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Abstract— Internet traffic sampling techniques are very im-
portant to understand the traffic characteristics of the Internet
[14], [8], and have received increasing attention. In spite of
all the research efforts, none has taken into account the self-
similarity of Internet traffic in analyzing and devising sampling
strategies. In this paper, we perform an in-depth, analytical study
of three sampling techniques for self-similar Internet traffic,
namely static systematic sampling, stratified random sampling
and simple random sampling. We show that while all three
sampling techniques can accurately capture the Hurst parameter
(second order statistics) of Internet traffic, they fail to capture
the mean (first order statistics) faithfully, due to the bursty
nature of Internet traffic. We also show that static systematic
sampling renders the smallest variation of sampling results in
different instances of sampling (i.e., it gives sampling results
of high fidelity). Based on an important observation, we then
devise a new variation of static systematic sampling, called
biased systematic sampling (BSS), that gives much more accurate
estimates of the mean, while keeping the sampling overhead
low. Both the analysis on the three sampling techniques and
the evaluation of BSS are performed on synthetic and real
Internet traffic traces. The performance evaluation shows that
BSS gives a performance improvement of 42% and 23% (in
terms of efficiency) as compared to static systematic and simple
random sampling.

I. I NTRODUCTION

Internet traffic sampling techniques are very important to
understand the traffic characteristics of the Internet [14], [8].
If the sampled results faithfully represent Internet traffic, they
can be utilized to monitor traffic on a short-term basis for
hot spot and DoS detection [19] or on a long-term basis
for traffic engineering [14] and accounting [9]. As such, the
packet sampling approaches have been suggested by the IETF
working groups IPFIX [16] and PSAMP [17]. Tools such as
NetFlow [4] employ a naive1-out-of-N sampling strategy in
the router design.

The major challenge in employing sampling techniques is,
however, scalability. Inspecting each individual packet for each
flow or sampling at a very high rate is obviously not feasible,
due to the large volume of traffic. On the other hand, if the
sampling rate is not adequate, the sampled results may not
reveal actual traffic characteristics. What makes the problem
even more difficult is the bursty nature of the Internet traffic.
As indicated in a number of recent empirical studies of traffic
measurement from a variety of operational packet networks
[20], [12], [23], [24], the Internet traffic is self-similar or

long-range dependent (second order statistics,LRD) in nature.
This implies the existence of concentrated periods of high
activity (peaks) and low activity (valleys), i.e., burstiness,
at a wide range of time scales. In the context of packet
sampling, this implies that either the sampling rate must be
high enough or the sampling strategy has to be judiciously
devised so as to capture all the peaks and valleys in the
traffic. As oversampling increases the memory requirements
for the off-board measurement devices, and has the danger of
making the sampling method unscalable, the latter approach
(devising a sampling strategy that is able to capture the traffic
characteristics) is preferred.

Several research efforts have been made to investigate the
effectiveness of sampling techniques in measuring network
traffic. Three commonly used sampling techniques, i.e., static
systematic1, stratified random and simple random, have been
studied by Claffyet al. [3]. In particular, they explored various
time-driven and event-driven sampling approaches with both
random and deterministic selection patterns at a variety of time
granularities. The results showed that event-driven techniques
outperform time-driven ones, while the differences within each
class are small. Cozzani and Giordano [6] used the simple
random sampling technique to evaluate the ATM end-to-end
delay. Estan and Varghese [13] proposed a random sampling
algorithm to identify large flows, in which the sampling prob-
ability is determined according to the inspected packet size.
Duffield et al. [9] focus on the issue of reducing the bandwidth
needed for transmitting traffic measurements to a back-office
system for later analysis and devise a size-dependent flow
sampling method. The notion of adjusting the sampling density
upon detection of traffic changes in order to meet certain
constraints on the estimation accuracy was proposed in [2].
Finally, Duffield et al. [11], [10] investigated the issue of
inferring stochastic properties of original flows (specifically
the mean flow length, and the flow length distribution) from
the sampled flow statistics.

In spite of all the research efforts, none has taken into
account of the self-similarity of Internet traffic in devising
sampling strategies. Three of the most important parameters
for a self-similar process are the mean (first order statistics),
the Hurst parameter (second order statistics), and the average

1In what follows, we omit “static” and simply name it systematic.



variance of the sampling results. In particular, the average
variance of the sampling results is defined as follows: letX̄
be the real mean of the parameter of interest in the original
process, andXi be the sampled result in theith instance of
sampling (i.e., theith experiment). Then the average variance
is defined asE(V ) = E[E[(Xi − X̄)2]], where the inner
expectation is taken over all the samples in one instance
of sampling, and the outer expectation is taken over all the
sampling instances (e.g., different starting sampling points
in the systematic sampling technique give different sampling
instances). The mean gives the most direct value of the traffic
attribute to be measured. The Hurst parameter characterizes
the second order statistics for a self-similar/LRD process, and
is crucial for queuing analysis. The average variance is an
index of the fidelity of the sampling results.

Although it has been reported in [21] that in sampling
self-similar process with the three commonly used sampling
techniques, the sampled mean is always smaller than the actual
mean (i.e., the sampling techniques under-estimate the mean),
no solution has been proposed to address this problem. The
issues of whether the various sampling techniques accurately
capture the Hurst parameter and/or render a small average
variance have not been studied either. In this paper we close
the gap and

T1. Investigate whether or not the three commonly used
sampling techniques accurately capture the Hurst
parameter. We also provide a sufficient and necessary
condition (SNC) that a sampling strategy must satisfy
in order to maintain the autocorrelation structure of
the original process. Our derivation indicates that all
the three methods satisfy theSNC.

T2. Verify whether or not the three commonly used
sampling techniques render small average variances
(and hence give high fidelity) by leveraging the
results reported in [5]. Our research finding is that the
systematic sampling method outperforms the other
two.

T3. Demonstrate all three methods cannot provide ac-
curate estimate of the mean for self-similar Internet
traffic, especially when the sampling rate is small.
We then propose, based on an important observation,
a new variation of the systematic sampling technique,
calledbiased systematic sampling(BSS), that gives
much more accurate estimates of the mean, while
keeping the sampling overhead low. AsBSS is a
variation of the systematic sampling technique, it
retains all the advantages of the latter.

