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ABSTRACT

Motivated by the attacks on control systems through the cyber (digital) part,

we study how signal attacks injected through actuators and/or sensors affect

control system stability and performance. We ask the questions: What are

the different types and scenarios of signal attacks? When are the attacks

stealthy and unbounded? How to compute the worst stealthy bounded at-

tacks? How to defend against such attacks through controller design? How

to identify and estimate signal attacks before significant performance loss

happens? We answer the above questions in this thesis using tools from con-

trol theory. We show that it is necessary to use a sampled-data framework

to accurately assess the vulnerabilities of control systems. In addition, we

show that the most lethal attacks are related to the structure of the system

(location of zeros and poles, number of inputs and outputs). We show that

dual rate control is a powerful tool to defend against these vulnerabilities,

and we provide a related controller design. Furthermore, we show that the

worst stealthy bounded attacks can be computed by an iterative linear pro-

gram, and we show how to lessen their effects through iterative controller

design. Finally, we study the trade-off between control and estimation of

signal attacks and provide several controller designs utilizing the power of

dual rate sampling.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Figure 1.1: Cyber-physical systems.

Advancements in communication, sensing and computing technologies have

led the control of physical systems or plants to be implemented over networks

(cyberspace), leading to the creation of “cyber-physical” systems. Such sys-

tems are found in many applications including the smart grid and vehicle

control units as depicted in Figure 1.1. However, the interaction between the

cyber part and the physical part introduced security challenges that can be

exploited by malicious agents. It has been shown through real world incidents

and published research simulations that stealthy attacks can be carefully de-

signed to cause significant damage in the control system [1, 2, 3]. The most
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famous is the Stuxnet attack in which a designed computer malware infected

the Siemens programmable logic controllers (PLCs) of a nuclear enrichment

plant in Iran. The malware spread through standard USB devices and it was

estimated that it infected 100,000 computer systems. The attack started by

recording centrifuge measurements for a period a time, and then intercept-

ing the real measurements and replaying the recorded data indicating regular

operating conditions, while at the same time injecting harmful actuation sig-

nals. It was estimated that around 1000 centrifuges were damaged by the

attack.

Most work on securing cyber-physical systems focuses only on software

security. While it is true that software security is the first line of defense,

it is also clear that this line can be infiltrated as happened in the Stuxnet

attack. Once attackers gain access to the cyber (digital) space (Figure 1.2),

they can exploit their knowledge of the structural properties of the control

system (e.g., pole-zero locations) to induce stealthy unbounded and bounded

attacks that destroy the systems or at least affect their performance (even

non-invasive intrusion is possible [4]). Moreover, even if the attack is not

stealthy, it may be too late to react. Since these types of undetectable attacks

are mainly related to system structure, it is very important to research the

vulnerabilities of cyber-physical systems from a control-theoretic perspective,

and find solutions that guarantee the security, stability and resiliency of

control systems under different attack scenarios.

One might argue that control theory has already developed fault detec-

tion frameworks [5] that can handle various faults and disturbances, and

that these frameworks are sufficient for handling attacks on control systems.

However this argument fails to recognize that there are substantial differ-

ences between cyber-physical attacks and faults. These differences suggest

that a fault-tolerant system may not be secure against carefully designed

sophisticated attacks, and they stem from the fact that faults are considered

random events that do not have malicious intents. In addition, the occur-

2



Figure 1.2: Cyber-physical systems with attacks on the cyber part.

rence of more than one fault at the same time is considered to have a low

probability. On the other hand, malicious attacks can attack more than one

point in the control system in a coordinated fashion. Moreover, they are care-

fully designed (intelligent) to exploit weaknesses in the system and may not

be detectable (stealthy). Therefore, existing fault detection frameworks are

not sufficient to design secure cyber-physical systems, and a new more thor-

ough framework that takes into account the characteristics and signatures of

attacks is needed to handle the various threats.

1.2 Related Work

Recent work on security of cyber-physical systems from a control-theoretic

perspective has been focused on the characterization of feasible and optimal

(for some cost function) attacks and proposing ways for detection and/or im-

proving the resiliency of the control system subject to such attacks. The type

of attacks studied can be generally split into two categories: static attacks

(attacks that do not take into account the dynamics of the system and/or

do not affect the states of the system directly) or dynamic attacks. Attacks

under each category can be classified as stealthy or not stealthy depending on

the assumptions and the detection methods used. Examples of static attacks
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include attacks on the power system state estimators [6, 7, 8, 9, 10, 11, 12],

where a carefully designed bias can be added to the sensor measurements

without being detected by the commonly used statistical detection methods.

Another work on static attacks is by [13] and [14] where they showed that the

states of the system cannot be accurately reconstructed if half of the sensors

are attacked. Both papers propose computationally intensive methods to re-

construct the states when less than half of the sensors are attacked such that

the system is observable from the remaining un-attacked sensors (solving an

`0 optimization problem in [13] and constructing a bank of observers in [14]).

In [15] the authors showed that to accurately estimate the states, it is suffi-

cient for the system to be detectable from the un-attacked sensors (provided

less than half are attacked). The bank of observers in [14] was substituted by

a bank of Kalman filters in [16] to estimate the states under attack given that

the measurements are corrupted by noise, by leveraging the noise statistics

over a large enough time window, and by [17] using event-triggered observers.

The work in [13] was also extended by [18] where the authors provide a frame-

work to reconstruct the states that is robust to additive and multiplicative

errors. On the other hand, research work related to dynamic attacks includes

the study of replay attacks by [19, 20] in which the authors inject a designed

random signal (watermarking signal unknown to the attacker) into the sys-

tem to detect the attack at the expense of increasing the cost of the LQG

controller. The authors provide and solve an optimization problem to de-

sign the watermarking signal to maximize the detection ability and minimize

false alarms. In a similar context, [21] presented an information theoretic

formulation of the problem, and showed that if the watermark is a Gaussian

distributed random variable, then the maximal performance degradation for

any given level of stealthiness for the attacker is achieved when the attacker

replaces the control input with the realization of a Gaussian random variable.

They also showed that the watermark signal that minimizes the stealthiness

of a Gaussian attacker is also Gaussian. In [22] static and dynamic attack
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models on linear time-invariant systems are provided along with conditions

for stealthiness. In addition they provide filter design methods to detect a

class of (detectable) attacks under centralized and distributed fashion. In [23]

the case for finding the worst constant bias (steady state) attack has been

considered and a tractable procedure to compute it has been developed where

the energy of the detection signal was considered as a measure of stealthiness.

A similar framework was studied in [24] for the design of optimal attacks on

automatic generation control (AGC) systems. In [25] coordinated actuator

and sensor attacks are computed that create unbounded expectation of the

estimation error while keeping the residual of the KF detector bounded. In

[26] optimal attacks are computed on an LQG system that minimize the

K-L divergence between the true and falsified state estimates such that the

attack impact is above a specified a limit, showing that the optimal attacks

are additive white noise. In [27] sufficient conditions of the existence of an

optimal attack sequence that drives the states to a desired set are provided

using dynamic programming, where the system is equipped with a Kalman

filter for state estimation. In [28] optimal actuator attacks are designed using

the minimum principle that maximizes a quadratic cost related to the error

between the healthy (un-attacked) system and the attacked system while

minimizing the attack cost, without including any stealthiness requirement.

In [29], the authors investigate attacks on power systems that act by switch-

ing between loads in a coordinated manner inducing a sliding mode which

drives the frequency to instability. These switching attacks are investigated

again in [30] exciting the inter-area oscillation modes in a coordinated man-

ner to drive groups of system generators out of step. This way only a small

amount of the load is needed to be controlled by the attacker to induce in-

stability. In [31] the authors presented a stochastic approach for optimal

planning under malicious attack on sensors. The approach uses Markov de-

cision processes theory (MDP) to obtain an optimal policy to drive a vehicle

that has inconsistent measurements.. Resiliency against attacks is achieved
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by properly selecting the reward function of the MDP, thus avoiding actions

that could hijack the vehicle to undesired regions of a state space. In [32] the

authors studied denial of service (DoS) attacks and obtained sufficient condi-

tions on the DoS duration, and frequency bounds for stabilization with finite

data rates, which are characterized by the decay rates of the quantization

range in the presence and absence of DoS attacks. In the same context of

DOS attacks, [33] studies structural resilience of LTI systems under attacks.

Specifically they provide conditions for the controllability of the systems un-

der Dos and integrity attacks. In [34], the authors study controllability and

stability properties of dynamical systems when actuator or sensor signals are

under attack. The authors study the impact of these attacks and propose

reactive countermeasures based on game theory. In [35] the authors study an

attackers ability to control a maritime surface vessel by spoofing GPS signals.

The authors formulate an optimization problem to find the attacker’s control

law, and provide a detection mechanism. In [36], the authors use tools from

LMI theory to solve an optimization problem that finds the optimal artificial

actuator saturation limits that maximize the reachable sets of the states,

while guaranteeing that the dangerous states are not reachable.

1.3 Overview

This thesis addresses the problem of security of cyber-physical systems from

a control theory perspective. In particular, the thesis contributes towards a

comprehensive framework to analyze, identify, and evaluate the consequences

of existing vulnerabilities in cyber-physical systems. This framework will help

us propose defense and protection schemes.

The proposed framework is based on sampled-data (SD) systems since

it captures the behavior of cyber-physical systems in the sense that the

controllers are implemented digitally and the physical plants evolve in a

continuous-time domain. Moreover, the SD approach allows us to assess
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the security of cyber-physical systems as it can help us visualize how addi-

tive attacks can be injected in various parts of the cyber-physical system and

analyze their effects on stability and performance. In addition, SD approach

is necessary because SD implementation generates additional vulnerability

to stealthy attacks by introducing additional, so-called sampling zeros in the

system as the sampling rate increases (e.g., [37]). Thus, while a system may

be secure to stealthy attacks using a continuous-time analysis, it may not be

secure using a more accurate, continuous- and discrete-time, SD framework.

In this thesis, we employ the SD framework to characterize the necessary

and sufficient conditions for the existence of stealthy unbounded actuator

and/or sensor attacks. We define the attack detection or monitoring mecha-

nism and then we show that stealthy unbounded attacks are related to the

unstable zeros or poles of the system. We also show that unbounded co-

ordinated sensor and actuator attacks are always feasible regardless of the

structure of the system. The analysis is done in an input-output fashion,

which provides a framework for future analysis and study of different types

of attacks on cyber-physical systems as it can provide mappings between an

attack and its effect on various points of the feedback loop. We then pro-

vide a defense scheme based on dual sampling to detect stealthy unbounded

actuator attacks, and we investigate trade-offs in the controller design.

After considering stealthy unbounded attacks, we shift our focus to stealthy

bounded attacks. While bounded attacks may not induce catastrophic events,

their effect on cyber-physical systems can still be severe. This is because since

bounded attacks cannot cause instability in linear time-invariant (LTI) sta-

ble systems, they can be injected repeatedly into the system without being

detected, degrading the performance and efficiency of the system and in-

ducing stress on the physical part. An example would be injecting a signal

that would increase the voltage across a machine’s terminal or increasing

the speed of uranium centrifuges. Moreover, after a loss in performance is

observed, the system operator will have a hard time deciding whether the
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loss of performance is due to a random failure or a carefully designed attack

since the attack is stealthy, bounded and with bounded effects. In addition,

bounded attacks are more practical to inject since usually actuators have

saturation limits. In this part, we consider the problem of characterizing

the worst bounded and stealthy attacks under different attack resource and

stealthiness constraints. We employ discrete input-output maps describing

the effect of the attack signal on the performance variable and the monitor-

ing variables. The objective is to find a traceable computation procedure to

find the worst stealthy attack signal. We define the “worst” attack as the

attack that induces the maximum damage on the performance variable in a

`∞ sense. Using this computation, we will be able to assess the vulnerabil-

ity and resiliency of the system with respect to the considered attack. We

consider different attack resource constraints and stealthiness intervals, and

provide an iterative controller synthesis procedure that alternates between

computing worst attacks and designing optimal controllers that enhance per-

formance and minimize the impact of worst attacks.

Next we consider the problem of estimating signal attacks on the actuators

and/or sensors of control systems using the available measurements. The

estimated attack signal will help the operator decide whether it is a persistent

intelligent attack or just a nominal disturbance. We show that the design

of the controller for estimation and controller for rejection are coupled, and

that a trade-off exists between their individual performances. The quality of

the estimate depends on the performance of the attack rejection controller.

Then we provide controller design methods to estimate the signal attack.

To guarantee that all unbounded attacks are detectable, we use a faster

sampling loop for the estimation controller so that unstable zeros in the map

from the attack signal to the measurements are removed. Furthermore, dual

rate estimation allows for the construction of unknown input observers.
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1.4 Outline and Contribution

In the following we present the outline of this thesis.

Chapter 2: Preliminary Results

In this chapter we present some of the standard results in the literature that

are used to build the main results of this thesis.

Chapter 3: Conditions for Existence of Unbounded Actuator and/or Sen-

sor Attacks

In this chapter we introduce the SD framework that we will be using to in-

vestigate the security of cyber-physical systems. We introduce attacks on

actuators and sensors, represented as additive and unbounded disturbances

on the digital (i.e., cyber) part of the controlled system. We examine from an

input-output perspective the exact conditions under which such attacks can

be stealthy, which brings up the role of unstable zeros, poles and structure

of the open loop, continuous-time, physical plant, regardless of the specific

controller and/or detection (e.g., Kalman) filter in use.

Chapter 4: Dual Rate Control for Detecting Unbounded Actuator Attacks

In this chapter we introduce multirate sampled-data (MRSD) control as a

solution to detect unbounded actuator attacks on cyber-physical systems.

We show that, if there is a single sensor that is guaranteed to be secure and

the plant is observable from that sensor, then there exists a class of multi-

rate sampled data controllers that ensure that all attacks remain detectable.

These dual rate controllers are sampling the output faster than the zero or-

der hold rate that operates on the control input, and as such, they can even

provide better nominal performance than single rate, at the price of higher

sampling of the continuous output.
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Chapter 5: On the Computation of Worst Attacks: An LP Framework

In this chapter we consider the problem of characterizing the worst bounded

and stealthy attacks. This problem involves a maximization of a convex

function subject to convex constraints, and hence, in principle, it is not easy

to solve. However, by employing an `∞ framework, we show how tractable

linear programming (LP) methods can be used to obtain the worst attack

design for different attack scenarios. Moreover, we provide a controller syn-

thesis iterative method to minimize the worst impact of such attacks and

test its efficacy in a power system component.

