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Abstract— Internet traffic sampling techniques are very im- long-range dependent (second order statistiBd)) in nature.
portant to understand the traffic characteristics of the Interet  This implies the existence of concentrated periods of high
[14], [8], and have received increasing attention. In spite of activity (peaks) and low activity (valleys), i.e., burstiness,

all the research efforts, none has taken into account the self- i id f i | In th ntext of ket
similarity of Internet traffic in analyzing and devising sampling &t @ WId€ range ot ime scales. € context or packe

strategies. In this paper, we perform an in-depth, analytical study Sampling, this implies that either the sampling rate must be
of three sampling techniques for self-similar Internet traffic, high enough or the sampling strategy has to be judiciously

namely static systematic sampling, stratified random sampling devised so as to capture all the peaks and valleys in the
and simple random sampling. We show that while all three yafic  Ag oversampling increases the memory requirements

sampling techniques can accurately capture the Hurst parameter .
(second order statistics) of Internet traffic, they fail to capture for the off-board measurement devices, and has the danger of

the mean (first order statistics) faithfully, due to the bursty Making the sampling method unscalable, the latter approach
nature of Internet traffic. We also show that static systematic (devising a sampling strategy that is able to capture the traffic
sampling renders the smallest variation of sampling results in characteristics) is preferred.

different instances of sampling (i.e., it gives sampling results  gg\er5| research efforts have been made to investigate the

of high fidelity). Based on an important observation, we then ffecti f i hni . . K
devise a new variation of static systematic sampling, called €T€CVENess of sampling techniques in measuring networ

biased systematic samplind3(.S), that gives much more accurate traffic. Three commonly used sampling techniques, i.e., static
estimates of the mean, while keeping the sampling overhead systematié, stratified random and simple random, have been
low. Both the analysis on the three sampling techniques and stydied by Claffyet al.[3]. In particular, they explored various
the evaluation of S5 are performed on synthetic and real e griven and event-driven sampling approaches with both
Internet traffic traces. The performance evaluation shows that L . . .
BSS gives a performance improvement of 42% and 23% (in random _a_nd deterministic selection patterns ate_lvanety of_tlme
terms of efficiency) as compared to static systematic and simple granularities. The results showed that event-driven techniques
random sampling. outperform time-driven ones, while the differences within each
class are small. Cozzani and Giordano [6] used the simple
random sampling technique to evaluate the ATM end-to-end
Internet traffic sampling techniques are very important ielay. Estan and Varghese [13] proposed a random sampling
understand the traffic characteristics of the Internet [14], [8Igorithm to identify large flows, in which the sampling prob-
If the sampled results faithfully represent Internet traffic, theability is determined according to the inspected packet size.
can be utilized to monitor traffic on a short-term basis fdDuffield et al.[9] focus on the issue of reducing the bandwidth
hot spot and DoS detection [19] or on a long-term basigeeded for transmitting traffic measurements to a back-office
for traffic engineering [14] and accounting [9]. As such, theystem for later analysis and devise a size-dependent flow
packet sampling approaches have been suggested by the Isdinpling method. The notion of adjusting the sampling density
working groups IPFIX [16] and PSAMP [17]. Tools such asipon detection of traffic changes in order to meet certain
NetFlow [4] employ a naive-out-of-N sampling strategy in constraints on the estimation accuracy was proposed in [2].
the router design. Finally, Duffield et al. [11], [10] investigated the issue of
The major challenge in employing sampling techniques igferring stochastic properties of original flows (specifically
however, scalability. Inspecting each individual packet for eathe mean flow length, and the flow length distribution) from
flow or sampling at a very high rate is obviously not feasiblehe sampled flow statistics.
due to the large volume of traffic. On the other hand, if the In spite of all the research efforts, none has taken into
sampling rate is not adequate, the sampled results may aotount of the self-similarity of Internet traffic in devising
reveal actual traffic characteristics. What makes the problefampling strategies. Three of the most important parameters
even more difficult is the bursty nature of the Internet traffigor a self-similar process are the mean (first order statistics),
As indicated in a number of recent empirical studies of traffihe Hurst parameter (second order statistics), and the average
measurement from a variety of operational packet networks
[20], [12], [23], [24], the Internet traffic is self-similar or in what follows, we omit “static” and simply name it systematic.

I. INTRODUCTION



variance of the sampling results. In particular, the averadeiously designed sampling techniques serve as an approach.
variance of the sampling results is defined as follows:Xet Specifically, in this paper, we consider a generalized traffic
be the real mean of the parameter of interest in the origiradocessf(¢) without giving a rigid definition on it (Section II.
process, andX; be the sampled result in thi¢h instance of It can be any individual OD-flow or the aggregation of several
sampling (i.e., théth experiment). Then the average varianc®D-flows going through a router. Our proposed method can
is defined asE(V) = E[E[(X; — X)?]], where the inner be applied to any of these cases as long as a prodesss
expectation is taken over all the samples in one instansgecified.
of sampling, and the outer expectation is taken over all theBoth the verification and validation iT1-T3, and the
sampling instances (e.g., different starting sampling poirdsaluation of BSS, have been performed on synthetic and
in the systematic sampling technique give different samplingal Internet traces. In particular, the real Internet traces were
instances). The mean gives the most direct value of the traffibtained from Lucent Technologies Bell Labs [18], contain
attribute to be measured. The Hurst parameter characterimgiions of packets, and provide detailed packet level infor-
the second order statistics for a self-similar/LRD process, anthtion for hundreds of pairs of end hosts.
is crucial for queuing analysis. The average variance is anThe rest of the paper is organized as follows. After pro-
index of the fidelity of the sampling results. viding the background material in Section II, we investigate
Although it has been reported in [21] that in samplingnalytically in Section Il whether or not the three sampling
self-similar process with the three commonly used samplingchniques accurately capture the Hurst parameter of the
techniqgues, the sampled mean is always smaller than the achratess to be measured and provid€MC that a sampling
mean (i.e., the sampling techniques under-estimate the meatrategy must satisfy in order to keep the second order statistics
no solution has been proposed to address this problem. Thad hence Hurst parameter). Then, we compare in Section IV
issues of whether the various sampling techniques accuratitlg average variance of the sampling results obtained by the
capture the Hurst parameter and/or render a small averaigese techniques. Following that in Section V, we demonstrate
variance have not been studied either. In this paper we clagi¢gh both synthesized and real Internet traces that all three
the gap and techniques fail to capture the real mean of Internet traffic and