One thing worth mentioning is that, although it is not
a problem for a router to count the incoming traffic and
summarize the mean value of the total traffic going through the
router, the obtained result instructs us little. In most cases, we
are more interested in one or several original-destination flows
(OD-flows). For example, we need to know the mean value of
the aggregated traffic of 2 specified OD flows going between
west coast and east coast in US. Under such similar case, the
router counter fails to give the information we want and ju-

diciously designed sampling techniques serve as an approach.
Specifically, in this paper, we consider a generalized traffic
processf(t) without giving a rigid definition on it (Section II.
It can be any individual OD-flow or the aggregation of several
OD-flows going through a router. Our proposed method can
be applied to any of these cases as long as a processf(t) is
specified.

Both the verification and validation inT1–T3, and the
evaluation ofBSS, have been performed on synthetic and
real Internet traces. In particular, the real Internet traces were
obtained from Lucent Technologies Bell Labs [18], contain
millions of packets, and provide detailed packet level infor-
mation for hundreds of pairs of end hosts.

The rest of the paper is organized as follows. After pro-
viding the background material in Section II, we investigate
analytically in Section III whether or not the three sampling
techniques accurately capture the Hurst parameter of the
process to be measured and provide aSNC that a sampling
strategy must satisfy in order to keep the second order statistics
(and hence Hurst parameter). Then, we compare in Section IV
the average variance of the sampling results obtained by the
three techniques. Following that in Section V, we demonstrate
with both synthesized and real Internet traces that all three
techniques fail to capture the real mean of Internet traffic and
presentBSS in detail. Finally we present our performance
study (again based on both synthesized and real traces) in
Section VI. The paper concludes with Section VII.

II. BACKGROUND

In this section, we introduce the self-similar processes and
the three commonly used sampling techniques, and set the
stage for subsequent derivation and discussion.

A. Self-Similar and Heavy-tailed Distribution

Let {f(t), t ∈ Z+} be a time series which represents the
traffic process measured at some fixed time granularity. As we
have mentioned, the traffic process can be individual OD-flow
or the aggregation of several OD-flows or any other flows
the researchers are interested in. To make our approach a
generic one, our definition onf(t) is rather general. To define
a self-similar process, we further define the aggregated series
f (m)(τ) as

f (m)(τ) =
1
m

τm∑
i=(τ−1)m+1

f(i). (1)

f (m)(τ) can be interpreted as follows: the time axis is divided
into blocks of lengthm and the average value for each block
is used to represent the aggregated process. The parameterτ
is the index of the aggregated process, i.e., theτ th block.

Let R(τ) andR(m)(τ) denote the autocorrelation functions
of f(t) and f (m)(i), respectively.f(t) is (asymptotically
second-order) self-similar, if the following conditions hold:

R(τ) ∼ const· τ−β , (2)

R(m)(τ) ∼ R(τ), (3)
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Fig. 1. An illustration of the three sampling techniques.

for large values ofτ and m where 0 < β < 1. That is,
f(t) is self-similar in the sense that the correlation structure
is preserved with respect to time aggregation (Eq. (3)) and
R(τ) behaves hyperbolically with

∑∞
τ=0 R(τ) = ∞ (Eq. (2)).

The latter property is also referred to as long range dependency
(LRD).

Since self-similarity is closely related to heavy-tailed distri-
butions, i.e., distributions whose tails decline via a power law
with a small exponent (less than 2), we give a succinct sum-
mary of heavy-tailed distributions. The most commonly used
heavy-tailed distribution is the Pareto distribution. A random
variableX follows the Pareto distribution if its complementary
cumulative distribution function (CCDF) follows:

Pr(X > x) ∼ (k/x)α, x ≥ k,

whereα is the shape parameter and determines the decreasing
rate of its tail distribution, andk is the scale parameter and is
the smallest valueX can take.

An important parameter that characterizes self-
similarity/LRD is the Hurst parameter, defined as
H = 1 − β/2. By the range ofβ, 1/2 < H < 1. It
can be seen from Eq. (2) that the largerH is, the more
long-range dependentf(t) is. A test for self-similarity/LRD
can then be obtained by checking ifH significantly deviates
from 1/2 or not.

B. Three Commonly Used Sampling Techniques

Generally speaking, the larger the sampling set, the more
accurately the original process can be characterized. The price
one has to pay is, however, the more CPU processing time
and buffer space. Indeed there exists a trade-off between the
sampling rate and the accuracy of sampling results. Three
categories of sampling techniques have been commonly used
in measuring Internet traffic: systematic sampling, stratified
random sampling, and simple random sampling (Figure 1).
In systematic sampling, everyCth element (e.g., packet) of
the parent process is deterministically selected for sampling,
starting from some starting sampling point. In stratified ran-
dom sampling, the time axis is divided into intervals of length
C, and one sample is randomly selected in each interval. In
simple random sampling,N packets are randomly selected
from the entire population.

III. H URST PARAMETER OF THESAMPLED PROCESS

In this section, we first investigate whether or not the three
sampling techniques accurately capture the Hurst parameter of

Internet traffic. This is done by deriving the autocorrelation
function of the sampled process obtained from the three
sampling techniques. (Note that we do not intend to devise a
procedure to estimate the Hurst parameter, but instead derive
the Hurst parameter (through calculation of the autocorrelation
function) of the sampled process and compare it with that of
the original process.) Then we derive aSNC that a sampling
technique has to satisfy in order to retain the autocorrelation
structure of the original process.

A. Systematic Sampling

Let f(t) andg(t) denote the original and sampled process,
andHf andHg the Hurst parameter off(t) andg(t) respec-
tively. Without loss of generality,t is discretized to be integer
numbers:0, 1, 2, 3.... For systematic sampling, letC be the
sampling interval. Then we have2

g(t) = f(Ct), t = 0, 1, 2, .... (4)

Let Rf (τ) and Rg(τ) denote the autocorrelation function of
f(t) andg(t), andF (t) andG(t) denote the CDF off(t) and
g(t) respectively. Then we have

Rg(τ) = E(g(t)g(t− τ)) = E(f(Ct)f(Ct− Cτ))

=
∫

f(Ct)f(Ct− Cτ)dF (t). (5)

Let Ct = u. Then Eq. (5) can be re-written as

Rg(τ) =
∫

f(u)f(u− τ)C−1dF (t)

= C−1 ·Rf (τ). (6)

HenceRg(τ) = C−1Rf (τ) ∼ Aτ−β as τ → ∞, whereA
is a constant. Also, we haveHg = Hf = 2−β

2 , where0 <
β < 1. The above derivation implies that the sampled process
obtained by the static systematic sampling technique has the
same Hurst parameter as the original process.