Chapter 6: On the Estimation of Signal Attacks

In this chapter we consider the problem of estimating signal attacks injected

into the actuators or sensors of control systems, assuming the attack is de-

tectable (can be seen at the output). We show that there exists a trade-off

between attack rejection and control, and that the estimator design depends

on the controller used. We use dual rate sampling to enhance detectability of

the attacks and we provide different methods to design the estimator. The

first method is by solving a model matching problem subject to causality

constraints. The second method exploits dual rate sampling to accurately

reconstruct the unknown input. The third method is using a dual rate un-

known input observer. We provide conditions on the existence of these esti-

mators, and show that dual rate unknown input observers always exist if the

multirate system does not have a zero at 1.

Chapter 7: Summary

In this chapter we summarize the work done in this thesis..
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CHAPTER 2

STANDARD RESULTS

In this chapter we present some of the standard results in the literature

([37, 38, 39, 40, 41, 42, 43, 44]) that are used to build the main results of this

thesis.

Some standard notation we use is as follows: Z+, Rn, Cn and Rn×m denote

the sets of non-negative integers, n-dimensional real vectors, n-dimensional

complex vectors and n × m dimensional real matrices, respectively. For

any Rn or Cn vector x we denote x′ its transpose and |x| := maxi
√
x2i

where x′ = [x1, x2, ..., xn]; for a sequence of real n-dimensional vectors, x =

{x(k)}k∈Z+ we denote ||x||∞ := supk |x(k)|; for a sequence of real n × m

dimensional real matrices G = {Gk}k∈Z+ we denote its z-transform G(z) :=∑∞
k=0Gkz

−k; and if viewed as the pulse response of the LTI system G then

||G||1 = sup||x||∞≤1 ||Gx||∞.

2.1 Discrete-Time Systems

2.1.1 Basic Concepts

The discrete-time set is taken to be the integers {0, 1, 2, . . . }. A discrete-time

signal is a sequence {v(0), v(1), v(2), . . . }, where each v(k) is a real number.

The λ-transform of a v is defined to be

v̂(λ) := v(0) + v(1)λ+ v(2)λ2 + · · · =
∞∑
k=0

v(k)λk.

11



Any causal LTI system G has a matrix of the form

[
G
]

=


g(0) 0 0 . . .

g(1) g(0) 0 . . .

g(2) g(1) g(0) . . .
...

...
...

 .

A system G is causal if and only if
[
G
]

is block-lower triangular; is time

invariant if and only if
[
G
]

is constant along block-diagonal, i.e., Toeplitz.

The impulse response is the sequence represented by the first column of[
G
]
, and the transfer function is the λ-transform of the impulse response:

ĝ(λ) = g(0) + g(1)λ+ g(2)λ2 + · · · =
∞∑
k=0

g(k)λk.

Let ψ = Gv; then ψ(k) is can be found using the convolution equation:

ψ(k) =
k∑
l=0

g(k − l)v(l).

2.1.2 Lifting Discrete-Time Signals and Systems

Let h be the period of a base clock, and let v(k) be discrete-time signal with

period h/n where n is some positive integer. That is, v(0) occurs at time

t = 0, v(1) at t = h/n, v(2) at t = 2h/n, etc. The lifted signal v, is defined

as follows: If

v = {v(0), v(1), v(2), . . . },
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then

v =

{


v(0)

v(1)
...

v(n− 1)

 ,


v(0)

v(1)
...

v(n− 1)

 , . . .
}
.

The dimension of v(k) equals n times that of v(k), and v is regarded as

referred to the base period; that is, v(k) occurs at time t = kh. The lifting

operator L is defined to be the map v → v. Te vector representation of the

equation v = Lv when n = 2 is


v(0)

v(1)

v(2)
...

 =



I 0 0 0 0 . . .

0 I 0 0 0 . . .

0 0 I 0 0 . . .

0 0 0 I 0 . . .

0 0 0 0 I . . .

0 0 0 0 0 . . .
...

...
...

...
...




v(0)

v(1)

v(2)
...

 .

For the partition shown,
[
L
]

is neither lower-triangular nor Toeplitz; there-

fore, as a system L is non-causal and time-varying. For n = 2, L−1 is

represented as

[
L−1

]


I 0 0 0 0 0 . . .

0 I 0 0 0 0 . . .

0 0 I 0 0 0 . . .

0 0 0 I 0 0 . . .

0 0 0 0 I 0 . . .
...

...
...

...
...

...


.

It can be shown that L is norm preserving, we will not present this result

here, but it can be found in [37].
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For a discrete-time FDLTI system G with underlying period h/n, lifting

the input and output signals so that the lifted signals correspond to the

base period h results in a lifted system G = LGL−1. Given ĝ in terms of

state-space data, ĝ(λ) =

 A B

C D

 , then

ĝ(λ) =



An An−1B An−2B . . . B

C D 0 . . . 0

CA CB D . . . 0
...

...
...

...

CAn−1 CAn−2B CAn−3B . . . D


, (2.1)

which is easy to prove.

Next we present how to find the state space description of dual rate sys-

tems, which is used many times in this thesis. Consider P = LSfPcH, where

H is the hold function operating at a rate of h, and Sf is the sampling

function operating at a faster rate h/n. Let Pc be given by

Pc =

 A B

C D

 .
Let Af and Bf be the fast discretization of A and B, and As and Bs be the

slow discretization of A and B, i.e.,

As := eAh, Af := eAh/n,

Bs :=

∫ h

0

eAτBdτ, Bf :=

∫ h/n

0

eAτBdτ.

Working on P , we get P = LSfPcH = L(SfPcHf )SfH; this is because
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HfSfH = H. The matrix representation of SfH is

[
SfH

]
=



I 0
...

...

I 0

n

0 I
...

...

0 I

n

. . .


.

From this and
[
L
]

it can be inferred that

LSfH =


I
...

I

 , (n blocks),

that is

SfH = L−1


I
...

I

 .

Therefore, P = L(SfPcHf )L
−1


I
...

I

 , using the results from (2.1), we get the

following:
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P =



As An−1f Bf An−2f Bf . . . Bf

C D 0 . . . 0

CAf CBf D . . . 0
...

...
...

...

CAn−1f CAn−2f Bf CAn−3f B . . . D




I

I
...

I



=



As Bs

C D

CAf CBf +D
...

...

CAn−1f CAn−2f Bf + · · ·+ CBf +D


.

2.2 System Zeros

Definition 1. z0 is a zero of G(z) = C(zI−A)−1B+D if the rank of G(z0)

is less than the normal rank of G(z).

2.2.1 Computing Zeros

The state-space equations of a system may be written as

P (z)

x
u

 =

0

y

 , P (z) =

zI − A −B

C D

 .
The zeros are the values z = z0 for which P (z) loses rank, resulting in a

zero output for some non-zero input. Numerically, the zeros are found as

non-trivial solutions (with uz 6= 0 and xz 6= 0) to the following problem:

(zIg −M)

xz
uz

 = 0, M =

A B

C D

 , Ig =

I 0

0 0

 ,
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where uz is the zero input direction, and xz is the associated state initial

condition.

2.2.2 Remarks on Zeros

• In the time domain, the presence of zeros implies blocking of certain

input signals. If z0 is a zero G(z), then there exists an input signal of

the form uzz
−k
0 where uz is the zero input direction, and a set of initial

conditions xz such that y(k) = 0 for k > 0.

• There are no zeros if the outputs y contain direct information about all

the states (example y = x). More generally, there are no zeros if rank

C = n (n is the states dimension) and D = 0.

• Zeros usually appear when there are fewer inputs or outputs than

states, or when D 6= 0. Consider m×m plant G(z) = C(zI−A)−1B+D

with n states. We then have for the number of (finite) zeros of G(z)

– D 6= 0 : At most n−m + rank(D) zeros.

– D = 0 : At most n− 2m + rank(CB) zeros.

– D = 0 and rank(CB) = m : Exactly n−m zeros.

• Zeros in the input-output map of connected network systems exist un-

der certain conditions even if the dynamics of the single nodes have no

zeros [45].

• Discretization introduces unstable zeros under certain conditions (fast

sampling and relative degree of the continuous-time plant is greater

than two) even if the continuous-time plant is minimum phase [46].
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2.3 Strong Observability, Strong Detectability and

Unknown Input Observers

Consider the following discrete linear time-invariant system:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(2.2)

Definition 2. (Strong Observability). A linear system of the form (2.2) is

said to be strongly observable if, for any initial state x(0) and any unknown

sequence of inputs u(0), u(1), . . . , there is a positive integer L such that x(0)

can be recovered from the outputs y(0), y(1), . . . , y(L).

To relate the concept of strong observability to the system matrices, if we

simply iterate the output equation in (2.2) for L+ 1 time-steps, we get:



y(0)

y(1)

y(2)
...

y(L)


=



C

CA

CA2

...

CAL−1


︸ ︷︷ ︸

OL

x(0)+



D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0
...

...
...

. . .
...

CAL−1B CAL−2B CAL−3B
... D


︸ ︷︷ ︸

JL



u(0)

u(1)

u(2)
...

u(L)


.

Theorem 3. Consider the system (2.2) with x(k) ∈ Rn. The system is

strongly observable if and only if

rank([OL JL]) = n+ rank(JL)

for some L ≤ n. [39].

Theorem 4. Consider the system (2.2). The system is strongly observable

if and only if the system has no invariant zeros [40, 39].

Definition 5. (Strong Detectability) The linear system (2.2) is strongly de-
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tectable if y(k) = 0 for all k implies that x(k)→ 0.

Theorem 6. Consider the system (2.2). The system is strongly detectable if

and only if the system is strictly minimum phase [40, 39].

We consider an observer of the form

x̂(k + 1) = Ex̂(k) + Fy(k : k + L). (2.3)

Definition 7. The system (2.3) is said to be an unknown input observer of

the states in (2.2) with delay L if x̂(k)− x(k) → 0 as k →∞, regardless of

the u(k).

Theorem 8. The system in (2.2) has an unknown input observer (possibly

with delay) if and only if (2.2) is strongly detectable [39].

2.4 Controller Parameterization

Definition 9. (Coprime Factorization): A doubly coprime factorization of

P is a set of maps N,M, Ñ, M̃ , with P = NM−1 = M̃−1Ñ satisfying X̃ −Ỹ

−Ñ M̃

M Y

N X

 = I

for some stable X, Y, X̃, Ỹ . Further, M and N are referred to as right co-

prime factors while M̃ and Ñ are referred to as left coprime factors of P .

Lemma 10. Let a doubly-coprime factorization of P be given as in Definition

9. Controller K stabilizes P if and only if K has a right coprime factorization
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K = Y1X
−1
1 such that the map

M Y1

N X1


is stable and stably invertible.

Theorem 11. Let a doubly-coprime factorization of P be given as in Defi-

nition 9. All stabilizing controllers are given by

K = (Y −MQ)(X −NQ)−1 = (X̃ − AÑ)−1(Ỹ −QM̃),

where Q is stable.

The parameterization for when P is stable is straightforward. A doubly-

coprime factorization of P is then given by I 0

−P I

I 0

P I

 = I.

The controller parametrization is then given by

K = −Q(I − PQ)−1.
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CHAPTER 3

ON THE EXISTENCE OF UNBOUNDED
ACTUATOR AND/OR SENSOR ATTACKS

3.1 Introduction

In this chapter we examine the conditions for the existence of stealthy addi-

tive signal attacks on the actuators and sensors of feedback control systems.

We define the notion of stealthiness and associate the existence of stealthy

unbounded attacks to structural properties of the control system.

3.2 System Model

Figure 3.1: The standard SD system.

We consider the physical, continuous-time, LTI plant Pc = [Ac, Bc, Cc, Dc]

of Figure 3.1 that is controlled by a digital controller K using the standard

zero order hold and sampling devices H and S respectively. In particular,

in the absence of any disturbances da and ds, the digital controller input
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u = {u(k)} converts to the continuous-time input

uc(t) = (Hu)(t) = u(k) for kT ≤ t < (k + 1)T,

where T is the hold period, and the digital output y = {y(k)} sequence is

obtained by sampling the continuous-time output yc with the same period

T , i.e.,

y(k) = (Syc)(k) = yc(kT ).

The corresponding discrete-time LTI plant P is defined by the relation y =

Pu, i.e., P = SPcH, and has a description P = [Ad, Bd, Cd, Dd] where the

state space matrices are obtained from the corresponding continuous-time as

Ad := eAcT ∈ Rn×n, Bd :=

∫ T

0

eAcτBcdτ ∈ Rn×nu ,

Cd := Cc ∈ Rny×n, Dd := Dc ∈ Rny×nu .

(3.1)

We assume that the employed realization of the continuous plant Pc is min-

imal, which implies that the same holds true for the discrete plant P in the

absence of pathological sampling (e.g., [37]), i.e., for almost all periods T .

Also in this figure, we consider the possibility of attacks in terms of additive

disturbances da and ds respectively at the digital input u and at the output

y of P . These attacks on the digital part of the system can be on actuators

only (ds = 0), sensors only (da = 0), or on both, coordinated or not. As

they act on the cyber part of the system we allow them to be unbounded

sequences.

We assume that there is an attack detection mechanism in place that

monitors u and y and can detect an attack only if the effect of da and/or ds

on these signals is beyond a given noise level threshold θ > 0, i.e., only if∣∣∣∣∣∣
 y

u

 (k)

∣∣∣∣∣∣ > θ
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for some k. Note that we implicitly assume that there are other inputs such

as noise, not shown in Fig 3.1, that have some effect on u and y which is

what relates to the nonzero noise level θ. Accordingly, a stealthy attack

of interest will be the case when the attack inputs da and/or ds can grow

unbounded while maintaining their effect on u and y below the detection

limit; i.e., their effect cannot be distinguished from that of the normal noise

inputs. Specifically, if d represents any of da or ds, then the attack will be

stealthy if

lim sup
k→∞

|d(k)| =∞

while ∣∣∣∣∣∣
 y

u

 (k)

∣∣∣∣∣∣ ≤ θ

for all k = 0, 1, 2, . . . . In the sequel we consider various (unbounded) attack

scenarios and analyze the conditions of their detectability, i.e., when such

attacks can or cannot be stealthy.

Remark 12. In the following it is assumed that an attacker has knowledge

of the description of P , e.g., the transfer function P (λ) or its state space

realization. In fact, only knowledge of the unstable zero and pole locations

(and directions in case of MIMO P ) is necessary for our analysis to hold.