T1. Investigate whether or not the three commonly usdy€SentBSS in detail. Finally we present our performance
sampling techniques accurately capture the Hu,gtpdy (again based on both synthgsmed gnd real traces) in
parameter. We also provide a sufficient and necessat§ction VI. The paper concludes with Section VII.
condition SNQ that a sampling strategy must satisfy
in order to maintain the autocorrelation structure of
the original process. Our derivation indicates that all In this section, we introduce the self-similar processes and
the three methods satisfy tI&NC the three commonly used sampling techniques, and set the

T2. Verify whether or not the three commonly usedtage for subsequent derivation and discussion.
sampling techniques render small average variances
(and hence give high fidelity) by leveraging theA. Self-Similar and Heavy-tailed Distribution

results re_ported in_ [5]. Our research finding is that the | ¢ {f(t),t € Z+) be a time series which represents the
systematic sampling method outperforms the othgiffic process measured at some fixed time granularity. As we
two. ) have mentioned, the traffic process can be individual OD-flow
T3. Demonstrate all three methods cannot provide agr the aggregation of several OD-flows or any other flows
curate estimate of the mean for self-similar Interghe researchers are interested in. To make our approach a
traffic, especially when the sampling rate is smalyeneric one, our definition ofi(t) is rather general. To define

We then propose, based on an important observatigigelt-similar process, we further define the aggregated series
a new variation of the systematic sampling techmqu?;m) (1) as

calledbiased systematic samplir{@SS), that gives

Il. BACKGROUND

much more accurate estimates of the mean, while 1 o

) (m) = .
keeping the sampling overhead low. 4SS is a o) = — , > f). @
variation of the systematic sampling technique, it i=(r=m+1

retains all the advantages of the latter. fm)(7) can be interpreted as follows: the time axis is divided

One thing worth mentioning is that, although it is nointo blocks of lengthm and the average value for each block
a problem for a router to count the incoming traffic ant used to represent the aggregated process. The parameter
summarize the mean value of the total traffic going through tiethe index of the aggregated process, i.e.,ttheblock.
router, the obtained result instructs us little. In most cases, welet R(7) and R (7) denote the autocorrelation functions
are more interested in one or several original-destination flowt f(¢) and f(™ (i), respectively.f(t) is (asymptotically
(OD-flows). For example, we need to know the mean value sécond-order) self-similar, if the following conditions hold:
the aggregated traffic of 2 specified OD flows going between
west coast and east coast in US. Under such similar case, the R(r) ~ const 17, (2)
router counter fails to give the information we want and ju- R™(r) ~ R(r), 3)



(2_ meingport Internet traffic. This is done by deriving the autocorrelation
: sampling interval

ﬁ ® ® ® T function of the sampled process obtained from the three
: e sampling techniques. (Note that we do not intend to devise a
procedure to estimate the Hurst parameter, but instead derive

L@ | @ | @ e | @ ratified random sampling . .
g Sl the Hurst parameter (through calculation of the autocorrelation
function) of the sampled process and compare it with that of
O O O O O Simple random sampling o . .
t the original process.) Then we deriveSAICthat a sampling
technique has to satisfy in order to retain the autocorrelation
Fig. 1. An illustration of the three sampling techniques. structure of the original process.

A. Systematic Sampling

for large values ofr and m where0 < g < 1. That is, Let f(t) andg(t) denote the original and sampled process,
f(t) is self-similar in the sense that the correlation structuethd H; and H, the Hurst parameter of(¢) andg(t) respec-

is preserved with respect to time aggregation (Eq. (3)) atidely. Without loss of generality, is discretized to be integer
R(7) behaves hyperbolically with~>> | R(7) = co (Eq. (2)). numbers:0,1,2,3.... For systematic sampling, let' be the
The latter property is also referred to as long range dependeseaynpling interval. Then we ha¥e

(LRD).
Since self-similarity is closely related to heavy-tailed distri- g(t) = f(C1),t =0,1,2,.... (4)

butions, i.e., distributions whose tails decline via a power layt Rs(r) and R,(7) denote the autocorrelation function of

with a small exponent (less than 2), we give a succinct sumey) andg(t), andF(¢) andG(t) denote the CDF of (¢) and
mary of heavy-tailed distributions. The most commonly usegy) respectively. Then we have

heavy-tailed distribution is the Pareto distribution. A random
variableX follows the Pareto distribution if its complementary R4(7) = E(g9(t)g(t — 7)) = E(f(Ct)f(Ct — C7))
cumulative distribution function (CCDF) follows: _ /f(Ct)f(Ct — CT)dF(1). )
Pr(X >z) ~ (k/x)% x>k,
Let C't = u. Then Eq. (5) can be re-written as
whereq is the shape parameter and determines the decreasing

rate of its tail distribution, ané is the scale parameter and is Ry(1) = /f(u)f(u — T)(j*ldF(t)
the smallest valuel can take. )
An important parameter that characterizes self- = C7 - Ry(7). (6)

similarity/LRD is the Hurst parameter, defined a
H = 1- /2. By the range ofg3, 1/2 < H < 1. It
can be seen from Eqg. (2) that the larghr is, the more
long-range dependent(t) is. A test for self-similarity/LRD
can then be obtained by checking#f significantly deviates
from 1/2 or not.

HenceR,(r) = C~'Ry(r) ~ AP asT — oo, where A
is a constant. Also, we havH, = H; = %, where0 <
[ < 1. The above derivation implies that the sampled process
obtained by the static systematic sampling technique has the

same Hurst parameter as the original process.