B. Stratified Random Sampling

Recall that in stratified random sampling, the time axis is
divided into interval of lengthC, and one sample is randomly
selected in each interval. Using the same notation as in
Section III-A, we have

Rg(τ) = E(g(t)g(t− τ))
= E(f(Ct + τ1)f(Ct− Cτ + τ2)),

whereτ1 andτ2 are random variables that represent the time
lags after the beginning of thetth and (t − τ)th bucket
respectively.Rg(τ) can be further written as

Rg(τ) = E(E(f(Ct + τ1)f(Ct− Cτ + τ2)|τ1, τ2))

= E(C−H−1Rf (τ +
τ1 − τ2

C
))

= E(C−H−1Rf (τ + τ ′)),

whereτ ′ = τ1−τ2
C .

2Without loss of generality, we denote the starting point of systematic
sampling to bet = 0.



By Eq. (3), we have

Rg(τ) ∼ E(D · (τ + τ ′)−β)

=
∫

D · (τ + τ ′)−βfτ ′dτ ′,

whereD is a constant related toC, andfτ ′ is the probability
density function (pdf) ofτ ′. As bothτ1 andτ2 are uniformly
distributed in[0, C], we have

fτ ′(x) =
{

1 + x, if −1 ≤ x ≤ 0,
1− x, if 0 ≤ x ≤ 1,

(7)

and hence

Rg(τ) ∼
∫ 1

−1

D · (τ + τ ′)−βfτ ′dτ ′

∼ Dτ−β

∫ 1

−1

(1 − β
τ ′

τ
)fτ ′dτ ′

= D · τ−βasτ →∞. (8)

The last equality results from the fact thatE(τ ′) = 0. By
Eq. (8), we conclude that the sampled process obtained by
the stratified random sampling technique has the same Hurst
parameter as the original process.

C. Simple Random Sampling

In simple random sampling,N samples are randomly se-
lected from the entire population ofM samples. That is, with
probability η = N/M a sample is selected. Lett0 denote the
sampling point inf(t) corresponding to thetth sampleg(t).
Then we have

Rg(τ) = E(g(t)g(t + τ))
= E(f(t0)f(t0 + a)) = Rf (a),

wherea ≥ τ is a random variable. Since

Pr(a = τ + i) =
(

τ + i− 1
i

)
ρτ (1−ρ)i, i = 0, 1, 2.., (9)

we have

Rg(τ) =
∞∑

a=τ

Rf (a) · Pr(a)

=
∞∑

i=0

Rf (τ + i)
(

τ + i− 1
i

)
ρτ (1 − ρ)i

∼
∞∑

a=τ

Γa−β

(
a− 1
a− τ

)
ρτ (1− ρ)a−τ

=
∞∑

a=τ

Γa−β (a− 1)!
(a− τ)!(τ − 1)!

ρτ (1− ρ)a−τ ,(10)

whereΓ is a constant. Using theSterling equation, we can
further approximate Eq. (10) as

Rg(τ) ≈ Γρτ√
2π(τ − 1)(τ − 1)τ−1e−(τ−1)

∞∑
a=τ

a−β(a− 1)a−1/2e−(a−1)

(a− τ)a−τ+1/2e−(a−τ)
· (1− ρ)a−τ

=
Γρτ (1 − ρ)−τ

√
2π(τ − 1)τ−1/2

∞∑
a=τ

a−β(a− 1)a−1/2(1 − ρ)a

(a− τ)a−τ+1/2

4
= Γ̂

∞∑
a=τ

a−β(a− 1)a−1/2(1 − ρ)a

(a− τ)a−τ+1/2
, (11)

whereΓ̂ =
Γ( ρ

1−ρ )τ

√
2π(τ−1)τ−1/2 .

Since no closed form result can be obtained from Eq. (11),
We use matlab to find the relation betweenRg(τ) and τ .
Specifically, We fit the value ofRg(τ) (calculated from
Eq. (11)) toconst · τ β̂ and depict the estimated valuêβ and
the real value ofβ in Fig. 2. In Fig. 2 (a) we fit the calculated
result ofRg(τ) (after takinglog2 on bothτ andR(τ)) to a line
with slope β̂ = −0.08, where the real value isβ = 0.1. By
changing the real value ofβ from 0.1 to 0.8, we perform the
same operation and report the estimated value ofβ̂ in Fig. 2
(b). As shown in Fig. 2 (b), the values of̂β andβ agree very
well and henceHg ≈ Hf . Note the small gap between the
values ofβ̂ andβ is due to the truncation error on the right
hand side of Eq. (11), i.e., in calculatingRg(τ), we cannot
sum up an infinite number of terms (froma = τ to ∞) and
have to approximate the right hand side of Eq. (11) with a
finite number of terms.

D. Sufficient and Necessary Condition for Accurately Captur-
ing the Hurst Parameter

In Section III-A–III-C, we have shown that the sampled
process generated by all three sampling techniques has the
same Hurst parameter as the original process. A more general
question is then: given a sampling technique, how do we
check if the sampled process generated by this technique has
the same Hurst parameter as the original process? To answer
the question, we derive a sufficient and necessary condition
(SNC) which a sampling technique has to satisfy in order to
preserve the same second order statistics (and therefore Hurst
parameter) in the thinned process.

We generalize the sampled process generated by a sampling
method to be a point processZn, n = 1, 2, 3..., which
represents the series of sampling points. The intervals between
any two consecutive sampling points are defined asTi =
Zi+1 − Zi, i = 1, 2, .... Ti’s are i.i.d random variables with
the probability density functionh(x) for the continuous case
and the probability mass functionH(x) for the discrete case.
Note thatZn is a renewal process with the renewal interval dis-
tribution h or H . A sampling method (and hence the sampled
process generated by the sampling method) is generated byh
or H . For example, the functionH for systematic sampling
is H(C) = Pr(Ti = C) = 1 andH(x) = 0 for x 6= C, while
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the functionh for stratified random sampling method is

h(x) =
{

1
C2 x, if 0 ≤ x ≤ C,
2
C − 1

C2 x, if C ≤ x ≤ 2C,
(12)

whereC is the length of each sampling bucket. For the simple
random sampling technique with the sampling rater, H can
be expressed as

H(i) = Pr(Ti = i) = (1 − r)i−1r. (13)

Under the assumption that the processf(t) is wide sense
stationary, we have

Rg(τ) = E (g(t)g(t− τ))
= E (f(t + t0)f(t + t0 − u))
= E (f(t)f(t− u))
= E (E (f(t)f(t− u)|u))

=
∞∑

u=0

Rf (u)p(u), (14)

whereu =
∑τ

i=1 Ti andp(u) is the probability mass function
of u. Note thatp(u) is the τ th order convolution ofH(u),
which we denote ask(u, τ) (as it is a function of bothu
andτ ). Now we are in a position to derive the sufficient and
necessary condition.

