

contain the same information [17, 18]. Various link-based similarity search algorithms over

graph databases, such as Random Walk with Restart (RWR) [5] and SimRank [2], use prox-

1www.freebase.com
2www.imdb.com
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(b) Freebase

Figure 1.1: Fragments of IMDb and Freebase, where A, C, F , and S refer to actor, character,
film and starring, respectively.

bib
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“2007” “PVLDB” title title

“Graph Search”“Graph Mining”

(a) Bibliographic database

bib

proceedings

year paper paper

booktitle title booktitle title“2007”

“PVLDB” “PVLDB”“Graph Search” “Graph Mining”

(b) Normalization of bibliographic database

Figure 1.2: Fragments of bibliographic databases.

imity-based heuristics. RWR evaluates how likely an entity will be visited if a random surfer

starts and keeps re-starting from the query entity. SimRank evaluates the similarity between

two entities according to how likely it is that the two random surfers will meet each other

if they start from the two entities. RWR and SimRank find Star Wars III more similar to

Star Wars V than to Jumper in Figure 1.1(a), but find Star Wars III to be more similar to

Jumper in Figure 1.1(b).

Another conventional example of structural variations is a database normalization. Nor-

malization is a process that restructures data in order to reduce redundancy and improve

integrity of the data. For instance, consider that a path paper/booktitle is repeated under

every subtree of preceedings in Figure 1.2(b). The database manager may normalize the data

into the fragment shown in Figure 1.2(a). Previous works over XML databases have shown

that many keyword query interfaces are only effective over one of these schemas [19].

Generally, there is no canonical representation for a particular set of content, and dif-
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ferent people often represent the same information using different structural representa-

tions [17, 18]. Thus, database managers have to restructure their databases to some proper

representations to effectively run the algorithms. However, algorithms do not usually pro-

vide clear descriptions of their desired representations. It is often the case that database

managers have to rely on their own expertise to find the desired structural representation

of data. Another intuitive approach is to run an algorithm over all structural variations of

a database and select the one with the most accurate answers. Nevertheless, computing all

possible structural representations of a database is undecidable [18]. Restricting the search

over particular types of structures may still result in a large number of representations to

explore. This method also requires a large amount of time and resources to prepare and

transform a large database into different structures.

Another approach to reduce such preparation cost is to define a universal representation to

which all possible representations of a database can be transformed and develop algorithms

that are effective over this representation. However, the experience gained with the concept

of a universal representation indicates that it may not always exist [17].

This problem persists beyond the data preparation phase. Structures of large-scale data-

bases tend to also evolve over time as data sources evolve and applications change. Hence,

we should move beyond the need for constant expert attention in data management in order

to keep analytics algorithms effective.

To reduce cost of data preparation due to the problem of organizational heterogeneity

and evolution of large-scale data, we propose a property of data analytics that considers

design independence, i.e., the ability to deliver the same answers regardless of the choice

of structural representations of data. There have been efforts that address the problem of

design independence in various database tasks [19–21]. Unfortunately, these methods are

constructed and proved for specific structural variations. For instance, work done in [21]

only considers database normalization. In this dissertation, we aim to address the problem

over more varieties of structural variations, and to generalize the problem for any possible

structural variations.

Ideally, we would like to have an algorithm that satisfies the property of design indepen-

dence. Unfortunately, achieving design independence over drastic changes or differences in

data structures may be costly or impractical. In other cases, database managers may also

want to add structural information to improve the effectiveness of an algorithm over the

database. Hence, in parallel to the approach of achieving design independence, we would

like to address the data preparation problem for effective and efficient query answering over

large-scale database using what is known about data representation. That is, we want to

select and add a structural design, or rather a conceptual design, to a database in order to
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maximize the improvement in effectiveness of an algorithm. For example, consider the tax-

onomy of concepts shown in Figure 5.4 and database of medical excerpts shown in Figure 5.1.

Database managers may add structural information to the database by annotating their data

to the fragments shown in Figure 5.2 or Figure 5.3. In these examples, the annotation choice

of Figure 5.2 is likely to improve query answering more than the design choice of Figure 5.3

because the concepts of the former design are more specific. However, due to the higher

specificity of the concepts, the cost of producing the annotation shown in Figure 5.2 is likely

to be more expensive than the annotation shown in Figure 5.3. Hence, there is a trade-off

between the cost of selecting a design and the effectiveness of the algorithm running over

the database.

The available financial or computational resources of an enterprise are limited. It is often

the case that organizing or adding a complete structure or structural concepts to a database

is infeasible. In fact, researchers have recognized the overheads and costs of curating and

organizing large data sets [22–24]. For example, some researchers have recently considered

the problem of selecting data sources for fusion such that the marginal cost of acquiring a

new data source does not exceed its marginal gain, where cost and gain are measured using

the same metric, e.g., US dollars [22]. Generally, conceptual designs have been created and

manually maintained by experts in a domain of interest. Such efforts are costly in terms

of both manual labor and time especially over large-scale databases even with the help of

machine learning. Hence, the conceptual design becomes a cost-effectiveness problem. More

formally, a cost-effective conceptual design is a problem that seeks to find a design such that

an algorithm returns the most effective answers possible while the cost of that design is within

a given budget [23, 25]. Researchers have previously examined the problem of selecting a

cost-effective subset of concepts from a set of concepts for annotation [25]. Nevertheless,

real-world domains are usually maintained in richer structures such as a taxonomies rather

than an unorganized set. Hence, in this dissertation, we address the problem for when

concepts are organized in taxonomies.

1.1 DISSERTATION OUTLINE

The rest of this dissertation is organized as follows. Chapter 2 discusses previous re-

lated works. Chapter 3 discusses steps towards design independence of analytics algorithms

through a subset of structural variations that preserve information content. We then present

an effective similarity search algorithm that is provable to be design independence under the

discussed structural variations. Chapter 4 generalizes our approach for structural design

independence through the observation that structural variations beyond simple renaming
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require a database constraint. We leverage the information of those constraints to predict

possible structural variations that preserve information content. Then we present a relation-

ship expression language that we prove is necessary to ensure robustness and effectiveness

of analytics algorithms such as similarity search. Chapter 5 recognizes the case when design

independence is not achievable, and discusses how to cost-effectively select and add struc-

tural design to a database. We then conclude our dissertation and point out possible future

research directions in Chapter 6
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CHAPTER 2: RELATED WORKS

2.1 DATA EXCHANGE, DATA INTEGRATION AND SCHEMA MAPPINGS

Data exchange is the act of passing data from one application or platform to another, where

the source and destination may use different representations for the same information. The

data exchange problem is the question of how to convert the data to the new representation

as accurately as possible. This problem has been investigated in the research community

over the past several decades. One of the earliest works that recognize the problem of

data exchange is EXPRESS [26], dating back to 1977, which presented a low-level tool for

conversion of hierarchical databases. Since then, the data exchange problem has been studied

in many data models [27–32].

The data exchange problem became even more important where many applications require

to run over various data sources. The data exchange problem is closely related to the data

integration problem as both are involving management over heterogeneity of data formats.

The goal of data integration is to synthesize data from different sources into a unified view.

In data exchange, the goal is to materialize target database instances corresponding to the

source data as accurately as possible. Both problems involve the restructuring of data

representations; the materialization, however, is not emphasized in data integration.

In both data exchange and data integration, schema mappings are a fundamental notion

that specifies how a data under one representation can be transformed into a data under

a different representation. Typically, schema mappings are written in high-level declarative

languages, describing relationships between different schemas at the logical level without

physical-level implementation details. More formally, a schema mapping consists of source

schema, target schema and a set of logical formulas over source and target schemas.

Consider a schema mapping between two schemas. It is, in fact, possible that a source

instance may not have any solution. On the other hand, even if the solution exists, it is also

not uncommon that there are multiple (or infinitely many) non-isomorphic solutions for a

single source instance. This arises the question of which solution should be materialized

as an answer to the data exchange problem of an input source instance. To address this

question, the concept of universal solutions is introduced by Fagin et al. in [33]. Under

their definition, there is a homomorphism from the universal solution to every other solution

of an input instance. Hence, one can obtain every solution of the input instance from a given

universal solution using a homomorphism. The authors observe that universal solutions are

the preferred solutions in the problem of data exchange because they are the most general
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solutions.

The chase is a computation method for testing and enforcing the implications of a given

set of dependencies in a database systems [34, 35]. The procedure is adapted for use in data

exchange. It is shown in [33] that a variant of chase procedure can be used to check the

existence of a universal solution and compute one if it exists. Generally, it is possible that

there may not exist a finite chase for arbitrary set of dependencies. However, under some

fairly general restrictions, it has been shown that there exists a polynomial-time algorithm

to compute a universal solution based on the chase procedure [33].

It must be noted that, even though all universal solutions for a single source instance are

homomorphically equivalent, they may not be isomorphic to each other. One of the sub-

sequent related questions is whether some universal solutions are better or more preferred

than others. Using minimality as the key criterion, the authors in [36] discussed that all

universal solutions share a unique (up to isomorphism) common core when viewed as re-

lational structures. The core is, therefore, the smallest and the best universal solution for

a source instance in terms of space complexity when materializing the solution. Generally,

computation of the core for arbitrary relational structures is an NP-hard problem unless

P = NP. It is again shown in [36] that, within certain broad classes of schema mappings,

there exists a polynomial time computation to find the core of universal solutions.

One of the fundamental tasks in data exchange is query answering over the target schema.

Typically, the task focuses on computing certain answers of queries [29–32, 37] The task,

indeed, was considered earlier in the study of incomplete databases. However, the challenge

of the problem in the context of data exchange, as well as data integration, is that queries

are not posed on a single database, but rather on the set of all databases satisfying certain

specifications. The certain answers problem is the decision problem of whether the fact in

the source database can be found on the (possibly infinite) set of target databases.

Clearly, by the definition of certain answers, the computation for the problem is infeasible

due to the computation over sets of infinite solutions of a schema mapping. Instead, in

data integration, the approach to address this problem is to rewrite queries over the target

instance to queries over the source instance. In data exchange, the materialized solution

is used to obtain the certain answers of queries. However, since there may be infinitely

many solutions, researchers try to identify situations where it is feasible to evaluate certain

answers. It is shown in [29] that the certain answers of a union of conjunctive queries can

be obtained by evaluating the query on a universal solution. The paper also discusses other

variations of a query such as conjunctive queries with inequalities; however, the complexity

of the problem can be intractable [29].

Nevertheless, data exchange has been extensively studied and explored during the past few
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decades. Early works mainly focus on relational database and later in XMLs. A system such

as Clio is built to support data exchange between any combination of XML and relational

databases [27, 28, 38]. The system leads to study of many fundamental issues in data

exchange and data management including the concept of universal solutions [36]. The main

studies of data exchange over XML databases are published in [30]. The studies of the

subject particularly over graph databases, however, received small attention and are explored

much later than other traditional databases. One of the earliest works on data exchange

for graph databases is done by Calvanese et al., which addresses view-based query rewriting

for graph database [39]. More recent in-depth theoretical studies of data exchange and

schema mappings over graph databases appeared in [40], which focused on simplification of

schema mappings, and in [40], which focuses on the data exchange problem in the context

of navigational queries.

Like the work on data exchange, we are interested in the problem of obtaining equivalent

answers to queries posed over different representations of information. Our work differs

in that we focus on more complex analytic tasks than traditional database queries; this is

important because unlike a traditional query, these analytics tasks tend to rely heavily on

the structure when computing their answers, so that changes in the structure lead to changes

in the answer. As a simple example, consider a program that computes the distance between

two entities in a graph by determining the length of the shortest path between them. Adding

the transitive closure of the edges will change the answer. Traditional database queries do

not make this kind of use of structure.

We also differ from the work on data exchange in that our goal is never to materialize a

particular representation of the data. Instead, our goal is to find algorithms for analytics

tasks that give equally effective answers over all representations that exactly preserve the

content of the data.

2.2 DESIGN INDEPENDENCE

Work on design independence aims to ensure that an algorithm will return the same ef-

fective results over a dataset, no matter how its data is represented. We must note that

traditional problems for data exchange are focusing on algorithms that identify and com-

pute certain answers. Given that the setting of the design independence problem assumes

equivalence of information between databases, in some sense, the certain answers are guaran-

teed. Hence, design independence is focusing more on algorithms which compute and return

a ranked list of answers for a query, and the user is prepared to deal with some degree of

uncertainty.
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In addressing the problem of design independence, the work was built on the area of

data management which seeks to characterize equivalent content between two databases.

In data exchange and data integration, researchers have previously studied and explored

the properties of information preservation and query preservation for relational and XML

schema mappings [18, 41]. The original purpose of the studies is to identify schema mappings

where a query over a data source can be translated to a new query over the target schema.

Research on design independence, however, seeks to forgo query translation entirely and

works to identify the extent to which this is possible, i.e., the set of schema mappings such

that an analytic algorithm will return the same answer over any pair of databases related

by these mappings.

One generic and early approach to solve the problem is to define a universal schema in

which all representations of database can be transformed and/or used to develop the desired

algorithms. In [42], researchers have proposed a strong form of logical data independence

based on representing a database under a universal-relation model. Despite the effort, expe-

rience gained from the idea of the universal relation indicates that such a universal schema

does not always exist. Further, studies in data exchange have shown that the complexity of

materializing a database from schema mappings is considerably impractical for a very large

database.

Researchers have previously proposed a keyword query interface over XML datasets that

provably returns the same answers across databases with different structures but equivalent

information content [19, 20]. There is also an effort on the same problem for learning

algorithms over relational databases [21]. Unfortunately, these methods address the problem

only over a subset of all possible schematic variations. For instance, the work done in [21]

is based only on schema normalization. It is unclear how to adapt these efforts to create a

design-independent algorithm for other representation variations or other schema mappings

in general.

2.3 CONCEPTUAL DESIGN

Conceptual design is a traditional topic in data management [43]. If a dataset has no

structure, e.g., it is natural language text, then one approach to improve query-answering

effectiveness is to add structure to it, by annotating portions of the document with the

concepts that they refer to. As discussed earlier, it is too expensive to annotate a large

dataset with all potentially relevant concepts. Thus given a budget for annotation and a set of

concepts, the goal of cost-effective conceptual design is to decide what to annotate in order to

improve query-answering effectiveness the most, without exceeding the budget. Researchers
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have examined the problem of selecting cost-effective designs from an unorganized set of

concepts for annotation [25]. It has been shown that, over a set of unorganized concepts,

finding the most cost-effective conceptual design is NP-hard [25]. In the same work, the

authors proposed a fully-polynomial-approximation algorithm and a greedy algorithm to

address the problem over the case of unorganized concepts.

Nevertheless, concepts are usually organized into richer structures such as a taxonomy

rather than an unorganized set. In this thesis, we investigate the cost-effective design problem

in this new setting.
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CHAPTER 3: TOWARDS STRUCTURAL DESIGN INDEPENDENCE

One way to reduce the cost of data preparation is to eliminate the need to transform the

data into a different structural representation. Our first step in order to reduce the cost

of data preparation is by an effort to remove the need in transforming the structured data

into another representation. In this chapter, we consider fairly general structural variations

of data and discuss their fundamental properties in order to design an algorithm that is

design independent against these structural variations. Since analytics tasks include many

applications that involve examination of the database in order to draw certain conclusions,

we make a case study of one particular application, namely, similarity search over graph

databases.

3.1 BACKGROUND

Finding similar or strongly related entities is a fundamental and important problem in

graph data management [2–5, 44]. It is a building block of algorithms for various important

problems, such as similarity query processing, pattern query matching, and community

detection [2, 8, 9, 45, 46]. Since the properties of similar or related entities cannot be

precisely defined, current similarity and proximity search algorithms use intuitively appealing

heuristics that leverage information about the links between entities. For instance, Random

Walk with Restart (RWR) quantifies the degree of similarity between two entities as the

likelihood that a random surfer visits one of the entities in the database given it starts and

keeps re-starting from the other entity [5]. SimRank evaluates the similarity between two

entities according to how likely two random surfers will meet each other if they start from

the two entities [2]. Figure 1.1(a) shows fragments of IMDb1, which contains information

about movies, actors and characters. To represent the relationship between a character, its

movie and the actor who played the character, IMDb connects these entities through some

edges. Assume that a user asks for the most similar movie to Star Wars III in Figure 1.1(a).

Since the RWR and SimRank score of Star Wars V (RWR-score = 0.061, SimRank-score =

0.213) are larger than those of Jumper (RWR-score = 0.060, SimRank-score = 0.185), RWR

and SimRank find Star Wars III more similar to Star Wars V than to Jumper, which is

arguably an effective answer.

Generally, there is no canonical representation for a particular set of content and people

often represent the same information in different, i.e., non-isomorphic, structures [17, 18].

1www.imdb.com
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Database designers may represent the same information in one form or another for reasons

such as improving the running time of queries and reducing redundancy [17]. The choice

of representation, however, may unintentionally influence the output of current similarity

search algorithms. As we have shown in Chapter 1 by considering the excerpts of Freebase2

in Figure 1.1(b), Figure 1.1(b) contains information about exactly the same set of entities

and relationships as Figure 1.1(a). It differs with Figure 1.1(a) only in how it represents the

relationships between a character, its movie and its actor: it connects them to a common

node labeled starring. As opposed to their results over Figure 1.1(a), RWR and SimRank

find Star Wars III more similar to Jumper (RWR-score = 0.014, SimRank-score = 0.076)

than to Star Wars V (RWR-score = 0.011, SimRank-Score = 0.074) in Figure 1.1(b).

The power of similarity search algorithms, however, remains out of the reach of most

users as today’s similarity search algorithms are usable only by trained data analysts who

can predict which algorithms are likely to be effective for particular representations of a

dataset. Because a similarity search algorithm may not be effective on the representation of

input database, users have to restructure the input database to some proper representation

over which the algorithm returns effective results, i.e., delivers the answers that a domain

expert would judge as relevant. Since these algorithms do not normally offer any clear

description of their desired representations, users have to rely on their own expertise and

use trial and error to find such representations. However, we want our algorithms to be

used by ordinary users, not just experts who know the internals of these algorithms and can

restructure the data. Furthermore, the structures of large databases constantly evolve, and

users may have to repeat the process of finding the right representation and restructuring

their data accordingly.

One approach to solve the problem is to run a similarity search algorithm over all pos-

sible structural representations of a dataset and select the representation(s) with the most

accurate answers. Nevertheless, because most similarity algorithms are unsupervised, there

is no validating data available to measure the effectiveness of these algorithms over certain

representations. Moreover, it is undecidable to compute all possible structural representa-

tions of a graph database [18]. If we restrict the set of possible representations, a database

may still have enormous representational variations. For example, the number of vertical

decompositions of a relational table may be exponential in the number its attributes [17]. As

graph databases have less restrictive schemas than relational databases, they may have more

representational variations and need more time to generate and run algorithms over them.

Researchers have proposed the idea of universal relation to achieve some level of schema

2www.freebase.com
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Figure 3.1: Fragments of movie databases.

independence for SQL queries over relational databases [17]. One may extend this idea and

define a universal representation in which all graph databases can be represented and develop

similarity search algorithms that are effective over this representation. Nevertheless, the ex-

perience gained from the idea of universal relation, indicates that such representation may

not always exist [17]. Furthermore, it may not be practical to force developers to organize

their data in and create their algorithms for a particular style of representation.

We propose the property of design independence for similarity search algorithms, i.e., the

ability to deliver the same answers regardless of the choices of structure for organizing the

data. In our context, a design of a database denotes structural representation, e.g., schema,

of the database. To the best of our knowledge, the property of design independence has

not previously been explored for similarity search algorithms and/or graph databases. We

believe that the key to the success of building design independent analytics in general and

similarity search algorithms in particular is to modify current algorithms to become design

independent instead of developing completely new algorithms. Current algorithms are being

used in industry and it is easier for organizations to modify these algorithms rather than

using new algorithms. They have also been shown empirically to be effective over certain

representations of databases, which provide evidences that their reasonable modifications

may be effective over more databases.

3.2 RELATED WORKS

The architects of relational models envisioned the desirable property of logical data in-

dependence. Oversimplifying a bit, this means that an exact query should return the same

answers regardless of the schema chosen for the data [17, 47]. One may consider the idea

of design independence as an extension of the principle of logical data independence for

similarity and proximity search algorithms. Nevertheless, these ideas differ in an important

aspect. One may achieve logical data independence for database applications by creating a

set of views over the database, which keep the application unaffected from modifications in

the database schema [17]. However, characteristics of the ideal representations for similarity

and proximity search algorithms are not clearly defined. Also, graph databases follow far
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less rigid schemas and are more amenable to change than relational databases. Hence, it

takes far more time and more in-depth expertise to find the proper representation as well as

create and maintain the mapping between the database and this representation.

Researchers have proposed keyword query interfaces over tree-shaped XML data that

return the same answers to a keyword query over databases with equivalent content but

different choices of structure [19]. We, however, introduce and study the concept of design

independence for a different problem and data model. The task of similarity and proximity

search has a different semantic than keyword search and requires different types of algo-

rithms. Further, graph databases are more complex than tree-shaped XML databases and

offer novel challenges in defining the concept of design independence and developing design

independent algorithms.

Researchers have also analyzed the stability of random walk algorithms in graphs against

relatively small perturbations in the data [48–50]. We also seek to instill structural robustness

in graph mining algorithms, but we are targeting robustness in a new dimension: robustness

in the face of variations in the representation of data. Researchers have provided systems

that help users with transforming and wrangling their data [51–54]. We also address the

problem of data preparation but using a difference approach: eliminating the need to wrangle

the data.

Researchers have proposed several normal forms for relational and tree-shaped XML

schemas [17, 55, 56]. Nevertheless, we focus on finding design independent similarity search

algorithms rather than transforming the database to a particular representation with some

desirable properties. Moreover, because similarity search algorithms usually operate over

graph databases without rigid schemas, our transformations are defined over a much less

restrictive schemas than relational schemas or XML DTDs. Our entity-rearranging transfor-

mations somewhat resemble normalization/de-normalization in relational and tree-shaped

XML databases. Our transformations, however, modify the connections between entities in

the database instead of creating or removing duplicates. They are also defined over graph

databases rather than relational or tree-shaped databases.

Blank nodes represent the existence of resources without any global identifier, i.e., exis-

tential variables, in RDF databases [57, 58]. As blank nodes often convey redundant infor-

mation, researchers have proposed methods to remove them from RDF databases [57, 58].

However, our goal is not to remove certain nodes from a database. Further, because our

databases do not contain any existential variable, we use a different approach to ensure that

our transformations do not modify the information content of a database. For instance,

as opposed to our transformations, the mappings that eliminate blank nodes may not be

invertible. Some serializations of RDF data, such as RDF/XML, may assign labels and iden-
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tifiers within the scope of a document to blank nodes in the document [58]. Our framework

covers these applications of blank nodes. Nevertheless, it also addresses the representational

shifts over databases that do not contain any blank node. Researchers have proposed algo-

rithms to convert RDF data sets that contain certain relationships in RDF Schema, such as

rdfs:subClassOf, to some normal forms [57]. Our transformations, however, are not limited

to particular set of relationships.

Schema mapping has been an active research area for the last three decades [17]. In

particular, researchers have defined schema mappings over graph databases as constraints

in some graph query language in the context of data exchange [32]. As opposed to the

transformations in our work, the original and transformed databases in those settings may

not represent the same information. We also focus on evaluating the design independence of

similarity search algorithms rather than traditional questions in schema mapping and data

exchange, such as computing the transformed database instances.

3.3 DATA MODEL

Let dom be a fixed and countably infinite set of values. To simplify our definitions, we

assume the members of dom are strings. Let L be a finite set of labels. Each member of L

denotes a semantic type in a domain of interest, e.g. actor in movie domain. A database

D defined over L is a graph D = (V,E,L,A), where V is the set of nodes, E ⊆ V × V is

the set of edges, L is a total function from V to L that assigns a label to each node, and

A is a function from V to dom that assigns values to nodes in V . We denote the set of all

databases whose labels belong to L as L. Real world databases often contain nodes without

any value to represent relationships between or categorize entities [58, 59]. Figure 1.1(b) is

an example of using nodes without values to represent relationships between entities. It may

be easier to express complex relationships using nodes without values [59]. About 30% of

1.23 billion RDF triples collected from the Web contain nodes without values [58]. We call

the nodes with values entities [2, 4]. We assume that each label in a set of labels L is used

to denote a semantic type for entities or for nodes without values, but not for both.

We denote a similarity query q, query for short, over database D as (v), where v is an entity

in D. Query q = (v) seeks for entity nodes other than v in D that are similar to v [2, 4, 5, 9].

For example, query (film:Star Wars III) over Figure 1.1(b) asks for other entities similar

to the node film:Star Wars III in this database. A similarity search algorithm returns a

ranked list of entities as the result of query q. We denote the result of query q over database

D using algorithm S by qS(D). If S is clear from the context, we denote qS(D) as q(D).
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3.4 DESIGN INDEPENDENCE

Intuitively, a design independent similarity search algorithm should return the same list of

entities for the same query across databases that represent the same information. Researchers

have defined the conditions under which relational or XML schemas represent the same

information [17–19]. Graph databases, however, do not generally follow strict schemas.

Hence, we extend the ideas on comparing information contents of databases for graph data

model.

Transformation T is a function from a set of databases L to a set of databases K, denoted

as T : L → K. For instance, consider the set of labels L1 = {actor, film, char} and L2 =

{actor, film, char, starring}. The databases in Figures 1.1(a) and 1.1(b) belong to L1 and L2,

respectively. One may define transformation TIMDb2Freebase : L1 → L2, which replaces every

triangle between nodes of labels film, character, and actor with a subgraph whose nodes

have the same labels and values of the nodes in the triangle and are connected to a single

new node with label starring. TIMDb2Freebase maps the database in Figure 1.1(a) to the one

in Figure 1.1(b).

Intuitively, transformation T is invertible if one can reconstruct database D from the

information in T (D). For example, transformation TIMDb2Freebase is invertible as one can re-

construct the original database, e.g., Figure 1.1(a), using the information in its transformed

one, e.g., Figure 1.1(b). However, a transformation that removes the edges between each

film node and its neighboring actor and character nodes from Figure 1.1(a) is not invertible

because there is not sufficient information in the transformed database to recover the rela-

tionship between film, actor, and character nodes. More formally, T : L → K is invertible

if and only if there is a transformation T−1 : K → L such that for all D ∈ L we have

T−1(T (D)) = D. Because the transformed database of an invertible transformation contain

sufficient information to build the original database, the original and transformed databases

contain essentially the same information [17, 18].

To precisely define design independence over a transformation T , we should make sure

that users can pose the same set of queries over databases D and T (D). Similarity search

queries over a database D are entities of D, hence, D and T (D) should contain the same set

of entities. Moreover, similarity search algorithms generally view the labels of nodes as their

semantic types [4]. For example, they assume that the nodes with label film in Figure 1.1(a)

represent entities from the same semantic type, while the entities of labels film and actor

belong to different semantic types. Thus, for these algorithms to return the same results

over a transformation T , T should map entities of the same label in the original database

D to entities with the same label in the transformed database T (D). We consider two data
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values equal if and only if they are lexicographically equal: they have the same length and

contain the same characters in the same positions. Our approach can also support other

definitions of equality between data values.

Definition 3.1. Transformation T : L → K that transforms database D = (V,E,L, A) to

T (D) = (VT , ET ,K, AT ) is entity preserving if and only if there is a bijective mapping M

between entities in V and VT such that

• For all entities v ∈ V , we have A(v) = AT (M(v)).

• For all entities v1, v2 ∈ V that L(v1) = L(v2), we have K(M(v1)) = K(M(v2)).

For example, transformation TIMDb2Freebase is entity preserving. By the abuse of notation,

we denote the entity in database T (D) that is mapped to the entity v in database D, as

T (v). To simplify our definitions, we assume that transformations do not rename the labels

in databases. Our results extend for the transformations that rename labels.

If a transformation is both invertible and entity preserving, it is similarity preserving.

Each similarity-preserving transformation T maps a databases D to a database T (D) that

has the same information and the same set of possible queries as D. Hence, it is possible

to design a similarity search algorithm that returns essentially the same answers for every

query over D and T (D).

Definition 3.2. Similarity search algorithm S is design independent under similarity pre-

serving transformation T : L → K if and only if, for each database D ∈ L and T (D) ∈ K

and every query q over D, there is a bijective mapping N between q(D) and T (q)(T (D))

such that

• for all entities v ∈ q(D) and N(v) ∈ T (q)(T (D)), we have N(v) = T (v)

• entity v appears before entity u in q(D) if and only if N(v) ranks before N(u) in

T (q)(T (D)).

The first condition in Definition 3.2 guarantees that the answers to q over D and T (q) over

T (D) contain the same set of entities. Its second condition ensures that these entities appear

at the same order in results of q over D and T (q) over T (D). According to Definition 3.2, if

answers v and u are placed at the same position, in q(D), T (v) and T (u) must also appear

at the same position in T (q)(T (D)). In short, if an algorithm is design independent

against a transformation, then it is (structurally) robust against that particular

structural variation of representations defined by the transformation. We call

the the degree of such property a structural robustness of an algorithm. We

must note that the two terms, design independence and structural robustness, may be used

interchangeably throughout this dissertation.
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The result of a query is a list of entities, where each entity is shown by its semantic type

and value. A database may have several entities with equal values from of the same semantic

type. Hence, it may not be possible to check the first condition of Definition 3.2 using only

the semantic types and values of the entities in the results of a query. One may assign a

unique (printable) id to each entity in the database to address this problem [18]. To simplify

our framework and definitions, we assume that databases do not contain entities that belong

to the same semantic type and have equal values. Our results extend for other cases.

3.5 RELATIONSHIP REORGANIZATION

3.5.1 Relationship-Reorganizing Transformations

Generally speaking, a relationship-reorganizing transformation T maps database D to

database T (D) such that D and T (D) contain the same set of entities and relationships, but

they may represent these relationships in different forms. More specifically, D and T (D)

may express the same relationship between the same set of entities using some edges or

some nodes without values. For example, Figure 3.1(b) uses a set of edges to represent the

relationship between a movie and its actors. However, Figure 3.1(a) expresses the same

relationship between the same set of entities by a node without value, i.e., actors. In this

section, we formally define this type of representational variation. First, we find patterns

that represent relationships between entities in a database. Then, we define the conditions

under which two patterns represent the same information. Finally, we define a relationship-

reorganizing transformation as a bijective mapping between patterns that represent the same

information in the original and transformed databases.

A walk in database is a sequence of nodes and edges where each edge’s endpoints are

the preceding and following nodes in the sequence. We show a walk in database D as a

sequence of nodes [v0, . . . , vn], such that vi are nodes and (vi−1, vi), 0 ≤ i ≤ n, are edges

in D. For example, w1 = [actor:Ford, actors, film:Star Wars V] is a walk in Figure 3.1(a).

Intuitively, a walk represents some relationship between its entities. For example, walk w1

in Figure 3.1(a) shows that actor Ford has played in movie Star Wars V. One may use paths

to capture relationships between entities in a database [4]. But, we show in Section 3.6 that

walks represent more varieties of relationships than paths, which enables us to achieve design

independence over more transformations. To simplify our framework, we assume that each

database is a simple graph: it has at most one edge between a pair of nodes and does not

have any loop at each node. Our framework extends for other cases. We are interested in

walks that express relationships between entities. Hence, we consider only walks that start
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and end with entities.

Some walks contain consecutive forward and backward traversals from an entity to a node

without value. For example, walk [actor:Ford, actors, film:Star Wars V, actors, film:Star

Wars V] in Figure 3.1(b) expresses the relationship between actor Ford and movie Star Wars

V. It contains consecutive forward and backward traversals from entity film:Star Wars V to

the node without value actors. The information expressed by this walk can be represented

using a shorter walk [actor:Ford, actors, film:Star Wars V], which does not contain any

consecutive forward and backward traversals from film:Star Wars V to actors. Another

example of such walks in Figure 3.1(b) is [film:Star Wars V, actors, film:Star Wars V]. This

walk does not provide any information regarding the relationships between entities in the

database. Hence, unless otherwise noted, we consider only walks that does not have any

consecutive forward and backward traversals from an entity to a node without value because

they do not contain any information regarding the relationship between entities or their

information can be expressed by shorter walks.

The meta-walk of a walk [v1, · · · , vn] in database D = (V,E,L,A) is a sequence of labels

[L(v1), · · · ,L(vn)]. For example, the meta-walk of walk [actor:Ford, actors, film:Star Wars V]

in Figure 3.1(b) is [actor, actors, film]. Each meta-walk represents a pattern of relationship

between entities of certain semantic types. Some meta-walks represent basically the same

relationships between the same sets of semantic types. For instance, meta-walk [actor, film] in

Figure 3.1(a) and meta-walk [actor, actors, film] in Figure 3.1(b) represent the relationship of

starring in movies between the same set of actors and movies. Next, we define the conditions

under which two meta-walks represent the same relationship between the same set of entities.

Given database D = (V,E,L,A), the value of an entity node e ∈ V is the pair L(v) : A(v).

The value of a walk w = [v0, . . . , vn] is the tuple [a0, . . . , am], m ≤ n such that a0 and am

are the values of v0 and vn, respectively, and for all 0 ≤ i < j ≤ n and 0 ≤ i′, j′ ≤ m if ai′

and aj′ are the values of entity nodes vi and vj, respectively, then i′ < j′. For instance, the

value of walk [actor:Ford, actors, film:Star Wars V] is [actor:Ford, film:Star Wars V]. Values

of two walks are equal if and only if they have equal arities and their corresponding positions

contain the same label and equal values. Two walks are content equivalent if and only if

their values are equal. For instance, walk [actor:Ford, film:Star Wars V] in Figure 3.1(a) and

walk [actor:Ford, actors, film:Star Wars V] in Figure 3.1(b) are content equivalent. We show

content-equivalent walks w and x as w ≡ x. Let p(D) denote the set of walks in database

D whose meta-walk is p.

Definition 3.3. Meta-walks p1 in database D1 and p2 in database D2 are content equivalent

if and only if there is a bijection M : p1(D1)→ p2(D2) where for all w ∈ p1(D1), w ≡M(w).
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Meta-walks [actor, film] in Figure 3.1(b) and [actor, actors, film] in Figure 3.1(a) are content

equivalent. We denote content-equivalent meta-walks p1 and p2 as p1 ≡ p2.

Naturally, content-equivalent meta-walks represent the same sets of relationships between

the same sets of entities. Thus, if a transformation bijectively maps each meta-walk in

database D1 to its content-equivalent meta-walk in database D2, D1 and D2 represent the

same information. We formally prove this intuition later in this section. However, this

straightforward definition ignores some interesting transformations. For example, intuitively

the databases in Figure 3.1(a) and Figure 3.1(b) contain the same information. But, there is

not any meta-walk in Figure 3.1(a) that is content equivalent to meta-walk p3=[actor, actors,

actor] in Figure 3.1(b). By looking closely at the Figure 3.1(b) and original Movielicious3

data, we observe that the node actors always groups actors that play in the same movie.

Thus, each walk of p3 is a part of a walk of meta-walk p4= [actor, actors, film, actors,

actor] in Figure 3.1(b). Hence, if a transformation maps p4 to a content-equivalent meta-

walk in Figure 3.1(a), it also preserves the information of p3. Generally, some meta-walks

contain other meta-walks. If a transformation preserves the information of a meta-walk, it

will preserve the information of its contained meta-walks. Let us formalize this relationship

between meta-walks. A walk w is a subwalk of walk x, shown as w v x, if and only if w is a

subsequence of x. For example, walk [v1, v2, v3] is a subwalk of walk x1 = [v1, v2, v4, v2, v3].

But, walk [v1, v3] is not a subwalk of x1 because the edge (v1, v3) is not in x1. Meta-walk

p is a subwalk of meta-walk r, denoted as p v r, if and only if a walk of p is a subwalk of

a walk of r. For example, [actor, actors, actor] is a subwalk of [actor, actors, film, actors,

actor] in Figure 3.1(b).

Definition 3.4. Given meta-walks p and p′ in database D, p′ includes p if and only if there

is a bijection M between p(D) and p′(D) such that

• for every walk w ∈ p(D), we have w vM(w) and w and M(w) start at the same node

and end at the same node.

• p′ has at least one entity label that is not in p.

For example, meta-walk [actor, actors, film, actors, actor] includes [actor, actors, actor] in

Figure 3.1(b). A meta-walk p in database D is maximal if and only if it is not included

in any other meta-walk. For instance, [actor, actors, film, actors, actor] is maximal in

Figure 3.1(a). Maximal meta-walks subsume the information of non-maximal meta-walks.

Thus, if a transformation preserves only the information of maximal meta-walks in a data-

base, it will preserve the information content of the database. Let P(L) denote the set of all

3www.netwalkapps.com/movies-xml-format
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meta-walks in the set of databases L. Similarly, we denote the set of all maximal meta-walks

in L as Pmax(L).

Definition 3.5. Transformation T : L→ K is relationship reorganizing if and only if there

is a bijective mapping M : Pmax(L)→ Pmax(K) such that p ≡M(p).

The transformations that map Figure 3.1(b) to Figure 3.1(a) and Figure 1.1(a) to Fig-

ure 1.1(b) are relationship-reorganizing. Using Definitions 3.4 and 3.5, we have the following

theorem.

Theorem 3.1. Every relationship-reorganizing transformation is similarity preserving.

Proof. Let T be a relationship-reorganizing transformation. Definition 3.5 implies that T

is entity preserving. To show that T is invertible, we prove that given databases D and

E, if T (D) = T (E) then D = E. That is, a walk belongs to D if and only if it is in E.

