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Abstract

Software is pervasive in our daily lives. Unfortunately, software bugs can severely affect the de-
pendability and security of software systems. Among all types of software bugs, the concurrency
bug is one of the most troublesome and important. Concurrency bugs widely exist in concurrent
programs. They are difficult to detect and diagnose because of their unique non-determinism.
In the real world, concurrency bugs have caused several disasters in the past and are generat-
ing increasingly severe problems in recent years with the prevalence of multi-core hardware and
concurrent programs. Facing the challenge of concurrency bugs, this thesis proposes effective
concurrency bug detection and concurrent program testing approaches based on a comprehensive
characteristics study of real-world concurrency bugs.

This thesis makes three main contributions. The first contribution is a comprehensive charac-
teristics study of real-world concurrency bugs. A good understanding of real-world bugs is always
the foundation for addressing the software bug problem. This dissertation conducts the first com-
prehensive empirical study of concurrency bug patterns, manifestation conditions, and fix strate-
gies based on a large number of concurrency bugs sampled from widely used open source C/C++
server/client applications. This characteristics study provides many motivation and guidelines for
concurrency bug detection, testing and programming language design.

The second main contribution is the proposal of novel techniques to automatically infer pro-
grammers’ synchronization intentions and detect important types of concurrency bugs. A fun-
damental problem in concurrency bug detection is determining what types of interleavings are
intended and what are not. This thesis proposes novel techniques to automatically infer two types
of important synchronization intentions: single-variable atomicity intentions and multi-variable
correlations from source code and program execution. Based on these intention inference ap-
proaches, two bug detection tools, AVIO and MUVI, are designed to detect concurrency bugs that
are common yet not well addressed: atomicity violation bugs and multi-variable concurrency bugs.
Experiments have shown that AVIO and MUVI can accurately detect many bugs that existing tech-
niques cannot detect. Previously unknown bugs in widely used open source concurrent programs
are also detected.
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The third main contribution is along the lines of exploring concurrent programs’ interleaving
space and exposing concurrency bugs. This thesis presents a hierarchy of interleaving coverage
criteria. This hierarchy includes seven interleaving coverage criteria that are designed based on
different concurrency bug models and provides guidance to interleaving space exploration. Guided
by the coverage criteria research, a testing framework, CTrigger, is built to expose atomicity viola-
tion bugs. CTrigger’s testing space, called unserializable interleaving space, is carefully designed
to balance its complexity and bug-exposing capability. Within this testing space, CTrigger uses
trace analysis to identify feasible and rare unserializable interleavings; it uses low-overhead exe-
cution perturbation to exercise these interleavings and effectively expose atomicity violation bugs.
Experiments have shown that CTrigger can expose real-world atomicity violation bugs 100–1000
times faster than the common practice stress testing. In addition, CTrigger can reliably repeat the
bugs that are exposed once 300 to more than 60,000 times faster than stress testing, which will
greatly expedite the software failure diagnosis process.
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Chapter 1

Introduction

Software bugs severely affect the dependability of software systems and are one of the most impor-
tant problems in computer science research. Among all types of software bugs, concurrency bugs
are one of the most troublesome. Concurrency bugs widely exist in concurrent programs. Their
unique non-determinism property makes them very difficult to detect and diagnose. In the past,
they caused several disasters in the real world such as the Northeast Blackout of 2003. Nowadays,
the urgency to address the concurrency bug problem is becoming even more important with the
prevalence of multi-core hardware.

Facing the challenge of concurrency bugs, this dissertation proposes effective concurrency bug
detection and concurrent program testing approaches based on a comprehensive characteristics
study of real-world concurrency bugs.

1.1 Motivation

1.1.1 Concurrency Bugs
Software is pervasive in our daily life. Unfortunately, most software contains bugs. Previous
studies have shown that software bugs cause about 25–35% of system down time [MS00, PBB+02,
Sco98] and 50% of security vulnerabilities [CER]. Recent survey also shows that software bugs
cost US economy sixty billion dollars annually (i.e., 0.6% of GDP) [Nat02].

Among all types of software bugs, concurrency bugs are one of the most troublesome types.
Concurrency bugs are synchronization problems among the concurrent tasks in concurrent pro-
grams. Concurrent programs are software systems that conduct concurrent execution of multiple
tasks. These tasks can interact with each other through either shared memory or message pass-
ing. This dissertation looks at shared memory based concurrent programs, which are common in
current desktop and server environments, and assumes the Sequential Consistency (SC) memory
model [Lam79].

Concurrency bugs widely exist in concurrent programs. The reason is that most programmers
are trained to write sequential, instead of concurrent, programs. With the sequential thinking habit,
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Example Simplified 
from Mozilla

gCurrentScript = aspt;

gCurrentScript = NULL;

gCurrentScript compile();

Thread 1         Thread 2         

crash

Bug Triggering Order

Correct Execution 
Order

Figure 1.1: A typical concurrency bug. (This figure is simplified from a real bug in Mozilla Application
Suite. Figure 4.1 shows more details of this bug.)

programmers are used to thinking about one thing at a time and, hence, can easily make mistakes
when they reason about multiple concurrent execution components at the same time.

Figure 1.1 shows an example of typical concurrency bugs. This example is simplified from a
real bug in Mozilla. It actually looks perfectly correct, if we consider the codes executed by thread
1 and thread 2 separately. For example, the code executed by thread 1 is a common pattern in
sequential programs: store a value into a pointer variable, retrieve and dereference this value later.
This is exactly how programmers with sequential thinking habit make mistakes: they easily forget
that other threads, such as thread 2, could execute concurrently with thread 1 and access the shared
pointer variable gCurrentScript. In this example, when thread 2 nullifies the pointer variable
in the middle, the program crashes due to a null pointer dereference. From this simple example, we
can see that sequential-thinking programmers could easily introduce concurrency bugs when they
write concurrent programs. They will need a lot of help to address the concurrency bug problem.

Making things even worse, once introduced into the program, concurrency bugs are difficult
to get rid of. Different from sequential programs and sequential bugs, concurrent programs and
concurrency bugs have a unique and notorious property: non-determinism. The execution results
of concurrent programs are determined not only by inputs, but also by the non-deterministic thread
interleavings1. With the same input (a bug-triggering one), a concurrency bug may manifest in
some runs and disappear in many other runs. For example, in Figure 1.1, even with the same
input, the program execution may or may not fail, depending on which interleaving is followed
(as shown by the solid lines and dotted lines in the figure). This non-determinism introduces a
lot of trouble to in-house testing: a program with concurrency bugs can pass a thorough testing
composed of a large number of inputs. As a result, many concurrency bugs sneak into production
runs and manifest at users’ site under special interleavings. In addition, the non-determinism in the

1An interleaving is an execution order among memory accesses from multiple threads. This dissertation considers
interleavings following the sequential consistency memory model and does not consider additional interleavings that
are possible under more relaxed memory consistency models.
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manifestation of concurrency bugs also makes it inconvenient for users to report bugs and makes
it hard for developers to diagnose software failures.

1.1.2 Impacts of Concurrency Bugs in the Real World
The challenging concurrency bug problem has existed for many years, but has never been well
addressed.

In history, concurrency bugs have caused several disasters. In the 1980s, a concurrency bug in
Therac-25, a radiation therapy machine, caused radiation overdoses and killed at least five patients,
with more patients severely injured [LT93]. In 2003, a concurrency bug in the alarm system of GE
energy management software finally left 50 million people in the northeastern America without
power and cost around 6 billion dollars of financial loss [Sec].

Recently, the concurrency bug problem has become more severe. This change originates from a
big shift in computer hardware: multi-core machines have replaced single-core machines as main-
stream. This hardware change is due to the many inherent problems of single-core machines, such
as the power wall problem and the memory wall problem. This change pushes parallel computing
out of the high-performance computing community into the daily life of every computer users.
In the meantime, it raises big problems for the software community. Existing concurrency bugs
will manifest more frequently because multi-core machines provide many more interleaving op-
portunities to programs. The more frequent manifestation will yield more damages in practice. In
addition, many new concurrent programs will enter the mainstream software community in order
to leverage the multi-core resource. These new concurrent programs will inevitably produce many
new concurrency bugs in our software.

1.2 Approaches to Address Concurrency Bugs

1.2.1 Directions to Address the General Software Bug Problem
Many different approaches have been proposed to address the software bug problem. Most of them
are along one of the following lines.

Bug avoidance and software verification Bug avoidance includes techniques that help devel-
opers to write correct programs. Good programming languages and programming environments
can effectively avoid some programming mistakes and decrease the total number of bugs in our
software. Software verification includes techniques that try to prove the correctness of a program.
Verification techniques can provide great confidence to developers when their results are positive.
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Both bug avoidance and software verification techniques are frequently used in the early stage of
software development. However, since making mistakes is human nature, it is impossible for pro-
grammers to always write perfectly correct programs, and it is the task for other avenues to address
the remaining problems.

Software testing and bug detection These are two independent and also complementing direc-
tions to combat software bugs. Testing exercises the software and tries to identify conditions under
which the software would fail. Bug detection analyzes source code or execution in order to figure
out what and where the problem is inside a piece of software. These two directions can benefit
from each other. Many bug detection techniques rely on testing techniques to expose bugs before
they can analyze the problem. On the other hand, good bug detection tools can help developers
to tell more accurately whether or not a testing has failed. Both techniques are critical and widely
used in practice, consuming more than 30% of software companies’ development resources [SDT].

Recovery and bug fixing Recovery techniques try to limit the damages caused by manifested
software bugs and restore the software system to correct tracks. Bug fixing usually happens after a
bug is pinpointed. Developers expend a lot of manual effort to fix a bug. Some times, this process
can get feedback from software testing, especially regression testing, and bug detection.

Understanding bugs Finally, in order to develop good approaches along each of the above di-
rections, good understanding of software bugs cannot be overlooked. The characteristics study of
real-world bugs is the traditional way to achieve such an understanding.

Among the above discussed directions, this dissertation focuses on understanding, detecting,
and exposing (software testing) concurrency bugs. The next section summarizes the state-of-the-
art approaches to understanding, detecting and exposing concurrency bugs. More details along all
directions will be discussed in Section 2.

1.2.2 State of the Art in Understanding, Detecting, and Exposing
Concurrency Bugs

A good understanding of software bugs can provide useful guidelines and motivation for fight-
ing software bugs from every direction. In the past, many empirical studies [CYC+01, OWB05,
SC92, Z. 06] on general software bugs (not specific to concurrency bugs) have provided a lot of
insights into memory bugs, semantic bugs, and some general features of all software bugs. Unfor-
tunately, few studies have been conducted specifically to concurrency bugs. Recently, researchers
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realizing the importance of such a study carried out preliminary work on concurrency bug pat-
terns [FNU03]. However, their observations were built upon programs that were intentionally
made buggy by students for this study; this cannot represent real-world concurrency bugs. With
the limited understanding of concurrency bugs, we are in great need of a characteristics study based
on a large number of real-world bugs to provide knowledge about the different types of real-world
concurrency bugs, the typical conditions that expose them, and how they were fixed by developers,
etc.

Concurrency bug detection has been studied for a long time. Most of the previous work fo-
cuses on data race, which happens when two conflicting accesses from different threads access
the same shared variable without proper synchronization. Although many race detection tools
have been proposed [C+02, EA03, NM91, OC03, SBN+97, YRC05], race condition is neither
sufficient nor necessary for a concurrency bug (Chapter 4 will discuss this in more detail). Some
recent work [FF04, XBH05] has jumped out of data race to investigate atomicity violation bugs.
This is a very inspiring starting point. However, existing atomicity violation bug detection tech-
niques are far from complete. In the meantime, there are also other types of important concur-
rency bugs that are not addressed. Finally, since the manifestation of concurrency bugs is highly
dependent on the timing of thread interleavings, dynamic concurrency bug detection tools are
expected to have low overhead and generate small perturbation. Towards this goal, hardware sup-
port [Prv06, PT03, ZTZ07] for race detection has been proposed. More research along this line to
support general low-overhead concurrency bug detection is desired.

How to effectively expose concurrency bugs is an open problem. It is much more difficult
than exposing sequential bugs because it demands exploring not only the input space but also the
huge interleaving space of concurrent programs. Many coverage criteria were proposed in the past
to provide guidelines to the exploration of interleaving space. However, previous proposals are
either too complicated [KT96, TLK92] or based on heuristics [EFN+02]. In the real world, the
common practice to expose concurrency bugs is simply to run a program with each input many
times, which is very inefficient. Recently, several inspiring concurrency bug-exposing frameworks
have been proposed [BFM+05, MQ07, Sen08]. These works focus the testing on a small set of
representative interleavings by carefully perturbing the concurrent execution. These proposals
can help expose some types of concurrency bugs, such as deadlock bugs. However, they are less
helpful in exposing some other important types of concurrency bugs, such as atomicity violation
bugs. The perturbation designed in some of these frameworks cannot fully leverage the multi-core
computation resource and would greatly slow down the testing process.

In summary, prior work has made a lot of progress on fighting concurrency bugs. However,
we are still in great need of a better understanding of concurrency bugs, more concurrency bug
detection tools that go beyond data races, and effective concurrency bug-exposing frameworks.
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Figure 1.2: Interactions among the three components in this dissertation.

1.3 Dissertation Contributions
This dissertation works on three directions to address the concurrency bug problem: understanding
real-world concurrency bugs through characteristics study, detecting important types of concur-
rency bugs that have not been well addressed before, and building a foundation towards practical
and effective concurrent program testing. These three components of this dissertation interact and
complement each other as shown in Figure 1.2. The work in this dissertation has already made im-
pact: the characteristics study has helped more than 30 research groups to evaluate their software
reliability research; part of the bug detection work (AVIO) is under technology transfer to Intel.

(1) Understanding concurrency bugs Addressing the concurrency bug problem requires ap-
proaches from many different directions and all these directions will significantly benefit from a
deep understanding of real-world concurrency bugs.

This dissertation conducts a comprehensive characteristics study on a large number of real-
world concurrency bugs collected from four widely used large open-source C/C++ applications:
MySQL, Apache, Mozilla and OpenOffice. This study reveals many interesting findings about
concurrency bugs’ patterns (causes of concurrency bugs), manifestation conditions (conditions that
are required to expose concurrency bugs), and fix strategies (how bugs are fixed by developers). It
also directly motivates the following work on detecting and exposing concurrency bugs.

(2) Detecting concurrency bugs The goal of concurrency bug detection is to pinpoint what is
wrong with the concurrent program execution, i.e., which (part of) interleaving is bad. To achieve
this goal, a fundamental challenge is to figure out what types of interleavings are buggy (i.e.,
not intended by programmers). Different from all previous work, this dissertation proposes to
automatically infer programmers’ synchronization intentions and catch buggy interleavings that
violate the intentions. Specifically, guided by the characteristics of real-world concurrency bugs,
bug detection techniques for two types of important concurrency bugs are proposed as follows.
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(a) AVIO: an invariant-based atomicity violation bug detection technique Atomicity vio-
lation bugs are one of the most common types of concurrency bugs. They are caused by violation
to the atomicity of certain code regions. The biggest challenge in detecting them is to figure
out which code regions are intended to be atomic. AVIO uses a novel solution to address this
challenge. Specifically, a special type of program invariant that reflects programmers’ atomicity
intentions is proposed. AVIO automatically infers the atomicity intentions by learning invariants
from correct execution. AVIO also has two designs to detect violations to the atomicity intentions
(invariants): pure software design and hardware-supported design. The latter uses a simple exten-
sion to cache-coherence protocol and L1 cache to achieve negligible overhead. In the experiments
with six real-world atomicity violation bugs in big server applications, AVIO can detect these bugs
more accurately and more efficiently than existing concurrency bug detection tools. AVIO is under
technology transfer to Intel.

(b) MUVI: a multi-variable concurrency bug detection technique Traditional race detec-
tion techniques focus on the synchronization among accesses to the same shared variable. Un-
fortunately, as indicated by the characteristics of real-world bugs, concurrent accesses to multiple
correlated variables should also be synchronized. The problem of detecting this type of bug has
never been addressed. In MUVI, a novel technique is proposed to automatically infer variable cor-
relation based on source code analysis and data mining. Leveraging the inferred correlation infor-
mation, the MUVI tool can effectively detect multi-variable concurrency bugs. In the evaluation of
five real-world multi-variable concurrency bugs, MUVI correctly identified the root causes of four
bugs, none of which could be identified by existing techniques. MUVI also found four previously
un-known multi-variable concurrency bugs from a widely used open-source application: Mozilla.
In addition, using the automatically inferred variable correlation information, MUVI found 39 (17
confirmed) semantic bugs that were caused by inconsistent update to correlated variables in the
latest versions of Linux, MySQL, Mozilla, and Apache.

(3) Exposing concurrency bugs An effective way to expose concurrency bugs during software
testing can greatly benefit concurrency bug detection and diagnosis. Unfortunately, the huge in-
terleaving space makes it extremely challenging to exercise concurrent programs and expose con-
currency bugs. Facing this challenge, this dissertation first proposes a hierarchy of interleaving
coverage criteria and then builds a framework to expose atomicity violation bugs:

(a) A new hierarchy of interleaving coverage criteria The manifestation of a concurrency
bug is always associated with certain interleavings. Unfortunately, in practice, the testing resource
can afford exploring only a small portion of the whole interleaving space. Therefore, good cover-
age criteria are needed to guide the exploration of concurrent programs’ interleaving space. This
dissertation proposes a hierarchy of interleaving coverage criteria based on the characteristics of
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real-world concurrency bugs. This hierarchy is composed of five layers and seven criteria. Each
of these seven criteria is designed based on one concurrency bug model and can help select repre-
sentative interleavings from a different perspective. These criteria together show a wide spectrum
of design trade-offs between testing complexity (ranging from exponential to linear), and bug-
exposing capability.

(b) CTrigger: a new testing framework to expose atomicity violation bugs Guided by
the above study of coverage criteria, a testing framework called CTrigger is designed to expose
atomicity violation bugs. CTrigger conducts testing through two phases: the first phase identifies
representative interleavings and the second phase controls the execution to exercise the selected
interleavings. Specifically, guided by one criterion that is proposed above, CTrigger focuses on
unserializable interleavings that are highly correlated with atomicity violation bugs. Starting from
unserializable interleavings, CTrigger trace analysis prunes out infeasible interleavings and ranks
feasible interleavings based on their estimated occurrence probabilities, giving preference to rare
interleavings. After this analysis, CTrigger carefully controls the concurrent execution to exercise
the selected unserializable interleavings with a low overhead and expose hidden atomicity violation
bugs. The evaluation with seven representative concurrent programs shows that CTrigger can
expose the tested atomicity violation bugs 2–4 orders of magnitude faster than stress testing, the
common practice. Some real-world server bugs do not manifest after days or even weeks of stress
testing, yet can be exposed by CTrigger within only a couple of minutes. CTrigger also reliably
repeats the bugs that are exposed once, mostly within 5 seconds, 300 to more than 60,000 times
faster than stress testing.

1.4 Outline
The remainder of this dissertation is organized as follows. Chapter 2 describes the background
knowledge and previous work on concurrency bug characteristics study, concurrency bug detec-
tion, testing, and other related topics. Chapter 3 presents our characteristics study of real-world
concurrency bugs. Chapters 4 and 5 focus on our two concurrency bug detection tools, AVIO
and MUVI. Chapter 6 explains our design of a hierarchy of interleaving coverage criteria. Guided
by this design, Chapter 7 presents the CTrigger framework that can effectively expose atomicity
violation bugs.

The materials in some chapters have been published as conference and journal papers. The
materials in Chapter 3 have been presented in [LPSZ08, LLQ+05]. The materials in Chapters 4
and 5 have been presented in [LPH+07, LTQZ06, LTQZ07], and some materials in Chapters 6
and 7 have been presented in [LJZ07, PLZ09].
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Chapter 2

Background and Previous Work

This chapter discusses previous work on improving software dependability, with the focus on con-
current programs. Section 2.1 discusses previous work on understanding the characteristics of
real-world software bugs. Section 2.2 and 2.3 discuss existing approaches on detecting concur-
rency bugs and testing concurrent programs. Finally, section 2.4 briefly discusses concurrent pro-
gramming language design and multi-core deterministic replay works.

2.1 Understanding Bug Characteristics
In the past, many empirical studies on general software bugs (not specific to concurrency bugs)
have been done. Their findings have provided useful guidelines and motivation for improving
software reliability from different aspects, such as bug detection [CYC+01, SC92], fault toler-
ance [GKIY03], failure recovery [CC00], fault prediction and testing [OWB05], and so on. In a
recent work [Z. 06], researchers also studied how the recent trends (e.g., the availability of com-
mercial bug detection tools) affect the general bug characteristics such as distribution and fix time.

Unfortunately, few previous works have focused on concurrency bugs, probably because real-
world concurrency bugs are hard to collect and analyze. For example, in a previous study [CC00],
only 12 concurrency bugs were collected from three applications: MySQL, GNOME, and Apache.
Under this situation, a previous concurrency bug pattern study [FNU03] had to ask students to
purposely write concurrent programs containing bugs, which cannot well represent the real-world
bug characteristics. Concurrency bug characteristics study using a large number of real-world bug
samples is desired.

2.2 Detecting Concurrency Bugs
Many concurrency bug detection tools have been built. They can be categorized into three cat-
egories based on the different types of bugs they target: data race detection, atomicity violation
detection, and deadlock detection. They are discussed one by one in the following sections.
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2.2.1 Data Race Bug Detection
Data race is the type of concurrency bug that most previous concurrency bug detection work fo-
cused on. A data race occurs when two memory access instructions, at least one of which is a
write, from different threads access the same shared variable without proper synchronization.

Three types of algorithms have been proposed to detect data races: lock-set algorithms, happens-
before algorithms, and hybrid algorithms combining both lock-set and happens-before algorithms.
The lock-set algorithm [C+02, DS91, EA03, NAW06, SBN+97] tracks the set of locks that are
used to protect accesses to each memory location. It reports data race bugs whenever a mem-
ory location’s lock set becomes empty. Happens-before bug detection [DS90, NM91, PK96] is
based on Lamport’s happens-before relation [Lam78]. Simply speaking, the happens-before par-
tial order among memory accesses can be calculated based on synchronization operations. The
happens-before algorithm reports data race bugs when there is no strict happens-before order
between two conflicting memory accesses. Lock-set and happens-before algorithms each have
their own advantages. The happens-before algorithm is more accurate, but can only detect races
that occur during monitored runs. On the other hand, the lock-set algorithm can report some
races that did not occur during the monitored runs. Unfortunately, the lock-set algorithm also
incurs many more false positives than happens-before algorithm. Hybrid algorithms have been
proposed [OC03, PS03, YRC05, NS07] to combine the advantages of these two algorithms. By
conducting both lock-set and happens-before order analysis, hybrid algorithms can detect more
bugs than the happens-before algorithm and introduce fewer false positives than the lock-set algo-
rithm.

Apart from the false-positive and false-negative issue discussed above, performance is an-
other critical issue. Many dynamic race detectors impact system performance by causing about
10 to 100 times slowdowns. This overhead can hardly be accepted even if the tool is used at
the development site. Even worse, such a high overhead may prevent timing-sensitive concur-
rency bugs from happening. To address this problem, hardware support for race detection was
proposed. Previous works have designed hardware extensions for fast happens-before race detec-
tion [MC91, Prv06, PT03] and fast lock-set race detection [ZTZ07]. These proposals can effec-
tively improve the bug detection performance. However, their bug detection capability is similar
to that of their software peers.

Overall, race detection has made a lot of progress in past years. However, it still suffers several
fundamental problems. First, some data races are accepted by developers. It is hard to differentiate
these races from true bugs, which leads to many false positives in bug reports. Second, it is hard
to identify customized synchronization operations. This again leads to false positives. Finally,
race-free does not mean concurrency bug-free. Even if a concurrent program has no data race,
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it can still contain atomicity violation problems or other synchronization problems. This leads to
false-negatives in concurrency bug detection. In addition, as will be discussed in Section 2.4, this
false negative problem will be critical if advanced synchronization primitives, such as transactional
memory, are adopted.

2.2.2 Atomicity Violation Bug Detection
Atomicity, also called serializability 1, is a property for the concurrent execution of several opera-
tions when their data manipulation effect is equivalent to that of a serial execution of them2. Atom-
icity violation bugs are introduced when programmers assume some code regions to be atomic, but
fail to guarantee the atomicity in their implementation. Consequently, the assumed atomicity can
be broken at run time and lead to program failure.

Many works [FQ03, SAWS05, WS05] have studied how to verify the atomicity of certain code
regions. They use the state reduction theory of the right/left mover to detect atomicity violation
upon specified code regions statically or dynamically. Recently, simpler definitions of atomicity
have been discussed [VTD06, FM06] to ease the atomicity verification process. A limitation of
these works is that they require programmers to specify all synchronization points, which is ex-
pensive, and all code regions that need to be atomic, which is impractical—if programmers can
properly do this, they probably would not have introduced the atomicity violation bugs. This limi-
tation is addressed to some extent by Atomizer [FF04], which gains knowledge of synchronization
through the lock-set analysis [SBN+97]. In [BL02], stale-value errors, a subclass of atomicity
violation bugs, are studied. Not requiring any manual annotation, SVD [XBH05] uses data de-
pendency and control dependency to infer atomic regions. It provides an inspiring starting point
for automatically inferring atomic regions. However, its inference mechanism still misses many
potential atomic regions.

2.2.3 Deadlock Bug Detection
Deadlock occurs when threads circularly wait for each other to release the acquired resource (e.g.,
locks). Deadlock bugs have completely different properties than non-deadlock bugs such as those
discussed earlier. In practice, many server applications simply use timeout-and-restart to detect
and recover from deadlock. Lockset-based analysis [EA03, SBN+97] and speculation-based tech-
niques [LELS05] are also proposed for more accurate deadlock detection.

1Specifically, serializability in this dissertation refers to view serializability.
2Atomicity has a slightly different meaning in database research community. The definition used in this dissertation

follows the tradition in concurrent program research.
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The techniques mentioned above are mostly dynamic techniques. There are also many static
concurrency bug detection tools not mentioned. One category of static techniques leverages type
systems [FF00, PFH06, AGEB08]. The other category is model checking [God97, HJM04, MQ07,
QW04]. Compared with dynamic techniques, static bug detection does not have the problem of run
time overhead and is not limited to program inputs. However, it usually has scalability problems
and accuracy problems caused by pointer-alias issue, etc.

2.3 Testing Concurrent Programs
Software testing is a dominant technique that software developers heavily rely on to expose bugs
before software release. Previous surveys have shown that about 30% of software development
resources are spent on testing in software companies [SDT]. A lot of research has been done on
coverage criteria design, test case selection, and testing framework building. This section focuses
on previous work on testing concurrent programs. Some background of general testing will also
be presented.

2.3.1 Software Testing and Coverage Criteria
A fundamental challenge in testing is the huge and sometimes infinite testing space, which includes
the set of all program inputs, all environment configurations, all interleavings, and more. This
challenge is huge in practice because the limited testing resources, in terms of people, hardware,
and time, makes it impossible to exhaustively test every possible case. Therefore, testing engineers
strive to design representative test cases to expose as many bugs as possible before software release.
During this process, testing coverage criteria are greatly needed to help design and evaluate test
case selection.

A testing coverage criterion (also called a testing adequacy criterion) is a model consisting
of a set of testing requirements (also called program properties). It is designed based on certain
testing domains and a class of target software bugs [GG75]. It can work as a metric [ZHM97] to
measure the coverage and adequacy of a testing or a test case set. It can also work as a test case
selector [BA82] to choose representative test cases or to filter out redundant test cases to expose
software bugs in the most efficient way. A testing can claim to have achieved full coverage under
a certain coverage criterion, iff the testing has satisfied all testing requirements (i.e., exercised all
program properties) defined by the criterion. A coverage criterion is usually evaluated based on
its testing complexity and bug-exposing capability. In practice, testing engineers select the most
appropriate criterion based on their testing requirement and the amount of the testing resource.
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2.3.2 Interleaving Coverage Criteria
Exposing concurrency bugs requires not only a bug-triggering input but also a bug-triggering in-
terleaving. Unfortunately, exercising all interleavings associated with every input is infeasible in
practice because the number of possible interleavings for each input is exponential to the program’s
execution size. Under this circumstance, a good interleaving coverage criterion is desired to help
select representative interleavings to explore.