Theorem 1:Given any wide sense stationary (WSS) process
f(t), the sampled processg(t) obtained from a sampling
technique withh or H has the same second order statistics as
the original process asymptotically if and only if the following
condition holds

∞∑
u=0

Rf (u)k(u, τ) ∼ Rf (τ), (15)

wherek(u, τ) is the τ th order convolution ofH(u). Proof:
By Eq. 14 we know thatg(t) retains the same second order
statistics off(t) asymptotically, if and only ifRg(τ) ∼ Rf (τ),
asτ →∞, and hence the conclusion.

Although Theorem 1 gives a sufficient and necessary con-
dition for a sampling technique to retain the second order
statistics of the original process, it cannot be readily applied,
since k(x, τ) usually does not have a closed form, except
for several extremely simple cases (e.g., for example the
systematic sampling, in whichk(x, τ) = δ(x−τC), whereδ()
is the impulseDirac function andC is the constant sampling
interval).

In order to be able to apply Theorem 1, we propose a
numerical method to calculatek(x, τ):

(S1) Calculate the Fourier transform ofH(x), H(ω). 3

(S2) Let the Fourier transform ofk(x, τ) (in terms ofx)
be K(ω, τ). ThenK(ω, τ) = H(ω)τ .

(S3) Obtaink(x, τ) by deriving the inverse Fourier trans-
form (IFT) of K(ω, τ).

With k(x, τ), we can then calculate the left hand side of
Eq. (15), and compare it againstRf (τ) as τ → ∞. Since
fast algorithms exist for both the Fourier and inverse Fourier
transform, the above method provides a fast and reliable test
in evaluating Eq. (15).

To validate the above proposed method for applying Theo-
rem 1, we apply it to check the random stratified and simple
random sampling techniques, and give the results in Fig. 3.
As shown in Fig. 3, the estimated and real value ofβ agree
extremely well, which is consistent with the derivation in
Sections III-B–III-C.

IV. T HE AVERAGE VARIANCE OF SAMPLING METHODS

Due to the randomness nature of stratified random sampling
and simple random sampling, sampling results vary from one
sampling instance to another, even if multiple instances of
sampling are taken simultaneously and the same sampling rate
is applied in each instance. Here by “instance,” we mean each
experiment made to take samples for a specific time interval.

3In the case thatH(x) cannot be expressed in a closed form, the proposed
numerical method cannot be used to apply Theorem 1.
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Fig. 3. Estimated and real values ofβ under stratified random sampling and simple random sampling.

Even for systematic sampling, different starting sampling
points may lead to different sampling results. If the variance
of sampling results obtained from multiple instances is large,
then one cannot rely on a single sampling instance to infer
the entire process. To evaluate different sampling techniques
in this aspect, we use the average variance of sampling results
E(V ) as the index. Recall thatE(V ) is defined as follows in
Section I: letX̄ be the real mean of the parameter of interest
in the original process, andXi be the sampled result in the
ith instance of sampling (i.e., theith experiment). Then the
average variance is defined asE(V ) = E[E[(Xi − X̄)2]].

Let Vsy , Vrs andVran denote, respectively, the variance of
sampling results of systematic, stratified random and simple
random sampling. To compare the three sampling techniques
with respect to the average variance of sampling results, we
leverage the results from [5] (Theorem 8.6):

Theorem 2:For a random processf(t), with meanµ, vari-
anceσ2, and autocorrelation functionR(τ), if the following
condition holds,

δτ = R(τ + 1) + R(τ − 1)− 2R(τ) ≥ 0, (16)

we haveE(Vsy) ≤ E(Vrs) ≤ E(Vran).
The result in Theorem 2 is actually quite intuitive. For
systematic sampling, as the sampling interval remains un-
changed among different sampling instances, the same second
order statistic structure (e.g., the autocorrelation function) is
retained. For the other two sampling techniques, different sam-
pling instances have different second order statistic structures,
although in the long run, they follow the same decreasing rule.

Theorem 2 gives a sufficient condition (Eq. (16)) in eval-
uating the three sampling techniques with respect toE(V ),
given that the original process has finite mean and variance.
To leverage Theorem 2, we first check whether the condition
in Eq. (16) holds for a self-similar process. Using the fact that
R(τ) ∼ const · τ−β , we calculateδτ for different values of
β and depict it in Fig. 4. As shown in Fig. 4,δτ is always
positive regardless of the value ofβ, i.e., the condition in
Eq. (16) holds.
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In applying Theorem 2 we also need to verify if the process
has finite mean and variance. A self-similar process (withα ∈
(1, 2)) has finite mean, but its variance goes to infinity as time
goes to infinity. However, in practice we often consider finite
time periods, and hence we conjecture the above condition is
still valid. To verify the conjecture, we carry out experiments
and measure the average variance of sampling results (under
the three techniques) on both synthetic and real Internet traffic.
In this experiments, we generate inns-2 self-similar traffic
with Hurst parameter equal to 0.80 using the on-off model,
where the on/off periods have heavy-tailed distributions with
shape parameterα = β + 1, 1 ≤ α ≤ 2. We also obtain
real Internet traces from Lucent Technologies Bell Labs [18].
The set of traces was obtained on March 8, 2000, is in the
tcpdumpformat, and contains detailed packet level information
for hundreds of pairs of end hosts. The traces last for about
40 minutes and contains millions of packets. Fig. 5 shows the
results. Note that Fig. 5 (b) gives the result for one of the trace
sets with the Hurst parameter 0.62. Results for the other sets
(that correspond to different servers) show similar trends and



are not shown here. As shown in Fig. 5, systematic sampling
does give the smallest average variance.

Although systematic sampling does capture the Hurst pa-
rameter and provide sampling results of small variance, we
show in the next section that it provides very biased estimates
of the real mean for a self-similar process. Due to this draw-
back, we then devise a new variation of systematic sampling
to improve the accuracy of sampling results, while retaining
all of its good properties. In the subsequent discussion, we will
focus on systematic and simple random sampling, as stratified
random sampling is a variation of systematic sampling.