Consider walk w ∈ p(D). If p is maximal, there is a bijection M that bijectively maps

w to walk w′ ∈ M(p)(T (D)). Because T (D) = T (E), w′ is bijectively mapped to a walk

w′′ ∈ p(E) where w ≡ w′′. Hence, w = w′′. If p is not maximal, Definition 3.4 implies that

w is bijectively mapped to a walk w′′′ where w ⊆ w′′′. Using similar argument, we have that

w′′′ exists in D if and only if it exists in E, and so is w.

3.5.2 Towards Robust Similarity Algorithms

To the best of our knowledge, the most frequently used methods for similarity search on

graph database are based on random walk, e.g., RWR [5], pairwise random walk, e.g., Sim-

Rank [2] and P-Rank [3], or relationship-constrained framework, e.g., PathSim [4, 44]. There

are other similarity measures, such as common neighbors, Katzβ measure, hitting time, and

commute time, which can be considered as special cases of aforementioned heuristics. Hence,

we discuss similarity search methods based on these three frameworks.

Methods that use random walk and pairwise random walks leverage the topology of a graph

database to measure the degree of similarities between entities. A relationship-reorganizing

transformation may remove many edges from and add many new nodes and edges to a

database. Thus, it may radically modify the database topology. For example, a relationship-

reorganizing transformations may drastically change the degree of a node and modify the

probability that random surfers visit the node. Hence, these methods cannot always return

the same answers over the original and the transformed database for the same query. In

Section 3.1, we have shown that RWR and SimRank return different results over a database

and its relationship reorganization in Figure 1.1.
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Figure 3.2: Fragments of two citation databases

PathSim measures the similarity between entities over a given relationship [4]. For ex-

ample, it may compute the similarity of two movies in a movie database based on their

common actors. PathSim uses meta-walks to represent relationships between entities. For

instance, the relationship between two movies in Figure 1.1(b) based on their common actors

is expressed by [film,actors,actor,actors,film]. Let p(e, f, d) be a set of walks of meta-walk p

from entity e to entity f in database D. PathSim measures the similarity between e and f

according to the input meta-walk p as s(e, f) = 2×|p(e,f,D)|
|p(e,e,D)|+|p(f,f,D)| . PathSim considers walks

with and without consecutive forward and backward traverses from an entity to a node

without value when it computes s(e, f).

PathSim may return different answers for the same queries over the same relationship on a

database and its relationship reorganizations. Figure 3.2 shows fragments of DBLP4, called

DBLP-citation, and SNAP5 that contain information about citations. Consider the meta-

walk s = [paper, cite, paper, cite, paper] in Figure 3.2(a), and its corresponding meta-walk

s′ = [paper, paper, paper] in Figure 3.2(b). s has a walk between entities p3 and p4, x =

[paper:p3, cite, paper:p4, cite, paper:p4]. But, there is no corresponding walk of meta-walk

s′ between p3 and p4 in Figure 3.2(b). Hence, PathSim reports p1 to be more similar to p2

than p3 in Figure 3.2(a), but considers p1 to be more similar to p3 than p2 in Figure 3.2(b).

PathSim returns different answers because it considers walks with consecutive forward and

backward traverses from an entity to a node without value, such as x.

From here onward, we call a walk without consecutive forward and backward traverses

from an entity to a node without value informative, and non-informative otherwise. As

discussed in Section 3.5.1, non-informative walks either do not provide any information

about the relationship between entities or their information can be represented by a shorter

walk. Figure 3.2(a) and Figure 3.2(b) show that non-informative walks may be present in

a database but be absent from its relationship-reorganizing transformations. Hence, if we

modify PathSim so that it computes similarity scores using only informative walks, it will

be robust under relationship-reorganizing transformations. Using Definition 3.4 and 3.5, we

4dblp.uni-trier.de
5snap.stanford.edu
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have the following theorem.

Theorem 3.2. Let T : L → K be a relationship-reorganizing transformation and p be a

meta-walk in D ∈ L. There is a meta-walk r in T (D) such that for each pair of entities e

and f in D, we have |p(e, f,D)| = |r(T (e), T (f), T (D))|.

Proof. Suppose p is maximal. According to Definition 3.5, there is a maximal meta-walk

T (p) in T (D) s.t. p ≡ T (p). Because there is a bijection that maps each informative walk of

p to an informative walk of T (p) with equal value, we have |p(e, f,D)| = |T (p)(T (e), T (f),

T (D))|. If p is not maximal, according to Definition 3.4, we can find a maximal meta-walk

p′ in D that includes p s.t. |p(e, f,D)| = |p′(e, f,D)|. Using similar arguments to when p

is maximal, we have that there exists a maximal meta-walk T (p′) in T (D) s.t. |T (p′)(T (e),

T (f), T (D))| = |p′(e, f,D)|. Hence, |p(e, f,D)| = |T (p′)(T (e), T (f), T (D))|.

Given entities e and f and a meta-walk p in database D and their corresponding enti-

ties and meta-walk in T (D), T (e), T (f), and r, the numerator and denominator of s(e, f)

will be respectively equal to the numerator and denominator of s(T (e), T (f)). Hence, the

modification of PathSim will return equal similarity scores for queries over a database and

its relationship-reorganizing transformation. We call this extension of PathSim, Robust-

PathSim (R-PathSim).

The computation of R-PathSim is similar to that of PathSim [4] with extra steps of

detecting and ignoring non-informative walks. The commuting matrix of meta-walk p =

[l1, · · · , lk] in database D is Mp = Al1l2Al2l3 · · ·Alk−1lk , where Alilj is the adjacency matrix

between nodes of labels li and lj in D. Each entry Mp(i, j) represents the the number

of walks between entities i ∈ li(D) and j ∈ lj(D). Given commuting matrix Mp, we can

compute the PathSim score between i and j as 2Mp(i,j)

Mp(i,i)+Mp(j,j)
. However, R-PathSim uses only

the informative walks. A meta-walk whose walks may not be informative is in the form of

p = [l1, · · · , li, xni , . . . , xmi , li, . . . , lk], 1 ≤ i ≤ k where li’s are entity labels and xni , · · · , xmi
are labels of nodes without values. Meta-walk p may have non-informative walks because it

contains meta-walks si = [li, xni , . . . , xmi , li]. Let Msi be the commuting matrix of si. The

diagonal entries in Msi contain the number of non-informative walks of si. Let Md
si

denote

a diagonal matrix of Msi . Matrix Msi −Md
si

contains the number of informative walks of

si. To compute the number of informative walks of meta-walk p, we first find subwalks of p

that start and end with same entity label and their remaining labels are non-entity labels.

We call this set of meta-walks S and denote the rest of the subwalks of p R. The number of

informative walks of p between each pair of entities in D is M i
p =

∏
s∈S(Ms−Md

s )
∏

r∈RMr.

It may take a long time to compute the commuting matrix of a relatively long meta-walk

in query time. Also, it is not feasible to precompute and store the commuting matrices for
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every possible meta-walk. PathSim precomputes commuting matrices for relatively short

meta-walks. Then, PathSim concatenates them in the query time to get the commuting

matrix of a longer meta-walk. This approach efficiently computes PathSim scores [4]. We

follow the same method to compute R-PathSim scores efficiently.

Users may not know the structure of the database and cannot supply any input meta-walk.

One may solve this problem by computing the (weighted) average of similarity scores over

maximal meta-walks between entities [4]. Definition 3.5 provides that there is a bijection

between all maximal meta-walks in a database and its relationship-reorganizing transforma-

tion. Also, Theorem 3.2 guarantees that R-PathSim returns equal scores for each maximal

meta-walk over a database and its transformation. Hence, the combined similarity scores

are equal in the original and transformed databases.

In order to find a set of maximal meta-walks, we first find a set of meta-walks in the

database. Then we check if the meta-walks found are maximal or not. Algorithm 3.1

provides a framework on checking whether a given meta-walk is maximal. The underlying

idea is that, if a meta-walk p is not maximal, there exists a meta-walk p′ that includes p.

That is, p′ must contain an additional entity label to p. Using Definition 3.4, we check

whether each walk of p is a subwalk of exactly one walk of p′. If there is p′ that includes

p, then p is not maximal. Otherwise, p is maximal. The running time of Algorithm 3.1 is

O(nd3m) where n is the size of a given meta-walk p, d is the average degree of nodes, and

m is the number of walks of p in the database.

For further optimization, if there are many meta-walks between the query node and the

candidate answers in the database, one may save processing time by limiting the set of

meta-walks over which the aggregated score is computed. One may do so by selecting the

maximal meta-walks p = rr−1, where r−1 is a meta-walk that is the reverse of r, such that r

contains only distinct entity labels and only a given number of entity labels. Definition 3.5

guarantees that, for each maximal meta-walk r, there is exactly one maximal meta-walk r′

in the transformed database such that r ≡ r′. Further, the number of entity labels of r and

r′ must be the same. That is, if p is used over the database, then p′ = r′r′−1 is also used over

its transformation . Similar to Theorem 3.2, we have that the R-PathSim score computed

using p over the database and using p′ over its transformation are equal. Therefore, the

aggregated R-PathSim score computed over these sets are equal across the original database

and its transformations.

Next, we discuss why it is possible to modify PathSim and create a design independent

algorithm and whether it is feasible to apply similar changes to RWR and SimRank to

make them design independent over relationship-reorganizing transformations. The concept

of meta-walk (meta-path) captures how relationships between entities are represented in a
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Algorithm 3.1: Check a meta-walk if it is maximal

Input: Database D = (V,E, L,A), Meta-walk p = [l1, ..., ln]
Output: ACCEPT if p is maximal, or REJECT if p is not maximal

1 foreach i = 2...n− 1 do
2 Si ← set of all meta-walks [li, l] or [li, l

′, l] in D where l is an entity label and l′ is
not an entity label

3 foreach r ∈ Si do
4 foreach w = [v1, ..., vn] ∈ p(D) do
5 if there exists no walk or more than two walks in r(D) from vi then
6 Go to process next r ∈ Si // Assume p′ = [l1, ..., li]rr

−1[li, ..., ln] where

p @ p′. p′ does not include p.

7 end

8 end
9 // Each walk of p is a subwalk of exactly one walk of p′. Hence, p′

includes p.

10 return REJECT

11 end

12 end
13 return ACCEPT

database. Relationship reorganizing transformations do not add any new type of relationship

to or remove any existing type of relationship from a database. Because R-PathSim quantifies

the amount of similarity separately for each type of relationship between two entities, it

has a chance of returning equal scores over a database and its relationship reorganizing

transformations. R-PathSim also leverages the concept of meta-walk to detect and ignore

the spurious walks in each meta-walk that may not be present in some representations of

the database. RWR and SimRank, however, do not support the concepts similar to meta-

walk, so it is not clear how they can be modified to be robust over relationship reorganizing

transformations. Nevertheless, one can define RWR or SimRank score between two entities

in a database for a given meta-walk [4]. RWR and SimRank may be modified within this

context to ignore the non-informative walks between entities to provide the equal scores

over relationship reorganizing transformations. Analyses of such extensions are interesting

subjects of future work.
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(a) Original representation
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(b) Alternative representation

Figure 3.3: Fragments of some representations for MAS data with FDs paper → conf and
conf→ dom.

3.6 ENTITY REARRANGEMENT

3.6.1 Entity-Rearranging Transformation

Different databases may represent the same relationship between a set of entities by con-

necting them using different sets of edges. Consider Figure 3.3 that shows the original and

an alternative representation for Microsoft Academic Search6 (MAS for short) data. Both

databases contain entities of semantic types paper, conference, domain and keyword, which

are labeled as paper, conf, dom and kw, respectively. The domains of papers and conferences

show their areas, e.g., database and data mining. The keyword entities contain the key-

words of domains, e.g., indexing for database domain. Each paper is published in only one

conference and each conference belongs to only one domain. The database in Figure 3.3(a)

expresses the relationship between a paper and its conference and domain by connecting

each paper to both its conference and its domain. On the other hand, the database in Fig-

ure 3.3(b) represents the same relationship by connecting each paper to its conference and

connecting each conference to its domain. We call this representational shift that rearranges

entities in a database an entity-rearranging transformation.

Because each paper in Figure 3.3(b) has only one conference and each conference has only

one domain, we can switch the relative position of a paper and a conference, and get Fig-

ure 3.3(a) without losing or adding any relationship to the one represented in Figure 3.3(b).

On the other hand, assume that a paper can be published in multiple conferences from dif-

ferent domains in a database that follows the representation of Figure 3.3(b). If we rearrange

the positions of papers, conferences, and domains in this database according to the represen-

6www.academic.research.microsoft.com
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tation in Figure 3.3(a), each conference of a paper will be connected to all domains of every

conference in which the paper is published. Hence, we unintentionally add new relation-

ships between conferences and domain that are not available in the original database. Also,

we will not be able to recover the original set of relationships between a conference of its

domain in the original database. Hence, an entity-rearranging transformation preserves the

information of a database if certain entities in the database satisfy some dependencies. The

following definition formalizes these dependencies. Let l(D) denote all nodes in database D

with label l.

Definition 3.6. Given meta-walk p =[l1, . . ., ln] in the set of databases L, L satisfies

functional dependency (FD) l1
p−→ ln if and only if for every D ∈ L if walks [e, . . . , f ] and

[e, . . . , g] of meta-walk p are in D, then f = g.

For example, the FDs in Figure 3.3(a) are paper
p1−→ conf, paper

p2−→ dom, and conf
p3−→

dom, where p1 = [paper,conf], p2 = [paper,conf,dom] and p3 = [conf,dom]. Given meta-walk

p =[l1, l2], we write the FD l1
p−→ l2 as l1 → l2 for brevity.

Intuitively, an entity-rearranging transformation should preserve the label and values of

entities, the relationships between entities, and the FDs of a database to preserve its infor-

mation. For example, there is a bijection between entities in Figure 3.3(a) and Figure 3.3(b)

that preserves their labels and values. Moreover, if there is not any FD between some en-

tities, an entity-rearranging transformation must not rearrange them. In other words, if we

have edge (e, f) in database D and there is no FD between e and f , an entity-rearranging

transformation T must map e and f to entities T (e) and T (f) in T (D) with edge (T (e),

T (f)). Similarly, if there is no edge between the aforementioned entities in D, there must

not be any edge between them in T (D). Furthermore, the transformed database must satisfy

essentially the same FDs as the original database. That is, if there is an FD between entities

of semantic types l1 and l2 in the original database, there must be an FD between the entities

of l1 and l2 in the transformed database. Otherwise, as explained in the preceding para-

graph, the transformation may introduce spurious relationships between entities. However,

the corresponding FDs in the original and transformed databases may be represented using

different meta-walks. For instance, FD conf
[conf ,paper ,dom]−−−−−−−−−→ dom in Figure 3.3(a) is mapped

to conf → dom in Figure 3.3(b). The following definition formalizes the aforementioned

intuitions. Let FL denote the set of FDs satisfied by the set of databases L.

Definition 3.7. A transformation T : L → K that maps database D = (VD, ED,L,AD)

to database T (D) = (VT (D), ET (D),K,AT (D)) is entity rearranging if and only if there is a

bijection M : VD → VT (D) such that
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• for all v ∈ VD, L(v) = K(M(v)) and if v is an entity, AD(v) = AT (D)(M(v)).

• for all (u, v) ∈ VD where neither L(u) → L(v) nor L(v) → L(u) are in FL, we have

(u, v) ∈ ED if and only if (M(u),M(v)) ∈ ET (D).

• for all (u, v) ∈ VD where neither L(u) → L(v) nor L(v) → L(u) are in FL, we have

(u, v) ∈ ED if and only if (M(u),M(v)) ∈ ET (D).

• there is a bijection N : FL → FK such that if N(l1
p−→ l2) = l1

p′−→ l2, for all entities

e, f ∈ VD, p(e, f,D) is empty if and only if p′(M(e),M(f), T (D)) is empty.

Using Definitions 3.6 and Definition 3.7, we have the following.

Theorem 3.3. Every entity-rearranging transformation is similarity preserving.

Proof. Let T be an entity-rearranging transformation. We need to prove that given databases

D and E such that T (D) ∼= T (E), then D ∼= E. That is, a walk exists in D if and only if it

exists in E. Let w = [u, v] be in p(D). If w follows the second condition in Definition 3.7,

then [M(u),M(v)] exists in T (D) (and T (E)). So [u, v] must also exist in E. Otherwise,

if w does not follow the second condition, w must be a walk of some meta-walk p for some

FD. Using the third condition of Definition 3.7, then p is bijectively mapped to a meta-walk

p′ in T (D). Also, there must exist a walk w′ ∈ p′(M(u),M(v), T (D)) (and in T (E)). Using

similar arguments, p must exist in E where w′ is in T (E) if and only if w is in E. Assume

w = [u1, ..., uk>2] is in D. We have that each [ui, ui+1], i = 1...k − 1, exists in D if and only

if it exists in E. Therefore, w also exists in D if and only if it exists in E. Because the

first condition in Definition 3.7 implies that each entity-rearranging transformation is entity

preserving, every entity-rearranging transformation is similarity preserving.

Entity-rearranging transformations resemble (de-)normalization in relational and tree-

shaped XML databases [17, 55]. They, however, modify the connections between entities

in the database instead of removing duplicates and are defined over graph databases that

follow less restrictive schemas than relational schemas or DTDs.

3.6.2 Extension of R-PathSim

Because entity-rearranging transformations modify the topology of a database, RWR and

SimRank are not robust under these transformations. For example, consider the entity-

rearranging transformation between Figure 3.3(a) and Figure 3.3(b). RWR and SimRank

find paper:p to be more similar to paper:r than paper:t in Figure 3.3(b). However, they

find paper:p to be more similar to paper:t than paper:r in Figure 3.3(a). R-PathSim and

PathSim are also not robust under entity-rearranging transformations. A user may like to
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find conferences similar to conf:b based on their common keywords using meta-walk p1 =

[conf, dom, kw, dom, conf] in Figure 3.3(b). R-PathSim finds conf:a and conf:c equally similar

to conf:b. The meta-walk that represents the closets relationship to p1 in Figure 3.3(a) is

p2 = [conf, paper, dom, kw, dom, paper, conf]. However, using meta-walk p2, R-PathSim

finds conf:a more similar to conf:b than conf:c in Figure 3.3(a).

We observe that meta-walk p2 does not exactly represent the same information as meta-

walk p1 because p2 contains additional entity labels, i.e., paper. Hence, a walk in p1 may

correspond to several walks in p2. This causes R-PathSim to produce different rankings for

the same query over Figures 3.3(a) and 3.3(b). To return the same answers over Figure 3.3(a)

and 3.3(b), one may look for a structure in Figure 3.3(a) that represents exactly the same

information that p1 expresses in Figure 3.3(b). Every walk of p1 represents the fact that

a conference belongs to a certain domain and does not contain any information about the

number of papers published in the conference. Hence, we extend the definition of meta-

walk to ignore the number of occurrences of certain entities in a walk. For example, we

define meta-walk p3 in Figure 3.3(a) whose walks express the fact that entities of labels conf

and dom are connected through paper entities without any regard to the number of papers

between them. This meta-walk treats all walks between each pair of entities of label conf

and dom through paper entities as a single walk. We show p3 as [conf, paper , dom, kw, dom,

paper , conf]. We call paper a skip-label in p3. Using a skip-label in the meta-walk indicates

that the user is interested in whether a connection between entities in the meta-walk exists.

Meta-walk p3 has the same number of walks in Figure 3.3(a) as p1 has in Figure 3.3(b).

Hence, R-PathSim will deliver the same ranking for query conf:b over Figure 3.3(a) using

meta-walk p3 and Figure 3.3(b) using meta-walk p1.

Furthermore, we may have to use a more complex meta-walk in a database to express

the same information as a simpler meta-walk in the entity-rearranging transformation of the

database. For instance, a user may like to find similar conferences based on the meta-walk p2

in Figure 3.3(a). However, she must use a more complex meta-walk [conf, paper, conf, dom,

kw, dom, conf, paper, conf] to obtain the same results in Figure 3.3(b). Instead of stopping at

the candidate answer label, this meta-walk goes beyond and traverses back to the candidate

answer label. We call this type of meta-walks meta-walks with repeated entities.

Hence, a relationship between the same set of entities may be represented by normal

meta-walks, as defined in Section 3.5 in a database, but using meta-walks with a skip-label

or repeated entities on its entity-rearranging transformations. To be robust over entity-

rearranging transformations, R-PathSim should consider meta-walks with skip-label and

repeated entities in addition to the meta-walks defined in Section 3.5. Thus, we extend

R-PathSim to consider these types of meta-walks. Nevertheless, if we allow a skip-label for
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every label in each meta-walk, R-PathSim has to pre-compute the commuting matrices for

a large number of meta-walks. Hence, we would like to identify a minimal set of meta-walks

with skip-labels that capture all relationships in a database. Then, R-PathSim can use them

to deliver the same results over the database and its entity rearrangements. First, according

to Definition 3.7, if neither meta-walk p nor any of its subwalks is a meta-walk for any FD

over a database D, there is a meta-walk r over an entity-rearranging transformation of D,

T (D), such that r and p have equal number of walks in D and T (D), respectively. Thus,

R-PathSim score of entities over these meta-walks are equal over D and T (D). Hence, we do

not assign any skip-label to meta-walks that are not part of any FD in a database. Second,

consider meta-walk s = [l1, . . . , lk] in database D where l1 → l2, l2 → l3, . . ., lk−1 → lk hold

in D. If there is a walk from entity e of label l1 and an entity f of label lk in D, there will be

exactly one walk between e and f in D because of the FDs over s. Hence, every meta-walk

created by setting some of the labels in s to skip-label have the same number of walks in D

as s has. Intuitively, setting some labels in s to skip-labels will not express any new useful

relationship between entities in s. Moreover, because R-PathSim returns the same similarity

score for two entities using s and its modifications, we will consider only s.

Next, we prove that the aforementioned extension of R-PathSim is design independent

over entity-rearranging transformations. Let L be a set of databases whose set of labels is

L. We define a binary relation ≺ between labels l1 and l2 in L where l1 ≺ l2 if and only if

there is a meta-walk p such that l1
p−→ l2 ∈ FL. The set of labels S ⊆ L is a chain if and

only if ≺ is a total order over S. S is a maximal chain if and only if there is no R ⊆ L such

that S ( R and R is a chain. For instance, because we have paper → conf , paper → dom

and conf
[conf ,paper ,dom]−−−−−−−−−→ dom in Figure 3.3(a), {paper,conf,dom} is a maximal chain. By

the abuse of notation, we let FS denote the set of FDs in L whose labels are in S. In this

work, we focus on a set of databases whose sets of maximal chains are mutually exclusive.

MAS databases whose fragments are shown in Figure 3.3(a) and 3.3(b) are examples of such

databases.

Theorem 3.4. Given an entity-rearranging transformation T : L → K, for all D ∈ L, T

bijectively maps each meta-walk p in D to a meta-walk r in T (D) such that for all entities

e and f in D, |p(e, f,D)| = |r(T (e), T (f), T (D))|.

Proof. Let us define internal labels of a meta-walk p = [l1, ..., ln] as labels l2, ...ln−1. Given

a meta-walk p in D, one can write p as a concatenation of meta-walks s1...sm where m is

the smallest value s.t. each si, i = 1...m, satisfies exactly one of the following conditions:

(1) si is not a meta-walk of any FD in L, (2) all internal labels of si are skip-labels, or (3)

si = [l′1, ..., l
′
k] where l′1 → l′2, ..., l

′
k−1 → l′k ∈ FL (or l′k → l′k−1, ..., l

′
2 → l′1 ∈ FL). Clearly,
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no si satisfies both conditions (1) and (3), or both (2) and (3). Because we set the labels

of meta-walks that appear in an FD to skip-labels, no si satisfies both conditions (1) and

(2). Suppose there are more than one concatenations for p that satisfies the aforementioned

conditions. Without losing generality, assume p = s1s2 = s′1s
′
2 where s1 6= s′1, s1 = [l1, ...,

lk], s2 = [lk, ..., ln], and lk−1, ..., ln are in s′2. If s1 and s2, or s′1 and s′2, satisfy condition

(1), then p satisfies condition (1). Thus, m = 2 is not the smallest number that satisfies

the aforementioned concatenation for p. Hence, s1 and s2 together do not satisfy condition

(1). If s1 and s2 satisfy condition (2), then the internal labels of s′1 or s′2 will contain both

skip-labels and lk, and s′1 or s′2 will not satisfy any of the aforementioned conditions. Hence,

s1 and s2 together do not satisfy condition (2). Similarly, if s′1 and s′2 satisfy condition

(2), s1 or s2 will not satisfy any of the conditions. Thus, s′1 and s′2 together do not satisfy

condition (2). Let s1, s2, s′1 and s′2 satisfy condition (3). Thus, either l1 → l2, ..., lk−1 → lk

or lk → lk−1, ..., l2 → l1 hold in FL. Let l1 → l2, ..., lk−1 → lk hold in FL. Because we focus

on only the databases whose sets of maximal chains are mutually exclusive, lk → lk−1 does

not hold in FL Hence, for s′2 to satisfy condition (3), lk−1 → lk, ..., ln−1 → ln must hold in

FL. That is, p itself satisfies condition (3). Similarly, we prove that if lk → lk−1, ..., l2 → l1

hold in FL, p satisfies condition (3). Thus, m = 2 is not the smallest number that satisfies

the aforementioned concatenation for p. Hence, there is only one concatenation of p that

satisfies the aforementioned conditions.

Let si = [l′1, ..., l
′
k]. Suppose si satisfies condition (1). Using Definition 3.7, there is a

bijection between walks of si and walks of T (si) s.t. |si(e, f,D)| = |T (si)(T (e), T (f), T (D))|.
Suppose si satisfies condition (2). Because we set the labels of only meta-walks used in an

FD to skip-labels, we have l′1
si−→ l′k (or l′1

si←− l′k). By Definition 3.7, T bijectively maps

l′1
si−→ l′k to some l′1

ri−→ l′k in FK s.t. si(e, f,D) = ∅ if and only if ri(T (e), T (f), T (D)) = ∅.
If si(e, f,D) 6= ∅, then |si(e, f,D)| = 1 and ri(T (e), T (f), T (D)) 6= ∅. Let r∗i be obtained by

changing all internal labels of ri to skip-labels. If ri = [l′1, l
′
2], then r∗i = ri. If ri(T (e), T (f),

T (D)) 6= ∅, then |r∗i (T (e), T (f), T (D))| = 1. Hence, |si(e, f,D)| = |r∗i (T (e), T (f), T (D))|.
Suppose si satisfies condition (3). If si(e, f,D) 6= ∅, then |si(e, f,D)| = 1. Similar to the case

where si satisfies condition (2), we prove that T bijectively maps si to r∗i s.t. |si(e, f,D)| =
|r∗i (T (e), T (f), T (D))|.

The end node of each walk in si is the start node of a walk si+1. Hence, by Definition 3.7,

the end node of each walk of T (si) is the start node of a walk of T (si+1). Let r be the

meta-walk created by concatenating T (si)’s. Each walk of r is a concatenation of walks of

T (si) in T (D).

Similar to Section 3.5.2, one may compute a single similarity between a pair of entities

31



by computing the average of R-PathSim scores over all meta-walks between the pair of

entities. Theorem 3.4 guarantees this aggregated similarity score for each pair of entities

and their mapping over entity-rearranging transformations are equal. We use the same

methods discussed in Section 3.5.2 to pre-compute and compute the score of meta-walks

with skip-labels and repeated entities. Our results here introduce a new method to make

a similarity search algorithm design independent. Because the same relationship may be

expressed in several forms over different representations of the same data, the algorithm

should consider more varieties of relationships.

3.7 EMPIRICAL EVALUATION

3.7.1 Experiment Settings

We use 5 datasets in our experiments. We use a subset of DBLP4 data with 1,227,602

nodes and 2,692,679 edges, which contains information about publications in computer sci-

ence. We add information about the area for each conference in DBLP from MAS6. Fig-

ure 3.5(a) shows fragments of DBLP. We also use a subset of Microsoft Academic Search

data with 44,068 nodes and 44,220 edges whose fragments are shown Figure 3.3(a). We use

Arxiv High Energy Physics paper citation graph from SNAP5 with 34,536 nodes and 42,158

edges whose fragments are shown in Figure 3.2(b). We use a subset of IMDb data with

2,409,252 nodes and 7,525,281 edges whose fragments are shown in Figure 3.4(a). We also

use WSU course database7 with 1,124 nodes and 1,959 edges, which contains information

about courses, instructors, and course offerings. Figure 3.6(a) shows fragments of this data-

set. We implement our and other algorithms using MATLAB 8.5 on a Linux server with

64GB memory and two quad core processors.

3.7.2 Structural Robustness

In this experiment, we would like to investigate the property of design independence of

the studied algorithms. Hence, we would like to measure the degree of structural robustness

of these algorithms. We use normalized Kendall’s tau to compare ranked lists. The value of

normalized Kendall’s tau varies between 0 and 1 where 0 means the two lists are identical

and 1 means one list is the reverse of the other. As users are interested in the highly ranked

answers, we compare top 3, 5 and 10 answers.

7www.cs.washington.edu/research/xmldatasets
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Figure 3.4: Fragments of movies databases where A, M , C, D, S, As, Cr and D-by denotes
actor, movie, character, director, starring, actors, credit and directed-by.

Table 3.1: Average ranking differences for all transformations.
IM2MV IM2AS IM2FB DB2SI WS2AL

Top 3
RWR 0.473 0.505 0.170 0.482 0.300
SimRank 0.411 0.458 0.333 0.481 0.440
PathSim - - - 0.641 0.320

Top 5
RWR 0.444 0.459 0.158 0.447 0.259
SimRank 0.365 0.392 0.337 0.455 0.387
PathSim - - - 0.608 0.310

Top 10
RWR 0.404 0.415 0.155 0.412 0.253
SimRank 0.343 0.348 0.322 0.410 0.341
PathSim - - - 0.590 0.247

Relationship Reorganization

Because it takes too long to run SimRank and RWR over full IMDb dataset, we use the

largest subset of IMDb with 47,835 nodes and 130,916 edges over which we can run SimRank

and RWR reasonably fast to evaluate their robustness. We set the restart probability of RWR

and the damping factor of SimRank to 0.8. We reorganize IMDb database to the structures

of Freebase (FB), Movielicious (MVL) and a structure used in a class assignment from

Evergreen Valley College8 (ASM) whose fragments are shown in Figure 3.4(b), Figure 3.4(c)

and Figure 3.4(d), respectively. We denote the transformations from IMDb to Freebase as

IM2FB, from IMDb to Movielicious as IM2MV, and from IMDb to ASM as IM2AS. Since

MVL and ASM structures do not have any character, we remove character nodes in IMDb

when applying IM2MV and IM2AS transformations. The sizes of data graphs used in IM2MV

and IM2AS are 47,835 nodes and 130,916 edges for IMDb, 69,121 nodes and 152,202 edges

for MVL, and 90,407 nodes and 173,488 edges for ASM. The sizes of data graphs used in

IM2FB is 50,052 nodes and 139,998 edges for IMDb and 96,718 nodes and 139,998 edges for

FB.

For query workload, we randomly sample 50 movies in IMDb database based on their

degrees.

Table 3.1 shows the average ranking differences for top 3, 5, and 10 answers returned by

RWR and SimRank over IM2MV, IM2AS, and IM2FB transformations. Because R-PathSim

delivers the same rankings over these transformations, we have omitted the results for R-

8www.evc-cit.info/cit041x/assignment/ css.html
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Figure 3.5: Fragments of bibliographic databases.
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Figure 3.6: Fragments of course databases.

PathSim. Because each entity label and its consecutive entity labels in every meta-walk over

FB, MVL, and ASM data are different, all walks used in the computation of PathSim are

informative, thus, PathSim is robust over these transformations according to Theorem 3.2.

Hence, we omit the results of PathSim from the table. According to Table 3.1, the rankings

produced by RWR and SimRank varies considerably over relationship-reorganizing transfor-

mations.

As we have shown in Section 3.5, PathSim is not robust under certain relationship re-

organizing transformations. We use the SNAP dataset and re-organize it to the structure

of DBLP-citation as depicted in Figure 3.2(a). For query workload, we randomly sample

50 papers from SNAP based on their degrees. We use [paper, paper, paper] meta-walk on

SNAP and [paper, citation, paper, citation, paper] on DBLP-citation for PathSim and R-

PathSim. The average ranking differences for top 3, 5 and 10 answers of PathSim are 0.564,

0.522 and 0.495, respectively. Hence, the output of PathSim varies significantly over some

relationship-reorganizing transformations.

Entity Rearrangement

We use DBLP and WSU course databases to evaluate the robustness of RWR, SimRank,

PathSim, and R-PathSim over entity-rearranging transformations. Because SimRank and

RWR take too long to finish on full DBLP dataset, we perform the following experiments

using a subset of DBLP. with 24,396 nodes and 98,731 edges. The FDs in DBLP database

are paper → proc, paper→ area, and proc
[proc,paper,area]−−−−−−−−−→ area. We transform this database

to a database that follows the structure of SIGMOD Record from sigmod.org/publications,

where the information about each collection of papers is directly connected to the node
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that represents the collection. Figure 3.5(b) shows fragments of this database. The FDs

in this database are paper → proc, proc→area, and paper
[paper,proc,area]−−−−−−−−−→ area. We call

this transformation DB2SI. We randomly sample 100 proceedings based on their degrees

in DBLP dataset as our query workload. The FDs in WSU database are offer→course,

offer→subject, and course
[course,offer,subject]−−−−−−−−−−−−→subject. Figure 3.6 depicts the transformation

of our WSU Course dataset to the structure of the Alchemy UW-CSE9 database. We call

this transformation W2AL. The FDs in Alchemy UW-CSE database are offer→course, of-

fer
[offer,course,subject]−−−−−−−−−−−−→subject, and course→ subject. We randomly sample 100 courses from

WSU based on their degrees as our query workload. Table 3.1 shows the average ranking

differences for top 3, 5 and 10 answers from RWR, SimRank and PathSim under DB2SI

and WS2AL. We use meta-walks [proc, area, proc] and [proc, paper, area, paper, proc] over

DBLP and SIGMOD Record, respectively, for PathSim and R-PathSim. We use meta-walks

[course, offer, subject, offer, course] and [course, subject, course] over WSU and Alchemy

UW-CSE, respectively. Because R-PathSim returns the same answers over both transfor-

mations, we do not report its results. According to Table 3.1, the outputs of all algorithms,

except R-PathSim, are significantly different over entity-rearranging transformations.

3.7.3 Efficiency

We evaluate the efficiency of R-PathSim and PathSim over full IMDb and DBLP data. We

transform IMDb to Movielicious (MVL) structure that contains both informative walks and

non-informative walks to evaluate the impact of detecting informative walks in R-PathSim.

This results in a database of 1,272,253 nodes and 2,886,494 edges. As we have explained in

Section 3.7.2, DBLP dataset satisfy some FDs. Thus, we use it to measure the influence of

using meta-walks with skip-labels in the running time of R-PathSim. To explore the impact

of both detecting informative walks and using meta-walks with skip-labels on the efficiency

of R-PathSim, we add a node without value, called authors, that groups authors of the same

paper in DBLP dataset. This modification introduces non-informative walks to the database.

We call the resulting database DBLP+, which contains 1,905,092 nodes and 3,370,169 edges.

We precompute and store commuting matrices for meta-walks of size, i.e., number of labels,

up to 3 to be used in query processing as done in PathSim [4]. MVL, DBLP, and DBLP+

have 16, 16, and 22 meta-walks with sizes less or equal to 3, respectively. It takes 49.5,

154.6, and 156.1 seconds for R-PathSim to precompute and store the commuting matrices

of these meta-walk for MVL, DBLP and DBLP+, respectively, which are reasonable for a

pre-processing step. We have executed PathSim over the same datasets and get almost equal

9alchemy.cs.washington.edu/data/uw-cse
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Table 3.2: Average query time in seconds.
Size of meta-walks MVL DBLP DBLP+

R-PathSim
3 0.058 0.025 0.020
5 0.036 0.035 0.046
7 0.068 0.343 0.233

PathSim
3 0.058 0.024 0.018
5 0.036 0.030 0.046
7 0.068 0.347 0.227

running times as the ones of R-PathSim.

We randomly select 100 movies from MVL and 100 proceedings based on their degrees from

DBLP and DBLP+ and use them as our query workloads. Table 3.2 shows the average query

processing time of R-PathSim and PathSim per query per meta-walk for meta-walks up to

size 7 given that commuting matrices up to size 3 are materialized. The result indicates that

the additional steps in R-PathSim do not significantly increase its running time compared

to that of PathSim.

3.7.4 Effectiveness

We evaluate the effectiveness of R-PathSim over the Microsoft Academic Search (MAS)

dataset. For query workload, we randomly sample 50 conferences based on their degrees from

the dataset. To provide the ground truth, given a conference q we manually group all other

conferences in three categories: similar, which contains all conferences that have the same

domain as q; quite-similar, which includes the conferences in the domains that are closely

related to the domain of q; and least-similar that contain conferences in the domains that are

not strongly related to the domain of q. For example, Data Mining and Databases domains

are strongly related, but Databases and Computer Vision are not. We use Normalized

DCG (nDCG) to compare the effectiveness of R-PathSim and PathSim because it supports

multiple levels of relevance for returned answers [4, 60]. The value of nDCG ranges between

0 and 1 where higher values show more effective ranking. We report the values of nDCG for

top 5 (nDCG@5) and top 10 (nDCG@10) answers.