B. Stratified Random Sampling

B. Three Commonly Used Sampling Techniques _ - _ _ o
. . Recall that in stratified random sampling, the time axis is
Generally speaking, the larger the sampling set, the mode. L .
- ; lvided into interval of lengthC', and one sample is randomly
accurately the original process can be characterized. The prsl,%?ected in each interval. Using the same notation as in
one has to pay is, however, the more CPU processing ti%gction A we have ' 9
and buffer space. Indeed there exists a trade-off between the '
sampling rate and the accuracy of sampling results. Three Ry(7) E(g(t)g(t — 7))
.categorles. of sampling tecr_mlques havg been cpmmonly. l_Jsed = E(f(Ct+1)f(Ct — CT + 1)),
in measuring Internet traffic: systematic sampling, stratified
random sampling, and simple random sampling (Figure lyherer; andr, are random variables that represent the time
In systematic sampling, evergth element (e.g., packet) oflags after the beginning of théth and (¢ — 7)th bucket
the parent process is deterministically selected for samplinigspectively.R,(7) can be further written as
starting from some starting sampling point. In stratified ran- B
dom sampling, the time axis is divided into intervals of length Ry(r) = E(E(f(Ct+ Tl)f(TCt _TCT + ), 7))
1 — 72
)

(E
C, and one sample is randomly selected in each interval. In = E(c—H—lRf(TJF
(C

simple random samplingN packets are randomly selected

from the entire population. = £

THRe(r+ 7)),

/I T1—T2
I1l. HURSTPARAMETER OF THE SAMPLED PROCESS wherer’ = HZE2.

In this SeCtiop! we first inveStigate whether or not the three2Without loss of generality, we denote the starting point of systematic
sampling techniques accurately capture the Hurst parametesafipling to bet = 0.



By Eq. (3), we have

Ry(7) ')’ﬁ)

/ D- “BrLdr,
where D is a constant related t0, and f, is the probability

density function (pdf) ofr’. As bothr; andr, are uniformly
distributed in[0, C], we have

14z, if -1<2<L0,
fT’(m)_{1—x, if 0<a<1, ™
and hence
1
Ry(r) ~ / D-(r+7) P frdr
-1
1 7_/
~ DT_B/ (1 —B—)frdr
1 T
= D-t%ast — . (8)

The last equality results from the fact tha{(r’) = 0. By

whereT is a constant. Using th8terling equation, we can
further approximate Eq. (10) as

Tp™

Ry(1) =
o(7) 2r(t — 1) (1 — 1) le~ (1)
o0 (17’8(0, _ 1)0,71/267((171) .
2 e (1)
_ Ip(l-p)” i aP(a—1)"""2(1 - p)
 \2r(r—1)T-12 P (a —T)o-TH1/2
/3 —1)e-1/2(1 —
N aPla—1) (1—p)e
= PZ (a —r)a—T+1/2 ’ (11)
wherel = L5 )

Since no closed form result can be obtained from Eq. (11),

We use matlab to find the relation betwe&y () and 7.
Specifically, We fit the value ofR,(7) (calculated from
Eq. (11)) toconst - 77 and depict the estimated valyeand
the real value of3 in Fig. 2. In Fig. 2 (a) we fit the calculated
result of R, (7) (after takinglog, on bothr andR(r)) to a line
with slope 5 = —0.08, where the real value i§ = 0.1. By
changing the real value gf from 0.1 to 0.8, we perform the

Eq. (8), we conclude that the sampled process obtained $me operation and report the estimated valug of Fig. 2
the stratified random sampling technique has the same Hut As shown in Fig. 2 (b), the values gfand 3 agree very

parameter as the original process.

C. Simple Random Sampling

In simple random samplingy samples are randomly se-

lected from the entire population @ff samples. That is, with
probabilityn = N/M a sample is selected. L&t denote the
sampling point inf(t) corresponding to théth sampleg(t).
Then we have

Ry(T) E(g(t)g(t + 7))

E(f(to) f(to + a))

Ry(a),

wherea > 7 is a random variable. Since

Pr(a =7 +1i) = ( Tl )pT(l—p)i,i:O,l,Z.., ©)
we have
Ry(r) = Y Ryf(a)-Pr(a)

in(T+i)<T+§_1 )pT(l—p)i
=0
ipa,@< Z:i >pr(1_p)aT

>ora - g a0)

a=T

well and henceH, ~ H;. Note the small gap between the
values of3 and j3 is due to the truncation error on the right
hand side of Eq. (11), i.e., in calculating, (), we cannot
sum up an infinite number of terms (from= 7 to o0) and
have to approximate the right hand side of Eq. (11) with a
finite number of terms.

D. Sufficient and Necessary Condition for Accurately Captur-
ing the Hurst Parameter

In Section IlI-A-IlI-C, we have shown that the sampled
process generated by all three sampling techniques has the
same Hurst parameter as the original process. A more general
question is then: given a sampling technique, how do we
check if the sampled process generated by this technique has
the same Hurst parameter as the original process? To answer
the question, we derive a sufficient and necessary condition
(SNC) which a sampling technique has to satisfy in order to
preserve the same second order statistics (and therefore Hurst
parameter) in the thinned process.

We generalize the sampled process generated by a sampling
method to be a point proces§,,n = 1,2,3..., which
represents the series of sampling points. The intervals between
any two consecutive sampling points are definedTas=
Ziv1 — Ziyi = 1,2,.... T;’s are i.i.d random variables with
the probability density functioh(x) for the continuous case
and the probability mass functiol (x) for the discrete case.
Note thatZ,, is a renewal process with the renewal interval dis-
tribution h or H. A sampling method (and hence the sampled
process generated by the sampling method) is generatéd by
or H. For example, the functioi/ for systematic sampling
is H(C)=Pr(T; =C)=1andH(x) = 0 for z # C, while
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Although Theorem 1 gives a sufficient and necessary con-
dition for a sampling technique to retain the second order
(12) statistics of the original process, it cannot be readily applied,
since k(z,7) usually does not have a closed form, except

fo<z<C,
if C<z<2C,

whereC' is the length of each sampling bucket. For the simpker several extremely simple cases (e.g., for example the
random sampling technique with the sampling ratéf can systematic sampling, in whick(z, 7) = §(z—7C'), wheres()

be expressed as

H(i) = Pr(T; = i) = (1

is the impulseDirac function andC' is the constant sampling
interval).