V. BIASED SYSTEMATIC SAMPLING FOR HEAVY-TAILED

TRAFFIC

In this section, we first show that both systematic sampling
and simple random sampling fail to provide a good estimate
of the actual mean for a self-similar process (e.g., Internet
traffic). Then based on an important observation on self-
similar processes (validated through experiments), we propose
a new extension of systematic sampling to remedy the above
deficiency. The dilemma here is that the major portion of a
self-similar process consists of “small values,” while a small
portion of “extremely large values” contributes to the majority
of the volume of the entire process (which in turn dramatically
affects the mean of the process). Due to the massive amount
of Internet traffic and the storage limitation, the sampling rate
and hence the number of samples cannot be too large, but
in order to capture the effect of these extremely large values
(that occur not as often), one has to gather a large amount of
samples. Similar observations have been made in the literature.
For example, it has been reported in [7] that the steady-state
behavior for self-similar workloads can be elusive, due to the
fact that the average behavior depends on the presence of many
small observations as well as a few large observations. The
same observation has also been made in [21] on sampling
Internet traffic, but no effective solution has been proposed to
counter this problem.

A. Problem with Sampling a Self-Similar Process

By the central limit theorem (or the law of large numbers),
the sampled mean can be used to approximate the real mean
for any stationary process with finite mean and variance, as
long as the sampling techniques are un-biased. It is well known
that both simple random sampling and systematic sampling
provide an un-biased estimator of the real mean for stationary
processes with finite mean and variance as the number of
samples goes to infinity. (In practice, a moderate number of
samples suffice to provide a relatively good estimate of the real
mean.) On the other hand, if the original process has infinite
variance, e.g., a self-similar process, the law of large numbers
does not hold, and the sampled mean approaches the real mean
slowly, as the number of samples increases. As shown in [7],
in order to achieve two-digit accuracy in the mean, the number
of samples needed is up to1022 for the case ofα = 1.2 (which
corresponds toH = 0.9). Even for mild cases whereα = 1.5
(H = 0.75), still a million samples is required to achieve the
desirable accuracy.

We carry out experiments to demonstrate the problem in
the context of Internet traffic. In the experiments, we use the
same set of synthetic and real Internet traffic traces used in
Section IV. For synthetic trace, we change the sampling rate
from 10−5 to 0.1, while for the real Internet trace, the sampling
rate varies from10−5 to 10−3. (The reason why we used a
smaller sampling rate is due to the large volume of Internet
traces. In fact, a sampling rate of10−3 is considered quite
high, given the fact that tera-bytes of traffic is generated per
day.) As shown in Fig. 6, in the case of synthetic traffic trace,
the discrepancy between the real mean and the sampled mean
(obtained even with a sampling rate of 0.1) is quite notable.
The discrepancy becomes even more pronounced in the case
of real Internet traces: the sampled mean obtained with a
sampling rate of a10−3 is approximately2

3 of the real mean,
although in both cases the sampled mean increases steadily
but slowly.

B. An Important Observation

As mentioned above, the reason why the sampled mean is
always far less than the real mean for a self-similar process
is that the major portion of a self-similar process consists
of “small values,” while a small portion of “extremely large
values,” albeit occurring less often, contributes to the majority
of the volume of the entire process. Without use of a suffi-
ciently high sampling rate, the large values are less likely to
be sampled and hence the sampled mean is always less than
the real mean. If one could instrument the sampling method to
capture these extremely large values, the discrepancy between
the sampled mean and the real mean can be reduced.

To instrument a sampling method to capture extremely large
values, we need to identify where they occur. For a self-similar
processf(t), we define another on-off processq(t) as:

q(t) =
{

1, if f(t) > ath,
0, otherwise,

(17)

whereath is a constant approximately of the same order of
magnitude as the mean off(t), X̄. The processq(t) consists
of bursts of1s and0s. The length of the1-burst period is a
random variable (which we denote asB).

We conjecture that due to the self-similar properties off(t),
B is heavy tailed. Intuitively this conjecture is made based
on the fact that a self-similar process contains concentrated
periods of high activity and low activity, and hence once the
process goes beyondath, the time intervalB during which
it continuously remains aboveath is heavy-tailed. To validate
the conjecture, we again carry out experiments on both the
synthetic and real Internet traces introduced in Section IV. In
the experiments, we setath = X̄× ε, whereε varies from0.3
to 1.5. For each fixed value ofε, we measureB and fit its
CCDF to the most widely used heavy tailed distribution, the
Pareto distribution. A line in a log-log plot indicates heavy-
tailed behavior. Fig. 7 gives the results forε = 0.5. The fitted
Pareto distribution has the shape parameterα = 1.3 for the
case of synthetic traces, while the shape parameterα = 1.65
for the case of real Internet traffic traces. For different values
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Fig. 5. The average variance of sampling results (under systematic, stratified random, and simple random sampling) on both synthetic and real Internet
traffic.
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Fig. 7. The CCDF of the 1-burst periodB for the case ofε = 0.5, whereε determines the onset value,α, of the 1-burst period (ath = X̄ × ε).



of ε, the value ofα changes mildly from 1.2 to 1.8, but the
heavy-tailed nature ofB remains unchanged.

C. Detailed Description and Analysis of Biased Systematic
Sampling

In this section, we propose, based on the observation made
in Section V-B, a new variation of systematic sampling, called
biased systematic sampling(BSS), that captures extremely
large values more faithfully. Specifically,BSS is essentially
systematic sampling with a sampling intervalC, except that
when a sample is greater than a thresholdath, L extra samples
are evenlytaken in the current sampling intervalC (i.e., the
sampling interval for these extra samples isC/L). Among
these extra samples, we only keep those that are greater than
ath (which we henceforth callqualified samples).