Previous research has proposed many different interleaving coverage criteria. Unfortunately,
most of them require testing to cover an exponential number of interleavings [KT96, TLK92] and
are therefore impractical. The proposal of concurrent data flow coverage [HM92, YP03] requires
the testing to cover all feasible data flow combinations. It decreases the testing coverage require-
ments to polynomials of the program’s execution size, but is still too large for practical testing. No
previously proposed coverage criteria have been used in practice to test real-world big concurrent
programs.

Previous research also studied how to conduct input generation to satisfy traditional coverage
criteria, such as statement coverage, in concurrent programs [SA06]. Future research can combine
these input generation techniques with interleaving testing.

2.3.3 Exposing Concurrency Bugs
The common practice to expose concurrency bugs is to run a program with each input test case for
a long time (for servers) or for many times (for other types of applications). We refer to this as
stress testing. Intuitively, it makes some sense because the non-deterministic nature of concurrent
programs will help exercise different interleavings in different runs. Unfortunately, practice has
shown that stress testing is neither efficient nor reproducible [MQ07] (more discussion about why
stress testing is inefficient is offered in Section 7.3).

Recently, several inspiring approaches [BFM+05, EFN+02, MQ07, Sen08] were proposed to
improve stress testing. All these approaches are targeted to reduce the exponential size of inter-
leaving space into smaller sets of interleavings for practical testing to target.

ConTest [BFM+05] injects artificial delays at synchronization points (e.g., lock acquisition,
lock release) in order to intensify the contention for synchronization resources. This would help
expose deadlocks, but not data races or atomicity violation bugs, because the latter types are usually
caused by programmers forgetting to use appropriate synchronization to protect shared memory
accesses.

CHESS [MQ07] cleverly limits the number of context switches during an execution to 1–4 and
therefore significantly reduces the number of interleavings to explore. However, it has to make a
difficult trade-off between coverage and testing time. Even with a couple of context switches, there
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are still a huge number of possible choices, including both which locations/threads to switch from
and which locations/threads to switch to. The number of choices further increases polynomially if
three or four switches are allowed. That is why CHESS allowed context switches only at synchro-
nization points when it was used by Microsoft developers on real-world programs in order to be
practical. Such a constraint will make the method less effective for exposing atomicity violation
bugs and data race bugs, just like that in ConTest as discussed above.

Based on the same motivation, RaceFuzzer [Sen08, PS08] focuses on potential data races re-
ported by race detectors. It attempts to force all the reported race interleavings during testing in
order to separate false positives from true race bugs. While this approach is definitely useful to
help users automatically filter out false positives in race bug detection, its bug-exposing capabil-
ity significantly relies on the underlying data race detectors. If the detector does not have good
coverage, RaceFuzzer would miss many bugs. Unfortunately, due to the inherent complexity of
concurrent programs, there are still few race bug detectors that can achieve high coverage, espe-
cially for C/C++ programs and for atomicity violation bugs.

In addition, both CHESS and RaceFuzzer only select one thread to execute at a time, which can
significantly slow down each test run and cannot fully take advantage of multi-core machines in
testing. While it is possible to conduct multiple testing runs on the same machine, the contention
for disk resource and network I/Os makes it impractical for I/O-intensive applications, such as
server programs.

2.4 Other Related Works
Good concurrent programming languages can help programmers correctly express their intentions
and therefore avoid certain types of concurrency bugs. Along this direction, many new program-
ming language features have been proposed to support concurrent program development [VTD06,
MZGB06, AGEB08]. Especially, there has been a lot of studies on transactional memory (TM)
[ATKS07, AAK+05, HWC+04, HF03, Moi97, MBM+06, CTTC06, HM93] recently. TM pro-
vides programmers an easy way to specify which code regions should be atomic. The atomicity of
the specified regions against other specified regions are protected through underlying TM hardware
and software support.

How to survive concurrency bugs at production run is also an important topic towards improv-
ing the dependability of concurrent programs. Restart or checkpoint-retry [QTSZ05] techniques
are quite effective for surviving concurrency bugs, as long as the bugs are detected in time. In
recent Atom-Aid work [LDSC08], transactional memory is leveraged to help survive atomicity
violation bugs that have escaped the in-house testing. By transparently adding transactions at run-
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time, Atom-Aid can decrease the manifestation probability of an atomicity violation bug dramat-
ically. These production-run surviving techniques can well complement the detection and testing
techniques that are discussed earlier.

Deterministic replay techniques can significantly help the diagnosis of concurrency bugs. Multi-
core deterministic replay requires recording a huge amount of memory access information at run
time and faces the challenge of huge recording overhead. Previous works have proposed hardware
and virtual machine support to speedup deterministic replay [NPC06, NPC05, XBH03, XHB06,
HH08, MCT08, DLFC08]. Low overhead software implementation of multi-core deterministic
replay is desired.
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Chapter 3

Understanding the Characteristics of
Real-World Concurrency Bugs

A good understanding of concurrency bugs is the foundation for addressing the concurrency bug
problem. Unfortunately, as discussed in earlier chapters, there have been very few studies focusing
on concurrency bugs. To address this problem, this chapter conducts a characteristics study of
real-world concurrency bugs. This study will lay the groundwork for the research presented in
later chapters. It will also provide guidance for future research regarding concurrent programs.

3.1 Overview

3.1.1 Motivation
Addressing the concurrency bug problem requires efforts from many directions, such as bug de-
tection, software testing, and programming language design, among others. All of these directions
have made progress over the past years. However, each of them is still facing many open questions:

(1) Concurrency bug detection Most previous concurrency bug detection research has focused
on data race bugs [C+02, EA03, NM91, PT03, SBN+97, YRC05] and deadlock bugs [BLR02,
EA03, SBN+97]. In order to improve concurrency bug detection, we want to know what types of
concurrency bugs exist in the real world. It is especially important to understand whether there is
any type that has not been addressed and whether the assumptions used by existing tools are valid.
For example, most previous race detection tools focus on synchronization of access to each single
variable. How many concurrency bugs are missed by this single variable assumption?

(2) Concurrent program testing and model checking As discussed in Section 2.3, concurrent
program testing is greatly challenged by the huge interleaving space. It remains an open ques-
tion whether (and how) we can selectively test a small number of representative interleavings and
still expose most of the concurrency bugs. Finding answers to this question demands our knowl-
edge about the manifestation conditions of real-world concurrency bugs. We need to know what
conditions, in addition to what program inputs, are needed to reliably trigger a concurrency bug.
Specifically, how many threads, how many variables, and how many accesses are usually involved
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in a real-world concurrency bug’s manifestation? This information will also help address the state
explosion problem in concurrent program model checking.

(3) Concurrent programming language design Good concurrent programming languages can
help programmers correctly express their intentions and therefore avoid certain types of concur-
rency bugs, as we described in Section 2.4. Along this direction, transactional memory (TM)
[ATKS07, AAK+05, HWC+04, HF03, Moi97, MBM+06, MH06, RHP+07, CTTC06] is one of
the popular trends. Although TM shows great potential, there are still many questions, such as (i)
what portion of bugs can be avoided by using TM, (ii) what are the real-world concerns that TM
design needs to pay attention to, and (iii) besides TM, what other programming language supports
will be useful for programmers to write correct concurrent programs?

A better understanding of real-world concurrency bugs can help us answer these open ques-
tions —basically, we can learn from the common mistakes made by programmers in concurrent
programs. For example, if many real-world concurrency bugs involve multiple shared variables,
it will be necessary to study how to detect multi-variable concurrency bugs; if the manifestation
of most real-world concurrency bugs are determined by the interaction between two threads, we
can simply conduct pairwise testing for every pair of program threads; if many real-world concur-
rency bugs are hard to avoid using existing synchronization primitives, we should look for new
language features to ease the process of writing concurrent program; if a certain type of informa-
tion is frequently used by programmers to fix real-world concurrency bugs, bug detection tools can
be extended to provide such information and thus become more useful in practice.

As reviewed in Section 2.1, most empirical studies in the past [CYC+01, SC92, Z. 06] have
looked at general software bug characteristics, instead of focusing on concurrency bugs. Although
these studies have provided many useful guidelines for improving software quality, they cannot an-
swer these questions specific to concurrency bugs. Existing concurrency bug characteristic studies
either have only a small number of concurrency bugs [CC00] or are based on bugs intentionally
introduced for the study [FNU03]. A comprehensive study of the characteristics of real-world
concurrency bugs is therefore desired.

3.1.2 Highlights
This chapter presents the first (to the best of our knowledge) comprehensive real-world concur-
rency bug characteristics study. Specifically, this study examines bug patterns, manifestations,
fix strategies and other characteristics of real-world concurrency bugs. It is based on 105 ran-
domly selected real-world concurrency bugs, including 74 non-deadlock bugs and 31 deadlock
bugs, collected from four large and mature open-source applications: MySQL, Apache, Mozilla
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Findings on Bug Patterns (Section 3.3) Implications
(1)Almost all (97%) of the examined non-deadlock
bugs belong to one of the two simple bug patterns:
atomicity-violation or order-violation∗.

Concurrency bug detection can focus on these two bug
patterns to detect most concurrency bugs.

(2) About one third (32%) of the examined
non-deadlock bugs are order-violation bugs, which are
not well addressed in previous work.

New concurrency bug detection tools are needed to
detect order-violation bugs, which are not addressed by
existing atomicity violation or race detectors.

Findings on Manifestation (Section 3.4) Implications
(3) Almost all (96%) of the examined concurrency
bugs are guaranteed to manifest if certain partial order
between 2 threads is enforced.

Pairwise testing on concurrent program threads can
expose most concurrency bugs, and greatly reduce the
testing complexity.

(4) Some (22%) of the examined deadlock bugs are
caused by one thread acquiring resource held by itself.

Single-thread based deadlock detection and testing
techniques can help eliminate these simple deadlocks.

(5) Many (66%) of the examined non-deadlock
concurrency bugs’ manifestation involves concurrent
accesses to only one variable.

Focusing on concurrent accesses to one variable is a
good simplification for concurrency bug detection,
which is used by many existing bug detectors.

(6) One third (34%) of the examined non-deadlock
concurrency bugs’ manifestation involves concurrent
accesses to multiple variables.

New detection tools are needed to address multiple
variable concurrency bugs.

(7) Almost all (97%) of the examined deadlock bugs
involve two threads circularly waiting for at most two
resources.

Pairwise testing on the acquisition/release sequences
to two resources can expose most deadlock
concurrency bugs, and reduce testing complexity.

(8) Almost all (92%) of the examined concurrency
bugs are guaranteed to manifest if certain partial order
among no more than 4 memory accesses is enforced.

Testing partial orders among every small group of
accesses can expose most concurrency bugs, and
simplify the interleaving space from exponential to
polynomial.Findings on Bug Fix Strategies (Section 3.5) Implications

(9) Three quarters (73%) of the examined
non-deadlock bugs are fixed by techniques other than
adding/changing locks.

Bug detection and diagnosis tools need to provide
more bug pattern and manifestation information,
besides lock information, to help programmers fix
bugs.

(10) Many (61%) of the examined deadlock bugs are
fixed by stopping one thread from using a resource
(e.g., lock). Such fix can introduce non-deadlock
concurrency bugs.

Fixing deadlock bugs might introduce non-deadlock
concurrency bugs. Special help is needed to ensure
the correctness of deadlock bug fixes.

Findings on Bug Avoidance (Section 3.5.4) Implications
(11) Transactional memory (TM) can help avoid about

one third (39%) of the examined concurrency bugs.
Transactional memory (TM) is a promising language

feature for programmers.
(12) TM could help avoid over one third (42%) of the

examined concurrency bugs, if some concerns are
addressed.

TM design need to pay attention to some concerns,
such as how to protect hard-to-rollback operations.

(13) Some (19%) of the examined concurrency bugs
cannot benefit from basic TM, because of their bug
patterns.

Better programming language features to help express
“order” semantics in C/C++ programs are desired.

Table 3.1: Findings of real-world concurrency bug characteristics and their implications on bug
detection, program testing and programming language design. (*: All terms and categories mentioned
here will be explained in Section 3.2.)

and OpenOffice, representing both server and client applications. To understand each bug, its bug
report, related source code, patches, and programmers’ discussion are all carefully examined.

This study reveals many interesting findings and provides useful guidelines for concurrency
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bug detection, concurrent program testing, and concurrent programming language design. The
main findings and their implications are summarized in Table 3.1.

Although the examined applications and bugs were carefully selected to represent a large body
of concurrent applications, this study does not intend to draw general conclusions about all con-
current applications. The results presented in this chapter should be taken with the specific appli-
cations and the evaluation methodology in mind (Section 3.2.3 discusses the threats to validity).

3.2 Methodology

3.2.1 Bug Sources
Applications: Four representative open source applications are selected for this study: MySQL,
Apache, Mozilla, and OpenOffice. These are all mature (with 9–13 years development history)
large concurrent applications (with 1–4 million lines of code), with well maintained bug databases.
These four applications represent different types of server applications (database and web server)
and client/desktop applications (browser suite and office suite). Concurrency is used for different
purposes in these applications. Server applications mostly use concurrency to handle concurrent
client requests. They can have hundreds or thousands of threads running at the same time. Client
and desktop applications mostly use concurrency to synchronize multiple GUI sessions and back-
ground working threads.

Bugs: Concurrency bugs are randomly collected from the bug databases of the above appli-
cations. Since these databases contain more than five hundred thousand bug reports, in order to
effectively collect concurrency bugs from them, a large set of keywords that are related to con-
currency bugs are used, for example, ‘race(s)’, ‘deadlock(s)’, ‘synchronization(s)’, ‘concurrency’
‘lock(s)’, ‘mutex(es)’, ‘atomic’, ‘compete(s)’, and their variations. From the thousands of bug-
reports that contain at least one keyword from the above keyword set, about five hundred bug
reports with clear and detailed root cause descriptions, source codes, and bug fix information, are
randomly picked. Then, these randomly picked bugs are manually check to make sure that they
are really concurrency bugs. After this step, 105 concurrency bugs are included into this study.

These 105 concurrency bugs contain two types: deadlock bugs and non-deadlock concurrency
bugs. Since these two types of bugs have completely different properties and demand different
detection, recovery approaches, they are separated in this study for the ease of investigation.

In summary, 105 concurrency bugs are collected and used in this study. These 105 bugs include
74 non-deadlock concurrency bugs and 31 deadlocks bugs. The details are shown in Table 3.2.
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Application Description # of Bug Samples
Non-Deadlock Deadlock

MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Browser Suite 41 16
OpenOffice Office Suite 6 2
Total 74 31

Table 3.2: Applications and bugs examined in the characteristics study

3.2.2 Characteristic Categories
In order to provide guidance for future research on concurrent program reliability, this work fo-
cuses on three aspects of concurrency bug characteristics: bug pattern, manifestation, and bug fix

Definitions Related to Bug Pattern Study
Dimension Category Description Abbr.

Atomicity The desired serializability among multiple memory accesses Atomicity
Violation is violated. (i.e., a code region is intended to be atomic,

Bug but the atomicity is not enforced during execution.)
Pattern* Order The desired order between two (groups of) memory accesses Order

Violation is flipped. (i.e., A should always be executed before B,
but the order is not enforced during execution.)

Other Concurrency bugs other than the above two types. Other
Definitions Related to Bug Manifestation Study

Dimension Term Definition
Manifestation A specific execution order among a smallest set (S) of memory accesses.

Bug Condition Enforcing this order, no matter how, guarantees the bug to manifest.
Mani- # threads involved The number of distinct threads that are included in S.

festation # variable involved The number of distinct variables that are included in S.
# accesses involved The number of accesses that are included in S.

Definitions Related to Bug Fix Study
Dimension Category Description Abbr.

Condition Check (1) While-flag; or COND
(2) optimistic concurrency with consistency check.

Non- Code Switch Switch the order of certain statements in the source code. Switch
deadlock Design Change Change the design of data structures or algorithms. Design

Fix Lock Strategy (1) Add/change locks; or Lock
Strategy (2) adjust the boundary of critical sections.

Other Strategies other than the above ones. Other
Give up resource Not acquiring a resource (lock, etc.) for certain code region. GiveUp

Deadlock Split Resource Split a big resource to smaller pieces to avoid competition. Split
Fix Change Switch the acquisition order among several resources. AcqOrder

Strategy acquisition order
Other Strategies other than the above ones. Other

Concerns Very long code A code region is too long to be put into a transaction. Long
in Rollback Problem Some I/O and system calls are hard to roll back. Rollback

TM** Code Nature Source code with certain design is hard to turn to transaction. Nature

Table 3.3: Characteristic categories and definitions. (*: The bug pattern category is determined by the
root cause, i.e., what type of synchronization intention is violated, regardless of the possible fix strategies.
**: TM is short for transactional memory.)
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strategy. Other characteristics, such as failure impact and bug diagnosis process, will be briefly
discussed at the end.

(1) Along the bug pattern dimension, non-deadlock concurrency bugs are classified into three
categories (atomicity-violation bugs, order-violation bugs and the other bugs) based on their root
causes, i.e., what types of synchronization intentions (or assumptions) are violated. Detailed def-
initions are shown in Table 3.3. Here data race is not classified as a bug pattern. The reason is
that the data race concept does not necessarily mean a bug and is orthogonal to the above three
categories: some data races are accepted by developers while some data races may imply any of
the above three categories of bugs (more discussion is in Section 4.1). Deadlocks are not further
categorized as most of them are similar and simple.

(2) The manifestation dimension studies the required condition for each concurrency bug to
manifest (denoted as manifestation condition, defined in Table 3.3), discussing how many threads,
how many variables/resources, and how many accesses are involved in concurrency bugs’ mani-
festation conditions.

(3) For the bug fix strategy, both the fixing strategies of the final patches and the mistakes of
the intermediate patches are studied. How transactional memory can help avoid these bugs is also
studied. All the related classification is shown in Table 3.3.

3.2.3 Threats to Validity
Similar to the previous work, real-world characteristic studies are all subject to a validity prob-
lem. Potential threats to the validity of our characteristics study are the representativeness of the
applications, concurrency bugs used in our study, and our examination methodology.

As for application representativeness, this study chooses four server and client-based concur-
rent applications written in C/C++, which are the popular programming languages for these types
of applications. I believe that these four applications well represent server and client-based con-
current applications, which are two large classes of concurrent applications. However, this study
may not reflect the characteristics of other types of applications, such as scientific applications,
operating systems, or applications written in other programming languages (e.g., Java).

As for bug representativeness, the studied concurrency bugs are randomly selected from the
bug database of the above applications. They provide good samples of the fixed bugs in those ap-
plications. While characteristics of non-fixed or non-reported concurrency bugs might be different,
these bugs are not likely as important as the reported and fixed bugs that are examined in this study.

In terms of the examination methodology, every piece of information related to each examined
bug is carefully examined. It includes programmers’ clear explanations, forum discussions, source
code patches, multiple versions of source codes, and bug-triggering test cases.
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Overall, while the conclusions in this chapter cannot be applied to all concurrent programs, I
believe that this study does capture the characteristics of concurrency bugs in two large important
classes of concurrent applications: server-based and client-based applications. In addition, most
of these characteristics are consistent across all four examined applications, indicating the validity
of the evaluation methodology to some degree. Additionally, this dissertation does not emphasize
any quantitative characteristic results of this study. Finally, I warn the readers to take the findings
together with above methodology and selected applications.

3.3 Bug Pattern Study
Different bug patterns usually demand different detection and diagnosis approaches. In Table 3.4,
the examined non-deadlock concurrency bugs are classified into three categories based on their
patterns: Atomicity, Order, and Other (definitions are described in Table 3.3). Note that the cate-
gories are distinguished from each other by the bug root cause of a bug, regardless of the possible
bug fix strategies.

Application Total Atomicity Order Other
MySQL 14 12 1 1
Apache 13 7 6 0
Mozilla 41 29 15 0
OpenOffice 6 3 2 1
Overall 74 51 24 2

Table 3.4: Patterns of non-deadlock concurrency bugs. (There are three examined bugs, whose patterns
can be considered as either atomicity or order violation. Therefore, they are put in both categories.)

Finding (1): Most (72 out of 74) of the examined non-deadlock concurrency bugs
are covered by two simple patterns: atomicity-violation and order-violation.

Implications: Concurrent program bug detection, testing and language design
should first focus on these two major bug patterns.

The Finding (1) can be explained by the fact that atomicity and pairwise order are the two most
common synchronization intentions of programmers. However, it is not easy to enforce all these
intentions correctly in implementation. As a result, atomicity-violation bugs and order violation
bugs dominate the examined non-deadlock concurrency bugs.
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 MySQL ha_innodb.cc

S1:   if (thd  proc_info)
{
  S2:    fputs(thd  proc_info, );
}

Thread 1 Thread 2

S3: thd proc_info=NULL;
...

Buggy Interleaving

Figure 3.1: An atomicity violation bug from MySQL.

It is very common for programmers
to assume that a small code region is
executed atomically because program-
mers think sequentially. For example,
in Figure 3.1, programmers assume that
if S1 reads a non-NULL value from
thd->proc info, S2 will also read the same value. However, such an atomicity assumption
can be violated by S3 during concurrent execution, and it leads to a program crash.

Mozilla nsthread.cpp

void init ( )
{

mThread=PR_CreateThread (mMain, );

}

Thread 1 Thread 2

void mMain ( )
{
  mState=
        mThread State;
  ...
}

Thread 2 
should not 
dereference
mThread 
before Thread 
1 initializes it.

Correct Order

Buggy Order

Figure 3.2: An order violation bug from Mozilla.

It is also common for programmers to
assume an order between two operations
from different threads. However, pro-
grammers may forget to enforce such an
order. As a result, one of the two oper-
ations may be executed faster (or slower)
than the programmers’ assumption, and triggers the order bug. In the Mozilla bug shown in Fig-
ure 3.2, it is easy for programmers to assume wrongly that thread 2 would dereference mThread
after thread 1 initializes it, because thread 2 is created by thread 1. However, in real execution,
thread 2 may be very quick and dereference mThread before mThread is initialized. This unex-
pected order leads to program crash. Note that even though the bug can be fixed with locks, the
root cause of the bug is a violation to programmers’ order assumption, not atomicity assumption.

void  buf_flush_try_page() { 
         ...
      rw_lock(&lock);

}

MySQL buf0flu.c

Thread 1

rw_lock(&lock);

Thread 2 Thread n                                  Monitor thread                                  
void  error_monitor_thread() {

 if(lock_wait_time[i] >
fatal_timeout)

     assert(0, We crash the server;
          It seems to be hung. );
} MySQL srv0srv.c

Figure 3.3: A MySQL bug that is neither an
atomicity-violation bug nor an order-violation bug
(simplified for illustration).

Concurrency bugs violating
other types of synchronization intentions
also exist, but are much rarer as shown in
Table 3.4. Figure 3.3 shows an example.
In one version of MySQL, programmers
use a timeout threshold fatal timeout
to detect deadlock. The server will crash if
any thread waits for a lock for more than fatal timeout amount of time. However, when pro-
grammers set the threshold, they under-estimate the workload. As a result, users found that the
MySQL server keeps crashing under heavy workload (with 2048 worker-thread setting). Such a
performance-related assumption is neither related to atomicity nor to order 1.

1This bug is fixed by limiting the number of worker-threads
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Finding (2): A significant number (24 out of 74) of the examined non-deadlock
concurrency bugs are order bugs, which are not addressed by previous bug detec-
tion work.

Implications: New bug detection techniques are desired to address order bugs.

As we discussed above, it is common for programmers to assume a certain order between two
operations from two threads. Specifically, programmers can have an order intention i) between a
write and a read (Figure 3.2) to one variable; ii) between two writes (Figure 3.4) to one variable; or
iii) between two groups of accesses to a group of variables (Figure 3.5). In Figure 3.4, programmers
expect S2 to initialize io pending before S4 assigns a new value, FALSE, to it. However, the
execution of the asynchronous read can be very quick and S4 may be executed before S2, contrary
to the expectation of programmers. This causes thread 1 to hang. In another example shown in
Figure 3.5, js UnpinPinnedAtom frees all elements in the atoms array. This set of memory
accesses to the whole array is expected to happen after js MarkAtom, which may access some
elements in atoms. However, this intention is not assured by the implementation, which becomes
a bug.

Mozilla macio.c

int ReadWriteProc ( )
{

S1:  PBReadAsync ( &p);
S2: io_pending = TRUE;

S3: while ( io_pending ) {...};

}

Thread 1 Thread 2
void DoneWaiting ( )
{

  ...
S4: io_pending = FALSE;
  ...
}

Mozilla macthr.c

Correct Order

Buggy Order

S4 is assumed 
to be after S2.
If S4 executes 
before S2, 
thread 1 will 
hang.

/*callback function of 
PBReadAsync*/

Figure 3.4: A write-write order violation bug
from Mozilla.

Mozilla jscntxt.c, jsgc.c

void js_DestroyContext ( � ) {

   js_UnpinPinnedAtom(&atoms); 
}

Thread 1 Thread 2
void js_DestroyContext ( � ) {
  
   
     js_MarkAtom(&atoms, � );
}

Correct Order
Buggy Order

js_UnpinPinnedAtom 
should happen after 
js_MarkAtom.

Otherwise, program 
crashes.

/* non-last one entering this 
function */

/* last one entering this function */

Figure 3.5: A Mozilla bug that violates the
intended order between two groups of opera-
tions.

Note that the above order bugs are different from data race bugs and atomicity violation bugs.
Even if two memory accesses to the same variable are protected by the same lock or two conflicting
code regions are atomic to each other, the execution order between them still may not be guaran-
teed. We should also note that some order-violation bugs could be fixed using coarser-grained
locking, as in example Figure 3.2 and Figure 3.4; some others cannot be fixed by locks, as in ex-
ample Figure 3.5 and Figure 3.7 (will be discussed later). This is not related to the bug root cause,
and does not affect the bug pattern classification.

Although important and common, order-violation bugs have not been well studied by previous
research. Many order bugs will be missed by existing concurrency bug detectors, which mainly
focus on race bugs and atomicity bugs. New techniques are desired for solving the order problems.
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3.4 Bug Manifestation Study
Manifestation condition of a concurrency bug is usually a specific order among a set of memory
accesses or system events. This section studies the characteristics of real-world concurrency bug
manifestation, following the methodology defined in Table 3.3. Guidance for concurrent program
testing and concurrency bug detection will also be discussed based on the observations.

3.4.1 How Many Threads are Involved?

Non-deadlock concurrency bugs
Application Total Env. >2 threads 2 threads 1 thread
MySQL 14 1 1 12 0
Apache 13 0 0 13 0
Mozilla 41 1 0 40 0
OpenOffice 6 0 0 6 0
Overall 74 2 1 71 0

Deadlock concurrency bugs
Application Total Env. >2 threads 2 threads 1 thread
MySQL 9 0 0 5 4
Apache 4 0 0 4 0
Mozilla 16 0 1 14 1
OpenOffice 2 0 0 0 2
Overall 31 0 1 23 7

Table 3.5: The number of threads/environments involved in concurrency bugs.

Finding (3): The manifestation of most (101 out of 105) examined concurrency
bugs involves no more than two threads.

Implications: Concurrent program testing can pairwise test program threads,
which reduces testing complexity without losing bug exposing capability much.

Finding (3) tells us that even though the examined server programs use hundreds of threads, in
most cases, only a small number (mostly just two) of threads are involved in the manifestation of a
concurrency bug.

The underlying reason for above observation is that most threads do not closely interact with
many others: most communication and collaboration are conducted between two or a small group
of threads. As a result, manifestation conditions of most concurrency bugs do not involve many
threads. For examples, all of the bugs presented in Section 3.3, except the one shown in Figure 3.3,
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are guaranteed to manifest if their execution follow certain partial orders (marked by dotted lines
in the figures) between two threads.

We should note that this finding is not opposite to the common observation that concurrency
bugs are sometimes easier to manifest at a heavy-workload (concurrent execution of many threads).
In many cases, the manifestation condition involves only two threads. Heavy-workload increases
the resource competition and context switch intensity. It therefore increases the possibility of
hitting certain orders among the two threads that can trigger the bug. The manifestation condition
itself still involves just two threads.

This finding implies that testing can focus on exercising different orders among accesses from
every pair of threads. Such pairwise testing technique can prevent the testing complexity from
increasing exponentially with the number of threads. At the meantime, few concurrency bugs
would be missed.

There are also cases where the bug manifestation relies on not only memory accesses within
the program, but also environmental events (as shown in column ‘Env’ in Table 3.5). For example,
one Mozilla bug cannot be triggered unless another program modifies the same file concurrently
with Mozilla. Exposing such bugs needs special system support.