In the first experiment, we use meta-walk [conf, paper, citation, paper, citation, paper,

conf] to find similar conferences based on their papers’ citations. Since R-PathSim considers

only informative walks of this meta-walk, it will return different results than PathSim. The

average nDCG@5 (nDCG@10) for R-PathSim and PathSim are 0.264 (0.315) and 0.261

(0.313), respectively. Although the value of nDCG for R-PathSim is higher than PathSim,

the difference is not statistically significant according to the paired t-test at significant level

of 0.05. In the second experiment, we evaluate the effectiveness of using meta-walks with

skip-labels. We compute the similarities of conferences based on the keywords in their

36



domains. PathSim uses meta-walk [conf, paper, domain, keyword, domain, paper, conf]

and R-PathSim uses meta-walk [conf, paper , domain, keyword, domain, paper , conf]. The

average nDCG@5 (nDCG@10) for R-PathSim and PathSim are 1.0 (1.0) and 0.640 (0.616),

respectively. R-PathSim significantly outperforms PathSim. Entities of type paper should

not play a role in computing the similarity of conferences based on the keywords of their

domains. Nevertheless, PathSim considers papers in determining these similarities. Hence,

it deems conferences with more papers more similar, while they may not have that many

common keywords. R-PathSim avoids this problem by treating paper as a skip-label. For

example, the top 5 answers of R-PathSim for query SIGKDD are ICDM, IDEAL, PAKDD,

PJW and PKDD. However, the top 5 answers of PathSim for the same query are ICOMP,

IC-AI, ICAIL, ICALP and ICANN.

37



CHAPTER 4: STRUCTURAL DESIGN INDEPENDENCE THROUGH
DATABASE CONSTRAINTS

Our work discussed in Chapter 3 is indeed limited to particular structural variations of

databases. Hence, the proposed algorithm, SR-PathSim, may not be robust against some

other possible variations. Nevertheless, the underlying idea of our approach in Chapter 3 is

actually based on an increase in the expressiveness of a language that describes relationships

between entities over a data graph. Following such approach, in this chapter, we would like

to generalize our solution to address the problem of design independence. In particular,

we leverage the properties of a database due to its imposed constraints to predict possible

structural variations. Then we discuss and prove expressivity of the relationship expressing

language over a data graph that is necessary for the property of design independence.

4.1 BACKGROUND

Data variety is ubiquitous in data management as different data sources may represent

the same information in different forms [29, 61–63]. In particular, databases from the same

data model may represent essentially the same information in different structures or schemas

[17, 18, 29, 41, 42, 58, 64]. A classic example of these structural variations is schema nor-

malization and de-normalization in relational databases [17, 65]. From the early days of

database research, an important goal has been to devise query interfaces that can hide

schematic variations from users so that they do not have to reformulate their queries over

schematic variations to get the same results [42, 47, 66].

Recently, researchers have noticed that the results of unsupervised and supervised machine

learning algorithms over structured data also depend on the schema and structure of the

underlying database [20, 21, 67, 68]. In particular, machine learning algorithms leverage

topological and structural characteristics of the graph datasets, e.g., number of edges between

two nodes in a graph, whose values may change across different schemas and structures for

the same dataset. Thus, these algorithms may deliver accurate results over certain schemas

and structures and be substantially less accurate over other structures used to represent the

same information.

As an example, consider two bibliographic datasets from DBLP1 and SIGMOD Record2

whose fragments are shown in Figure 4.1. Intuitively, these databases represent essentially

the same set of relationships between the same set of paper, conference, and research area

1dblp.uni-trier.de
2sigmod.org/publications
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entities. But, each dataset has its own way of organizing these entities and their relation-

ships. For example, DBLP connects each paper to its research areas and conferences. Given

that all papers in a conference share the same set of research areas, one can also choose

the structure in Figure 4.1(b) for this information and connects research areas directly to

conferences instead of papers. Assume that a user wants to find the most similar research

area to Data Mining according to their conferences and publications. SimRank [2] is a well-

known similarity search algorithm over graphs that finds two node, i.e. two entities, to be

(structurally) similar if they both are similar to another node in the graph. It implements

this idea using random walks over the graph. It finds Data Mining to be more similar to Info

Retrieval than to Databases in Figure 4.1(a). In Figure 4.1(b), however, it declares Data

Mining more similar to Databases than to Info Retrieval.

Hence, to use a data analytics algorithm, the user has to restructure the database to find

the structure over which the algorithm delivers accurate results. Since there is not any clear

guideline on how to find such a desirable structure for the algorithm, one has to do this

through trial and error, which takes a great deal of time and effort from experts who are

familiar with the details of the algorithms. This issue becomes increasingly important as a

user often has to analyze datasets from multiple sources where each dataset has its own style

of structuring information. Moreover, normal users who cannot write programs to change

the structure of the data are not able to use these algorithms effectively.

Ideally, one would like to design an algorithm that returns essentially the same accurate

results over all possible schematic variations of a dataset. Researchers have proposed al-

gorithms that are robust over certain types of schematic variations of the underlying data

[20, 21, 67, 68]. These methods, unfortunately, have two major shortcomings. First, they

are robust only over a subset of all possible and popular schematic variations. Because they

leverage the properties special to the variation over which they are robust, it is not clear

how to generalize these algorithms to be robust against other schematic variations. For

example, Picado et al. propose a learning algorithm over relational databases that is robust

over schema normalization [21], which uses the foreign-key-primary-key links created as the

result of normalization. As such links may not be produced in other schematic variations,

it is not clear how one generalizes this algorithm to other schematic shifts.

Second, current schematically robust systems generally either propose new algorithms [20],

or make significant and complex modifications to the current algorithms [21]. However, cur-

rent well-known data analytics algorithms already been widely adapted to solve various

problems. Hence, to make these algorithms schematically robust, it is easier for the organi-

zation to keep using the current algorithms or make straightforward and simple modifications

to them. Moreover, they have been shown empirically to be effective in multiple domains.
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Thus, a schematically robust version of them will be effective over more representations.

Therefore, the ideal approach to achieve the vision of structurally robust data analytics

should make rather simple modifications to the current algorithms and create a version that

is robust in the face of all popular structural variations.

One generic method is to run an algorithm and over all possible variations of a valida-

tion subset of the database and select the representation with the most accurate answers.

Nonetheless, databases have a large number of possible structural variations [17, 18]. For

example, a relational table may have exponential number of normalizations. Moreover, such

a validation subset is not generally available for unsupervised methods, such as similarity

search. This approach also requires the underlying database be transformed to the desired

representation, which may not be practical for a large and/or constantly evolving databases

that are used by varieties of algorithms, where each is effective over a different representation.

We propose such an approach for the problem of similarity search over graph databases.

Our first observation is to leverage a result by Hull [41], which states that there is not

any information-preserving variation of a relational schema without any constraint beyond

simple renaming of the scheme elements. In other words, constraints give rise to schematic

variations. We extend this result for graph databases and predicts schematic variations for

a database according to the constraint in the database. Then, we provide an algorithm that

computes information-preserving variations of a given pattern in the graph given a set of

constraints. We show that these variations may go beyond the simple paths, which are used

to represent relationships in similarity search, and require a more expressive language to

be expressed over graphs. Finally, we extend an available and well-known similarity search

algorithm called PathSim to compute the similarities using the extended set of patterns.

We must note that, while our work discusses structural variations, we do not assume that

such variations are given to users. That is, we do not provide a procedure to transform a user

query according to a given structural variation. Instead, we provide an ability for users to

express their intentions across various structure of databases, and guarantee the robustness

(and effectiveness) of the algorithm.

4.2 RELATED WORKS

One generic approach to achieve schematic robustness is to define a universal schema to

which all possible representations of a database can be transformed and use and/or develop

algorithms that are effective over this representation. Nevertheless, the experience gained

from the idea of universal relation, indicates that such representation does not often exist

[17, 42]. One also has to transform their database to the universal representation, which may
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Figure 4.1: Example of two bibliography databases.

be quite complex considering the intricacies associated with defining such a representation

and not practical for a large database.

Researchers have also analyzed the stability of random walk algorithms in graphs against

relatively small perturbations in the data [48–50]. We also seek to instill robustness in graph

mining algorithms, but we are targeting robustness in a new dimension: robustness in the

face of variations in the representation of data. Researchers have provided systems that help

users with transforming and wrangling their data [51–54]. We also address the problem of

data preparation but using a difference approach: eliminating the need to wrangle the data.

Schema mapping has been an active research area for the last three decades [17]. In

particular, researchers have defined schema mappings over graph databases as constraints

in some graph query language in the context of data exchange [32]. As opposed to the

transformations in our work, the original and transformed databases in those settings may

not represent the same information. We also focus on evaluating the robustness of similarity

search algorithms rather than traditional questions in schema mapping and data exchange,

such as computing the transformed database instances.

Researchers have previously proposed a keyword query interfaces over XML dataset that is

provably returns the same answers across databases with equivalent information content but

using different data structures [19]. Over graph database, our work in [68] have proposed

a steps towards the same goal over graph databases. They presented an extension to a

similarity search algorithm so that the algorithm is schematically robust across databases

that may present edge label using a relationship node, e.g., non-entity nodes or nodes without
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values. In the work of this chapter, we investigating more on this concept and also focus on

a wider variety of representation shifts that preserves information content.

4.3 GRAPH DATABASES AND CONSTRAINTS

We fix a countably infinite set of node ids denoted by V . Let L be a finite set of labels.

A database D over L is a directed graph (V,E) in which V is a finite subset of V and

E ⊆ V ×L× V . We denote an edge from node u to node v whose label is a as (u, a, v). We

say that (u, a, v) ∈ D whenever (u, a, v) ∈ E. Similarly, we say that v ∈ D whenever v ∈ V .

Database constraints restrict the instances of a schema. Constraints are usually expressed

as logical formulas over the labels in databases [69–71]. Two well-known and widely used

types of constraints are tuple-generating and equality-generating dependencies [69, 70]. A

tuple-generating dependency (tgd for short) over schema L is in the form of ∀x̄(φ(x̄) →
∃ȳψ(x̄, ȳ)) where x̄ and ȳ are sets of variables, and φ and ψ are logical formulas in a query

language over L. An equality-generating dependency (egd for short) over schema L is in

the form of ∀x̄(φ(x̄) → x1 = x2) where x̄ is a set of variables, x1, x2 ∈ x̄, and φ is logical

formulas in a query language over L.

Example 4.1. Database shown in Figure 4.1(a) contains a constraint (x1, area, x3) ∧ (x3,

published-in, x4) ∧ (x2, published-in, x4)→ (x1, area, x2).

A commonly studied query language over graph databases is conjunctive regular path

queries (conjunctive RPQ), which is used to express tgd and egd constraints over graph

databases [32, 71–73]. The RPQ p over schema L is defined by the following grammar.

p := ε | a (a ∈ L) | a− (a ∈ L) | p · p | p+ p | p∗ (4.1)

in which ε is an empty label, − is a reverse traversal of an edge, · is a concatenation, + is

a disjunction, and ∗ is a Kleene star. To avoid parentheses and ambiguity, it is assumed

that the reverse traversal has the highest priority, then Kleene star, then concatenation and

then disjunction. Example of an RPQ over a schema of a database shown in Figure 4.1(b)

is field · published-in−. The RPQ p defines a binary relation over database nodes. More

precisely, the result of evaluating p on database D is a set of pairs of nodes in D such that

there is a path defined by p between the two nodes. We denote the result of evaluating

p over D as [[p]]D. For example, given label a in the schema of D, the result of [[a]]D is

a set of pairs of nodes {(u, v)} where there is an edge with label a from u to v. Let x̄ =

(x1, . . . , xn) and ȳ = (y1, . . . , ym) be tuples of distinct variables. A conjunctive RPQ is a
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formula φ(x̄) of the form ∃ȳ((z1, p1, z
′
1) ∧ ... ∧ (zk, pk, z

′
k)) where pi is an RPQ and zi, z

′
i ∈

{x1, . . . , xn, y1, . . . , ym}, 1 ≤ i ≤ k [32, 73]. We call (zi, pi, z
′
i) an atom of φ(x̄).

A schema S is a pair (L,ΓS) in which L is a (finite) set of labels and ΓS is a finite

set of constraints. By the abuse of notation, we say that a label l ∈ S if l ∈ L and a

constraint γ ∈ S if γ ∈ ΓS. Each database of schema S = (L,ΣS) is a database over

L such that all constraints in ΣS holds. Database constraints are generally expressed as

sentences in some logical language, usually a subset of the first order logic [17]. Tgds and

egds are arguably the most popular and frequently used types of database constraints [17].

They generalize popular constraints, such as functional and multi-valued dependencies, and

provide a reasonable trade-off between the expressivity and efficiency of constraint checking

and implication. A full tgd does not have any existential variable in its conclusion. We

denote the set of all databases of schema S as Inst(S).

4.4 STRUCTURAL ROBUSTNESS AND VARIATIONS

4.4.1 Structural Robustness

Following the discussion of design independence in Chapter 3, intuitively, a structurally-

robust query answering algorithm should return essentially the same (list of) answers for the

same query across databases that contain the same information content. Researchers have

leveraged the concept of invertible transformation to formalize the equivalence of information

stored in different databases [18, 41]. A transformation from schema S to schema T is

a (computable) function from Inst(S) to Inst(T ), which maps each database of S to a

database of T . We denote a transformation from S to T as ΣST . The transformation ΣST

is invertible if there is a transformation ΣTS from T to S such that, for each database

I ∈ Inst(S), ΣTS maps ΣST (I) to I, i.e., ΣTS(ΣST (I)) = I. In other words, the composition

of ΣST (I) and ΣTS(I), shown as ΣST (I)◦ΣTS is equivalent to the identity transformation id

that maps each database to itself. In this case, we call ΣTS the inverse of ΣTS and denote it

as Σ−1
ST . If there is an invertible transformation from schema S to T , one can reconstruct the

information in each database I from the information available in ΣST (I). In other words,

the transformed database contains sufficient information to rebuild the original one. Thus,

ΣST (I) has at least the same amount of information I. As ΣST maps each database of

schema S to a database with at least the same amount of information in schema T , schema

T has at least the same information capacity as S.

Transformation ΣST establishes a bijection between Inst(S) and Inst(T ), if the domain

of Σ−1
ST is exactly Inst(T ), i.e., all databases of schema T . In this case, we call transformation
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ΣST information-preserving, and schemas S and T are information-equivalent. We denote

the fact that S and T are information-equivalent using transformation ΣST as S
ΣST≡ T or

simply as S ≡ T if the information about ΣST is not needed.

Next, we present the definition of a structurally robust (robust for short) algorithm.

Roughly speaking, a robust algorithm must return the same results for the same input

query over a database and its information-preserving transformation. Two (ranked) list of

node ids are equivalent if they contain exactly the same node ids at the same positions. Two

empty lists of answers are equivalent.

Definition 4.1. Given schemas S and T such that S
ΣST≡ T , an algorithm is robust under

ΣST if it returns equivalent answers for every input query q over databases I ∈ Inst(S) and

ΣST (I) ∈ Inst(T ).

An algorithm is robust under a set of transformations if it is robust under all members of

the set. Using the definition of robustness, we have the following proposition.

Proposition 4.1. Given schemas S and T such that S
ΣST≡ T , if there is not any bijection

between node ids in S and T , no algorithm will be robust under ΣST .

Proof. Given database I ∈ Inst((S)), let ΣST (I) have some node id v that is not present

in I. In this case, every (effective) algorithm should return an empty answer for the input

query v over I but a non-empty list of answer(s) over ΣST (I). According to Definition 4.1,

there will not be any robust algorithm under ΣST . The same argument holds for the case

where I has a node id that is not present in ΣST (I).

Thus, we restrict our attention in this chapter to transformations between schemas S and T

that map database I ∈ instS to J ∈ Inst(T ) such that there is bijection between nodes of

I and J . For simplicity, if a node v is in I, we also refer to its bijection in J as v.

4.4.2 Structural Variations

Definition 4.1 does not specify the language of (information-preserving) transformations.

To characterize the structural variations of a schema, one needs to express information-

preserving transformations in some language. Researchers usually use declarative (schema)

mappings to express schematic variations in graph and relational databases [32, 74]. Roughly

speaking, a transformation between schemas S and T is expressed as a set of first order

logical formulas φS(x̄) → ψT (ȳ) where φS(x̄) and ψT (ȳ) are queries over schemas S and T ,

respectively. More precisely, transformation ΣST between graph schemas S and T is a finite
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set of rules φS(x̄) → ψT (x̄) such that φS(x̄), i.e., premise, and ψT (ȳ), i.e., conclusion, are

conjunctive RPQs over S and T , respectively [32].

Example 4.2. Consider a transformation Σ1a,1b from schema shown in Figures 4.1(a) to the

schema shown in Figures 4.1(b) that adds an edge field for every path area·published-in,

e.g., (x1, area · published-in, x2) → (x1, field, x2), and keeps all existing edges of label

published-in, e.g., (x1, published-in, x2) → (x1, published-in, x2). Because of a con-

straint as described in Example 4.1, this transformation is information preserving. Intu-

itively, this particular constraint over Figure 4.1(a) implies that every paper published in the

same conferences are related to the same set of research areas. Hence, one may change the

structure in Figure 4.1(a) such that a research area is first connected to a conference, then

a paper is connected to the conference it is published in as described in Σ1a,1b.

Transformation ΣST maps each database I ∈ Inst(S) to J = ΣST (I) ∈ instT if for each

rule φS(x̄)→ ψT (x̄) in ΣST , we have ū ∈ [[ψT (x̄)]]J if ū ∈ [[φS(x̄)]]I .

In the aforementioned definition, the mapped database may contain more information

than the original one. For example, the mapped database may have more nodes than the

original one. We further limit the language of transformations to enforce the restrictions of

Proposition 4.1. First, if the conclusion of a rule in transformation ΣST contains existentially

quantified variables, for at least some database I, ΣST (I) will have some node ids that are not

present in I. Hence, we restrict our attention to the transformations in which the conclusion

of each rule does not have any existentially quantified variable. In this case, we can write the

transformation as a set of rules in the form of φS(x, y) → (x, exp, y) where (x, exp, y) is an

RPQ atom over T [32]. Second, based on Proposition 4.1, exp must be either in the form of

(x, l, y) or (x, l−, y) where l is a label in schema T . Otherwise, if exp contains concatenation,

i.e., ·, or Kleene star, i.e., ∗, at least one database I ∈ Inst(S) will be mapped to a database

J ∈ Inst(T ) such that there is no bijection between the nodes in I and J . For example, a

rule (x, lS, y) → (x, lT .pT , y), where lS is a label in S, and lT and pT are labels in schema

T , maps database v1
lS→ v2 in Inst(S) to v1

lT→ v3
pT→ v2 in Inst(T ) where there is not any

bijection between their nodes. Moreover, if exp in the rule φS(x, y) → (x, exp, y) contains

disjunction, i.e., +, the transformation will not be a function. Hence, in the rest of this

chapter, we assume that each rule in every transformation is in the form φS(x, y)→ (x, l, y)

where l is a label in schema T . Our results extends for the case of φS(x, y) → (x, l−, y) by

exchanging the position of x and y in the rule.

We also use the closed world semantic for our transformations [75]. In other words,

given transformation ΣST from schema S to T , for every edge (v, l, u) in database J ∈
Inst(T ), which is a transformation of I ∈ Inst(S), we have a rule φS(x, y) → (x, l, y) in
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ΣST where (v, u) ∈ [[φS(x, y)]]I . Using other semantics, e.g., the open world semantic [32],

the schema mapping may not express a function and/or the transformed database may have

more information, e.g., nodes, than the original one.

4.4.3 Information Preservation

Next, we present the full characterization of schemas that have structural variations.

It helps us to identify the set of all information-preserving transformations of a schema,

which we use to design robust algorithms. Consider transformation ΣST from schemas S

to T and ΣTR from schemas T to R. The composition of ΣST and ΣTR, denoted as ΣST◦
ΣTR, is a transformation from S to R such that if J = ΣST (I) and K = ΣTR(J), then

K = (ΣTR ◦ ΣST )(I).

We have the following proposition by applying the definitions of the inverse and compo-

sition of transformations.

Proposition 4.2. Given schemas S and T such that S
ΣST≡ T , for all databases I ∈ Inst(S)

and J ∈ Inst(T ), we have I |= Σ−1
ST ◦ ΣST and J |= ΣST ◦ Σ−1

ST .

Proposition 4.2 extends the results on the lossless decomposition of a relational schema [76]

and the ones on the inverse of a relational schema mapping in [74].

Each rule in ΣST◦ ΣTR is created by replacing an atom (x, l, y) in the premise of a rule

in ΣTR by the premise of a rule in ΣST whose conclusion is (x, l, y). According to the

definition of transformation, the resulting set of rules express exactly the composition of

ΣST◦ ΣTR. The composition of ΣST and Σ−1
ST is a set of rules where the premise of each rule

is a conjunctive RPQ and its conclusion is a single RPQ atom in form of (x, exp, y) where

exp is either l or l− where l is a label in schema S. Hence, ΣST◦ Σ−1
ST is a set of full tgds.

The set of tgds introduced by Proposition 4.2 is necessary to have information-preserving

transformations for schema S, but it is not sufficient. We show that S must satisfy an

additional group of tgds to have information-preserving variations. Let σ denote the set of

tgd constraints in Σ−1
ST ◦ ΣST . Given σ, we create another group of tgd constraints over S,

denoted as σ∗, as follows. For each tgd constraint in σ whose conclusion is in the form of

χ1(x, y)→ (x, l−, y), we replace it with constrain χ1(y, x)→ (y, l, x). Then, for all tgds with

the same atom in their conclusions, i.e., χ1(x, y) → (x, l, y), ..., χm(x, y) → (x, l, y) in σ, we

construct the constraint (x, l, y)→ χ1(x, y)∨ ...∨χm(x, y). For each label l′ in LS that does

not appear in a conclusion of any constraint in σ, we create the constraint (x, l′, y)→ FALSE,

which means that there is not any database in Inst(S) with any edge whose label is l′.
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Proposition 4.3. Given transformations ΣST from S to T and ΣTS from T to S, let σ

denote ΣST ◦ ΣTS. ΣST is information-preserving with inverse ΣTS if and only if, for every

database I ∈ Inst(S), we have I |= σ ∧ σ∗.

Proof. The necessity is proved using Proposition 4.2. Let ΣST maps database I ∈ Inst(S)

to J , and ΣTS maps J to I ′. Since I and I ′ satisfy σ, they both contain every node and edge

that is generated by applying ΣTS to J . Since I and I ′ satisfy σ∗, every node and edge in

both I and I ′ is created by applying at least one rule in ΣTS to J . Because I and I ′ do not

contain any node or edge in addition to the ones generated by applying ΣTS to J , we have

I = I ′. Thus, ΣST establishes a bijection between Inst(S) and Inst(T ).

Example 4.3. Similar to Example 4.2, one can define a transformation Σ1b,1a from the

schema of Figures 4.1(b) to the schema of Figures 4.1(a). Σ1b,1a consists of two rules: (x1,

field ·published-in−, x2)→ (x1, area, x2) and (x1, published-in, x2)→ (x1, published

-in, x2). The composition Σ1b,1a◦Σ1a,1b results in a constraint (x1, area, x4)∧(x4, published

-in, x3) ∧ (x2, published-in, x3) → (x1, area, x2) which is equivalent to the constraint of

the database shown in Figure 4.1(a) as described in Example 4.1.

According to the definition of information-preserving transformations, if ΣST is informa-

tion-preserving so as Σ−1
ST . Thus, the results of Proposition 4.3 also applies to the databases

of schema T . In other words, if γ denotes ΣTS ◦ ΣST , for each J ∈ Inst(T ), we have

J |= γ ∧ γ∗. We should note that the composition of two transformations whose rules are

written in conjunctive RPQ language cannot always be expressed as a tgd in conjunctive

RPQ [32]. Hence, we focus our attention in this chapter to transformation ΣST such that

ΣST ◦ Σ−1
ST is a tgd in conjunctive RPQ. We refer an information-preserving transformation

simply as a transformation.

4.5 ROBUST SIMILARITY SEARCH

4.5.1 Robustness of Current Methods

To the best of our knowledge, frequently used structural-based similarity search algorithms

are based on random walk, e.g., RWR [5], pairwise random walk, e.g., SimRank [2] and P-

Rank [3], or path-constrained framework, e.g., PathSim, [4, 44]. There are other similarity

search algorithms that extend the aforementioned algorithms such as common neighbors,

Katzβ measure, and commute time [77].
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Similarity score computed by algorithms that use random walks and pairwise random

walks are largely influenced by the topology of the graph. Because some information pre-

serving transformations may modify the topological structure of a database, a structural-

based similarity search algorithms such as RWR and SimRank are not robust under these

variations as shown in our empirical studies in Section 4.9.

Two entities may be related via multiple relationship patterns, e.g., paths, in a database

where each pattern may represent a different type of relationship. The degree of similarity

between two entities may largely depend on the type of relationship between them. For

instance, consider again Figure 4.1. A user may be interested in finding similar papers

based on the conferences in which they are published rather than their common research

areas. As another example, consider a database with researchers, conferences in which they

publish, and their affiliations. Some users may want to find similar researchers from the

point of view of their affiliations, but other users may like to find similar ones based on

their shared conferences. Thus, one often has to consider the type of relationship between

two entities to define an effective similarity metric with a clear semantic. Path-constrained

similarity search algorithms, such as PathSim, follow this approach [4, 44]. They allow users

to supply a path template, called meta-path, that specifies the type of relationship between

entities in their queries. A meta-path in Figure 4.1 is m1 : published-in · published-in−,

which reflects the relationship between two papers through the conference in which they

are both published. Each instance of a meta-path in database D is a path in D whose

sequence of edges labels match the sequence of labels in the meta-path. For example, using

the notion of a walk as defined in Chapter 3, [Similarity Mining, published-in, SIGKDD,

published-in−, SimRank] is an instance of m1 in Figure 4.1(b). The PathSim similarity

score between two entities u and v in a database D given a meta-path p is

simp(u, v,D) =
2× |u p v|

|u p u|+ |v  p v|
(4.2)

where |u p v|, |u p u| and |v  p v| denote the numbers of (u, p, v), (u, p, u) and (v, p, v)

path instances in D, respectively. The robustness of PathSim or other path-constrained sim-

ilarity search methods largely depends on the representation of the underlying relationships.

Example 4.4. Consider two representations of bibliographic data in Figure 4.1. Suppose a

user wants to find similar research areas to Data Mining based on their shared conferences.

In Figure 4.1(a), the user uses meta-path p1 : area· published-in · published-in− · area−
to represent the relationship and compute similarity scores between research areas. PathSim

then finds Data Mining more similar to Info Retrieval than to Databases. However, in

Figure 4.1(b), the same user may use meta-path p2 : field·field− to compute similarity
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scores between research areas. This meta-path finds that both Info Retrieval and Databases

are equally similar to Data Mining.

4.5.2 Achieving Robustness

Example 4.4 illustrates that there may not be any meta-path over some representations

of a dataset to express a desired relationship. If a user wants to find the similarity of

research areas based on their shared conferences, she can use p2 over the representation

in Figure 4.1(b), but she cannot find any meta-path in Figure 4.1(a) that expresses such

a relationship. A candidate could be p1, but it has additional information of the set of

papers published in the conferences. On the other hand, the user may like to measure the

similarities of research areas based on their shared conferences and the papers published in

those conferences; therefore, she uses meta-path p1 in Figure 4.1(a). Nevertheless, there is

not any meta-path in Figure 4.1(b) that exactly expresses that relationship. The user should

use the expression that also includes information about publications, and the represented

relationship should be based on shared conferences.

One may solve this problem by using a language that is more expressive than the set of

meta-paths to express relationships between entities in a database.

Example 4.5. Following Example 4.4, one can create an equivalent relationship to the one

expressed by p2 in Figure 4.1(a) by modifying p1 to treat the set of all paths through some

papers from a conference to a research area as a single path, i.e, skip details of entities visited

along those paths.

The resulting pattern from Example 4.5 considers only the existence of a connection be-

tween a research area and a conference in the database as opposed to p1 that takes into

account all papers that connect a research area to a conference. This pattern intuitively

represents an equivalent relationship over Figure 4.1(a) to the one conveyed by p2 over

Figure 4.1(b). Hence, one has to define and add an operation that implements the afore-

mentioned skipping behavior to the language that describes relationships between entities.

On the other hand, the user may find a relationship expression p1 and the results returned

over Figure 4.1(a) to be more desirable. That is, similarity of research areas are based on

shared conferences and the publications in those conferences.

Example 4.6. Following Example 4.4, one can modify p2 to be able to visit the publications

of conference while visiting a conference. This way, we will get a relationship between two

research areas that takes into consideration both the conferences and publications shared
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between the them in Figure 4.1(b). The resulting pattern in Figure 4.1(b) expresses an

equivalent relationship to what p1 represents over Figure 4.1(a).

Following this approach, one should be careful not to increase the expressivity of the

relationship language too much as it takes a long time to find all instances of a complex

pattern and compute its similarity score in a large database.

We present a new relationship language that is expressive enough to represent equivalent

relationships across various representations of the same dataset. We also show that using

this relationship language, there is a similarity algorithm that returns equal similarity scores

between every pair of corresponding entities over different representations of the same infor-

mation. More precisely, an algorithm that computes a similarity score using Equation 4.2

where p is written in our proposed language is structurally robust.

To implement the solution presented in Example 4.6, one may use the idea of nested

operation in the nested regular expression (NRE) language [32]. Let [p] denote a nested

path of p where a path (u, [p], u) exists if and only if there exists a node v such that a path

(u, p, v) exists. To achieve same results as p1 over Figure 4.1(a), the user should use the

pattern p4 : field · [pubslihed-in−] · [pubslihed-in−] ·field− to compute similarity score

between research areas. That is, similar research areas are based on shared conferences,

and the strength of this relation is based on the number of publications published in that

conferences.

We define the extension to NRE namely rich-relationship expression (RRE), over schema

S as

p := ε | a (a ∈ S) | p− | p∗ | p · p | p+ p | [p] | ddpcc (4.3)

where [ ] denotes a nested operation and dd cc denotes a skip operation.

Since Equation 4.2 used the number of instances of a specified relationship pattern when

calculating the similarity score, we define an instance of an RRE as follows. An instance of

some RRE in a graph database D is a ternary relation (u, v, s) representing a graph traversal

over D from node u to node v whose actual traversal are recorded in a sequence s. Each

entry in the recorded sequence s is either a node id, an edge label or a string of pattern.

Equivalence between two RRE instances is defined naturally by entry-wise comparison.

Given a sequence s = 〈s1, ..., sm〉 and t = 〈t1, ..., tn〉 of m and n entries, respectively, let

s • t = 〈s1, ..., sm, t2, ..., tn〉 which is defined only if sm = t1; and let s̄ = 〈s̀m, ..., s̀1〉 where,

for each i = 1...m, s̀i = si if si represents a node and s̀i = s−i otherwise. A set of instances

of an RRE p in a database D in schema S, denoted by ID(p), is defined as follows. For a

given label a ∈ S, arbitrary RREs p, p1 and p2 over S, we have
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ID(ε) = {(u, u, 〈u〉) | u is a node in D} (4.4)

ID(a) = {(u, v, 〈u, a, v〉) | (u, a, v) ∈ D} (4.5)

ID(p−) = {(v, u, s̄) | (u, v, s) ∈ ID(p)} (4.6)

ID(p1 · p2) = {(u, v, s1 • s2) | ∀w, (u,w, s1) ∈ ID(p1) and (w, v, s2) ∈ ID(p2)} (4.7)

ID(p1 + p2) = {(u, v, s) | (u, v, s) ∈ ID(p1) ∪ ID(p2)} (4.8)

ID(p∗) = {(u, v, s) | (u, v, s) ∈ ID(ε) ∪ ID(p) ∪ ID(p2) ∪ ...} (4.9)

ID(ddpcc) = {(u, v, 〈u, p̃, v〉) | ∃s, (u, v, s) ∈ ID(p)} (4.10)

ID([p]) = {(u, u, s • 〈v, u〉) | ∀v, (u, v, s) ∈ ID(p)} (4.11)

where pn is a concatenation of n p’s, and p̃ is a string of a copy of p with all dd cc removed,

e.g., ˜dda · bcc = a · b. We define the definition of instances of an RRE for a particular pair of

nodes u and v in database D such that Iu,vD (p) = {(u, v, s) | ∀s, (u, v, s) ∈ ID(p)}. Further,

if a database D is clear from context, we may write Iu,vD (p) and ID(p) simply as Iu,v(p)
and Iu,v(p), respectively. For the remaining of this chapter, we assume all relationships are

RREs.

Proposition 4.4. Given a schema S, a ∈ S, p, p1 and p2 are arbitrary RRE expressions

over S, and a database D ∈ Inst(S) where nodes u and v are in D, the following properties

hold.

(1) If Iu,vD (p) 6= ∅, then |Iu,vD (ddpcc)| = 1. Otherwise, |Iu,vD (ddpcc)| = 0.

(2) Iu,vD (ddacc) = Iu,vD (a)

(3) |Iu,vD (p1 · p2)| = ∑w∈D |Iu,wD (p1)||Iw,vD (p2)|
(4) If (u, p1, v) ∈ D if and only if (u, p2, v) ∈ D, then |Iu,vD (ddp1cc)| = |Iu,vD (ddp2cc)|.
(5) |Iu,uD ([p])| = |Iu,uD (p · ddp−cc)|

Proof. For (1) and (2), the statements hold directly from definitions of path instances.

For (3), proofs are done by counting. For (4), assume ∃(u, p1, v) ∈ D. We have (u, p1, v)

∈ D if and only if (u, p2, v) ∈ D, and so Iu,vD (p1) 6= ∅ if and only if Iu,vD (p2) 6= ∅. That

is, |Iu,vD (ddp1cc)| = 1 if and only if |Iu,vD (ddp2cc)| = 1. Otherwise, Iu,vD (p1) = Iu,vD (p2) = ∅,
and so |Iu,vD (ddp1cc)| = |Iu,vD (ddp2cc)| = 0. For (5), by definitions, (u, p, v) ∈ D if and only

if (u, p̃, v) if and only if (v, p̃−, u). Hence, |Iu,uD ([p])| = |{(u, u, s • 〈v, u〉) | ∀v, (u, v, s) ∈
ID(p)}| = |{(u, u, s•〈v, p̃−, u〉) | ∀v, (u, v, s) ∈ ID(p)}| = |{(u, u, s•〈v, p̃−, u〉) | ∀v, (u, v, s)
∈ ID(p) and (v, u, 〈v, p̃−, u〉) ∈ ID(ddp−cc)}| = |Iu,uD (p · ddp−cc)|.

Given a transformation γ : φ(x̄) → (x1, a, x2), one can construct an undirected graph
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Gγ = (V,E) such that V = {x̄} and E is a set of an edge (xi, p, xj) where (xi, p, xj) is an

atom in φ(x̄). We say that γ is acyclic if Gγ contains no cycle. In the following theorem, we

assume that the premise of every transformations are acyclic.

Theorem 4.1. Given two schemas S and T , for every transformation ΣST where S
ΣST≡ T ,

for every pattern p over S, there exists a pattern p′ over T such that, ∀D ∈ Inst(S), ∀u, v
∈ D, |Iu,vD (p)| = |Iu,vΣST (D)(p

′)|.

Proof. If every label in the pattern p exists in both schemas S and T , we have that, for each

label a ∈ S appearing in p, ∀u′, v′ ∈ D, (u′, a, v′) ∈ D if and only if (u′, a, v′) ∈ ΣST (D).

Clearly, |Iu,vD (p)| = |Iu,vΣST (D)(p)|.
Suppose p = ddrcc for some pattern r over S. By Proposition 4.4(4), if there exists

a pattern r′ over T s.t. |Iu,vD (r)| > 0 if and only if |Iu,vΣST (D)(r
′)| > 0, we have |Iu,vD (p)|

= |Iu,vΣST (D)(ddr′cc)|. Also, by Proposition 4.4(5), one may write p · ddp−cc instead of [p].

Hence, we may consider a pattern p without any use of dd cc or [ ]. Further, since I(p∗) =

I(ε)∪I(p)∪I(p2)∪ ..., if there exists p′ such that |Iu,vD (p)| = |Iu,vΣST (D)(p
′)|, then |Iu,vD (p∗)| =

|Iu,vΣST (D)(p
′∗)|. Hence, we may also consider a pattern p without the use of ∗.

Assume p = p1 + ...+ pm where p1, ..., pm are distinct and contain no ‘+’.

We first show that, for each i = 1...m, there exists a pattern p′i over T s.t. ∀u, v ∈ D,

|Iu,vD (pi)| = |Iu,vΣST (D)(p
′
i)| using strong induction over the number of concatenations in pi.

Clearly, if pi = a or pi = a− where a ∈ S and a ∈ T , then the statement holds. Otherwise,

since ΣST is information preserving, there exists k > 0 transformation rules in its inverse s.t.

φ1(x1, x2, x̄) → (x1, a, x2), ..., φk(x1, x2, x̄) → (x1, a, x2). Because each rule is acyclic, one

can construct a pattern p′i,j that traverses φj(x̄) from x1 to x2 for each j = 1...k. We have

that, ∀u, v ∈ D, (u, a, v) ∈ D if and only if
∨
j=1...k φj(u, v, x̄) if and only if (u, p′i1 + ...+p′ik, v)

∈ ΣST (D). Let p′i = ddp′i1 + ...+ p′ikcc. By Proposition 4.4(4), |Iu,vD (pi)| = |Iu,vΣST (D)(p
′
i)|. The

proof extends for the case where p = a−.