Analysis: The rational behind this design is as follows.
A sample that is greater thanath must fall in one of the 1-burst
periods. Let the 1-burst period in which the sample falls be
denoted asB. Suppose the sample is takenτ time units after
the beginning of the 1-burst periodB. We show given that
B is heavily tailed, the probability that the next sample taken
underBSS also exceedsath goes to 1 asτ goes to infinity.
In other words, once a sample is taken with the value larger
than ath, it is highly possible that the values thereafter will
still be larger thanath. Specifically, such a probability can be
expressed as

℘(τ) = Pr(q(τ + 1) = 1|q(t) = 1, 1 ≤ t ≤ τ)

= 1− Pr(B = τ)
Pr(B ≥ τ)

. (18)

In the case thatB is lightly tailed, e.g., the CCDF ofB has
an exponential tail, orPr(B > x) ∼ c1e

−c2x, wherec1 and
c2 are two positive constants, Eq. 18 can be re-written as

℘(τ) ∼ 1− c1e
−c2τ − c1e

−c2(τ+1)

c1e−c2τ
= e−c2 . (19)

That is, in the case thatB is lightly tailed, the probability
that the samples taken exceedath does not become larger
conditioning on the event that a sample has been identified
to exceedath. In the case thatB is heavily tailed, we have
Pr(B > x) ∼ cx−α, where1 ≤ α ≤ 2 is the index of heavy-
tailedness of the process, and hence

℘(τ) ∼ 1− cτ−α − c(τ + 1)−α

cτ−α
= (

τ

τ + 1
)α. (20)

That is, ℘(τ) → 1, as τ → ∞. This implies given thatB
is heavily tailed, once a sample exceedsath, with a high
probability the process will keep on large values. This lays the
theoretical base forBSS, and ensures all the extra samples
taken do increase the chance of capturing extremely large
values.

A Rough Analysis of the Relationship betweenath and
L: There are two important parameters used inBSS: the on-
set thresholdath and the number,L, of extra samples in each
sampling intervalC. In what follows, we perform an analysis
on the relationship of these two parameters. In the analysis
we assume thatf(t) follows a Pareto distribution with shape
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Fig. 9. The relationship amongL, ε andη in BSS.

parameterα. This assumption is reasonable which has been
demonstrated in[1]. Furthermore, we use the synthetic and real
Internet traces as have been used in Section VI-B to show that
f(t) is heavy-tailed. The results are shown in Fig. 8. We show
the CCDF off(t) and fit it to a Pareto distribution with shape
parameterα = 1.5 and α = 1.71 for the synthetic and real
traces respectively.

Let Xr andXs denote the real mean and the sampled mean
before the extra samples are taken, respectively, and let the
difference,η, betweenXr andXs be defined as

η = 1− Xs

Xr
. (21)

Suppose the traditional systematic sampling generates a total
of N samples. Since the original process is self-similar, the
sampled process is also self-similar with the same shape
parameterα (Section??). Then each sample is greater thanath

with the probability(`/ath)α, where` is the lowest value the
original process can take. In other words, about(`/ath)α×N
samples are above the threshold. After each of these samples
is taken (and an on-set point is detected),L extra samples will
be taken in each sampling interval ofC in BSS. By a similar
line of reasoning, we know that approximately(`/ath)α × L
samples will be kept (qualified samplesamong all the extra
samples taken), as they exceed the thresholdath. The sampled
mean of the set ofqualified samplestaken isapproximately
athα
α−1 . As our objective is to make the mean of the entire set
of (N + L · ( `

ath
)2αN ) samples as close to the real mean

Xr = Xs( 1
1−η ) as possible, we equate

N ·Xs + ( `
ath

)2α ·N · athα
α−1 · L

N + L · ( `
ath

)2α ·N = Xs(
1

1 − η
), (22)

The right hand side of Eq. 23 is the real meanXr, while the
left hand side is the new sample mean. After some algebraic
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operations, we have

L =
Xsη`−2αa2α

th

(1− η)athα
α−1 −Xs

. (23)

The relationship amongL, normalizedath (ε)andη is shown
in Fig. 9. As shown in the figure,L increases monotonically
with both η and ε when ε is not small.L increases sharply
when ε approaches 0. A large value ofη implies the real
mean has been extremely underestimated, and more samples
of large values should be taken to amortize the bias. Forath,
although a larger value ofε (and hence largerath) implies that
qualified samplestaken are of large values, the probability in
obtaining these large samples decrease faster (∼ a−α

th , 1 ≤
α ≤ 2). As a result, the number of extra samples required
increases accordingly. On the other hand, ifε is too small, the
qualified samplesare very likely to assume small values and
help little in pushing the sampled mean toward the real mean
value, therefore, more extra samples (largerL) are needed to
get more largerqualified samples.

Next, we systematically study the setting of the parameters
of L andath by carrying out an in-depth study ofBSS

In-depth study of the BSS: Let us consider the ex-
pectation of the sampling results generated byBSS. To ease
description, we define the following notations. We still use
f(t) to denote the traffic traces measured at some fixed time
granularity, and it follows a Pareto distribution with shape
parameterα. We define another two random variables:

Y = f(t), given f(t) ≥ ath, (24)

and
Z = f(t), given f(t) ≤ ath. (25)

Then it is straightforward to obtain the pdf ofY andZ to be:

p(y) =
α`αy−α−1

(`/ath)α
, y ≥ ath, (26)

and,

p(z) =
α`αz−α−1

1− (`/ath)α
, ` ≤ z ≤ ath, (27)

where` is the smallest valuef(t) can take.
Let W denote the sampled process fromBSS, then we

have:

W =




Y, with probability ( `
ath

)α,
Z, with probability 1− ( `

ath
)α,

Y ′, qualified samples.
(28)

Given the number of systematic samples isN , the number of
qualified samples, L′ = N ·L · ( `

ath
)2∗α. The measured mean

Ŵ is:

Ŵ =
1

N + L′

N+L′∑
i=1

wi, (29)

and,

E(Ŵ ) =
1

N + L′
·
∑

E(wi)

=
`α

α− 1
· 1
1 + L(`/ath)2α

(
`

ath
)2∗αL

athα

α− 1
= Xr · ξ,

whereXr = `α
α−1 is the real mean, and

ξ =
1

1 + L(`/ath)2α
(

`

ath
)2∗αL

athα

α− 1
(30)

is calledbias parameter. If ξ = 1, thenBSS is an unbiased
sampling method.ξ is determined byL andath, given ` and
α. In Fig. 10 we show the relationship betweenξ and L,
normalizedath (ε). We also draw the plane withξ = 1 and the
intersection of the two surfaces renders the set of parameters
that makeBSS unbiased.