Finding (4): The manifestation of some (7 out of 31) deadlock concurrency bugs
involves only one thread.

Implications: This type of bug is relatively easy to detect and avoid. Bug detec-
tion and programming language research can try to eliminate these simple bugs
first.

A one-thread deadlock bug usually happens when one thread tries to acquire a resource held by
itself. Detecting this type of bugs is relatively easy, because intra-thread, instead of inter-thread,
analysis would be sufficient to reveal many of them.

3.4.2 How Many Variables are Involved?
Are concurrency bugs synchronization problems among accesses to one variable or multiple vari-
ables? To answer this question, this section examines the number of variables (or resources) in-
volved in the manifestation of each concurrency bug. The examination result is shown in Table 3.6.
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Non-deadlock concurrency bugs
Application Total >1 variables 1 variable
MySQL 14 6 8
Apache 13 4 9
Mozilla 41 15 26
OpenOffice 6 0 6
Overall 74 25 49

Deadlock concurrency bugs
Application Total >2 resources 2 resources 1 resource
MySQL 9 0 5 4
Apache 4 0 4 0
Mozilla 16 1 14 1
OpenOffice 2 0 0 2
Overall 31 1 23 7

Table 3.6: The number of variables/resources involved in concurrency bugs.

Finding (5): 66% (49 out of 74) of the examined non-deadlock concurrency bugs
involve only one variable.
Implications: Focusing on concurrent accesses to one variable is a good simpli-
fication for concurrency bug detection.

Finding (5) confirms the common intuition: more non-deadlock concurrency bugs are caused
by contention among accesses to the same variable rather than different variables. The reason
is that flipping the order of two accesses to different memory locations does not directly change
the program state and therefore is less likely to cause problems. Figure 3.1, 3.2, and 3.4 are all
examples of single variable concurrency bugs: their manifestation can be guaranteed by certain
order among accesses to one variable.

This finding supports the single-variable assumption taken by many existing bug detectors. For
example, data race bug detection [SBN+97, YRC05] checks the synchronization among accesses
to one variable, instead of multiple variables.

Finding (6): A non-negligible number (34%) of non-deadlock concurrency bugs
involve more than one variable.
Implications: We need new concurrency bug detection tools to address multiple
variable concurrency bugs.

Multiple variable concurrency bugs usually occur when unsynchronized accesses to correlated
variables cause inconsistent program state. Semantic connections among variables are common,
and therefore multiple variable concurrency bugs are not rare.
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nsTextFram e.cpp

void nsTextFram e::PaintA sc iiText( � )
{
         :
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         :         
}
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Figure 3.6: A multi-variable concurrency bug from Mozilla. (Accesses to three correlated variables,
mContent, mOffset and mLength, should be synchronized.)

Figure 3.6 shows an example of multiple variable concurrency bug from Mozilla. In this ex-
ample, mOffset and mLength together mark the region of useful characters stored in dynamic
string mContent. Thread 1 and 2’s concurrent accesses to these three variables should be syn-
chronized, otherwise thread 1 might read inconsistent values and access invalid memory address.
Here, controlling the order of memory accesses to any single variable cannot guarantee the bug to
manifest. For example, it is all right for thread 1 to read mContent either before or after thread
2’s modification to all of these three variables. The required condition for the bug to manifest is
that thread 1 uses the three correlated variables in the middle of thread 2’s modification to these
three variables.

As discussed above, most existing bug detection tools only focus on single-variable concur-
rency bugs. Although this simplification provides a good starting point for concurrency bug detec-
tion, future research should not ignore the problem of multi-variable concurrency bugs.

The difficulty of detecting multiple variable concurrency bugs is that it is hard to infer which
accesses, to different variables, should be well synchronized. Solving this problem will not only
benefit automatic concurrency bug detection, but also provide useful hints for programmers to
specify correct transactions or atomic regions for transactional memory or atomicity bug detection
tools [FF04].

Finding (7): 97% (30 out of 31) of the examined deadlock concurrency bugs
involve at most two resources.

Implications: Deadlock-oriented concurrent program testing can pairwise test
the order among acquisition and release of two resources.

Among the examined deadlock bugs, only one bug is triggered by three threads circularly
waiting for three resources. Leveraging this finding, pairwise testing on resources can prevent the
testing complexity from increasing exponentially with the total number of resources.
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3.4.3 How Many Accesses are Involved?
The above study has shown that the manifestation of most concurrency bugs involves only two
threads and a small number of variables. However, the number of accesses from one thread to each
variable can still be huge. Therefore, it is necessary to investigate how many accesses are involved
in the bug manifestation.

Non-deadlock concurrency bugs
Application Total 1 acc.∗ 2 acc. 3 acc. 4 acc. >4 acc.
MySQL 14 0 2 7 4 1
Apache 13 0 6 5 2 0
Mozilla 41 0 12 18 5 6
OpenOffice 6 0 2 3 1 0
Overall 74 0 22 33 12 7

Deadlock concurrency bugs
Application Total 1 acc.∗ 2 acc. 3 acc. 4 acc. >4 acc.
MySQL 9 4 1 4 0 0
Apache 4 0 0 4 0 0
Mozilla 16 1 2 12 0 1
OpenOffice 2 2 0 0 0 0
Overall 31 7 3 20 0 1

Table 3.7: The number of accesses (or resource acquisition/release operations) involved in con-
currency bugs. (*: “1 acc.” only happens in deadlock bugs, when one thread waits for itself. The bug
triggering does not depend on any inter-thread order.)

Finding (8.1): 90% (67 out of 74) of the examined non-deadlock bugs can deter-
ministically manifest, if certain orders among at most four memory accesses are
enforced.
Finding (8.2): 97% (30 out of 31) of the examined deadlock bugs can determinis-
tically manifest, if certain orders among at most four resource acquisition/release
operations are enforced.

Implications: Concurrent program testing can focus on exercising different or-
ders within every small groups of accesses, instead of all memory accesses. This
scheme can reduce the interleaving testing’s target space from exponential to poly-
nomial, with little loss of bug exposing capability.

The Finding (8.1) can be easily understood, because most of the examined concurrency bugs
have simple patterns and involve a small number of variables. Most of the exceptions come from
those bugs that involve more than two threads and/or more than two variables. The Finding (8.2)
is also natural, considering that most of the examined deadlock bugs involve only two resources.
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The above findings have significant implication for concurrent program testing. The challenge
in concurrent program testing is that the number of all possible interleavings is exponential to
the number of dynamic memory accesses, which is too big to thoroughly explore. Above finding
implies a more effective design of interleaving testing: exploring all possible orders within ev-
ery small groups of memory accesses, e.g., groups of 4 memory accesses, instead of all memory
accesses. The complexity of this design is only polynomial to the number of dynamic memory
accesses, which is a huge reduction from the exponential-sized all-interleaving testing scheme.
Furthermore, the bug exposing capability of this design is almost as good as exploring all inter-
leavings, missing only few bugs in this study. Chapter 6 will discuss in detail about how to leverage
these characteristics and design a new hierarchy of interleaving coverage criteria.

A recent model checking work [MQ07] uses a heuristic to start the checking from interleavings
with small numbers of context switches. This heuristic is supported by the study in this section.

Of course, enforcing a specific order among a set of accesses is not trivial. The program
input and many accesses need to be carefully controlled. How to leverage above finding to enable
practical and powerful concurrent program testing and model checking remains as future work.

3.5 Bug Fix Study

3.5.1 Fix Strategies for Non-deadlock Bugs
Before checking how the real-world bugs were fixed, my guess was that adding or changing locks
should be the most common way to fix concurrency bugs. However, the characteristic result is
contrary to my guess, as shown in Table 3.8.

Application Total COND Switch Design Lock Other
MySQL 14 2 0 5 4 3
Apache 13 4 2 3 4 0
Mozilla 41 13 8 9 9 2
OpenOffice 6 0 0 2 3 1
Overall 74 19 10 19 20 6

Table 3.8: Fix strategies for non-deadlock concurrency bugs (all categories are explained in Table 3.3).

Finding (9): Adding or changing locks is not the major fix strategy. It is used for
only 20 out of 74 non-deadlock concurrency bugs that we examined.

Implication: There is no silver bullet for fixing concurrency bugs. Just telling
programmers that certain conflicting accesses are not protected by the same lock
is not enough to fix concurrency bugs.
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MySQL NodeState.hpp

void NodeState::setDynamicId (int id)
{
dynamicId = id;

}

Thread 1 Thread 2
MgmtSrvr::status(... int *myid ... )
{

*myid = 
node.m_state.dynamicId;

}

Correct Order
Buggy Order

dynamicId should 
not be read before 
it is initialized

Wrong order will 
lead to wrong 
functionality MySQL MgmtSrvr.cpp

Figure 3.7: A MySQL bug that cannot be fixed by adding/changing locks.

There are two reasons for this controversy. First of all, locks cannot guarantee to enforce some
synchronization intentions, such as A should happen before B. Therefore, adding/changing locks
cannot fix certain types of bugs. Figure 3.5 showed such an example. Figure 3.7 is another simple
example. Secondly, even if adding/changing locks can fix a bug, in many cases, it is not the best
strategy, because it may hurt the performance or introduce new bugs, such as deadlock bugs.

In the following, we look at the different strategies, other than adding/changing locks, used
by programmers. We will see that these strategies usually require deep understanding of program
semantics. In the meantime, they usually have better performance than corresponding lock-based
fixes, if existing.

(1) Condition check (denoted as COND). Condition check can be used in different ways
to help fix concurrency bugs. One way is to use while-flag to fix order-related bugs, such as
the bug shown in Figure 3.5. The other way is to add consistency check to monitor the bug-
related program states. This enables the program to detect buggy interleavings and restore pro-
gram states. For example, to fix the bug shown in Figure 3.6, the program does consistency
check if(strlen(mContent)>= mOffset+mLength) before it executes putc function. The
putc will be skipped if the consistency check fails. In another example shown in Figure 3.8,

btr0sea.c

retry:
...
n=block->n;
...

   ...  
if (n!=block->n)
{

goto retry;
}
...

Re-
execute

Figure 3.8: A
MySQL bug fix.

condition (n!=block->n) is checked to see whether the shared variable
block->n has been overwritten since the last time it was read. If n is not
consistent with block->n, the program rolls back and reads block->n
again. Note that, above fix strategy does not eliminate the buggy interleav-
ing, which is usually the purpose of lock-based fixes. Instead, it focuses
on detecting buggy interleavings and makes sure the program states cor-
rupted by the buggy interleavings can be recovered in time. It has better
performance than corresponding lock-based fixes, if the bad interleaving
rarely occur.

(2) Code switch (denoted as Switch). Switching the order of certain
code statements can fix some order-related bugs. For example, the order bug shown in Figure 3.4
is fixed by switching statements S1 and S2, so that S2 is always executed before S4.
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(3) Algorithm/Data-structure design change (denoted as Design). This includes different types
of algorithm and data structure changes that help to achieve correct synchronization. Some design
changes are simple, just modifying a few data structures. For example, in the MySQL bug #7209,
the bug is caused by unprotected conflicting accesses to a shared variable HASH::current -
record. Programmers recognize that this variable does not need to be shared. They simply move
the field current record out of the class HASH, making it a local variable for each thread, and
fix the bug. As another example, in Mozilla bug #201134, one thread needs to conduct a series
of operations on a shared variable nsCertType. In order to enforce the atomicity of that series
of operations, programmers simply let program read nsCertType into a local variable, conduct
operations on the local variable, and store the value back to nsCertType at the end. Some
design changes are more complicated, involving algorithm re-design. For example, in Mozilla
bug #131447, programmers changed a message handling and queuing algorithm to tolerate special
timing when a reply message arrives before its corresponding callback function is ready.

As we can see, fixing concurrency bugs is much more complicated than just adding or changing
lock operations. Race detection tools can help programmers conduct those lock-related fixes, but
this is not enough. It is desired to have more tools to help programmers figure out the bug pattern,
the consistency condition associated with each bug, etc. For example, if programmers know that
the bug is an order-violation bug and they also know what the consistency condition is, it is easy to
come out with a condition check fix. This is the challenge for future research on concurrency bug
detection and diagnosis.

3.5.2 Fix Strategies for Deadlock Bugs

Application Total GiveUp Split AcqOrder Other
MySQL 9 5 0 2 2
Apache 4 2 0 2 0
Mozilla 16 11 1 3 1
OpenOffice 2 1 0 0 1
Overall 31 19 1 7 4

Table 3.9: Fix strategies for deadlock bugs (all categories are explained in Table 3.3)

Finding (10): The most common fix strategy (used in 19 out of 31 cases) for the
examined deadlock bugs is to let one thread give up acquiring one resource, such
as a lock. This strategy is simple, but it may introduce other non-deadlock bugs.

Implication: We need to pay attention to the correctness of some “fixed” dead-
lock bugs.
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Table 3.9 summarizes the fixing strategies for deadlock bugs. As we can see, the most common
strategy is ‘GiveUp’. In many cases, programmers find it unnecessary or not worthwhile to acquire
a lock within certain program context. Therefore, they simply drop the resource acquisition to
avoid the deadlock.

However, this ‘GiveUp’ strategy could introduce non-deadlock concurrency bugs. In some of
the examined bug reports, programmers explicitly say that they know the fix would introduce a
new non-deadlock concurrency bug. They still adopt the fix, because they gamble that the proba-
bility for the non-deadlock bug to occur is small. In the future, techniques combining optimistic
concurrency and rollback-reexecution, such as TM, can help fix some deadlock bugs. Of course,
using these techniques should also be careful, because they might introduce live-lock problems.

3.5.3 Mistakes During Bug Fixing
Fixing bugs is hard. Some patches released by programmers are still buggy. In order to investigate
the nature of buggy patches, all the distinct buggy patches of the 57 Mozilla concurrency bugs
are checked 2. Specifically, at first, all the intermediate (non-final) patches submitted by Mozilla
programmers for these 57 bugs are gathered. Then these patches are manually checked to filter out
non-bug-fixing patches, which only change comments or code structures for maintenance purpose.

This study finds that 17 out of the 57 Mozilla bugs have at least one buggy patches. On average,
0.4 buggy patches were released before every final correct patch. Among all the 23 distinct buggy
patches, 6 of them only decrease the occurrence probability of the original concurrency bug, but
fail to fix the original bug completely (an example is shown in Figure 3.9). 5 of them introduce
new concurrency bugs. The other 12 introduce new non-concurrency bugs. Programmers need
help to improve the quality of their patches.

3.5.4 Discussion: Bug Avoidance
Good programming languages should help avoid some bugs during implementation. Transactional
memory (TM) is a popular trend of programming language feature for easing concurrent program-
ming. To estimate its benefit and understand what more are needed along this direction, the 105
concurrency bugs are studied. Specifically, the study checks how many of the 105 bugs can po-
tentially be avoided with TM support and what are the issues that future concurrent programming
language design needs to address.

Again, all the findings in this section should be interpreted with the evaluation methodology
in mind, as discussed in Section 3.2.3. In addition, since different TM designs may have dif-

2This study focuses on Mozilla, because it has the best maintenance of patch update information.
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Mozilla jscntxt.c, jsgc.c

js_UnpinPinnedAtom (...)

Thread 1 Thread 2
gcLevel=1;

    if(state==LANDING){
gcLevel=0; return;

    }

js_MarkAtom (...)

gcLevel = 0;

state = LANDING; 

while(gcLevel>0); Programmers added 
a while-flag to 

eliminate the small 
race window between 

S1 and S2

Mozilla jscntxt.c, jsgc.c

js_UnpinPinnedAtom (...)

Thread 1 Thread 2

    if(state==LANDING){
      return;
    }

js_MarkAtom (...)

state = LANDING; Programmers wanted to 
make js_MarkAtom always 

before js_UnpinPinnedAtom. 

They added condition check, 
but buggy interleaving still 

exists

Buggy interleaving

(a) an incomplete fix for the bug shown in Figure 5. 
This fix left a small window between S1 and S2 unprotected.

S1

S2

S3

S4

S1

S2

correct interleaving

(b) a final correct fix. 
Now the order between js_MarkAtom and js_UnpinPinnedAtom is enforced.

Incomplete fix

Final fix

Figure 3.9: The process of fixing the bug shown in Figure 3.5. (Programmers want to make sure
js MarkAtom will not be called after js UnpinPinnedAtom. They first added a flag variable state
to fix the bug. However, that left a small window between S1 and S2 unprotected. They finally added a
second flag variable gcLevel to completely fix the bug.).

ferent features, this discussion focuses on the basic atomicity and isolation properties of TM.
Both the benefits and the concerns are discussed in general, based on some basic TM de-
signs [AAK+05, HF03, Moi97]. It is definitely possible for advanced TM designs to address
some of the concerns discussed here, which is exactly the purpose of this discussion: provide more
real-world information and help improve the design of TM.

Application Total Can Help TM might help(concerns:) Little HelpLong Rollback Nature
MySQL 23 7 0 14 0 2
Apache 17 7 0 3 1 6
Mozilla 57 25 8 9 5 10
OpenOffice 8 2 0 4 0 2
Overall 105 41 8 30 6 20

Table 3.10: Can TM help avoid concurrency bugs?

Finding (11): TM can help avoid many concurrency bugs (41 out of the 105
concurrency bugs we examined).

Implication: Although TM is not a panacea, it can ease programmers correctly
expressing their synchronization intentions in many cases, and help avoid a big
portion of concurrency bugs.

Atomicity violation bugs and deadlock bugs with relatively small and simple critical code re-
gions can benefit the most from TM, which can help programmers clearly specify this type of
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atomicity intention. Figure 3.8 shows an example, where programmers use a consistency check
with re-execution to fix the bug. Here, a transaction (with abort, rollback and replay) is exactly
what programmers want.

Finding (12): TM can potentially help avoid many concurrency bugs (44 out of
the 105 concurrency bugs we examined), if some concerns can be addressed, as
shown in Table 3.10.

Implication: TM design can combine system supports and other techniques to
solve some of these concerns, and further ease the concurrent programming.

One concern, not a surprise, is I/O operations. As operations like I/O are hard to roll back, it is
hard to use TM to protect the atomicity of code regions which include such operations. Take the
concurrency bug in Figure 3.1 as an example. Since S2 involves a file operation, TM might need
non-trivial undo techniques to protect the S1–S2 atomic region.

Other concerns, such as atomic region size and special code nature, also exist. For example, the
atomic code regions of several Mozilla bugs include the whole garbage collection process. These
regions could have too large memory footprint to be effectively handled by hardware-TM.

Addressing many of the above concerns are feasible, but requiring higher overhead and com-
plexity. For example, some of the rollback concerns can be addressed using system supports. Very
long transactions can be addressed by combining software and hardware TMs.

Finding (13): 20 out of the 105 concurrency bugs cannot benefit from the basic
TM designs, because the violated programmer intentions, such as order intentions,
cannot be guaranteed by the basic TM.

Implications: Apart from atomicity intentions, there is also a significant need for
concurrent programming language features to help programmers express order
intentions easily.

Programmers’ order intention is the major type of intention that cannot be easily enforced by
the basic TM design or locks. In general, the basic TM designs cannot help enforce the intention
that A has to be executed before B. Therefore, they cannot help avoid many related order-violation
bugs 3. Among all order-violation bugs, there is a sub-type of order intentions that is extremely
hard to be enforced by basic TM designs: A must be either executed before B or not executed at
all. In other words, programmers do not want B to wait for A. They simply skip A if B is already

3Some order-violation bugs can be avoided by TM. In those cases, order intentions can be enforced as side effects
while TM enforces the atomicity of related code regions (an example is shown in Figure 3.2).
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executed. For example, in one Mozilla bug, thread 1 keeps inserting entities to a cache and thread 2
would destroy the cache at some moment. Based on the description in the bug report, programmers
do not want thread 2 to wait for thread 1 to finish all insertions. The program simply skips any
insertion attempt after the cache is destroyed. This happens for 7 bugs.

In order to help avoid above 20 bugs, the semantic design, instead of implementation schemes,
of the basic TM needs to be enhanced. Recently, some TM designs [CMC+06, HMPJH05] are
equipped with rich semantics (such as watch/retry, retry/orElse) and can help enforce some of the
above synchronization intentions. It is hoped that this bug characteristics study can help future
research to decide the best TM design.

3.6 Other Characteristics
Bug impacts: Among our examined concurrency bugs, 34 of them can cause program crashes
and 37 of them cause program hangs. This validates that concurrency bug is a severe reliability
problem.

Some concurrency bugs are very difficult to repeat. In one bug report (Mozilla#52111), the
reporter complained that “I develop Mozilla full time all day, and I get this bug only once a day”.
In another bug report (Mozilla#72599), the reporter said that “I saw it only once ever on g (never
on other machines). Perhaps the dual processor of g makes it occur.”

Test cases are critical to bug diagnosis. Programmers’ discussions show that a good test case
to repeat a concurrency bug is very important for diagnosis. In Mozilla bug report #73291, the
programmers once gave up on this bug and closed the bug report, because they could not repeat
the bug. Fortunately, somebody worked out a way to reliably repeat the bug, and the bug was fixed
subsequently. In another Mozilla bug report (Mozilla#72599), the programmers finally gave up
repeating the bug and simply submit a patch based on their “guessing”, and this led to a wrong fix.

Programmers lack diagnosis tools. From the bug reports, we notice that many concurrency
bugs are diagnosed simply by programmers reading the source code. For example, for 29 out
of the 57 Mozilla bugs, the bug reports did not mention that the programmers ever leveraged
any information from any tools, core dumps, or stack traces, etc. Sometimes programmers tried
gdb, but could not get useful information. This study has never seen programmers mention that
they used any automatic diagnosis tools. In contrast, in many bug reports about memory bugs,
programmers mentioned that they got help from Valgrind, Purify, etc [LTW+06].
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3.7 Summary
This chapter presents a (best-effort) comprehensive characteristics study of real-world concurrency
bugs. This study focuses on bug pattern, bug manifestation, and bug fix strategy of concurrency
bugs. The observation is made based on 105 real-world concurrency bugs randomly collected from
4 representative open-source programs: MySQL, Apache, Mozilla, and OpenOffice. The result
of this study includes many interesting findings and implications for concurrency bug detection,
testing and concurrent programming language design.

Future research can benefit from this study in various aspects. For example, future work can
design new bug detection tools to address multiple-variable bugs and order-violation bugs; can
pairwise test concurrent program threads and focus on partial orders of small groups of memory
accesses to make the best use of testing effort; can have better language features to support “order”
semantics to further ease concurrent programming.

The following four chapters will demonstrate how to take motivation and guidance from this
characteristics study and improve the state-of-the-art of concurrency bug detection and concurrent
program testing.
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Chapter 4

Detecting Concurrency Bugs I — AVIO:
Atomicity Violation Bug Detection

As discussed in Chapter 1, concurrency bugs widely exist in concurrent programs. Effective ap-
proaches to detecting these bugs are critical to the dependability of concurrent software systems.
Existing techniques for detecting concurrency bugs mostly focus on data races, which is not enough
to completely address the concurrency bug problem. This and the next chapters will present two
concurrency bug detection techniques: AVIO and MUVI.

Motivated by previous characteristics study of real-world concurrency bugs (Chapter 3), AVIO
and MUVI focus on two types of important yet not well studied concurrency bugs: atomicity viola-
tion bugs and multi-variable concurrency bugs. Different from all previous concurrency bug detec-
tion tools, AVIO and MUVI automatically infer what interleavings are intended by programmers
and report bugs when those intentions are violated. AVIO, an atomicity violation bug detection
tool (under technology transfer to Intel), will be presented in this chapter; MUVI, a multi-variable
concurrency bug detection tool, will be presented in the next chapter.

4.1 Overview
4.1.1 Motivation
Atomicity, also referred to as serializability, is a property for several concurrently executed actions,
when their data manipulation effect is equivalent to that of a serial execution of them1. Atomicity
violation bugs are caused by violations to the atomicity of certain code regions. Atomicity violation
bugs widely exist in the real world. In a previous concurrency bug characteristics study (Chapter 3),
atomicity violation bugs contributed to about 70% of the examined non-deadlock concurrency
bugs.

In previous works, atomicity violation bugs have not been well studied. Instead, most work has
focused on data race detection2. This dissertation focuses on atomicity violation bugs instead of
data race bugs for following reasons:

1The definition of atomicity in this dissertation follows the tradition in concurrent program research, and is slightly
different from that in database research community. Serializability in this dissertation refers to view serializability.

2A data race occurs when two instructions (including at least one write access) from different threads access the
same memory location without proper synchronization. More details are presented in Section 2.2.
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1.1  void LoadScript (nsSpt* aspt) {
1.2     Lock (l);
1.3     gCurrentScript = aspt;
1.4     LaunchLoad (aspt);
1.5     UnLock (l);
1.6  }

1.7  void OnLoadComplete ( ) {
    /* call back function of LaunchLoad */
1.8      Lock (l);
1.9      gCurrentScript compile();
1.10    UnLock (l);
1.11 }

2.1  Lock (l);
2.2  gCurrentScript = NULL;
2.3  UnLock (l);

thread 1 thread 2

Mozilla Application Suite     nsXULDocument.cpp 

Figure 4.1: An example indicates that data race free does not guarantee correct synchronization.
(This example is slightly simplified from a real bug in Mozilla Application Suite. When thread 2 violates
the atomicity of thread 1’s access to gCurrentScript, the program crashes.)

(1) Programmers’ most common synchronization intention is atomicity, not data race free.
Free of data race may not indicate correct synchronization. Figure 4.1 is a real bug example from
the Mozilla Application Suite. As we can see, thread 1 stores a pointer into the shared script handler
gCurrentScript and wants to retrieve the value to continue processing the script in a later step.
However, thread 2 may nullify the gCurrentScript in the middle. This example does not
contain any data race because there exists a lock l protecting every access to gCurrentScript.
Unfortunately, it still contains a severe concurrency bug: an atomicity violation, which will lead to
a crash once triggered.

Through the example highlighted in Figure 4.1, an important lesson is demonstrated: program-
mers, who are used to sequential thinking, frequently assume the atomicity of code segments. In
this example, the two parts of script processing from thread 1 are expected to be atomic, never
interfered by other accesses to gCurrentScript. Unfortunately, the assumed atomicity is not
always satisfied in programmers’ implementation. As a result, unserializable interleavings would
occur at run time, violate programmers’ assumptions, and manifest as concurrency bugs.

The prevalence of programmers’ atomicity intentions is one of the reasons that atomicity viola-
tion bugs are common in practice. Using locks or transactions is just one way to ensure atomicity,
but, as demonstrated, data race free does not guarantee proper atomicity.

(2) Data race is not a problem for future transaction-based concurrent programs, but atomic-
ity violation still is. Recently, there has been an emerging trend toward the transactional memory
programming model [ATKS07, AAK+05, HWC+04, HF03, Moi97, MBM+06, CTTC06]. Pro-
grammers using this model need not worry about data races, however, atomicity violations will
still happen when programmers mistakenly put operations that should be atomic into different
transactions.
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(3) A data race is not always a bug. In many cases, programmers intentionally allow data races
on non-critical variables for better performance [YRC05, NWT+07].

(4) Reliance on specific synchronization semantics in race detection causes many false pos-
itives. Since the data race concept is tightly bonded with synchronization operations, both the
happens-before and locks-set algorithms demand prior knowledge about all synchronization prim-
itives used in the program. Ignorance of non-lock synchronization primitives, such as barrier,
conditional variables, and many user-defined synchronizations, have caused many false positives
in previous work [C+02, SBN+97, YRC05], reducing their effectiveness for programmers.

Unfortunately, although the problem of atomicity violations has been known for years, few
good solutions exist to address this important problem. The biggest challenge is that it is hard to
know which code regions in a program are intended to be atomic and need to be protected. Most
state-of-the-art techniques [FF04] rely on programmers’ annotations to annotate atomic regions.
Recently SVD approach [XBH05] uses data/control dependency to infer atomic regions. Although
SVD provides a very inspiring approach, the dependency-based inference only covers a limited
subset of atomicity violation bugs. The complicated dependency analysis also incurs large run-
time overhead.

4.1.2 Highlights
AVIO is an innovative, comprehensive, invariant-based approach to detecting general atomicity
violations bugs. The main idea of AVIO is to automatically discover from correct runs (i.e., training
runs) those important code regions that are assumed to be atomic by programmers, and then to
detect atomicity violation to those code regions and report bugs at run time.