Suppose the statement holds for any pi that contains up to k concatenations. Without los-

ing generality, let pi = pi,1 ·pi,2, for some pi,1, pi,2 6= ε, containing k+1 concatenations. Hence,

pi,1 and pi,2 contain at most k concatenations. Consider that, ∀u, v, w ∈ D, there exists ri1

and ri2 in T (D) s.t. |Iu,wD (pi1)| = |Iu,wΣST (D)(ri1)| and |Iw,vD (pi2)| = |Iw,vΣST (D)(ri2)|. Thus |Iu,vD (p)|
=
∑

w∈D |Iu,wD (pi1)||Iw,vD (pi2)| =
∑

w∈ΣST (D) |Iu,wT (D)(ri1)||Iw,vΣST (D)(ri2)| = |Iu,vΣST (D)(ri1 · ri2)|.
That is, p′i = ri1 · ri2 satisfies the claim.

Next we show that p′j = pi, for each i 6= j. Consider if p′j = p′i, where i 6= j, and there is

no other such p′j. There must exist a transformation rule in the inverse of ΣST that maps to

multiple labels in S, and there is no rule that maps to each of those labels. Hence, ΣST is

not information preserving.
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Using an induction over the number of disjunction over p, we have that there exists a

pattern p′ = p′1 + ...+ p′k s.t. the theorem holds.

We restrict our attention to a transformation with an acyclic premise in order to reduce

the expressivity of the relationship language and keep the computation of similarity scores

efficient. A cyclic premise allows multiple traversals from one variable to another along the

premise, and requires an indicator in the relationship language where two variables along

the traversal are the same, e.g., starting and ending nodes in a cycle are the same. For

instance, consider the relationship pattern representing the premise of a cyclic tgd (x1, a, x2)

∧(x2, b, x3)∧(x3, c, x4)∧(x1, d, x3)∧(x2, e, x4)→ (x1, f, x4). It is not possible to rewrite this

pattern to an equivalent one without a conjunction, e.g., ∧. That is, the premise must be

rewritten in the form (x1, exp, x4) for some RRE exp. To remove the conjunction between

in (x1, a, x2) ∧ (x2, b, x3), one may write (x1, a · b, x3). However, because x2 is specified in

(x2, e, x4), x2 cannot be removed, and so this conjunction is necessary. Hence, the language

to properly express this relationship pattern should be a conjunctive RRE expression. By

adding conjunction to the relationship language, as the patterns become more complex, it

will take longer to compute the similarity scores between nodes. The result of Theorem 4.1

extends for general tgd constraints if conjunction is added to our proposed relationship

language.

The following corollary is an immediate result of Theorem 4.1.

Corollary 4.1. Given a database D of a schema S, for every transformation ΣST for some

schema T , there is a mapping M between the set of patterns over S and the set of patterns

over T such that, for a given pattern p over S, we have that ∀D ∈ Inst(S), ∀u, v ∈ D,

simp(u, v,D) = simM(p)(u, v,ΣST (D)).

Corollary 4.1 guarantees that, for each pair of entities u and v and pattern p between

them over a dataset, one can always find an equivalent pattern with equal similarity score

to p between u and v on other variations of the database. Hence, the returned ranked list

of answers to a similarity query across databases under this transformation are always the

same. We call the algorithm that uses Equation 4.2 to compute similarity on RRE patterns

Relationship-Similarity (SR-PathSim).

One may define RWR or SimRank scores between entities based on a particular relation-

ship pattern between entities [4]. RWR computes a similarity score between nodes u and v

in a dataset using the steady-state probability that a random walk from u will stay at v.

SimRank, on the other hand, computes the score based on the probability that two random

walks from u and v are met at a vertex in a data graph. Technically, the probability of a
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random walk from u to v computes the chance that a walk from u hops from a node to its

neighbor repeatedly until it reaches v. Each hop, hence, is intuitively defined as a single edge

between two nodes. However, when given a relationship pattern, a hop is defined only if

there is a walk that follows and completes the given pattern from one node to another node.

Following this idea, we can use the same measurement as SimRank and RWR to compute

similarity scores over a relationship pattern as similarly specified in SR-PathSim. Using a

similar proof to Theorem 4.1, we prove the following proposition. Let RWRp(u, v,D) and

SimRankp(u, v,D) denote a similarity score between nodes u and v computed using RWR

and SimRank scoring function that only consider walks that follows RRE p.

Proposition 4.5. Given a database instance D of a schema S, for every transformation

ΣST for some schema T , there is a mapping M between a set of patterns over S and a set of

patterns over T such that, for a given pattern p over S, we have ∀D ∈ Inst(S), ∀u, v ∈ D,

RWRp(u, v,D) = RWRM(p)(u, v,ΣST (D)) and SimRankp(u, v,D) = SimRankM(p)(u, v,ΣST (D)).

Proof. The proof is similar to the one of Theorem 4.1. Specifically, RWR and SimRank

assume that the weight of connectivity between two nodes in a data graph depends on the

number of instances of the relationship pattern in the database. The weight matrices are

then used to compute similarity score between two nodes.

4.5.3 Computing Similarity Scores

For an expression with only concatenations, the number of RRE instances can be computed

using commuting matrix [4]. Given labels l1, ..., lm in a schema S, a commuting matrix of an

expression p = l1 · ... · lm over database D is Mp = Al1Al2 ...Alm where Ali is an adjacency

matrix that represents a number of edges of label li between pairs of nodes in D. Each

entry Mp(u, v) represents the number of instances of p from node u to node v in D. Given

a commuting matrix, we can compute a similarity score simp(u, v,D) as 2Mp(u,v)

Mp(u,u)+Mp(v,v)
[4].

We extend the computation of commuting matrix for RRE expressions as follows. Given

matrices X and Y, let > be a boolean operation such that each entry (i, j) of X > Y is 1 if

X(i, j) > Y(i, j) or 0 otherwise, and diag{X} denote a diagonal matrix of X. Given a label

a and arbitrary expressions p, p1 and p2 over database D in schema S, we have Ma = Aa,

Mp− = MT
p , Mp1·p2 = Ap1Ap2 , Mp1+p2 = Ap1 + Ap2 if p1 6= p2, Mp1+p2 = Ap1 = Ap2 if p1

= p2, Mddpcc = Mp > 0, and M[p] = diag{Mp(M
T
p > 0)} where 0 denotes a matrix whose

entries are zero.

Since computing a commuting matrix for RRE expressions p over database D still follow

standard matrix operations, the complexity is bounded by O(m|V |3 + n|V |2) where m de-
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notes the number of matrix multiplications, e.g., the number of concatenations and nested

operations in p, n denotes number of other operations, and |V | denotes the number of nodes

in D. Therefore, SR-PathSim still has the same complexity as that of PathSim.

Nevertheless, one may reduce the complexity by exploiting the use of parenthesis when

constructing an expression p. For instance, consider an expression p = l1 · l2 + l1 · l3 for

some labels l1, l2 and l3. The commuting matrix for p can be computed as Al1Al2 + Al1Al3 .

One may rewrite p as l1 · (l2 + l3) which can be computed as Al1(Al2 + Al3). Hence, the

latter helps reduce the required matrix operations by one multiplication. One may also

use sparse matrices operations or any existing fast matrices multiplication to reduce the

time complexity [78]. Further, consider that certain patterns (or sub-patterns) may be

frequently used. Their commuting matrices, hence, are repeatedly constructed. To reduce

such repetitive computation and overall running time, we may pre-materialize those matrices

then look them up in later computation. For instance, one can pre-materialize and store all

commuting matrices Ml1·l2 of pattern l1 · l2, for every pair of labels l1 and l2. To compute

instances of pattern a · b · c, one only needs to look up Ma·b and Mb·c and performs a single

multiplication Ma·bMb·c. Nevertheless, we do not explain and discuss any details of such

optimization as it is out of the scope of this dissertation.

To compute the similarity scores using patterns with kleene-star p∗, one has to consider all

possible repetitions of p as we have I(p∗) = I(ε+ p+ p · p+ . . .). To compute such patterns

efficiently, we limit the maximum number of repetitions in p∗ to a given number.

4.5.4 Connection Between Languages of Constraints and Relationships

Our defined language to express relationship is indeed related to our assumption in the

language of database constraints. For instance, consider a constraint (x1, a · b, x2)→ (x1, c,

x2) over a schema of label {a, b, c}. One may define a transformation that removes edge of

label c in a target database. That is, a path (u, c, v) in a source database will be mapped to

a path (u, a · b, v) in the target database, but they may have different strength depends on

the number of nodes along the path a · b. Hence, we introduced the use of skipped operation

when expressing relationship. In fact, we show that there is no simpler language than RRE

that guarantees robustness given a tgd constraint.

Theorem 4.2. RRE is necessary to guarantee structural robustness between two database

under information-preserving transformations whose schema mapping language is conjunc-

tive RPQ.

Proof. Consider a full tgd f(x̄)→ g(x̄) where f and g represents relationship patterns and
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x̄ denotes entities in the graph database. The smallest relation presented between entities

in a graph is shown with a single relation label. Suppose g denotes a single relation label

l between entities x1 and x2. Without losing generality, assume g(x̄) = l(x1, x2). That is,

to guaranteed robustness, a transformation maps, at most, f(x̄) to l(x̄). Since there exists

one or more instance of f(x̄) per l(x1, x2), the skipped operation over f(x̄) (or equivalent)

between x1 and x2, is necessary to satisfy the bijective mapping between their instances,

e.g., there is at most one l(x1, x2) in the database. Inversely, let h(x̄) denote f(x̄)− l(x1, x2).

Let h1(x̄) and h2(x̄) denote relationship patterns of h(x̄) from x1 and from x2, respectively.

To bijectively map f(x̄) to g′(x̄) where l(x1, x2) is in g′(x̄), one must increase at least the

same amount of information, e.g., h1(x̄) and h2(x̄), to ensure equivalent instances between

f(x̄) and g′(x̄). Following the definition of a nested operation, the operation is necessary to

satisfy bijective mapping between instances of f(x̄) and g′(x̄).

Nevertheless, there arising a question of whether RRE suffices to guarantee the robustness

when a language of database constraint is more complex than what we have discussed. For

instance, a nested regular expression (NRE) can be used as a language of database constraints

or schema mapping [32]. It is interesting to see whether a more expressive relationship

language is necessary or whether it is possible to guarantee a robustness. Such discussion is

indeed far beyond our analysis as we only strict our constraint in a form of a full tgd. This

is because a nested operation may require a use of an embedded tgd due to its semantic,

e.g., [[ [p] ]]D = {(u, u) | ∃v, (u, p, v) ∈ D}. Despite the shortcomings of our analysis and

solutions, it is still interesting and challenging for future research to address these questions.

4.6 SIMPLIFYING SR-PATHSIM

The relationship language presented in Section 4.5, is relatively complicated and hard to

construct or interpret for average users. For instance, an RRE p4 : field · [pubslihed-in−] ·
[pubslihed-in−]·field− is less intuitive than an RRE p2 : field·field− over Figure 4.1(b).

Generally, users would like to spend less effort to express their queries. One way to achieve

this goal is to enable users to submit their patterns using a relatively smaller and intuitive

subset of operations in our proposed pattern language such as concatenations. In addition,

users may also like to measure the degree of similarity of two entities using a set of related

relationships to get a more holistic view of their similarities. For example, users may want to

use both p2 and p4 to compute similarity between pairs of research areas over Figure 4.1(b)

to find the overall similarity of research areas. In this section, we propose a robust similarity

search algorithm whose input is an RRE pattern that uses only concatenations and/or reverse
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traversals. We call such a pattern simple. Our algorithm leverages the constrains in the

database to generate a set of patterns related to the input one and use the full expressivity of

RRE. Our algorithm, then, computes and aggregates the similarity scores of these patterns.

This way, the user can both use a relatively simple language to specify relationships between

entities, which is as simple as the one used by PathSim, and take advantage of complex

relationships between entities to get effective and robust answers.

Previous studies in database theory have shown that query rewriting has been widely

used in query optimization [17, 79]. In many cases, the system uses schema dependencies

and constraints to help plan query rewriting. For instance, one may optimize and rewrite

their queries by utilizing database constraints such as functional dependencies and inclusion

dependencies to remove unnecessary joins [17]. This query optimization helps to improve

the effectiveness and efficiency of query answering in the database. Following the idea of

query optimization with database constraints, our system utilizes existing constraints to add

or remove some information related to the user’s relationship pattern. It then constructs a

set of related patterns to the user’s input. Intuitively, our generated set of related patterns

is effective. This is because the user input may not include possible information or may

include more information than what the user intends in her input pattern. For instance, in

the schema of Figure 4.1(a), the user’s input is area·published-in. However, her underlying

intention is for a relationship pattern between a research area and a conference regardless

of the number of publications of the research area in that conference. In this case, we use a

constraint information of the schema and find that there is an alternative representation as

shown in Figure 4.1(b) in which a direct edge field between a conference and a research area

exists. This field edge satisfies the user intention; however, it does not exist in Figure 4.1(a).

Hence, we modify the user’s expression over Figure 4.1(a) to ddarea ·published-incc which

is equivalent to field in Figure 4.1(b).

Algorithm 4.1 finds a subset of RREs by minimally modifying a simple pattern given by

the user such that the results of Corollary 4.1 holds for the aggregated scores of all patterns.

Each RRE returned by the algorithm represents a relationship pattern that may include or

exclude some information to or from the input pattern according to the database constraints.

These patterns also represent relationships that may be found in a database under different

structures but contains equivalent information content. For instance, given an input p2 :

field·field− over Figure 4.1(b), the algorithm returns a set of RREs including both p2 and

p4 : field · [pubslihed-in−] · [pubslihed-in−] · field−. These RREs can then be used in

computing aggregate similarity scores over each RRE in the returned set using Equation 4.2.

Specifically, Algorithm 4.1 takes a simple pattern p = l1 · ... · ln from a user in addition to

a database schema S = (L,Γ). Let (r, i) denote an RRE r which is processed up to label li
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Algorithm 4.1: Path Modifier

Input: schema S = (L,Γ), simple pattern p = l1 · ... · ln over S
Output: subset Ep of RREs over S

1 done← {}
2 processing ← {(ε, 0)} // For each pair (r, i) ∈ processing, r denotes an RRE processed up to the

position of label li in p

3 foreach (r, i) ∈ processing do
4 Remove (r, i) from processing
5 if i ≥ n then
6 Add r to done
7 continue

8 Add (r · li+1, i+ 1) to processing
9 s← li+1 · li+2 · ...ln

10 foreach γ ∈ Γ do
11 R ← R∪ SubPathModifierPerConstraint(γ, s)

12 foreach j ≥ i+ 1 do
13 foreach (li+1 · li+2 · ... · lj , exp′) ∈ R do
14 Add (r · exp′, j) to processing

15 return Ep ← done

in p. Given (r, i), let s denote the the remaining unprocessed sub-path of p, e.g., s = li+1 · ...
· ln. Algorithm 4.1 examines each sub-path exp : li+1 · lj of s for some i+1 ≤ j ≤ n. Then, it

uses Algorithm 4.2 to find a set R of possible replacement pattern for exp according to each

constraint in S (Line 11). If a replacement exp′ exists for exp, the algorithm replaces exp in

s with exp′ and marks that all labels up to lj has been processed, e.g., (r · exp′, j) (Line 14).

In addition, the algorithm also keeps the case where exp is not replaced, e.g., (r · exp, j) or

(r · li+1, i+ 1) when consider only j = i+ 1 (Line 8). Overall, Algorithm 4.1 fines all possible

combinations of replacement over each sub-path of p.

We provide a toy example of running Algorithm 4.1 as follows.

Example 4.7. Consider a simple pattern p = a · b · c · d and a single constraint γ. Starting

from (ε, 0), the algorithm adds (a, 1) to processing. Here, we have the remaining unprocessed

sup-path s = a · b · c · d of p. Then the algorithm examines each of the following sub-paths

of s: a, a · b, a · b · c and a · b · c · d. Assume Algorithm 4.2 returns a set R consisting of

(a, w1) and (a · b · c, w2) for the simple pattern s and the constraint γ. Hence, the algorithm

adds (w1, 1) and (w2, 3) to processing. Then the algorithm continues with the next member

in processing. Consider (a, 1) in processing, where the remaining unprocessed sub-path s

is b · c · d. It first adds (a · b, 2) to processing. Assume Algorithm 4.2 returns a set R
consisting of (b · c · d, w3) for the new value of s. It then adds (a · w3, 4) to processing. Since
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v1 v2 v3 v4a b c+d

Figure 4.2: A representing graph G(φ) of a conjunctive RPQ φ(x̄) : (x1, a, x2) ∧ (x2, b, x3) ∧
(x3, c + d, x4).

4 is the length of p, a · w3 is marked as done and will be added to the final results in Ep. The

algorithm repeats these steps until all members in processing are processed.

Before we explain Algorithm 4.2, we would like to describe a graph representing a con-

junctive RPQ, e.g., the premise of a constraint. Given a non-empty conjunctive RPQ φ(x̄),

let us first assume that, for each atom (xi, exp, xj) in φ, exp cannot be written as exp1 · exp2

for some non-empty expressions exp1 and exp2. If such atom exists, the atom is rewritten

as (xi, exp1, x
′)∧ (x′, exp2, xj) for some fresh variable x′. A representing graph of a conjunc-

tive RPQ φ(x̄), denoted by G(φ), is a directed graph (V,E) whose nodes are variables in φ

and edges are labeled by the RPQ pattern between each pair of those variables in φ. More

precisely, a node vi ∈ V if and only if xi is a variable in φ, and an edge (vi, exp, vj) ∈ E if

and only if (xi, exp, xj) is in φ. For instance, given a conjunctive RPQ φ(x̄) : (x1, a, x2) ∧
(x2, b, x3) ∧ (x3, c + d, x4), the graph G(φ) is shown in Figure 4.2.

Next, we would like to explain the underlying idea of the replacement patterns found by

Algorithm 4.2. Consider that each constraint implies an information-preserving transfor-

mation that may add or remove an edge from the current schema. For instance, consider

a constraint γ1a as described in Example 4.1 over a schema S1a of a database shown in

Figure 4.1(a). Following Example 4.2, a transformation Σ1a,1b from S1a may add an edge

label field between two nodes u1 and u2 for every path area·published-in from u1 to u2.

The transformation then removes edges of label area resulting in a target schema S1b of

a database as shown in Figure 4.1(b). That is, the corresponding RRE over S1a to field

over S1b is pfield : ddarea · published-incc. Consider G(φΣ1a,1b
) which is the representing

graph of the premise of transformation Σ1a,1b or φΣ1a,1b
. Because edges (v1, area, v3) and (v3,

published-in, v4) exist in G(φΣ1a,1b
), the path area·published-in from u1 to u2 matches

the same pattern from v1 to v4 over G(φΣ1a,1b
). Hence, we can find an RRE pattern pfield

which is one of the traversals from v1 to v4 over G(φΣ1a,1b
).

Based on the aforementioned observation, given a simple pattern r and a constraint γ

whose set of induced transformations is Tγ, we describe Algorithm 4.2 that finds associated

RREs over graphs representing those induced transformations to r. Generally, for each

simple pattern exp, the algorithm constructs one or more RREs exp′ from possible traversals

over G(φΣ1a,1b
) along the path exp, for some Σ1a,1b ∈ Tγ. Then each sub-path of the user’s

pattern matching exp is replaced with each corresponding exp′ in Algorithm 4.1. We defer
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Algorithm 4.2: Sub-path Modifier Per Constraint

Input: constraint γ, simple pattern s = l′1 · ... · l′m
Output: set R = {(exp, exp′)} where exp′ is a corresponding RRE to exp which is a

sub-path of s

1 Tγ ← a set of predicted transformations induced by γ over S
2 R← ∪ΣST ∈ Tγ // a set of all transformation rules

3 foreach i > 0, j ≥ i do
4 exp← l′i · l′i+1 · ... · l′j
5 if a path exp from some vg to vh exists in G(φΣ) for some Σ ∈ R then
6 Find all RREs exp′ : vg ↪→H vh that traverse G(φΣ) from vg to vh and visit each

edge in G(φΣ) once
7 Add (exp, exp′) to R
8 Add (exp−, exp′−) to R

9 return R

our discussion in finding the set Tγ later in Section 4.7.

For Algorithm 4.2, we briefly describe a recursive procedure to compute an RRE vs ↪→G vt

that traverses a graph G from node vs to vt as follows. Consider that one may adopt a depth-

first or breath-first search algorithm to find all paths, i.e. simple patterns, from node vi to

node vj in G. An RRE pattern of all n paths that traverse from node vi to node vj is

pi,j1 + ...+ pi,jn . Since we assume a constraint to be acyclic, then n is exactly 1. Let us denote

this pattern as pi,j. At each node vi which connects to some leaf node vk in G, we construct

a pattern [pi,k]. We then concatenate [pi,k] at the front of any pattern from vi or at the

end of any pattern to vi. We mark each edge as visited when each pattern pi,j or [pi,k] is

constructed. The base case is to first construct a pattern ps,t. The procedure ends when all

edges in the graph of G are visited. We must note that each constructed pi,j can also be

written as ddpi,jcc, which results in multiple patterns of this traversal.

Example 4.8. Given a graph mG(G) as shown in Figure 4.2 and a simple pattern a · b,

Some possible RRE patterns that traverse this graph from v1 to v3, i.e., v1 ↪→G(G) v3, are a ·
b · [c+d] and dda ·bcc · [c+d]. In this case, Algorithm 4.2 adds all (a ·b, exp′) to the returned

set R where exp′ is one of the above patterns.

The complexity of Algorithm 4.1 largely depends on the number of replacement patterns

found from Algorithm 4.2. In Algorithm 4.2, for each induced transformation, since each

simple pattern p found in a graph G when constructing the traversal can be either p or

ddpcc, this algorithm is indeed exponential in the number of simple patterns. However,

each simple pattern is a subgraph of G that is a path graph, e.g., a connected tree whose

nodes have degree 2 except two terminal nodes. Hence, the number of simple patterns
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in G is 1 +
∑

v∈Vdeg>2
(deg(v) − 1) where Vdeg>2 is a set of nodes in G whose degrees are

greater than 2. Since
∑

v∈V (G) deg(v) = 2|E(G)|, the procedure is O(exp{|E(G)|}) for

each transformation. The value of |E(G)| is the number of atoms in a transformation.

We later show that this number is generally the same as the size of a constraint. Also,

since the algorithm iterates over all sub-paths of the input pattern, the total complexity

of Algorithm 4.2 is O(n2 · |T| · exp{|E(G)|} where n is the number of labels in the input

pattern. Nevertheless, constraints of a schema are given and usually have small number

of terms compared to the size of databases. Further, unless the constraints are changed

regularly, the set T is constant regardless of the user’s input, and can be pre-materialized.

We may view the value |T| · exp{|E(G)| as some constant C. Hence, Algorithm 4.2 is O(n2).

Since Algorithm 4.1 replaces each label or sub-expression of the user input with possible

RREs returned by Algorithm 4.2, the complexity of Algorithm 4.1 is O((n2)P ) = O(n2P )

where P denote the number of replaced sub-paths. In the worst case analysis, P is as large

as O(n2). We, however, later empirically show in Section 4.9 that not all sub-paths of the

user input is replaced, and so P is much smaller than n2.

Proposition 4.6. Given a database D of schema S and a equivalent schema T under in-

formation preserving transformation Σ, for every simple expression pS over S, there exists a

simple expression pT over T such that, ∀u, v ∈ D,
∑

p∈EpS
simp(u, v,D) =

∑
p′∈EpT

simp′(u,

v,Σ(D))

Proof. (sketch) Let fcrpq(vg ↪→G vh) denote a CRPQ representing an RRE exp′ : vg ↪→G vh

in Algorithm 4.2. Consider a transformation Σ : fcrpq(vg ↪→G vh) → (xg, l, xh) for some

variables xg and xh corresponding to vg and vh, respectively, and some label l /∈ S. Clearly,

Σ is information preserving, and ddvg ↪→G vhcc is mapped to l according to Theorem 4.1.

Similarly, there exists an RRE exp′′ over T that maps to l for some Σ′. By transitivity,

exp′ is mapped to exp′′ according to Theorem 4.1. We must note that Σ always exists, and

Algorithm 4.2 yields all possible such Σ′’s. Hence, using similar arguments to Theorem 4.1

and Corollary 4.1, we have that our proposition holds.

Thus, a similarity search algorithm that compute aggregate similarity scores over a set of

RREs returned by Algorithm 4.1 is structurally robust.

4.7 INFORMATION-PRESERVING VARIABILITY PREDICTIONS

In Section 4.6, we have presented an algorithm that finds a set of related relationship

patterns to a given input simple pattern. However, the algorithm assumes that one may find
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a set of induced transformations of a known schema’s constraint. In this section, we would

like to discuss and present an algorithm that helps to predict such structural variability

given a constraint.

4.7.1 Beyond Renaming

As a constraint is a full tgd, one may write a trivial constraint over a schema S as γa : (x1,

a, x2)→ (x1, a, x2) where a is a label in S. However, every database that has label a satisfies

γa regardless of whether the database is an instance of S. In fact, if a is a label in both

schemas S1 = (L,Γ) and S2 = (L,Γ ∪ {γa}), then Inst(S1) = Inst(S2). Intuitively, this

constraint is meaningless in the term of putting a restriction over databases of the schema.

Hence, for the remaining of this chapter, we ignore any occurrence of a trivial constraint

whose premise and conclusion are equivalent, and treat such constraints as if they do not

exist.

For relational databases, it has been proved by Hull that there is not any information-

preserving variation of a relational schema without any constraint beyond simple renaming

of the scheme elements [41]. We show that this result also holds for a graph database.

Theorem 4.3. Given two schemas S = (LS,ΓS) and T = (LT ,ΓT ) where ΓS = ΓT = ∅, if

there exists ΣST such that S
ΣST≡ T , then S = T or there is a bijection between LS and LT .

Proof. Suppose S 6= T and there is no bijection between LS and LT . Hence, |S| 6= |T |.
Without losing generality, assume |S| > |T |. For a given set of nodes V , we have that the

set V ×LS ×V has the order of |V |× |LS|× |V | > |V |× |LT |× |V | in which the latter is the

order of the set V × LT × V . Let InstV (S) denote a set of database instances of S whose

vertex set is V . By the definition of a database, for each DS ∈ InstV (S), EDS ⊆ V ×LS×V .

Similarly, for each D ∈ InstV (T ), EDT ⊆ V × LT × V . Without any restriction in the set

EDS and EDT , we have that |InstV (S)| > |InstV (T )|. That is, for any surjective mapping

function from InstV (S) to InstV (T ), there exists an instance of InstV (S) that maps to

multiple instances of InstV (T ). Since the statement holds for any V ⊆ V , we have that

there is no surjective mapping function from InstV (S) to InstV (T ) that is also injective.

Hence, there exists no bijection between Inst(S) and Inst(T ). Therefore, no such ΣST

exists.

Based on these findings, we have that, for a representation variations beyond renaming,

either the source schema or the target schema must contain a non-empty set of constraints,
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e.g., there exists one or more non-trivial constraint. Since an inverse of an information pre-

serving transformation is also information preserving, without losing generality, we assume

that the set of constraints for a source schema is non-empty.

Further, with the assumption that a constraint γ∗ exists for each constraint γ in a given

schema, we have the following theorem regarding constraints of T .

Theorem 4.4. Given two schemas S = (LS,ΓS) and T = (LT ,ΓT ) where ΓS = ∅, if there

exists ΣST such that S
ΣST≡ T , then there exists a bijection between LS and some L′ ⊆ LT

where there is no constraint whose conclusion contains label in L′, and, for each l ∈ LT \L′,
there exists a constraint f(x̄) → (x1, l, x2) in ΓT where l does not appear in f , for some

CRPQ f .

Proof. It is implied by Theorem 4.3 that |LS| ≤ |LT |. Further, using similar arguments in

the proof of Theorem 4.3, we have that if there exists no L′ ⊆ LT such that a bijection

between LS and L′ exists, then there is no bijection between Inst(S) and Inst(T ).

Consider a set of instances V ⊆ V . We have that, since there is no constraints whose

conclusion contain a label in L′, for each I ∈ V × L′ × V , there exists I ′ ∈ InstV (T ) and

I ⊆ I ′. Suppose there is no constraint f(x̄) → (x1, l, x2), for some l ∈ LT \ L′. For some

subset V ⊆ V , there must also exists a database J containing edge of label LT \L′ and there

is no K ∈ V × L′ × V s.t. K ⊆ J . Therefore, |InstV (T )| > |V × L′ × V | = |InstV (S)|.
That is, a surjective mapping between InstV (S) and InstV (T ), there exists an instance

in InstV (S) that maps to multiple instances in InstV (T ). In addition, since the bijection

between LS and L′ exists, for any V ′ 6= V ⊆ V , |InstV ′(S)| ≤ |InstV ′(T )|. Using similar

arguments to Theorem 4.3, we show that there is no bijective mapping between Inst(S) and

Inst(T ). Therefore, S and T are not information equivalent.

Following Theorem 4.4, we have that if a schema S contains no constraint, every infor-

mation preserving transformation from S preserves all edges (or up-to renaming of those

edges). We later discuss in the following section and call this type of transformation an easy

transformation.

Corollary 4.2. Every transformation from a schema without a constraint is easy.

4.7.2 Variability induced by a single constraint

Consider that if a transformation ΣST over schema S is information preserving, then there

exists an inverse transformation Σ−1
ST such that every database instance D of S is mapped

to itself by the composition Σ−1
ST ◦ΣST . As shown in Proposition 4.3, each database instance
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D of S must satisfy Σ−1
ST ◦ ΣST . Suppose there exists a constraint γ in S. Each database D

must also satisfy γ. Hence, we define that a transformation induced by a constraint

γ over schema S is an information preserving transformation ΣST whose inverse

Σ−1
ST satisfies Σ−1

ST ◦ ΣST ≡ γ. We denote a transformation from S to a target schema T

induced by γ as Σγ
ST .

Following the proposed definition and Proposition 4.3, we design a high-level framework in

predicting information preserving transformations induced by a single constraint as follows.

Given schemas S and T , and a constraint γ over S, for each candidate transformation

ΣST , construct possible transformations ΣTS, if there exists ΣTS such that ΣTS ◦ ΣST is

equivalent to γ, then ΣST is a transformation induced by γ over S.

Clearly, this proposed framework is impractical due to the construction of an infinite can-

didate set of ΣST and ΣTS. Hence, in the remaining of this section, we will discuss and

leverage the property of an induced transformation in order to filter and limit the set of

candidate transformations ΣST and their inverse transformations ΣTS (if one exists).

Consider a (full) tgd constraint γ : φ(x̄)→ ∧
i=1...k(xi1 , ai, xi2). We have that if a database

satisfies γ, then it also satisfies γi : φ(x̄) → (xi1 , ai, xi2) for each i = 1...k. In order to

simplify our analysis in the remaining of this section, we assume that the conclusion of

each tgd constraint contains only a single atom. That is, for a tgd constraint γ whose

conclusion contains multiple atoms, we replace γ with γ1, ..., γk. In addition, if a database

satisfies a constraint φ1(x̄1) ∨ φ2(x̄2)→ (x1, a, x2), we have that the database satisfies both

φ1(x̄1)→ (x1, a, x2), and φ2(x̄2)→ (x1, a, x2). Similarly, if a database satisfies ω : ψ(x̄)∧(xm,

p1 +...+pk, xn)→ (x1, a, x2) where p1, ..., pk are some RPQs without ‘+’, then it also satisfies

ωi : ψ(x̄) ∧ (xm, pi, xn)→ (x1, a, x2) for each i = 1...k. Hence, one may replace a constraint

with multiple constraints without ‘+’ in any of their atoms. To simplify our analysis, we

also assume no use of ‘+’ in our tgd constraints. Further, as implied by Proposition 4.3, we

assume that a constraint γ∗ exists whenever a full tgd constraint γ exists for a schema S.

Intuitively, in order to modify a database structure, a transformation may add or remove

edges of certain relation labels. For instance, a transformation removes edges of label area

from Figure 4.1(a) and adds new edges label field as shown in Figure 4.1(b). Nevertheless,

we show in Proposition 4.7 that, given a constraint γ, a transformation induced by γ cannot

remove any edge of a label that does not appear in the conclusion of γ.

Proposition 4.7. Given a schema S with a constraint γ : φγ(x̄) → (x1, a, x2), for every

transformation Σγ
ST from S to a target schema T , there exists a mapping M : S → T such

that (x, l, y)→ (x,M(l), y), for all l 6= a ∈ S, in Σγ
ST .
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Proof. Let r 6= a be a label in schema S. Consider D1, D2 ∈ Inst(S) in which D1 consists of

nodes u, v and an edge (u, r, v) and D2 consists of nodes u and v without (u, r, v). Suppose

(x, r, y)→ (x,Ml(r), y) does not exists in Σγ
ST . Then, we have that there is no edge between

u and v in Σγ
ST (D1). That is, Σγ

ST (D1) = Σγ
ST (D2). Since Σγ

ST is information preserving,

then D1 ' D2 which is contradiction. Hence, the proposition holds.

Consider that each transformation rule (x, l, y) → (x,M(l), y) simply renames each edge

label l to a new edge label M(l) in the target schema. To reduce the complexity of our

model and analysis, we refer to M(l) in the target schema as l and always assume that this

transformation rule exists. published-in is an example of such label in the transformation

between the two databases presented in Figure 4.1.

We then show in Proposition 4.8 that a transformation induced by γ cannot add any new

edge whose label is in the premise of γ. That is, a transformation from the schema of the

database shown in Figure 4.1(a) to the one shown in Figure 4.1(b) cannot add any new

published-in edge in Figure 4.1(b) which does not exist in the database in Figure 4.1(a).

Proposition 4.8. Given a schema with a constraint γ, for every label l in S that is not in

a conclusion of γ, if ψ(x̄)→ (x1, l, x2) is in a transformation Σγ
ST , then ψ(x̄) is (x1, l, x2).

Proof. Suppose there exists Σγ
ST over S with rule ψ(x̄) → (x1, l, x2) where l 6= a ∈ S and

ψ(x̄) 6= (x1, l, x2). Consider two minimal databases D1, D2 ∈ Inst(S) in which D1 satisfies

ψ(x̄) and (x1, l, x2), but D2 satisfies ψ(x̄) but (x1, l, x2) 6∈ D2. We have that (x1, l, x2) ∈
Σγ
ST (D2). That is, Σγ

ST (D1) = Σγ
ST (D2). Since Σγ

ST is information preserving, then there

exists an inverse Σγ
TS of Σγ

ST . Hence, D1 = (Σγ
TS ◦Σγ

ST )(D1) = (Σγ
TS ◦Σγ

ST )(D2) = D2, which

is contradiction.

Based on Propositions 4.7 and 4.8, we have that each candidate transformation Σγ
ST must

contain the rule tl : (x, l, y) → (x, l, y) for each label l that is not in a conclusion of γ, and

the conclusion of each rule in Σγ
ST , except those tl’s, cannot contain any label of those l’s.

Next, consider that some transformations can be easily verified whether they are informa-

tion preserving without the need to compute its composition with its inverse and check if the

result is equivalent to a given constraint. Let us define an identity rule as a transformation

rule in the form of (x, l, y)→ (x, l, y) for some label l. Intuitively, an identity transformation

rule preserves all edges of such relation label from the source database in the target data-

base. Let IS denote a set of all identity rules over S. We call a transformation whose set

of transformation rules is IS an identity transformation. Clearly, an identity transformation

and a transformation ΣST that includes IS are information preserving as one can construct

an inverse ΣTS which contains all identity rules in IS. Further, consider a constraint γ : φ(x̄)
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→ (x1, l, x2) over S and a transformation ΣST induced by γ that simply removes edges of

label l, e.g., ΣST includes all identity rules for each label in S except l. One can construct an

inverse ΣTS such that it includes all identity rules of labels other than l and a transformation

rule φ(x̄) → (x1, l, x2) which recovers all edges of label l. Hence, ΣST is also information

preserving. Let us define an easy transformation induced by γ over a schema S, or an easy

transformation for brevity, as a transformation whose set of transformation rules contains all

identity rules for every label that appears in the premise of γ and all other labels in S that

does not appear in γ. We call an information preserving transformation that is not easy a

non-easy transformation. Following the above discussion about identity rules, we have the

following lemma.

Lemma 4.1. Every easy transformation is information preserving.

Proof. Let Σ denote an easy transformation over a schema S. Every label in S is also a

label of the target schema of Σ. Hence, one can construct a transformation Σ−1 whose set of

transformation rules is IS. We have that Σ−1 ◦Σ is IS. Clearly, ∀D ∈ Inst(S), IS(D) = D.

Hence, Σ is information preserving.

To identify if a non-easy transformation ΣST is a transformation induced by a constraint

γ over S, we must check whether there exists an inverse ΣTS such that ΣTS ◦ ΣST ≡ γ.

To avoid constructing all possible transformations ΣTS, we show that there exists a certain

transformation ΣTS for each ΣST such that ΣST is a transformation induced by γ if and

only if ΣTS ◦ ΣST ≡ γ. Assume a given constraint is γ : φγ(x̄) → (x1, a, x2) and (x, a, y) →
(x, a, y) 6∈ ΣST . In order to have ΣTS ◦ ΣST ≡ γ, we have the following characteristics of

ΣTS:

• (x1, a, x2) must be the conclusion of σ and so is Σ−1,

• each atom in the premise of σ is either from the premise of Σ−1 or the premise of Σ,

and

• ΣTS contains exactly one non-identity rule.