_yi—1
o In order to be able to apply Theorem 1, we propose a

(13)

Under the assumption that the procg&s) is wide sense numerical method to calculatgz, 7):

stationary, we have

Ry(7)

(S1) Calculate the Fourier transform &f(z), H(w). 3

E(g()g(t — 7)) (S2) Let the Fourier transform d{f(x,T)T(ln terms ofz)
be K(w, 7). ThenK (w,7) = H(w)".

- taink(x, 7) by deriving the inverse Fourier trans-
E(f(t+to)f(t+to—wu)) (S3) Obtaink by d h =
E(f(t)f(t—uw)) form (IFT) of K (w, 7).

E(E(f@)ft —u)lu)) With k(z,7), we can then calculate the left hand side of
0 Eqg. (15), and compare it again&;(7) asT — oo. Since

Ry(u)p(u), (14) fast algorithms exist for both the Fourier and inverse Fourier
u=0

transform, the above method provides a fast and reliable test

whereu = >~7_, T; andp(u) is the probability mass function in evaluating Eq. (15).

of . Note thatp(u) is the rth order convolution ofH (u),
which we denote a%(u,7) (as it is a function of bothu

To validate the above proposed method for applying Theo-
rem 1, we apply it to check the random stratified and simple

and7). Now we are in a position to derive the sufficient andgandom sampling techniques, and give the results in Fig. 3.

necessary condition.

As shown in Fig. 3, the estimated and real valueSodgree

Theorem 1:Given any wide sense stationary (WSS) procesxtremely well, which is consistent with the derivation in
f(t), the sampled procesg(t) obtained from a sampling Sections IlI-B-II-C.
technique withh or H has the same second order statistics as
L : . . : V. THE AVERAGE VARIANCE OF SAMPLING METHODS
the original process asymptotically if and only if the following

condition holds

> Rp(wk(u,7) ~ Ry (),
u=0

where k(u, 7) is the rth order convolution ofH (u). Proof:

Due to the randomness nature of stratified random sampling
and simple random sampling, sampling results vary from one
sampling instance to another, even if multiple instances of
sampling are taken simultaneously and the same sampling rate
is applied in each instance. Here by “instance,” we mean each

(15)

By Eq. 14 we know thay(t) retains the same second Orde?xperiment made to take samples for a specific time interval.

statistics off (¢) asymptotically, if and only iR, (7) ~ Ry (1),
asT — oo, and hence the conclusion.

3In the case thaff (x) cannot be expressed in a closed form, the proposed
numerical method cannot be used to apply Theorem 1.
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Even for systematic sampling, different starting sampling

points may lead to different sampling results. If the variance o7k Ca EZSé 1
of sampling results obtained from multiple instances is large, ) e gzgﬁ
then one cannot rely on a single sampling instance to infer ~ ° b B=09] |

the entire process. To evaluate different sampling techniques
in this aspect, we use the average variance of sampling results
E(V) as the index. Recall thdf (V) is defined as follows in o
Section I: letX be the real mean of the parameter of interest
in the original process, and; be the sampled result in the
ith instance of sampling (i.e., th#h experiment). Then the
average variance is defined 8%V) = E[E[(X; — X)?]].

Let V,, V,s andV,,, denote, respectively, the variance of
sampling results of systematic, stratified random and simple :
random sampling. To compare the three sampling techniques ' :
with respect to the average variance of sampling results, we
leverage the results from [5] (Theorem 8.6):

Theorem 2:For a random procesf(t), with meanu, vari-
ancec?, and autocorrelation functioR(7), if the following
condition holds,

Fig. 4. o, versusr for different values ofg.

In applying Theorem 2 we also need to verify if the process

6y =R(t+1)+ R(1 —1) —2R(1) > 0, (16) has finite mean and variance. A self-similar process (with
(1,2)) has finite mean, but its variance goes to infinity as time
we haveE (Vyy) < E(Vis) < E(Vian)- goes to infinity. However, in practice we often consider finite

The result in Theorem 2 is actually quite intuitive. Fotime periods, and hence we conjecture the above condition is
systematic sampling, as the sampling interval remains ustill valid. To verify the conjecture, we carry out experiments
changed among different sampling instances, the same secand measure the average variance of sampling results (under
order statistic structure (e.g., the autocorrelation function) tise three techniques) on both synthetic and real Internet traffic.
retained. For the other two sampling techniques, different sam- this experiments, we generate -2 self-similar traffic
pling instances have different second order statistic structureéth Hurst parameter equal to 0.80 using the on-off model,
although in the long run, they follow the same decreasing rulghere the on/off periods have heavy-tailed distributions with
Theorem 2 gives a sufficient condition (Eq. (16)) in evalkhape parameter = 6+ 1, 1 < a < 2. We also obtain
uating the three sampling techniques with respecEt®), real Internet traces from Lucent Technologies Bell Labs [18].
given that the original process has finite mean and variandée set of traces was obtained on March 8, 2000, is in the
To leverage Theorem 2, we first check whether the conditiecpdumpformat, and contains detailed packet level information
in Eq. (16) holds for a self-similar process. Using the fact th&r hundreds of pairs of end hosts. The traces last for about
R(7) ~ const - 7, we calculates, for different values of 40 minutes and contains millions of packets. Fig. 5 shows the
£ and depict it in Fig. 4. As shown in Fig. 4, is always results. Note that Fig. 5 (b) gives the result for one of the trace
positive regardless of the value ¢f i.e., the condition in sets with the Hurst parameter 0.62. Results for the other sets
Eqg. (16) holds. (that correspond to different servers) show similar trends and



are not shown here. As shown in Fig. 5, systematic samplingWe carry out experiments to demonstrate the problem in
does give the smallest average variance. the context of Internet traffic. In the experiments, we use the
Although systematic sampling does capture the Hurst psame set of synthetic and real Internet traffic traces used in
rameter and provide sampling results of small variance, v&ection V. For synthetic trace, we change the sampling rate
show in the next section that it provides very biased estimatiesm 10~° to 0.1, while for the real Internet trace, the sampling
of the real mean for a self-similar process. Due to this drawate varies froml0~® to 10~3. (The reason why we used a
back, we then devise a new variation of systematic samplismaller sampling rate is due to the large volume of Internet
to improve the accuracy of sampling results, while retaininigaces. In fact, a sampling rate @03 is considered quite
all of its good properties. In the subsequent discussion, we wiigh, given the fact that tera-bytes of traffic is generated per
focus on systematic and simple random sampling, as stratifigaly.) As shown in Fig. 6, in the case of synthetic traffic trace,
random sampling is a variation of systematic sampling.  the discrepancy between the real mean and the sampled mean
(obtained even with a sampling rate of 0.1) is quite notable.
The discrepancy becomes even more pronounced in the case
of real Internet traces: the sampled mean obtained with a
In this section, we first show that both systematic samplirgimpling rate of 403 is approximately% of the real mean,

and simple random sampling fail to provide a good estimafthough in both cases the sampled mean increases steadily
of the actual mean for a self-similar process (e.g., Interngfit slowly.