One important observation is that, for each fixedL, there
are two intersections along theε axis. In other words, for a
fixed L, there are two solutions to the equationξ(ε)− 1 = 0.
To make it clearer, we show a slice of Fig. 10 whenL = 5 in
Fig. 11. We call the smaller oneε1 and the larger oneε2. One
interesting finding is thatε1 is almost the same for different
L and ε1 ≈ α−1

α which is clearly shown in Fig. 10. But this
solution is infeasible, since it causesL < 0 in Eq. (23). For
the other solutionε2, it increases withL.
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(a) L = 10,ε = 2.55 (b) L = 8, ε = 2.28
Fig. 12. The sampled mean obtained by systematic sampling, simple random, andBSS for synthetic traces under two parameter settings. Both of them
renderξ = 1.

Fig. 10. The relationship amongL, ε andξ in BSS.
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Next, we aim to answer the question: canBSS improve the
performance of the systematic sampling method (providing
more accurate estimate of the mean value) while keeping
unbiased. To study this issue, we did experiments on both
synthetic and real Internet traces. The results are shown in
Fig. 12 and Fig. 13.

We can see that compared with systematic sampling, the
unbiasedBSS sampling produces exact the same results when
the sampling rate is small. Under larger sampling rates, it
improves a little, but still cannot reach the real mean quickly.
The reason is that, in order to makeBSS unbiased, for fixed
L, ath must be “large” enough so that the sampled results
won’t overshot. So, for small sampling rate,ath is so high
that few qualified samplescan be obtained, and the sampled
results resembles that of systematic sampling exactly. When
the sampling rate increases, the chance in gettingqualified
samplesincreases. Due to the fact that the choosing ofL and
ath makesξ = 1, the sampled mean still cannot reach the real
mean promptly.

Biased BSS: From above, we see that by carefully
choosingL and ath we can makeBSS unbiased. Although
this unbiasedBSS improve the sampling performance when
sampling rate is not too low, it suffers from the same problem
as the systematic sampling. A remedy to this is to letBSS
to be biased (ξ > 1) so that the real mean value can be
reached quickly. The first hindrance we must hurdle is how to
determine the value ofξ.

According to the definition ofη (= 1 − Xs

Xr
), in order to

fill the gap betweenXs and Xr, we can setξ = 1
1−η . If η

is known, by settingξ = 1
1−η , we can choose appropriateL

andath by intersecting the curve in Fig. 10 with a flat plane
ξ = 1

1−η . In Fig. 14 we show the contour ofξ. The labels on
each contour line indicates the value ofξ. Therefore,ath and
L can be chosen according to the contour once the value ofξ
is given. Since every point on the save contour line serves the
goal, we can set one of the two parameters first and the other
one can be herein determined.
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(a) L = 10,ε = 1.809 (b) L = 8, ε = 1.68
Fig. 13. The sampled mean obtained by systematic sampling, simple random, andBSS for real traces under two parameter settings. Both of them render
ξ = 1.
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Before setting the parameters, we consider the number of
qualified samples, L′, which can be deemed as the cost of
BSS (will be defined as theoverheadin the next section).
The optimal setting ofL and ath should makeL′ as small
as possible. In Fig. 15 we show the relationship betweenL′

N

andL, ε according to the fact thatL′ = N · L · ( `
ath

)2α. One
important observation is that to makeL′ small, we should
avoid small ε and largeL. We also notice thatε is more
sensitive when it is small. Specifically, forε < 0.5, L′ rockets.

Therefore, onceη andXr are known, givenε (henceath)
or L, andξ = 1

1−η we can faithfully determine the other one
parameter to fulfill our objective. In Fig. 16 and 17, we show
the result for both synthetic and real traces when one ofε and
L is fixed and the other one is tuned4.

Tuning L and ath without knowledge ofη: From above
analysis, we know that the knot of selecting appropriateL and
ath lies in whether or notη andXr can be obtained. In reality,

4The value ofη and Xr are readily obtained since we have the entire
traces.
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Fig. 15. The number of qualified samples.

sampling must be done online andη andXr cannot be readily
obtained. In what follows, we first discuss, givenε, the setting
of ath without the knowledge ofXr, then we setL by bridging
the sampling rater with η.

To tune ath, we propose an on-line tuning scheme in
determining the value ofath. Before applyingBSS, we
first chooseNpre samples (calledpre-samples) from which
we obtain a rough estimate of the mean and assignath

accordingly. After the operation ofBSS commences, we set
ath as ath = E(Yi) × ε, whereYi is the sampled mean of
the sample set that contains all the samples till theith sample
(i.e., it includes theith sample, thepre-samples, and all the
qualified samplestaken so far), and according to the above
analysis, to save overhead (reduce the number ofqualified
samples), the normalized thresholdε should not be smaller
than 0.5. Therefore, we setε ∈ (1.0, 1.5) (in Section?? we
set ε = 1.0). Note that when extra samples are chosen in a
sampling intervalC, we do not updateath since whether or
not to take extra samples in a sampling interval should be
based on the same threshold. Only by the end of a sampling
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(a) L is fixed to be 10 (b)ε is fixed to be 1.

Fig. 16. The sampled mean obtained by systematic sampling, simple random, andBSS for synthetic traces.
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(a) L is fixed to be 30 (b)ε is fixed to be 1.

Fig. 17. The sampled mean obtained by systematic sampling, simple random, andBSS for real traces.

interval when the nextnormalsample is taken, we updateath

asE(Yi)× ε.
Givenath, in order to set appropriateL, η is indispensable.

Although we cannot obtain the exact value ofη, we can
estimate it from the sampling rater. The estimation procedure
is shown as follows.

Let N be the total number of systematic sampling. We have:

Xs =
1
N

N∑
i=1

f(ti), (31)

which is the sample mean. From [21] (Chapter 3), if we define:

Vn = N1−1/α(Xs −Xr), (32)

whereXr is the real mean. Then

Vn → ϕα, in distribution, (33)

where ϕα is an α-stable distribution. In other words,Vn

converges in distribution for largeN . Thus we have another
way to convey this:|Xs −Xr| ∼ N1/α−1, then,

η =
|Xr −Xs|

Xr
∼ N1/α−1

Xr
. (34)

Let r andNt be the sampling rate and total number of points
in the original process, thenN = Nt ∗ r. So we have:

η ∼ Cs · r1/α−1, (35)

whereCs = N
1/α−1
t

Xr
is a constant less than 1 for1 ≤ α ≤ 2. In

reality, Cs may fluctuate mildly for different sampling rates.
From our experimental study, we find that for the synthetic
traces (α = 1.5), Cs ∈ (0.25, 0.35) while for the real traces
(α = 1.66), Cs ∈ (0.2, 0.3).