For simplicity, we denote the non-identity rule of ΣTS as τ ′ : φτ ′(x̄τ ′) → (x1, a, x2). We

must note that if there exists a transformation rule φt(x̄t)→ (xt1 , l
′
t, xy2) ∈ ΣST , where a is

not a relation label in φt(x̄t), then we may have φt(x̄t) in φτ ′(x̄τ ′) instead of having (xt1 , l
′
t,

xy2) in φτ ′(x̄τ ′) and perform the composition. Thus, we may consider only transformation

rules in ΣST whose premises contain some atom with relation label a. Let Ta denote all

transformation rules in Σ whose premises contain an atom with relation label a. Let φ′γ

denote a copy of φγ with all atoms with relation label a removed. Since a is not in the target

schema T , we have φτ ′ consists of, at most, φ′γ, φ
′
t and/or atoms from conclusions of any

66



Algorithm 4.3: Transformations induced by γ

Input: Schemas S and a set of label LT for a schema T , a full tgd constraint γ : φγ(x̄)→
(x1, a, x2) over S

Output: A set Tγ of transformations induced by γ over S

1 /* Assume φγ(x̄) =
∧
i=1...m(xi1 , li, xi2), li ∈ S. */

2 Tcandid ← {t : φt(x̄t)→ (xt1 , l
′
t, yt2) where t is a non-identity full s-t tgd whose atoms in

φt(x̄t) are from {(xi1 , li, xi2), i = 1...m}, for some l′t ∈ T and l′t /∈ S}
3 Tcandid ← Tcandid ∪ {(x, a, y)→ (x, a, y)}
4 Tid ← {(x, l, y)→ (x, l, y), ∀l 6= a ∈ S}
5 Tγ ← ∅
6 foreach τ ⊆ Tcandid do
7 Σ← τ ∪ Tid
8 if Σ is easy then
9 Add Σ to Tγ

10 else
11 Ta ← {t ∈ τ s.t. the premise of t contains an atom with label a}
12 Rename variables, for each t ∈ Ta, s.t. an atom with label a in its premises is

(x1, a, x2) and other variables are fresh
13 φ′γ ← copy of φγ with all atoms with relation label a removed

14 foreach t ∈ Ta do
15 φ′t ← copy of φt with all atoms whose relation labels containing a removed

16 τ ′ ← a full s-t tgd
∧
t∈Ta(φ′t(x̄t) ∧ (xt1 , l

′
t, yt2)) ∧ φ′γ(x̄)→ (x1, a, x2)

17 if γ ≡ τ ◦ τ ′ then
18 Add Σ to Tγ

19 return Tγ

rule in Ta. Thus, let τ ′ be a full s-t tgd
∧
t∈Ta(φ

′
t(x̄t)∧ (xt1 , l

′
t, yt2))∧ φ′γ(x̄)→ (x1, a, x2). We

have that τ ′ is sufficient to show the existence of an inverse of ΣST . That is, we only need

to perform a composition τ ′ ◦ ΣST then check whether it is equivalent to γ.

Following the aforementioned discussion, Algorithm 4.3 provides an algorithmic method

to generate all transformations induced by a given constraint γ. We show in Theorem 4.5

that Algorithm 4.3 is correct and complete.

Theorem 4.5. Given a schema S with a full tgd constraint γ, Algorithm 4.3 generates all

information preserving transformations induced by γ over S.

Proof. Assume γ : φγ(x̄) → (x1, a, x2), where φγ(x̄) =
∧
i=1...m(xi1 , li, xi2) is a full tgd con-

straint associated with schema S.

First, we show that all candidates of transformations induced by γ over S are generated.

We must note that one may write a transformation rule whose conclusion contains multiple

atoms as a set of multiple rules with a single atom in the conclusion. Hence, it suffices to
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generate all transformations with a single atom in their conclusions. By the construction

of Tcandid, and Proposition 4.8, we have that every non-identity transformation rule is a

member of Tcandid (Line 3). Let Tid denote all identity rules of all labels in S other than a.

By Proposition 4.7, a transformation Σ induced by γ over S must also include all members

of Tid. Hence, Σ = τ ∪ Tid, ∃τ ⊆ Tcandid (Line 6).

Using Lemma 4.1, if Σ is easy, then Σ is information preserving and is added to Tγ (Line 8).

Consider the remaining case where Σ is not easy, e.g., a is a relation label in some atom

in φγ and (x, a, y) → (x, a, y) /∈ Σ. If Σ is a transformation induced by γ, then there must

exist an inverse Σ−1 s.t. γ ≡ Σ−1 ◦ Σ. Because of the composition, we have the following

characteristics of Σ−1: (1) (x1, a, x2) must be the conclusion of σ and so is Σ−1; and (2)

each atom in the premise of σ is either from (a) the premise of Σ−1 or (b) the premise of

Σ. Further, since σ ≡ γ, then Σ contains exactly one non-identity rule. For simplicity,

we denote this non-identity rule of Σ as τ ′ : φτ ′(x̄τ ′) → (x1, a, x2). We must note that if

there exists a transformation rule φt(x̄t) → (xt1 , l
′
t, xy2) ∈ Σ, where a is not a relation label

in φt(x̄t), then we may have φt(x̄t) in φτ ′(x̄τ ′) instead of having (xt1 , l
′
t, xy2) in φτ ′(x̄τ ′) and

perform composition. Thus, we may consider only transformation rules in Σ whose premises

contains some atom with relation label a. Let Ta denote all transformation rules in Σ whose

premises contain an atom with relation label a (Line 12). In addition, since a is not in the

target schema T , we have φτ ′ consists of, at most, φ′γ (Line 13), φ′t (Line 15) and/or atoms

from conclusions of any rule in Ta. Further, because of the characteristics of Σ−1, τ ′ (Line 16)

is necessary and sufficient to show the existence of an inverse of Σ.

Consider Σ = τ ∪ Tid in which τ is the only non-identity rule. It suffices to compute

τ ′ ◦ τ ≡ γ in order to show that Σ− ◦Σ ≡ γ. Then Σ is added to Tγ if the equivalence holds.

This concludes the proof of the theorem.

The procedure of Algorithm 4.3 is as follows. First, the algorithm computes the candidate

set Tcandid of all transformation rules whose atoms in their premises are also atoms in γ, and

since the generated rules must satisfy Proposition 4.8, the relation labels in their conclusions

are not labels in the source schema S except the one in the conclusion of γ (Line 3).

Example 4.9. Given a constraint

γ : (x3, area, x2) ∧ (x3, published-in, x4) ∧ (x1, published-in, x4)→ (x1, area, x2)

68



as shown in Figure 4.1(a), Tcandid consists of rules, such as

t1 : (x1, published-in, x4) ∧ (x3, published-in, x4)→ (x1, co-publishing, x3)

t2 : (x3, area, x2) ∧ (x3, published-in, x4)→ (x4, field, x2),

and so on.

Next, let Tid denote all identity transformation rules of all labels in S except a (Line 4).

Then the algorithm generates and examines each transformation whose rules are from the

set of Tcandid and also all members of TId (Line 7). Let Tγ denote a set of generated trans-

formations induced by γ over S. If IS ⊆ Σ, then a transformation is easy. In addition, if

a is not in the premise φγ of γ, then all generated transformations Σ are also easy. Hence,

the algorithm adds all of these generated transformations to Tγ (Line 8-9) because they

are clearly information preserving transformations induced by γ. Otherwise, the algorithm

generates τ ′ which is a necessary inverse of Σ if Σ is a transformation induced by γ (Line 16).

Example 4.10. Following Example 4.9, let τ1 = {t1}, τ2 = {t2} and Tid = {(x, published-in,
y) → (x, published-in, y)}. Clearly, both Σ1 = τ1 ∪ Tid and Σ2 = τ2 ∪ Tid are not easy.

The rule τ ′1 constructed for τ1 is (x2, co-publishing, x4) → (x4, area, x1), which is not a

full s-t tgd. Hence, we indeed have that τ ′1 = ∅. As for τ2, we have

τ ′2 : (x3, published-in, x4) ∧ (x1, published-in, x4) ∧ (x4, field, x2)→ (x1, area, x2).

Then the algorithm computes τ ′1 ◦ τ1 and τ ′2 ◦ τ2 and determines whether they are equivalent

to γ. Since τ ′1 ◦ τ 6≡ γ but τ ′2 ◦ τ2 ≡ γ, the algorithm adds Σ2 = τ2 ∪ IS to Tγ.

For the details of a composition τ ′◦τ , one may follow the composition algorithm described

in [80]. Intuitively, the procedure for τ ′◦τ replaces each atom (x, l, y) in the premise of τ ′ with

a premise of τ whose conclusion has a relation label l. For instance, following Examples 4.9

and 4.10, consider τ ′2 ◦ τ2. The composition replaces (x4, field, x2) in τ ′2 with (x3, area, x2)

∧ (x3, published-in, x4) from τ2, which results in a transformation rule equivalent to γ.

Overall, the complexity of Algorithm 4.3 is O(exp{exp{|γ|}}) where |γ| denotes the total

number of atoms in constraint γ. This is because the algorithm first computes all candi-

date sets of transformation rules in Line 1, then the algorithm examines each set of those

transformation rules in Line 5. Nevertheless, this amount of complexity is much smaller

than the number of database instances of a given schema. Further, a constraint γ is usually

pre-defined with the schema. Algorithm 4.3 can be processed once unless its schema or
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its constraints are changed. Hence, the high computational cost of the algorithm is not a

concern in this chapter.

Relationship between a tuple-generating dependency and a functional dependency

We must note that our works in this section mainly focus on a database constraint in the

form of a full tgd. However, we have discussed and studied some property of a database due to

a functional dependency constraint and its structural variations, e.g., an entity-rearranging

transformation, in Chapter 3.6. A functional dependency is an example of another commonly

used type of database constraints, namely equality-generating dependency, as mentioned

earlier in Section 4.3. Because of the difference in the properties of these two types of

database constraints, our work on this section may not generalize the case for equality-

generating dependencies. Nevertheless, we would like to point out that there is actually some

relationship between functional dependencies and tuple-generating dependencies in which

we can exploit and show that our algorithm is also robust against an entity-rearranging

transformation. We first note that an entity-rearranging transformation involves two or

more functional dependencies. Consider two functional dependencies described as follows:

FDl1 : (x1, l1, x2) ∧ (x1, l1, x3) → x2 = x3 and FDl2 : (x1, l2, x2) ∧ (x1, l2, x3) → x2 = x3,

where l1 and l2 are arbitrary labels in a schema.

Proposition 4.9. If a database D satisfies FDl1 and FDl2, then D also satisfies a full tgd

constraint γFD : (x1, l1 · l2, x2) ∧ (x1, l1, x3)→ (x3, l2, x2)

Proof. Given a database D, assume ID(l1 · l2) 6= ∅. For every x1, x2, x3, x4, x5 ∈ D where

(x1, l1, x4), (x4, l2, x2), (x1, l1, x3) and (x3, l2, x5) are in D, we have x4 = x3 because of FDl1

and then x2 = x5 because of FDl2 . Hence, (x3, l2, x2) is also in D. Therefore, D also satisfies

γFD.

Consider that if every database in a schema S satisfies both FDl1 and FDl2 , then clearly

every database in S also satisfies γFD. That is, γFD ∈ S. Since γFD is a full tgd constraint,

our variability prediction algorithm can construct a transformation T whose rules are (x1,

l1, x2) ∧ (x2, l2, x3) → (x1, l
′, x3) and (x, l1, y) → (x, l1, y), and the inverse of T consists of

(x1, l1, x2) ∧ (x1, l
′, x3) → (x2, l2, x3) and (x, l1, y) → (x, l1, y). This implies that a mapping

between a path l1 · l2 of tuples of entities (x1, x2, x3) exists if and only if a path l′− · l1
of tuples entities (x3, x1, x2) exists. The specification of this transformation describes the

property of an entity-rearranging transformation in Section 3.6. Hence, an entity-rearranging

transformation is predictable by our work in this section, assuming that a constraint γFD
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is given. We must note that such γFD is implied by the two functional dependencies. The

computation of the implicated constraints is, however, out of the scope of this dissertation.

4.7.3 Variability induced by multiple constraints

Using similar arguments for a transformation induced by a single constraint, given a

schema S whose set of constraints is Γ, we define that a transformation ΣST is a trans-

formation induced by Γ if there exists an inverse Σ−1
ST such that every database

D of S satisfies every constraint in Σ−1
ST ◦ ΣST . That is, Σ−1

ST ◦ ΣST ≡ Γ. We denote a

transformation induced by Γ over S as ΣΓ
ST .

In order to generate all possible transformations induced by Γ, we show that it is not

sufficient to simply construct a set of transformations induced by each constraint γ in Γ and

directly union them together.

Example 4.11. Consider a schema S whose set of labels is {a, b, c, d} and the set of con-

straints Γ contains

γ1 : (x1, a, x2) ∧ (x2, b, x3)→ (x1, c, x3)

γ2 : (x1, d, x2) ∧ (x2, c, x3) ∧ (x4, c, x3)→ (x1, d, x4)

A possible transformation ΣST induced by Γ for a target schema T is defined as follows:

ΣST : {(x1, d, x2) ∧ (x2, c, x3)→ (x1, e, x3),

(x, l, y)→ (x, l, y) | l ∈ {a, b}}.

ΣST is information preserving as one can construct an inverse transformation ΣTS in which

where ΣTS ◦ ΣST ≡ Γ as follows:

ΣTS : {(x1, a, x2) ∧ (x2, b, x3)→ (x1, c, x3),

(x1, e, x3) ∧ (x2, a, x4) ∧ (x4, b, x3)→ (x1, d, x2),

(x, l, y)→ (x, l, y) | l ∈ {a, b}}.

However, using Algorithm 4.3, we have

Tγ1 = { Σ11 : {(x, l, y)→ (x, l, y) | l ∈ {a, b, c, d}},
Σ12 : {(x, l, y)→ (x, l, y) | l ∈ {a, b, d}} }
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and

Tγ2 = { Σ21 : {(x, l, y)→ (x, l, y) | l ∈ {a, b, c, d}},
Σ22 : {(x1, d, x2) ∧ (x2, c, x3)→ (x1, e, x3),

(x, l, y)→ (x, l, y) | l ∈ {a, b, c, d}},
Σ22 : {(x1, d, x2) ∧ (x2, c, x3)→ (x1, e, x3),

(x, l, y)→ (x, l, y) | l ∈ {a, b, c}} }.

Any transformation that applies a transformation from Tγ1 and a transformation from Tγ2,

e.g., Σ1 ∪ Σ2 for some Σ1 ∈ Tγ1 and Σ2 ∈ Tγ2, will contain identity transformation rules of

labels a, b and at least one of c or d. Hence, we cannot obtain ΣST using this procedure.

Using the settings in Example 4.11, one can similarly show that ΣST cannot be obtained

by simply composing the two transformations from Tγ1 and Tγ2 . This is because the inter-

mediate schema after applying a transformation may be changed, and the other generated

transformations may no longer be induced by the given constraint. Nevertheless, we ob-

serve that ΣST is generated by applying all non-identity transformation rules and shared

identity transformation rules from Σ12 and Σ22. Generalizing this idea, we can construct a

transformation induced by a set of constraints Γ by computing⋂
γ∈Γ

Σγ
id ∪

⋃
γ∈Γ

Σγ
other (4.12)

where Σγ = Σid ∪Σother is a transformation induced by γ ∈ Γ, Σγ
id denotes all identity rules

in Σγ, and Σγ
other are all non-identity rules in Σγ.

Example 4.12. Following the settings of Example 4.11, a possible transformation computed

by formula 4.12 using Σ12 induced by γ1 and Σ12 induced by γ2 is

Σ = { (x1, d, x2) ∧ (x2, c, x3)→ (x1, e, x3),

(x, l, y)→ (x, l, y) | l ∈ {a, b, d} }.

Nevertheless, we show that some transformations computed by formula 4.12 is not an

information preserving transformation induced by Γ.

Example 4.13. Following the settings in Example 4.11, let Γ also contain a constraint

γ3 : (x1, b, x2) ∧ (x2, d, x3)→ (x1, a, x3)
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in which Algorithm 4.3 returns

Tγ3 = { Σ31 : {(x, l, y)→ (x, l, y) | l ∈ {a, b, c, d}},
Σ32 : {(x, l, y)→ (x, l, y) | l ∈ {b, c, d}} }.

Computing formula 4.12 over Σ12, Σ22 and Σ32 yields a transformation

{(x1, d, x2) ∧ (x2, c, x3)→ (x1, e, x3), (x, b, y)→ (x, b, y)}

which is not information preserving.

Fortunately, following Example 4.13, one may notice the cycle of implication between edge

labels amongst the transformation Σ12, Σ22 and Σ32 described as follows. First, we have

only facts about relation labels b and e to recover all constraints in Γ. To recover γ2, the

inverse of Σ22 requires facts of relation label c which is implied by γ1. To recover γ1, the

inverse of Σ12 requires facts of relations a which is implied by γ3. Recovering γ3 through Σ32

also requires facts of label d which is again implied by γ2. Therefore, it is impossible to find

an inverse such that its composition with the transformation is equivalent to Γ. Hence, we

introduce Algorithm 4.4 that computes a set of transformations induced by Γ by combining

all transformation induced by each constraint in Γ using formula 4.12 and guarantees that

there exists no such cycle of implication amongst the combined transformations.

Algorithm 4.4 returns a set of all possible transformations induced by a set of constraints

Γ over schema S. We later show in Theorem 4.6 that Algorithm 4.4 is correct and complete.

The algorithm first computes a set Sγi of all possible transformations induced by each con-

straint γi ∈ Γ using Algorithm 4.3 (Line 2). Then, the algorithm iterates over all possible

lists of transformations induced by each constraint in Γ and constructs a transformation Σ

using formula 4.12 (Line 4-8). For instance, following Example 4.12, we have the inverses τ ′1

and τ ′2 of Σ1 and Σ2 are τ ′1 : (x1, a, x2)∧ (x2, b, x3)→ (x1, c, x3) and τ ′2 : (x2, c, x3)∧ (x2, c, x3)

→ (x1, d, x2), respectively. Clearly, we have that τ ′1 ◦ Σ ≡ γ1. That is, every edge of label

c can be recovered, in addition to other labels appearing in identity transformation rules in

Σ. For the inverse τ ′2 of Σ2, the target schema does not contain label c. However, we have

already shown that label c can be recovered using τ ′1. Hence, τ ′2 ◦ Σ2 is equivalent to γ2. If

there is more constraint in Γ, the algorithm repeatedly checks whether they can be recovered

(Line 15-21). If all constraints in Γ can be recovered, Σ is an information induced by Γ and

is added to TΓ. Otherwise, there is a cycle of implication amongst transformations induced

by some constraints in Γ. In this case, the algorithm ignores this transformation (Line 20).
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Algorithm 4.4: Transformations induced by Γ

Input: Schema S, a set of m constraints Γ = {γi : φi(x̄i)→ (xi1, ai, xi2), i = 1...m} over S
Output: A set TΓ of transformations induced by Γ over S

1 /* Assume Algorithm 4.3 returns TΓ whose members are pairs (Σ, τ ′) from

Line 7 and 16, respectively. */

2 Compute Tγi for each γi ∈ Γ
3 foreach (Σ1, τ

′
1), ..., (Σm, τ

′
m) ∈ Tγ1 × ...× Tγm do

4 foreach i = 1...m do
5 Σi

id ← all identity rules in Σi

6 Σi
other ← Σi \ Σi

id

7 Σid ← Σi
id ∩ ... ∩ Σm

id

8 Σ← Σid ∪
⋃
i=1...m Σi

other

9 RecoveredLabels← set of labels l s.t. (x, l, y)→ (x, l, y) ∈ Σid

10 ToCheckConst← Γ
11 if IS ⊆ Σ then
12 Add Σ to TΓ

13 else
14 repeat
15 Find one γi ∈ ToCheckConst s.t. all labels in the premises of γi are in

RecoveredLabels or all labels in the premises of τ ′i are in RecoveredLabels
16 if γi exists then
17 Remove γi from ToCheckConst
18 If there is no other γj ∈ ToCheckConst whose relation label in its

conclusion is ai, add ai to RecoveredLabels

19 else
20 Break and continue with next Σ

21 until ToCheckConst = ∅
22 Add Σ to TΓ

23 return TΓ

Theorem 4.6. Given a schema S whose constraints set is Γ, Algorithm 4.4 returns all

possible transformation induced by Γ over S.

Proof. Since returned transformations are accompanied with an inverse such that the compo-

sitions between them are equivalent to a given set of constraints, Γ, they are transformation

induced by Γ. Further, the algorithm iterates over all combinations of transformation rules

obtained from each constraint in Γ. We must note that, because the composition of the

inverse and the transformation must be equivalent to Γ, one cannot construct a transforma-

tion rule such that the atoms of its premise are not from a single constraint in Γ. That is,

the algorithm explores all possible candidate transformation rules, and so it is complete.

Algorithm 4.4 calls Algorithm 4.3 for each constraint, and there are O(exp{exp{|γ|}})
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possibilities for each set of transformations induced by a constraint. Suppose there are m

constraints: γ1, ..., and γm. The complexity of Algorithm 4.4 is dominated by the computa-

tion of Tγ1 × ...×Tγm . Hence, the complexity of Algorithm 4.4 is O(exp{exp{|γ|}}m) where

m denotes the number of constraint in Γ and |γ| denotes a maximum number of atoms in a

constraint in Γ.

4.8 OPTIMIZING SR-PATHSIM

Our proposed algorithms in both Section 4.6 and Section 4.7 are theoretically inefficient.

In particular, if the set of RRE patterns returned by Algorithm 4.1 is large, our system has

to compute the similarity scores for many patterns. Therefore, it may not be efficient on a

large database. In this section, we provides a method to reduce the set of RREs in order to

improve the efficiency of SR-PathSim while ensuring its effectiveness and robustness.

According to our discussion in Section 4.4, to have an information-preserving variation of

a database I, I must satisfy some tgd constraints. However, these constraints may be trivial,

e.g., (x, a, y) → (x, a, y). Intuitively, it is not efficient to consider these trivial constraints

over a database in our algorithms.

Proposition 4.3 provides that structural variations require database constraints. However,

the proposition does not exclude the use of trivial constraints. A trivial constraint is a

constraint such that its premise and its conclusion are logically equivalent, e.g., φ(x̄)→ φ(x̄).

As we have simplified our analysis in Section 4.4.2 where the conclusion of a constraint is

an atom of a single label, e.g., (xi, a, xj) where xi, xj ∈ x̄ and a is a schema label. That is a

trivial constraint is of the form (xi, a, xj)→ (xi, a, xj). Clearly, every database in a schema

S satisfies all trivial constraints for every label a ∈ S. In order to simplify our discussion,

since trivial constraints are meaningless in term of putting restriction in a database, we

ignore any occurrence of trivial constraints and treat them as if they do not exist.

We have shown in Theorem 4.3 that, for structural variations beyond renaming, either

the source schema or the target schema must contain some non-trivial constraints. Similar

to the idea of trivial constraint, there always exists a transformation from a schema S to

schema T , T ≡ S, whose transformation constraints are also trivial. In Section 4.7, we define

and call such transformation an identity transformation.

Assume that all associated constraints with a schema S are trivial. It is possible to have

a non-identity transformation ΣST from S to a target schema T . For instance, consider

a schema S = {a, b} without any non-trival constraint. A transformation ΣST from S to

a target schema T = {a, b, c} described as {(x1, a, x2) ∧ (x2, b, x3) → (x1, c, x3), (x1, l, x2)

→ (x1, l, x2), l ∈ S} is information preserving. In this case, T consists of a constraint
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(x1, a, x2) ∧ (x2, b, x3) → (x1, c, x3). However, with only trivial constraints available in S,

Algorithm 4.2 cannot produce an RRE dda · bcc over S which is mapped to c over T . In fact,

with only trivial constraints, our algorithms do not modify an input expression. Fortunately,

our Theorem 4.4 in Section 4.7 provides that if a schema S contains no constraint, every

information preserving transformation from S are easy.

Based on Theorem 4.4 and Corollary 4.2, to avoid the described issues of trivial constraints,

our proposed algorithms should ignore producing any expression over a transformation in-

duced by any non-trivial constraint of the form of φ(x̄)→ (x1, l, x2) where l does not appear

in φ.

Consider a schema S whose constraint is γ : φ(x̄) → (x1, l, x2), where l does not appear

in φ. S is information equivalent to a schema T = S \ {l} under any transformation rule Σ

of a transformation Σγ
ST induced by γ. We have that v1 ↪→G(Σ) v2 exists in both S and T .

Also, following the proof of Theorem 4.1, we have that an expression l over S is mapped to

an expression r : ddv1 ↪→G(φΣ) v2cc. However, r is not a simple expression and might not be

easily discovered by a user. If we would like to ensure the robustness of SR-PathSim via the

use of Algorithm 4.1, then either label l should be disallowed or every l should be replaced

with v1 ↪→G(φγ) x2 that does not contains a skip-operation.

Further, using Propositions 4.7, we may conclude that non-easy transformations are in-

duced by some constraint φ(x̄)→ (x1, l, x2) where l appears in φ(x̄). That is, an RRE that

does not contain label l is obtained from some easy transformation.

To this end, we should filter out all RREs returned by Algorithm 4.1 that are induced by

any easy transformation. For instance, given a constraint (x1, area, x3)∧(x3, published-in,

x4) ∧ (x2, published-in, x4) → (x1, area, x2) in Figure 4.1(a), the algorithm should ignore

producing an RRE such as published-in·published-in−. However, an RRE such as area

·published-in is valid because area appears in the conclusion of the constraint. Hence,

this filtering helps reduce the space and running time of aggregate SR-PathSim over a set

of relationship patterns returned by Algorithm 4.1.

Lastly, one may argue that Algorithm 4.2 does not consider transformations induced by

multiple constraints. However, our findings in Section 4.7.3 imply that one can obtain any

transformation induced by multiple constraints from a set of transformation rules induced

by each of those constraints. Since each related relationship pattern in Algorithm 4.2 is

obtained from a single rule specified by one of these transformations. Hence, it suffices to

compute and find the patterns from transformations induced by a single constraint.
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Figure 4.3: Schema fragments of bibliographic databases. p-in, r-a and w denote edge
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Figure 4.4: Variations for course databases. cs, os, t and co denote edge labels course-
subject, offering-subject, teach, and offering-course, respectively.

4.9 EMPIRICAL EVALUATION

4.9.1 Experiment Settings

We use 4 datasets in our experiments: DBLP1, Microsoft Academic Search3 (MAS), WSU

course dataset4 and a Biomedical dataset (BioMed). DBLP consists of 1,227,602 nodes

and 2,692,679 edges, which contains bibliographic information of publications in computer

science. We add information about the research areas for each conference in DBLP from

information extracted from MAS. Figure 4.3(a) depicts the schema of DBLP. We also use a

subset of MAS data with 44,068 nodes and 44,220 edges. MAS contain information about

papers, conferences, areas, e.g., Databases, and keywords of each paper and/or area, e.g.,

indexing. WSU course database contains information about courses, instructors and course

offerings in the university. The dataset consists of 1,124 nodes and 1,959 edges. Figure 4.4(a)

depicts the schema of WSU dataset. The Biomedical dataset, (BioMed), is made available

to us as a part of an NIH funded project. The dataset contains information about genetic

conditions, diseases, drugs, and their relationships. Figure 4.5 depicts a fragment of BioMed.

It consists of 43,307 nodes and 1,742,970 edges.

3academic.research.microsoft.com
4cs.washington.edu/research/xmldatasets
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Figure 4.5: Schema fragment of BioMed dataset

We compare robustness, effectiveness and efficiency of SR-PathSim with RWR [5] using a

restart probability of 0.8, SimRank [2] using a damping factor of 0.8, and PathSim [4]. Since

previous study show that the PathSim similarity computation method is more effective than

those of SimRank and RWR [4], we use SR-PathSim with the similarity computation score

of PathSim , i.e., Equation 4.2. We implement all algorithms using MATLAB 8.5 on a Linux

server with 64GB memory and two quad core processors.

4.9.2 Structural Robustness

We adopt normalized Kendall’s tau measurement to compare two ranked lists. The value

of normalized Kendall’s tau varies between 0 and 1 where 0 means two lists are identical

and 1 means one list is the reverse of another. Because users are interested in highly ranked

answers, we compare only top 5 and top 10 answers.

We use DBLP, WSU and BioMed databases to evaluate the structural robustness of RWR,

SimRank, PathSim and SR-PathSim. Because SimRank takes too long to finish on full DBLP

dataset, we perform this evaluation using a subset of DBLP with 24,396 nodes and 98,731

edges.

DBLP dataset satisfies constraint (paper1, r-a, area)∧(paper1, p-in, proc)∧(paper2, p-in,

proc) → (paper2, r-a, area). We transform this database to a database with the structure

shown in Figure 4.3(b), which follows the style of SIGMOD Record database2. We call

this transformation DBLP2SIGM. We randomly sample 100 proceedings based on their node

degrees as our query workload over these datasets.
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WSU course dataset satisfies the constraint (offer1, os, subject) ∧ (offer1, co, course) ∧
(offer2, co, course) → (offer2, os, subject). We transform WSU course database to the

graph structure of Alchemy UW-CSE database5 whose structure is shown in Figure 4.4(b).

We call this transformation WSUC2ALCH. We also randomly sample 100 courses from WSU

based on their degrees as our query workload for these datasets.

BioMed database satisfies the constraints: (phenotype1, is-parent-of, phenotype2) ∧
(phenotype1, associated-with, anatomy)→ (phenotype2, indirect-associated-with, ana-

tomy) and (phenotype1, is-parent-of, phenotype2) ∧ (disease, associated-with, phenotype1)

→ (disease, indirect-associated-with, phenotype2). We transform the BioMed dataset

such that all edges of label indirect-associated-with are removed. We denote the transfor-

mation over BioMed dataset as BioMedT. The structure of the transformed BioMed dataset

is also shown in Figure 4.5 excluding all dashed edges. A main goal of using this dataset in

the NIH project is to discover the drugs that are closely related to queried diseases. Since

we use this dataset to also evaluate the effectiveness of our algorithms, we have obtained a

set of 30 diseases and their relevant drugs from experts in the domain of the data. Since

paths between diseases and drugs are asymmetric, we cannot compute similarity scores us-

ing PathSim formula over this dataset. Instead, we evaluate the queries using HeteSim

[44], which extends PathSim to support asymmetric paths, e.g., finding similarity between

different entity types.

We measure the structural robustness of each method by comparing its ranked list of

results for the same query over different datasets with the same information but different

structural representations. We adopt normalized Kendall’s tau measurement to compare two

ranked lists. The value of normalized Kendall’s tau varies between 0 and 1 where 0 means

two lists are identical and 1 means one list is the reverse of another. Because users are

normally interested only in highly ranked answers, we compare only top 5 and 10 answers.

Table 4.1 shows the average ranking differences for top 5 and 10 answers returned by

RWR, SimRank, PathSim and/or HeteSim. We do not report the results of SR-PathSim

because it returns the same answers over all transformations. For PathSim, we use the ex-

pressions p-in− ·r-a·r-a− ·p-in and r-a·r-a− over DBLP and SIGMOD Record structures,

respectively. For SR-PathSim, we use the same expression as that for PathSim over DBLP

and use an RRE [p-in−] · r-a · r-a− · [p-in−] over SIGMOD. Over WSU and Alchemy UW-

CSE, we use the simple patterns co− · os · os− · co and cs · cs−, respectively, for PathSim.

For SR-PathSim, we use the same expression over WSU, but we use [co−] · cs · cs− · [co−]

over Alchemy UW-CSE. For BioMed dataset, we consult an expert and obtain an RRE

5alchemy.cs.washington.edu/data/uw-cse
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Table 4.1: Average ranking differences
DBLP2SIGM WSUC2ALCH BioMedT
top 5 top 10 top 5 top 10 top 5 top 10

RWR 0.447 0.412 0.259 0.253 0.130 0.112
SimRank 0.455 0.410 0.387 0.341 0.405 0.385
PathSim 0.608 0.590 0.310 0.247 0.438 0.461

pex : target·express-in· (Ph-A:associated-with + Ph-A:indirect-associated-with)

· (Ph-DD:associated-with + Ph-DD:indirect-associated-with). The corresponding

RRE over the transformed BioMed dataset is pTex : target·express-in· (Ph-A:associated

-with + ddis-parent-of− · Ph-A:associated-withcc) · (Ph-DD:associated-with + ddis
-pareentof− ·Ph-DD:associated-withcc). Since HeteSim does not support RRE, we com-

pute the similarity scores between a pair of drug dr and disease dd by averaging simi-

larity scores computed over the following patterns: target·express-in· L1 · L2, where

L1 is either Ph-A:associated-with or Ph-A:indirect-associated-with and L2 is ei-

ther Ph-DD:associated-with or Ph-DD:indirect-associated-with. Since edges of label

indirect-associated-with do not exist in the transformed database, our best attempt to

construct an equivalent expression to pTex for HeteSim results in the following patterns:

target·express-in· L′1 · L′2, where L′1 is either Ph-A:associated-with or is-parent-

of−·Ph-A:associated-with and L′2 is either Ph-DD:associated-with or is-parent-of−

·Ph-DD:associated-with. According to Table 4.1, the outputs of all algorithms, except

SR-PathSim, are significantly different across databases under these information-preserving

transformations.

4.9.3 Effectiveness

We evaluate the effectiveness of SR-PathSim over MAS and BioMed. For query workload

over MAS, we randomly sample 100 conferences based on their degrees in the dataset. To

provide the ground truth, for a given conference q, we manually label other conferences in

three categories: similar, quite-similar and least-similar. A conference is considered similar

to q when they share the same research area. A conference is considered quite-similar to

q when they are connected to strongly related research area. Otherwise, the conference is

considered least-similar to q. For example, Data Mining and Databases are strongly related,

but Databases and Computer Vision are not. We use Normalized DCG (nDCG) to evaluate

the effectiveness because it supports multiple levels of relevance for returned answers [60].

The value of nDCG varies between 0 and 1 where the high values indicate more effective
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ranking. We compare the effectiveness of SR-PathSim with PathSim and report the values

of nDCG for top 5 (nDCG@5) and top 10 (nDCG@10) answers. For BioMed, we obtain the

query workload from an expert. We use 30 queries of diseases with their relevant drugs from

the domain experts. Since each disease query relates only to a single drug, we use MRR to

evaluate the effectiveness of the algorithms.

Over MAS, we compute similarities between conferences based on the keywords in their

domains. We use the pattern pc · pd · da · da− · pd− · pc− and ddpc · pdcc · da · da− · ddpd− ·
pc−cc for PathSim and SR-PathSim, respectively. The average nDCG@5 (nDCG@10) for R-

PathSim and PathSim are 1.0 (1.0) and 0.969 (0.901), respectively. SR-PathSim significantly

outperforms PathSim. This is because, nodes about paper should not influence the similarity

score between conferences based on the keywords of their domains. Since the language of

relationship pattern used by PathSim is less expressive, the pattern between conferences and

keywords always include papers. Hence, it deems conferences with more papers to be more

similar although they may not have many common keywords. The RRE language used by

SR-PathSim is more expressive, and so it could avoid this problem. For example, the top

5 answers returned by SR-PathSim for query SIGKDD are ICDM, IDEAL, PAKDD, PJW

and PKDD. However, the the top 5 answers returned by PathSim for the same query are

ICOMP, IC-AI, ICAIL, ICALP and ICANN.

Over original BioMed dataset, the average MRR of HeteSim, SimRank, RWR and SR-

PathSim are 0.077, 0.062, 0.010, 0.077, respectively. Over BioMed under BioMedT, the

average MRR of HeteSim, SimRank, RWR and SR-PathSim are 0.072, 0.062, 0.010, 0.077,

respectively. According to our discussion with the experts, these queries are very hard to

answer effectively by using only the structural patterns in the data set and without consulting

external sources of knowledge. According to the experts, even a slight improvement in the

accuracy of the returned answers may save a great deal of time and effort in their research.

The overall results show that SR-PathSim are more effective than other algorithms.

In addition, consider that SR-PathSim uses the same similarity metric to that of PathSim

over MAS and HeteSim over BioMed, but SR-PathSim is shown to be more effective. This

implies that the use of RRE language helps to improve the effectiveness of the algorithm.

4.9.4 Efficiency

We evaluate the query processing time of SR-PathSim and PathSim over DBLP and

BioMed datasets using the query workloads reported in Section 4.9.2. First, we evaluate the

query processing time of SR-PathSim and PathSim for the case where the user provides an

exact relationship pattern (Section 4.5). All reported running times in this section assume
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Table 4.2: Running times and a list of expressions used to measure query-processing times
of PathSim and SR-PathSim, where e-i, a-w, i-a-w and i-p-o stand for express-in,
associated-with, indirect-associated-with and is-parent-of, respectively.

Patterns over transformed database
Source Pattern over source PathSim (simple) SR-PathSim (RRE)

DBLP p-in·r-a p-in·r-a [p-in−]·r-a
DBLP w·r-a w·p-in·r-a w·ddp-in · r-acc

BioMed target·e-i· (Ph-A:a-w+Ph-A:i-a-w) target·e-i·Ph-A:a-w·Ph-DD:a-w target·e-i
·(Ph-DD:a-w+Ph-DD:i-a-w) ·(Ph-A:a-w+ddi-p-o− · Ph-A:a-wcc)

·(Ph-DD:a-w+ddi-p-o− · Ph-DD:a-wcc)

that the commuting matrices of all meta-paths, i.e., simple RRE patterns that use only

concatenation and reversal operations, up to size 3 are materialized and pre-loaded in main

memory for both SR-PathSim and PathSim. Theoretically, both SR-PathSim and PathSim

have the same time complexity. However, the expressiveness of RRE used in SR-PathSim

allows the specified relationship pattern to be more complex than the expression used by

PathSim. To compare the efficiency between these two algorithms, we first pick a pattern over

each database as a reference. Then, for each referenced pattern, we find the corresponding

RRE pattern pR for SR-PathSim and the closest correspondent simple pattern , i.e., meta-

path, pP for PathSim. For instance, a referenced pattern over DBLP is p-in·r-a. Over

DBLP under DBLP2SIGM transformation, the correspondent patterns for SR-PathSim and

PathSim are pR : [p-in−]·r-a and pP : r-a, respectively. Then we compare the running time

of PathSim using pP with the running time of SR-PathSim using pR and report the results.