traffic). Then based on an important observation on self-
similar processes (validated through experiments), we prop@eAn Important Observation

a new extension of systematic sampling to remedy the aboveAS mentioned above, the reason why the sampled mean is

deficiency. The dilemma here is that the major portion of 3 L
- . . A . ways far less than the real mean for a self-similar process
self-similar process consists of “small values,” while a smal]

. . IS that the major portion of If-similar pr nsi
portion of “extremely large values” contributes to the majorltS that the major portion of a self-similar process consists

: S : ?ﬁf “small values,” while a small portion of “extremely large

of the volume of the entire process (which in turn dramatical ” : . . 27
) alues,” albeit occurring less often, contributes to the majority

affects the mean of the process). Due to the massive amoufiihe volume of the entire process. Without use of a suffi-
of Internet traffic and the storage limitation, the sampling ra{)e . . ' .
and hence the number of samples cannot be too large E&ntly high sampling rate, the large values are less likely to
) P 9¢. pd sampled and hence the sampled mean is always less than
in order to capture the effect of these extremely large valu%s? real mean. If one could instrument the sampling method to
(that oceur not as often), one has to gather "'?“99 amountc%pture these extremely large values, the discrepancy between
samples. Similar observations have been made in the literat Ie sampled mean and the real mean can be reduced

For example, it has been reported in [7] that the steady-state_". .
. S . o instrument a sampling method to capture extremely large
behavior for self-similar workloads can be elusive, due to the : : -
: values, we need to identify where they occur. For a self-similar
fact that the average behavior depends on the presence of man . )
i ) el cessf(t), we define another on-off proceg§) as:
small observations as well as a few large observations. The

same observation has also been made in [21] on sampling ) {
q =

V. BIASED SYSTEMATIC SAMPLING FOR HEAVY-TAILED
TRAFFIC

1, if f(t) > Qth, (17)

Internet traffic, but no effective solution has been proposed to 0, otherwise,

counter this problem. _ _
wherea,;, is a constant approximately of the same order of

A. Problem with Sampling a Self-Similar Process magnitude as the mean ¢ft), X. The procesg(t) consists

By the central limit theorem (or the law of large numberspf bursts ofls and0s. The length of the-burst period is a
the sampled mean can be used to approximate the real megrdom variable (which we denote &).
for any stationary process with finite mean and variance, asWe conjecture that due to the self-similar propertieg @,
long as the sampling techniques are un-biased. It is well knouhis heavy tailed. Intuitively this conjecture is made based
that both simple random sampling and systematic sampling the fact that a self-similar process contains concentrated
provide an un-biased estimator of the real mean for stationggriods of high activity and low activity, and hence once the
processes with finite mean and variance as the numberpobcess goes beyond,, the time intervalB during which
samples goes to infinity. (In practice, a moderate number ibtontinuously remains above;, is heavy-tailed. To validate
samples suffice to provide a relatively good estimate of the rehé conjecture, we again carry out experiments on both the
mean.) On the other hand, if the original process has infinggnthetic and real Internet traces introduced in Section IV. In
variance, e.g., a self-similar process, the law of large numbéhnge experiments, we set;, = X x ¢, wheree varies from0.3
does not hold, and the sampled mean approaches the real ntean5. For each fixed value of, we measureB and fit its
slowly, as the number of samples increases. As shown in [QJCDF to the most widely used heavy tailed distribution, the
in order to achieve two-digit accuracy in the mean, the numbareto distribution. A line in a log-log plot indicates heavy-
of samples needed is up 1622 for the case ofv = 1.2 (which tailed behavior. Fig. 7 gives the results fo= 0.5. The fitted
corresponds tdd = 0.9). Even for mild cases where = 1.5 Pareto distribution has the shape parameter 1.3 for the
(H = 0.75), still a million samples is required to achieve thease of synthetic traces, while the shape parameter1.65
desirable accuracy. for the case of real Internet traffic traces. For different values
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of ¢, the value ofa changes mildly from 1.2 to 1.8, but the
heavy-tailed nature oB remains unchanged.

20

C. Detailed Description and Analysis of Biased Systemat
Sampling

18
16
In this section, we propose, based on the observation me
in Section V-B, a new variation of systematic sampling, calle 124
biased systematic samplin@sSsS), that captures extremely -
large values more faithfully. Specifically3.S\S is essentially
systematic sampling with a sampling interv@d) except that ,,
when a sample is greater than a threshg)d L extra samples ' %;3;””

’
.