The attacker generates da or/and ds based only on this knowledge.

3.3 Actuator Attacks

We start with the case when only actuator attacks da are present (ds = 0)

and proceed in characterizing their effect on the monitoring vector

 y

u

.

Towards this end, let P be factored (e.g., [47, 43, 42]) as

P = M̃−1Ñ = NM−1,
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where the stable systems Ñ , M̃ and N,M are left and right coprime respec-

tively, and consider the controller K with a similar coprime factorization

as

K = X̃−1Ỹ = Y X−1.

The mappings from da to y and u are given respectively as (I−PK)−1P and

K(I − PK)−1P . Given that K stabilizes P , it holds that

M̃X − ÑY =: W

is a stable and stably invertible map (unit). Moreover, it can be easily

checked that y

u

 =

 (I − PK)−1P

K(I − PK)−1P

 da =

 X

Y

W−1Ñda. (3.2)

As X and Y are right coprime and W is a unit, it follows that a stealthy

attack is possible if and only if Ñda is bounded for an unbounded da. That

is, when

lim sup
k→∞

|da(k)| =∞

it holds that ∥∥∥∥∥∥
 y

u

∥∥∥∥∥∥ <∞
if and only if ∥∥∥Ñda∥∥∥ <∞.
The following proposition is a direct consequence of the previous analysis.

Proposition 13. Let P be a “tall” system, i.e., the number of outputs is

greater than or equal to the number of inputs. Assume further that P (λ) has

no zero on the unit circle |λ| = 1. Then, an (unbounded) actuator stealthy

attack is possible if and only if P (λ) has a non-minimum phase zero other
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than at λ = 0, i.e., a zero for 0 < |λ| < 1.

Proof. Note that the unstable zeros of P are zeros of Ñ . Assume that

P (z0)d0 = 0,

where 0 < |z0| < 1 and d0 6= 0 is the zero direction of z0 which can be chosen

with |d0| = 1. So we have that

Ñ(z0)d0 = 0

and consequently any input

da(k) = d0εz0
−k

will lead via Equation (3.2) to∥∥∥∥∥∥
 y

u

∥∥∥∥∥∥ < εC0

where the constant C0 > 0, depends on the closed loop maps. For example,

C0 could be taken as

C0 =

∥∥∥∥∥∥∥∥∥

 (I − P (λ)K(λ))−1P (λ)d0
1

1−(λ/z0)

K(λ)(I − P (λ)K(λ))−1P (λ)d0
1

1−(λ/z0)


∥∥∥∥∥∥∥∥∥ .

Thus, if ε is small enough, e.g., 0 < ε < θ
C0

, the input remains undetected.

To prove the reverse, note that if P has no unstable zeros, then the same

holds for Ñ and thus
∥∥∥Ñda∥∥∥ <∞ implies that ‖da‖ <∞, so no unbounded

stealthy attacks are possible.

Remark 14. We remark here that if P has zeros on the boundary |λ| = 1

with multiplicity one but no other unstable zeros (other than at λ = 0), then
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unbounded stealthy attacks are not possible. Indeed, if z0 is a simple zero with

|z0| = 1, then the corresponding input that can be masked (“zeroed out”) is

of the form da(k) = εd0z0
−k which is bounded with |da(k)| < ε, and becomes

undetected for small enough ε. But this case is uninteresting, as the distur-

bance has a level of noise (which can be taken care by any reasonably robust

controller). On the other hand, if there are more than one multiplicities, un-

bounded stealthy attacks are possible. For example, if P is SISO and z0 = 1

is a zero with multiplicity 2, then an unbounded input of the form da(k) = εk,

k = 0, 1, . . . remains undetected for small enough ε. More generally, in the

MIMO case when a zero at the boundary has multiplicity greater than one,

one has to check the Smith-McMillan form of P (λ) for invariant factors with

multiplicity greater than one corresponding to these zeros: unbounded stealthy

attacks are possible if and only if there are such factors.

Remark 15. When there is a zero of P at λ = 0 there is no corresponding

(causal) input signal to be “zeroed out.”

The case when P is “fat”, i.e. when the number of outputs in y is less

than the number of inputs in u, is always conducive to stealthy attacks as

one input can mask the effect of the other. Indeed, consider a two-input one-

output P = [P1 P2]; the effect of attacks at the individual control channels

da1 and da2 on the output y is

y = P1da1 + P2da2 + [P1 P2]u,

and thus, picking for example,

da2 = −P−12 P1da1

with da1 arbitrary and unbounded leads to y = [P1 P2]u, i.e., complete mask-

ing of the attacks. 1

1Strictly speaking, P−1
2 may not exist if P2 is strictly proper , i.e., P2 has a zero at λ = 0;
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3.4 Sensor Attacks

The case of sensor-only attack ds 6= 0, da = 0 can be viewed in a similar

spirit. In particular, by considering coprime factorizations for P and K as

before, the effect of ds on the monitor vector is as y

u

 =

 (I − PK)−1

K(I − PK)−1

 ds =

 X

Y

W−1M̃ds. (3.3)

Therefore, using the same rationale as in the previous case, we can claim

that an attack is detectable if and only if there are no ds with ‖ds‖ =∞ and∥∥∥M̃ds

∥∥∥ <∞. This in turn means that attacks are detectable if and only if M̃

has no unstable zeros, which is equivalent to P being a stable system. More

specifically, we have the following which can be proved as in the Proposition

13.

Proposition 16. Assume that P (λ) has no pole on the unit circle |λ| = 1.

Then, a sensor stealthy attack is possible if and only if P (λ) has a pole with

|λ| < 1.

Regarding poles of P (λ) on the boundary (|λ| = 1), similar remarks hold

as in the actuator attack case. Namely, if these poles are simple then there

is no stealthy attack. If they have multiplicities, then their multiplicities in

the corresponding invariant factors in the Smith-McMillan form determine

whether stealthy attacks are possible.

3.5 Coordinated Actuator Sensor Attacks

In the case when a coordination of actuator and sensor attack is possible,

unbounded stealthy attacks are always possible even in the case where P

but one can always pick da1(λ) = λd̄a1(λ) with d̄a1 unbounded and make (P−1
2 P1da1)(λ)

meaningful, i.e., corresponding to a sequence {da1(k)} defined for nonnegative integers k.
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Figure 3.2: Coordinated actuator and sensor attacks.

is stable and minimum phase. Indeed, in this case the effect of da can be

completely masked by canceling its effect at the output via ds: just pick

ds = −Pda

with da arbitrary and unbounded, then y = Pu, as depicted in Figure 3.2.

Therefore, unless there are outputs that are not attacked, this situation is

not of interest as there is no hope to detect the attack. If there are such

attack-free outputs, then the problem reverts to the actuator-only attack

case, with these outputs used for analysis and design.

3.6 Conclusion

In this chapter we introduced a sampled-data framework to study the effect

of attacks on cyber-physical systems. We defined the attack detection mech-

anism and derived the input-output maps for actuator and sensor attacks on

the monitoring signals. We showed that unbounded stealthy actuator attacks

are related to the open-loop discrete plant unstable zeros, while unbounded

stealthy sensor attacks are related to the open-loop discrete plant unstable

poles. We also showed that coordinated actuator and sensor attacks can al-

ways be designed to be stealthy and unbounded regardless of the locations

of poles and zeros of the plant.
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CHAPTER 4

DUAL RATE CONTROL FOR DETECTING
UNBOUNDED ACTUATOR ATTACKS

4.1 Introduction

Multirate sampling has been studied extensively in the context of sampled-

data control in the past and many relevant analysis and synthesis results

were obtained (e.g., [48, 49, 50, 51, 52, 53, 54, 55]). An interesting property

of multirate sampling is its ability to remove certain unstable zeros of the

discrete-time system when viewed in the lifted LTI domain, which in turn

allows for fulfilling certain potential design requirements such as gain margin

levels, or strong stabilization, that are not possible to satisfy with single rate.

We plan to utilize this property and study in detail in the context of stealthy

attack detection. We show that the proposed dual rate control structure

removes all the vulnerabilities to unbounded stealthy actuator attacks. This

is shown to hold also when the plant has more controls than measurements

(i.e., a “fat” plant). We show that if a single measurement output remains

secure, and if the modes of the system are observable from this output, then

dual rate systems always provide the ability to detect actuator as well as

combined sensor-actuator attacks.

29



Figure 4.1: A dual rate SD system.

4.2 Analysis of Dual Rate Control Systems with

Respect to Detecting Stealthy Actuator

Unbounded Attacks

We consider the SD scheme of Figure 4.1 (temporarily without any distur-

bances) where the output is sampled with period T/m, where m is a suffi-

ciently large integer, i.e., y(k) = (Smyc)(t) := yc(kT/m). To this end, let the

corresponding discrete-time system mapping u to y be

G = SmPcH.

For this MR discrete system we have that

ΛmG = GΛ,

where Λ is the 1-step right shift operator on discrete sequences {x(k)}, i.e.,

(Λx)(k + 1) = x(k) with (Λx)(0) = 0. Using standard lifting techniques

(e.g., [37]) one can obtain a shift invariant (LTI) description G̃ of the discrete

dynamics by grouping the plant input and output signals as ũ(k) = u(k) and

ỹ(k) = [y′c(kT/m) y′c((k + 1)T/m) . . . y′c((k + m− 1)T/m)]′ (similarly for d̃a

and d̃s). A state space description for G̃ can be obtained from the original

system.
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Define state space matrices

A := eAcT/m ∈ Rn×n, B :=

∫ T/m

0

eAcτBcdτ ∈ Rn×nu ,

C := Cc ∈ Rny×n, D := Dc ∈ Rny×nu .

Then

G̃ =

 Ã B̃

C̃ D̃

 , (4.1)

where

Ã = Am ∈ Rn×n, B̃ =
m−1∑
k=0

AkB ∈ Rn×nu ,

C̃ =


C

CA
...

CAm−1

 ∈ Rmny×n,

D̃ =


D

CB +D
...

C
∑m−2

k=0 A
kB +D

 ∈ Rmny×nu .

Also, it becomes useful to define a discrete-time system

Pm :=

 A B

C D

 .
This system corresponds to the single-rate sampling and hold scheme of the

original plant Pc with a period of T/m, i.e., Pm = SmPcHm where Hm is

accordingly generating a continuous signal uc from the discrete u as uc(t) =

(Hmu)(t) = u(k) for kT/m ≤ t < (k + 1)T/m. It is clear that Pm has the

same dimension as Pc; i.e., it maps nu inputs to ny outputs. Moreover, given
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Figure 4.2: The lifted system.

that Pc holds a controllable and observable realization, and the sampling

is not pathological, it follows that the inherited realization of Pm is also

controllable and observable. Based on our assumptions on the sampling, it

is also easily verified that the realization of G̃ as above is controllable and

observable. Let M̃G̃ and ÑG̃ be the left coprime factors of G̃. We will use

the state-space realization of ÑG̃ as

ÑG̃ =

 Ã+HC̃ B̃ +HD̃

C̃ D̃

 , (4.2)

where H is chosen such that Ã+HC̃ is Schur stable. It is easy to show that G̃

and ÑG̃ have the same non-minimum phase zeros. We consider now the closed

loop in the lifted domain in Figure 4.2 where the controller is K̃ and proceed

to argue that the lifted loop is not susceptible to stealthy actuator attacks

d̃a, and thus the original MR loop of Figure 4.1 is not susceptible either. To

this end, the integer m is chosen such that the following assumptions are

satisfied.

Assumption 17. The matrix B is full column rank.

Assumption 18. The matrix O : =


C

CA
...

CAm−2

 is full column rank.
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The first assumption is standard and holds generically if Bc is full column

rank in the continuous system. The second assumption holds for large enough

m, in particular m = n+ 1, if the pair (A,C) is observable, which is true as

Pm is minimal. It can also hold, however, even with a small m generically.

Also, if Assumption 18 holds, G̃ is a tall system. Then the following lemma

characterizes the zeros of G̃.

Lemma 19. Consider the lifted system G̃ as in (4.1) together with Assump-

tions (17) and (18). Then G̃ has at most one non-minimum phase zero and

is located at λ = 1.

Proof. Since ÑG̃ and G̃ have the same non-minimum phase zeros, we will

prove this lemma for ÑG̃. Notice that since ÑG̃ is tall, |λ0| ≤ 1 is a zero if

and only if there exists a non-zero vector ν ∈ Rnu such that

ÑG̃ (λ0) ν =[
λ0C̃

[
I − λ0

(
Ã+HC̃

)]−1 (
B̃ +HD̃

)
+ D̃

]
ν = 0.

Notice that [
I − λ0

(
Ã+HC̃

)]−1
is well-defined as all the eigenvalues of Ã + HC̃ are inside the unit circle.

Now, let

ξ =
[
I − λ0

(
Ã+HC̃

)]−1 (
B̃ +HD̃

)
ν.

Then, pre-multiplying by

[
I − λ0

(
Ã+HC̃

)]
and using

λ0C̃ξ + D̃ν = 0,
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we get

λ0C̃ξ + D̃ν = 0, (4.3)(
I − λ0Ã

)
ξ − B̃ν = 0. (4.4)

Pre-multiplying (4.3) by X, where X is a matrix in R(m−1)ny×mny given as

X =


I −I 0 · · · 0

0 I −I
...

. . . . . .

0 · · · 0 I −I

 . (4.5)

we get

λ0XC̃ξ +XD̃ν = O [λ0 (I − A) ξ −Bν] = 0.

Since O is full column rank by Assumption 18, it holds true that

λ0 (A− I) ξ +Bν = 0,

which together with (4.4) gives

[(
I − λ0Ã

)
B + λ0 (A− I) B̃

]
ν = 0.

Simplifying further yields

(1− λ0)Bν = 0.

Therefore, if ν is nonzero then λ0 = 1 since, by Assumption 17, B is full

column rank.

According to Lemma 19, the lifted system, G̃, has no zeros inside the unit

circle. However, it may have a zero at λ = 1. Based on Proposition 13 and

Remark 14, an (unbounded) actuator stealthy attack will not be possible if
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λ = 1 is zero of G̃ with multiplicity of at most one. Indeed, this is the case

as it is proved in the following theorem:

Theorem 20. Consider the dual rate SD scheme as in Figure 4.2. Then,

there does not exist any (unbounded) actuator stealthy attack if Assumptions

17 and 18 are met.