AVIO’s idea is based on the following two novel observations:

(1) AI Invariants There exists a unique type of program invariant that is frequently assumed by
programmers: two consecutive accesses from one thread to the same shared variable are never
unserializably interleaved by other threads (i.e., always atomic). This invariant is simple yet highly
related to synchronization correctness. It reflects a type of fundamental synchronization intention
of programmers: are conflicting accesses from other threads welcomed, forbidden, or do-not-care?
If such an invariant is not guaranteed in the code implementation and gets violated at run time, a
concurrency bug will happen (Section 4.2.1).

(2) How to extract AI Invariants? Generally speaking, as long as there are many different and
correct execution samples, program invariants can be observed from these samples. Fortunately,
this is exactly the advantage of concurrency bugs. Buggy concurrent programs mostly execute
correctly even with bug-exposing inputs because the manifestation of a concurrency bug requires
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special and usually low-probability interleavings. In addition, running a concurrent program multi-
ple times, even with the same input, produces many different interleavings. Therefore, it is feasible
and relatively easy to obtain AI invariants from correct runs (training runs) (see Section 4.2.3).

Based on above observation, AVIO’s idea is instantiated in two designs: an AVIO-H in hard-
ware and an AVIO-S in software. AVIO-H requires simple extensions to the cache coherence
protocol and achieves negligible overhead. In contrast, AVIO-S is a pure software approach. It
is slower but more accurate. With the AVIO-H and AVIO-S designs, AVIO can be used for two
scenarios:

(1) Postmortem analysis: Programmers can use AVIO (e.g., AVIO-S) to diagnose the root cause
of software failures. Given a failure to diagnose, a programmer can check which AI invariants
collected from correct runs are violated in buggy runs.
(2) On-the-fly detection: Programmers can also extract AI invariants during in-house testing, and
then use AVIO, especially AVIO-H, during production runs to detect atomicity violations and pin-
point code regions that lack atomicity protection.

The two implementations of AVIO are evaluated using six representative real atomicity viola-
tion bugs from two large real-world server applications, namely the Apache HTTP Server and the
MySQL database server, and an extracted version of Mozilla, running on either real machines (for
AVIO-S) or the whole-system simulator Simics [MDG+98] (for AVIO-H). Experimental results
show that, compared to previous approaches, AVIO has the following unique advantages:

• Detects a variety of atomicity violation bugs. The experiments show that AVIO de-
tects more tested real atomicity violations of various types than previous algorithms
(SVD [XBH05], happens-before and lockset). The reason is that AVIO provides a more
comprehensive coverage of different types of serializability violations. In addition, AVIO
can detect atomicity violation bugs that are not addressed by data race detection.

• Requires no annotations or specifications. Unlike many previous approaches, AVIO does
not require programmers to provide any specifications about synchronization primitives or
atomic regions. Therefore, the AVIO idea applies to not only multi-threaded programs using
standard lock-based synchronization, but also to those using application-specific synchro-
nizations as well as future applications written in transactional memory models.

• Few false positives. Two factors help AVIO achieve lower false positives than many pre-
vious tools. First, AVIO does not rely on specific synchronization primitives and will not
report code regions protected by customized synchronization as bugs. Second, sometimes
programmers intend to have data races or unserializable interleavings. AVIO can automati-
cally infer these intentions through training and therefore avoid reporting them as bugs. In
the experiments, AVIO reported only a few (on average, 3-5) static false positives for our
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evaluated applications. In contrast, previous methods have reported an average of 51 false
positives, which significantly undermines their bug detection capability because program-
mers need to sift through 51 error reports in order to find one true bug.

• Non-stringent requirements for training data generation. Training is important in all
invariant-based approaches [HL02, ZLL+04]. Fortunately, leveraging the non-deterministic
characteristic of concurrent programs (i.e., different runs with the same input automatically
produce different interleavings), training data generation in AVIO has unique advantages
over previous invariant-based approaches. Results show that running fewer than 5 times for
SPLASH-2 benchmarks and less than 100 requests for server applications are good enough to
generate a reasonably accurate set of AI invariants (see Section 4.6.3 for a detailed sensitivity
analysis).

• Low overhead. AVIO, in particular its hardware implementation AVIO-H, imposes very
little (0.4–0.5%) overhead, orders of magnitudes smaller than software-based concurrency
bug detection tools. The software implementation AVIO-S incurs 15-42 times the overhead,
which is still lower than (or comparable with) previous software-based tools such as SVD
(65X) [XBH05] and Valgrind-lockset (> 200X).

4.2 AVIO Idea
Terminology definitions For simplicity, unless otherwise mentioned, all accesses are to the same
shared memory location. We refer to the thread whose atomicity is interrupted as the local thread
and its accesses as local accesses or local reads/writes (note that this does NOT mean a local
variable). We refer to the thread with the interleaving access as the remote thread and its accesses
as remote accesses or remote reads/writes.

Note that, interleaving in general means an execution order among accesses from multiple
threads. Our discussion about interleavings in this dissertation assumes the sequential consistency
memory model. Additional interleavings that are possible under more relaxed memory consistency
models are not considered. This chapter focuses on interleavings among two local accesses and
some remote accesses. Specifically, local accesses A and B are interleaved by a remote access C

when C is executed between A and B. A serializable interleaving is an interleaving among local
and remote accesses that is equivalent to a serial execution of them.
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Thread 1                  Thread 2
temp = account
account = temp + 10

temp = account
account = temp + 10

Unserializable
interleaving

can NOT happen
in correct runs

(a) Bank account deposit example. 
Code segment is assumed to be serializable.

Thread 1               Thread 2
while (!flag){

flag = true; …

}This UNserializable
interleaving
happens 

in ALL runs

(b) Spin-flag example 
This code segment is designed for synchronization.
(the read access series SHOULD be UNserializablly interleaved)

write

read read

Figure 4.2: (a) An example with AI invariant; (b) An example without the AI invariant

4.2.1 Access-Interleaving Invariant
The essence of atomicity violation bugs is no different than other types of bugs: they are caused
by a mismatch between the code implementation and the programmer intention. Specifically, pro-
grammers assume that a sequence of shared variable accesses is atomic, never interleaved by un-
serializable accesses, but the implemented code does not guarantee this property and thus bugs
emerge.

Programmers’ atomicity intention comes in different formats. The most common and funda-
mental one can be represented by a type of invariant that we refer to as an Access-Interleaving
invariant (AI invariant). Such an invariant is held by an instruction if the access pair, composed
of itself and its preceding local access to the same location, is never unserializably interleaved. We
denote this instruction as I-instruction (invariant instruction) and the preceding access instruction
as P-instruction (preceding instruction). Note that with an AI invariant, it is perfectly OK to
have interleavings. Atomicity would be maintained as long as the interleavings are serializable.
Section 4.2.2 will further discuss interleaving serializability.

Figure 4.2(a) gives a simple demonstration of an AI invariant using the classic banking account
example. In this code, programmers assume that the read and modification of account are always
together and never be unserializably interleaved by a conflicting remote access. Otherwise, an
atomicity violation can result in program misbehavior.

An AI invariant indicates programmers’ atomicity assumption. Such assumption is the essence
of concurrent execution correctness. Atomicity assumptions, as in the banking account exam-
ple, are made during design and implementation by programmers who are more comfortable with
sequential thinking. Assumptions may be enforced through locks, barriers, flags or other synchro-
nization mechanisms such as transactions. Poorly enforced atomicity assumptions cause synchro-
nization errors during some executions.

We should note that programmers do not assume all code regions to be atomic, nor does AI in-
variant held for every shared variable access instruction. Contrarily, some instructions often allow
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unserializable interleavings. For example, in cases like flag-based synchronization implementa-
tion, programmers explicitly do not want an AI invariant. Automatically differentiating code that
is or is not expected to have AI invariant would allow us to avoid many false positives. For example,
Figure 4.2(b) 3 illustrates synchronization implemented using a flag variable. During execution,
no AI invariant will be observed at the flag read access of the while loop, because unserializable
interleavings happen in every run. Such AI non-invariant matches the programmers’ intention in
this example at this position: an unserializable interleaving by a remote access is required to ensure
liveness.

Of course, AI invariant is not the only format of programmers’ atomicity assumption, but it is
the most common and fundamental one. Other assumptions involving multiple shared variables
are rarer and can be potentially extended from AI invariants. We will discuss them in Section 4.7.

In summary, atomicity violation bugs are code regions that are expected to be atomic but imple-
mented as non-atomic. At run time, serial execution or serializable interleavings definitely main-
tain the atomicity; meanwhile, unserializable interleavings do NOT necessarily violate correctness.
Which part of code needs to be atomic and serializable depends on programmers’ intentions and
is well indicated by AI invariants. Therefore, if we can automatically extract AI invariants, this
knowledge can then be used to detect atomicity violation bugs by monitoring “unexpected” unse-
rializable interleavings in code segments where AI invariants should hold.

4.2.2 Serializability Analysis
Not all interleavings are unserializable, and serializable interleavings do not lead to atomicity
violation. In this section, we first analyze what interleavings are serializable and what are not.
There are totally eight ways that two consecutive local accesses to the same shared variable can
be interleaved by a remote access. Table 4.1 describes every cases, explaining why each case is
serializable, with equivalent serial accesses, or unserializable, with a bug example.

Among the eight cases, four (cases 0, 1, 4, 7) are serializable interleavings while the other
four (case 2, 3, 5, 6) are not. We have an example bug for each unserializable case in which
programmer’s assumptions about atomicity is violated. For example, Figure 4.3 gives a real bug
from the Apache httpd server whose root cause is a case 2 unserializable interleaving. Figure 4.4
shows a real bug example from the MySQL database server for case 5. Similarly, case 3 and
case 6 are exemplified by the examples shown early in Figures 4.1 and Figure 4.2(a). But note
that, as discussed in the previous section, unserializable interleavings are not necessarily bugs
(Figure 4.2(b)) unless they violate programmers’ assumptions.

3Strictly speaking, the while-flag in the figure is incorrect without memory fences or hardware-supported atomic
instructions. Since this issue does not affect our discussion of AI invariant, we ignore it in the figure.
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Equivalent
Interleav Case # Description Serializability serial Problems Bug
-ing accesses (for unserializable cases) Example
readp two reads readp

readr 0 interleaved serializable readi N/A N/A
readi by a read readr

writep read after write writep

readr 1 interleaved serializable readi N/A N/A
readi by a read readr

readp two reads The interleaving write gives Apache
writer 2 interleaved unserializable N/A the two reads different views Figure

readi by a write of the same memory location 4.3
writep read after write The local read does not Mozilla

writer 3 interleaved unserializable N/A get the local result it expects Figure
readi by a write 4.1
readp write after read readr

readr 4 interleaved serializable readp N/A N/A
writei by a read writei

writep two writes Intermediate result that is MySQL
readr 5 interleaved unserializable N/A assumed to be invisible to Figure

writei by a read other threads gets exposed 4.4
readp write after read The local write relies on a Bank

writer 6 interleaved unserializable N/A value that is returned by the account
writei by a write preceding read and becomes Figure

stale due to the remote write 4.2 (a)
writep two writes writer

writer 7 interleaved serializable writep N/A N/A
writei by a write writei

Table 4.1: Eight cases of access interleavings. (Accesses in each case are towards the same variable.
Besides read/write, subscript r denotes remote interleaving access; superscript i and p denotes one access
and its preceding access from the same thread. In this chapter, normal instructions and invariant-related
instructions are differentiate by lower-case i/p and upper-case I/P.)

Above we get the unserializable condition, composed of four cases, for single interleaving
remote access. Extending it, we get following similar four-case unserializable conditions with
multiple remote accesses to the same shared variable taken into account. This condition will be
used in the rest of the chapter, guiding AVIO bug detection (For illustration, interleaving remote
accesses are put in parentheses; ∗ denotes zero or multiple interleaving read or write accesses;
superscript i and p stand for one access and its preceding access from the same thread):

• Case2: rp[∗wr∗]ri, two local reads are interleaved by at least one remote write, so they may
have different views.

• Case3: wp[∗wr∗]ri, a local read after write is interleaved by at least one remote write. Due
to this remote write, the read would fail to get the local result that it expects.
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thread 1
1.1  ap_buffered_log_writer()
1.2  {

…

1.3   s = &buffer[buf outcnt];
1.4   memcpy(s, str, len);

1.5   temp = buf outcnt + len;
1.6 buf outcnt = temp;
1.7   }

thread 2
2.1  ap_buffered_log_writer()
2.2  {

…

2.3    s = &buffer[buf outcnt];
2.4    memcpy(s, str, len);
2.5    temp = buf outcnt + len;
2.6 buf outcnt = temp;
2.7   }

Apache httpd-2.0.48    mod_log_config.c

Log buffer corrupted

Figure 4.3: A real bug from Apache httpd server caused by the case 2 unserializable interleaving.
(In this example, the two read accesses on lines 1.3 and 1.5 belong to the same buffer filling operation and
are intended to have the same view of buf→outcnt. However, they can be interleaved by the write access
on line 2.6, under which the Apache server log associated with bufferwould be corrupted. This example
also contains a potential case 6 unserializable interleaving between 1.5 and 1.6.)

thread 1
1.1  MYSQL_LOG::new_file ( )
1.2  {

…
//close old binlog

1.3 log_type = LOG_CLOSED

…
//open new binlog

1.4 log_type = local_log_type

1.5   }

thread 2
2.1  sql_insert ( )
2.2  {

…
//do table update

//log into bin_log_file
2.3    if (mysql_bin_log.log_type

!= LOG_CLOSED )
2.4     { //log into binlog }
2.5     else

//do nothing
2.6  }

mysql-4.0.12     log.cc, sql_insert.cc

security hole!

Figure 4.4: A real bug from MySQL database server caused by the case 5 unserializable interleav-
ing. (In this example, the write accesses on lines 1.3 and 1.4 are interleaved by the read access on line 2.3.
As a result of this interleaving, thread 2 reads an intermediate value produced by thread 1, which causes the
database operation from thread 2 unrecorded in the log and generates a security vulnerability.)

• Case5: wp[rr∗]wi, a local write after write is interleaved by a remote access sequence that
starts with read, making the local intermediate result visible to a remote thread.

• Case6: rp[∗wr∗]wi, a local write after read is interleaved by at least one remote write. It
makes the previous reading result stale.

4.2.3 Automatically Extract AI Invariants
A challenging question is how to obtain AI invariants, knowing which code regions do not welcome
unserializable interleavings. In this section, we describe the high level idea used in AVIO. The
detailed process will be given in section 4.3.2.

Obviously, we cannot expect programmers to provide such invariants because atomicity vi-
olations usually occur in code segments where programmers are not consciously aware of their
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assumptions. Similarly, we cannot use lockset analysis to extract AI invariants without suffering
from the same limitations (discussed in Section 4.1) as previous lockset based algorithms.

To automatically learn a programmer’s intention, the best way is to study the program’s be-
havior in correct execution: if a code segment is always serializable in correct runs (runs where
no bug manifests), it is probably assumed to be so always. In other words, we can statistically
“learn” a program’s AI invariants through training. Specifically, to collect and analyze access in-
terleavings from a set of correct runs (training runs), we can see which shared accesses (such as
the one in Figure 4.2(b)) allow unserializable interleavings, and which shared accesses never have
unserializable interleavings.

The feasibility of the above idea depends on how well the training can be: (1) How to en-
sure training is dominated by correct runs (correctness issue)? (2) How to get sufficient dif-
ferent training samples (sufficiency issue)? These two issues are critical in all invariant-based
techniques [ECGN00, HL02, ZLL+04]. Fortunately, two unique and “notorious” properties of
concurrency bugs make training in AVIO easier than general invariant training. In other words, we
have turned the negative “troublesome” bug characteristics into positive characteristics in detecting
these types of bugs.

First, the correctness issue is addressed by two facts: (1) Concurrency bugs manifest very in-
frequently, even with bug-exposing inputs. Their manifestation usually requires specific access in-
terleaving, a notorious feature that makes concurrency bug very hard to reproduce for postmortem
diagnosis. Practical experience with real bugs shows that, even with bug-triggering inputs, usually
it still takes hundreds, thousands, or more of repeated executions to trigger a bug. As a result,
we can easily get correct-dominated training. (2) Existing infrastructure and research in software
testing can be leveraged to label training runs as correct or incorrect. In particular, according to a
previous work [CC98], most concurrency bugs are fail-stop. Furthermore, software testers usually
have various methods (beyond crashes or hangs) during in-house testing to determine the correct-
ness of test runs. Additionally, assertions and automatically extracted predicates [LAZJ03] can
further help to filter out incorrect training runs. The AI extraction algorithm can also be designed
to tolerate a small percentage of unfiltered incorrect training runs.

Second, the sufficiency issue is addressed by the fact that concurrent execution is non-
deterministic due to the underlying thread interleaving. As we all know, both multi-processor
execution and operating system thread scheduling have a lot of randomness. As such, even with
just one input, we can easily get a large number of distinct access interleavings. For example, in
our experiments, 100 runs of a SPLASH-2 benchmark with just one input always generate 100
different traces. Of course, better design together with interleaving perturbation can potentially
achieve more effective training. More discussion about how to effectively exercise the interleaving
space can be found in Chapter 7.
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Benefiting from the non-determinism, training in AVIO’s postmortem analysis (usage model
1) is very easy. Just running the program with the bug triggering input many times, and we will
get sufficient access-interleaving training results. This is a big advantage over traditional invariant-
based tools. As for on-the-fly-detection (usage model 2), the capability of AVIO is related to its
path coverage, which is a problem for all dynamic bug detection tools, not only for invariant-based
techniques. In AVIO, if the training does not cover a particular code block, no AI invariant is
available there and false negatives may occur. We need to rely on a reasonable branch coverage of
in-house testing suite and AVIO can be extended to actively learn new invariants during detection.
Value coverage is less of a concern, because AI invariants are associated with instructions and
interleavings, not with data addresses or values. With a different input, an instruction may access
data with a different value, but the programmer’s assumption about the desired atomicity associated
with this instruction remains the same.

The above analysis indicates it is feasible to extract AI invariant by training. Our experiments
further validate this. All the real server bugs detected by AVIO are based on training with just one
input and fewer than 100 training requests. The training input value is also flexible, as indicated in
our experimental input sensitivity study (section 4.6.3).

4.3 AVIO Algorithms
AVIO automatically extracts AI invariants from off-line testing runs, and then detects potential
violations to the extracted AI invariants during monitored runs. As the AI invariant extraction
algorithm is based on the detection algorithm, we will first describe the detection algorithm and
then present the extraction algorithm.

4.3.1 Detection Algorithm
Suppose that we already have a set of AI invariants, which gives a list of I-instructions. Then an AI
invariant violation is an unserializable interleaving between an I-instruction and its preceding local
access instruction (P-instruction) to the same shared variable. Based on our serializability analysis
in section 4.2.2, to detect any such unserializable interleaving, the detection process can simply
follow the binary decision diagram in Figure 4.5, which summarizes all the four unserializable
interleaving cases.

The decision diagram in figure 4.5 clearly shows that AVIO needs four pieces of information
to tell unserializable interleavings from serializable ones. These four pieces of information are:
access type of the current instruction (i.e., I-instruction Type); access type of the preceding local
instruction to the same memory location (P-instruction Type); interleaving remote write informa-

48
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read

write

Type of 
I-instruction

read
Type of 

P-instruction
write

Any interleaving
Remote Write?

Any interleaving
Remote Read

gets P-write result?
Yes
BUG !!

case 5
UNserializable

case 2, 3, 6
UNserializable

case 0, 1, 4
serializable

case 7
serializable

BUG !!PASS PASS

At an I-instruction

Information
AVIO needs
to detect bug

Figure 4.5: AVIO bug detection procedure (This diagram can be better understood when referring to
table 4.1).

tion and interleaving remote read information. With these four pieces of information, AVIO can
easily detect violations to AI invariants. We will show later in Section 4.4 how these four pieces
of information are collected in both our hardware and software implementations of AVIO.

4.3.2 Extraction Algorithm
The goal of the AI invariant extraction, referred to as AVIO-IE, is to extract AI invariants from
multiple correct runs.

Interestingly, AVIO-IE can be easily implemented by leveraging the AI invariant violation de-
tection process. Specifically, the extraction process is a series of correct runs with the AVIO
detection enabled. As shown in Figure 4.6, initially the set of AI invariants, AISet, includes all
global memory accesses in the target program. Then it runs the program on top of AVIO multiple
times. At the end of each run, AVIO reports “violations” to the current AISet in this run. A vio-
lation at an instruction i indicates that an unserializable interleaving is encountered in the current
correct run (labeled by the testing oracle). Therefore, there is no true AI invariant at i; i should be
removed from AISet. This process will repeat many times until AISet remains unchanged for the
last m runs, where m is adjustable. In Section 4.6, we will show sensitivity results of the number
of training runs. Finally we filter out never-executed instructions and return AISet.

To tolerate a small percentage of incorrectly labeled training runs (i.e., an incorrect run is la-
beled as correct), AVIO-IE can introduce an invariant filtering threshold T . Only when an invariant
is violated in more than T training runs that pass the testing oracle, this invariant is removed from
the AISet. This technique can avoid some actual invariants being filtered due to some incorrectly
labeled training run, but at the cost of potentially more false positives in violation detection. So
the best way is for programmers to adjust the threshold parameter based on the accuracy of their
testing oracles as well as their false positive tolerance level.
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AVIO-IE (ProgramBinary P)
{

AISet = all global memory accesses in P;
while (AISet is changing in the last m iterations) {

ViolationSet = RunOnceWithViolasDetection (P, AISet);
AISet = AISet – ViolationSet;

}
AISet = AISet – NonTouched Instructions;

}

Script

Figure 4.6: The process of extracting AI invariants in AVIO.

4.4 Two AVIO Implementations
To study the trade-offs between hardware and software, we implement our AVIO idea and al-
gorithms in two different approaches: a software-only approach AVIO-S and a hardware-assisted
approach AVIO-H. As the AI invariant extraction is done during in-house testing, it is less overhead
critical. Therefore, extraction is implemented based on AVIO-S.

4.4.1 Hardware AVIO (AVIO-H)
AVIO-H Overview

The hardware implementation, AVIO-H, takes advantage of existing cache coherence protocol and
achieves negligible overhead and little execution perturbation with simple hardware extensions as
shown in Figure 4.7. AVIO-H currently assumes a CMP machine with a physical-address indexed
private-L1 cache and a unified-L2 cache hierarchy, using an invalidation-based cache coherence
protocol. Extending it to other multiprocessor architecture such as SMP and other cache coher-
ence protocols is relatively straightforward, especially since our detection algorithms described in
Section 4.3 are not implementation specific.

DG

INV

AVIO Extension (2 bits)

PIDGL1 cache line (data, tag, state, etc.)

INV Invalidate bit. Provided by underlying architecture.

Downgrade request bit, belong to AVIO extension. 

PI Preceding access Instruction type bit, belong to AVIO extension.

Figure 4.7: AVIO-H’s extension to each L1 cache line.

First, AVIO-H appends each L1 cache line with two new access-information bits. These new
bits, together with the existing invalidate (INV) bit used by the cache coherence protocol, provide
enough information to perform the AVIO detection algorithm described in Section 4.3:

50



• PI bit (Preceding access Instruction bit): This bit provides the “Type of P-instruction” infor-
mation. It is set to 1 at each local read to the corresponding cache line and is unset at each
local write.

• DG bit (Downgrade bit): This bit provides information to find out whether the previous local
write’s result has been read by a remote thread. Interestingly, in existing invalidation-based
cache coherence protocols, such an action is associated with a Downgrade request sending
from the reader to the recent writer. Therefore, AVIO-H just needs to set the DG bit upon a
Downgrade request and unset the bit after each local access.

• INV bit: This bit already exists in current cache coherence hardware. It provides information
about any “interleaving remote write” after the previous local memory access. In existing
invalidation-based cache coherence protocol, interleaving remote writes will invalidate all
other L1 caches’ copies. Therefore, AVIO-H just needs to check the INV bit to see whether
a remote write has happened.

Second, the hardware cache coherence protocol is extended to support the above information
bits and violation detection. Finally, we add special instruction encodings for I-instructions (reads
and writes) and a special bit in the L1 cache access command to indicate when a memory instruc-
tion is an I-instruction. Using these extensions, we can easily implement the detection protocol in
hardware as shown in figure 4.8.

1

0

write

Type of 
THIS

instruction

read
PI

INV DG
1 0

1

BUG BUGpass pass

0

At Invalidate Request
set INV

At DownGrade Request
set DG

At normal L1 access
update PI, unset DG, INV

At L1 miss from an I-Instruction
BUG  = read*INV+write*(PI*INV+!PI*DG)

At an I-Instruction

(a) AVIO-H state maintenance (b) AVIO-H detection protocol

Figure 4.8: AVIO-H state maintenance and bug detection ( a hardware version of figure 4.5).

Complexity and Overhead Both the state maintenance and bug detection in the AVIO-H have
very simple logic, as shown in figure 4.8. Interestingly, further studying the detection protocol
indicates that unserializable interleaving only happens when the original cache coherence protocol
cannot use the local copy and needs to contact L2 to get the most-up-to-date copy and/or exclusive
write permission. Therefore, AVIO-H’s detection process is triggered only when an I-instruction
cannot be satisfied by its local L1 cache.
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The whole detection phase has small space overhead and negligible time overhead. The extra
space is just two bits per L1 cache line, less than 0.4% overhead. Because the invariant check
is conducted only when an I-instruction has to go to the shared L2 cache, the check is not in the
critical path–the simple detection protocol can be hidden by the L2 cache access latency. Only
when a bug is found, AVIO-H needs to impose overhead recording it.

Design Issues of AVIO-H

After describing AVIO-H’s basic mechanism, this section discusses some design issues. Some of
these issues have no effect on AVIO-H, while some others can, in rare cases, affect AVIO-H’s
accuracy in ways similar to previous hardware data race detectors. All these issues are specific
to our hardware implementation, and do not affect our software implementation (described in
Section 4.4.2).

Recording and reporting atomicity violations After detecting an AI invariant violation, AVIO-
H marks the I-instruction in the reorder buffer and sends a signal when this instruction retires.
Therefore, no bug is reported for speculative instructions. AVIO-H supports two bug reporting
options: either break the execution with an exception, or only record the I-instruction’s PC and
accessed address to a memory location specified by the software.

Cache line displacement and context switch Recent access history of a cache line may be lost
when it is displaced. This problem is also encountered in most previous hardware race detec-
tors [Prv06, PT03] and was simply ignored because it only results in false negative in very rare
cases. This is especially true for AVIO because AI invariants focus on two consecutive accesses
to the same memory location from the same thread. Intuitively, these two accesses are nearby
(which is why programmers forget to protect them in the first place) and therefore the probability
for them to be interleaved by a displacement of an involved cache line is very small. In addition,
we can always postpone displacing such a cache line by first evicting a private (e.g., a stack) cache
line. Similarly, context switches can also create some false positives in AVIO-H as well as most
previous hardware race detectors, and its probability is also very low for similar reasons. These
issues can be addressed in the future by thread-id tagging or employing directory as victim buffer
in directory-based cache coherence protocol.

Load-store queue and write-coalescing Some read access may be invisible to AVIO-H if they
hit the load-store queue. Fortunately, if this access is an I-instruction, a hit in load-store queue
definitely indicates no remote interleaving between this read and previous local access, so it is
perfectly fine that AVIO-H is not checking this “invisible” access. For the same reason, write-
coalescing also has no effect on bug detection. But if this access is a P-instruction right before an
I-instruction, it can lead to a two-fold effect. On the positive side, AVIO-H may thus be enabled to
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detect atomicity violation to a larger code region, since it mistakes an access sequence wP1rP2rrw
I

by wP1rrw
I , with rP2 hit the load-store queue and invisible to L1 cache. On the negative side,

wP1rP2wrw
I may be mistaken as wP1wrw

I , and AVIO-H may miss the bug. In summary, in most
cases, the load-store queue has no effect; in a very small percentage of cases, it may either help
or harm AVIO-H in detecting some bugs. Note that similar issues are faced by previous hardware
race detectors. Previous solution forces global memory accesses to go through the lower memory
hierarchy [RL98]. Since this issue rarely has bad effect on AVIO-H, we did not choose this solution
in our current prototype.