Therefore, given a systematic sampling rater, Eq. (35) can
be applied to estimateη. With the knowledge ofη, we can
obtainξ = 1

η . At last, by plugging bothξ andath in Eq. 30,
the value ofL can be easily obtained. In Section??, ε is pre-set
to be 1 and we apply this procedure in setting the parameters
and the experiments generate relatively good results.

VI. PERFORMANCE EVALUATION

To evaluate the performance ofBSS, we have carried
out several sets of experiments on both synthetic and real
Internet traces. As the increase in the accuracy of the sampled
mean in BSS is obtained at the cost of sampling more



“biased” samples of larger values, we use the following three
metrics to evaluateBSS: (1) the sampled mean (accuracy);
(2) the sampling overhead, defined as the ratio of the number
of qualified samplesto the number of samples taken by
systematic sampling; and (3) the efficiencye, defined as
e = 1−η

log(Nt)
andNt is the total number of samples (including

both the samples normally taken in systematic sampling and
thequalified samplestaken inBSS). In addition to the above
three metrics, we also verify whether the sampled process
has the same Hurst parameter as the original process and
calculate its average variance. The performance evaluation
is made by comparingBSS against systematic and simple
random sampling. As stratified random sampling is a variation
of systematic sampling and yields similar performance as the
latter, we do not include it in the comparison study.

A. Performance w.r.t. Sampled Mean, Overhead and Efficiency

We use the same traces as in Section IV. For synthetic
traces, we set the shape parameter of the on/off periods to be
α ∈ (1.2, 1.6). Figures 18–19 give the sampled mean obtained
by systematic sampling, simple random, andBSS ((a)), and
the sampling overhead incurred inBSS ((b)) for both the
synthetic traces and real Internet traces. Note that the result
shown in Fig. 18 is for the synthetic trace withα = 1.3 and
mean value5.68 kbytes/second, while that in Fig. 19 is for the
Internet trace with the real mean rate1.21× 104 bytes/second
and the (measured) Hurst parameter 0.62. (Results for the other
traces exhibit similar trends and hence are not shown here.)
As shown in Fig. 18 (a),BSS generates much more accurate
sampled means than the other two sampling techniques. The
performance improvement is especially pronounced when the
sampling rate is as small as10−4. As shown in Fig. 18 (b),
the overhead is around0.2, while 1 − η (Section V-C) is
0.922 for BSS and 0.66 and 0.81 for systematic sampling
and simple random sampling, respectively. Similar conclusions
can be made in Fig. 19, except that the sampling overhead is
around0.3.

Fig. 20 comparesBSS against systematic sampling and
simple random sampling with respect to the efficiencye for
synthetic traces.BSS achieves higher efficiency than the other
two sampling techniques. The averagee for BSS is 0.37,
while that for systematic and simple random sampling is0.26
and0.3, respectively, i.e.,BSS achieves a performance gain
of 42% and23%, respectively, as compared to systematic and
simple random sampling.

B. Performance w.r.t. Hurst Parameter and Average Variance

To verify whether or notBSS captures the Hurst parameter
accurately, we use synthetic traffic withβ (H = 2−β

2 ) varying
from 0.1 to 0.8 and give the result in Fig. 21. The Hurst
parameter of the synthetic traces is calculated using a wavelet
based tool provided by Abryet al. [22]. As shown in Fig. 21,
the sampled process has the same value ofβ (and hence the
same Hurst parameter) as the original process. This is not
surprising, asBSS is a variation of static systematic sampling
and the extra samples taken in each sampling interval are also
taken in a systematic sampling fashion in each intervalC. As
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Fig. 21. Theβ values of the sampled process generated byBSS and and
the real process.

a result, the sampled process generated byBSS keeps the
same autocorrelation function as that generated by systematic
sampling (which in turns is the same as that of the original
process, Section III-A). Finally, Fig. 22 gives the the average
variances ofBSS and systematic sampling for both synthetic
and real Internet traces. As shown in the figure, the average
variances of these two methods almost overlap completely.
This is not surprising due to the same reason stated above.

VII. CONCLUSION

In this paper, we have investigated several important issues
in employing sampling techniques for measuring Internet
traffic. We show that while all three sampling techniques can
accurately capture the Hurst parameter (second order statistics)
of Internet traffic, they fail to capture the mean (first order
statistics) faithfully, due to the bursty nature of Internet traffic.
We also show that static systematic sampling renders the
smallest variation of sampling results in different instances of
sampling (i.e., it gives sampling results of high fidelity). Based
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Fig. 18. The sampled mean obtained by systematic sampling, simple random, andBSS ((a)), and and the sampling overhead incurred inBSS ((b)) for
synthetic traces.
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Fig. 19. The sampled mean obtained by systematic sampling, simple random, andBSS ((a)), and and the sampling overhead incurred inBSS ((b)) for
real Internet traces.
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on an important observation, we then devise a new variation
of systematic sampling, calledbiased systematic sampling
(BSS), that gives much more accurate estimates of the mean,
while keeping the sampling overhead low. Both the analysis on
the three sampling techniques and the evaluation ofBSS are
performed on both synthetic and real Internet traffic traces. The
performance evaluation shows thatBSS gives a performance
improvement of 42% and 23% (in terms of efficiency) as
compared to static systematic and simple random sampling.

An important lesson learned from the work is that although
un-biased sampling methods are usually preferred for pro-
cesses with finite means and variances (where the law of large
numbers guarantees that the sampled mean approaches the real
mean exponentially fast as the number of samples increases),
it may not be the case for a process with an infinite variance
(e.g., self-similar Internet traffic with the Hurst parameter
larger than 0.5). Due to the heavy-tailedness inherited in
the self-similar process, the speed for the sampled mean to
converge to the real mean is extremely slow, and therefore un-
based sampling techniques often render un-satisfactory results.
In this case, a biased sampling method is actually desirable. By
biasing toward thelarge values of the process, one can reduce
the discrepancy between the sampled mean and the real mean.
In this paper we make a case where a biased sampling method
outperforms un-biased ones.

We have also identified several new research directions.
First, we will attempt to prove the conjecture made in Sec-
tion V-B that the length of 1-burst periods in self-similar
processes is heavy tailed. Second, although the methods pre-
sented in Section V-C for tuning the parameters,ath and L,
of BSS are devised based on analytical reasoning, they are
engineering-oriented and may not render the optimal setting.
We would like to study how to optimally set these parameters
so as to strike a balance between the sampling overhead and
the accuracy thus achieved.
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