Proof. As discussed before, we need to show that λ = 1 is a zero of G̃ or

equivalently ÑG̃ with the multiplicity of at most one. It can be argued that

([42]-Section 6.5) λ = 1 is a zero of algebraic multiplicity greater than one if

and only if the matrix

T :=

 ÑG̃ (1) 0

d
dλ
ÑG̃ (λ) |λ=1 ÑG̃ (1)


has a right null chain; that is, there exists a vector

ν =

 ν1

ν2

 ,
with ν1 6= 0, such that Tν = 0. By the way of contradiction, we will show

that if Tν = 0 then ν1 = 0. Direct calculations show that if Tν = 0 then

[
C̃
[
I −

(
Ã+HC̃

)]−1 (
B̃ +HD̃

)
+ D̃

]
ν1 = 0, (4.6)

[
C̃
[
I −

(
Ã+HC̃

)]−2 (
B̃ +HD̃

)]
ν1

+

[
C̃
[
I −

(
Ã+HC̃

)]−1 (
B̃ +HD̃

)
+ D̃

]
ν2 = 0. (4.7)

Define

ξ1 =
[
I −

(
Ã+HC̃

)]−1 (
B̃ +HD̃

)
ν1,
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ξ2 =
[
I −

(
Ã+HC̃

)]−1 [
ξ1 +

(
B̃ +HD̃

)
ν2

]
.

Pre-multiplying ξ1 and ξ2 by
[
I −

(
Ã+HC̃

)]
and grouping terms we get

(
I − Ã

)
ξ1 − B̃ν1 = H

(
C̃ξ1 + D̃ν1

)
, (4.8)

−ξ1 +
(
I − Ã

)
ξ2 − B̃ν2 = H

(
C̃ξ2 + D̃ν2

)
. (4.9)

From (4.6)-(4.9),

C̃ξ1 + D̃ν1 = 0, (4.10)

C̃ξ2 + D̃ν2 = 0, (4.11)(
I − Ã

)
ξ1 − B̃ν1 = 0, (4.12)

−ξ1 +
(
I − Ã

)
ξ2 − B̃ν2 = 0. (4.13)

Furthermore, pre-multiplying (4.10) and (4.11) gives

XC̃ξ1 +XD̃ν1 = O [(I − A) ξ1 −Bν1] = 0,

XC̃ξ2 +XD̃ν2 = O [(I − A) ξ2 −Bν2] = 0,

where X is as in (4.5), which in turn imply

(I − A) ξ1 −Bν1 = 0, (4.14)

(I − A) ξ2 −Bν2 = 0. (4.15)

Eliminating ξ2 between (4.13) and (4.15), we get

− (I − A) ξ1 −
[
(I − A) B̃ −

(
I − Ã

)
B
]
ν2 = 0.

Notice that (I − A) B̃ −
(
I − Ã

)
B = 0 and hence the last equation implies

(I − A) ξ1 = 0,
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which in turn, together with (4.14), implies Bν1 = 0. By Assumption 17,

Bν1 = 0 implies ν1 = 0 and this completes the proof.

As a final comment from the previous analysis, we offer conditions when G̃

has a zero λ = 1. We note that, as proved in the previous theorem, these zeros

are not a problem since they cannot generate unbounded stealthy attacks.

Proposition 21. Let Pc be “tall.” Then G̃ has a zero at λ = 1 if and only

if Pm does.

Proof. Suppose G̃ has a zero at λ = 1. Then, there exist vectors ξ and ν,

at least one of them nonzero, such that (4.3) and (4.4) hold for λ0 = 1. In

particular, from (4.3) we get

Cξ +Dν = 0. (4.16)

Furthermore, pre-multiplying (4.3) by X results in

O [(I − A) ξ −Bν] = 0

which in turn implies

(I − A) ξ −Bν = 0. (4.17)

(4.16) and (4.17) imply that Pm has a zero at λ = 1.

Conversely, if Pm has a zero at λ = 1, I − A −B

C D

 ξ

ν

 = 0, (4.18)
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for some ξ and ν. Pre-multiplying it by

∑m−1
k=1 A

k 0

0 I

−C I

−C − CA I
...

−C
∑m−2

k=0 A
k I


(4.19)

gives  I − Ã −B̃

C̃ D̃

 ξ

ν

 = 0.

That is, G̃ has a zero at λ = 1.

Proposition 22. Let Pc be “fat.” Then G̃ has always a zero at λ = 1.

Proof. The proof relies on the fact that since Pc or equivalently Pm is fat,

there always exist two vectors ξ and ν with at least one of them nonzero such

that (4.18) holds. Then, the rest of the proof follows similarly to that of the

converse part of Proposition 21.

Remark 23. We would like to point out that an equivalent way of obtaining

the same results, i.e., ability to detect zero attacks, is to hold the control input

longer rather than sampling the output faster. That is, if we consider a dual

rate system where the hold operates with a period of mT while the output

is sampled with T , then the corresponding lifted system will enjoy the same

properties as before in terms of unstable zeros. Obviously, the (nominal)

controller performance will be reduced as the control is slower. On the other

hand, there is a potential benefit of lower cost of actuation in this case. An

example offered in the next session illustrates this point.
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4.3 Examples

In this section we provide examples of systems that are vulnerable to zero

dynamics attacks, and then we apply the techniques presented in the previous

sections to remove these vulnerabilities. Using one of the examples, we also

present an approach to perform controller design trade-offs.

4.3.1 Quadruple-Tank

This example is a Quadruple-Tank Process (QTP) [56] that was used for

system security analysis in [57]. The continuous-time nonlinear plant model

is given by

ḣ1(t) = − a1
A1

√
2gh1(t) +

a3
A1

√
2gh3(t) +

γ1k1
A1

u1(t)

ḣ2(t) = − a2
A2

√
2gh2(t) +

a4
A1

√
2gh4(t) +

γ2k2
A2

u2(t)

ḣ3(t) = − a3
A3

√
2gh3(t) +

(1− γ2)k2
A3

u2(t)

ḣ4(t) = − a4
A4

√
2gh4(t) +

(1− γ1)k1
A4

u1(t),

where Ai is the cross-section area tank i, ai the cross-section area of the outlet

hole, hi the height of water in tank i, ki is pump constants, γi the flow ratios

and g the gravity acceleration. We regard the outputs as the water levels of

tanks 1 and 2, i.e. h1 and h2. The voltage applied to pump i is ui, and the

corresponding flow is kiui. At a certain operating condition, the system is

linearized and sampled at T = 0.5 sec to get the following discrete-time open
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loop system [57]:

Ad =


0.975 0 0.042 0

0 0.977 0 0.044

0 0 0.958 0

0 0 0 0.956

 ,

Bd =


0.00515 0.0016

0.0019 0.00447

0 0.0737

0.0850 0

 , Cd =

0.2 0 0 0

0 0.2 0 0

 , Dd =

0

0

 .

The discrete system has an unstable zero at λ = 0.97 with direction ν =[
0 0 1 −0.96

]′
which indicates that stealthy actuator attacks of the form

da(k) = εν(.97)−k are possible. Next, we apply multirate control to move the

unstable zero outside the unit circle. We sample faster at rate T = 0.5/2 =

0.25 sec while keeping the hold at rate T = 0.5 sec. The resulting open loop

state space representation after lifting is

Ã = Ad, B̃ = Bd,

C̃ =


0.2 0 0 0

0 0.2 0 0

0.1975 0 0.0043 0

0 0.1977 0 0.0045

 ,

D̃ =


0 0

0 0

0.005183 8.095e− 005

9.437e− 005 0.004496

 .

The new open loop system has no unstable zeros, which indicates that it is

not susceptible to stealthy actuator attacks. We note that only a small m

is enough to accomplish our goal, i.e., m = 2. In fact, Assumption 18, a
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sufficient condition for Theorem 13 to hold, is not even satisfied in this case

and yet the unstable zeros are removed. We also note that the unstable zero

at the single rate system was due to the unstable zero of the continuous time

dynamics. On top of physical unstable zeros, sampling can create additional

ones as indicated in the following power system example, where a simulation

of a stealthy attack is shown.

4.3.2 Automatic Voltage Regulator

The automatic voltage regulator (AVR), or the generator excitation control,

specifies the terminal voltage magnitude of a synchronous generator by con-

trolling the reactive power. A simplified block diagram of a linearized AVR

is shown in Figure 4.3 [58]. An increase in the reactive power load of the

generator results in a drop in the voltage magnitude across its terminals.

The voltage drop is sensed by a potential transformer and then is rectified

and compared to the reference voltage magnitude. The error signal is then

amplified and raises the generator terminal voltage by controlling the exci-

tation field. For a set of typical system parameters KA = 10, τA = 0.1, KE =

1, τe = 0.4, Kg = 1, τg = 1, Kr = 1, τr = 0.05 as in Figure 4.3, the open loop

state space representation of the single rate system after discretization at a

sample rate T = 0.5 sec is

Ad =


0.0105 0.3949 3.86 2.869

−0.0057 −0.1817 −1.369 −0.587

0.00117 0.03359 0.1793 −0.4597

0.00092 0.03197 0.3163 0.8918

 ,

Bd =


−0.005738

0.001174

0.0009193

0.0002165

 , Cd =
[
0 0 0 5000

]
, Dd =

[
0
]
,
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Figure 4.3: A simplified automatic voltage regulator block diagram.

which has an unstable zero at λ = −0.7045. We note that although the

continuous system has no unstable zeros, sampling at the relatively slow rate

of 0.5 sec per sample created an unstable zero. Next, we consider an attack

input of the form da(k) = εz0
−k, where ε is a small number and z0 is the zero

of the system. Figures 4.4a–4.4c show a plot of the attack held at T = 0.5

sec along with the states and the sampled output of the system. We can

notice that while the states of the system are exploding, the sampled output

remains zero and no attack is detected. Next, we change the single rate

block diagram to a multirate architecture to move the unstable zero to the

safe region. We sample faster at rate T/m = 0.5/2 = 0.25 sec per sample

while keeping the hold at rate T = 0.5 sec. The resulting open loop state

space representation after lifting is

Ã = Ad, B̃ = Bd, C̃ =

 0 0 0 5000

2.185 86.13 1092 4902

 , D̃ =

 0

0.196

 .
The resulting open loop system has no unstable zeros. We note that only a

small m is enough to accomplish our goal, i.e., m = 2. Again, Assumption 18,

a sufficient condition for Theorem 13 to hold, is not even satisfied in this case

and yet the unstable zeros are removed. We consider the same attack input

as above and simulate the system. The sampled output at rate T = 0.25 sec

is shown in Figure 4.4d. It is obvious that the multirate scheme detects the
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(a) Zero order hold of zero dynamics at-
tack da.

(b) States of AVR under zero dynamics
attack.

(c) Sampled output of AVR using single
rate control.

(d) Sampled output of AVR using dual
rate control.

Figure 4.4: (a)-(c) show simulation of zero dynamics attack on a sampled-
data AVR system under single rate control. (d) Shows the sampled output
under dual rate control.

attack on the system.

4.3.3 Automatic Generation Control

The main objectives of any AGC system are to maintain the frequency of

the grid and to maintain the power interchanges between neighboring areas

at their scheduled values. This is achieved by controlling the units partici-

pating in AGC to follow the load profile and correct for errors in the load

forecast. Figure 4.5 shows a load frequency control (LFC) block diagram of

a single machine [59], [58]. A change in frequency (∆ω) is sensed by the
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governor, which in turn orders the turbine to raise or lower the generation

of electric power until the frequency is stabilized. The figure shows what is

called primary frequency control augmented with a secondary controller K

to make sure the error in frequency settles to zero. The open loop state space

representation of the single rate AGC system after discretization at a sample

rate T = 0.5 sec is

d

dt


∆ω

∆Pmech

∆Pvalve

 =


0.78 0.03 0.008

−8.34 0.23 0.163

−16.17 −0.42 −0.019




∆ω

∆Pmech

∆Pvalve



+


0.009

0.424

0.832

∆Pref

y =
[
1 0 0

]
∆ω

∆Pmech

∆Pvalve

 ,

which has an unstable zero at λ = −0.5721. We consider an attack input of

the form da(k) = εz0
−k where ε is a small number and z0 is the zero of the

system. Figures 4.6a–4.6c show plots of the attack held at 0.5 sec along with

the states and the continuous and sampled output of the system. Next, we

change the single rate block diagram to a multirate architecture to move the

unstable zero to the safe region. We sample faster at rate T/m = 0.5/2 = 0.25

sec per sample while keeping the hold at rate T = 0.5 sec. The resulting open
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Figure 4.5: A simplified automatic generation control block diagram.

loop state space representation after lifting is

y =

 1 0 0

0.9462 0.01925 0.003557




∆ω

∆Pmech

∆Pvalve


+

 0

0.001711

∆Pref ,

where A and B stay the same. For the multirate scheme, we consider the

same attack input as above and simulate the system. The sampled output

at rate T = 0.25 sec is shown in Figure 4.6d. The simulation shows that the

multirate scheme detects the attack on the system.

4.3.4 Controller Trade-Offs

In this section we consider the automatic voltage regulation system previ-

ously discussed in order to investigate trade-offs in the controller design. In

particular, we will close the control loop by designing linear quadratic Gaus-

sian (LQG) controllers for the dual rate system and compare the cost with

that of single rate LQG controllers. We set up a baseline LQG formulation

for the dynamics of the open loop AVR with sampled measurements with a
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(a) Zero order hold of zero dynamics at-
tack da

(b) States of AGC under zero dynamics
attack

(c) Sampled output of AGC using single
rate control

(d) Sampled output of AGC using dual
rate control

Figure 4.6: (a)-(c) show simulation of zero dynamics attack on a sampled-
data AGC system under single rate control. (d) shows the sampled output
under dual rate control.
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period s as

dx(t) = Acx(t)dt+ ωc(t)dt+Bcuc(t)dt,

y(k) = Ccx(ks) + v(k), k = 0, 1, . . .