Table 4.2 shows lists of referenced patterns and the corresponding patterns used to measure

query-processing time of PathSim and SR-PathSim. The average query processing time for

a single pattern per query of SR-PathSim (PathSim) over DBLP and BioMed dataset are

0.035 (0.024) and 0.473 (0.267) seconds, respectively. The reason that SR-PathSim is slower

than PathSim as SR-PathSim uses more complex and longer patterns than those used by

PathSim. But, the running time is still relatively short over large datasets.

Next, we measure the efficiency of SR-PathSim that incorporates Algorithm 4.1 introduced

in Section 4.6 and applied the filter discussed in Section 4.8. In this version, SR-PathSim

takes a simple pattern as an input. Hence, we supply the same pattern to both SR-Path-

Sim and PathSim, and compare their query processing times. Since a constraint is given

per dataset, we have precomputed the set of predicted transformations induced by the con-

straint and its set of all transformation rules, e.g., Tγ and R, respectively. We use the same

relationship patterns over DBLP and BioMed as described in Section 4.9.2. The average

query processing time per query of SR-PathSim (PathSim) over DBLP and BioMed data-

set are 0.061 (0.024) and 0.730 (0.477) seconds, respectively. Overall, the running time of

SR-PathSim is slightly slower than PathSim due to the procedure of Algorithm 4.1. This
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result also shows that making SR-PathSim more usable does not increase its running time

considerably.
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CHAPTER 5: COST-EFFECTIVE CONCEPTUAL DESIGN

Ideally, we would like data analytics algorithms to achieve both structural robustness

and effectiveness. Achieving such properties means that we have eliminated the cost of

revising the structure of a database during the data preparation phase. However, it is also

possible that the cost for design independence is too high and, in some case, infeasible to

achieve. Some developers may also be willing to exchange some robustness and effectiveness

for improved efficiency. In this chapter, we would like to provide a method to choose an

effective structural design whose cost in construction and/or maintenance is affordable, while

ensuring the imposed design helps to improve the effectiveness of an algorithm as much as

possible.

5.1 BACKGROUND

Taxonomies provide shared understandings of concepts in domains of interests [81]. In

particular, they facilitate query answering over unstructured and semi-structured datasets

in these domains. For example, assume that a user likes to find information about types of

pains caused by Trachoma over excerpts of the medical articles in Figure 5.1. In the absence

of any structured data, she may explore this dataset using inherently ambiguous keyword

queries and submit query Q1:Trachoma pain. Unfortunately, the article about Trachoma in

Figure 5.1 refers to this infection by its other name, Granular conjunctivitis. Because all

articles contain the term pain, the query interface may return all articles, two of which do

not have any information about Trachoma.

Given a taxonomy, we can annotate entities in an unstructured dataset by their concepts

in the taxonomy. Users may also learn the taxonomy and use its concepts in their queries.

Figure 5.4 depicts fragments of the Medical Subject Heading (MeSH) taxonomy, in which

nodes denote concepts and edges show subclass relationships [82]. Figure 5.2 shows the

medical article excerpts in Figure 5.1 whose entities are annotated by their concepts from

MeSH taxonomy. Now, our user may mention the concept Trachoma in her query and query

interface will return only the articles that contain entities from this concept.

Organizations often use available taxonomies to annotate their datasets so that more

users can effectively search and explore their data. For example, the U.S. National Library

of Medicine annotates the articles in MEDLINE/PubMED using concepts in MeSH taxon-

omy [82, 83]. Researchers have used the ProBase taxonomy to extract concepts from Web

data [84]. The NIH funded Gene Ontology Consortium (geneontology.org) encourages re-
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<article>

Granular conjunctivitis causes pain in the outer surface or cornea. ...

</article>

<article>

Stye may lead to pain on the eyelids. ...

</article>

<article>

GAS caused infections cause pain in tissues. ...

</article>

Figure 5.1: Medical article excerpts

<article>

<Trachoma>Granular conjunctivitis</Trachoma> causes pain in the outer

surface or cornea. ...

</article>

<article>

<Hordeolum>Stye</Hordeolum> may lead to pain pain on the eyelids. ...

</article>

<article>

<Ecthyma>GAS caused infections</Ecthyma> cause pain in tissues. ...

</article>

Figure 5.2: Annotated medical article excerpts

<article>

<Eye-Infections>Granular conjunctivitis</Eye-Infections> causes pain in

the outer surface or cornea. ...

</article>

<article>

<Eye-Infections>Stye</Eye-Infections> may lead to pain on the eyelids. ...

</article>

<article>

<Skin-Infections>GAS caused infections</Skin-Infections> cause pain in

tissues. ...

</article>

Figure 5.3: Medical article excerpts annotated with more general concepts
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Figure 5.4: Fragments of MeSH taxonomy

searchers to annotate their datasets using a standard taxonomy so their datasets become

more accessible to other researchers. We have been recently asked by some botanists to an-

notate a collection on plant biology by the concepts in Plant Ontology (plantontology.org).

Organizations also use taxonomies to extract entities in general domains. For example, re-

searchers have used ProBase taxonomy to extract concepts in general domains from Web

data [84, 85]. Also, Google and Bing ask organizations to annotate their Web documents by

concepts in Schema.org taxonomy, which is developed for datasets in general domains.

Ideally, one would like to annotate all relevant concepts in a given taxonomy from a

data set to answer all queries effectively. However, an organization has to spend significant

amounts of time, financial and computational resources, and manual labor to accurately

extract entities of a concept in a large data set [23–25, 86–90]. The organization usually has

to develop or obtain a complex program called a concept annotator to annotate instances of

a concept from a collection of documents [91]. It is not uncommon for an annotator to have

thousands of manually written programming rules, which takes a great deal of resources

to write and debug [91]. One may also use machine learning algorithms to develop an

extractor for a concept to avoid hand-tuned programming rules. In this approach, developers

have to find a set of relevant features for the learning algorithm. As the specifications of

relevant features not usually clear, developers have to find the relevant features through

trial and error over numerous iterations, which takes a great deal of time and effort [86, 92].

Moreover, if concept annotators use supervised learning algorithms, developers have to also

create training data, which require additional time and manual labor. It is more resource-

intensive to develop annotators for concepts in specific domains, such as biology, as it requires

expensive communication between domain experts and developers. Current studies indicate

that these communications are not often successful and developers themselves have to go

through the data to find the relevant features in these domains [86]. As most concept

annotators perform complex text analysis, it may take them days to process a large dataset

and produce an annotated collection [23, 24, 89, 90] Since concept annotators may not be

sometimes sufficiently accurate, domain experts have to review and revise the results of the
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annotations [82, 83] It is estimated that annotating each article in MEDLINE/PubMED

collection using concepts in MeSH taxonomy costs about $9.4 [83].

Because the structure and content of underlying datasets evolve over time, annotators

should be regularly rewritten and repaired. Many annotators need to be rewritten in average

almost every two months [87]. Recent studies show that many concept annotators need to

be rewritten in average about every two months [87]. Thus, enterprises often have to repeat

the resource-intensive steps of developing a concept annotator to maintain an up-to-date

annotated data set.

Because the financial or computational resources of an organization are limited, it may

not be able to afford to develop and maintain annotators for all concepts in a taxonomy.

Also, many users may need an annotated data set quickly and cannot wait days for an

(updated) annotated collection [89]. For example, a reporter who pursues some breaking

news and an epidemiologist that follows the pattern of a new potential pandemic on the Web

and social media need relevant answers to their queries fast. They may not want to wait for

organizations to (re-)write and (re-)deploy the annotators for all concepts in their domains of

interests. Hence, an organization may be able to afford to annotate only a subset of concepts

in a taxonomy. Similarly, many users may not have the time to learn all concepts in a large

taxonomy and may prefer to learn and use a relatively small subset of the taxonomy in their

queries. For example, an enterprise may annotate entities in Figure 5.1 with only concepts

Eye-Infection and Skin-Infection from MeSH taxonomy and get the collection in Figure 5.3.

Intuitively, a query interface may provide less effective answers to queries over the dataset

in Figure 5.3 than the one in Figure 5.2. Assume that a user wants to find information about

the type of pain associated with Trachoma. She may mention the concept Eye-Infection in

her query. The query interface may return the articles about Trachoma and the one about

Hordeolum. Nevertheless, the annotation in Figure 5.3 still helps the query interface not to

return the non-relevant article about the skin infection. Clearly, we would like to select a

subset of concepts whose required time and/or resources for annotation do not exceed our

budget and most improves the effectiveness of answering queries.

Currently, concept annotation experts use their intuitions to discover cost-effective con-

ceptual designs from taxonomies. Because most taxonomies contain hundreds of concepts

[93], this approach does not scale for real-world applications. We call this problem Cost-

Effective Conceptual Design (CECD).
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5.2 RELATED WORKS

Researchers have examined the problem of selecting cost effective designs from an unor-

ganized set of concepts for annotation [25]. Nevertheless, the concepts in most real-world

domains are maintained in taxonomies rather than unorganized sets. As the framework

proposed in [25] does not consider superclass/subclass relationships between concepts, it

cannot measure the effectiveness gained by designs over taxonomies. Because taxonomies

have richer structures than unorganized sets of concepts, they provide new opportunities

and challenges for finding cost-effective conceptual designs. We show in Section 5.3.3 that

because the algorithms in [25] do not consider the structure of taxonomy, they select the

designs that provide very ineffective answers. Our empirical results over real-world datasets

in Section 5.9 also indicate that the algorithms in [25] deliver considerably less effective de-

signs than the ones that take the structure of the taxonomy into account. Furthermore, the

authors in [25] do not consider the cost dependencies between concepts. They also assume

that each query refers to only a single concept.

There is a large body of work on building large-scale data management systems for anno-

tating and extracting entities and relationships from unstructured data sources [23, 85, 94–

97]. In particular, researchers have proposed several techniques to optimize the running time

and/or required computational resources of concept annotation programs by processing only

a subset of the underlying collection that is more likely to contain mentions to entities

of a given concept [23, 24, 90, 98–100]. Our work complements these efforts by finding a

cost-effective set of concepts in the design phase rather than a set of relevant documents in

query time. Furthermore, our framework can handle other types of costs than computational

overheads.

Taxonomies and ontologies have been used in some areas of data management, such as

data integration and query refinement [101–103]. We extend this line of research by using

taxonomies in schema design. Researchers have proposed methods to semi-automatically

construct or expand taxonomies by discovering new concepts from large text collections

[104]. We, however, focus on the problem of annotating instances of the concepts in a given

taxonomy over an unstructured or semi-structured data set.

Researchers have considered selecting data sources for fusion such that the marginal cost

of acquiring a data source does not exceed its marginal gain [22]. We, however, focus on

finding cost-effective designs.
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5.3 COST-EFFECTIVE CONCEPTUAL DESIGN

Similar to previous works, we do not rigorously define the notion of named entity [81].

We define a named entity (entity for short) as a unique name in some (possibly infinite)

domain. A concept is a set of entities , i.e., its instances. We identify each concept with

a unique name. Some examples of concepts are person and country. An entity of concept

person is Albert Einstein and an entity of concept country is Jordan. Concept C is a subclass

of concept D if and only if we have C ⊂ D. In this case, we call D a superclass of C. For

example, person is a superclass of scientist. If an entity belongs to a concept C, it will belong

to all its superclass’s.

A taxonomy organizes concepts in a domain of interest [81]. We first investigate the

properties of tree-shaped taxonomies and later in Section 5.8, we will explore the taxonomies

that are directed acyclic graphs. Formally, we define taxonomy X = (R, C,R) as a rooted

tree, with a root concept R, a vertex set C and an edge set R. C is a finite set of concepts.

For C,D ∈ C, we have (C,D) ∈ R if and only if D is a subclass of C. Every concept in C
that is not a superclass of any other concept in C is a leaf concept. The leaf concepts are leaf

nodes in taxonomy X . For instance, concepts Trachoma and Hordeolum are leaf concepts

in Figure 5.4. Let ch(C) denote the children of concept C. For the sake of simplicity, we

assume that ∪D∈ch(C)D = C for all concepts C in a taxonomy.

Each dataset is a set of documents. Dataset DS is in the domain of taxonomy X if and

only if some entities of concepts in X appear in some documents in DS. For instance, the set

of documents in Figure 5.1 is in the domain of the taxonomy shown in Figure 5.4. An entity

in X may appear in several documents in a dataset. For brevity, we refer to the occurrences

of entities of a concept in a dataset as the occurrences of the concept in the dataset.

Each dataset is a set of documents. Dataset DS is in the domain of taxonomy X if and

only if some entities of concepts in X appear in some documents in DS. For instance, the set

of documents in Figure 5.1 is in the domain of the taxonomy shown in Figure 5.4. An entity

in X may appear in several documents in a dataset. For brevity, we refer to the occurrences

of entities of a concept in a dataset as the occurrences of the concept in the dataset.

A query q over DS is a pair (C, T ), where C ∈ C and T is a set of terms. Some example

queries are (person, {Michael Jordan}) or (location, {Jordan}). This type of queries has

been widely used to search and explore annotated datasets [105–107]. Query (C, T ) over

dataset DS is answered by a function that maps T to a ranked list of documents such

that each document in the list contains an occurrence of an entity in C. One may use any

reasonable ranking function to answer the query [60]. Empirical studies on real world query

logs indicate that the majority of entity centric queries refer to a single entity [108].
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We first consider queries that refer to a single entity and extend our model to support

queries with multiple concepts in Section 5.7.

5.3.1 Conceptual Design

A conceptual design S over taxonomy X = (R, C,R) is a non-empty subset of C \{R}. We

exclude the root of X from the designs over X for simplicity. Other settings are converted

to this case by adding a dummy root to the taxonomy. For brevity, we refer to conceptual

design as design.

A design divides the set of leaf nodes in C into some partitions. As we have illustrated in

Section 5.1, annotating a concept in a dataset may potentially help answering queries over

the dataset whose entities belong to the leaf concepts that are descendants of the annotated

concept. Consider again the fragment of MeSH taxonomy shown in Figure 5.4. Assume

a user wants to find information about the types of pain associated with Trachoma over

a dataset and submits query (Trachoma, {pain}) to the query interface. Suppose we have

annotated the dataset with the concept in the design {Eye-Infections}. Because the articles

about Trachoma are within the ones annotated by Eye-Infections, the query interface may

return only articles annotated with Eye-Infections to the user. This annotation helps the

query interface not to return the non-relevant articles about skin or bone infections. We say

that Trachoma is in the partition of Eye-Infections. Now, suppose we annotate the dataset

with the concepts in the design {Bacterial Conjunctivitis, Eye-Infections}. The articles

annotated by Eye-Infections and not annotated by Bacterial Conjunctivitis do not contain

any information about the concept Trachoma. Hence, the query interface may return only

articles annotated with Bacterial Conjunctivitis in the response of the query (Trachoma,

{pain}). Due to the annotation of Bacterial Conjunctivitis, annotating Eye-Infections does

not help answering queries with concept Trachoma. Thus, Trachoma is in the partition of

Bacterial Conjunctivitis for this design. We formally define the partition of a concept in a

design as follows.

Definition 5.1. Let S be a design over taxonomy X = (R, C,R), and let C ∈ S. The

partition of C, denoted as part(C), is a maximal subset of leaf nodes in C such that, for

all D ∈ part(C), we have either D = C or C is the lowest ancestor of D in S.

We denote a set of all partitions induced by all concepts in a design S as part(S).

Example 5.1. Consider the taxonomy described in Figure 5.5. Let the design S1 be {Eye-In-

fections, Skin-Infections}. The lowest ancestor in S1 of Neonatorum, Trachoma and Horde-
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Figure 5.5: The concepts in red, Eye-Infections and Skin-Infections, denote the design. The
blue curves denote the partitions created after annotating the design, and the dashed curved
shows the free concepts of the selected design.

olum is Eye-Infections, and the lowest ancestor in S1 of Ecthyma and Erysipelas is Skin-In-

fections. Hence, we have that part(Eye-Infections) = {Neonatorum, Trachoma, Hordeolum}
and part(Skin-Infection) = {Ecthyma, Erysipelas}.

Example 5.2. Consider the taxonomy described in Figure 5.6. Let the design S2 be {Eye-

Infections, Bacterial Conjunctivitis}. The lowest ancestor in S2 of Neonatorum and Tra-

choma is Bacterial Conjunctivitis, and the lowest ancestor in S2 of Hordeolum is Eye-Infec-

tions. Hence, we have that part(Bacterial Conjunctivitis) = {Neonatorum, Trachoma} and

part(Eye-Infections) = {Hordelum}.

For each design S, the set of leaf concepts that do not belong to any partition are called

free concepts and denoted as free(S). These concepts neither belong to S nor are descendant

of any concept in S.

Example 5.3. Consider the design S1 = {Eye-Infections, Skin-Infections} over the taxon-

omy described in Figure 5.5. The free concepts of S1, free(S1), are {Periostitis, Spondylitis}
as they do not belong to any partition of S1.

Example 5.4. Consider the design S2 = {Eye-Infections, Infections} over the taxonomy

described in Figure 5.6. The free concepts of S2, free(S2), are {Spondylitis, Periostitis,

Ecthyma, Erysipelas}.

Let DS be a dataset in the domain of taxonomy X = (R, C,R) and S be a design over

X . S is the design of dataset DS if and only if for each concept C ∈ S, all occurrences of

concepts in the partition of C are annotated by C. In this case, we say DS is an instance of S.

For example, consider the design T = {Eye-Infections, Skin-Infections} over the taxonomy

in Figure 5.4. The dataset in Figure 5.3 is an instance of T as all instances of concepts

Trachoma and Hordeolum that belong to the partition of Eye-Infections, are annotated by
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Figure 5.6: The concepts in red, Eye-Infections and Bacterial Conjunctivitis, denote the
design. The blue curves denote the partitions created after annotating the design, and the
dashed curved shows the free concepts of the selected design.

Eye-Infections and all instances of concepts Ecthyma and Erysipelas that are in the partition

of Skin-Infections, are annotated by Skin-Infections in the dataset.

Intuitively, different designs may improve the effectiveness of answering queries differently.

For example, consider a dataset in the domain of the taxonomy in Figure 5.5 in which almost

all queries seek information about skin infections. If the query interface uses the design {Eye-

Infections, Skin-Infections}, it can process queries that are about skin infection only over the

documents that contain information about skin infections. But, if the query interface uses

the design {Eye-Infections, Bacterial Conjunctivitis}, it has to process queries about skin

infections over all documents in the dataset many of which do not contain any information

about skin infections. Hence, the query interface may return more non-relevant answers for

most queries than the case where it uses {Eye-Infections, Skin-Infections}. Moreover, as

explained in Section 5.1, a design with more specific concepts, e.g., leafs in the taxonomy,

helps the query interface to pinpoint the relevant documents more effectively than the de-

signs with more general concepts. Because annotating documents and instances of different

concepts may take different amounts of time and/or financial and computational resources,

each design may have a distinct cost. Hence, finding the most effective design becomes an op-

timization problem that seeks the design that improves the effectiveness of answering queries

the most and satisfies certain cost constraints. To formalize this problem, we first precisely

quantify the amount by which a design improves the effectiveness of answering queries in

Section 5.3.2. Then, in Section 5.3.3, we present a cost model for building and maintain

annotations for a design and formally state the problem of finding the most effective design.

5.3.2 Design Queriability

Let Q be a set of queries over dataset DS. Given design S over taxonomy X = (R, C,R),

we would like to measure the degree by which S improves the effectiveness of answering
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queries in Q over DS. The value of this function should be larger for the designs that help

the query interface to answer a larger number of queries in Q more effectively. Let the

query interface return k candidate answers for query Q in Q over the unannotated dataset.

The effectiveness of the returned list of answers is usually measured using standard metrics

of precision and recall [60]. The precision of the returned list of answers is the fraction of

relevant answers for Q in the returned list. The recall of a returned list of answers is the

ratio of the returned relevant answers to the number of total relevant answers for Q in the

dataset. It has been shown that most information needs over annotated data sources are

precision-oriented [106, 109]. Hence, we measure the effectiveness of the returned answers

using precision-oriented metrics. More precisely, we use the standard metric of precision at k

(p@k for short), which is the precision of the top-k answers, to measure the ranking quality

of the query result [60]. If a design helps the query interface to replace some non-relevant

answers with relevant ones in the returned list for query Q, it improves the precision of Q

in the top k returned answers. Hence, we estimate the amount by which a design increases

the fraction of relevant answers in the top k returned answers for Q.

Let Q : (C, T ) be a query in Q such that C belongs to the partition of P ∈ S. The query

interface may consider only the documents that contain information about entities annotated

by P to answer Q. For instance, consider query Q1 = (Trachoma, {pain}) over the dataset

in Figure 5.3 whose design is {Eye-Infections, Skin-Infections}. The query interface may

examine only the entities annotated by Eye-Infections in this dataset to answer Q1. Thus,

the query interface will avoid non-relevant results that otherwise may have been placed in

the top k answers for Q. The query interface may further rank these answers according

to a ranking function, such as the traditional TF-IDF scoring methods [60]. Our model is

orthogonal to the ranking scheme of the candidate answers.

Nevertheless, only a fraction of documents with entities annotated by concept P contain

information about entities in C. For instance, to answer query (Trachoma, {pain}) over

the dataset in Figure 5.3, the query interface has to examine all documents that contain

instances of concept Eye-Infections. Some documents in this set do not have any entity of

concept Trachoma. We like to estimate the fraction of the results for Q : (C, T ) that contains

entities of concept C. Given all other conditions are the same, the larger this fraction is, the

more likely it is that the query interface delivers more relevant answers in the top k results

for Q.

Let d(C) denote the fraction of documents that contain entities of concept C in datasetDS.

More precisely, d(C) is the number of documents that contain entities of C in DS divided

by the total number of documents in DS. We call d(C) the frequency of C over DS. Let

d(P ) be the total frequency of concepts in the partition of P , i.e., d(P ) =
∑

C∈part(P ) d(C).
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The fraction of the documents that contain information about entities in C amongst those

that contain information of concept P is d(C)
d(P )

. For example, assume that the mentions

to entities of concept Trachoma appear more frequently in dataset DS than the ones of

concept Hordeolum. Also, assume that we annotate only Eye-Infections in DS. Given query

(Hordeolum, {pain}), it is more likely for articles about Trachoma to appear in the top

k answers than the ones about Hordeolum. That is, for each concept C ∈ part(P ), the

contribution of C in improving the precision of answering queries with concepts C is d(C)
d(P )

.

Hence, the total contribution of partition P in improving the precision of answering queries

is
∑

C∈part(P )
d(C)
d(P )

.

We call the fraction of queries in Q whose concept is C the popularity of C in Q. Let uQ be

the function that maps concept C to its popularity in Q. When Q is clear from the context,

we simply use u instead of uQ. Assume that design S1 and S2 equally improve the values of

precision for queries of all concepts except for C1, C2 ∈ C. Also, let the precision of C1 be

improved more by S1 than by S2. Similarly, assume that the precision of C2 is increased more

by S2 than by S1. Given all other conditions are the same, if we have u(C1) > u(C2), we have

that S1 improves the total precision of queries in Q more than S2. Hence, we should take into

account the popularities of concepts to compute the amount of improvement achieved by a

design over Q. Therefore, we modify the formula to estimate the contribution of partition

P in improving precision of answering queries in Q as
∑

C∈part(P )
u(C)d(C)
d(P )

. Given all other

conditions are the same, the larger this value is, the more likely it is that the query interface

will achieve a larger precision in top k answers over queries in Q.

Annotators may make mistakes in identifying the correct concepts of entities in a collection

[91]. An annotator may recognize some instances of concepts that are not P as ones in P .

For example, the annotator of concept person may identify Lincoln, the movie, as a person.

The accuracy of annotating concept P over DS is the number of correct annotations of P

divided by the number of all annotations of P in DS. We denote the accuracy of annotating

concept P over DS as prDS(P ). When DS is clear from the context, we show prDS(P ) as

pr(P ). Hence, we refine our estimate to

∑
C∈part(P )

u(C) d(C)

d(P )
pr(P ). (5.1)

So far, we have estimated the relative improvement gained by S for queries whose concepts

belong to some partitions in S. Consider query Q : (C, T ) such that C does not belong to

any partition in S, i.e., C is a free concept. The query interface has to examine all documents

in the dataset to answer Q. Thus, the fraction of returned answers for Q that contains some
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instance of C is d(C). The more instances of C appear in the dataset DS, the more likely

it is that the returned answers to Q refer to entities in C. Hence, it is more likely that they

contain some relevant answers for Q. Using a similar argument as the one used for non-free

concepts, the total contribution of the free concepts of design S is∑
C∈free(S)

u(C)d(C). (5.2)

Following Formulas 5.1 and 5.2, we define the function that estimates the relative improve-

ment in the value of precision in the top k answers for all concepts as follows.

Definition 5.2. The queriability of design S from taxonomy X over dataset DS and query

workload Q is

QU(S) =
∑
P∈S

∑
C∈part(P )

u(C) d(C) pr(P )

d(P )
+

∑
C∈free(S)

u(C)d(C).

Similar to other optimization problems in data management, such as query optimization

[43], the complete information about the parameters of the objective function, i.e. frequencies

and popularities of concepts, may not be available at the design-time. Nevertheless, our

empirical results in Section 5.9 indicate that one can effectively estimate these parameters

using a small sample of the full dataset. For instance, we show that the frequencies of

concepts over a dataset of more than a million documents can be effectively estimated using

a sample of about four hundred documents. In this work, we assume that a random sample

of the dataset represents the relative frequencies of the concepts in the dataset reasonably

accurately. A more principled approach to parameter estimation is an interesting subject

for future work.

5.3.3 Cost-Effective Conceptual Design Problem

We have reviewed the literature on concept annotation and information extraction and

talked to the experts to build a reasonable and general cost model for concept annotation.

The types of costs for creating annotated datasets vary based on the methodology used for

developing concept annotators. One may categorize the available methodologies to rule-

based methods and approaches based on machine-learning techniques [88, 91, 95, 110–114].

In rule-based annotation, developers write a set of rules for each concept to detect and

extract its instances in a dataset [97, 115, 116]. Rule-based approach is the dominating

method in commercial information and entity extraction systems [117, 118]. This is mainly
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attributed to the fact that rules are effective, interpretable, and easier to customize by

non-experts than the methods based on machine learning [118]. Furthermore, rules-based

systems perform better than state-of-the-art machine learning methods in some specialized

domains [119, 120].

If one adapts a machine-learning approach to annotate the entities of a concept, he has to

provide a set of training examples for the concept, which may be costly and time-consuming

[118]. This stage is particularly resource-intensive in specific domains, such as medicine.

Researchers have proposed the idea of distant supervision to reduce the overhead of providing

training data for concept extraction [121]. However, distant supervision typically requires

knowledge-bases in the domain of extraction with instances of the extracted concepts which

is not always available, particularly in a specific domain such as biology. One may also

generate training data for a concept by coding how the concept appears in the unstructured

dataset in a programming language [122]. This method, however, needs a domain expert to

learn a programming language and code her knowledge in a piece of program. Furthermore,

the developer has to distinguish and select relevant features for each concept because many

or all concepts may share some general features. For example, concept annotators may use

the surrounding words of entities in text documents as features for all concepts. However,

developers have to also engineer considerable number of features specific to each concept

[123, 124]. For example, an informative feature for zip-code is that its instances have 5

digits, and a helpful feature for person is that its entities start with a capital letter. These

features may be given to a classifier [123] or a probabilistic graphical model [125] or coded

as first order logic formulas in a Markov Logic Network [124]. After developing the concept

annotator, domain experts may review and evaluate the annotation of each concept [82, 83].

This process may repeat multiple times to generate accurate annotations of the concept.

As most underlying datasets frequently evolve, the aforementioned steps have to be redone

after a while for each concept in both approaches [87, 126].

Hence, given taxonomy X = (R, C,R) and dataset DS, one may assign a real number

to each concept C ∈ C that reflects the amount of resources required to annotate and

maintain the annotations of C in DS. Let function w : C → R+ map each concept C ∈
C to a real number that reflects the cost of annotating C in DS. Developers also create

and maintain some preprocessing modules to tokenize the input documents and separate the

(potential) named entities from other tokens, e.g., adjectives, in both rule-based method and

the methods based on machine learning techniques. This cost is generally independent of

the number of extracted concepts and can be viewed as a fixed cost for annotating a dataset.

This model assumes that annotating certain concepts does not affect the cost and accuracies

of annotating other concepts. We later relax this restriction in Section 5.6 and consider
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some dependencies between the costs of concepts in the taxonomy. Nevertheless, it usually

takes significant amount of resources to develop and maintain a concept annotator even after

pairing it with other annotators. Thus, it is still of interest to solve the problem where there

is no dependency between costs of different concepts. The organization may predict the

costs of development, deployment and maintenance of annotation programs using available

methods for predicting costs of software development and maintenance [127].

The cost of annotating a dataset under design S is the sum of the costs the concepts in

S. Budget B is a positive real number that represents the amount of available resources

for annotating the dataset. We define Cost-Effective Conceptual Design problem

(CECD) as follows.

Problem 5.1. Given taxonomy X , dataset DS in the domain of X , query workload Q and

budget B, find design S over X that has the maximum queriability and
∑

C∈S w(C) ≤ B.

Unfortunately, the CECD problem cannot be solved in polynomial time in terms of input

size unless P = NP.

Theorem 5.1. The problem of CECD is NP-hard.

Proof. The problem of CECD can be reduced to the problem of choosing a cost-effective

design from a set of concepts by creating a taxonomy X = (R, C,R) where all nodes except

for R are leaf concepts. Since the problem of choosing cost-effective concepts from a set of

concepts is NP-hard [25], CECD is also NP-hard.

Because the approximation algorithms proposed in [25] do not consider the superclass/subclass

relationships between concepts, they do not effectively solve the CECD problem for tree

taxonomies. In particular, these algorithms generally choose designs with more popular con-

cepts, i.e., concepts with larger u(.) values. Because each node has generally more u(.) value

than its descendant concepts in the input taxonomy, these algorithms spend the budget on

picking concepts in higher levels, while it may worth including concepts in lower levels of the

taxonomy in the design. Our empirical studies in Section 5.9 confirm that these algorithms

do not generally find accurate solutions to CECD over tree taxonomies. We also show that

the algorithms in [25] have a worst-case approximation ratio of O(|C|) for the problem, which

is a significantly inaccurate approximation even for taxonomies with a modest number of

concepts, as follows.

Consider the taxonomy shown in Figure 5.7 where each green leaf concept Cg has w(Cg)

= 1, u(Cg) = (1 + ε)v and d(Cg) = p. For each red leaf concept Cr, w(Cr) = B + 1, u(Cr)

= Bv and d(Cr) = 1
B2p. For the orange leaf concept C0, w(Co) = 1, u(Co) = v and d(Co)
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B green leaf concepts

B − 1 blue concepts

Co

Figure 5.7: An example to analyze algorithms that ignore the tree structure.

= p. v and p are constants such that
∑

C∈C u(C) =
∑

C∈C d(C) = 1. For each non-root

black concept C, w(C) = B and for each blue concept Cb, w(Cb) = 1. Assume that the

total available budget is B. The optimal solution of any algorithm that ignores the tree

structure and works only with leaf concepts, is to pick exactly the green leaf nodes, which

delivers the queriability of almost B(1 + ε)v. Now, assume that an algorithm considers

both leaf and non-leaf concepts but not their relationships. For instance, the approximate

popularity maximization (APM) algorithm in [25] selects concepts C with the largest u(C)
w(C)

values. APM picks exactly B green leaf concepts in our example and returns queriability

of almost B(1 + ε)v. However, we can achieve the queriability of almost B2v by picking all

blue and orange concepts. The gap between optimal solution and any solution returned by

an APM algorithm is B, which is 1
3.5
|C|. It is an ineffective solution for taxonomies with

modest numbers of concepts.

5.4 APPROXIMATION ALGORITHM

We propose an approximation algorithm called Level-wise algorithm to solve the prob-

lem of CECD using a greedy approach. It returns a design whose concepts are all from a

same level of the input taxonomy. Our algorithm finds the design with maximum queriability

for each level using the APM algorithm proposed in [25], which find the cost-effective subset

of concepts over a set of concepts. Our algorithm eventually delivers the design with largest

queriability across all levels in the taxonomy. Algorithm 5.1 illustrates the Level-wise

algorithm.

Precisely, let C[i] be the set of all concepts of level i in X = (R, C,R). For any concept

E ∈ C[i], we define its popularity ui(E) to be the total popularity of its descendant leaves
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Algorithm 5.1: Level-wise algorithm.

input : a taxonomy X = (R, C,R)
output: a conceptual design

sollevel ← 0 and solmax ← 0;
for i = 0 to h do

for each concept C in distance i from the root do
C[i]← C[i] ∪ {C};

end
for each leaf concept C in distance less than i from the root do
C[i]← C[i] ∪ {C};

end
soli ← approximate solution over C[i];
sollevel ← max(sollevel, soli);

end
Cmax ← the leaf concept with the largest u value;
solmax ← u(Cmax) +

∑
C∈free(Cmax) u(C)d(C);

return the best of sollevel and solmax;

in X . Level-wise algorithm calls the APM algorithm to find the cost-effective subset of

concepts for every C[i]. It provides APM with the popularities and costs of concept in C[i].
Level-wise algorithm then compares various selected designs across C[i]s and keeps the

answer with maximum queriability, denoted as SOLlevel. The algorithm also computes the

queriability delivered by picking only the leaf node with maximum popularity in X called

SOLmax. The algorithm returns the solution with largest queriability amongst SOLlevel

and SOLmax. The APM algorithm runs in O(|C| log |C|), where |C| is the size of its input

set of concepts. Thus, the time complexity of the Level-wise algorithm is O(h|C| log |C|)
over taxonomy X = (R, C,R), where h is the number of levels in X . If the taxonomy is

not balanced, the popularities of all concepts of level i may not sum up to 1. Hence, the

algorithm does not consider leaf concepts that are not descendant of any concept in C[i]. To

resolve this problem, when running APM algorithm over C[i], we consider leaf concepts that

are not descendant of any concept of level i as members of C[i] (lines 6-8 in Algorithm 5.1).

Sometimes, it may be easier to use and manage designs whose concepts are not subclass/

superclass of each other. We call such a design a disjoint design. One may restrict the feasible

solutions in the CECD problem to disjoint designs. Our empirical results in Section 5.9 show

that this strategy returns effective designs when the available budget is relatively small. We

call this case of CECD, disjoint CECD. Recent empirical results suggest that the distribu-

tion of concept frequencies over a large collection generally follows a power law distribution

[85]. We show that the Level-wise algorithm has a bounded and reasonably small worst-
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case approximation ratio for CECD with disjoint solution given that the distribution of

concept frequencies follows a power law distribution.

Lemma 5.1. Let Cmax be the leaf concept in taxonomy X = (R, C,R) with maximum u value

and let assume that distribution of u over leaf concepts follows a power law distribution. For

every schema S of X , QU(free(S)) ≤ 2u(Cmax) log |C|.

Proof. We have ∑
C∈free(S)

u(C)d(C) ≤ u(Cmax)
∑

C∈free(S)

d(C).

Since the frequencies of leaf concepts in X follow a power-law distribution, we have that∑
C∈leaf(C)

d(C) ≤ 1 + log(|leaf(C)|)

where leaf(C) is the set leaf concepts in C and |leaf(C)| is the number of such concepts.

Since |leaf(C)| ≤ |C|, then

QU(free(S)) ≤
∑

C∈free(S)

u(C)d(C) ≤ (1 + log |C|) u(Cmax) ≤ 2u(Cmax) log |C|.

Theorem 5.2. Let X = (R, C,R) be a taxonomy with height h and the minimum accuracy

of prmin = minC∈C pr(C). The Level-wise algorithm is a O(h+log |C|
prmin

)-approximation for

the CECD problem with disjoint solution on X and budget B given that the distribution of

frequencies in C follows a power law distribution.

Proof. Let S∗ be a disjoint design over X with total cost at most B that maximizes QU

function. Let S∗[i] be the set of concepts in S∗ of level i, i.e., S∗[i] = S∗ ∩C[i]. Since S∗ is a

disjoint design, for all 1 ≤ i, j ≤ h, part(S∗[i])∩ part(S∗[j]) = ∅. It follows that QU(S∗) =∑
1≤i≤hQU(S∗[i]) +QU(free(S∗)). Next, we consider the two possible cases. First, assume

that
∑h

i=1 QU(S∗[i]) ≥ QU(free(S∗)). It follows that the Level-wise algorithm returns

a ( 2h
prmin

)-approximate solution of the disjoint CECD defined over X .

In the other case in which QU(free(S∗)) is larger than the other term, by Lemma 5.1,

extracting the concept with the maximum u value gives a (4 log(|C|)
prmin

)-approximation. These

two cases together imply that we have an O(h+log |C|
prmin

)-approximation.

Because concept annotation algorithms are reasonably accurate, prmin is generally close to

one [88, 91, 128].
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5.5 EXACT ALGORITHM

This section describes an exact pseudo-polynomial time dynamic programming algorithm

for the CECD over taxonomy X = (R, C,R). We assume that u(C), d(C), and w(C) are

positive integers for each C ∈ C. In Section 5.9, we show that the algorithm can handle real

values with scaling techniques at the expense of reporting near optimal solution instead of an

optimal one. We refer to the second part of the queriability in Definition 5.2 as free partition.