Strict/weak consistency model, out-of-order access and execution issues Different memory
consistency models may cause different memory access orders for the same concurrent program.
However, it does not affect the bug detection. No matter what the access order is, what AVIO-H
sees is the actual order executed on hardware. Out-of-order execution similarly has no effect on
AVIO-H. The only exception here is when prefetching results are finally discarded and the access
interleaving matches case 5, which is a low probability event, there may be some false positives.

False sharing due to cache line granularity In our design AVIO-H uses a cache line as the unit
for information keeping and bug detection. It may introduce some false sharing, an issue also faced
by previous hardware race detectors [PT03]. It can be solved by simply using a smaller granularity
(e.g., word) at the expense of increasing space overhead and bus traffic. This problem can also
be alleviated by using profiling to find false sharing and then using a compiler to automatically
add paddings. Such processes have already become a standard optimization to reduce unnecessary
cache coherence traffic and cache misses for performance reasons.

Other sources of cache line invalidation In AVIO-H, we use each cache line’s INV bit to record
remote write access information. In addition to cache coherence invalidation, this bit can also be
set by other sources such as DMAs. This does not interfere AVIO-H’s bug detection capability.
Atomicity violation would still be correctly reported even though it may be from a DMA operation.

Support for SMT Our current AVIO design is based on CMP/ SMP. To support SMT, AVIO needs
a simple extension: tag L1 cache lines with thread-ids.

Compatibility with certain processor and cache coherence protocol The cache management
policy required by AVIO is general: an invalidation-based cache coherence protocol. However,
there may be some real processor that is incompatible with AVIO’s current prototype. In that case,
AVIO needs simple extension to the cache coherence protocol to get some bug detection required
information, such as downgrade information.
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4.4.2 Software AVIO (AVIO-S)
To study the trade-offs between efficiency and accuracy, we also implemented the AVIO techniques
purely in software.

Like AVIO-H, the key task of AVIO-S is to collect and maintain access information required
by the AVIO detection protocol. Specifically, for all global memory, AVIO-S maintains the most
recent local and remote access history information, and then uses it to check for possible violations
at I-instructions. In software, various access information is collected by binary instrumentation at
every global memory access and maintained in an access-table data structures. Each thread has
an access-table, holding the type information of its latest access to each global memory location.
There is also a global access-owner-table, holding the identifier of the thread that most lately wrote
to each global memory location. At each memory access from I-instruction, the P-Instruction Type
can be obtained from the local-access table; and the information about remote write and read can
be inferred and bookmarked by comparing local thread-id with the owner-id.

Once an atomicity violation is detected, as in AVIO-H, AVIO-S will either stop the program and
raise an exception, or log all the debugging information and continue the execution. Debugging
information, such as the address of the three involving instructions, P-instruction, I-instruction and
the remote interleaving access, can be recorded in the global and local access tables.

4.4.3 Trade-offs between AVIO-H and AVIO-S
AVIO-H and AVIO-S each have their own advantage and disadvantages. First, AVIO-S is cheaper
because it does not require any hardware extensions. Second, AVIO-S is also more accurate be-
cause: (1) AVIO-S’s detection granularity is very flexible, ranging from a byte to a cache line with
a word as default. Therefore, AVIO-S suffers much less from the false sharing problem than AVIO-
H. (2) Since AVIO-S monitoring and detection are done by instrumented code, it is not affected by
the cache displacement, load-store queues, context switches, or other hardware-related issues.

However, as a trade-off, AVIO-S incurs much higher overhead and run-time perturbation,
which comes from two sources. The first is monitoring overhead–each global access is instru-
mented to update the access information of the accessed data. The second is detection overhead.
At each I-instruction, AVIO-S needs to detect possible violations to the corresponding AI invari-
ant. To reduce overhead, hashing is used for quick locating the information tables. Since the global
owner-table can be accessed by all threads, spin-locks are used for fast synchronization. All these
optimizations are helpful in reducing overhead. However, as we will show in the experimental
results (section 4.6), even though AVIO-S’ performance is better than several other software con-
currency bug detectors, the overhead is still much higher (4 orders of magnitude) than AVIO-H.
Even if static analysis may further optimize AVIO-S, it is still too hard to reach the level to fit for
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production run as AVIO-H. In addition, the bug detection capability may also be affected by the
larger execution perturbation from AVIO-S.

4.5 Methodology
Our software implementation, AVIO-S, is implemented using the PIN binary instrumentation
tool [LCM+05] and runs on a real machine with four Intel Pentium processors. Our hardware im-
plementation, AVIO-H, is implemented on the Simics [MDG+98] whole system simulator, based
on the SimFlex timing model [HSW+04] because it can run a real OS on the top, allowing us
to run real-world server programs in a realistic simulation environment. Specifically, we use a
full system, cycle-accurate, x86 simulator that models a 4-core CMP in-order x86 machine. Non-
memory operations have a fixed one cycle latency and memory operations go through the cache
and memory hierarchy. The parameters of the architecture are shown in Table 4.2. With AVIO-H,
we assume a 0.4% extra slow down on whole chip frequency due to the 0.4% larger L1 cache and
500 cycle penalty at each bug report to stall pipeline and prepare debugging information.

CPU 2.0 GHz in-order; 1 issue width each core
L1 cache (private) 32K, 4 way, 64B/line, 2 cycle latency
L2 cache (shared) 1M, 8 way, 64B/line, 10 cycle latency
Memory 200 cycles latency
Cache coherence protocol Derived from Piranha [BGM+00] CMP cache coherence protocol

Table 4.2: AVIO-H Simulation configuration.

Two sets of applications are used in our experiments. The first set is used to evaluate AVIO’s
bug detection capability. Unlike many previous hardware race detection studies [Prv06, PT03]
that evaluated with manually injected bugs, we use six real atomicity violation bugs which were
unintentionally introduced by the original programmers in two large real-world server applications
(Apache and MySQL) and Mozilla2. Table 4.3 shows the buggy applications and the description
of the six real bugs. For these applications, we evaluate whether the bug can be detected and how
many false positives are reported during the bug manifestation run.

In the second set, we use several well known SPLASH-2 benchmarks to evaluate AVIO’s over-
head and false positive. SPLASH-2 has also been used in many previous works [PS03, PT03,
RL98] to evaluate false positives because they have few concurrency bugs.

Besides comparing our two implementations AVIO-S and AVIO-H, we directly compare the
false positives, negatives and overhead with an enhanced lockset algorithm implemented in Val-

2Since our instrumentation and simulation tools do not support Mozilla’s graphic user interface, we use an extracted
version of the real bug in Mozilla based on its nsXULDocument.cpp file.
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Application BugNo. Bug description
Apache #1 Unprotected buffer length read and write corrupt log file (Figure 4.3)

HTTP server #2 Unprotected reference counter write-read causes null pointer reference
(253K LOC)

#1 Unprotected database bin log close and open cause some actions
MySQL not logged (Figure 4.4)

DB server #2 Unprotected query-id set and read crashes database server
(688K LOC) #3 Unprotected ‘delete table’ query and logging causes database log disorder

Unprotected script handler set and read causes null pointer reference
Mozilla-extract2 #1 (Figure 4.1)

Table 4.3: Applications and atomicity violation bugs evaluated in AVIO.

grind [NS07], which we will refer to as Val(grind)-Lockset algorithm. In addition, we also com-
pare indirectly with the happens-before algorithm and the SVD algorithm [XBH05] by analytically
evaluating whether each bug can be detected by them based on our understanding of these two al-
gorithms. In terms of false positive and overhead, we refer to previous papers: happens-before has
similar level of overhead with lock-set algorithm; SVD reports an up to a 65X server application
overhead and 1-60 static false positives for the same server applications, MySQL and Apache.

To demonstrate the less stringent requirement of AVIO on training runs, we do not use same
inputs for detection and training in our experiments. To extract AI invariants, we examine multiple
access interleavings during 100 training runs (or 100 server requests) for each application. The
invariant filtering threshold T is set to 0. In addition, we also conduct sensitivity studies on the
number of training runs for both server applications and SPLASH-2 benchmarks. The result shows
that no more than 100 server requests or 5 training runs are enough to obtain reasonably accurate
AI invariants for all the tested applications.

4.6 Experimental Results

4.6.1 Functional Results
(1) Bug detection capability AVIO detects more tested real bugs than the three alternatives (Val-
Lockset, happens-before and SVD). Specifically, as shown in Table 4.4, AVIO can detect five out
of the six tested bugs, while the three alternatives can detect only one or three.

MySQL bug3 requires atomicity among accesses to multiple global variables. These variables
have no data or control dependency with each other, but must be consistent for semantic reasons.
As a result, it is not detected by any evaluated tool. Besides this bug, the Lockset algorithm can-
not detect the Mozilla-extract bug, because it is data-race free, as explained in Figure 4.1. For
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the same reason, the happens-before algorithm also fails to detect it. SVD cannot detect MySQL
Bug1, because it is an atomicity violation involving a write-after-write access pair, with no true
data dependency or control dependency within it. The pair are therefore not be put into one com-
putation region and consequently not checked by SVD. Similarly, Apache Bug2, MySQL Bug2
and Mozilla-extract are atomicity violations with write-then-read access pairs, which are also not
checked automatically by SVD.

In contrast, AVIO’s bug detection capability is more comprehensive because, unlike race detec-
tors, it does not rely on synchronization primitives; unlike SVD, it can detect atomicity violations
with write-read and write-write dependencies based on our serializability analysis.

(2) False positives Table 4.5 shows that AVIO introduces only 1–11 static and 1–17 dynamic
false positives on server applications, much fewer than the Lockset algorithm, which has on aver-
age 51.5 static and 118.5 dynamic false positives. Similarly, for the bug-free SPLASH-2 bench-
marks, AVIO-S has no false positive and AVIO-H has only an average of 1.25 static and dynamic
false positives, while Lockset has 8.25 static and 26313 dynamic false positives on average.

The reason for lockset algorithm’s high false positive rate is that, as discussed in Section 4.1, it
incorrectly reports all shared accesses that are correctly synchronized using non-lock based meth-
ods, such as barriers and flag-synchronizations, as bugs. Even though we do not evaluate false
positives with the happens-before algorithm, we expect that the results will be similar because the
happens-before algorithm would use similar knowledge of synchronization primitives to order ex-
ecution segments and thereby suffer the same problem as the lock-set algorithm we evaluated.The
large number of false positives in the previous algorithms requires much effort from programmers
to sift through manually.

In contrast, AVIO reports many fewer false positives because it does not rely on any synchro-

Bug Detected
Application AVIO-H AVIO-S Val- Happens SVD

(Hardware) (Software) Lockset -before
Apache #1 Yes Yes Yes Yes Yes
Apache #2 Yes Yes No No No∗
MySQL#1 Yes Yes Yes Yes No∗
MySQL#2 Yes Yes Yes Yes No
MySQL#3 No No No No No∗
Mozilla-extract Yes Yes No No No∗

Table 4.4: Bug detection results for server/client applications. (* Since not evaluated in the SVD
paper, these four bugs are evaluated based on our understanding of the SVD algorithm. Specifically, SVD
cannot detect these bugs because these bugs involve write-write, write-read dependencies, or accesses to
multiple unrelated variables.)
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Dynamic False Positive Static False Positive
Benchmark AVIO-H AVIO-S Val-Lockset AVIO-H AVIO-S Val-Lockset
Apache #1 6 5 6 3 2 6
Apache #2 1 1 23 1 1 20
MySQL#1 4 4 107 4 4 79
MySQL#2 17 6 338 11 6 101
Average 7 4 118.5 4.75 3.25 51.5

fft 1 0 4098 1 0 6
fmm 4 0 389 4 0 12

lu 0 0 65026 0 0 5
radix 0 0 35740 0 0 10

Average 1.25 0 26313 1.25 0 8.25

Table 4.5: False positives for server applications and bug-free SPLASH-2 benchmarks. (Dynamic
false positives are dynamic instances of false positives reported during execution; static false positives are
static code segments incorrectly reported as bugs. Since Mozilla-extract is extracted from Mozilla by us, its
false positive number is not objective and not reported here.)

nization primitives. Instead, it bases its detection on access interleavings, which are more essential
and fundamental to atomicity violation bugs. Correctly synchronized accesses are not reported as
bugs no matter what synchronization methods are used because they do not violate AI invariants.
Moreover, AVIO can easily differentiate benign atomicity violations from true bugs because benign
violations do not have any AI invariants (i.e., these code segments actually welcome unserializable
interleavings). Therefore, AVIO does not report bugs at these code points.

AVIO still has a few false positives. For software AVIO, the false positives are due to insuf-
ficient training. Since server applications are very complicated, some correct interleavings do not
occur during our short training (only 100 client requests). For hardware AVIO, apart from insuf-
ficient training, the reason for most false positives is false sharing at the cache line granularity.
Unlike the lockset algorithm, AVIO never has huge numbers of dynamic false positives even when
the static false positive rate is comparable to the Lock-set algorithm’s, because most of AVIO’s
false positives occur due to rare interleavings or code paths.

(3) Comparison of AVIO-S and AVIO-H Functionality As AVIO-S has a much smaller gran-
ularity than that of AVIO-H, AVIO-S is more accurate. For example, it incurs up to 5 fewer static
false positives than AVIO-H. But as shown in the next section, this improved accuracy is achieved
with much higher overhead.
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Bug Detection Execution Slow Down
Benchmark AVIO (Hardware) AVIO (Software) Valgrind-Lockset
fft 0.5% 42X 1217X
fmm 0.4% 19X 660X
lu 0.4% 23X 661X
radix 0.4% 15X 236X
Average 0.4% 25X 694X

Table 4.6: Overhead results for SPLASH-2 benchmarks.

4.6.2 Overhead Results
AVIO has low detection overhead due to the hardware support and the simple detection algorithm
we use. As shown from our experiments on SPLASH-2 benchmarks (table 4.6), AVIO-H imposes
only 0.4-0.5% overhead, clearly feasible for production run use. Without hardware support, the
software implementation AVIO-S imposes an average of 25 times slow down. Although this is
acceptable for in house testing or postmortem analysis with deterministic replay support [NPC05,
XBH03], it is too high for production runs. We expect its overhead would still be substantially
higher than AVIO-H even after aggressive static analysis optimizations.

Though much worse than AVIO-H, our software implementation AVIO-S still outperforms
these previous software approaches. As shown in Table 4.6, the Valgrind-lockset imposes an av-
erage of 694 times slow down3. As the original SVD paper [XBH05] reports, SVD imposes a
factor of 65 times slow down to server applications. Such performance advantage is mainly due to
the simplicity of our bug detection algorithm. In the future, static analysis can be used to further
improve the performance of AVIO-S.

In summary, AVIO-S would be a good choice for off-line bug detection and diagnosis, while
AVIO-H can be employed for production runs.

4.6.3 Training Sensitivity
Our sensitivity study results show that for most applications, a few runs are sufficient to get a set of
reasonably accurate AI invariants, which are also robust to different inputs. Figure 4.9 shows the
number of false positives reported when we use the invariants generated from a different number
(1-10) of training runs for the SPLASH-2 benchmarks, or a different number (1-100) of requests
for MySQL.

In all four SPLASH-2 benchmarks, the false positives drop to 0 when we use the invariants
extracted from more than two training runs. Similarly, with MySQL, most false positives are

3Part of the slow-down is from Valgrind’s code emulation mechanism.
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eliminated after just 100 training requests. Such results indicate that AVIO’s training requirements
are not stringent.

As mentioned before, in all our experiments, the inputs used in detection runs are different
from those in training runs. Therefore, our results also show that training with one input can
be used to guide bug detection with other inputs. Of course, similar to other invariant-based ap-
proaches [HL02, ZLL+04] and general dynamic bug detectors, AVIO can only generate invariants
from exercised code.
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Figure 4.9: Training effects on static false positives for SPLASH-2 benchmarks and MySQL
server. (Note that Figure (a) and (b) use scales for x-axis.)

4.7 Discussion: Limitations of AVIO
AVIO is definitely not a panacea. the current AVIO prototypes suffer from the following limitations
and require more work in the future to enhance AVIO to address these problems.

(1) Bugs that are not exposed during the monitored run. Like many previous dynamic race
and memory bug detectors, AVIO reports only those bugs that manifest in the monitored run and
may miss potential bugs that do not happen during that run. It would be ideal if AVIO can predict
non-exposed bugs like lockset algorithm. However, lockset algorithm focuses on data race and
cannot effectively detect atomicity violation. It also suffers from high false positive rates, less
applicability to future transactional memory programs, etc. In the future, AVIO can use static and
dynamic analysis to infer potential interleavings during detection, so that it can be less sensitive to
scheduling. Advanced concurrency test generation techniques can also help AVIO to counter this
problem. This dissertation will study this topic in Chapter 7.

(2) Atomicity violations involving multiple variables. Like most previous tools, including Lock-
set, happens-before and SVD, AVIO focuses on single variable related bugs and cannot detect
concurrency bugs that involve multiple shared variables, such as the MySQL bug3. Fortunately,
real-world concurrency bug characterization experience (in Chapter 3) indicates that concurrency

60



bugs involving single variables are more typical and can serve as the building blocks of multi-
variable ones. In order to extend AVIO to detect multiple variable atomicity violation. In many
cases, we can simply compose multi-address regions from several single-address atomicity regions.
We just need to extend the detection protocol to look out when serialization of one variable’s ac-
cesses conflicts with that of another variable. In more complicated and challenging cases when
multi-addresses are correlated by high-level semantics, like the MySQL bug3, our AI-Invariant
needs to be extended to consider multiple variable access interleaving invariant. How to systemat-
ically detect concurrency bugs involving multiple variables will be studied in next Chapter.

(3) Training Overhead. Training will also add some overhead to the whole AVIO bug detection
process. Fortunately, the training results can be reused. Even when the code is changed, we can still
save the training effort of unchanged part and only redo the training for those change-related or not
well trained parts. For each training run, the overhead is similar to that of a detection run (reported
in section 4.6). The training run number depends on the sufficiency requirements. As shown in
section 4.6.3, as long as the related code region is covered, usually small number of training runs
(less than 100 requests in our server applications) would provide sufficient interleaving samples.

4.8 Summary
This chapter has presented an innovative, invariant-based approach called AVIO to detect atomicity
violations. By automatically extracting AI invariants and detecting violations of these invariants
at run time, AVIO can detect a variety of atomicity violation bugs. AVIO has been implemented
in two different ways, a software-only implementation (AVIO-S) and a hardware implementation
(AVIO-H). AVIO is evaluated using two real-world server applications (Apache and MySQL) with
five representative real bugs, one extracted-version of Mozilla with one real bug in it, and several
SPLASH-2 benchmarks. Experimental results show that AVIO detects more bugs with much fewer
false positives than previous algorithms. Comparing the two implementations of AVIO, AVIO-H
incurs very little (0.4–0.5%) overhead while AVIO-S introduces fewer false positives.

Atomicity violation bugs are one of the most common types of concurrency bugs. They will
likely become more common with the emerging transactional memory programming model, be-
cause concurrent programs written with such models will suffer more from atomicity violations
instead of data races (explained in Section 4.1). Therefore, atomicity violation bug detection will
become increasingly urgent. In this chapter, AVIO identifies a simple AI-invariant that can re-
flect the essence of most atomicity violation bugs. It also provides a fundamentally different and
novel idea to infer atomicity intentions and detect atomicity violation bugs. In addition, hardware
AVIO-H is the first design to us hardware support to detect atomicity violations.
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Chapter 5

Detecting Concurrency Bugs II — MUVI:
Multi-Variable Concurrency Bug Detection

As discussed in Chapter 3, concurrency bugs involving multiple variables are common yet poorly
studied. Most previous concurrency bug detection tools, including all race detection tools and
atomicity violation bug detection tools like AVIO, only look at single-variable concurrency bugs
and ignore multi-variable ones.

This chapter first discusses the program semantics underlying multi-variable concurrency bugs
and then presents MUVI. MUVI automatically infers the correlation among multiple variables and
uses that information to detect multi-variable concurrency bugs.

5.1 Overview

5.1.1 Motivation
Previous concurrency bug detection tools mostly focused on concurrency bugs that involve only
one variable. For example, AVIO (Chapter 4) only considers the atomicity of instructions that ac-
cess the same shared variable. Similarly, race detection tools focus on the synchronization among
accesses to the same variable, not different variables.

However, concurrency bugs caused by unsynchronized accesses to multiple variables (short for
multi-variable concurrency bugs) do exist. They actually contribute to a significant percentage of
all concurrency bugs. Based on the characteristics study in Chapter 3, about one third of real-world
non-deadlock concurrency bugs are multi-variable concurrency bugs.

To understand why there exist so many multi-variable concurrency bugs, we start from a
real-world bug example. Figure 5.1 (a–b) shows an example from Mozilla. cache→table
and cache→ empty are two related variables. The former is an array and the latter is a
boolean variable indicating whether or not the former array is empty. The two functions js -

FlushPropertyCache and js PropertyCacheFill both operate on these two variables. In
this example, thread 1 executes js FlushPropertyCache, nullifying the whole table array
and setting the empty flag to true. Unfortunately, these two actions can be interleaved by js -
PropertyCacheFill from another thread. As a result, empty is false, but table is already
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struct JSPropertyCache {

  JSPropertyCacheEntry  
table [SIZE];

  JSBool empty;
/* whether the 

table is empty*/
   …
}

Thread 1 Thread 2

(a) Variables with 
access correlation                         

(b) Bug (violating the access correlation due to conflict 
accesses from another thread, even though no data 

race on any single variable)

Access interleaving order 

js_PropertyCacheFill  ( ... ) 
{

cache table[indx] = obj;

cache empty = FALSE;   

} Mozilla jsinterp.h

...

lock ( t )

unlock ( t )

lock ( e )

unlock ( e )

struct JSRuntime  {
    ...

 uint32 totalStrings;
/* # of allocated strings*/

    double lengthSum;
/* Total length of 

       allocated strings */
    …
}

Mozilla jscntxt.h

Thread 1                                   Thread 2
js_NewString( )
{
   // allocate a new string

JS_ATOMIC_INCREMENT
(&(rt->totalStrings));

PR_Lock(rtLock);
 rt->lengthSum += length;
PR_Unlock(rtLock);

} Mozilla jsstr.h Mozilla jsstr.c

(c) Variables with 
access correlation                         

(d) Bug (using different locks to protect correlated variable 
accesses leads to multi-variable concurrency bugs)

js_FlushPropertyCache( )
{

  memset
( cache  table, 0, SIZE);

cache  empty = TRUE;

}
Mozilla jsinterp.c

...unlock ( t )

lock ( t )

lock ( e )

unlock ( e )

Example 1 Example 2
Inconsistent variables that will lead to crash or wrong results

...

printJSStringStats  ( ... ) 
{
   count = rt totalStrings;
   mean = rt lengthSum / count;
   printf ( %lu strings, 
                mean length %g \n ,
                count, mean);
}

Mozilla jsinterp.h

Figure 5.1: Two real examples of multi-variable access correlation and related concurrency bugs.
( (a–b) shows a real bug example from Mozilla-0.8. Note that this type of bug cannot be correctly detected
by data race or single-variable atomicity violation detection. Previous race detectors will either fail to report
the true root cause when there is no lock or fail to report any problem if cache→table and cache→
empty are separately protected as indicated. (c–d) shows a new concurrency bug detected by MUVI
from Mozilla-0.9. Although accesses to each individual variable are well synchronized, the accesses to two
correlated variables are not protected in the same critical section and cause bugs.)

cleaned. Subsequent execution will reference objects in this empty table based on the empty-flag’s
value (FALSE) and cause Mozilla to crash.

As we can see, the above bug is neither a race bug nor a single-variable atomicity violation
bug. Even if the two accesses to cache→table are well synchronized and the two accesses to
cache→empty are also synchronized, the bug still exists, as shown in Figure 5.1.

The root cause of this type of bug is that unsynchronized concurrent accesses violate the
semantic relationship between variables, such as cache→table and cache→empty. Fig-
ure 5.1(c–d) shows another example of multi-variable concurrency bug. In this example, similarly
concurrent execution could violate the semantic relationship between rt→totalStrings and
rt→lengthSum and cause problems.

We refer to this semantic relationship between variables as variable access correlation. Vari-
ables with access correlations are related to each other through semantics and need to be accessed
in a consistent manner. Some of them need to be updated together consistently and some of them
need to be accessed together to give the program a consistent and complete view. When unsyn-
chronized accesses violate such consistency, the program misbehaves. This is where multi-variable
concurrency bugs come from.

Multi-variable concurrency bugs are important and common because the program semantic
they violate (i.e., variable access correlation) is common and fundamental. Variables in our pro-
grams are not independent of each other. For example, we frequently use one variable (e.g.,
empty) to represent the constraint or status of another variable (e.g., table), use multiple vari-
ables (e.g., totalStrings and lengthSum) to represent different aspects of one complex
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entity, and so on. These programming practices make variable correlations common in soft-
ware. Consequently, unsynchronized concurrent accesses could easily violate these correlations
and cause program failure.

Figuring out variable access correlation is the biggest challenge to detecting multi-variable
concurrency bugs. On the one hand, without the knowledge of variable access correlation, bug
detection can only blindly check the synchronization among all memory accesses, which is not
only extremely slow but also unacceptably inaccurate. On the other hand, existing techniques
cannot effectively extract variable access correlation. It is too tedious to have programmers write
down all the correlations. Unfortunately, traditional compiler analysis cannot automatically catch
such semantic information because many correlated variables are just semantically correlated and
do not necessarily have data dependencies, such as the variable empty and the variable table
shown in Figure 5.1 (a).

5.1.2 State of the Art
Multi-variable concurrency bugs have not been well studied. Most of the existing concurrency bug
detection tools separately look at accesses to each single variable. For example, most existing race
detection tools [DS91, SBN+97, NM91, C+02] only check the synchronization among accesses
to the same shared variable. Some coarser-granularity race detection tools [vPG01, YRC05] ana-
lyze accesses to the same data structure (object), but not necessarily the same variable, together.
However, they cannot solve the problem because they cannot deal with variable correlations across
data structures. Furthermore, they cause many false positives because many fields from one data
structure are not correlated and need not to be accessed within the same critical region [YRC05].
Atomicity violation bug detection tools [FF04] check the atomicity of certain code regions, which
could include accesses to multiple variables. However, when inferring atomic code regions, ex-
isting techniques like AVIO (Chapter 4) and SVD [XBH05] still focus on the single variable. For
example, AVIO’s AI-invariants are associated with each single variable only.

Tools that focus on single-variable concurrency bugs cannot handle the multi-variable concur-
rency bug problem well. First of all, multi-variable concurrency bugs exist even if accesses to
every single variable are well synchronized. Previous tools would completely miss these bugs,
as shown in Figure 5.1(b). Figure 5.1(c–d) shows a new multi-variable concurrency bug detected
by MUVI in Mozilla. In this example, programmers have used locks to protect all updates to
rt->totalStrings and rt->lengthSum. However, since different locks are used, the cor-
related updates are still not protected in the same atomic region so the bug still occurs.

Second, if accesses to one of the correlated variables are not synchronized properly, previous
tools may detect it but they would suggest an inaccurate root cause and result in two problems.
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The first problem is that programmers may simply ignore the bug because the real severity of the
bug is not pointed out. The second problem is that the programmers may provide an incorrect
or incomplete fix, protecting each single variable separately, instead of the right fix, protecting
accesses to the correlated variables together within the same atomic region. Such a fix will pass
the checking of previous tools, but the bug still exists!

The only piece of previous work (to the best of our knowledge) [AHB03] that tries to automati-
cally detect multiple-variable involved data race bugs uses a lock-based heuristic: if two variables,
x and y, are ever accessed within one lock critical-section, they should never be separately ac-
cessed in different critical sections throughout the program. Although this work raises the issue
about multi-variable concurrency bugs, its solution does not work well: all the reported bugs in
their experimental results turned out to be false positives. The reason is that two variables being
accessed inside one critical section once does not imply that they should always be accessed in the
same critical section. Actually, they might coincidently appear in one critical section that is set up
for other nearby accesses.

As we can see, with the increasing popularity of concurrent programs driven by the multi-core
reality, it is important to address this fundamental limitation in concurrency bug detection.