We assume that the process noise {ωc(t), t ≥ 0} is a Brownian motion with

E{dωc(t)dωc(t)′} = Ξc, the observation noise {v(k), k = 0, 1...} is a zero mean

white Gaussian sequence with covariance Θ = E{v(k)v(k)′}, and x(0) is zero

mean Gaussian with covariance S0 = E{x(0)x(0)′}. Moreover, it is assumed

that the random variables x(0), v(k), ωc(t) are independent. We assume that

the hold period is h. The objective is to minimize the following cost:

J = E
{

lim sup
k→∞

(1/kh)

∫ kh

0

(x′Qcx+ ucRcu
′
c)dt

}

with the usual positive definiteness conditions Qc = Q′c ≥ 0 and Rc = R′c > 0,

which transforms to

J = E
{

lim sup
k→∞

(1/k)
∞∑
k=0

(x′kQxk + 2x′kSuk + u′kRuk)

}

with xk := x(kh), uk := uc(kh) and

Q =

∫ h

0

eA
′
cτQce

Acτdτ

S =

∫ h

0

eA
′
ctQc

( ∫ t

0

eAc(t−τ)Bcdτ
)
dt

Ξ =

∫ s

0

eAc(s−τ)BcΞcB
′
ce
A′c(s−τ)dτ

R =
∫ h
0

[( ∫ t
0
B′ce

A′c(t−τ)dτ
)
Qc

( ∫ t
0
eAc(t−τ)Bcdτ

)
+Rc

]
dt.

The hold and sample periods h and s are assumed to be integer related

and in particular h = ms with m = 1, 2, . . . . In this synchronous dual rate

case, rather than using lifting techniques to solve the problem, we take the

separation principle approach which applies also to asynchronous sampling

47



Table 4.1: LQG Cost

s\h 0.5 1
0.25 0.6704 0.6705

0.5 0.6868 0.6877

1 0.7033 0.7047

(e.g., [60]) to find the optimal cost by computing

Jo = trace
[
PF ′(R +B′hX)BhF +XΞ

]
,

where X and P are the unique positive semidefinite symmetric solutions of

the algebraic Riccati equations

X = A′hXAh − (S + A′hBhX)(R +B′hXBh)
−1(XB′hAh + S ′) +Q

P = AsPA
′
s − AsPC ′s(CsPC ′s + Θ)−1CsPA

′
s + Ξ

and

F = (B′hXBh +R)−1(B′hXAh + S ′),

where the various A, B, C matrices above are corresponding to the matrices

in Equation (3.1) for T = h and T = s, i.e., Ah = eAch, As = eAcs, etc.

Table 4.1 summarizes the LQG cost for different single rate and dual rate

sample and hold for the case Ξc = 103, Θ = 10, Qc = I4 and Rc = I. The

entries (s, h) for which stealthy attacks are not possible are (0.25, 0.5), (0.25,

1), and (0.5, 1). We notice that, because of faster sampling, we get better

performance in dual rate control than single rate control. Also, as expected,

we get better performance between dual rate controllers when we increase the

rate of sampling rather than decreasing the rate of the zero order hold. Faster

sampling, however, may require more expensive devices and so a trade-off is

present.
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4.4 Conclusion

We presented a simple dual rate sampled data scheme which guarantees de-

tectability of unbounded actuator and/or sensor attacks, if a secure output

that maintains observability of the open loop modes is available. The main

observation is that the sampled data nature in the implementation of the

cyber-physical system cannot be ignored as sampling can generate additional

vulnerabilities due to the extra unstable zeros it may introduce, particularly

if high rates are necessary to achieve certain performance level. The pro-

posed method solves this issue by the use of multirate sampling that ensures

that zeros exist only in harmless locations in the lifted domain. A few ex-

amples were also presented that show how the multirate scheme detects the

unbounded actuator attacks. In addition, the examples incorporated a dual

rate controller cost comparison based on LQG control.

Several other possibilities can be studied in this context. The use of asyn-

chronous sampling (e.g., [49, 61]) can provide alternative ways to detect

stealthy attacks; or even the network’s random delays can be helpful in that

respect. The speed of detecting, however, needs to be taken into considera-

tion, even if the attack is detectable. The methods of generalized holds [62]

are also relevant as they move zeros, and with careful analysis of their robust-

ness properties (e.g., [63, 64]) can provide acceptable and simple solutions as

well.
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CHAPTER 5

ON THE COMPUTATION OF WORST
ATTACKS: AN LP FRAMEWORK

5.1 Introduction

In this work, we consider signal attacks where the general problem from the

attacker’s perspective is to find the attack input d = {d(k)} so that it is

stealthy while inflicting the maximum damage on the performance variable

z = {z(k)}. We showed in the previous chapters that unbounded attacks for

LTI systems are related to the unstable zeros and/or poles of the open loop

system. However, in this chapter we consider the problem of characterizing

the worst bounded and stealthy attacks. This problem involves a maximiza-

tion of a convex function subject to convex constraints. We propose different

attack resource constraints to make the problem more practical. More specif-

ically, we assume that the attacker has a finite time window {0, 1, . . . , ta} to

attack the system and inflict the maximum damage before the attack is over,

and we attempt to solve the following three attack scenarios:

• Scenario 1: Attacker can attack in a finite time window up to t = ta;

his goal is to inflict the maximum damage anywhere (before or after

ta) while remaining stealthy for all t.

• Scenario 2: Attacker can attack in a finite interval up to t = ta; his

goal is to inflict the maximum damage anywhere (before or after ta)

while remaining stealthy for t ≤ ta (does not care if detected after the

attack is over).

• Scenario 3: Attacker can attack in a finite interval up to t = ta; his goal
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is to inflict the maximum damage at t ≤ ta while remaining stealthy

for t ≤ ta.

We show that by employing a `∞ framework, tractable linear programming

(LP) methods can be used to compute the worst attack for the above three

scenarios.

Our work is closely related to [23], [25], [26], [28], [65], [66], [67] and [24].

However, we do not assume a constant d such as in [23] where they assume

the system is in steady state. In addition, the work in the mentioned ref-

erences does not address attack impact and stealthiness after the attack is

concluded, nor does it relate to either a specific detection method (e.g. resid-

ual detectors) which assumes certain thresholding mechanisms that may be

stochastic, or to a specific controller in use. We study these problems in a

more general input-output fashion that does not depend on the particular

controller used, and in a totally deterministic worst case scenario. In other

words, the assumed noise thresholds are based on the existence of a worst

case magnitude bounded noise. In this sense, the noise is allowed to “con-

spire” with the attacker to keep the detection signals within what is assumed

normal operation.

In the second part of this chapter, we build on the worst attack design

problem and provide a novel K-d controller synthesis iterative method to

minimize the performance cost without increasing the impact of the worst

attack. Each iteration is an LP and alternates between finding the worst

attack d for a given controller K, and finding the next K that minimizes the

performance cost while keeping a non-increasing upper bound on the worst

case impact inflicted by d.
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Figure 5.1: General setup of input-output maps.

5.2 Problem Setup

We consider the case of a general signal attack d on a closed loop system of

Figure 5.1. Let Φ(K) describe the effect of d on the performance variable z

and on the monitoring signal ψ, i.e. let

Φ =

Φzd

Φψd

 =: d 7→

z
ψ

 .
The monitoring signal ψ consists of the measured output y and the control

signal u; it can however contain any other information that is recorded and

measured, e.g., reference inputs. In this setup, we assume that there may

be other external disturbances and noise inputs which are normal, i.e., not

malicious attackers, which are not shown in the figure. Also, the entire

formulation deals with discrete-time systems and signals.

The attacker’s goal can be stated in general as

max
d
‖z‖∞

s.t. ‖ψ‖∞ ≤ θ,

(5.1)

where θ is an alarm threshold, associated with the afore mentioned normal

set of disturbances. In Chapter 2, we established exact conditions for stealth-

iness of unbounded actuator and sensor attacks which can totally destroy the

system. These attacks are ultimately related to the open loop plant P , and
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for LTI systems in particular, to the non-minimum phase (unstable) zeros

and unstable poles of P . We note, as pointed out in Chapter 1, that unstable

zeros can also be due to the sampled data implementation of controllers.

In this general setup of Figure 5.1, we elaborate on the existence of stealthy

unbounded attacks using an input-output approach. In particular, consider-

ing a left coprime factorization ([47, 43, 42]) for the part of the generalized

system that connects inputs to the measured output

y = Pydd+ Pu

in the open loop, we have

[Pyd P ] = M̃−1[Ñyd Ñ ].

Using a left coprime factorization for the stabilizing controller K = Y X−1,

we can express

ψ =

 y

u

 =

 X

Y

W−1M̃Pydd =

 X

Y

W−1Ñydd,

where

W = M̃X − ÑY.

Since W is stable and, by stability of the closed loop, has a stable inverse

W−1 we have that the detectability of d depends on the unstable zeros of

Ñyd; i.e., unbounded stealthy attacks d are possible if and only if Ñyd has

unstable zeros.

For actuator-only attacks

Pyd = P = M̃−1Ñ =⇒ Ñyd = Ñ
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while for sensor-only attacks

Pyd = I = M̃−1M̃ =⇒ Ñyd = M̃.

Hence, this shows how the unstable zeros of P (which are the unstable

zeros of Ñ) and the unstable poles of P (which are the unstable zeros of

M̃) relate to the actuator and sensor attacks considered in Chapter 2. Mul-

tirate sampling can potentially remove unstable zeros of Ñyd as was shown

in Chapter 3 for unbounded actuator attacks, but it cannot work for total

sensor unbounded attacks.

In the following we consider the case of bounded in magnitude (and time)

attacks with various levels of stealth. The question we want to address is how

to compute the worst possible bounded attacks and how to defend against

such attacks by a suitable controller design.

5.3 Computation of Worst Attack

We consider the problem of computing the worst case attack in (5.1) when

the attacker has a finite time window {0, 1, . . . , ta} to attack the system.

In addition, we require the attack to remain stealthy after the attack is

over. This allows for repeatedly attacking the system without triggering the

monitoring signal alarm.

Specifically, consider the optimization problem in (5.1); we are interested in

finding the worst, stealthy, bounded (in magnitude and time) attack. Assume

the LTI closed loop system Φ(K) is stable and let tzd and tψd be design

parameters related to the decay rate of the pulse responses of of Φzd and Φψd

respectively. These parameters determine the time windows that the attacker

cares about for impact and stealthiness respectively. Suppose the intruder

can only attack the system during a finite interval {0, 1, . . . , ta}, with attack

magnitude less than or equal to α. Then, a corresponding problem of interest
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can be formulated as

max
d
‖z‖[0,ta+tzd]∞

s.t. ‖ψ‖[0,ta+tψd]∞ ≤ θ,

|d(k)| ≤ α, k = 0, 1, . . . , ta,

d(k) = 0, k = ta + 1, . . . ,

(5.2)

where

‖z‖[0,ta+tzd]∞ = max
0≤k≤ta+tzd

= |z(k)| ,

and similarly

‖ψ‖[0,ta+tψd]∞ = max
0≤k≤ta+tψd

= |ψ(k)| .

The system of equations governing the output z when subjected to the

attack input d for each instance of time is given by



z(0)

z(1)
...

z(ta)

z(ta + 1)
...

z(ta + tzd)


=



Φzd(0) 0 0 · · ·
Φzd(1) Φzd(0) 0 · · ·

...
...

...
...

Φzd(ta) Φzd(ta − 1) Φzd(ta − 2) · · ·
Φzd(ta + 1) Φzd(ta) Φzd(ta − 1) · · ·

...
...

...
...

Φzd(ta + tzd) Φzd(ta + tzd − 1) Φzd(ta + tzd − 2) · · ·





d(0)

d(1)
...

d(ta)

0
...

0


,

(5.3)

where d(k) = 0 for t > ta. The objective is to find the sequence {d(k)},

k = {0, . . . , ta} that maximizes ‖z‖[0,ta+tzd]∞ such that ‖ψ‖[0,ta+tψd]∞ ≤ θ. This

corresponds to selecting the optimal row in (5.3) to be maximized and finding

the optimal d that would maximize this row. In view of the above, the

following proposition is obvious.

Proposition 24. Problem (5.2) can be formulated as the following optimiza-
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tion problem:

max
d,n∈{0,1,...,ta+tzd}

n∑
k=0

Φzd(n− k)d(k)

s.t.
∣∣∣ τ∑
k=0

Φψd(τ − k)d(k)
∣∣∣ ≤ θ, τ = 0, 1, . . . , ta + tψd,

|d(k)| ≤ α, k = 0, 1, . . . , ta,

d(k) = 0, k = ta + 1, . . . .

(5.4)

After finding the worst case attack d̂, the worst case impact can be obtained

by computing
∥∥∥Φzdd̂

∥∥∥
∞

.

Note also that an optimal d̂ can always be selected so that

∣∣∣ n∑
k=0

Φzd(n− k)d̂(k)
∣∣∣ =

n∑
k=0

Φzd(n− k)d̂(k),

thus the expression for the cost in (5.4).

Remark 25. The objective function looks for the optimal row in the set

{0, . . . , ta + tzd}. We can always choose a sufficiently long tzd, determined

by the decay rate of Φzd and the bound α on d, to ensure that we capture the

worst case ‖z‖∞ = sup
tzd

‖z‖[0,ta+tzd]∞ .

Remark 26. Note that the first set of constraints ensures the monitoring

signal ψ is below a threshold level (‖ψ‖∞ ≤ θ) during and after the attack

interval. Since we assume that Φψd is stable and that d(k) = 0 for t > ta, if

tψd is chosen long enough, depending on the decay rate of Φψd and the bound

α, one can guarantee that d is undetectable for all t. Therefore, to guarantee

stealthiness for all t it is sufficient to enforce the monitoring constraints up

to ta + tψd. The last set of constraints ensures the attack is bounded and

decays to zero at the end of the attack interval.

Remark 27. Remarks 25 and 26 basically state that for a priori computable
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tzd and tψd, problems (5.2) and (5.4) solve the following problem:

max
d
‖z‖∞

s.t. ‖ψ‖∞ ≤ θ,

|d(k)| ≤ α, k = 0, 1, . . . , ta,

d(k) = 0, k = ta + 1, . . . .

(5.5)

Remark 28. Problem (5.4) is LP for a fixed n (fixed row) which can be solved

efficiently. Fixing n transforms the objective function to a linear function

under linear (polytopic) constraints. However, one has to solve (in principle)

ta + tzd LPs.

Following is a simple search algorithm (Algorithm 1) to solve Problem 5.4:

Algorithm 1 Compute worst attack d̂

Input Φzd, Φψd, ta, tzd, tψd, td, θ and α.
for i = 1 : ta + tzd do

Solve

max
di

i∑
k=0

Φzd(i− k)di(k)

s.t.
∣∣∣ τ∑
k=0

Φψd(τ − k)di(k)
∣∣∣ ≤ θ, τ = 0, 1, . . . , ta + tψd,

|di(k)| ≤ α, k = 0, 1, . . . , ta,

di(k) = 0, k = ta + 1, . . . , ta + td.