Given a concept C ∈ X , the subtree rooted at C in X is denoted as XC , and the set of the

children of C in X is denoted as child(C). Let Q[C,B,N ] denote the maximum queriability

over all designs in XC such that the amount of queriability that these designs obtain from

their free parts are exactly N , and they are selected by spending at most B units of the

budget. Our algorithm computes Q[C,B,N ] for all C ∈ X , all integers 0 ≤ B ≤ Btotal and

all integers 0 ≤ N ≤ Ntotal, where Ntotal =
∑

C∈leaf(C) u(C)d(C) and leaf(C) is the set leaf

nodes in C. Our algorithm returns

max
0≤N≤Ntotal

(Q[R,Btotal, N ] +N) (5.3)

where R is the root of X and Btotal is the total budget. We try all possible queriabilities

that one can obtain from the free part in X and N , to find out the maximum queriability

over all designs in X .

For a non-leaf concept C, we obtain a recursive description for Q[C,B,N ] according to

the value of Q for the children of C. We consider the following two cases for C:

C is in the optimal design: If C belongs to the optimal design in XC , we have N = 0.

This is because if C is picked, every concept in XC belongs to a non-free partition in the

selected design. In this case, we spend w(C) of the budget to annotate C and the leftover

budget BL = B−w(C) should be assigned to the child(C). Our algorithm tries all possible

ways of assigning the leftover budget among the children of C. If C is selected, the total

queriability obtained at C can be divided into the total non-free queriability of its children

and the queriability of the partition of C. Consider the leaf nodes in XC that belong to

the free partitions in the subtrees rooted at the children of C. If C is selected, these nodes

will be in the partition of C. Thus, the queriability of the partition of C is the total free

queriability of the children of C times pr(C)/d(C). Our algorithm tries all possible total free

queriabilities for the children of C as well as all possible assignment of this free queriability

to the set child(C). Thus, we obtain the following recursion. We use QI to indicate the
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inclusion of C in the solution.

QI [C,B,N ] = max
B,N

(
∑

Ch∈child(C)

Q[Ch,B(Ch),N (Ch)] +
pr(C)

d(C)

∑
Ch∈child(C)

N (Ch)). (5.4)

B includes all possible assignments of BL units of the budget to the children of C, and

N includes all possible assignments of at most Ntotal queriability to the children of C. If

N 6= 0, we set QI [C,B,N ] = −∞ to indicate the infeasibility of a the case.

C is not in the optimal design. In this case, we want to obtain exactly N units of free

queriability, while we maximize the total queriability. Our algorithm tries all possible ways

of assigning this N units into the children of C. Since C is not picked, the entire budget

B can be spent on the subtrees rooted at the children of C. Hence, our algorithm tries all

possible assignments of this B units of the budget among the children of C. Thus, we obtain

the following recursions. We use QE to indicate the exclusion of C from the solution.

QE[C,B,N ] = max
B,N

∑
Ch∈child(C)

Q[Ch,B(Ch),N (Ch)] (5.5)

B includes all possible assignments of B units of budget among the children of C, and N
includes all possible assignments of exactly N unit of benefit from the queriability of free

partitions among the children of C.

Our algorithm considers both cases above and returns the maximum queriability that can

be obtained by either including or excluding C from the optimal solution:

Q[C,B,N ] = max(QI [C,B,N ], QE[C,B,N ]). (5.6)

The leaf concepts are the base cases for our recursion. Let C be a leaf concept, and

suppose that we want to optimize Q[C,B,N ]. If N = 0, we must select C. Otherwise, we

cannot select C. Thus, there are two cases to consider:

N 6= 0: If N = u(C)d(C), we set Q[C,B,N ] = 0. Otherwise, we set Q[C,B,N ] to −∞.

N = 0: If B ≥ w(C), we set Q[C,B,N ] = pr(C)u(C). Otherwise, we set Q[C,B,N ] to

−∞.

This completes the explanation of our recursive algorithm. We turn this recursive algo-

rithm into a dynamic programming to avoid redundant computations. To this end, we build

a |C|×Btotal×Ntotal table, and fill it according to our recursions. The running time of such a

dynamic programming would be O(|C|BtotalNtotal) ·Tcell, where Tcell is the maximum time

required to compute the value of a single cell disregarding recursive calls. Tcell exponentially

depends on the maximum degree of concepts in the taxonomy. Hence, as detailed below, we
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Figure 5.8: Transforming an input taxonomy. Dummy nodes are in blue squares.

further optimize the running time of the algorithm by adding a preprocessing step to modify

our input taxonomy to a binary tree (i.e. the maximum number of children of each concept

is two). Assuming that our input taxonomy is a binary tree, for each Q[C,B,N ], we have

O(Btotal) ways of dividing B and O(Ntotal) ways of dividing the expected free queriability

between the children of C. So, Tcell = O(BtotalNtotal). Let D =
∑

C∈leaf(C) d(C) and U =∑
C∈leaf(C) u(C). By Cauchy-Schwartz inequality, we have Ntotal ≤ UD. We conclude that

the running time is O(|C|(BtotalNtotal)
2) = O(|C|(BtotalUD)2).

5.5.1 Transforming a taxonomy into binary taxonomies

We explain how to transform an arbitrary taxonomy to a binary taxonomy. Let C be a

non-leaf concept in X . We replace the induced subtree of C ∪ child(C) with a full binary

tree X ′C whose root is C and whose leaves are child(C) as shown in Figure 5.8. Some

internal nodes of X ′C do not correspond to any node in X . We refer to such internal nodes

as dummy nodes, and set their cost to Btotal + 1 to make sure that our algorithm does not

include them in the output design.

Applying the aforementioned transformation to all nodes of X , we obtain a binary taxon-

omy X ′ = (R, C ′,R′). The number of nodes in C ′ is at most twice the number of nodes in

C. Therefore, we can find the optimal design for X ′ in the same asymptotic running time,

O(|C|(BtotalUD)2). Since this transformation does not change the subset of leaf concepts in

the subtree rooted in any internal node, any internal node in X corresponds to a solution

in X ′ with the same cost and queriability. Since dummy nodes are too costly, they do not

introduce any new solution to the set of feasible solutions.

Theorem 5.3. There is an exact algorithm to solve the CECD problem over taxonomy X
= (R, C,R) with budget Btotal in O(|C|B2

totalU
2D2).
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Algorithm Approximation ratio Running time

Level-wise (Disjoint CECD) O((h+ log |C|)/prmin) O(h|C| log(|C|))
Dynamic Programming Pseudo-polynomial O(|C|B2U2D2)

Table 5.1: Algorithms for the CECD problem.

5.5.2 Scaling technique to handle real values

In some applications, u and d values are positive real number. Following the scaling

techniques described in [129], we define

û(C) =

⌊
u(C)

εumax/n

⌋
(5.7)

and

d̂(C) =

⌊
d(C)

εdmax/n

⌋
(5.8)

where umax and dmax are the maximum popularity and frequency of all leaf concepts in the

taxonomy, respectively. The accuracy of the dynamic programming algorithm depends on

values of εd and εu. If these values are sufficiently small, the algorithm finds the optimal

schema. Small values of these parameters, however, may result in large u and d values and

increase the running time of the algorithm considerably. Hence, one may choose relatively

larger values for εd and εu to obtain a design whose queriability is close to the one of the

optimal design in a shorter time.

Table 5.1 presents a summary of proposed algorithms for the CECD problem.

5.6 CECD WITH COST DEPENDENCY

The cost of extracting a concept may vary if its ancestors in the taxonomy have been

already annotated. For example, if the instances of person have been already annotated

in a collection, the extractor of artist will examine only a subset of the collection that are

annotated by concept person, which may result in a faster extraction. Also, the extractors for

artist and person may share some annotation rules and/or features. We generalize the CECD

problem so that the cost of annotating a concept in a taxonomy may change depending on

whether its ancestors in the taxonomy are part of the design. One may think of more complex

cost functions that represent dependencies between arbitrary concepts in the taxonomy.

However, it requires a space and time exponential in terms of the number of concepts in

the taxonomy to express and estimate such functions. One may reduce the amount of space

104



and effort to store and estimate the cost values by enforcing some restrictions. On the other

hand, finding such restrictions requires extensive empirical studies and more space than a

single paper and is a subject of future work.

Assume that multiple ancestors of a concept C in X = (R, C,R) are in the selected design.

The annotator of C may examine only the documents annotated by the closest ancestor of C

in the design. Moreover, the closest ancestor of C may share more annotation rules/features

with C than other ancestors of C. Hence, we consider only the dependency between cost of

C and its closest selected ancestor in X . More formally, for each concept C, let anc(C) be

a positive integer value indicating the number of edges between C and its closest ancestor

in the design. We redefine the cost w as a real-valued function over pairs of concepts and

positive integer values. The total cost of design S over X is
∑

C w(C, anc(C)). We define the

problem of CECD with cost dependency exactly the same as Problem 5.1, by only replacing

its cost function with the redefined cost function. Because CECD is a special instance of the

problem of CECD with cost dependency, CECD with cost dependency is also NP-hard.

We extend the dynamic programming algorithm in Section 5.5 to design a pseudo-polynomial

time algorithm for CECD with cost dependency. As before, we assume that the values of

functions u, d and w are positive integers. We define XC and leaf() the same way that they

are defined in Section 5.5. Let Q[C,B,N, anc] denote the maximum queriability we can ob-

tain constraint to budget B from the partitions in XC such that the queriability of the free

parts is N and anc indicates the closest selected ancestor of C in the design. The algorithm

computes values of Q for all budgets up to total budget Btotal and all free queriability N

up to Ntotal =
∑

C∈leaf(C) u(C)d(C) and returns

max
0≤N≤Ntotal

(Q[R,Btotal, N, 1] +N) (5.9)

where R is the root of X and Btotal is the total budget. Note that for the root node, R,

the exact value of anc does not matter because R has no ancestor. We use the technique in

Section 5.5 to transform the taxonomy to a binary tree. We extend the recursive formulas

in Section 5.5 for Q[C,B,N, anc] in the following two cases. QI and QE are defined similar

to the ones in Section 5.5.

C is in the optimal design.

QI [C,B,N, anc] = max
B,N

(
∑

Ch∈child(C)

Q[Ch,B(Ch),N (Ch), 1] +
pr(C)

d(C)

∑
Ch∈child(C)

N (Ch)). (5.10)

B includes all possible assignments of B−w(C, anc) units of the budget, and N includes all

possible assignments of at most N free queriability between children of C. Because concept
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C is in the optimal design, it resets the value of anc to 1 for its children.

C is not in the optimal design. If C is not a dummy node:

QE[C,B,N, anc] = max
B,N

∑
Ch∈child(C)

Q[Ch,B(Ch),N (Ch), anc + 1]. (5.11)

Since C is not selected, it updates and transfers the information about its closest selected

ancestor to its children. If C is a dummy node:

QE[C,B,N, anc] = max
B,N

∑
Ch∈child(C)

Q[Ch,B(Ch),N (Ch), anc]. (5.12)

The dummy nodes are not selected and do not change the value of anc. In these formulas,

B includes all possible assignments of B units of the budget and N includes all possible

assignments of exactly N free queriability between children of C.

The leaf concepts make the base cases for our recursion and their equations are similar to

the bases cases in Section 5.5. Because the information about the closest selected ancestor

of a leaf node is available in Q, the algorithm can compute the cost of leaf node.

Let L be the height of X . To compute the running time of this algorithm, we need to give

an upper bound on the number of cells in Q and the time required to compute the value for

each cell. The time to compute a single cell in Q is exponential in terms of the maximum

degree of the taxonomy, which is 2 after transforming X to a binary tree. Because we have

N ≤ UD, and the maximum value of anc is L, the time for computing all cells in Q will

be O(|C|(BtotalUD)2L). Generally, L for most real-world taxonomy is considerably smaller

than |C| and closer to O(log |C|).

5.7 QUERIES WITH MULTIPLE CONCEPTS

In this section, we propose fast algorithms for the problem of CECD where queries may re-

fer to multiple concepts. We call this problem, Multiple-Concept CECD (MC-CECD).

5.7.1 MC-CECD Over a Set of Concepts

We assume that each query refers to at most two different concepts. The choice of two is

only for the sake of simplicity and our algorithm extends to any fixed number of concepts.

We also assume that the annotation each (leaf) concept over a dataset is independent of the

annotation of any other (leaf) concept in the dataset to simplify our analysis. Our empirical
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studies in Section 5.9 indicate that generally this assumption does not significantly reduce

the accuracy of our models and algorithms. Let QUn(S) be the queriability of S from a set

of concepts C over queries with exactly n concepts. The queriability of S for queries with one

concept, QU1(S), is
∑

C∈S u(C)pr(C) +
∑

C∈free(S) u(C)d(C) [25]. Next, we compute QU2(S).

Assume that query q refers to entities of concepts C1 and C2. The query interface should

select the answers to q from the set of documents that contain instances of both concepts. If

the instances of both concepts are annotated in the dataset, the query interface will correctly

identify such documents. If only C1 is annotated, the query interface will return documents

annotated as C1, of which only about d(C2) may contain the desired answers. If none of these

concepts are annotated, the query interface has to explore all documents in the collection of

which only about d(C1 ∩ C2) may have the desired answers. We have:

QU2(S) =
∑
C1∈S
C2∈S

u(C1 ∩ C2)pr(C1)pr(C2)

+
∑
C1∈S

C2∈free(S)

u(C1 ∩ C2)d(C2)pr(C1)

+
∑

C1∈free(S)
C2∈free(S)

u(C1 ∩ C2)d(C1 ∩ C2)

(5.13)

The total queriability of S, QU(S), is QU1(S) + QU2(S). In MC-CECD, given a set of

concepts C, dataset DS in the domain of C and budget B, we like to find design S over C
such that

∑
C∈S w(C) ≤ B and S has the maximum queriability. We reduce MC-CECD

to CECD over a set of concepts by considering instances in which u(Ci ∩ Cj) = 0 for all

Ci, Cj. Hence, MC-CECD over a set of concepts is NP-hard.

Our algorithm for MC-CECD is based on the algorithm of Set Union Knapsack

(SU-Knapsack) problem [130]. In SU-Knapsack, we have a collection of elements E =

{e1, ..., en}, each with a positive weight denoted by w(ei). Furthermore, we have a collection

of items I = {i1, ..., im} such that each item is a subset of E . Each item i has profit p(i).

Given budget B, the goal of SU-Knapsack(E , I) is to find a set of items ISOL such that the

total cost of the elements in ISOL,
∑

e∈
⋃
i∈ISOL

w(e), is not more than B, and the total profit

of ISOL,
∑

i∈ISOL
p(i), is maximized. The algorithm proposed in [130] starts with all possible

pair of items as its initial set. Then, for each set, it goes through several iterations and at

each iteration picks an item i from the remaining items with the maximum value of p(i)
w′(i)

,

where w′(i) =
∑

e∈i
w(e)

freq(e)
and freq(e) denotes the number of occurrences of element e in

items of I. The iterations will be performed until the budget is used up. The algorithm keeps

the solution with maximum benefit amongst all constructed solutions. Then, it compares
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this solution with the solution that has only the item with maximum profit and returns the

one with the maximum profit amongst them.

Consider an instance of MC-CECD over concepts {C1, ..., Cn} with budget B. To solve

this instance, we make an instance M of SU-Knapsack as follows. Let C1, ..., Cn be the

input set of elements such that w(Ci) is the annotation cost of concept Ci. We define the

input items to be all subsets of {C1, ..., Cn} of size at most two (including empty set). The

profit of each item is:

p(∅) =
∑
C∈C

u(C)d(C) +
∑

C1,C2∈C

u(C1 ∩ C2)d(C1 ∩ C2) (5.14)

p({Ci}) = u(Ci)(pr(Ci)− d(Ci)) +
∑
C∈C

u(Ci ∩ C)(d(C)pr(Ci)− d(C ∩ Ci)) (5.15)

p({Ci, Cj}) = u(Ci ∩ Cj)pr(Ci)pr(Cj) + u(Ci ∩ Cj)d(Ci ∩ Cj)
− u(Ci ∩ Cj)d(Ci)pr(Cj)− u(Ci ∩ Cj)pr(Ci)d(Cj) (5.16)

The item corresponding to the empty set has cost zero and is picked by every solution for

M. Because annotators work better than a random selection, for each concept C, pr(C) ≥
d(C) [91]. Hence, the profits of items in M are positive.

Theorem 5.4. There exists a (1 − 1/e
1
k+1 )-approximation algorithm for MC-CECD in-

stances in which each concept queried with at most k different other concepts.

Proof. As described above, construct an instance M of SU-Knapsack from the MC-

CECD instance.

For each pair of concepts Ci, Cj, the total cost of I1 := ({Ci}, {Cj}) is equal to the total

cost of I2 := ({Ci}, {Cj}, {Ci, Cj}), and all elements have positive profits. If items {Ci}, {Cj}
are selected in an optimal solution ofM, item {Ci, Cj} will also be picked. Thus, an optimal

solution ofM corresponds to a design S in MC-CECD: IS = ∅∪⋃C∈S{C}∪
⋃
C1,C2∈S{C1,

C2}. Furthermore, the profit of IS is p(IS) = p(∅)+
∑

C∈S p({C})+
∑

C1,C2∈S p({C1, C2}) =

QU(S). Hence, the algorithm of [130] return a design whose queribility is at least (1−1/e
1
k+1 )

time the queribility of an optimal design.

5.7.2 MC-CECD Over Tree Taxonomies

Given design S over tree taxonomy X = (C,R, R), we denote the queriability of S for

queries with exactly one concept and exactly two concepts by QU1(S) and QU2(S), respec-

tively. Definition 5.2 computes QU1(S) over X . Next, we compute the value of QU2(S).
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Let query q refers to entities of concepts C1 and C2. Similar to computing QU2(S) over set

of concepts, there are four cases to consider. First, if C1 and C2 both belong to the same

partition P in S, the query interface may examine only the documents annotated with P

to find answers for q. The documents that contain instances of both C1 and C2 contain

relevant answers to q. Hence, the query interface will find the desired answers to q with the

probability of d(C1∩C2)
d(P )

. In the second case, C1 and C2 belong to different partitions P1 and

P2 in S, respectively. The query interface should search the documents annotated under

both P1 and P2, which are d(P1 ∩P2) portion of the collection. Because the desired answers

should contain instances of both concepts, the query interface finds the desired answers to

q with probability of d(C1∩C2)
d(P1∩P2)

. Now, assume that only one of C1 or C2, e.g., C1, is in a

partition P of S. The query interface may search the documents that contain annotations of

P . Because the desired answers are documents with instances of both C1 and C2, the query

interface may return the desired answer with the probability of d(C1∩C2)
d(P )

. Finally, if neither

C1 nor C2 are in any partition, i.e., they both belong to free(S), the query interface will

search the whole collection and may find the desired answer in d(C1 ∩ C2) portion of the

collection. We have:

QU2(S) =
∑
P∈S

∑
C1∈part(P )
C2∈part(P )

u(C1 ∩ C2) d(C1 ∩ C2)

d(P )
pr(P )

+
∑
P1∈S
P2∈S

∑
C1∈part(P1)
C2∈part(P2)

u(C1 ∩ C2)d(C1 ∩ C2)

d(P1 ∩ P2)
pr(P1)pr(P2)

+
∑
P∈S

∑
C1∈part(P )
C2∈free(S)

u(C1 ∩ C2)d(C1 ∩ C2)

d(P )
pr(P )

+
∑

C1∈free(S)
C2∈free(S)

u(C1 ∩ C2)d(C1 ∩ C2)

(5.17)

Let QU(S) denote the queriability of S over queries with at most two concepts, i.e., QU(S)

= QU1(S) + QU2(S). We define the problem of MC-CECD over tree taxonomies similar

to Problem 5.1 with the new formula for QU(S). Since CECD over tree taxonomies is

NP-hard, MC-CECD is NP-hard (consider instances with u(Ci ∩ Cj) = 0 for all Ci, Cj).

We extend the Level-wise algorithm for the problem of MC-CECD over tree taxonomy.

To this end, we combine the Level-wise algorithm and the algorithm for SU-Knapsack

described in Section 5.7.1. Consider a level r of the tree taxonomy and let Cr
1 , · · · , Cr

p be the

concepts of level r. We compute the profits as defined in Section 5.7.1 for all subsets of size

109



thing

place organization

airline
NGO

local business
movie theater hospital

Figure 5.9: Fragments of schema.org taxonomy.

at most two (including the empty set) of the concepts in level r. Then, we find the solution

with maximum queriability in level r using the approximation algorithm of SU-Knapsack.

Our algorithm returns the solution with the maximum queriability over all levels of the

taxonomy. The running time of the presented heuristic is O(|C|3L) ∼ O(|C|3 log |C|) where

L is the height of the tree taxonomy.

5.8 COST-EFFECTIVE DESIGN FOR DAG TAXONOMIES

5.8.1 Directed Acyclic Graph Taxonomies

Many taxonomies are in form of directed acyclic graphs (DAGs). Figure 5.9 shows frag-

ments of schema.org taxonomy. Some concepts in this taxonomy are included in multiple

superclasses. For example, a hospital is both a place and an organization. Therefore, a tree

structure is not able to represent these relationships.

Formally, a directed acyclic graph taxonomy X = (R, C,R) (DAG taxonomy for short), is

a DAG, with vertex set C, edge set R and root R where C is a set of concepts, (D,C) ∈
R if and only if D,C ∈ C and C is a subclass of D. The root concept R ∈ X is a concept

without superclass. A concept C ∈ C is a leaf concept if and only if it has no subclass in X .

The definitions of child, ancestor and descendant over tree taxonomies naturally extends to

DAGs.

5.8.2 Design Queriability

Design S over DAG taxonomy X = (R, C,R) is a non-empty subset of C \ {R}. Because

of the richer structure of DAG taxonomies, designs over DAG taxonomies may improve the

effectiveness of answering queries in more ways than the ones over tree taxonomies. For

example, let dataset DS be in the domain of DAG taxonomy in Figure 5.9, and S1 =

{place, organization} be a design over this taxonomy. Because concept hospital is a subclass

of both place and organization, its entities in DS are annotated by both these concepts.
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By examining the entities that are annotated by both place and organization, the query

interface is able to identify the instances of hospital in DS. Generally, the query interface

may pinpoint instances of some concepts in the dataset by considering the intersections of

multiple concepts in a design over a DAG taxonomy. Hence, subsets of a design may create

partitions in a DAG taxonomy.

Definition 5.3. Let S be a design over the DAG taxonomy X = (R, C,R), and let C ∈ C
be a leaf concept. An ancestor A of C in S is C’s direct ancestor if and only if one of the

followings hold.

• A = C.

• For each D ∈ S, if D is an ancestor of C then D is not a descendant of A.

The full-ancestor-set of C is the set of all its direct ancestors.

Example 5.5. Consider a DAG taxonomy shown in Figure 5.9. The set {place, organiza-

tion} is the full-ancestor-set of the concept hospital in design S1 = {place, organization},
and the set {local business, place} is the full-ancestor-set of the concept hospital in design

S2 = {organization, local business, place} over the taxonomy in Figure 5.9.

Definition 5.4. Given design S over the DAG taxonomy X = (R, C,R), the partition of a

set of concepts D ⊆ S is a set of leaf concepts L ⊆ C such that for every leaf concept L ∈ L,

D is the full-ancestor-set of L.

Example 5.6. Let S1 = {organization, place} be a design over the DAG taxonomy shown

in Figure 5.9. The concept hospital belongs to the partition of {organization, place} in S1.

However, it does not belong to the partition of {place} because {place} is not the full-ancestor-

set of hospital.

The definitions of functions part and free over tree taxonomies naturally extend to

DAG taxonomies. We define the frequency of partition P , denoted by d(P ), as the fre-

quency of the intersection of concepts in its root. Using a similar analysis to the one in

Section 5.3.2, we define the queriability of design S over DAG taxonomy X = (R, C,R)

as
∑

P∈all-parts(S)

∑
C∈P u(C)d(C)

d(P )
+
∑

C∈free(S) u(C)d(C) where the function all-parts(S) re-

turns the collection of all full-ancestor-sets of S in X .

5.8.3 Hardness of CECD over DAG Taxonomies

We define the CECD problem over DAG taxonomies similar to the CECD over tree tax-

onomies. Following from the NP-hardness results for CECD problem over tree taxonomy,
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CECD problem over DAG taxonomies is NP-hard. We prove that finding an approximation

algorithm with a reasonably small bound on its approximation ratio for the problem CECD

over DAG taxonomies is significantly hard. Unfortunately, this is true even for the special

cases where concepts in the taxonomy have equal costs or the desired design is disjoint. More

precisely, we show that the CECD problem over a DAG taxonomy generalizes a hard prob-

lem in the approximation algorithms literature: Densest-k-Subgraph. Given a graph G

= (V,E), in the Densest-k-Subgraph problem, the goal is to compute a subset U ∈ V of

size k that maximizes the number of edges in the induced subgraph of U . It is known that,

unless P = NP, no polynomial time approximation scheme, i.e., PTAS, exists to compute

the densest subgraph [131]. Also, there are strong evidences that Densest-k-Subgraph

does not admit any approximation guarantee better than polylogarithmic factor [132, 133].

Recently, it has been shown that, assuming exponential time hypothesis (ETH), there is

no polynomial time algorithm that approximates Densest-k-Subgraph within a factor of

n1/(log logn)c [134]. The following theorem shows that approximating the k-densest subgraph

reduces to approximating CECD.

Theorem 5.5. An α-approximation algorithm for the CECD problem over DAG taxonomy

with m concepts implies that there is an algorithm for the Densest-k-Subgraph problem

on G = (V,E) with n vertices that returns a O(α)-approximate solution.

Proof. We use the following construction to reduce Densest-k-Subgraph to CECD prob-

lem over DAG. Given a graph G = (V,E) and a number k, we build an instance of the CECD

over a DAG taxonomy as follows. For each edge e ∈ E, we introduce a leaf concept ae, and

for each vertex v ∈ V , we introduce a leaf concept av and a non-leaf concept Sv such that Sv

is an ancestor of av and all ae corresponding to the incident edges of v in G. Further, we set

the budget B to k, the cost of each non-leaf concept to 1, and the cost of leaf concepts to

k+1. If we select Sv and Su in the design and (u, v) ∈ E, ae will be a singleton partition. We

set the popularities and frequencies of all concepts in the taxonomy respectively to the same

fixed values u and d. Let m be the number of edges in G and n be the number of vertices in G.

For each partition p ∈ part(S), we set d(p) = 1/β if p is a singleton edge concept and d(p) =

1 otherwise. β is a parameter which we determine later in the proof. Since leaf concepts are

not affordable, there is an optimal design with exactly k non-leaf concepts. In each design

S of size k, the contribution of every leaf concept in a non-singleton edge concept partition

is exactly ud. Let HS be the set of vertices in G whose corresponding non-leaf concepts in

C are in S. E(HS) denotes the set of edges with both endpoints in HS . It corresponds to

the set of edge-concepts of C whose both non-leaf concepts associated with their endpoints

are in S. Let SOPT be the solution of CECD corresponding to an optimal solution of the
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Densest-k-Subgraph. We have QU(SOPT) = ud(β · t + m + n − t) where t denotes the

number of edges in HSOPT
. Let A be an α-approximation algorithm of CECD, and SA be

the α-approximate design returned by A. Let QU(SA) = ud(t′ ·β+m+n− t′) where t′ is the

number of edges whose both endpoint are in SA. Since A is an α-approximation algorithm

of CECD, t · β +m+ n− t ≤ α(t′ · β +m+ n− t′). Thus, t ≤ t′ ·α+ (m+ n) · α−1
β−1

. Setting

β = (m+ n)(α− 1) + 1 leads to O(α)-approximation for the Densest-k-Subgraph.

Because the concepts in the instance of CECD in the proof of Theorem 5.5 have equal

costs and its optimal solution is disjoint, i.e., there is no directed path between any two of

concepts in the design, the hardness results of Theorem 5.5 is true for the special cases of

CECD over DAG taxonomies where the concepts are equally costly and the problem has

disjoint optimal solution.

The following corollaries result from Theorem 5.5.

Corollary 5.1. If NP 6⊆ ∩ε>0BPTIME(2n
ε
), there is no polynomial time approximation

scheme, PTAS, for CECD over DAG taxonomies.

Proof. By setting β = (m+n)(α−1)
ε

+1 in proof of Theorem 5.5 and using the hardness result of

[131], no polynomial time approximation scheme algorithm exists for CECD unless NP ⊆
∩ε>0BPTIME(2n

ε
).

Corollary 5.2. Assuming Exponential Time Hypothesis (ETH), the problem of CECD over

DAG taxonomies does not admit an approximation guarantee better than n1/(log logn)c.

Proof. It follows from the hardness result of [134] and Theorem 5.5.

5.9 EXPERIMENTS

5.9.1 Experiment Settings

Taxonomies and datasets

We have extracted eight taxonomies from YAGO ontology version 2008-w40-2 [93] to

validate our model and evaluate effectiveness and efficiency of our proposed algorithms.

YAGO organizes its concepts using subclass relationships in a DAG with a single root.

We have created the breath-first tree of YAGO and randomly selected the concepts from

the tree for our taxonomies. To validate our model, we have to compute and compare the

effectiveness of answering queries using every feasible design over a taxonomy. Thus, we need
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Table 5.2: The sizes and heights of taxonomies and the sizes of corresponding datasets and
query workloads.

Taxonomy T1 T2 T3 T4 T5 T6 T7 T8

#Concept 10 17 17 28 63 185 279 2269
#Height 2 2 3 7 6 8 8 9

#Documents 68982 267653 88479 1470661 1470661 1470661 1470661 1470661
#queries 648 256 146 4219 4888 4728 5216 11156

tree taxonomies with relatively small number of concepts for our validation experiments. We

have extracted three tree taxonomies with relatively small numbers of nodes, called T1, T2

and T3, to use in our validation experiments. The selected concepts for T1, T2 and T3 are

from level 3 to 6 of the full YAGO tree which has a total of 9 levels. We have further picked

five other tree taxonomies with larger numbers of concepts, denoted as T4, T5, T6, T7 and

T8. The concepts for T4 and T5 are selected from level 3 to 6 of the full YAGO tree. The

concepts for T6 and T7 are randomly selected from levels 2 to 9 of the full YAGO tree. T8

contains all concepts from the original YAGO tree that appear at least once in the collection

of English Wikipedia articles. We use all tree taxonomies to evaluate the effectiveness and

efficiency of our proposed algorithms. Table 5.2 shows the properties of these taxonomies.

Query Workload

We use a subset of Bing1 query log whose relevant answers are Wikipedia articles [135].

The relevant answers for each query in this query workload have been determined using the

click-through information by eliminating noisy clicks. Each query contains between one to

six keywords and has between one to two relevant answers with most queries having one

relevant answer. Because the query log does not have the concepts behind its queries, we

adapt an automatic approach to find the leaf concept from the taxonomy associated with

each query. We label each query by the concept of the matching instance in its relevant

answer(s). Then, we select queries labeled with a single concept. Using this method, we

create a query workload per each of our datasets. It is well known that the effectiveness of

answering some queries may not be improved by annotating the dataset [108]. For instance,

all candidate answers for a query may contain mentions to the entities of the query concept.

To reasonably evaluate our algorithms, we have ignored the queries whose rankings remain

the same over the unannotated version and the version of the dataset where all concepts in

the taxonomy are annotated. Table 5.2 shows the information about our query workloads.

We estimate the popularities of concepts for each taxonomy by sampling a small subset

1www.bing.com
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of randomly selected queries from their corresponding query workloads. We compute the

popularity of each concept using estimation error rate of 5% under the 95% confidence level.

The number of sampled queries are between 100 and 500 for each taxonomy. Because some

concepts in a taxonomy may not appear in its query workload, we smooth the popularity of a

concept C, u(C), using the Bayesian m-estimate method [60]: û(C) = P̂ (C|QW )+mp

m+
∑
C P̂ (C|QW )

, where

P̂ (C|QW ) is the probability that C occurs in the query workload QW and p denotes the

prior probability. We set the value of the smoothing parameter, m, to 1 and use a uniform

distribution for all the prior probabilities.

Query Interface

We index our datasets using Lucene2. Given a query, we rank its candidate answers using

BM25 ranking formula, which is shown to be more effective than other similar document

ranking methods [60]. Then, we apply the information about the concepts in the query and

documents to return the answers whose matching instances have the same concept as the

concept of the query. If the concept in the query has not been annotated in the collection,

the query interface returns the list of documents ranked by BM25 method without any

modification. We have implemented our query interface and algorithms in Java 1.7 and

performed our experiments on a Linux server with 100 GB of main memory and two quad

core processors.

Effectiveness Metric

Because all queries in our query workloads have one or two relevant answers, we measure

the ranking quality of answering queries over a dataset using mean reciprocal rank (MRR)

[60]. MRR is an inverse of the rank of the first relevant answer in the returned list of answers.

MRR is used to measure the effectiveness of results for queries that have a small number

of relevant answers [60]. Since most queries in our query workload have a single relevant

answer, MRR is an appropriate metric to measure the effectiveness of their results. We

measure the statistical significance of our results using the paired-t-test at a significant level

of 0.05.

2lucene.apache.org
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Cost Models

We use three models for generating costs of concept annotation. First, we assign a ran-

domly generated cost to each concept in a taxonomy. The results reported for this model are

averaged over 5 sets of random cost assignments per budget. We call this model random cost

model. Second, when there is not any reliable estimation available for the cost of annotating

concepts, an organization may assume that all concepts are equally costly. Hence, in our

second cost model, we assume that all concepts in the input taxonomy have equal cost. We

name this model uniform cost model. These two cost models have also been used to model

the costs of large-scale data curation [22, 25, 136]. Lastly, an organization may also assume

that the cost of a concept depends on how likely the concept appears in a collection. Hence,

in our third cost model, we assume that a cost of a concept is proportional to its frequency.

Specifically, the cost of a concept c is d(c)/
∑

l is leaf d(l). We call this model frequency-based

cost model.

We use a range of budgets between 0 and 1 with a step size of 0.1 where 1 means sufficient

budget to annotate all leaf concepts in a taxonomy and 0 means no budget is available.

5.9.2 Validating Queriability Function

Oracle: Given a fixed budget, Oracle enumerates all feasible designs over the input taxon-

omy. Given an effectiveness metric, such as MRR, for each design, it computes the average

the effectiveness metric for all queries in the query workload over the dataset annotated

by the design. It then returns the design with maximum value of the average effectiveness

metric.

Popularity Maximization (PM): Following the traditional approach towards conceptual

design for databases, one may select concepts in a design that are more important for users

[43]. Hence, we implement an algorithm, called PM, that enumerates all feasible designs,

such as S, in a taxonomy and returns the one with the maximum value of
∑

p∈part(S)

∑
C∈p

u(C)pr(p). This design contains the concepts that are more frequently queried by users and

also annotated more accurately.

Queriability Maximization (QM): QM enumerates all feasible designs over the input

taxonomy and returns the one with the maximum queriability as computed in Section 5.3.2.

Because we would like to explore how accurately PM and QM predict the amount of

improvement in the effectiveness of answering queries by a design, we assume that these

algorithms have complete information about the popularities and frequencies of concepts.

Since Oracle, PM and QM algorithms enumerate all feasible designs, it is not possible to
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run them over large taxonomies. Hence, we run these algorithms over small taxonomies, i.e.

T1, T2 and T3.

Table 5.3 illustrates the average MRR achieved by Oracle, QM and PM over taxonomies

T1, T2 and T3 for various budgets. The values of MRR show at budget 0.0 is the one

achieved by BM25 ranking without annotating any concept in the datasets. We note that

there is no improvement in average MRR over taxonomy T1 for budget 0.1 under uniform

cost because each concept in the taxonomy costs more than 0.1.

Over all taxonomies and cost models, the designs selected by QM deliver close MRR values

to the ones selected by Oracle. There are a few cases where the results of QM are significantly

worse than the results of Oracle. For instance, consider the results of QM and Oracle for

budget 0.3 over taxonomy T2. In T2, concept writing is the parent of a leaf concept dramatic

composition and a couple other leaf concepts whose popularities are much less than that of

dramatic composition. QM picks a design that contains dramatic composition. This design

will deliver the highest values of MRR for queries with concept dramatic composition, but it

does not help improving the values of MRR for queries whose concepts are other children of

writing over the unannotated dataset. That is, QM picks a relatively less popular concept,

but maximizes the improvement of the effectiveness for queries with this concept. On the

other hand, Oracle selects writing instead of dramatic composition. Intuitively, this design

improves the values of MRR for queries with concept dramatic composition less than the

design selected by QM. However, this design will improve the values of MRR for queries

with other child concepts of writing. For this dataset, selecting writing helps improving the

values of MRR for queries with concept dramatic composition as equal as selecting dramatic

composition. Because, the design selected by QM is not able to improve the effectiveness

of answering queries whose concepts are other children of writing, QM is less effective than

Oracle. We have observed a similar behavior for other cases when the results of QM are

significantly worse than Oracle. This observation suggests that if the budget is relatively

small, it is sometimes better to annotate rather general concepts.

For frequency-based cost, Oracle, QM and PM are equally effective. Under this cost model,

the leaf concepts are cheaper than any internal concept node. Hence, every algorithm chooses

leaf concepts and returns the same design. Furthermore, Oracle, QM and PM return the

same values of average MRR over T1 for all budgets. This is because these algorithms can

select 8 out of 9 leaf concepts using budget 0.1, and the returned designs help to answer

queries with those concepts effectively. However, the remaining leaf concept, e.g., person,

costs more than 0.9 because of its 92% frequency in T1. Because each internal concept

either costs more than person or has all of their leaf descendants included in a design,

these algorithms choose all leaf concepts except person and do not include any internal
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concept. Therefore, over T1, the algorithms are equally effective across all test budgets

under frequency-based cost model.