5.1.3 Highlights
This chapter proposes an innovative and practical approach called MUVI (MUlti-Variable Incon-
sistency) to automatically identify multi-variable access correlations from programs, and detect
multi-variable concurrency bugs. Apart from detecting concurrency bugs, MUVI can also detect
inconsistent-update semantic bugs, which are a type of sequential bugs similarly caused by pro-
grammers forgetting to maintain variable access correlations. MUVI ideas and implementations
are evaluated using several large open-source applications, including Linux, Mozilla, MySQL and
PostgreSQL. Specifically, it makes the following contributions:

(1) The first tool (to the best of our knowledge) to automatically identify the commonly existent
multi-variable access correlations in large programs. MUVI combines static program analysis
and data-mining techniques to automatically infer multi-variable correlations. Experimental re-
sults with Linux, Mozilla, MySQL, and PostgreSQL (with 0.8–3.6 million lines of code) show
that MUVI identifies a total of 6,449 multi-variable access correlations efficiently (within 19–175
minutes) with an accuracy of around 83%.

The automatically inferred variable correlations can be used to detect program bugs, such as
multi-variable concurrency bugs and sequential semantic bugs, as we will demonstrate later. Apart
from bug detection, they can also be used in other ways: (1) They can be stored in a specification
database so that programmers can refer to it to avoid mistakes and encapsulate correlated accesses
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to improve the code modularization. (2) They can be used to automatically annotate the source
code and support other tools. For example, the recently proposed AutoLocker [MZGB06] can use
this correlation information to assign the same lock to correlated variables. It can also help provide
variable grouping information needed in Colorama [CMvPT07] and AtomicSet [VTD06].

(2) Address the fundamental multi-variable problem in previous concurrency bug detection Lever-
aging the automatically inferred variable access correlation, two classic race detection methods
(lock-set and happens-before) are extended by MUVI to detect multi-variable related data races.
How to extend other concurrency bug detectors such as AVIO (Chapter 4), RaceTrack [YRC05],
and RacerX [EA03] to deal with multi-variable concurrency bugs are also discussed. Experiments
with five real-world multi-variable concurrency bugs show that MUVI extensions successfully
help previous tools to identify the correct root causes of four out of the five tested bugs. MUVI
extensions also detect four new multi-variable concurrency bugs in Mozilla that have never been
reported before. None of the nine bugs could be identified correctly by the original race detectors
without the MUVI multi-variable extensions.

(3) The first tool to automatically detect multi-variable inconsistent update bugs Based on the
inferred multi-variable correlations, MUVI also automatically analyzes the source code to detect
places where programmers update one variable and forget to update its correlated variables. Ex-
perimental evaluation shows that MUVI has detected a total of 39 (22, 7, 9, and 1, respectively)
new bugs from the latest version of Linux, Mozilla, MySQL and PostgreSQL, with 17 bugs al-
ready confirmed by the corresponding developers based on our bug reports. Moreover, MUVI has
also detected 20 places with bad programming practices that can easily introduce bugs later. The
false-positive rate of MUVI inconsistent update bug detection is reasonable (41%, on average).

The remainder of this chapter is organized as follows. Section 5.2 gives a detailed discussion
about variable correlations. This is followed by the approaches to automatically infer variable
correlations in Section 5.3. Section 5.4 discusses how to extend existing concurrency bug detection
tools with the inferred correlations to detect multi-variable concurrency bugs. Section 5.5 shows
another usage of variable correlation: detecting inconsistent-update semantic bugs. At the end of
this chapter, methodology and experimental results are presented (Section 5.6 and Section 5.7).

5.2 Variable Correlations
Correlation, originating from statistics, means a pair of items’ departure from independence. Many
items in real-world are not independent among each other, neither are program variables in soft-
ware. Variable access correlation is inherent in program semantics. The following shows the
typical semantic reasons of variable access correlations:
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time.h
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Linux
fb.h

Linux
libiscsi.h

struct tm {
  int tm_sec;                       /* second */
  int tm_min;                       /* minute */
} /* time */

25 ( 0 )

struct fb_var_screeninfo {
  u32 red_msb;                    /* red */
  u32 blue_msb;                   /* blue */
  u32 green_msb;                /*green*/
  u32 transp_msb;                /*transparency*/
} /* for color display */

11 ( 1 )

struct iscsi_session {
  spinlock_t lock;                 /* lock */
  int              state;                /* critical data */
}

20 ( 0 )

Linux
list.h

struct hlist_node {
  struct hlist_node *next;     /* next */
  struct hlist_node **pprev; /* pevious */
} /* linked list */

32 ( 0 )

MySQL
mysql-
test.c

struct st_test_file* cur_file;    
struct st_test_file* file_stack;

/* cur_file points to the top of stack  */
69 ( 0 )
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Linux
net-

device.h

struct net_device_stats {
  u64 rx_bytes;              /* #of received bytes */
  u64 rx_packets;         /* #of received packets*/
}

49 ( 1 )

g
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device.h

struct net_device_stats {
  u64 rx_bytes;              /* #of received bytes */
  u64 tx_aborted_erros; /* #of transfer aborts*/
}

4 ( 68 )

h
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class.h

Class THD {
NET net;       /* client connection descriptor */
uint  db_length; /*length of database name*/

}

3 (87 )
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Table 5.1: Six examples of variables with access correlation and two examples with no access
correlation. (The last column shows the the numbers of times the variables are accessed together within
the same function and separately, denoted by the parenthesis, in different functions.)

• Constraint Specification: A variable specifies a constraint, a property or a state of its correlated
peers. For example, in Figure 5.1(a), cache->empty describes the state of cache->table.

• Different Representation: Two variables represent the same information in different ways. As
shown in Table 5.1(a), rx bytes and rx packets record the incoming network traffic in
different units: number of bytes and number of packets. They are accessed together 1 in 49 func-
tions except for one, which is a new inconsistent update bug detected by MUVI and confirmed
by the Linux developers.

• Different Aspects: The correlated variables specify different aspects of a complex data to emulate
correlated real-world entities. For example, tm min and tm sec in Table 5.1(b) represent the
minute and the second of a certain moment. They are accessed together in 25 functions and
never separated. Table 5.1(c) shows four correlated fields, red msb, blue msb, green msb
and transp msb, that represent the red, blue, green and transparency information for color
screenplay. They are accessed together in 11 functions with only one exception, which is also a

1More formal discussion of togetherness is in Section 5.3.1.
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Constraint Definition Example
read(x) ⇒ read(y) Every read to x semantically Figure 5.1: read to cache->table

requires a read to y has to be preceded by checking cache->empty
Every write to x semantically Table 5.1(a): update to one statistic variable

write(x) ⇒write(y) requires a write to y (rx bytes) always occur with update to
its peer variable (rx packets), vice versa.

write(x) ⇒AnyAcc(y) Every write to x semantically Table 5.1(d): write to state has to
requires an access to y check or grab the lock lock
Every access to x semantically Table 5.1(c): accesses to fb var screeninfo’s

AnyAcc(x) ⇒AnyAcc(y) requires an access to y green, blue, read, transp
fields are always together.

Table 5.2: Examples of access constraints in correlations. (AnyAccmeans either read or write. There
are totally nine types of access constraints. Here we only show four types for demonstration. The other five
types are (1) read(x) ⇒write(y), (2) read(x) ⇒AnyAcc(y), (3) write(x) ⇒read(y), (4) AnyAcc(x) ⇒read(y),
and (5) AnyAcc(x) ⇒write(y).)

recently confirmed new bug detected by MUVI.

• Implementation-demand: The correlated variables cooperate with each other in order to imple-
ment a specific functionality of the program. Table 5.1(d) shows that the field lock is used to
protect the critical data state in structure iscsi session; therefore accesses to state are
always together with accesses to lock. Similar examples can be seen in Table 5.1(e) (double-
linked list data structure) and Table 5.1 (f) (stack data structure).

Obviously, not any two variables from a program are access-correlated. For global variables,
such claim is intuitive. For multiple fields from the same structure, this also holds. The (g), (h) in
Table 5.1 provide two examples: although the fields in each pair belong to the same structure, they
do not have access correlation as they are accessed together in only 3–4 functions and are accessed
separately in 68 or 87 functions.

Since correlated variables are connected semantically, violating an access correlation poses
the risk of breaking the semantic connections and consistency, and might threaten the program
correctness, as demonstrated in the bug examples shown in Section 5.1 and 5.7.
Access constraints in correlations

Access correlations do not necessarily mean that correlated variables need to be updated to-
gether. As shown in Table 5.2, sometimes, correlated variables are always accessed (either read or
write or both) together; sometimes, reading a variable should be preceded by checking (reading)
another variable; in some other cases, writing one variable requires checking (reading) or writing
its correlated variables.

Similarly, some multi-variable access correlations are not necessarily symmetric. Modifying
one may require modifying or checking the others accordingly, but the other way around is not
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necessarily true. In the example (d) shown in Table 5.1, updating state requires accessing the
lock variable, but accessing lock does not need to modify state.

Based on the above two observations, there are nine different types of access constraints for
two correlated variables (four of which are illustrated in Table 5.2). For simplicity of description,
for two variables x and y, we use the following notation to represent an access correlation formally:

A1(x) ⇒ A2(y)

where A1 and A2 can be any of the three: “read”, “write” or “AnyAcc” (either read or write). For
example, an access correlation, write(x) ⇒read(y), means that every time x is modified, the
program needs to read the value of y together. Similarly, AnyAcc(x) ⇒AnyAcc(y) means that if
x is accessed (either read or written), y needs to be accessed together. The “togetherness” notion
is defined in the next section.

5.3 Variable Correlation Analysis
Variable access correlations are typically too many and tedious for programmers to specify manu-
ally. Therefore, if we can automatically infer such access correlations, we can use them as specifi-
cations, annotations and help bug detection. This section presents how MUVI automatically infers
variable correlations from programs.

5.3.1 Correlation Analysis Overview
Similar to much previous work on extracting information and invariants from source
code [ECH+01, KTB+06, LZ05] and dynamic execution [ECGN00, HL02], we assume that the
target program is reasonably mature, i.e., it is not at its initial development stage. Almost all
open source and commercial software meet this requirement, so it does not significantly limit the
applicability of our work.

Since our goal is to extract multi-variable access correlations, not arbitrary correlations, we
base our correlation analysis on variable access patterns and examine what variables are usually
read or written together. For example, if every time when variable x is updated, variable y is also
read together, it is very likely that some underlying program semantic (access-correlation) connects
them together. In this case, we claim that write(x) ⇒read(y).

“Access Together” Definition: A non-trivial question that immediately emerges is how we claim
that two accesses are “together”. There could be many possible measures. For example, we can use
source code distance (measured in terms of lines of code) or dynamic execution distance (measured
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in the dynamic instruction trace) as a metric. Although no single measure is absolutely the best
in all cases, in our scenario, dynamic execution distance is obviously not a good measure. The
reason is that two correlated accesses can easily be separated by a loop or a function invocation,
and thus have a large dynamic distance. In contrast, static code distance does not suffer from this
limitation. It is also more aligned with programmers’ coding process, which is usually centered
around semantic correlations and functionalities.

Obviously, simply counting the absolute source code line gap between accesses is not enough,
because that naive counting will consider two accesses in two adjacent functions as “together”,
which is unreasonable. Therefore, a good static distance based measure should also consider code
structures such as basic blocks, functions, and files. Comparing all these units, a basic block is
too small, while a file is too large. A function is the right unit since, from the programmers’ point
of view, a function is usually the basic unit to perform a certain task, which fits the correlation
semantic.

Based on all these considerations, MUVI defines “access together” as: if two accesses (reads
or writes) appear in the same function with less than MaxDistance statements apart, these two
accesses are considered together, where MaxDistance is an adjustable threshold.

Our current prototype uses a cutoff threshold to determine whether two accesses are together.
It is also conceivable to use a scalar metric, ranging from 0 to 1, to measure the “togetherness”.
Such scalar metric can also be used for ranking and false positive pruning.

“Access Correlation” Definition: Now we can formally define access correlation: x has access
correlation with y (i.e., A1(x) ⇒A2(y)), iff A1(x) and A2(y) appear together at least MinSupport
times and whenever A1(x) appears, A2(y) appears together with at least MinConfidence probabil-
ity, where MinSupport and MinConfidence are tunable parameters, A1 and A2 can be, respectively,
any of the three: read, write or AnyAcc, and together-ness is defined as above.

Correlation Inference Steps: MUVI’s correlation analysis is then to find out all A1(x) ⇒A2(y)
from the target program. It is conducted in three steps:

(1) Access Information Collection: MUVI parses the source code and collects each function’s
variable access information, including the set of variables accessed within each function, the access
types and locations in source code. The information is stored in an Acc Set database.

(2) Access Pattern Analysis: MUVI uses a frequent pattern mining technique to process the
Acc Set database and finds out all the variable sets that frequently appear together. This step
produces a pool of variable access correlation candidates.

(3) Correlation generation, pruning and ranking: The last step starts from the correlation
candidates produced at step 2. It uses the detailed information stored in Acc Set to generate,
prune and rank different types of correlations.
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5.3.2 Access Information Collection
MUVI conducts flow-insensitive and inter-procedural static analysis to collect variable access in-
formation from every functions. In other words, the goal of this step is to compute the Acc Set
for each function in the program. To achieve this goal, MUVI needs to address several issues:
(1) which variables are we interested in? Theoretically, all variables could be involved in some
correlation relationships. However, correlations involving structure/class fields and global vari-
ables are usually more common and more important than those short-lived correlations involving
only scalar local variables. Therefore, MUVI considers two types of variables: global variables
and structure fields (regardless of which object instance the field is associated with), represented
by structure/class-name::field-name (e.g. JSPropertyCache::empty). These structures can
be globally defined, locally defined or dynamically allocated. For simplicity of description, we
refer to both global variables and structure fields as “variables” in the remainder of the chapter.
(2) what detailed access information do we need? For each variable access, we need the following
detailed information to conduct further analysis: access type (read or write) for classifying dif-
ferent types of correlations; source code position (file name and line number) for measuring the
“togetherness” of two accesses; whether an access is from a function itself or its callee functions
for pruning purposes.
(3) how to handle function calls? A function can access a variable directly (referred to as a direct
access) or via its callees (referred to as an indirect access). The Acc Set of a function should
include both direct and indirect accesses. Otherwise, some access correlations would be missed,
especially in cases when a variable is read or written inside some utility functions, such as get()
or put(), for the purpose of encapsulation. To achieve this, MUVI first builds a call graph of
the target program and then traverses the call graph bottom up starting from the leaf nodes. All
direct accesses made in a function are added to this function’s Acc Set. If function F calls
function f1, f1’s direct accesses are also added to F ’s Acc Set (as shown in Figure 5.2), but
we do not propagate f1’s accesses any further along the call chain (i.e., not to F ’s callers). The
rationale is that, if two accesses are several functions apart in the call chain, they are unlikely to
be correlated (otherwise it is difficult for programmers to maintain the code). If we propagate f1’s
direct accesses too many levels upward, we can easily introduce many false correlations. In future
work, this scheme can become more flexible: allow propagations across many levels of function
calls, but give more weights to more direct accesses and less weights to less direct ones.

For a direct access a in a function f1, its source code position is the line number where this
access is made. However, when this access is propagated to f1’s caller F , the access’s source code
position in F ’s Acc Set is the source line where F calls f1 so that F ’s direct accesses are still
relatively close to this access a.
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F ( ) {

   f1 ( );

   read x ; 

   f2 ( );

}

f1( ) {

a:  read y ; 

}

f2 ( ) {

   read z ; 

}

F

f2f1

Acc_Set ( F ) 
=  { x } U Acc_Set ( f1 ) U Acc_Set ( f2 )
= { x, y, z } 

Acc_Set ( f2 ) = { z } Acc_Set ( f1 ) = { y } 

(a) Exemplary code (b) Acc_Sets are generated based on call-graph

Figure 5.2: Acc Set collection for an example call graph.

Issues and Extensions The above algorithm used in our current access information collection is
context-insensitive, i.e., it does not consider the caller’s effect during the analysis of Acc Set. To
be context-sensitive, we will need a parameterized Acc Set summary for each function, so that
different call sites of a function will get different Acc Set instantiations.

Since MUVI relies on source code parsing, we cannot get information regarding accesses made
inside a library whose source code is unavailable. For those common and important library calls
(e.g., strlen, strcpy, memset), we can manually specify their Acc Sets (i.e., the access type of a
library call to its parameters). We can also extend our analysis to extract correlations from binary
code, which remains as future work.

Since MUVI analyzes access correlations for fields in structures (regardless the object in-
stance), pointer aliasing of structure objects is not an issue. For global variables, pointer aliasing
could affect the accuracy, but the empirical results suggest that its effect is insignificant.

5.3.3 Access Pattern Analysis
The goal of this step is to identify variables that are accessed in the same function (i.e., appear in
the same Acc Set) for more than a threshold number of times. Each set of variables that satisfies
this property is referred to as an access pattern. Note that a pattern is not an access correlation.
Instead, it may imply a set of candidate access correlations of different types, such as read(x)
⇒read(y), read(x) ⇒write(y), etc.

Given the Acc Set of each function, different approaches can be used to extract such access
patterns. One solution is to count the number of Acc Sets containing both x and y for every pair
of variables (x, y). Although this solution is relatively simple, it cannot scale to large programs
with millions of lines of code, such as Linux. Moreover, it would be hard to extend this algorithm to
consider access correlations that involve more than two variables such as write(x) & write(y)
⇒read(z).

Since access correlations involving more than two variables do exist in real-world programs
(e.g., Table 5.1(c) and more examples in Section 5.7.4), we do not use the above method. Instead,
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we leverage a well-studied data mining technique: frequent itemset mining [GZ03]. Frequent
itemset mining examines a database where each entry is an itemset (i.e., a set of items) and tries
to efficiently discover which sub-itemsets (subsets of an itemset) are frequent, i.e. contained in
more than a threshold (called MinSupport) number of database entries. For example, in an itemset
database D,

D = {{w, y, z}, {v, w, y, z}, {w, x, y}},

if MinSupport=3, the mining result will show that itemsets {w}, {y}, {w, y} are frequent. If
MinSupport=2, itemsets {w}, {y}, {z}, {w, y}, {w, z}, {y, z}, {w, y, z} are frequent.

The specific frequent itemset mining algorithm used in MUVI is called FPclose. It is one of the
most efficient frequent itemset mining algorithms. The details of FPclose algorithm can be found
in [GZ03].

We apply FPclose to our Acc Set database, consisting of the Acc Sets of all functions
from the target program. The FPclose algorithm outputs the frequent sub-itemsets, i.e., access
patterns—sets of variables that are accessed (regardless of their access types) in more than Min-
Support number of functions. For example, at the threshold MinSupport = 10, the non-correlated
variable examples shown in Table 5.1(g)(h) in the previous section will not be selected as candi-
dates, since they are accessed in only a few functions together.

5.3.4 Correlation Generation and Pruning
In this final step, MUVI takes the access patterns to generate correlations, prune false positives and
rank the results. Basically, given a pattern such as (x, y), it may indicate a total of 18 correlations in
the form A1(x) ⇒A2(y) or A1(y) ⇒A2(x), where A1 and A2 can be read, write, or AnyAcc. For
each of the above possibilities, MUVI determines whether the access correlation holds by mainly
considering two basic metrics, support and confidence, plus some other considerations.

• Support. Given a correlation C: A1(x) ⇒ A2(y), its support, denoted as support(C), is the
number of functions in which A1(x) and A2(x) are together (based on the definition of together-
ness in Section 5.3.1). Such a function is called a supporter of this correlation. If a correlation
candidate has fewer than MinSupport number of supporters, it is pruned out.

• Confidence. The confidence of a correlation C: A1(x) ⇒ A2(y) measures the conditional proba-
bility that, given A1(x)’s presence in a function, A2(y) is performed nearby in the same function.
It is calculated via support(C) / support(A1(x)), where support(A1(x)) is the number of func-
tions that perform A1(x). Obviously, even if a correlation candidate has many supporters, a
low confidence would make the correlation not trustworthy. Therefore, MUVI uses a threshold
MinConfidence to prune out correlation candidates with too low confidence.
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• Other considerations. In addition to the above two metrics, we also differentiate direct function
supporters from indirect function supporters to improve the accuracy of correlation analysis. The
former directly access variables involved in the correlation, while the latter access the involved
variables via their callee functions. Clearly, direct supporters carry more weight than indirect
supporters. Due to this concern, MUVI counts the number of direct supporters and prunes out
correlation candidates with lower than a threshold MinDirectSupport number of direct support-
ers. It is also conceivable to give different weights to direct and indirect supporters when counting
the support and confidence. Furthermore, we also prune out false correlations caused by popular
variables, such as stdout and stderr. These variables are accessed in many functions, and
therefore can easily be falsely inferred as correlating to many other variables. To address this
problem, we prune out correlations that involve variables that appear in more than a threshold
number of functions.

Ranking Large software will have a long list of correlations. In order to help programmers priori-
tize their efforts, MUVI ranks the correlation results based on support and confidence. Specifically,
when the support is large enough, indicating that its confidence is statistically reliable, we rank the
correlations based on their confidence; if the support is not large enough, we rank the correlations
based on support.
Parameter setting Setting above threshold parameters needs to consider the tradeoffs between
false positives and false negatives. Our default parameter setting (section 5.6) should provide a
good initial balance point for most applications as shown in our experiments on four applications
(Section 5.7). Users can start with the default setting and tune it based on their empirical ex-
perience. If users have concerns with the false positive number, they can increase the threshold
parameters, such as MinConfidence and MinSupport. If users can tolerate more false positives,
they can decrease the parameters to get more inference results.

Parameter setting also depends on the targeting program properties and how users plan to use
the inferred correlation. For example, small applications can use relatively small MinSupport. If
we want to use the correlations as strict requirements and report all violations to them as bugs, we
would better be conservative and pick large parameters. If we only use the correlations as hints
to help with bug detection, such as in the case of the multi-variable concurrency bug detection in
Section 5.4, we can be more aggressive and choose relatively small parameter values.

5.4 Multi-variable Concurrency Bug
As discussed in Section 5.1, a significant portion of concurrency bugs are caused by concurrent
execution inconsistently accessing multiple correlated variables. This section discusses how to
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leverage the automatically inferred variable access correlations to extend existing concurrency bug
detection techniques and detect multi-variable concurrency bugs.

5.4.1 Extending Race Detectors
Multi-variable concurrency bugs cannot be solved by single variable race detection. As shown in
the real bug examples shown in Figure 5.1 and later in Figure 5.5, multi-variable concurrency bugs
could occur when there is no race on each single variable.

The basic idea of multi-variable extension to previous race detectors is as follows. For any pair
of conflicting accesses to the same variable, in addition to examining their locksets or their order,
we also examine if either access has correlated accesses, and whether their correlated accesses
share the same lock or are also ordered with respect to the conflicting accesses.

Background of race detectors As discussed in Section 2.2, race detectors are the most common
types of concurrency bug detectors. In the following, we briefly review the two classic race detec-
tion algorithms: the lock-set algorithm [DS91, EA03, SBN+97, YRC05] and the happens-before
algorithm [DS90, NM91, PK96]. We will demonstrate how to extend them in the next subsection.

The lock-set algorithm reports a data race bug when it finds that there is no common lock held
during accesses to a shared memory location. To perform such a check, the algorithm maintains
the set of locks currently held by each thread (called the thread Lock Set), and the set of locks
that have been used to protect each variable so far (called the Candidate Set). A candidate set is
initialized with all possible locks, and updated upon every access to the corresponding variable
by intersecting with the thread lock set. A data race is detected when the candidate set is empty.
In our study, we extend an existing dynamic implementation (by open source developers) of this
algorithm in Valgrind [NS07].

The happens-before algorithm [DS90] detects data-race bugs by comparing the logic times-
tamps of accesses from different threads to the same shared variable. If the timestamps do not in-
dicate a happens-before order among these accesses, a race is reported. Here the logic timestamp is
calculated based on thread interaction and synchronization. In our study, the basic happens-before
algorithm is implemented using a binary instrumentation tool, PIN [LCM+05].

Multi-Variable Extensions to Lock-Set Following the above basic idea, the multi-variable ex-
tension to the lock-set algorithm, referred to as lock-setMV, is as follows. For every pair of accesses,
A1(x) and A2(x) (one is a write), from different threads to the same shared variable x, we check
if they are protected by at least one common lock (the basic lock-set algorithm), and also check if
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A2 ( x )

Thread 1   Thread 2

A1 ( x )

Lock-Set MV
A1 ( x ) and A3 ( y ) are 

correlated accesses;

At least one of 
A1 and A2 is write

A3 ( y )

Figure 5.3: Multi-variable extension to the lock-set algorithm.

any correlated access A3(y), of A1(x) or A2(x), is also protected by a common lock with A1(x)
and A2(x), as shown in Figure 5.3.

Note that we require only correlated accesses, instead of all accesses, to x and y to be protected
by a common lock with their conflicting accesses. For example, if x and y only have a write-write
correlation, then only those write accesses to x and y that appear together are checked.

An implementation challenge is that the access correlations are inferred from source code in
the format of (global) variable names and structure/class field names, while the Valgrind lockset
implementation works at binary code level. Translation is therefore required to bridge this gap.
For global variables, we get their memory addresses from the compiler and feed them to lock-setMV

prior to the detection run. For shared structure/class-objects, their dynamic allocation and dealloca-
tion raise extra challenges. In order to dynamically update the mapping from structure/class fields
to memory locations for lock-setMV, we use source-to-source code translation to wrap malloc-like
and free-like functions with structure type information. Lock-setMV dynamically intercepts these
wrappers to get the correlation information.

Multi-Variable Extensions to Happens-before Extending the happens-before algorithm to con-
sider variable correlations is quite similar with our extension to the lock-set algorithm. The logic
timestamp calculation for each memory access is the same as that in the traditional happens-before
algorithm. The difference is that happens-beforeMV will compare the logic timestamp between not
only accesses to the same memory location but also correlated accesses. If the timestamp compar-
ison shows no happens-before relation with the above accesses, meaning that they can happen in
arbitrary orders, happens-beforeMV reports a bug.

Extending other race detection tools Extending other dynamic race detectors, in particular
those hybrid ones such as RaceTrack [YRC05], is straightforward, since they combine the lock-
set and happens-before algorithms. Extending static race checkers such as RacerX [EA03] and
Chord [NAW06] is even easier, since MUVI’s correlation information is collected from source
code, and thus is much easier to feed to static checkers than to dynamic ones.
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5.4.2 Extending Atomicity Violation Detection
Even though we only implemented and evaluated the multi-variable extensions to lock-set and
happens-before race detectors, it is straightforward to follow the same idea to extend other types
of concurrency bug detectors, e.g., atomicity violation bug detectors.

As discussed in Chapter 4, atomicity violation bugs are important concurrency bugs. An atom-
icity violation bug occurs when certain code region’s programmer-intended atomicity, also called
serializability 2, is not maintained during execution.

An important and challenging problem in atomicity violation detection is to infer which
code regions are intended to be atomic. Existing solutions rely on either manual anno-
tation [FF04, MZGB06, VTD06] or inference based on single-variable-centric access pat-
terns [LTQZ06, XBH05].

The access correlations extracted by MUVI can serve for atomicity violation detection well.
An access correlation essentially indicates that the correlated accesses need to be done atomically.
Taking the concurrency bug in Figure 5.1 as an example, correlation write(cache->empty)
⇒write(cache ->table) indicates that the writes to the two variables need to be atomic.
The violation to this atomicity is exactly the root cause for that real bug from Mozilla.

The multi-variable atomicity information above can well complement existing tools like AVIO
(Chapter 4) and SVD [XBH05]. These tools infer atomic regions based on ‘code unit’ composed
of two consecutive accesses from one thread to one shared variable or read-write data depen-
dency, respectively. Both of them would miss above atomic region composed of accesses to
cache->empty and cache->table, where two different variables with no data-dependency
are involved. In the following, we demonstrate how to extend AVIO to take advantage of the MUVI
access correlation information.

A1(x)
         A3(x)
         A4(y)
A2(y)

Thread1  Thread2 
A1(x)
         A4(y)
         A3(x)
A2(y)

Thread1  Thread2 
         A3(x)
A1(x)
         A4(y)
A2(y)

Thread1  Thread2 
         A4(y)
A1(x)
         A3(x)
A2(y)

Thread1  Thread2 
        Case1                    Case 2                  Case 3                Case 4

Serializable 
(Atomic)

Serializable (atomic) if and only if 
accesses to x or y are pure read

Figure 5.4: Serializability analysis based on the four cases of access interleaving on two variables.
(There are totally 64 combinations of two threads accessing two variables, x and y. They can be summarized
into 4 cases as above, where A1, A2, A3 and A4 represent write or read accesses. Case 4 is always atomic;
Case 1–3 are atomic when there is no write access to x or there is no write access to y.)