Compute and store ‖Φzddi‖∞
end
Compare ‖Φzddi‖∞ and determine the worst attack d̂.

In the sequel, we consider certain cases which further simplify the compu-

tations. Specifically, we consider the problem of computing the worst case

attack when the attacker has a finite time window k = {0, . . . , ta} to at-

tack the system such as in Proposition 24. However, in this case we assume

that the intruder does not mind being detected after the attack is over, i.e.,
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stealthiness constraints are checked up to t = ta only. The following corollary

describes how to construct the optimal d.

Corollary 29. Consider the optimization Problem in (5.2) with tψd = 0

(finite stealthiness interval). Then, its solution can be obtained by solving

max
d,n∈{ta,...,ta+tzd}

n∑
k=0

Φzd(n− k)d(k)

s.t.
∣∣∣ τ∑
k=0

Φψd(τ − k)d(k)
∣∣∣ ≤ θ, τ = 0, 1, . . . , ta,

|d(k)| ≤ α, k = 0, 1, . . . , ta,

d(k) = 0, k = ta + 1, . . . .

(5.6)

Proof. We will prove that the optimal row to be maximized is in the set

{z(ta), . . . , z(ta + tzd)}. Let d̂ be the worst attack that maximizes µ =:

‖z‖[0,ta+tzd]∞ found by solving for the maximum impact over all the rows of

(5.3) where the stealthiness constraints are enforced up to t = ta. Assume

that d̂ was found by maximizing any row before z(ta) calling it row i. Since

the stealthiness constraints are imposed only up to ta and Φ(K) is LTI, we can

delay d̂ by ta−i steps (shift d̂ to the right) so that ‖z‖[0,ta+tzd]∞ = µ is achieved

by maximizing the row z(ta) without violating the stealthiness constraints.

In addition, we cannot shift the attack beyond z(ta) since d̂(k) = 0 for t > ta.

As a result, maximizing ‖z‖[0,ta+tzd]∞ is equivalent to maximizing ‖z‖[ta,ta+tzd]∞

for tψd = 0.

Remark 30. The optimization problem in (5.6) differs from the problem in

(5.4) in two ways: First, the stealthiness constraints set in (5.6) is a subset of

the set in (5.4), since in (5.6) the objective is to remain stealthy only during

the attack interval, where in (5.4) the stealthiness condition is enforced at all

times. Therefore, the attack designed using Corollary 29 yields worse impact

in the `∞ sense than the attack designed using Proposition 24. The second
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difference is in the objective function where in (5.4) we have to maximize

each row in (5.3) to find the worst attack (i.e., ta + tzd LPs), while in (5.6)

we only need to maximize the last rows associated with [z(ta), . . . , z(ta+ tzd)]
′

(i.e., tzd + 1 LPs). An immediate corollary is as follows.

Corollary 31. Let tzd = tψd = 0, i.e., the attacker cares to inflict maximum

damage in the window up to ta while he does not care for stealthiness after

ta. Then, the optimal d is obtained by solving the following single LP:

max
d

ta∑
k=0

Φzd(ta − k)d(k)

s.t.
∣∣∣ τ∑
k=0

Φψd(τ − k)d(k)
∣∣∣ ≤ θ, τ = 0, 1, . . . , ta,

|d(k)| ≤ α, k = 0, 1, . . . , ta.

(5.7)

The above corollary states that computing the worst attack when the at-

tack impact and stealthiness constraints are desired to be inside the attack

interval only is equivalent to solving (5.6) for n = ta.

Remark 32. If Φψd has an unstable zero that is not found in Φzd, and α is

not specified, then the optimization problems in Corollary 29 and Corollary

31 will yield unbounded zero dynamics attacks (Chapter 4).

5.4 Example - Worst Attack Computation

In this section we work on an example of a real power system component

and compute the worst attack for different scenarios.

5.4.1 Automatic Voltage Regulator

The automatic voltage regulator (AVR) or the generator excitation con-

trol, specifies the terminal voltage magnitude of a synchronous generator
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Figure 5.2: A simplified automatic voltage regulator block diagram.

by controlling the reactive power. A simplified block diagram of a linearized

AVR is shown in Figure 5.2 [58]. For a set of typical system parameters

KA = 10, τA = 0.1, KE = 1, τe = 0.4, KG = 1, τG = 1, KR = 1, τR = 0.05 as

in Figure 4.3. We consider actuator attacks as depicted in Figure 4.3 and

seek to find the attack with the worst impact on VF (excitation voltage) while

keeping the monitoring vector

ψ =

 y

u


below a noise level threshold θ. Let K be a suitable controller for the system

and let

P = S KA

1 + τAs

KE

1 + τEs

KG

1 + τGs

KR

1 + τRs
H and

PF = S KA

1 + τAs

KE

1 + τEs
H.

(5.8)

Then closed loop system Φ(K) describing the effect of d on z = VF and the

monitoring vector ψ is given by

Φ(K) =

Φzd

Φψd

 =: d 7→


z

y

u

 =



PF
1 + PK

P

1 + PK

PK

1 + PK


.
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Given

K =
0.1z − 0.09

z − 1
,

then Φ(K) becomes

Φzd

Φψd

 =



0.8423z4−1.162z3−0.1551z2+0.5433z−0.06808
z5−3.186z4+3.794z3−2.043z2+0.4705z−0.03522

0.01114z4+0.05639z3−0.03266z2−0.03337z−0.001502
z5−3.186z4+3.794z3−2.043z2+0.4705z−0.03522

(1.11z4+5.75z3−2.59z2−2.99z−0.135)×10−3

z5−3.186z4+3.794z3−2.043z2+0.4705z−0.03522


sampled at T = 0.1 sec. We note that the has Φψd an unstable zero at

z = 1.42. We compute the attack for 3 cases:

• In the first case we employ Proposition 24 to compute the worst attack

for an attack interval {0, . . . , ta} that is stealthy for all t.

• In the second case, we compute the worst attack for an attack interval

{0, . . . , ta} using Proposition 29, i.e., stealthiness requirement for t ≤ ta

only.

• In the third case, we compute the worst attack using Corollary 31, i.e.,

max
d
z(ta) where the stealthiness requirement holds for t ≤ ta only.

For all cases, we fix ta = 500 (corresponding to 5 seconds), θ = 0.1, α = 100.

Figures 5.3, 5.4 and 5.5 show the computed worst attack signals for cases 1,

2 and 3 with their impact on the performance variable z and and monitoring

signal ψ. Case 1 was obtained by maximizing z(260) (corresponding to 2.6

seconds), Case 2 was obtained by maximizing z(520) (corresponding to 5.2

seconds) and case was obtained by maximizing z(500) (corresponding to 2.6

seconds). We note that the maximum impact on z in case 2 is larger than in

case 3 which in turn is larger than in case 1, confirming remark 30.
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Figure 5.3: Case 1 - Stealthy for all t. Worst attack computation with effect
on z, y and u.
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Figure 5.4: Case 2 - Stealthy for t ≤ ta and tzd 6= 0. Worst attack computa-
tion with effect on z, y and u.

We also show in Figure 5.6a a plot for the maximum impact on z for all

ta for case 1. This is obtained by iterating ta ≥ 0 and solving (5.4) until
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Figure 5.5: Case 3 - Stealthy for t ≤ ta and tzd = 0. Worst attack computa-
tion with effect on z, y and u.

‖z‖∞ stops increasing. We note from Figure 5.6a that ‖z‖∞ stops increasing

after ta = 200 (corresponding to 2 sec). As a result, for this example solving

(5.1) is equivalent to solving (5.4) for ta ≥ 200. Furthermore, we show in

Figure 5.6b how of the worst impact yielded by the optimization problem in

5.4 changes with changing the sampling and hold time (T ). It is not clear

from the figure if a direct relationship between ‖z‖∞ and T exists. This is

because although for a faster rate the cardinality of the attack sequence for

a fixed time interval increases allowing for extra optimization variables, the

number of stealthiness constraints also increases, reducing the set of feasible

solutions.
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Figure 5.6: (a): Worst impact for or different attack intervals ta.
(b): Worst impact for different sample and hold rate.
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5.5 Controller Design for Resiliency - K-d iteration

In view of the previous discussion, a controller design procedure can be for-

mulated based on LP. In particular, given a desired `1 performance level γ

for attacks d, find K such that ‖Φzd(K)‖1 ≤ γ, and to ensure that for a

given attack level characterized by ‖d‖∞ ≤ α, where α is an attack resource

parameter, the “undetected loss” of the closed loop given by

µα := max
d
‖Φzd(K)d‖∞

s.t. ‖Φψd(K)d‖∞ ≤ θ,

‖d‖∞ ≤ α

remains below a desired level µ. Computing µα for a given K corresponds to

the problem of computing the worst d of the previous section. A synthesis

procedure can be developed by a “K-d” type of iteration:

• Given Ki with ‖Φzd(Ki)‖1 = γi find di from:

µi := max
d
‖Φzd(Ki)d‖∞

s.t. ‖Φψd(Ki)d‖∞ ≤ θ,

‖d‖∞ ≤ α.

• Given di find Ki+1 from:

γi+1 := min
K
‖Φzd(K)‖1

s.t. ‖Φzd(K)di‖∞ ≤ µi.

• At each iteration i the problem is an LP with

γi ≤ γi−1 ≤ γ0,

µi ≤ γi ‖di‖∞ ,
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‖di‖∞ ≤ α.

The above formulation guarantees that the upper bound on the attack impact

(i.e. µi) is non-increasing with each iteration.

5.6 Example - Controller Design for Resiliency

In this section we build on the AVR example in Section 5.4.1 sampled at

T = 0.1 sec and seek to design a controller that minimizes the performance

variable z while possibly minimizing the impact of the worst attack d. Sim-

ilar to Section 5.4.1 we start with a simple PI controller represented by the

transfer function

K1 =
0.1z − 0.09

z − 1
.

We use controller parametrization for stable transfer functions to set up the

controller optimization problem. As a result, the maps Φzd and Φψd are given

by

Φzd

Φψd

 =: d 7→


z

y

u

 =


PF

1 + PK
P

1 + PK
PK

1 + PK
.

 =

PF (1− PQ)

P (1− PQ)

PQ

,

where

Q =
K

1 + PK

and P is the open loop transfer function of the AVR system given in (5.8)

along with PF , both sampled at T = 0.1 sec. The controller synthesis problem

is carried on the affine parameter Q in the time domain [68, 69] using the

following formulation:
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Table 5.1: Outcomes of γi and µi For Each Iteration

Iteration i γi = ‖Φzd(Ki)‖1 µi = ‖Φzd(Ki)di‖∞
1 64.6449 3.8008

2 37.0244 2.0107

3 36.9109 0.5704

4 36.9109 0.5704

• Given Ki with ‖Φzd(Ki)‖1 = γi find di from:

µi = max
d,n∈{0,1,...,ta+tzd}

n∑
k=0

Φzd(n− k)d(k)

s.t.
∣∣∣ τ∑
k=0

Φψd(τ − k)d(k)
∣∣∣ ≤ θ, τ = 0, 1, . . . , ta + tψd,

|d(k)| ≤ α, k = 0, 1, . . . , ta,

d(k) = 0, k = ta + 1, . . . .

• Given di find Ki+1 from:

γi+1 := min
q
‖pF ∗ (1− p ∗ q)‖1

s.t. ‖pF ∗ (1− p ∗ q) ∗ di‖∞ ≤ µi

‖q‖∞ ≤ β

q(t) = 0, t ≥ tq,

where p = {p(k)}, pF = {pF (k)} and q = {q(k)} are the pulse responses of

P , PF and Q respectively, and tq and β are design constraints for shaping

the controller. The problem is solved for the following parameters: ta = 500,

tq = 500, θ = 0.1, α = 100, and β = 100. The optimal Q is finite impulse

response (FIR). Table 5.1 shows the outcome of the controller synthesis it-

erative procedure. From the table we see that at each iteration we improved

the performance and reduced the impact of the worst d until no further im-

provement is feasible. Figures 5.7-5.10 show the results of the first and last
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iterations of the controller design process. Figures 5.7a, 5.8a, 5.9a, 5.10b

plot the computed worst attack d and its impact on the variables z, y and u.

Figures 5.7b, 5.8b, 5.10a plot the optimized controller parameter impulse re-

sponse q, and the effect of the previous d on the variables z, y and u governed

by the new controller (i.e. Φzd(Ki+1)di and Φψd(Ki+1)di). We note that for

iteration 1, although ‖Φzd(K1)d1‖∞ = ‖Φzd(K2)d1‖∞, d1 is no longer optimal

for the next iteration because ‖Φψd(K2)d1‖∞ ≥ θ as seen in Figure 5.7b.

5.7 Conclusions

We considered the problem of computing worst case bounded stealthy false

data injection attacks for LTI systems. We considered different attack re-

source constraints and stealthiness intervals. This problem involves a maxi-

mization of a convex function subject to convex constraints, and it was shown

that it can be cast as a series of LP problems under the `∞ framework. A

search algorithm is constructed to solve the set of LPs and was used to com-

pute the worst stealthy attacks on AVR systems. Furthermore, we provided

an iterative controller synthesis procedure that alternates between comput-

ing worst attacks and designing optimal controllers that enhance performance

and minimize the impact of worst attacks. We used this method to design a

controller for the AVR system that resulted in a substantial decrease in the

worst impact inflicted by the worst attack.
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Figure 5.7: Controller synthesis using K-d iteration. Iteration 1.
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Figure 5.8: Controller synthesis using K-d iteration. Iteration 1.
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Figure 5.9: Controller synthesis using K-d iteration. Iteration 1.
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Figure 5.10: Controller synthesis using K-d iteration. Iteration 4.
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CHAPTER 6

ON THE ESTIMATION OF SIGNAL
ATTACKS

6.1 Introduction

We consider the problem of estimating signal attacks on actuators and/or

sensors of control systems using the available measurements. The estimated

attack signal will help the operator decide whether it is a persistent intelli-

gent attack or just a nominal disturbance. First, we show that the design

of controller for estimation and controller for rejection are coupled, and that

a trade-off exists between their individual performances. The quality of the

estimate depends on the performance of the attack rejection controller. In

particular, the faster and better we reject the attack, the worse is the attack

estimate. This is of course assuming the attack can be detected or seen from

the outputs used for estimation.