%,
4

are evenlytaken in the current sampling interval (i.e., the '
sampling interval for these extra samples(gL). Among
these extra samples, we only keep those that are greater t
asn, (Which we henceforth caljjualified samplés

Analysis: The rational behind this design is as follows
A sample that is greater tha;, must fall in one of the 1-burst
periods. Let the 1-burst period in which the sample falls be Fig. 9. The relationship among, € andn in BSS.
denoted asB. Suppose the sample is takertime units after
the beginning of the 1-burst perio#. We show given that
B is heavily tailed, the probability that the next sample takgsarametern. This assumption is reasonable which has been
underBSS also exceeds;, goes to 1 ag goes to infinity. demonstrated in[1]. Furthermore, we use the synthetic and real
In other words, once a sample is taken with the value larg@iternet traces as have been used in Section VI-B to show that
than a;p, it is highly possible that the values thereafter willf(¢) is heavy-tailed. The results are shown in Fig. 8. We show
still be larger tharu,,. Specifically, such a probability can bethe CCDF off(¢) and fit it to a Pareto distribution with shape

expressed as parametefcc = 1.5 and o = 1.71 for the synthetic and real
traces respectively.
= P +1)=1j¢t)=1,1<t <
o(7) r(qF(Tr(B l - la(t) st<m) Let X, and X, denote the real mean and the sampled mean

= 1——=. (18) before the extra samples are taken, respectively, and let the
Pr(B > 7) difference,n, betweenX,. and X be defined as

In the case thaB is lightly tailed, e.g., the CCDF oB has

an exponential tail, oPr(B > z) ~ cje”“**, wherec; and n=1- &

i ; (21)
co are two positive constants, Eq. 18 can be re-written as X

(1) ~ 1= cre”eT — e () R (19) Suppose the traditional systematic sampling generates a total
P cre—c27T - ’ of N samples. Since the original process is self-similar, the
sampled process is also self-similar with the same shape

That is, in the case thaB is lightly tailed, the probability ) .
that the samples taken exceeg, does not become largerP@rameter: (Section2?). Then each sample is greater thap

conditioning on the event that a sample has been identifié" the probability(¢/a.,)®, wherel is the lowest value the

to exceeday,. In the case thaB is heavily tailed, we have °riginal process can take. In other words, ab@yitii,)* x N
Pr(B > ) - ca—, wherel < a < 2 is the index of heavy- samples are above the threshold. After each of these samples

tailedness of the process, and hence is taken (gnd an on-set .pOiI’.lt is detecte[d)sxtra sampl.es.will
be taken in each sampling interval 6fin BSS. By a similar
o(r) ~1— o —e(r+ 1) —( T ). (20) line of reasoning, we know that approximatgly/a,,)* x L
T T+1 samples will be keptdqualified sampleamong all the extra
That is, p(7) — 1, asT — oo. This implies given thatB samples taken), as they exceed the threshgldThe sampled
is heavily tailed, once a sample exceeds, with a high mean of the set ofualified samplesaken isapproximately
probability the process will keep on large values. This lays thg”7- As our objective is to make the mean of the entire set
theoretical base foBSS, and ensures all the extra samplesf (N + L - (ﬁ)QaN) samples as close to the real mean
taken do increase the chance of capturing extremely larde = Xs(Tln) as possible, we equate
values.
A Rough Analysis of the Relationship betweer,;, and
L: There are two important parameters usedifiS: the on- N- X+ (%)2(y Nt L 1
: = Xs(—)7 (22)
set thresholdy,;, and the numbet,, of extra samples in each N+ L- (af} V2. N 1—-n
sampling interval’. In what follows, we perform an analysis '
on the relationship of these two parameters. In the analy3ise right hand side of Eq. 23 is the real medp, while the
we assume thaf(¢) follows a Pareto distribution with shapeleft hand side is the new sample mean. After some algebraic
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operations, we have where/ is the smallest valug(t) can take.
_9%a 2a Let W denote the sampled process fraBtS, then we
Xenl—>%a;)
L= (1= )z X (23) have:
a-l ° Y,  with probability (-5 ),
The relationship among, normalizeda,;, (¢)andn is shown W ={ Z  with probability 1 lL(L)(y (28)
in Fig. 9. As shown in the figurel, increases monotonically Y,’ qualified samples. en

with both  and e whene is not small.L increases sharply _
when ¢ approaches 0. A large value of implies the real lee'n. the number of systematic samples\Visthe number of
mean has been extremely underestimated, and more sampilified samplesl’ = N - L - (3)***. The measured mean
of large values should be taken to amortize the bias.dggr W is:
although a larger value ef(and hence larget;;,) implies that W 1 Z w. (29)
qualified samplesaken are of large values, the probability in TN+ L < v
obtaining these large samples decrease fastenf”,1 < =t
a < 2). As a result, the number of extra samples requir&i‘d'
increases accordingly. On fche other hand, i too small, the E(W) 1 . Z E(w;)
gualified samplesre very likely to assume small values and N+L
help little in pushing the sampled mean toward the real mean lor 1 K2 210 GthQ
value, therefore, more extra samples (larg¢rare needed to a—1 14 L(l/aw)?* asp a—1
get more largegualified samples = X, ¢,
Next, we systematically study the setting of the parameter o

of L anday, by carrying out an in-depth study @SS W?]ereX,n - % is the real mean, and

In-depth study of the BSS: Let us consider the ex- B 1 14 2ra GthQ
pectation of the sampling results generatedihysS. To ease §= 1+ L(0/ag,)?> (@ a—1

description, we define the following notations. We still USE .alledbias parameterlf ¢ = 1, then BSS is an unbiased

f(t) to denote the traffic traces measured at some fixed ti i h . . .
granularity, and it follows a Pareto distribution with shaprggmp ing methods s determined byf, andaz, given and

¢ We defi ther tw d iables: &. In Fig. 10 we show the relationship betweénand L,
parameten. Ve defineé another two random variables: normalizeda,;, (). We also draw the plane with= 1 and the

N+L'

(30)

Y = f(t), given f(t) > au, (24) intersection of the two surfaces renders the set of parameters
that makeBSS unbiased.
and _ One important observation is that, for each fixedthere
Z = f(t), given f(t) < a. (25)  are two intersections along theaxis. In other words, for a

Then it is straightforward to obtain the pdf bf and Z to be: fixed L, there are two solutions to the equatigfe) — 1 = 0.
To make it clearer, we show a slice of Fig. 10 wher=5 in

ply) = aga?/_a_lvy > aun, (26) Fig. 11. We call the smaller ong and the larger one,. One

(/awn)> interesting finding is that; is almost the same for different

and, L ande; ~ <=1 which is clearly shown in Fig. 10. But this
al®z—o1 solution is infeasible, since it causés< 0 in Eq. (23). For

g S z S ath7 (27)

p(z) = 1— (/awm)>’ the other solutiore,, it increases withl..
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render§ = 1.