2A property for several concurrently executed actions, when their data manipulation effect is equivalent to that of
a serial execution of them.
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The first step of our extension is straightforward. AVIO and its access-interleaving invariant fo-
cuses on the atomicity of code units composed of consecutive accesses to the same variable; MUVI
can extend this to include correlated accesses to different variables. Afterward, the challenge is
to decide the atomicity (serializability) of concurrent accesses to two variables. In Section 4.2.2,
AVIO did such a serializability analysis by analyzing 8 different cases of single variable access
interleaving. The task here is much more complicated, because two variables create many more
possible access interleaving combinations. Based on the analysis of totally 64 different combi-
nations of two-variable access interleaving, the atomicity condition is summarized in Figure 5.4.
Future work can uses this atomicity condition to check whether a code unit is executed atomically
or not.

5.5 Inconsistent Update Bug
Violating access correlations can lead to not only concurrency bugs, but also sequential bugs. This
section presents how MUVI detects inconsistent-update bugs.

What is an inconsistent update? Inconsistent update bugs are caused by violations to write
⇒AnyAcc access correlations. That is, sometimes, the programmer updates one variable, but
forgets to update or check its correlated variable. As a result, the memory states of the correlated
variables become inconsistent. Such mistakes can be easily made by programmers due to careless
programming or miscommunication (as demonstrated by many bugs detected by MUVI in the
latest version of Linux, Mozilla, etc). We do not consider violations to access correlations that
start with a read access, because read does not directly change memory state and usually does not
cause severe damages by itself.

How to detect? Based on MUVI’s correlation analysis results, the basic algorithm of detecting
inconsistent updates is now straightforward. For any write(x)⇒AnyAcc(y) correlation, we exam-
ine the violations to it. All the functions that only update x without accessing y are treated as
inconsistent update bug candidates.
Ranking and pruning We first prune out likely false bug candidates based on caller–callee con-
sideration. Given a bug candidate function F , which misses the access to y, if y is accessed in
F ’s caller or callee functions, it is unlikely to be a bug. In our current prototype, MUVI checks
two-level caller and callee functions. Of course, we can examine more levels, but our empirical
results with several large software find it unnecessary.

After pruning, we rank the remaining bug candidates based on the following considerations:
(1) Violations to the strong write ⇒write correlations are ranked at the top. Intuitively, write

⇒write provides the most rigorous consistency requirements. If an update to y is “required” after
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each update to x, the violation, which neither updates nor checks y, is most likely to cause memory
state inconsistency.

(2) The more violations a correlation has, the lower rank it gets. Similar to previous rule
inference work [KTB+06, LZ05], if there are too many violations to a correlation, it is unlikely
for those violations to be all bugs. The rationale is that in mature software, programmers are less
likely to introduce many bugs with the exact same root cause.

(3) The more trustworthy a correlation is, the more likely a violation to it is a bug. After
the previous two steps, we rank the remaining violations based on the ranks of the corresponding
correlations.

As an example, Linux function velocity receive frame violates the access correla-
tion described in Table 5.1(a), write (net device stats::rx packets) ⇒write (net -
device stats ::rx bytes). Since it is the only violation to a highly ranked write⇒write
correlation, it is ranked number 1 in our bug report, and it has been confirmed as a true bug by the
Linux developers.
Discussion Of course, MUVI inconsistent update bug detection cannot solve all the multi-variable
inconsistency problem. Since MUVI only considers access types (read or write) and not specific
variable values, both false positives and false negatives could occur due to special variable values.

It is possible that when x is assigned a certain value, the update to y is unnecessary. For exam-
ple, in MySQL, SHOW VAR::type describes the type of data stored in SHOW VAR ::value.
Usually, they are updated together. However, when type is assigned to be UNDEF, there is no need
to update or check value. It is also possible that although two correlated variables are updated
together, the values assigned to them are inconsistent. Both are out of the scope of our approaches
and can potentially be solved by combining value invariant techniques such as DIDUCE [HL02]
and DAIKON [ECGN00] with our variable correlation analysis.

5.6 Methodology
Evaluated Applications We have evaluated MUVI correlation analysis and inconsistent update
bug detection using the latest versions of four applications: Linux (drivers), Mozilla , MySQL,
and PostgreSQL as listed in Table 5.3.

In order to evaluate MUVI’s multi-variable concurrency bug detection capability, we use five
known real-world 3 bugs from Mozilla and MySQL, as shown in Table 5.4.
Platform All of our experiments are conducted on a machine with a 2.4GHz Pentium processor,

3Since the race detectors are dynamic, we need to reproduce the bug during the execution to examine whether the
detectors can catch them. Interestingly, MUVI also found four new multi-variable concurrency bugs never reported
before.
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Application Version LOC Description
Linux (drivers) 2.6.20 3.6M Operating System
Mozilla-Firefox 2.0.0.1 3.4M Web browser
MySQL 5.2.0 1.9M Database Server
PostgreSQL 8.2.3 832K Database Server

Table 5.3: Applications (latest versions) used in MUVI correlation analysis and inconsistency bug
detection.

BugId App. Description
Moz-js1 Mozilla- Wrong-ordered concurrent updates make empty table’s empty flag false;

suite v0.9 leads to system crash (Figure 5.1)
Moz-js2 Mozilla- Wrong-ordered read/write to gcPoke flag leads to reading wrong

suite v0.8 liveAtoms; garbage collection fails
Moz-imap Mozilla- Wrong-ordered concurrent updates make URL-in-progress flag true,

Thunderbird v1.7 but URL string is NULL; system crashes
MySQL-log MySQL- Un-atomic read to log-file’s name and log-file are interleaved by remote

v4.0.16 thread switching log files; file logging fails
MySQL-blog MySQL- Un-atomic table deletion and logging are interleaved by remote thread’s

v3.23.56 table insertion and logging; security problem (Figure 5.6)

Table 5.4: Multi-variable concurrency bugs evaluated with lock-setMV and happens-beforeMV. (It
does not include the four new multi-variable concurrency bugs detected by MUVI. One of the four new bugs
is shown in Figure 5.1(d); another will be shown in the next section.)

512 KB L2 cache, 1GB of memory, running Linux 2.4.20 as the OS. We extend the EDG [Gro]
compiler front-end for static code analysis.
Parameter setting and sensitivity analysis The default parameters in MUVI variable access
correlation analysis are set as follows: MinSupport is 10, MinDirectSupport is 5, MinConfidence
is 0.8, and MaxDistance is 10 lines of code. We choose these values based on our sensitivity
analysis. In the next section, we show the parameter sensitivity study for two critical parameters,
MinSupport and MinConfidence. We fix all other parameters using the default settings and change
the targeting parameter (MinSupport or MinConfidence) to measure the accuracy of inferred access
correlations. We will also conduct experiments to discuss how the parameter setting would affect
the bug detection results and discuss the effect of our function call handling.
Accuracy measurement In our evaluation, we separately measure the accuracy (false positives
and false negatives) of variable access correlation analysis, multi-variable concurrency bug detec-
tion, and inconsistent update bug detection.
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5.7 Experimental Results

5.7.1 Variable Access Correlation Analysis
Table 5.5 shows the variable access correlation analysis results. As we can see, variable access
correlations are very common in real applications: totally 6449 access correlations (include only
AnyAcc⇒AnyAcc) are inferred, with 5954 variables and 1467 structures involved. The analysis
is efficient. For 3–4 million lines of code as Linux kernel has, it takes MUVI only 3 hours to infer
3353 access correlations.

To evaluate the accuracy of the correlations inferred by MUVI, it is too time-consuming to
examine all 6449 correlations. Therefore, we take an approach similar to previous work [LLMZ04]
by randomly sampling 100 correlations from each application and manually verifying whether they
are true. The results show that the false positive rate is reasonably low, around 17% on average.

The above results indicate that MUVI can efficiently and reasonably accurately infer access
correlations, which can be stored in a database as a specification for reference by program-
mers or leveraged by other tools such as AutoLocker [MZGB06], DAIKON [ECGN00] and Col-
orama [CMvPT07].
False positives of access correlation inference MUVI still has around 17% false correlations.
They come from two major sources. (1) Macro and inlined functions are replicated by the com-
piler pre-processor and result in redundant supporters. Pruning these supporters requires special
treatment of these macros and inlined functions. (2) In a few cases, variables are just coincidentally
accessed together for many times, but there is no real correlation between them. This is especially
true for some variables that get most of their support from read together. It is possible to prune out
some of them by giving more weight to write-write patterns.
False negatives of access correlation inference Similar to previous work, MUVI is definitely
not a panacea. It will miss variable access correlations in following cases: (1) true correlation
with low supports. This is a common problem for almost all statistics based techniques [ECH+01,

App. #Access- #Involved #Involved %False Analysis
Correlations Variables Structures Positive Time

Linux 3353 3038 587 19% 175m2s
Mozilla 1431 1380 394 16% 157m40s
MySQL 726 703 209 13% 19m25s
PostgreSQL 939 833 277 15% 98m23s
Total 6449 5954 1467 17%* 450m30s

Table 5.5: Variable correlations inferred by MUVI. (The correlations presented here only include
AnyAcc⇒AnyAcc type. The other types are presented in Table 5.8. *: The false positive here means
the average false positive.)
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Bug Lock-setMV Happens-beforeMV

Detect Bug? False Pos. Overhead∗ Detect Bugs? False Pos. Overhead∗

Moz-js1 Y 1 39.9% Y 1 21.2%
Moz-js2 Y 2 39.8% Y 5 1.0%
Moz-imap Y 0 13.2% Y 0 1.0%
MySQL-log Y 3 6.5% Y 6 5.0%
MySQL-blog N 0 5.9% N 1 3.2%
Note: In addition to the above existing concurrency bugs, we detected four new
multi-variable concurrency bugs that have never been reported before.

Table 5.6: Multiple-variable concurrency bug detection results. (‘Y’ means root causes correctly
identified; ‘N’ means the opposite. None of these five bugs’ root causes can be correctly identified without
MUVI extension. The numbers of false positives are the additional static false positives introduced by
MUVI, excluding those introduced by the original race detectors. *: The overhead is the extra monitor-
run overhead upon the original race detectors.)

LZ05]. To solve this problem, we might need to look for other sources of correlation evidence. (2)
conditional correlation. Some access correlations might only exist within certain program state
(an example, Figure 5.6, will be discussed in Section 5.7.2). Current MUVI prototype cannot
distinguish program contexts and phases, and would miss such correlations.

5.7.2 Concurrency Bug Detection

Overall Table 5.6 shows the evaluation results on five real-world multi-variable concurrency bugs.
Both lock-setMV and happens-beforeMV can correctly identify the root causes of four tested multi-
variable concurrency bugs. None of these tested bugs’ true root causes, i.e. multi-variable con-
currency bugs, can be identified by the original lock-set or happens-before algorithms without
MUVI’s extensions.

Furthermore, MUVI also detects four new multi-variable concurrency bugs that have never
been reported before. We have already shown an example in Figure 5.1(d). Figure 5.5 shows
another new bug we find from Mozilla. In this bug, the function in thread 1 is invoked with
lock protection, but the function in thread 2 is not. Actually, were not the correlation between
table->entryCount and table->removedCount, the single-variable race between the
two threads seemed acceptable. But with MUVI’s multi-variable extension, the race detectors
correctly identify the real problem: the consistency of the correlated accesses is broken by remote
conflict accesses!

False positives of multi-variable concurrency bug detection MUVI extension also introduces
a small number (0-6) of false positives. Since the original lock-set algorithm reports races more
aggressively than happens-before, our extension introduces slightly more additional false positives
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struct JSDHashTable {
    ...

uint32 entryCount;
/* number of entries 

                       in table */
uint32  removedCount;

/* number of entries 
removed from table */

    …
}

Mozilla jsdhash.h

Thread 1 Thread 2
JS_DHashTableRawRemove( )
{
   ...
   /* remove an entry from table */

table  removedCount++;

table  entryCount--;

}

JS_DHashTableEnumerate  ( ... ) 
{/* shrink table if many entries removed*/

   if ( table  removedCount
                              >= threshold ) {
      entries = table  entryCount;
    /*checking & calculating new capacity
      based on entries*/
   }

…
/* shrink table based on above capacity*/

}Mozilla jsdhash.c Mozilla jsdhash.c
(a) Variables with access correlation (b) Bug 

Figure 5.5: A new multi-variable concurrency bugs found by MUVI in Mozilla. (Thread 2 inter-
leaves thread 1’s update to table->entryCount and table->removedCount. As a result, thread
2 reads inconsistent values, and the table may not be correctly shrunk. If only considering the race on
each single variable, the programmer can easily get confused. Fortunately, benefiting from MUVI’s multi-
variable extensions, the detectors can identify the correct root cause.)

int mysql_delete(TABLE *t,…){
lock ( l ); 

          …
t rows = 0;

          …
unlock ( l );

binlog.write(“DELETE”)

}

int mysql_insert(TABLE *t, …) {
lock ( l );

...
t rows++;

…
unlock ( l );

binlog.write(“INSERT”)

}mysql      sql_delete.cc mysql      sql_insert.cc

Thread 1 Thread 2
Real Execution:
    Flush t
    Insert into t  
(table t contains one row)
BinLog Record:
    INSERT  t
    DELETE t
    (table t has no row)

Security Problem:
DB Recovery would fail

lock (b);

unlock (b);
...

lock (b);

unlock (b);
...

Figure 5.6: The false negative (bug MySQL-blog in Table 5.4) of Lock-setMV and Happens-
beforeMV. (The correlation between t→rows and binlog is conditional, and is therefore missed by
MUVI. Specifically, t→rows can be accessed many times, and usually binlog need not be accessed together.
Only at the end of a request processing when t→rows is given a final value, does binlog need to be consis-
tently modified. )

to happens-before than to lock-set.
MUVI’s false positives come from two sources: wrong correlations and benign multi-variable

races. Benign multi-variable races exist due to special program semantics. Some of the benign
multi-variable races can be pruned by sophisticated atomicity violation analysis like what we did
for AVIOMV in section 5.4.

False negatives of multi-variable concurrency bug detection MUVI extension misses one tested
bug (bug MySQL-blog), as shown in Figure 5.6. The reason of this false negative is that MUVI
cannot detect the conditional correlation, which only holds within certain program contexts, as-
sociated with this bug. How to combine program contexts with variable correlations remains as
future work.
Performance Our MUVI extension only adds a small percentage of extra overhead on the original
race detectors: 5.9%-40% for lock-set; and 1%-21% for happens-before. Note that, due to the com-
pletely different implementations (one using Valgrind and the other using PIN), the extra overhead
of lock-setMV and happens-beforeMV are incomparable. Since the original implementations already
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incur too large overheads (more than 10X) to be used in production runs, our additional overheads
have no major impact.

5.7.3 Inconsistent Update Bug Detection
Overall Table 5.7 shows the inconsistent update bugs detected by MUVI. Out of the MUVI in-
consistent update bug reports, we manually examined the top 100 ones, and identified 39 true bugs
(17 of them have been confirmed by the corresponding open source developers). All of these bugs
are new bugs in the latest versions of Linux, MySQL, Mozilla, and PostgreSQL. Almost all of
the detected bugs are semantic bugs, and therefore cannot be detected by existing tools such as
memory bug detection tools. Three examples of confirmed bugs detected by MUVI are shown in
Figure 5.7.

App. #MUVI #New #New #Bad #False False pos.
Bug Bugs Bugs program- Positives sources

Report Found Confirmed ming S1 S2 S3
Linux 40 22 12 5 13 6 3 4
Mozilla 30 7 0 8 15 8 7 0
MySQL 20 9 5 3 8 5 2 1
PgSQL 10 1 0 4 5 5 0 0
Total 100 39 17 20 41 24 12 5

Table 5.7: Inconsistent update bugs detected by MUVI. (#New bugs confirmed means that the bugs
are already confirmed by the corresponding developers after we reported these errors. “S1” stands for
semantic exception, “S2” for wrong correlation, and “S3” for no future read.)

Bad programming practices Besides true bugs, there are quite a few violations that are bad
programming practices that do not cause problems now but can easily introduce bugs later. For
example, in PostgreSQL, pointer PGconn::inStart points to the starting point of a mes-
sage, pointer PGconn::inCursor is used as a cursor pointing to a position inside a mes-
sage during the message reading. In one function, the current message is discarded and therefore
PGconn::inStart is moved to the next message, but PGconn::inCursor is not changed,
still pointing inside the discarded message. Fortunately, in all other places in the program, the use
of inCursor is always preceded by a checking of inStart, therefore such dangerous inconsis-
tent update does not lead to a bug. However, future code revision may easily introduce a bug as a
programmer may assume that these variables are always consistent. Therefore, such cases reported
by MUVI can help programmers to clean up the code and improve the software quality.
False positives of inconsistent update bug detection Although MUVI has pruned some false
alarms using inter-procedural analysis and confidence filtering, there are still some false positives
caused by the following reasons (the breakdowns are also shown on Table 5.7):
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static int imsttfb_check_var (struct 
   fb_var_screeninfo *var, struct fb_info *info)
{ ...

var->red_msb = 0;
var->green_msb = 0;
var->blue_msb = 0;
var->transp_msb = 0;

} drivers/video/imsfftb.c

static int  neofb_check_var(struct   
    fb_var_screeninfo *var, struct fb_info *info)
{  ...
   var->red_msb=0;
   var->green_msb=0;
   var->blue_msb=0;
   …  // missing update to var transp_msb
}

drivers/video/neofb.c  

(a) A new (confirmed) bug found by MUVI in latest version Linux driver framebuffer component

static int velocity_receive_frame
(struct velocity_info *vptr, int idx)
{  ...
   stats->rx_bytes += pkt_len;

 // missing update to stats rx_packets
}

static int fr_rx(struct sk_buff *skb)
{ ...

stats->rx_packets++; 
stats->rx_bytes += skb->len;

    ...
}

 drivers/net/via-velocity.cdrivers/net/wan/hdlc_fr.c

red_msb, green_
msb, blue_msb 
and transp_msb 
are used together 
to set up color.

Missing any one  
can make display 
failure.

rx_bytes and
rx_packets are 
explained earlier

How could receiv-
ing bytes without 
receiving packets?

(b) A new (confirmed) bug found by MUVI in latest version Linux driver network component

int genphy_setup_forced ( … )
{
      ...
    if ( phydev  speed == SPEED1000 ) 
       ctl |= SPEED1000;
    if ( phydev  duplex == DUPLEXFULL )  
       ctl |= FULLDPLX;
    ret = phy_write(phydev, MII_BMCR, ctl);
    …
} drivers/net/phy/phy_device.c

int phy_mii_ioctl ( …  )
{
   ...
   u16 val = mii_data->val_in;

phydev  duplex =
             ( val & FULLDPLX) ? 
              DUPLEXFULL : DUPLEXHALF; 
   …   // missing update to phydev speed
   phy_write(phydev, MII_BMCR, val);
} drivers/net/phy/phy.c

duplex (full/half)  
and speed (1000/
100/10 Mbps), co-
reside in the same 
BMCR  register.

Should be read/set 
together.
Otherwise, duplex/
speed information 
is missed 

(c) A new (confirmed) bug found by MUVI in latest version Linux driver network component

correct

correct

correct BUG

BUG

BUG

Figure 5.7: Examples of new inconsistent update bugs detected by MUVI in the latest version of
Linux. (They are confirmed by the developers.)

(1) Semantic exceptional cases. Even if the correlations are correct, they can
still be violated in cases of special semantic requirements. For example, in Mozilla,
nsHTMLReflowMetrics::height and nsHTMLReflowMetrics::width denote the
height and width of an HTML object. They are always read and updated together. However,
in function AdjustForCollapsingCols, since only col(umns) are collapsed, the program
only updates width, but not height.

(2) Wrong correlations. All of the correlations inferred by MUVI are directly fed to bug detec-
tion, so wrong correlations result in around one third of the bug false positives.

(3) No future reads. It does not cause problems when a function modifies a variable without
accessing the correlated peers if there is no future read to that variable. However, such an assump-
tion about no future read needs to be carefully maintained. Therefore, such false positives can be
treated as warnings as they are still helpful to programmers.

Among the above three sources of false positives, it is the easiest to solve the issue (3). False
positives caused by it can be pruned by some compiler analysis, such as liveness analysis. Pruning
false positives caused by issue (2) requires improving the accuracy of access correlation inference
as discussed earlier. The issue (1) contributes the most to the false positives in our experiments.
Solving this issue requires automatic inference of special program semantics, which is very chal-
lenging and remains as our future work.
False negatives of inconsistent update bug detection The false negatives of MUVI inconsistent
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Figure 5.8: Distribution of correlated variables with different number of peers in Linux and
Mozilla. (The results with the other two applications are similar.)

update bug detection would come from two main sources: (1) some true correlations are missed by
MUVI access correlation analysis; (2) some true bugs might be ranked low in MUVI bug reports
and are therefore missed by programmers. In our current prototype, this happens when there is
relatively big number of violations or small number of supports. Part of this problem can be solved
by better ranking algorithms, which we will study in the future.

5.7.4 Distribution of Variable Correlations
How many correlated peers? Figure 5.8 shows the distribution of the variables with different
numbers of correlated peers. The results from Linux and Mozilla show that most variables are only
correlated with a small number of peers: around half of the variables are correlated with only one
variable and around 20% are correlated with two variables.

This result indicates that access correlations do not exist between any two random variables.
Even though most structures contain many fields, only those fields that have true semantic connec-
tions have access correlations.
How many correlations in different type? Table 5.8 shows the number of correlations in dif-
ferent types. Around half of the correlations are asymmetric and therefore we need to differentiate
the direction in correlation analysis. Table 5.8 also shows other types of access correlations MUVI
finds. The distribution shows that most of the correlations are either read together or written to-
gether. read ⇒write and write ⇒read are relatively rare. Variables with these two types of correla-
tions usually also support read ⇒read or write ⇒write. This indicates that the correlated variables
should be either used or updated consistently.

Sym. Asym. rr rw wr ww
Linux 1595 1758 1141 325 408 1113
Mozilla 651 780 697 151 237 341
MySQL 316 410 339 61 81 161
PostgreSQL 586 353 365 112 131 269

Table 5.8: Directions and access types of correlations. (rr is read ⇒read, rw is read ⇒write, and so
on.)
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5.7.5 Sensitivity Analysis
In order to demonstrate how to choose parameters in MUVI, we perform a sensitivity study on Min-
Confidence and MinSupport. We only show the results of MySQL variable correlation inference in
Figure 5.9. The other applications also share similar trends.
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Figure 5.9: Parameter sensitivity results for MySQL. (The false positive rates are measured by exam-
ining 10 randomly selected access correlation candidates with the specified confidence and support values.)

Figure 5.9 (a) shows how the false positive rate of MUVI variable correlation inference changes
with different MinConfidence (all other parameters are fixed as default values). The false positive
rate dramatically decreases from higher than 50% to around 20% when the confidence reaches
80%. Therefore, we choose 0.8 as the default MinConfidence.

Figure 5.9 (b) shows how the false positive rate of MUVI variable correlation inference changes
with different MinSupport (all other parameters are fixed as default values). Similarly, we can see
the dramatic change of false positive rate around the support range of 10, and therefore we choose
10 as the default MinSupport.

Parameter setting also affects the bug detection results. Here, we show the results from MUVI
inconsistent update bug detection on Linux and MySQL based on different MinDirectSupport for
demonstration. Comparing against the bugs detected by MUVI under the default setting (MinDi-
rectSupport=5), Figure 5.10 shows the number of bugs detected under different MinDirectSupport
(all other parameters use default values). More bugs would be missed with larger MinDirectSup-
port. For example, with MinDirectSupport 30, only 1 (out of the total 22) Linux inconsistent
update bug and 3 (out of the total 9) MySQL bugs can be detected.

Apart from the parameter setting, other MUVI design also needs to consider the false positive–
negative tradeoff. In our current prototype, not only direct accesses but also indirect accesses of
one-level callee functions are considered in the Acc Set (Section 5.3.2). Although this design
choice results in a few more false positives, it also allows us to extract more true correlations. Take
MySQL variable correlation inference as an example. Our experiment shows that MUVI can infer
51 more true correlations 4 than the alternative design where only direct accesses are considered

4Based on our manual examination.
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Figure 5.10: The number of Linux and MySQL inconsistent update bugs that are detected at differ-
ent setting of MinDirectSupport. (the set of bugs detected by MUVI default setting is used as baseline)

(all other settings are exactly the same), with a reasonable number (15) of additional false positives.

5.8 Summary
This chapter proposes an innovative approach, MUVI, that combines source code analysis and
data-mining techniques to automatically infer variable access correlations and detect related bugs,
especially multi-variable concurrency bugs. MUVI extracts 6449 access correlations from Linux,
Mozilla, MySQL and PostgreSQL with high (83%) accuracy. Based on these correlations, MUVI
detects 39 new bugs (17 already confirmed) from these applications. MUVI extensions to two rep-
resentative existing race detectors (lock-set and happens-before) correctly identify the root causes
of four tested real-world multi-variable concurrency bugs and also detect four new multi-variable
concurrency bugs that have never been reported before.

The MUVI work has gone beyond bug detection and looked at a fundamental semantic prop-
erty. Results have indicated that multi-variable access correlation is a common and important
program semantic property in various real-world programs and their violations can cause impor-
tant concurrency and semantic bugs in operating system and server code. The access correlations
inferred by MUVI can also be used to automatically annotate programs for other tools such as
AutoLocker [MZGB06] and Colorama [CMvPT07].

Along the direction of concurrency bug detection, MUVI can well complement AVIO (Chap-
ter 4) by extending it to detect multi-variable atomicity violation bugs. In terms of idea, MUVI
and AVIO share a common theme: they both automatically infer underlying semantic informa-
tion. Their inference approaches are different. MUVI uses a data-mining algorithm and works on
source code. Instead, AVIO uses a simpler algorithm and works on execution trace. This difference
is determined by their different problem natures.

MUVI is only a beginning in the multi-variable correlation research. It can be extended in four
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aspects: (1) Detect other types of multi-variable related bugs, such as read inconsistency, multi-
variable atomicity violation bugs, etc. (2) Improve MUVI correlation analysis and bug detection
accuracy via better code analysis. (3) Extend MUVI to analyze dynamic traces to get run-time
correlation. (4) Evaluate more real-world applications.
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Chapter 6

Exposing Concurrency Bugs I —
Interleaving Coverage Criteria Design

As discussed in Chapter 1, effectively exposing bugs before software release is critical. Without
bugs being exposed, bug detection tools cannot accurately analyze the errors in the software and
developers would lose the opportunity to eliminate the bugs from production software.

The following two chapters focus on the challenging problem of testing concurrent programs
and exposing hidden concurrency bugs. This chapter looks at a general problem: how to explore
the huge interleaving space. Following the characteristics of concurrency bugs, this chapter designs
a hierarchy of coverage criteria to guide the interleaving space exploration. The next chapter looks
at the concrete problem of exposing atomicity violation bugs and presents an effective testing
framework: CTrigger.

6.1 Overview

6.1.1 Motivation
Program interleaving is a unique domain of concurrent programs. An interleaving is an order
among memory accesses from several concurrent execution components (i.e., threads or pro-
cesses). Different runs of a concurrent program under one input could non-deterministically take
different interleavings. All possible interleavings that an execution could take compose an inter-
leaving space. Concurrent programs’ interleaving space is critical and also challenging to handle.

Interleaving is important to concurrent programs because it affects the concurrent execution
results. Unlike sequential programs whose execution is solely determined by inputs and envi-
ronment, concurrent programs’ execution is greatly affected by the interleavings. As shown in
Figure 6.1, one program input could generate different results by taking different interleavings.

Interleaving is, therefore, critical to the dependability of concurrent programs. Different from
that in sequential programs, bug-triggering inputs alone cannot guarantee the manifestation of
concurrency bugs in concurrent programs. As shown in Figure 6.1, a concurrency bug might only
manifest under a special interleaving. Therefore, in order to expose hidden concurrency bugs, we
need to explore not only a program’s input space, but also its interleaving space associated with
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S1:   if ( buf_index + len < BUFFSIZE)

S2:       memcpy(buf[buf_index], log, len);

S3: buf_index+=len;

    Thread 1                  Thread 2

( a ) A non-bug triggering interleaving, which almost always occurs ( b ) A bug triggering interleaving, which rarely occurs

S1:   if ( buf_index + len < BUFFSIZE)

S2:       memcpy(buf[buf_index], log, len);
S3: buf_index+=len;

    Thread 1                  Thread 2

Wrong buffer content or
buffer overflow & server crash 

Figure 6.1: An example of the interleaving effect on concurrent execution. (This code snippet is
simplified from a real concurrency bug in Apache. The interleaving order among S3, S1, and S2 determines
whether or not this bug will manifest.)

each input, as tried in the real world and previous research [EFN+02].
Unfortunately, exploring the interleaving space of concurrent programs is very challenging. In

the real world, concurrent programs have huge interleaving spaces, factorial to the execution for
each input. Facing such a huge space, real-world software development resources can afford to
check only a small portion of it. How to make the best use of limited real-world resources and
effectively explore the huge interleaving space has been an open problem for a long time, and has
severely obstructed the improvement of concurrent program dependability.