Next we consider multirate (MR) sampling to estimate the injected attack

d. In particular, we consider the case where we have two sets of sensors mea-

suring the output. The first set is sampled at the same rate of the hold device,

and is used to provide input for the feedback controller creating a single rate

control system. The second set is secure and is sampled at a higher frequency,

and is used for attack detection and estimation. This architecture is practical

for different applications such as wireless networked control systems, where

the sensor measurements are sent over wireless (unsecured) networks to the

control center, and the control signals are sent back to the physical plant

again over wireless networks. A local estimator that has access to some of

the measurements over hard-wired secure lines can be built to generate the
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attack estimates in this kind of scenario. The faster sampling loop is needed

so that all unbounded attacks are detectable (i.e. removes the unstable zeros)

[70] (Chapter 4), and to allow for the design of a certain class of observers

as will be discussed later. Furthermore, we want to estimate the attack at a

faster rate than control so that we can isolate the attack and limit the dam-

age as fast as possible. In addition to detecting unbounded attacks, removing

the unstable zeros is essential because they limit the achievable estimation

performance. The attack estimation problem is similar to the unknown input

observer (UIO) problem discussed in [71, 39, 72, 73, 74, 75, 41, 40] in which

such an observer exists if and only if the system is strongly detectable, i.e.,

all zeros are strictly stable. Multirate sampling guarantees that the system

has at most one non-minimum phase zero and is located at λ = 1, and un-

der specific conditions, multrirate sampling can remove all zeros in the lifted

domain. Conditions when a zero at λ = 1 exists in the MR scheme can be

found in [70]. After introducing dual rate sampling for attack estimation, we

introduce a few estimator design methods utilizing the dual rate property.

In particular, we show that UIOs always exist if the dual rate system does

not have a zero at λ = 1. In addition, the observer provides an estimate of

the attack with a delay of a single time-step only. This result is significant

because single rate observers do not exist most of the time due to the hard

conditions for their existence [72], or they may exist but estimation is delayed

(the system must be strongly detectable) [71].

6.2 Problem Formulation

In the absence of zero dynamics attack possibilities, we investigate the trade-

off between the ability to control the damage that an attack d inflicts versus

the ability to estimate d. In other words, we would like to investigate whether

one can trade control performance for extra ability to estimate the attack

signal d. A relevant problem to study how to design a controller K jointly

74



G

[
K

F

]
y

z

u

d̂

d

Figure 6.1: General block diagram to reject and estimate d.

with a filter F to reject as well as estimate d can be cast as

min
K,F
‖d 7→ z‖ , z =

z1
z2

 ,
where z1 relates to performance in terms of disturbance rejection, e.g., z1 =W1y

u

 and z2 relates to attack estimation, i.e., z2 = W2(d − d̂), where d̂

is the estimated attack and W1,2 are weights, as seen in the general block

diagram in Figure 6.1, where G is a general discrete LTI system. This type

of problem is convex in any norm when the Youla parametrization of all

stabilizing controllers [68, 69] is employed. The estimated signal will help

the system operator decide whether the rejected signal is a carefully designed

attack or just a random disturbance.

The input-output map of the system in Figure 6.1 can be described as:
z1

z2

y

 =


G11 G12 G13

G21 G22 G23

G31 G32 G33



d

u

d̂

 ,

where G32 is the open loop discrete time LTI plant. For z2 defined as z2 =

W (d− d̂) and z1 does not depend on d̂, we have G13 = G22 = G33 = 0, G21 =
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W, G23 = −W . For actuator-only attacks, we have

G31 = G32,

while for sensor-only attacks

G31 = I.

The remaining maps G11 and G12 depend on how z1 is defined. The input-

output map is now more sparse and can be described by:
z1

z2

y

 =


G11 G12 0

W 0 −W

G31 G32 0



d

u

d̂

 .

The closed loop map Tzd can then be found and is

Tz1d
Tz2d

 =

G11

W

+

G12 0

0 −W

K
F

(I − [G32 0

]K
F

)−1G31

=

G11 +G12K(I −G32K)−1G31

W −WF (I −G32K)−1G31

 .
It is easy to see that minimizing ‖Tz1d‖ depends only on finding the op-

timal K and can be solved as a model matching problem. On the other

hand, minimizing ‖Tz2d‖ depends on finding the optimal K and F simul-

taneously. By inspecting Tzd, keeping ‖Tz2d‖ small is achieved by making

|F (I − G32K)−1G31| ≈ I for all frequencies. On the other hand, it is well

known that |K| has to be large for good disturbance rejection [38]. As a

result, a trade-off between good estimation and good disturbance rejection

exists. The following example demonstrates this trade-off.
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Figure 6.2: Tradeoff in performance between rejection and estimation.

6.3 Example

Control design for rejection and estimation of the attack was carried out for

the AVR system in Figure 4.3. The attack is assumed to be a step input.

The controller is synthesized using the method of H∞ control [43, 42], using

the tools in MATLAB. The chosen weights are

W1 =
0.009995

λ− 1.001
, W2 = α

0.009995

λ− 1.001
,

where α represents the emphasis on the estimation performance. We can

deduce from Figures 6.2 and 6.3 that for this example, as α increases, the

rejection performance deteriorates while the estimation performance is en-

hanced (d̂ converges faster to the true attack value). Hence, a trade-off exists

between control and estimation.
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Figure 6.3: Attack estimation for different values of α.

6.4 Estimation Via Multirate Sampling

6.4.1 Motivation and Control Loop Architecture

Next we consider multirate (MR) sampling to estimate the injected attack d.

In particular, we consider the case where we have two sets of sensors measur-

ing the output. The first set is sampled at the same rate of the hold device,

and is used to provide input for the feedback controller creating a single rate

control system. The second set is secure and is sampled at a higher frequency,

and is used for attack detection and estimation as seen in Figure 6.4, where

G is the continuous-time LTI general input-output map. This architecture

is practical for different applications such as wireless networked control sys-

tems, where the sensor measurements are sent over wireless (unsecured and

delayed) networks to the control center, and the control signals are sent back

to the physical plant again over wireless networks. A local estimator that has

access to some of the measurements over hard-wired secure lines can be built
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Figure 6.4: General block diagram to reject and estimate d with secured
sensors.

to generate the attack estimates in this kind of scenario. Higher sampling

rate for the detection loop is recommended to detect stealthy unbounded at-

tacks, and to make it harder for attackers to design stealthy bounded attacks.

In addition, MR sampling removes unstable zeros (except for possibly one

zero at λ = 1) in the map from the attack signal d to the monitored signals

(y and possibly u).

Remark 33. The control loop in the architecture in Figure 6.4 can also be

dual rate. What is important is to have the output feeding the estimation loop

sampled at a sufficiently higher rate than that at which the attack is injected

into the system. This helps in detecting the attack faster, and ensures that

the system detects unbounded stealthy actuator or sensor attacks.

6.4.2 Estimator Design

In this section we present a few control methods for the design of the esti-

mator F for a fixed controller K, for the architecture in Figure 6.4. First we

find the mapping from d to the measurements

 ỹ
yT

 = Gd

d
u

 =

LST/mG11H LST/mG12H

LSTG21H LSTG22H


d
u

 ,
where ỹ(k) = [y′c1(kT/m) y′c1((k+ 1)T/m) . . . y′c1((k+m− 1)T/m)]′, yT (k) =

yc2(kT ), G11 is the mapping from d to yc1, G12 is the mapping from u to
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yc1 and G21 is the mapping from d to yc2, G22 is the mapping from u to

yc2, yc1 and yc2 are the continuous-time measurements feeding ST/m and

ST respectively, and L is the lifting operator. G11 may represent actuator

attacks or sensor attacks as explained in section 6.2. In view of the above,

let G be controllable, observable and have the following representation:

G =


A B1 B2

C1 D11 D12

C2 D21 0

 , (6.1)

then

Gd =


Ad B1d B2d

C̃1 D̃11 D̃12

C2 D21 0

 ,

where

C̃1 =



C1

C1Af

...

C1A
m−1
f


, D̃11 =



D11

D11 + C1B1f

...

D11 + C1

∑m−2
k=0 A

k
fB1f


,
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D̃12 =



D12

D12 + C1B2f

...

D12 + C1

∑m−2
k=0 A

k
fB2f


,

and

Ad := eAT , Af := eAT/m,

B1d :=

∫ T

0

eAτB1dτ, B2d :=

∫ T

0

eAτB2dτ,

B1f :=

∫ T/m

0

eAτB1dτ, B2f :=

∫ T/m

0

eAτB2dτ

Now for a given controller K with state space

K =

 AK BK

CK DK

 ,

the input-output map from d to yT/m is described as

P̃ =


Ad +B2dDKC2 B2dCK B1d +B2dDKD21

BKC2 AK BKD21

C̃1 + D̃12DKC2 D̃12CK D̃11 + D̃12DKD21


, (6.2)

as seen in Figure 6.5, where n is sensor noise.

In Chapter 4 we showed that if P̃ has a non-minimum phase zero, then
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Figure 6.5: Block diagram for estimator design in the lifted domain. P̃ is
dual rate, lifted and augmented with a controller for stabilization.

this zero is located at λ = 1, and its multiplicity is 1. As a result, dual

rate control renders the system secure against unbounded stealthy actuator

attacks. This applies to any G11 of any structure (as long as K does not

introduce a zero at λ = 1). For the case when G11 is tall and has no zeros

at the origin, [76] (Theorem 1) states that P̃ has no zeros at all for almost

all m ∈ R such that m > 1. In our MR scheme in Chapter 4 and in this

chapter, we only consider m to be an integer.

6.4.2.1 Model Matching

The problem of finding the best d̂ (in some sense) can now be cast as

min
F

∥∥∥W −WF̃P̃
∥∥∥ ,

or in the case of noisy measurements

min
F

∥∥∥W (I 0)−WF̃ (P̃ I)
∥∥∥

such that F is stable (to minimize noise amplification) and causal. Since we

are solving the problem in the lifted domain, the causality of F is guaranteed

by enforcing the constraint that F (0) is block lower triangular. Several meth-

ods to solve this synthesis problem can found in [49, 50, 51, 52, 60, 77, 61, 78].
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6.4.2.2 Unknown Input Reconstruction

In this section we seek to exploit dual rate sampling to accurately reconstruct

the unknown input (attack) d injected in the system in Figures 6.4 and 6.5, as

well as the initial condition x(0). In particular, we consider the relationship

between the states and input from one end and the output of the system

from another end. This relationship has been studied for single rate systems

in the context of strong observability in the literature [39, 40, 41].

We consider the state space description P̃ in (6.2). We assume for now

(without loss of generality) that K = 0; we also assume that the measure-

ments are noise free, as a result P̃ reduces to

P̃ =

 Ad B1d

C̃1 D̃11

 . (6.3)

The lifted output of P̃ can be described as



y(0)

y(T/m)

y(2T/m)

...

y((m− 1)T/m)


=



C1

C1Af

C1A
2
f

...

C1A
m−1
f


x(0)+



D11

D11 + C1B1f

D11 + C1B1f + C1AfB1f

...

D11 + C1

∑m−2
k=0 A

k
fB1f


d(0).

(6.4)

From the above equation, we can deduce that x(0) and d(0) can be recov-

ered without delay with respect to the original single rate system if and only if

[
C̃1 D̃11

]
(6.5)
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is full column rank. A necessary condition for (6.5) to have full column rank

is that P̃ be strongly observable, i.e., have no invariant zeros [39, 40].

Strong observability of P̃ is guaranteed if G11 is tall and does not have a

zero at the origin for a sufficiently large m (Theorem 1 in [76]), given that

(Af , C1) is observable. Choosing m to satisfy Assumptions 17 and 18 of

section 2.1 is one choice. Strong observability does not imply that (6.5) is

full column rank; however, (6.5) can be made to have full column rank by

choosing m sufficiently large [48]. The idea is to add more linearly indepen-

dent rows to (6.5) by sampling faster until (6.5) is tall. The added rows are

linearly independent because m satisfies Assumptions 17 and 18, assuming

|C1B1d| 6= 0 as mentioned in section 2.1.

Remark 34. The advantages of MR sampling here are (1) It makes P̃

strongly observable, and (2) It makes (6.5) full column rank. Hence, MR

sampling guarantees that such an observer always exists (assuming G11 is

tall and does not have a zero at the origin), which may not be the case for

single rate systems.

Remark 35. The attack and the states are reconstructed with no delay with

respect to original single rate period T . Still, m samples are needed within T ,

so in actual continuous-time the delay is T sec (or one sample period of the

original single rate). In contrast, for single rate systems the delay can be up

to nT where n is the dimension Ad (assuming the observer exists for single

rate, i.e., assuming the single rate system is strongly observable).

Remark 36. As long as we choose m to make P̃ strongly observable, then we

can still reconstruct d using delayed measurements (i.e., ỹ(0), ỹ(1), . . . , ỹ(n),

where n is the dimension of Ad) even if (6.5) is not full column rank. The

amount of delay would be smaller than for single rate systems (provided that

the single rate system is strongly observable). Details about this scheme for

single rate systems can be found in [39].
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Figure 6.6: A simplified automatic voltage regulator block diagram.

6.4.2.2.1 Example - Automatic Voltage Regulator

We revisit the AVR example of section 4.3.2. A simplified block diagram of

a linearized AVR is shown in Figure 6.6 [58]. The open loop state space

representation of the single rate system after discretization at a sample rate

T = 0.5 sec is

Ad =



0.0105 0.3949 3.86 2.869

−0.0057 −0.1817 −1.369 −0.587

0.00117 0.03359 0.1793 −0.4597

0.00092 0.03197 0.3163 0.8918


,

Bd =



−0.005738

0.001174

0.0009193

0.0002165


, Cd =

[
0 0 0 5000

]
, Dd =

[
0

]
,

which has an unstable zero at λ = −0.7045. Since the system has an un-

stable zero, we know that we cannot reconstruct attacks even if we use an

arbitrary large number of measurements. Next we know from section 4.3.2

that dual rate sampling at a rate of T/m = 0.25 sec removes the unstable

zero when viewed from the lifted domain. The resulting open loop state
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space representation after lifting is

Ã = Ad, B̃ = Bd, C̃ =

 0 0 0 5000

2.185 86.13 1092 4902

 , D̃ =

 0

0.196

 .
Although the open loop system is strongly observable using m = 2 for dual

rate sampling, [C̃ D̃] is not full column rank, and we cannot reconstruct

actuator without delay. Next if we select m = 5, the resulting C̃ and D̃

matrices become

C̃ =



0 0 0 5000

0.38 21.38 491.24 4994.4

1.53 64.35 917.65 4948.5

2.80 106.05 1238.6 4839.5

3.86 138.22 1454.3e 4671.5


, D̃ =



0

0.011

0.10

0.32

0.66


.