Nevertheless, the results from Table 5.3 indicate that QM delivers designs that improve the

average MRR of answering queries more than those delivered by PM. Overall, PM annotates

more general concepts from the taxonomy to improve the effectiveness of larger number of

queries. Hence, to answer a query, the query interface often has to examine the documents

annotated by an ancestor of the query concept. As this set of documents contain many

answers whose concepts are different from the query concept, the query interface is usually

not able to improve the value of MRR for a query significantly. QM selects the designs with

relatively less general concepts. Although its designs may not improve the ranking quality of

every query, the designs significantly improve the ranking quality of queries whose concepts

belong to the selected designs.

5.9.3 Effectiveness of the Proposed Algorithm

Queriability formula needs the value of the frequency for each concept in the input tax-

onomy over the dataset. However, it is not possible to find the exact frequencies of concepts

without annotating the mentions to their entities in the dataset. Similar to [25], we estimate

the concept frequencies by sampling a small subset of randomly selected documents from

the dataset. We compute the frequency of each concept using an estimation error rate of

5% under the 95% confidence level, which is about 400 documents for all datasets. We also

smooth the sampled frequencies using Bayesian m-estimates with smoothing parameter of 1

and uniform priors. We denote the Level-wise algorithm as LW and the dynamic program-

ming algorithm as DP for brevity. We also compare LW and DP with the APM algorithm

from [25] which finds a design over a set of concepts. We use all concepts in the taxonomy

as a set of concepts for an input to APM. APM uses a technique to convert popularities and

costs to positive integers [25]. We set the ε value of the scaling for APM to 0.01. As we have

mentioned in Section 5.4, LW uses APM to find the optimal design in each level. We set

the scaling factor of the APM algorithm used by LW to 0.01. In addition, we also perform

APM algorithm only over a set of leaf concepts in a taxonomy, and denote this modification

of APM as APM-L.

Since DP also assumes popularity (u), frequency (d) and cost (w) to be positive integers,

we also use scaling to convert the values of popularity, frequency and cost of all concept

in the input taxonomy to positive integers [129]. The details of the scaling techniques is

described in Section 5.5. For simplicity, we set both εU and εD to be the same and denote

them as ε. Intuitively, the smaller the value of ε is, the more exact result DP will deliver.
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However, DP takes longer to run for smaller values of ε as the range of U , D and Btotal

will become larger. Since we cannot use a very small value of ε, our preliminary results of

using this scaling technique shows that many concepts have u or d values equals to 0 after

scaling. Hence, DP may not explore all feasible designs and may miss some popular concepts

whose d value are small. Thus, we modify the aforementioned scaling technique by adding

a constant value of 1 to both û(C) and d̂(C). This addition ensures that each concept, after

the scaling, contributes in the computation of queriability, and DP will explore all feasible

designs. We set the value of ε for DP to 0.05 for the experiments in this section.

Table 5.4 shows the values of average MRR for APM, APM-L, LW and DP over T1, T2,

T3, T4 and T5. Overall, the designs returned by LW and DP improve the effectiveness

of answering queries for all taxonomies more than the designs returned by APM. This is

because APM does not consider the structural information of the taxonomy. APM often

picks many popular concepts that are ancestor or descendant of each other, LW and DP use

structural information of the taxonomy when selecting a design and thus avoid this problem.

Although APM-L is shown to be more effective than APM, LW is generally more effective

than APM-L. Since APM-L returns designs only over leaf concepts of a taxonomy, it does

not have the same drawback as that of APM and so the average MRR values of APM-L is

higher than APM. In many cases, the designs returned APM-L and LW are equally effective.

This is because there are only two levels of concepts in T1 and T2, and the given budgets

are usually enough to select popular concepts in the leaf level. Hence, both LW and APM-L

returns the same designs. In addition, although the height of T4 and T5 are higher than

T1, T2 and T3, the taxonomy trees are also unbalanced, and for each internal concept,

the distribution of the popularity and frequency of its child concepts are extremely skewed.

For instance, organism has only two children in T4, and both children are leaves. One of

the children, namely person, has almost the same popularity as that of organism. Hence,

a design with concepts from a leaf level and a design with concepts from the same level as

organism are equally effective. Nevertheless, LW returns different designs than APM-L in

some cases, and they are more effective than those of APM-L.

DP is also generally more effective than APM-L. This is because designs returned by DP

can contain both leaf and non-leaf concepts. For instance, given a budget of 0.3 over T2,

APM-L picks dramatic composition and literary composition while DP picks writing instead

of dramatic composition. Since writing is a parent of both dramatic composition and literary

composition, DP can answer queries of literary composition and queries of other concepts

that are children of writing more effectively.

The results shown in Table 5.4 indicate that the designs returned by DP are more effective

than those returned by LW for small budgets and small taxonomies such as T1, T2 and
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T3. However, the designs returned by LW are more effective than those delivered by DP for

moderate to large budgets, e.g., 0.4-0.7. Because the frequencies and popularities of concepts

in most taxonomies follow a power-law distribution, most of all concepts have frequency and

popularity close to zero. When a given budget is very small, neither methods have a sufficient

budget to select the concepts with medium or small frequencies and popularities. However,

over sufficiently large budgets, both algorithms are able to select some of these concepts.

If the DP algorithm does not use sufficiently small values for ε, concepts with considerably

different frequencies and popularities may end up with equal values of scaled frequencies

and popularities. Since it takes a very long time to run DP with an ε value less than 0.05,

one cannot use a sufficiently small value of ε to preserve the differences in popularities and

frequencies for all concepts As the DP algorithm is not able to distinguish these concepts,

it may not be able to find a design with the most queriability. Since we are able to run

LW using sufficiently small scaling factors in its APM component, LW often returns more

effective designs than DP over relatively large budgets.

Table 5.5 shows the values of average MRR for APM and LW over T6 and T8. The results

of budgets greater than 0.6 are omitted because they are the same as the previous budgets.

We do not report any result for DP over T6, T7 and T8 because the algorithm does not

terminate for almost all budgets after several days. The results shown in Table 5.5 indicate

that the designs returned by LW are more effective than the ones delivered by APM.

Because of a very skewed distribution of concept popularity in T6, T7 and T8, budgets of

0.4 for T6 and T7, and 0.2 for T8 are usually sufficient to create a design that includes all leaf

concepts that appear in the query workloads. Hence, APM, APM-L and LW deliver almost

equally effective designs for relatively large budgets. We further evaluate APM, APM-L and

LW using budgets 0.01 and 0.05 for T6, T7 and T8 and budgets 0.001 and 0.005 for T8

as shown in Table 5.5. Overall, LW is significantly more effective than APM-L and APM.

This is because, with small budget, it is more preferable to choose a concept in a higher

level instead of multiple leaf concepts that are children or descendants of that one concept.

Then an algorithm can spend the remaining budget on other concepts to help answer other

queries more effectively.

Dynamic Programming with Cost-Dependency

Table 5.6 show the values of MRR for Queriability Maximization (QM) and dynamic

programming algorithm with cost dependencies (DPC) over T1, T2 and T3 taxonomies.

The cost for each concept in these taxonomies has been randomly generated and depends

on which ancestors of the concept have been selected in the design. The budgets that cover
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all leaf nodes in T1, T2 and T3 are 1, and the budget that cover all nodes are 1.25, 1.1 and

1.1, respectively. QM is a brute force algorithm that explores all feasible solutions and finds

the design with maximum queriability. Because the space of the possible solutions for this

problem is larger than the original CECD problem, it takes much longer to run QM for this

problem. Hence, we have covered a smaller range of budgets in this set of experiments. The

results shown in Table 5.6 indicate that the smaller the value of ε, the closer the average

MRR of the designs returned by DPC are to the ones delivered by QM.

5.9.4 Efficiency of Proposed Algorithms

We measure the running times of LW and DP over moderate and large taxonomies, i.e.,

T4, T5, T6, T7 and T8, and set the available main memory of Java Virtual Machine to

64GB. Table 5.7 shows the average running times of APM, LW and DP for T4, T5, T6, T7

and T8 over budgets 0.1 to 0.9. Some results of DP are not reported because the algorithms

did not finish after a day. Overall, LW is as efficient as APM, and it is more efficient than

DP. Because the size of the table required in the DP algorithm is substantially large for

ε = 0.05, it occupies most of the available main memory. Thus, the running time of DP is

longer than APM and LW. Therefore, LW scales for large taxonomy and is efficient for a

design-time task. On the other hand, DP has a reasonable running time for T4 and T5, but

it does not scale for large taxonomy such as T6, T7 and T8.

Dynamic Programming with Cost-Dependency

Table 5.7 shows the average running times of DPC for T4, T5, T6, T7 and T8 over budgets

0.25, 0.5, 0.75 and 1 using the scaling factor, ε, of 0.1 and 0.2. We do not report the running

time of DPC using ε = 0.1 for T6, T7 and T8 and DPC using ε = 0.2 for T7 and T8 because

the algorithm did not finish after a day. Because DPC requires a larger table than the one

required for DP, the running time of DPC is longer than that of DP for the same scaling

factor, i.e., ε. Hence, we run DPC using only ε values of 0.1 and 0.2. Overall, DPC with ε

= 0.1 is reasonably efficient to perform a design-time task for a taxonomy of up to size 70,

and DPC with ε = 0.2 is reasonably efficient for a taxonomy of up to size 200.
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5.9.5 Queries With Multiple Concepts

Validation and Effectiveness

We have selected all queries with multiple concepts which belong to T1, T2 and T3 from

our query workload and filtered out the queries whose ranking quality is not improved by

annotating all concepts in the corresponding taxonomy. This results in 6, 37 and 8 queries

over T1, T2 and T3, respectively. The number of concepts for each query is 2. Because

there are not enough queries with multiple concepts for T1 and T3, we do not evaluate our

models over T1 and T3. Since the number of queries with one concept over T2 is seven times

larger than the number of multiple concepts, we randomly select a subset of queries with one

concept from the original query workload and combine them with the queries with multiple

concepts over T2. The new query workload contains 106 queries. We run Oracle, the

queriability maximization over queries with multiple concepts (MQM), the Level-wise

algorithm for multiple concepts (MLW ), and the Level-wise algorithm (LW ) over the

query workload. Oracle is described in Section 5.9.2. MQM enumerates all feasible designs

over the input taxonomy and returns the one with maximum queriability as computed in

Section 5.7. Table 5.9 shows the values of average MRR for Oracle, MQM, MLW and LW

algorithms over T2. MQM generally returns the designs similar to those of Oracle. The

designs returned by MLW also deliver close average MRR the ones delivered by MQM in

most cases. Overall, MLW significantly outperforms LW over T2.

We have also evaluated the effectiveness of MLW and LW over taxonomies T4, T5, T6,

T7 and T8. We have selected all queries with multiple concepts over T4, T5, T6, T7 and T8

from our query workload. Table 5.8 shows the numbers of queries with multiple concepts

and the minimum, average and maximum numbers of concepts per query for T4, T5, T6,

T7 and T8. Table 5.10 shows the values of MRR for MLW and LW algorithms over T4, T5,

T6, T7 and T8. Overall, the designs returned by MLW deliver significantly higher average

MRR than the designs selected by LW over all taxonomies.

We have observed less difference between the results of MLW and LW when the distribution

of concept popularity in the taxonomy is less skewed. This is because, when the popularity

distribution is very skewed, both algorithms select all or most relatively popular concepts.

Hence, they selected designs are almost equally effective. For example, the distribution of

concept frequencies in T6 is considerably more skewed than those of the concepts in T7,

thus, the designs delivered by MLW and LW over T6 are significantly more different than

the ones these algorithms return over T7.
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Efficiency

We measure the average running times of MLW over moderate and large taxonomies, i.e.,

T4, T5, T6, T7 and T8, and set the available main memory of the Java Virtual Machine to

64GB. The average running times of MLW for T4, T5, T6, T7 and T8 over budgets 0.1 to

0.9 are 3, 3, 4, 4 and 8 minutes, respectively, which are reasonable for a design-time task.
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Table 5.3: Average MRR for Oracle, PM and QM over T1, T2 and T3. Statistically signifi-
cant differences between PM and QM and between Oracle and QM are marked in bold and
italic, respectively. B denotes a given budget.

Uniform Cost Random Cost Frequency-based Cost
B Oracle QM PM Oracle QM PM Oracle QM PM

T1

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.1 0.187 0.187 0.187 0.259 0.255 0.239 0.475 0.475 0.475
0.2 0.362 0.362 0.197 0.385 0.384 0.226 0.475 0.475 0.475
0.3 0.415 0.406 0.203 0.424 0.417 0.212 0.475 0.475 0.475
0.4 0.459 0.459 0.227 0.461 0.461 0.262 0.475 0.475 0.475
0.5 0.492 0.492 0.400 0.492 0.492 0.341 0.475 0.475 0.475
0.6 0.501 0.501 0.444 0.501 0.499 0.426 0.475 0.475 0.475
0.7 0.507 0.507 0.497 0.507 0.504 0.476 0.475 0.475 0.475
0.8 0.507 0.507 0.507 0.507 0.507 0.505 0.475 0.475 0.475
0.9 0.507 0.507 0.507 0.507 0.507 0.507 0.475 0.475 0.475

T2

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.342 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.1 0.504 0.479 0.504 0.515 0.471 0.482 0.598 0.598 0.598
0.2 0.577 0.543 0.551 0.616 0.586 0.559 0.662 0.662 0.662
0.3 0.641 0.629 0.574 0.677 0.661 0.576 0.677 0.674 0.674
0.4 0.729 0.729 0.586 0.725 0.725 0.616 0.741 0.741 0.741
0.5 0.745 0.745 0.615 0.744 0.742 0.652 0.747 0.747 0.747
0.6 0.751 0.751 0.647 0.754 0.754 0.695 0.748 0.748 0.748
0.7 0.763 0.763 0.759 0.763 0.758 0.732 0.748 0.748 0.748
0.8 0.764 0.764 0.764 0.764 0.763 0.763 0.751 0.748 0.751
0.9 0.764 0.764 0.764 0.764 0.764 0.764 0.763 0.763 0.763

T3

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0.1 0.469 0.469 0.453 0.528 0.521 0.514 0.447 0.447 0.447
0.2 0.595 0.594 0.579 0.646 0.629 0.587 0.531 0.531 0.531
0.3 0.680 0.679 0.600 0.714 0.712 0.660 0.594 0.594 0.594
0.4 0.745 0.734 0.685 0.747 0.739 0.711 0.725 0.725 0.725
0.5 0.754 0.754 0.741 0.758 0.757 0.748 0.734 0.734 0.734
0.6 0.760 0.760 0.760 0.760 0.760 0.760 0.734 0.734 0.734
0.7 0.760 0.760 0.760 0.760 0.760 0.760 0.739 0.739 0.739
0.8 0.760 0.760 0.760 0.760 0.760 0.760 0.745 0.739 0.739
0.9 0.760 0.760 0.760 0.760 0.760 0.760 0.754 0.754 0.754
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Table 5.4: Average MRR for APM, APM-L, LW and DPε=0.05 over T1, T2, T3, T4 and T5.
Statistically significant difference between APM and LW, between APM and DP, between
DP and LW, between APM-L and LW, and between DP and APM-L are in italic, bold,
underline, apostrophe(’) and star(*), respectively. B denotes a given budget.

Uniform Cost Random Cost Frequency-based Cost
B APM APM-L LW DP APM APM-L LW DP APM APM-L LW DP

T1

0.1 0.187 0.187 0.187 0.187 0.239 0.250 0.250 0.255 0.475 0.475 0.475 0.475
0.2 0.197 0.220 0.220 0.362* 0.204 0.318 0.318 0.384 0.475 0.475 0.475 0.475
0.3 0.221 0.394 0.394 0.406 0.288 0.390 0.390 0.417* 0.475 0.475 0.475 0.475
0.4 0.394 0.438 0.438 0.459* 0.357 0.440 0.440 0.460* 0.475 0.475 0.475 0.475
0.5 0.438 0.492 0.492 0.492 0.421 0.492 0.492 0.486 0.475 0.475 0.475 0.475
0.6 0.492 0.501 0.501 0.492 0.471 0.496 0.496 0.488 0.475 0.475 0.475 0.475
0.7 0.501 0.502 0.502 0.493 0.494 0.502 0.502 0.494 0.475 0.475 0.475 0.475
0.8 0.502 0.507 0.507 0.507 0.502 0.503 0.503 0.502 0.475 0.475 0.475 0.475
0.9 0.507 0.507 0.507 0.507 0.502 0.506 0.506 0.506 0.475 0.475 0.475 0.475

T2

0.1 0.504 0.479 0.479 0.479 0.481 0.466 0.466 0.476 0.589 0.598 0.589 0.598
0.2 0.534 0.566 0.566 0.566 0.564 0.567 0.571’ 0.591* 0.595 0.662 0.662 0.662
0.3 0.580 0.629 0.629 0.629 0.607 0.638 0.638 0.652* 0.667 0.668 0.668 0.671
0.4 0.651 0.718 0.718 0.729 0.666 0.686 0.686 0.713* 0.668 0.741 0.741 0.739
0.5 0.673 0.745 0.745 0.734 0.673 0.738* 0.738 0.728 0.703 0.747 0.747 0.747
0.6 0.746 0.751 0.751 0.750 0.702 0.747 0.748 0.746 0.709 0.748 0.748 0.748
0.7 0.751 0.758 0.758 0.763 0.747 0.755 0.755 0.751 0.747 0.748 0.748 0.748
0.8 0.757 0.764 0.764 0.764 0.755 0.760 0.761 0.759 0.748 0.748 0.748 0.748
0.9 0.757 0.764 0.764 0.764 0.758 0.763 0.764 0.761 0.748 0.748 0.748 0.756

T3

0.1 0.453 0.469 0.469 0.469 0.458 0.475 0.499’ 0.524* 0.407 0.407 0.407 0.447
0.2 0.453 0.594 0.594 0.594 0.545 0.608 0.615 ’ 0.629* 0.531 0.531 0.531 0.531
0.3 0.579 0.679 0.679 0.679 0.616 0.682 0.698 ’ 0.701* 0.577 0.577 0.577 0.594
0.4 0.664 0.734 0.734 0.734 0.648 0.732 0.732 0.734 0.626 0.679 0.679 0.688*
0.5 0.719 0.739 0.739 0.739 0.685 0.738 0.738 0.744 0.669 0.734 0.734 0.734
0.6 0.737 0.760 0.760 0.760 0.730 0.752 0.752 0.751 0.715 0.734 0.734 0.734
0.7 0.758 0.760 0.760 0.760 0.750 0.760 0.760 0.752 0.676 0.739 0.739 0.739
0.8 0.760 0.760 0.760 0.760 0.759 0.760 0.760 0.760 0.701 0.739 0.739 0.739
0.9 0.760 0.760 0.760 0.760 0.759 0.760 0.760 0.760 0.739 0.749 0.749 0.754

T4

0.1 0.343 0.413 0.413 0.413 0.408 0.423 0.439 ’ 0.426 0.344 0.344 0.344 0.363*
0.2 0.363 0.456 0.456 0.456 0.422 0.457 0.467 ’ 0.462* 0.364 0.364 0.365 0.394*
0.3 0.433 0.491 0.491 0.496* 0.440 0.516 0.518 0.508 0.389 0.395 0.391 0.488*
0.4 0.435 0.563* 0.563 0.544 0.441 0.540 0.548 ’ 0.547* 0.525 0.556* 0.556 0.544
0.5 0.456 0.573 0.573 0.601* 0.464 0.587 0.587 0.588 0.544 0.584 0.581 0.584
0.6 0.480 0.608 0.608 0.612 0.503 0.606 0.606 0.597 0.548 0.609 0.609 0.609
0.7 0.547 0.627* 0.627 0.621 0.539 0.622 0.622 0.621 0.525 0.609 0.609 0.609
0.8 0.550 0.628 0.628 0.627 0.556 0.627 0.627 0.627 0.539 0.619 0.619 0.619
0.9 0.555 0.629 0.629 0.629 0.563 0.629 0.629 0.629 0.559 0.628 0.628 0.628

T5

0.1 0.376 0.442 0.442 0.448 0.431 0.471 0.475 ’ 0.467 0.373 0.374 0.379 ’ 0.379*
0.2 0.450 0.516 0.516 0.510 0.458 0.540* 0.540 0.528 0.394 0.394 0.409 ’ 0.415*
0.3 0.501 0.571 0.571 0.571 0.523 0.577 0.580 ’ 0.580* 0.416 0.545* 0.545 0.461
0.4 0.543 0.608* 0.608 0.574 0.561 0.605 0.605 0.600 0.557 0.608 0.608 0.608
0.5 0.572 0.621* 0.621 0.608 0.581 0.624 0.624 0.617 0.579 0.624 0.624 0.624
0.6 0.607 0.638 0.638 0.624 0.608 0.637 0.637 0.625 0.600 0.626 0.625 0.627
0.7 0.613 0.647 0.647 0.647 0.621 0.648* 0.648 0.638 0.556 0.648 0.648 0.648
0.8 0.633 0.653 0.653 0.651 0.631 0.653 0.653 0.651 0.581 0.652 0.652 0.652
0.9 0.642 0.656 0.656 0.656 0.643 0.655 0.655 0.655 0.569 0.655 0.655 0.655
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Table 5.5: Average MRR for APM, APM-L and LW over T6 and T8. Statistically significant
differences between APM and LW, between APM and APM-L, and between APM-LW and
LW are marked in bold, italic and underline, respectively.

Uniform Cost Random Cost Frequency-based Cost
B APM APM-L LW APM APM-L LW APM APM-L LW

T6

0.01 0.235 0.235 0.235 0.375 0.291 0.403 0.259 0.259 0.259
0.05 0.411 0.474 0.474 0.412 0.491 0.497 0.311 0.327 0.327
0.1 0.461 0.564 0.564 0.466 0.559 0.563 0.333 0.380 0.380
0.2 0.583 0.625 0.625 0.589 0.624 0.625 0.392 0.397 0.404
0.3 0.627 0.648 0.648 0.623 0.647 0.648 0.403 0.410 0.417
0.4 0.631 0.652 0.652 0.638 0.652 0.652 0.418 0.589 0.589
0.5 0.642 0.653 0.653 0.642 0.653 0.653 0.573 0.626 0.626
0.6 0.646 0.653 0.653 0.646 0.653 0.653 0.577 0.632 0.632
0.7 0.650 0.653 0.653 0.650 0.653 0.653 0.578 0.643 0.643
0.8 0.651 0.653 0.653 0.651 0.653 0.653 0.588 0.648 0.648
0.9 0.652 0.653 0.653 0.652 0.653 0.653 0.590 0.651 0.651

T7

0.01 0.344 0.380 0.380 0.385 0.391 0.406 0.286 0.285 0.310
0.05 0.448 0.525 0.525 0.451 0.517 0.530 0.371 0.403 0.403
0.1 0.545 0.609 0.609 0.550 0.612 0.616 0.410 0.460 0.460
0.2 0.637 0.669 0.669 0.633 0.671 0.671 0.464 0.463 0.461
0.3 0.659 0.682 0.682 0.667 0.683 0.683 0.464 0.602 0.602
0.4 0.677 0.686 0.686 0.675 0.686 0.686 0.606 0.642 0.642
0.5 0.683 0.686 0.686 0.681 0.686 0.686 0.609 0.646 0.646
0.6 0.684 0.686 0.686 0.684 0.686 0.686 0.611 0.662 0.662
0.7 0.684 0.686 0.686 0.684 0.686 0.686 0.615 0.672 0.672
0.8 0.685 0.686 0.686 0.685 0.686 0.686 0.609 0.679 0.679
0.9 0.685 0.686 0.686 0.685 0.686 0.686 0.607 0.682 0.682

T8

0.001 0.357 0.357 0.357 0.365 0.334 0.407 0.277 0.277 0.277
0.005 0.433 0.452 0.452 0.462 0.470 0.473 0.316 0.336 0.334
0.01 0.537 0.517 0.517 0.535 0.535 0.535 0.355 0.372 0.379
0.05 0.686 0.707 0.707 0.712 0.712 0.712 0.479 0.561 0.561
0.1 0.730 0.738 0.738 0.738 0.738 0.738 0.541 0.598 0.598
0.2 0.740 0.743 0.743 0.742 0.742 0.742 0.570 0.704 0.704
0.3 0.742 0.743 0.743 0.743 0.743 0.743 0.665 0.716 0.716
0.4 0.743 0.743 0.743 0.743 0.743 0.743 0.680 0.737 0.737
0.5 0.743 0.743 0.743 0.743 0.743 0.743 0.651 0.737 0.737
0.6 0.743 0.743 0.743 0.743 0.743 0.743 0.668 0.737 0.737
0.7 0.743 0.743 0.743 0.743 0.743 0.743 0.696 0.737 0.737
0.8 0.743 0.743 0.743 0.743 0.743 0.743 0.683 0.741 0.741
0.9 0.743 0.743 0.743 0.743 0.743 0.743 0.691 0.743 0.743

Table 5.6: Average MRR of QM and DPC using different values of ε over T1, T2 and T3.
Statistically significant difference between QM and DPC are marked in bold. B denotes a
given budget.

B QM DPCε=0.05 DPCε=0.1 DPCε=0.2

T1

0.25 0.426 0.299 0.364 0.413
0.50 0.488 0.464 0.464 0.464
0.75 0.507 0.507 0.507 0.507
1 0.507 0.507 0.507 0.507

T2

0.25 0.609 0.596 0.594 0.594
0.50 0.747 0.743 0.742 0.695
0.75 0.763 0.759 0.755 0.750
1 0.764 0.764 0.764 0.764

T3

0.25 0.707 0.662 0.655 0.655
0.50 0.756 0.747 0.741 0.729
0.75 0.760 0.760 0.758 0.749
1 0.760 0.760 0.760 0.760
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Table 5.7: Average running time (minute) of APM, LW, DP and DPC.
APM LW DPε=0.05 DPε=0.1 DPCε=0.1 DPCε=0.2

T4 1 1 127 11 151 12
T5 1 1 184 15 778 77
T6 1 1 - - - 520
T7 1 1 - - - -
T8 1 1 - - - -

Table 5.8: The numbers of queries with multiple concepts with the minimum, average and
maximum numbers of concepts per query for T4, T5, T6, T7 and T8.

Taxonomy T4 T5 T6 T7 T8

#queries 687 1578 1403 1882 2603
minimum #concepts 2 2 2 2 2
maximum #concepts 4 4 5 5 5
average #concepts 2.2 2.1 2.2 2.2 2.2

Table 5.9: Average MRR for Oracle, MQM, MLW and LW over T2. Statistically significant
difference between MQM and Oracle, MQM and MLW, and MLW and LW are marked in
italic, bold, and underline, respectively. B denotes a given budget.

Uniform Cost Random Cost Frequency-based Cost
B Oracle MQM MLW LW Oracle MQM MLW LW Oracle MQM MLW LW

0.1 0.517 0.430 0.491 0.491 0.577 0.491 0.465 0.454 0.569 0.569 0.569 0.569
0.2 0.593 0.577 0.516 0.523 0.651 0.596 0.569 0.529 0.657 0.657 0.657 0.657
0.3 0.747 0.602 0.600 0.526 0.785 0.657 0.670 0.577 0.758 0.682 0.682 0.682
0.4 0.826 0.796 0.796 0.563 0.826 0.791 0.791 0.618 0.829 0.829 0.829 0.829
0.5 0.850 0.821 0.821 0.576 0.846 0.832 0.832 0.626 0.832 0.832 0.832 0.829
0.6 0.859 0.852 0.852 0.576 0.862 0.837 0.837 0.663 0.832 0.832 0.832 0.832
0.7 0.865 0.865 0.865 0.823 0.862 0.852 0.852 0.768 0.832 0.832 0.832 0.832
0.8 0.865 0.865 0.865 0.832 0.862 0.862 0.862 0.835 0.832 0.832 0.832 0.832
0.9 0.865 0.865 0.865 0.865 0.862 0.862 0.862 0.858 0.861 0.861 0.861 0.832
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Table 5.10: Average MRR for MLW and LW over T4, T5, T6, T7 and T8. Statistically
significant differences between MLW and LW are marked in bold. B denotes a given budget.

Uniform Cost Random Cost Frequency-based Cost
B MLW LW MLW LW MLW LW

T4

0.1 0.334 0.274 0.448 0.368 0.574 0.487
0.2 0.622 0.488 0.638 0.487 0.721 0.629
0.3 0.748 0.509 0.827 0.601 0.770 0.770
0.4 0.873 0.712 0.880 0.712 0.773 0.784
0.5 0.873 0.733 0.887 0.749 0.815 0.799
0.6 0.873 0.833 0.890 0.813 0.845 0.799
0.7 0.901 0.872 0.901 0.868 0.845 0.862
0.8 0.901 0.862 0.912 0.894 0.902 0.872
0.9 0.929 0.930 0.924 0.930 0.900 0.873

T5

0.1 0.466 0.430 0.619 0.466 0.674 0.536
0.2 0.799 0.673 0.803 0.645 0.708 0.695
0.3 0.807 0.810 0.819 0.729 0.719 0.728
0.4 0.826 0.743 0.828 0.784 0.827 0.745
0.5 0.834 0.811 0.833 0.819 0.838 0.773
0.6 0.848 0.848 0.866 0.845 0.852 0.800
0.7 0.883 0.840 0.883 0.840 0.863 0.851
0.8 0.883 0.846 0.883 0.850 0.874 0.856
0.9 0.883 0.869 0.883 0.862 0.883 0.876

T6

0.1 0.794 0.473 0.796 0.545 0.765 0.763
0.2 0.813 0.508 0.840 0.561 0.827 0.777
0.3 0.883 0.667 0.882 0.690 0.853 0.799
0.4 0.884 0.795 0.884 0.810 0.857 0.813
0.5 0.890 0.887 0.890 0.887 0.871 0.820
0.6 0.892 0.920 0.894 0.897 0.888 0.887
0.7 0.901 0.838 0.912 0.833 0.908 0.896
0.8 0.932 0.906 0.932 0.913 0.932 0.903
0.9 0.932 0.906 0.932 0.913 0.939 0.926

T7

0.1 0.764 0.778 0.771 0.778 0.723 0.605
0.2 0.858 0.805 0.856 0.552 0.762 0.717
0.3 0.860 0.848 0.860 0.852 0.779 0.731
0.4 0.872 0.876 0.872 0.876 0.826 0.791
0.5 0.875 0.768 0.876 0.767 0.845 0.846
0.6 0.880 0.867 0.882 0.861 0.855 0.855
0.7 0.889 0.895 0.889 0.895 0.866 0.866
0.8 0.889 0.895 0.889 0.845 0.875 0.874
0.9 0.890 0.896 0.901 0.896 0.895 0.895

T8

0.1 0.882 0.783 0.880 0.793 0.776 0.548
0.2 0.883 0.848 0.890 0.844 0.785 0.511
0.3 0.887 0.848 0.893 0.859 0.791 0.589
0.4 0.889 0.867 0.895 0.876 0.798 0.654
0.5 0.894 0.887 0.896 0.888 0.802 0.736
0.6 0.896 0.896 0.898 0.892 0.846 0.750
0.7 0.896 0.896 0.900 0.892 0.881 0.754
0.8 0.901 0.901 0.901 0.892 0.891 0.894
0.9 0.901 0.901 0.901 0.894 0.900 0.900
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CHAPTER 6: CONCLUSIONS

6.1 SUMMARY OF CONTRIBUTIONS

In this dissertation, we have examined and addressed the problem of reducing the cost of

data preparation for database analytics through two approaches: achieving design indepen-

dence and selecting cost-effective conceptual designs. The summary of our contributions is

as follows.

6.1.1 Design Independence

We examined a variety of issues in design independence and demonstrated the effectiveness

of our proposed approaches using examples drawn from graph databases and the analytics

task of similarity search. Our contributions are as follows.

• We created, implemented and evaluated a version of similarity search, namely, R-

PathSim, that is design independent across a fairly general set of structural variations

that preserve information content, namely, relationship-reorganizing transformations

and entity-rearranging transformations. A relationship-reorganizing transformation is

one in which intermediate nodes that only materialize existing relationship between

pairs of entities can be added to or remove the database. For example, in an ancestry

database, one could add cousin nodes between every pair of people who are already

known to be cousins. An entity-rearranging transformation is one in which entities

are connected through different sets of relation edges. For example, in a bibliographic

database, for each paper published in a proceedings, one may present this relationship

as a graph where a paper node is adjacent to a proceedings node, and the paper is

adjacent to a (proceedings) year node. However, one may also represent this database

by connecting the paper node to the proceedings node, and connecting the proceedings

node to the year node.

• We observed that if a dataset is guaranteed to have equivalent information content

when represented in two different structures, then there must be an underlying con-

straint that guarantees the equivalence. A simple example of this is traditional re-

lational database normalization and denormalization, which transforms the structure

of a database but preserves its content. In this case, tuple-generating dependencies

or equality-generating dependencies guarantee the equivalence of the content across
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structural transformations. We proved that this observation is also true for graph

databases.

• For graph databases with constraints that can be expressed as conjunctive regular

path queries, the current language that is used to specify relationship patterns over

the data graphs is insufficient, in the sense that a relationship pattern between entities

in one structural representation may have no equivalent in another representation of

the same information. For instance, over a bibliographic database where all paths be-

tween authors and conferences must pass through some publications, the strength of

the connection between an author and a conference depends on the number of publi-

cations the author published in that conference. The current language cannot express

the relationship pattern between an author and a conference without considering the

publications. However, it is possible that, in an equivalent database, authors may have

an edge directly connected to a conference where they have a publication. With this

limitation, some relationship patterns cannot be properly expressed over certain repre-

sentations of a database. Therefore, we have presented a new relationship expressing

language, namely rich-relationship expression (RRE), to address this issue. RRE en-

sures that a similarity search task expressed over a particular representation can also

be expressed over other equivalent representations.

• We presented a similarity search algorithm, SR-PathSim, which extends the PathSim

algorithm so that it could accept a relationship pattern in RRE when computing

similarity scores. We proved that the use of a relationship pattern language with at

least the expressiveness of RRE is a necessary condition for SR-PathSim to be design

independent, and RRE is also sufficient when given an acyclic constraint.

• Since users are familiar with the current relationship expressing language in the form

of simple paths, RRE may be hard to use for average users. We presented an algorithm

that, given a simple path provided by a user, finds a set of related RREs that can be

supplied to SR-PathSim. Our algorithm guarantees that SR-PathSim computed over

this set of RREs will return the same answers across different structural variants, i.e.,

it is design independent.

• We evaluated the degree of design independence for previously existing similarity search

algorithms over graph databases, focusing on a set of fairly general structural varia-

tions that preserve information content, and determined that no previously existing

algorithm was design independent. In particular, the algorithms gave different answers

for minor structural variants of existing databases.
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• Through empirical evaluations with existing databases, we showed that SR-PathSim

is as effective as or more effective than previously existing similarity search algorithms

in terms of ranking quality.

6.1.2 Conceptual Design

We also addressed the case where design independence is not achievable, e.g., due to the

high computational cost of producing a design independent algorithm. In this case, we would

like to find the conceptual design for an unstructured dataset in the form of annotations,

such that an algorithm that runs over the annotated data is effective. For instance, given a

set of documents, we may decide to annotate all mentions of particular individuals with the

concept person. These annotations can help analytics algorithms to run faster and provide

better answers, particularly over queries about person.

Unfortunately, in general, it is too expensive to completely annotate a large set of docu-

ments with the entire set of concepts that might be helpful when answering future queries.

Thus we focused on the problem of cost-effective conceptual design: given a taxonomy of

relevant concepts and a fixed budget, how can we find the conceptual design (i.e., choose

which concepts to annotate) that is most helpful for a future workload, without exceeding

the budget? Our contributions are as follows.

• We formalized the problem of cost-effective conceptual design using taxonomies of

concepts, where given a taxonomy, one would like to choose a subset of concepts in

the taxonomy whose annotation will maximize the improvement in the effectiveness of

query answering without exceeding the annotation budget.

• We proved that the cost-effective conceptual design problem is NP-hard.

• We proposed an efficient approximation algorithm (LW), and proved that it is a

O(h+log |C|
prmin

)-approximation for the problem with certain restrictions, e.g., a disjoint

solution.

• We proposed an exact algorithm (DP) for the cost-effective conceptual design problem,

and proved that it has pseudo polynomial running time.

• We proved that it is not possible to find any approximation algorithm with reason-

ably small approximation ratio or any pseudo-polynomial time exact algorithm for the

problem when the taxonomy is a directed acyclic graph. This is unfortunate, since

many real-world taxonomies are directed acyclic graphs.
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• We showed that our formalization framework effectively estimates the amount by which

a conceptual design improves the effectiveness of answering queries, through experi-

ments over real-world datasets, taxonomies and queries.

• Our empirical studies also indicated that both DP and LW are effective in most cases.

Overall, DP is more accurate than LW over small taxonomies and can handle the

case when the cost of a concept depends on whether other concepts have also been

annotated. However, LW is generally more scalable than DP and can be extended to

handle queries that involve multiple concepts.

6.2 FUTURE DIRECTIONS

As directions for future work, we suggest the following open problems.

• Our work on design independence assumes that constraints are tuple-generating de-

pendencies written in conjunctive regular path queries. It is interesting to explore

and analyze the problem for the case where the languages of schema mappings and

constraints are more complex than regular path queries. For instance, one may write

a constraint using nested regular expressions.

• Our work focused on the problem of ensuring that analytics algorithms return the

same answers across different structural variations of a given set of content. Related

questions would be what guarantees we could give if the structural variation does not

exactly preserve content. For example, a dataset that provides a field name is not

exactly equivalent to one that instead provides family name and given name.

• A third interesting open problem is the question of how to determine the sensitivity of

a particular analytics algorithm to structural choices. Ideally, we would like to have a

metric applicable to all analytics algorithms, which could serve to quantify how design

independent an algorithm is.
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