Next, we aim to answer the question: cB%'S improve the
performance of the systematic sampling method (providing
more accurate estimate of the mean value) while keeping
unbiased. To study this issue, we did experiments on both

. synthetic and real Internet traces. The results are shown in
. Fig. 12 and Fig. 13.

s We can see that compared with systematic sampling, the
f unbiasedBS.S sampling produces exact the same results when
the sampling rate is small. Under larger sampling rates, it
improves a little, but still cannot reach the real mean quickly.
The reason is that, in order to mak&s'S unbiased, for fixed
L, a;;, must be “large” enough so that the sampled results
i won't overshot. So, for small sampling rate,, is so high
. that few qualified samplegan be obtained, and the sampled
results resembles that of systematic sampling exactly. When
Fig. 10. The relationship among, ¢ and¢ in BSS. the sampling rate increases, the chance in gettjnglified
sampledncreases. Due to the fact that the choosind.aind
asn, Makest = 1, the sampled mean still cannot reach the real
mean promptly.

Biased BSS: From above, we see that by carefully
choosingL and a;;, we can makeBSS unbiased. Although
this unbiasedBSS improve the sampling performance when
sampling rate is not too low, it suffers from the same problem
as the systematic sampling. A remedy to this is toB&tS
to be biased { > 1) so that the real mean value can be
reached quickly. The first hindrance we must hurdle is how to

determine the value of.

According to the definition ofy (= 1 — §:), in order to
fill the gap betweenX, and X,., we can sef = Tln If n
is known, by settingg = Ln we can choose appropriafe

anday;, by intersecting tﬁe curve in Fig. 10 with a flat plane

¢ = 1% In Fig. 14 we show the contour @f The labels on
each contour line indicates the value&fThereforea;, and

L can be chosen according to the contour once the valge of
is given. Since every point on the save contour line serves the
goal, we can set one of the two parameters first and the other

one can be herein determined.

Fig. 11. A slice whenL = 5, the relation betweeyg ande.
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Before setting the parameters, we consider the number> pling must be done online andnd X, cannot be readily

qualified samplesL’, which can be deemed as the cost of taineq. In what follows, we first discuss, giverthe _set'Fing
BSS (will be defined as theoverheadin the next section). Of an W'th.OUt the knqwledge oK, then we seL. by bridging
The optimal setting ofL and a;, should makeL’ as small the sampling rate with 1.
as possible. In Fig. 15 we show the relationship betwgen TO tune a;,, we propose an on-line tuning scheme in
and L, e according to the fact that’ = N - L - (ai)za_ One determining the value ofy,. Before applyingBSS, we
important observation is that to make small, we should first chooseN,,. samples (callecpre-samples from which
avoid smalle and largeL. We also notice that is more We obtain a rough estimate of the mean and assign
sensitive when it is small. Specifically, fer< 0.5, L’ rockets. accordingly. After the operation dBS.S commences, we set
Therefore, once; and X, are known, givere (henceay,) @h 8 awm = E(Yi) x ¢, whereY; is the sampled mean of
or L, and¢ = % we can faithfully determine the other ondhe sample set that contains all the samples tillithesample
parameter to fulfill our objective. In Fig. 16 and 17, we shoW-€-, it includes theith sample, thepre-samplesand all the
the result for both synthetic and real traces when oneafd dualified samplesaken so far), and according to the above
L is fixed and the other one is tunéd analysis, to save overhead (reduce the numbequalified
Tuning L and a,;, without knowledge of 7: From above sample}, the normalized threshold should not be smaller

analysis, we know that the knot of selecting appropriatend than 0.5. Therefore, we sete (1.0,1.5) (in Section?? we
azy lies in whether or noy and X, can be obtained. In reality, S€t¢ = 1.0). Note that when exira samples are chosen in a
sampling intervalC', we do not update,; since whether or

4The value ofn and X, are readily obtained since we have the entir@Ot to take extra samples In a sampllng interval should pe
traces. based on the same threshold. Only by the end of a sampling
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interval when the nextormal sample is taken, we updaig,
asE(Y;) xe.

Givenayy,, in order to set appropriat, 7 is indispensable.
Although we cannot obtain the exact value @f we can
estimate it from the sampling rate The estimation procedure
is shown as follows.

Let » and N; be the sampling rate and total number of points
in the original process, theW = N; = r. So we have:

ne Cy-rt/ot, (35)

1/a—1

whereC, = N‘)/(T is a constantless than 1 for< oo < 2. In
. . reality, Cs; may fluctuate mildly for different sampling rates.
Let V' be the total number of systematic sampling. We haVE'rom our experimental study, we find that for the synthetic

1 traces ¢ = 1.5), Cs € (0.25,0.35) while for the real traces

Xo =5 D f(ta), (a = 1.66), Cy € (0.2,0.3).
=1 Therefore, given a systematic sampling rat&q. (35) can

which is the sample mean. From [21] (Chapter 3), if we defingg applied to estimate. With the knowledge ofy, we can

(31)

V, = lel/a(XS - X,), (32) obtain¢ = % At last, by plugging botkt anda;y, in Eq. 30,
_ the value ofL can be easily obtained. In Secti®@f, ¢ is pre-set
where X, is the real mean. Then to be 1 and we apply this procedure in setting the parameters
Vi, — ©a, in distribution (33) and the experiments generate relatively good results.

where ¢, is an «-stable distribution. In other wordsV,, VI. PERFORMANCE EVALUATION
converges in distribution for largé&’. Thus we have another

way to convey thisj X, — X,| ~ N'/*~1  then,

X —X| NYe!
X, X,

To evaluate the performance d8SS, we have carried
out several sets of experiments on both synthetic and real
Internet traces. As the increase in the accuracy of the sampled
(34) mean in BSS is obtained at the cost of sampling more




0.65

“biased” samples of larger values, we use the following three D
metrics to evaluateBSS: (1) the sampled mean (accuracy); 06 . e 2{;z?es$gndom
(2) the sampling overhead, defined as the ratio of the number  osst . .

of qualified samplesto the number of samples taken by i

05 B

systematic sampling; and (3) the efficieney defined as

e= lol(‘;}f) and IV, is the total number of samples (including
both t?'ne samples normally taken in systematic sampling and
the qualified samplesaken in BSS). In addition to the above
three metrics, we also verify whether the sampled process
has the same Hurst parameter as the original process and
calculate its average variance. The performance evaluation

o

s

o
T

Efficiency e
°
2
T

o

w

&
T

0.25

is made by comparind3SS against systematic and simple oz
random sampling. As stratified random sampling is a variation .| L L L )
of systematic sampling and yields similar performance as the 0 ° Samping rae 1 1

latter, we do not include it in the comparison study.