Now [C̃ D̃] is full column rank and the attack along with x(0) can be

reconstructed without delay.

This concludes how to reconstruct d using dual rate sampling. The case

where K is augmented in P̃ as in (6.2) can be handled similarly as long as

K does not introduce a zero at λ = 1 in the closed loop map from d to yT/m.

6.4.2.3 Unknown Input Observer

In the previous section we saw how to reconstruct d and x(0) given that P̃ is

sampled faster than the rate at which the input is feeding the system. How-

ever, the method involved inverting a matrix with high dimensions, which

might be computationally expensive. A cheaper alternative is to design a

dual rate unknown input observer that estimates the states of the system

asymptotically, and then estimates the attack d using the state estimates.
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The theory for single rate unknown input observers is well studied and can

be found in [39, 71, 73, 72, 74, 75] and the references therein. In this sec-

tion, we will extend the theory to design a dual rate observer to estimate

the attack in Figure 6.4. Dual rate unknown input observers were briefly

mentioned in [76], however, the authors assumed D11 and D12 to be equal to

zero in (6.1), which changes the analysis and the conditions for existence of

the observer and how the attack is estimated. In addition, they invert the

matrices |C1B1f | which we are trying to avoid.

We consider the state space description P̃ in (6.2), assuming without loss

of generality that K = 0 and that the measurements are noise free. P̃ is then

represented by

x(k + 1) = Adx(k) +B1dd(k)

ỹ(k) = C̃1x(k) + D̃11d(k).
(6.6)

We assume that B1d

D̃11


is full column rank. We consider an observer of the form

x̂(k + 1) = Ex̂(k) + Lỹ(k), (6.7)

where E and L are matrices to be designed.

Definition 37. The system (6.7) is said to be an unknown input dual rate

observer with rate T/m if x̂(k)−x(k)→ 0 as k →∞, regardless of the input.

We note that the observer in (6.7) does not depend on the input to the

system (6.6). To choose the observer matrices E and L, we examine the

estimation error
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e(k + 1) = x̂(k + 1)− x(k + 1)

= Ex̂(k) + Lỹ(k)− Adx(k)−B1dd(k)

= Ee(k) + Lỹ(k) + (E − Ad)x(k)−B1dd(k)

= Ee(k) + (E − Ad + LC̃1)x(k) + (LD̃11 −B1d)d(k).

In order to force the error to go to zero, regardless of the values of x(k) and

d(k), E and L must simultaneously satisfy

LD̃11 = B1d (6.8)

E = Ad − LC̃1 (6.9)

such that E is stable. There exists a matrix L that satisfies (6.8) if and only

if B1d is in the space spanned by the rows of D̃11, which is equivalent to

rank

(B1d

D̃11

) = rank(D̃11). (6.10)

Necessary and sufficient conditions for the existence of E and L that satisfy

(6.8) and (6.9) are that P̃ is strongly detectable (i.e., all zeros of P̃ are strictly

stable), and that (6.10) holds.

The strong detectability condition is inherited from the conditions of exis-

tence of UIO for single rate systems. We know that using dual rate sampling

guarantees that at most one zero exists and is at λ = 1; therefore, checking

P̃ for this zero is sufficient to check for the strong detectability of P̃ , as long

as Assumptions 17 and 18 are met. Furthermore, strong observability of P̃ ,

which is a more strict property, is guaranteed if G11 is tall and does not have

a zero at the origin, as long as Assumptions 17 and 18 are met. Now to

ensure the solvability of (6.8), m is chosen long enough until (6.10) holds.
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Once a state observer is constructed, we can obtain an estimate of the

attack by first rearranging (6.6) as

x(k + 1)− Adx(k)

ỹ(k)− C̃1x(k)

 =

B1d

D̃11

 d(k). (6.11)

Since

B1d

D̃11

 is full column rank, there exists a matrix R such that

R

B1d

D̃11

 = I,

where I has the appropriate dimension. Left multiplying (6.11) by R and

using x̂(k) instead of x(k), we find the estimate of the attack to be

d̂(k) = R

x̂(k + 1)− Adx̂(k)

ỹ(k)− C̃1x̂(k)

 .
Since

x̂(k)− x(k)→ 0 as k →∞,

d̂(k) will asymptotically approach d(k).

Note that there is a single step delay in computing the attack estimate. In

case of single rate sampling, there will be at most n + 1 steps delay where

n is the dimension of the vector x in (6.6), if the observer exists (i.e. if the

single rate system is strongly detectable) [39]. Single rate observers have to

accumulate several measurements to be able to estimate the attack, which

during several instants of the attack signal are injected into the system.

Therefore, dual rate sampling provides a much more secure framework of

control, and guarantees that UIOs always exist if G11 is tall and has no zeros

at the origin.
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6.4.2.3.1 Examples

We provide two examples to illustrate the design of unknown input observers

for dual rate systems.

Example 1- Simple first-order system

We consider the following stable, non-minimum phase first-order system

G =
s− 1

s+ 2
.

We use dual rate control to remove the unstable zero at the sampling rates

T = 1 sec and T = 0.5 sec. The state space representation of the lifted

system is

Ad = 0.1353, Bd = 0.4323, C̃ =

 −3

−1.104

 , D̃ =

 1

−0.9482

 ,

which removes the unstable zero and makes rank

(B1d

D̃11

) = rank(D̃11).

Since B ∈ R1×1 and D ∈ R2×1, L ∈ R1×2. Let L be defined as L =
[
L1 L2

]
.

Solving for LD̃ = B we get

[
L1 L2

] 1

−0.9482

 = 0.4323,

which gives L1 = 0.4323 + 0.9482L2. Plugging this back and solving for

Ad − LC̃ to be stable, we get

Ad − LC̃ = 0.1353−
[
0.4323 + 0.9482L2 L2

] −3

−1.104


= −1.2969− 2.8446L2 − 1.104L2 = −1.2969− 3.95L2
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|Ad − LC̃| < 1 =⇒ −0.58 < L2 < −0.075.

Example 2 - Automatic Voltage Regulator

We revisit the AVR example of section 4.3.2. A simplified block diagram of

a linearized AVR is shown in Figure 6.7 [58]. The open loop state space

representation of the single rate system after discretization at a sample rate

T = 0.5 sec is

Ad =



0.0105 0.3949 3.86 2.869

−0.0057 −0.1817 −1.369 −0.587

0.00117 0.03359 0.1793 −0.4597

0.00092 0.03197 0.3163 0.8918


,

Bd =



−0.005738

0.001174

0.0009193

0.0002165


, Cd =

[
0 0 0 5000

]
, Dd =

[
0

]
,

which has an unstable zero at λ = −0.7045. We note that although the

continuous system has no unstable zeros, sampling at the relatively slow

rate of 0.5 sec per sample created an unstable zero. Since the system has

an unstable zero, we know that we cannot construct a single rate unknown

input observer of the form

x̂(k + 1) = Ex̂(k) + Ly(k : k + n)

to estimate actuator attacks even if we use an arbitrary large number of

measurements. Next we know from section 4.3.2 that dual rate sampling at

a rate of T/m = 0.25 sec removes the unstable zero when viewed from the

lifted domain. The resulting open loop state space representation after lifting
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Figure 6.7: A simplified automatic voltage regulator block diagram.

is

Ã = Ad, B̃ = Bd, C̃ =

 0 0 0 5000

2.185 86.13 1092 4902

 , D̃ =

 0

0.196

 .
(6.12)

And the condition rank

(Bd

D̃

) = rank(D̃) is satisfied. We construct a

dual rate unknown input observer of the form (6.7), i.e.,

x̂(k + 1) = Ex̂(k) + Lỹ(k),

where E and L satisfy (6.8), (6.9) and (6.12). Since (6.12) has no unstable

zeros and (6.10) is satisfied, then we know such an E and L exist. Using

MATLAB solver, we find E and L to be

E =



0.074 2.91 35.70 −3413.41

−0.013 −0.47 −5.00 9003.32

0.013 0.51 6.21 −734.21

0.0063 0.25 3.02 −5.42


, L =



0.7118 −0.0292

−1.8040 0.0033

0.1522 −0.0055

0.0037 −0.0025


.

We note that for the above AVR example, sampling faster using m = 2

was sufficient to estimate the states and the attack asymptotically, while in

section 6.4.2.2.1, we saw that m = 5 was needed to accurately reconstruct
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the states and the attack for each period T . This observation makes sense

as it means more measurements are needed for accurate estimation for each

period T vs. asymptotic estimation.

6.5 Conclusion

In this chapter, we posed the problem of estimating signal attacks injected

into the actuators or sensors of control systems. We showed that there exists

a trade-off between attack rejection and estimation, and that the estima-

tor design depends on the controller used. We used dual rate sampling to

enhance the detectability of the attack and we provided three methods to

design the estimator. Method 1 solves a model matching problem subject

to causality constraints. Method 2 exploits dual rate sampling to accurately

reconstruct the unknown input. Method 3 uses a dual rate unknown input

observer. Using dual rate sampling, necessary and sufficient rank and zero

location conditions to check the existence of the observers in methods 2 and

3 are provided. Once these conditions are satisfied, then the attack can be

estimated with at most a single step delay. This work shows again the impor-

tance of studying the security problem in the SD framework, and the power

of using dual rate sampling to design observers for the detection and estima-

tion of signal attacks. Dual rate sampling ensures that UIOs always exist if

the continuous-time map from the attack to the output is tall and has no zero

at the origin, which may not be the case for single rate observers. A future

research direction is to study dual rate unknown input observers discussed

in the last section when noise is present in the measurements. Optimal es-

timators for the single rate delayed UIOs were discussed in [73] (minimizing

mean square error), but to our knowledge no results exist for the dual rate

UIOs.
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CHAPTER 7

SUMMARY AND FUTURE RESEARCH

In this thesis, we introduced a sampled-data framework to study the effect

of attacks on cyber-physical systems. We defined the attack detection mech-

anism and derived the input-output maps for actuator and sensor attacks

on the monitoring signals. We showed that unbounded stealthy actuator

attacks are related to the open-loop discrete plant unstable zeros, while un-

bounded stealthy sensor attacks are related to the open-loop discrete plant

unstable poles. We also showed that coordinated actuator and sensor at-

tacks can always be designed to be stealthy and unbounded regardless of

the locations of poles and zeros of the plant. Next we presented a dual rate

sampled data scheme which guarantees detectability of unbounded actuator

and/or sensor attacks, if a secure output that maintains observability of the

open loop modes is available. The main observation is that the sampled

data nature in the implementation of the cyber-physical system cannot be

ignored as sampling can generate additional vulnerabilities due to the extra

unstable zeros it may introduce, particularly if high rates are necessary to

achieve certain performance level. The proposed method solves this issue by

the use of multirate sampling that ensures that zeros exist only in harmless

locations in the lifted domain. A few examples were presented that show how

the multirate scheme detects the unbounded actuator attacks. In addition,

the examples incorporated a dual rate controller cost comparison based on

LQG control. After that we studied the problem of computing worst case

bounded stealthy false data injection attacks for LTI systems. We considered

different attack resource constraints and stealthiness intervals. This problem
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involves a maximization of a convex function subject to convex constraints,

and it was shown that it can be cast as a series of LP problems under the

`∞ framework. A search algorithm is constructed to solve the set of LPs and

was used to compute the worst stealthy attacks on AVR systems. Further-

more, we provided an iterative controller synthesis procedure that alternates

between computing worst attacks and designing optimal controllers that en-

hance performance and minimize the impact of worst attacks. We used this

method to design a controller for the AVR system that resulted in a sub-

stantial decrease in the worst impact inflicted by the worst attack. Lastly,

we posed the problem of estimating signal attacks injected into the actua-

tors or sensors of control systems, assuming the attack is detectable (can be

seen at the output). We showed that their exists a trade-off between attack

rejection and control, and that the estimator design depends on the con-

troller used. We used dual rate sampling on the secured sensors to enhance

detectability of the attack, and we provided different methods to design the

estimator. The first method is by solving a model matching problem subject

to causality constraints. The second method exploited dual rate sampling

to accurately reconstruct the unknown input. The third method is using an

unknown input observer. Using dual rate sampling, necessary and sufficient

conditions to check the existence of the observers are provided. The work

shows the importance of studying the security problem in the SD framework,

and shows the power of using dual rate sampling to design observers to detect

and estimate attacks. Dual rate sampling ensures that UIOs always exist if

the continuous-time map from the attack to the output is tall and has no

zero at the origin, which may not be the case for single rate observers.

Several future research directions can be investigated. One direction is

to study methods to detect unbounded stealthy sensor attacks described in

Chapter 3 in the absence of secure sensors. We showed in Chapter 4 that

multirate sampling removes the unstable zeros in the lifted domain and can

detect unbounded actuator attacks. However, this method cannot detect
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sensor attacks related to the unstable poles if the attacker has knowledge

of the multirate scheme. One idea is to use stochastic sampling. It is well

known that the poles of the discrete plant are related to the sampling and

hold rate. Therefore, by changing the sample-hold rate in a random fashion

(e.g. Markov process with a known transition matrix), the attacker will not

be able to exactly determine the location of the unstable poles for each instant

of time, and hence will not be able to inject a stealthy attack. The problem

can be studied in the context of stochastic linear switched systems such as

the work in [79], or in the context of optimal control [80], and shows that

no stealthy attack is possible under certain stochastic/switching sampling

conditions.

Another future research direction is to quantify the minimum number of

sensors that need to be sampled faster to detect unbounded stealthy actu-

ator attacks. In Chapter 3 we showed that dual rate sampling can detect

unbounded stealthy actuator attacks under certain conditions. However, the

method and related proofs assumed that all outputs will be sampled faster.

The interesting question is whether we can remove the unstable zeros and

detect the attacks if only a subset of the outputs (in the case of MIMO sys-

tems) is sampled faster, and how we decide on which outputs to be selected

for faster sampling. Another way to state the problem would be to find the

minimum number of outputs that must be sampled faster to detect stealthy

actuator attacks.

Another future research direction is to study dual rate unknown input

observers discussed in Chapter 6 when noise is present in the measurements.

Optimal estimators for the single rate delayed UIOs were discussed in [73]

(minimizing mean square error), but to our knowledge no results exist for

the dual rate UIOs.
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