A. Performance w.r.t. Sampled Mean, Overhead and Efficier@%sigihegchfr:fgicdency of systematic sampling, simple random, BiSt

We use the same traces as in Section IV. For synthetic
traces, we set the shape parameter of the on/off periods to be oo

a € (1.2,1.6). Figures 18-19 give the sampled mean obtained ;
by systematic sampling, simple random, aBd'S ((a)), and oo —°  Realp
the sampling overhead incurred iBSS ((b)) for both the g i

synthetic traces and real Internet traces. Note that the result
shown in Fig. 18 is for the synthetic trace with= 1.3 and
mean value.68 kbytes/second, while that in Fig. 19 is for the
Internet trace with the real mean rate1 x 10* bytes/second
and the (measured) Hurst parameter 0.62. (Results for the other .. 1
traces exhibit similar trends and hence are not shown here.)
As shown in Fig. 18 (a)BSS generates much more accurate
sampled means than the other two sampling techniques. The
performance improvement is especially pronounced when the
sampling rate is as small d9~*. As shown in Fig. 18 (b), o : { : : : o
the overhead is around.2, while 1 — n (Section V-C) is g
0.922 for BSS and 0.66 and 0.81 for systematic sampling
and simple random sampling, respectively. Similar conclusiohi§- 21. Theg values of the sampled process generated3t$ and and
. . . he real process.

can be made in Fig. 19, except that the sampling overheadfs
around0.3.

Fig. 20 comparesBSS against systematic sampling and
simple random sampling with respect to the efficiemcfor a result, the sampled process generatediisys keeps the

. - : . same autocorrelation function as that generated by systematic
synthetic tracesBS S achieves higher efficiency than the othe . S . L
two sampling techniques. The averagdor BSS is 0.37, gampllng (which in turns is the same as that of the original

. . X : process, Section IlI-A). Finally, Fig. 22 gives the the average
\év:élg gharte;orescygsvteelma}tg: gg%sgzﬁilgvgngorzri’g::np;:gé%ainvariances ofBSS and systematic sampling for both synthetic
e P Y, 1.€. P 9 d real Internet traces. As shown in the figure, the average

. 27"a
O.f 42% and23%, respgctlvely, as compared to systematic an\fgriances of these two methods almost overlap completely.
simple random sampling. This is not surprising due to the same reason stated above.

B. Performance w.r.t. Hurst Parameter and Average Variance

To verify whether or noi3S\S captures the Hurst parameter
accurately, we use synthetic traffic with(H = #) varying In this paper, we have investigated several important issues
from 0.1 to 0.8 and give the result in Fig. 21. The Hursh employing sampling techniques for measuring Internet
parameter of the synthetic traces is calculated using a wavetaffic. We show that while all three sampling techniques can
based tool provided by Abrgt al.[22]. As shown in Fig. 21, accurately capture the Hurst parameter (second order statistics)
the sampled process has the same valug (dnd hence the of Internet traffic, they fail to capture the mean (first order
same Hurst parameter) as the original process. This is mstdtistics) faithfully, due to the bursty nature of Internet traffic.
surprising, ag3.5S is a variation of static systematic samplingVe also show that static systematic sampling renders the
and the extra samples taken in each sampling interval are adsaallest variation of sampling results in different instances of
taken in a systematic sampling fashion in each inte®valhs sampling (i.e., it gives sampling results of high fidelity). Based
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real Internet traces.
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Fig. 22. The average variances BfS'S and systematic sampling.
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. . . . " http://cm.bell-labs.com/cm/ms/departments/sia/InternetTraffic/S-Net/.
it may not be the case for a process with an infinite variang@; r. mahajan, S. M. Bellovin, S. Floyd, J. loannidis, V. Paxson and

(e.g., self-similar Internet traffic with the Hurst parameter S. Shenker. Controlling high bandwidth aggregates in the network.
larger than 0.5). Due to the heavy-tailedness inherited | http://iwww.aciri.org/pushback/, July, 2001.
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the self-similar process, the speed for the sampled mean {0 selt.similar nature of Ethernet traffic (extended versionEEE/ACM

converge to the real mean is extremely slow, and therefore un- Transactions on Networkind-ebruary 1994.

based sampling techniques often render un-satisfactory restft. K- Park, W. Willinger. ~Self-similar network traffic and performance
evaluation. Ch. 21, Wiley-Interscience.

m th_iS case, a biased sampling method is actually desirable. BY roughan, Veitch and Abry. Real-time estimation of the parameters of
biasing toward théarge values of the process, one can reduce long-range dependence (extended versitBEE/ACM Transactions on

the discrepancy between the sampled mean and the real m E Networking vol.8, no.4, pp. 467-478, August 2000.

. . . ‘W. Willinger, M. S. Tagqu, R. Sherman, and D. V. Wilson. Self-similarity
In this paper we make a case where a biased sampling method hrough high-variability: statistical analysis of Ethernet LAN traffic at

outperforms un-biased ones. the source level. IfProc. ACM SIGCOMM'97 pp. 149-157, 1997.

; e ; . [24] W. Willinger, V. Paxson, and M. S. Tagqqu. Self-similarity and heavy
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First, we will attempt to prove the conjecture made in Sec- and M.S. Taqqu, editors, A Practical Guide to Heavy Tails: Statistical
tion V-B that the length of 1-burst periods in self-similar  Techniques and Applications, Birkhauser, Boston, 1998.
processes is heavy tailed. Second, although the methods pre-

sented in Section V-C for tuning the parameterg, and L,

of BSS are devised based on analytical reasoning, they are

engineering-oriented and may not render the optimal setting.

We would like to study how to optimally set these parameters

S0 as to strike a balance between the sampling overhead and

the accuracy thus achieved.
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