6.1.2 State of the Art
Generally speaking, good coverage criteria are needed to support effective exploration of a large
program space. Good coverage criteria can serve as the guidance for selecting representative states
to focus on. Successful examples of coverage criteria include statement coverage [Bei90] and data
flow coverage[CPRZ89, FW88], both of which are widely used to select representative inputs in
software testing.

In order to effectively test concurrent programs and expose concurrency bugs, good in-
terleaving coverage criteria are needed. Unfortunately, existing interleaving coverage criteria
[BFM+05, FFLM96, TLK92] are quite limited. Many of them are either too complicated, with
exponential complexity, or not based on solid concurrency bug models. Furthermore, in order to
provide software testers with more choices and researchers with a better understanding of the de-
sign trade-offs, we need a hierarchy of interleaving coverage criteria covering a wide spectrum of
testing complexity and bug-exposing capability, which unfortunately does not exist.

6.1.3 Highlights
This chapter presents the design of a hierarchy of interleaving coverage criteria. It will make the
following two contributions:
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(1) A wide-spectrum hierarchy of interleaving coverage criteria This hierarchy includes five
layers and seven coverage criteria (five out of the seven are newly proposed). They are designed
based on different concurrency fault models (these models are supported by previous research and
the real-world bug characteristics study in Chapter 3) and represent different levels of software
quality requirements. This hierarchy can provide a wide spectrum of choices and guidelines for
effectively exploring the interleaving space and exposing concurrency bugs. The next chapter will
further demonstrate how these criteria can guide the design of a framework for exposing atomicity
violation bugs.

(2) Complexity analysis of the proposed coverage criteria The complexity analysis shows that
the proposed coverage criteria range from exponential complexity to linear complexity. Some of
our proposed criteria have only linear or quadratic coverage complexity and still have solid con-
currency fault model basis. They have the potential to help practical concurrent program testing.

6.2 Background

6.2.1 Concepts on Coverage Criteria
A coverage criterion, in software testing, usually focuses on test case selection from a certain
program testing space, e.g. the input space, the interleaving space, etc. Specifically, a criterion
C includes two parts. One is a set Γ of program properties, which could be program statements,
program branches, etc. The other one is a property-satisfaction function f , indicating what test
cases can satisfy (exercise) a certain program property. Criterion C can measure the adequacy of
a testing by checking how many program properties out of Γ are satisfied (exercised). If all the
program properties are satisfied, the testing achieves complete coverage and is called a complete
testing under C. Similarly, criterion C can guide the test case generation by pointing out which
program properties are already satisfied and which are not yet.

Complexity, also called cost, and bug-exposing capability are the two most important metrics
for a coverage criterion. The complexity of a coverage criterion can be measured by the number of
test cases needed to exercise all the properties in Γ [Wey93]. The capabilities of exposing hidden
program bugs could differ a lot among testings guided by different coverage criteria, because
different coverage criteria focus on exercising different program properties.

It is usually difficult to reach a good balance between complexity and bug-exposing capability.
That is why people used to compose hierarchical families [Bei90, FW88] of coverage criteria in
order to gain a thorough understanding of the design trade-offs. In general, a good criterion should
be based on a valid fault model. For example, structural coverage criteria are based on a fault
model assuming most sequential bugs to be related to certain program structures and control flows.
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6.2.2 A Model for Interleaving
Before presenting the interleaving coverage criteria, here we describe our model of concurrent pro-
gram execution and interleavings. In the following design, we consider multi-threaded concurrent
programs executed under an input upon a shared memory machine with sequential consistency
memory model. Similar to previous work [Wei88], we model the concurrent execution by a se-
quence of shared variable access events. At any moment, only one thread is active and executes
one event. When this event finishes, the same thread or some other thread will be chosen and exe-
cute its next event. Each interleaving test case is a total order among all accesses from all threads
that follows the sequential consistency model.

6.3 Interleaving Coverage Criteria
This section presents five layers of coverage criteria with different sets of interleaving properties.
These criteria are designed based on different concurrency bug models, starting from the most
conservative bug assumption—most exhaustive criterion, and ending with the most aggressive
(focused) assumption—most simplified criterion. These criteria together build a hierarchy that
spans a wide spectrum. Among the seven criteria, two of them (criterion 1 and 4.A) have been
proposed before, while the other five are newly proposed by us.

Thread 1 Thread 4Thread 2

Concurrency Fault Models: bugs are caused by interaction between ...
multiple threads

 multiple accesses 
to different variables

TWO threads
 multiple accesses 

to different variables

TWO threads
 multiple accesses 
to single variables

TWO threads
 3 or 2 accesses 

to single variables

One thread 
2 or 1 accesses and 

ANY remote interleaving

All-Interleavings 
Criterion

Thread-Pair-
Interleavings Criterion

Single-Variable-
Interleavings Criterion

Partial-Interleavings Criteria
(Def-Use Criterion;
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Figure 6.2: Different concurrency bug models and corresponding interleaving coverage criteria.
(Note: (1) The bug models on the right are more focused and the corresponding testing complexities are
smaller than those on the left. (2) The solid and hollow circles in the figure represent memory accesses to
two different shared variables. (3) Different criteria focus on different interleaving properties. The curves in
the figures illustrate the scopes of different properties.

• Criterion 1: all-interleavings (ALL) The interleaving space gets a “complete coverage”
based on ALL, iff all feasible interleavings of shared accesses from all threads are covered (Fig-
ure 6.2(a)).
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We start with a simple and exhaustive interleaving coverage criterion. It is clearly the most
expensive yet also the most powerful in exposing concurrency bugs.

Property Set: ALL criterion treats every interleaving among all memory accesses as one prop-
erty for testing. The size of the whole property set is factorial to the number of threads and ex-
ponential to the number of memory accesses within each thread. It can be calculated as following
(Ni is number of access events from thread i; M is the total number of threads):

|ΓALL| =
M
∏

i=1

(∑M

j=i Nj

Ni

)

Example: In Figure 6.2(a), the property set of ALL includes all possible interleavings of the 16
accesses. The size of the property set is as large as 63063000 for such a simple program! Actually,
the property set size for a four-thread, nine accesses per thread, program will be larger than 264!

• Criterion 2: thread-pair-interleavings (TPAIR) Interleaving space gets ‘complete coverage’
under TPAIR, if all feasible interleavings of all shared memory accesses from any pair of threads
are covered (Figure 6.2(b)).

Starting from this model, we begin to use some concurrency bug models to gradually generalize
our property set and decrease the coverage complexity.

Concurrency Bug Model: This criterion is based on the bug model that assumes most con-
currency bugs to be caused by the interaction between two threads, instead of all threads. This
is a widely believed concurrency bug model [SBN+97] and is also supported in our real-world
characteristics study (Chapter 3).

Property Set: Each property in TPAIR is a total order of accesses from a pair of threads. To
reach full coverage under TPAIR, testing needs to enumerate all possible pairs of threads and all
possible total orders upon each thread pair.

The size of TPAIR property set is polynomial to the number of threads, which is a simplification
from the Criterion ALL. However, it is still exponential to the number of memory accesses of each
thread. The exact property set size can be calculated as following:

|ΓTPAIR| =
∑

1≤i<j≤M

(

Ni + Nj

Ni

)

Example: Take Figure 6.2(b) as an example, one TPAIR property for thread 1 and 2 is an order
among r1

1, r
1
2, w

1
3, w

1
4, r

2
1, w

2
2, r

2
3, w

2
4. Since this property has no constraint on thread 3 and 4, totally

900900 (= (16
8 ) · (8

4)) program interleavings of all four threads can satisfy such a property. The
whole property set has size: 420.

94



• Criterion 3: single-variable-interleavings (SVAR) The interleaving space gets a “complete
coverage” under criterion SVAR, iff all feasible interleavings of all shared accesses to any specific
variable from any pair of threads are covered (Figure 6.2(c)).

Concurrency Bug Model: This criterion is based on the observation that many concurrency
bugs involve conflicting accesses to one shared variable, instead of multiple variables. This is a
widely-adopted assumption in concurrency bug detection [SBN+97]1.

Property Set: Each property in SVAR is an order among all accesses from two threads to one
shared variable. The size of the whole SVAR property set is linear to the number of variables and
is exponential to the number of accesses from each thread to one variable. This is simpler than
TPAIR, whose property set size is exponential to the number of variables.

The exact property set size can be calculated as the follows (Ni,v is the number of accesses
from thread i to variable v; V is the set of all variables).

|ΓSVAR| =
∑

1≤i<j≤M

∑

v∈V

(

Ni,v + Nj,v

Ni,v

)

Example: As shown in Figure 6.2(c), an SVAR property is an interleaving among accesses to
v or u from any pair of threads. For example, one property could be r1

1 → w1
3 → r2

1 → w2
2

2.
Since this property has no constraint on thread 3, 4 and u access w1

4, it can be satisfied by totally
4504500 interleavings. The size of the whole property set is 72, much smaller than that of TPAIR.

Criterion 4: partial-interleavings (PI) To further reduce the coverage complexity, we can con-
sider partial interleavings, i.e., execution order among a small number of accesses, based on the
observation that many concurrency bugs such as data races are caused by wrong order or wrong
interaction among two or three accesses, instead of a complete interleaving among all accesses.
(This observation is supported by the characteristics study of real-world concurrency bugs pre-
sented in Chapter 3.)

This bug model is more aggressive than the previous ones. Note that is is still reasonable and
has been used in previous bug detection and model checking work [MQ07, QW04]. It can have
different variants. Here we discuss two variant as following:

• Criterion 4.A: pair-interleave (PInv) The interleaving space gets a “complete coverage” under
PInv, if for each consecutive access-pair from any thread, all feasible interleaving accesses to it
have been covered (Figure 6.2(d)).

In this criterion and the following criterion 5.B, we use consecutive pair or consecutive ac-
cesses to denote a consecutive access pair from one thread accessing the same shared variable (e.g.

1Of course, this model does not include those multi-variable concurrency bugs that we discussed in Chapter 5.
2We use A → B to represent A being executed before B.
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pair (r1
1, w

1
3) in Figure 6.2(d)); we also use interleaving access to denote a remote access from

another thread. This access reads or writes the same variable between a consecutive pair described
above (e.g. w2

2 could become an interleaving access to (r1
1, w

1
3) in Figure 6.2).

Concurrency Bug Model: As discussed in Chapter 4 and recent work [VTD06], unexpected
interleaving accesses to a consecutive pair can indicate many concurrency bugs such as atomicity
violations (an example is shown in Figure 1.1). PInv criterion is exactly based on this bug model.

Property Set: Each property is a triplet composed of two consecutive accesses (a1 and a2) and
an interleaving access (a3) from another thread. A program execution covers a property if a3 is
executed in the middle of a1 and a2. The total size of the property set is no more than polynomial
to the number of memory accesses in the program.

We use PNi,v to denote the number of consecutive access pairs in thread i to variable v. Obvi-
ously, PNi,v = Ni,v − 1, if Ni,v > 0; otherwise PNi,v = 0. The size of the PInv property set can
be calculated by:

|ΓPInv| =
∑

1≤i6=j≤M

∑

v∈V

(PNi,v · Nj,v),

Example: In the example shown in Figure 6.2(d), a PInv property is a pair of consecutive
accesses to v (or u) from one thread and an interleaving access from another thread also to v (or
u). In this example, the property set has totally 48 properties, less than that of SVAR.

• Criterion 4.B: define-use (Def-Use) The interleaving space gets a “complete coverage” under
the Def-Use criterion, iff all possible define-use pairs are covered (Figure 6.2(d)).

A similar criterion, a member of the data-flow coverage criteria family [FW88], is used for
sequential programs for decades and was recently extended for concurrent programs [HM92,
YSP98].

Concurrency Fault Model:

A1: mThread = NULL;
       …  ...
A2: mThread =
  CreateThread(… ,Main,...);

  nsThread::Main(void* arg)
  {

...
    A3: tmp = *mThread;

 ...
  }

Thread 1 (parent) Thread 2 (child)

A concurrency bug from Mozilla: wrong 
define-use pair A1 A3 would crash the program

The underlying assumption is that, many bugs are
caused by a read access using a variable defined by a
wrong writer, i.e., a wrong define-use relation (an ex-
ample is shown in the figure on the right).

Property Set: Each property under Define-Use criterion is simply a read-write access pair,
where the read-access reads the variable defined by the write-access. These two accesses are from
either the same thread or different threads. If we use N r to denote the total number of read accesses
in a program, and N r

i,v (Nw
i,v) for the total number of read (write) accesses in thread i to variable v,

the size of the Def-Use property set can be calculated by:

|ΓDef-Use| = N r +
∑

1≤i6=j≤M

∑

v∈V

(N r
i,v · Nw

j,v)
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Note that, the N r in above equation represents the cases when the read access reads a variable
value defined by its own thread.

Example: As shown in Figure 6.2(d), a Def-Use property is a pair of write-read accesses
to the same variable. For example, all properties related to access r2

3 are: (w1
4, r

2
3), (·, r2

3),
(w3

4, r
2
3), (w4

4, r
2
3), where the first element in each pair is the defining write, and (·, r2

3) means
that access r2

3 reads the initial value in memory. The size of the whole property set ΓDef-Use is
32, smaller than that of ΓSVAR.

Criterion 5: local-or-remote (LR)
To further reduce the coverage complexity, we can use more aggressive bug models. One

possible direction is to extend criterion 4.A and 4.B to exercise any one remote interleaving access
or any one remote definer, instead of all possible interleaving accesses or all possible remote
definers. Following this direction, we only need to consider one property for each consecutive
access pair or two properties for each reader (remote or local definer). Of course, this relaxation
might lead to missing more concurrency bugs. In the following, we briefly discuss the criterion
5.A, extended from criterion 4.A, and 5.B, extended from criterion 4.B.

• Criterion 5.A: local-or-remote interleave (LR-Inv) Interleaving space gets “complete cover-
age” under LR-Inv, if every consecutive access pair (e, e′), from any thread accessing any shared
variable, has been unserializably interleaved (Figure 6.2(e)).

Concurrency Bug Model: This criterion simplifies the criterion 4.A by relaxing the testing
requirements to exercising any one unserializable interleaving access for every consecutive access
pair.

Property Set: Each property under LR-Inv corresponds to one pair of consecutive memory
accesses from the same thread to the same memory location. In order to cover the whole property
set, the testing needs to unserializably interleave each consecutive access pair at least once.

The property set size is no larger than the number of all consecutive memory access pairs,
which is linear to the total number of memory accesses.

• Criterion 5.B: local-or-remote-define (LR-Def) Interleaving space gets “complete coverage”
under LR-Def, if for each read-access r in the program, both of the following cases have been
covered — r reads a variable defined by local thread (or the initial memory state) and r reads a
variable defined by a different thread (Figure 6.2(e)).

Concurrency Fault Model: The fault model is similar to the general LR criteria described
above.

Property Set: The property set ΓLR-Def includes at most two properties for each read access r:
r reading a value defined by a local thread’s write access; and r reading value defined by a different
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thread’s write. The property set size ranges between N r and 2N r, where N r is the number of all
read accesses.

Overall, criterion ALL subsumes criterion TPAIR, which subsumes SVAR, which subsumes PI
and LR. All together, they build a hierarchy.

6.4 Cost Analysis
As discussed in section 6.2, the testing cost (also called complexity) of a criterion C measures how
many test cases are needed to completely cover the property set defined by C. In our study, a test
case is an interleaving among all memory accesses and the property-set size has been discussed in
section 6.3. Based on the definition, the testing cost may not equal C’s property set size because
one test case may cover multiple properties. We should also note that the testing cost defined
above does not include the effort to analyze the feasibility of each property or figure out the way
to exercise each property during the testing.

For each testing coverage criterion, we will estimate both the upper-bound and the lower-bound
of its testing cost, denoted by MaxCost and MinCost. Since it is both difficult and unnecessary to
get an accurate and exact cost, we use the Stirling Approximation 3 and other approximations to
get magnitude-level results for comparison purpose. Specifically, we assume that every thread
executes the same number of memory accesses (N ); each variable is accessed the same number of
times in each thread (NV = N

V
); the number of read accesses from each thread equals the number

of write accesses from each thread (N
2

). We use V to denote the number of shared variables and
M to denote the total number of threads. Finally, we consider N as a significantly large number.

ALL Criterion: Since we need exactly one test case to fulfill one property in ALL Criterion, ALL’s
testing cost is equal to its property set size. Stirling Approximation can give us following cost
approximation:

MaxCost(ALL) = MinCost(ALL) = |ΓALL| =

M
∏

i=1

(

iN

N

)

=
(MN)!

(N !)M
≈ (

√
M

√
2πN

M−1
)MMN

The cost of ALL criterion is exponential to the number of memory accesses (per thread) and
factorial to the number of threads.

TPAIR Criterion: TPAIR’s property set includes all interleavings among every pair of threads.
3 n! ≈

√
2πnn+1/2e−n [Mat]
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One test case can cover at most M(M − 1)/2 and at least M − 1 unique properties in TPAIR. The
rationale is as follows. If we look at each test case separately, a test case can always cover M(M −
1)/2 TPAIR properties. However, TPAIR properties covered by different test cases inside the test
case set may overlap. Fortunately, careful design can guarantee each test case to cover at least
M − 1 unique properties. This is based on the observation that, for any group of TPAIR properties
{interleaving1,2,interleaving2,3, ..., interleavingM−1,M} (interleavingi,j denotes an execution order
among thread i and j), we can always find an interleaving test case to cover all these M − 1

pair-wise interleavings4.
Based on the above analysis, we can use Stirling Approximation to get the following testing

cost approximation:

MinCost(TPAIR) ≈ 2|ΓTPAIR|/(M(M − 1))

=

(

2N

N

)

≈ 4N

√
πN

MaxCost(TPAIR) ≈ |ΓTPAIR|/(M − 1)

=

(

2N

N

)

M

2
≈ 4N

√
4πN

M

The cost of TPAIR criterion is exponential to the number of memory accesses (per thread) and
no more than linear to the number of threads.

SVAR Criterion: Each SVAR property is an execution order among all accesses from two threads to
one variable. When the SVAR-properties on different variables do not conflict with each other, the
number of SVAR-properties an interleaving test case can cover reaches its upper limit: V M(M −
1)/2. When the SVAR-properties on different variables conflict with each other, we conservatively
estimate the lower limit to be M − 1.

MinCost(SVAR) ≈ 2|ΓSVAR|/(V M(M − 1))

=

(

2NV

NV

)

≈ 4NV

√
πNV

MaxCost(SVAR) ≈ |ΓSVAR|/(M − 1)

=

(

2NV

NV

)

V M

2
≈ 4NV

√
4πNV

V M

4Similar M − 1 rationale will be used for several subsequent criteria to calculate their cost upper-bound.
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The cost of SVAR criterion is exponential to the number of memory accesses (per thread per
variable) and no more than linear to the number of threads.

PInv Criterion: Estimating how many test cases are needed to fully cover a PInv property set is not
easy. Fortunately, the following observation can help us: each access r can never interleave more
than one consecutive access pairs from one thread in one run. This observation indicates that we
need at least NV − 1 test cases to fully cover the PInv property set. To approximate the MaxCost,
we simply leverage the fact that each test case can cover at least M − 1 unique PInv properties in
a carefully designed test case set. The testing cost can be approximated as follows.

MinCost(PInv) ≈ NV − 1

MaxCost(PInv) ≈ |ΓPInv|/(M − 1)

≈ MV NV
2

2

The cost of PInv criterion is at most linear to the number of threads and no more than polyno-
mial to the number of memory accesses (per thread per variable).

Def-Use Criterion: The following observation can help approximate the testing cost of Def-Use:
each read access can have only one definer in each run. Based on this, we consider each test case
to cover at most NM

2
, i.e., one for each memory read access, and at least M − 1 unique define-use

pairs.

MinCost(Def-Use) ≈ 2|ΓDef-Use|/(NM)

=
NV (M − 1)

4

MaxCost(Def-Use) ≈ |ΓDef-Use|/(M − 1)

=
N

2
+

MV NV
2

8

The cost of Def-Use criterion is linear to the number of threads and no more than polynomial
to the number of memory accesses per thread per variable.

LR Criterion: As we have seen, the property set size is linear to the total number of memory
accesses (NM ) for both LR-Def Criterion and LR-Inv Criterion. It is safe to approximate the
upper-bounds of both criteria’s testing costs as NM , the total number of memory accesses from all
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threads. As for the lower-bounds, in ideal case, all LR-Def or LR-Inv properties could be covered
by one interleaving test case. Therefore, the lower-bounds of both criteria’s testing cost is constant.

All the testing cost analysis results are summarized in Table 6.1.

ALL TPAIR SVAR
Upper- exponential to N ;

factorial to M

exponential to N ;
linear to M

exponential to NV ;
linear to MBound

Lower- exponential to N ;
factorial to M

exponential to N ;
constant to M

exponential to NV ;
constant to MBound

PInv DefUse LR-Inv LR-Def
Upper- polynomial to NV ;

linear to M

polynomial to NV ;
linear to M

linear to N ;
linear to M

linear to N ;
linear to MBound

Lower- linear to NV ;
constant to M

linear to NV ;
linear to M

constant constantBound

Table 6.1: Testing costs of different coverage criteria. (This is based on the cost definition in Sec-
tion 6.2. N is the number of memory accesses from each thread; NV is the number of memory accesses
from each thread to each variable; M is the number of threads. )

In summary, ALL, TPAIR and SVAR criteria all require exponential number of testing runs,
too expensive to build complete test set in practice for real-world software. The other four criteria
Def-Use, PInv, LR-Def and LR-Inv criteria are much better, requiring only quadratic or linear size
test case set. If these four criteria can achieve reasonable bug-exposing capability, they are good
choices to guide real-world concurrency testing.

6.5 Summary
This chapter has presented a hierarchy of seven interleaving coverage criteria for concurrent pro-
grams. These criteria are designed based on different concurrency fault models, which are sup-
ported by previous concurrency bug research and the characteristics study in this dissertation.
Consequently, they have different complexities and bug exposing capabilities. All together, they
provide a good guidance for systematic exploration of concurrent programs’ interleaving space.
The next chapter will use one of the proposed criteria as guideline to build a testing framework for
exposing atomicity violation bugs.
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Chapter 7

Exposing Concurrency Bugs II —
CTrigger: A Framework to Expose
Atomicity Violation Bugs
This chapter continues to work on exposing concurrency bugs. A framework called CTrigger is
presented to effectively expose one important type of concurrency bugs: atomicity violation bugs.

7.1 Overview

7.1.1 Motivation
As discussed in Chapter 4, an atomicity violation bug is introduced when programmers assume the
atomicity of a code region but their implementation does not use proper mechanisms such as locks
or transactions to enforce it.

As also discussed in Chapter 4, atomicity violation bugs are one of the most common and
important types of concurrency bugs [LTQZ06, LPSZ08, PS08, LDSC08, VTD06, FF04]. They
widely exist because many programmers are used to sequential thinking and frequently assume
code regions to be atomic without appropriate enforcement. Chapter 3 shows that about 70% of
studied non-deadlock concurrency bugs in the examined server and desktop applications are caused
by atomicity violations. In addition, atomicity violation bugs will remain even with advanced syn-
chronization primitives such as transactional memories, because programmers might mistakenly
separate a group of indivisible operations into different transactions [LTQZ06, LDSC08]. There-
fore, techniques to help address atomicity violation bugs are highly desired.

Recently, much effort [XBH05, FF04, HDVT08, VTD06], including the AVIO work presented
in Chapter 4, has been made to help detect atomicity violation bugs. Almost all of these works
would significantly benefit from an effective way to expose atomicity violations during monitored
runs (testing runs). For example, dynamic atomicity violation checkers like AVIO, SVD [XBH05],
and other approaches [HDVT08] require atomicity violations to manifest during monitored runs
in order to catch them. Although static approaches [FQ03, KRDV07] do not have such require-
ments, their power is limited due to the complexity of analyzing concurrency and pointer aliasing,
especially for C/C++ programs. As a result, static tools can introduce many false positives. An
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effective way to examine bug suspects via testing runs can also help static tools to separate false
positives from true bugs [Sen08].

Bug-exposing techniques have been studied for a long time and many good techniques have
been widely adopted to test sequential programs [Bei90]. In general, a good bug-exposing tech-
nique needs to have three properties:

• Effectiveness: how many hidden bugs can be exposed;

• Efficiency: how fast hidden bugs can be exposed. Although the performance issue of testing
is not as critical as that of production runs, the bug-exposing process cannot take months
or years because programmers are under constant pressure to release software. In particular,
commercial software typically needs to run hundreds to thousands of test cases with different
inputs and configurations prior to software release. Let us assume that there are 100 different
input cases, 10 different OS/hardware/library configurations, and 20 machines for testing. If
each test case takes 20 hours on a machine, it would require (100 × 10 × 20)/ 20 = 1, 000

hours (i.e., around 42 days) to finish these 100 test cases. This is certainly too slow for
commercial companies who need to constantly roll out new changes.

• Reproducibility: if a hidden bug is exposed, how likely this bug can be reproduced for di-
agnosis. If the bug takes another 20 hours to reproduce, it might be very painstaking for
programmers to examine the problem.

Unlike exposing sequential bugs, exposing a concurrency bug usually requires at least two
conditions. The first condition, similar to that of sequential bugs, is a bug-triggering input. An ap-
propriate input is needed to execute a faulty code segment with a bug-triggering state. Much work
has been conducted in the past to generate comprehensive sets of inputs to cover code segments
and specification space [Bei90]. The majority of these works are still applicable to concurrent pro-
grams, although some extensions specific to concurrent programs are needed to further increase
the code coverage [SA06].

The second condition, unique to concurrency bugs, is a bug-triggering interleaving. With-
out this condition, the bug-triggering input alone may not expose the hidden concurrency bug.
Figure 7.1 shows a real-world bug example from the Apache HTTPd Server, a widely used, open-
source Web server. In this example, programmers forgot to protect the pair of accesses to buf -
index, namely {S1, S2}, into the same atomic region using locks or transactions and introduce
an atomicity violation bug. Unfortunately, this bug is hard to expose during testing because it man-
ifests only when S3 is executed between S1 and S2. The probability for this particular interleaving
to happen is very small. Actually, when we ran Apache with a bug-triggering input (an input that
can potentially trigger the bug) on an 8-core machine, it took 22 hours for this bug to manifest.
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S1:   if ( buf_index + len < BUFFSIZE)

S2:       memcpy(buf[buf_index], log, len);

S3: buf_index+=len;

    Thread 1                  Thread 2

( a ) A non-bug triggering interleaving, which almost always occurs ( b ) A bug triggering interleaving, which rarely occurs

S1:   if ( buf_index + len < BUFFSIZE)

S2:       memcpy(buf[buf_index], log, len);
S3: buf_index+=len;

    Thread 1                  Thread 2

Wrong buffer content or
buffer overflow & server crash 

Figure 7.1: An example of the manifestation condition of concurrency bugs. (This example is
simplified from a real Apache atomicity violation bug. It manifests only when S3 is executed between S1
and S2.)

In comparison to the first condition, the second condition is significantly understudied. There-
fore, similar to recent concurrency testing efforts [MQ07, Sen08, EFN+02], this chapter relies
on prior work to cover the first condition and focuses on the bug-triggering interleaving issue.
Specifically, we will study how to systematically examine interleavings selected from the huge
interleaving space and find out which ones hide atomicity violation bugs, if they exist.

7.1.2 State of the Art
The common practice to expose concurrency bugs is to run a program with each input test case for a
long time (for servers) or for many times (for other types of applications). We refer to this as stress
testing. Intuitively it makes some sense, since the non-deterministic nature of concurrent programs
will help exercise different interleavings in different runs. Unfortunately, practice has shown that
stress testing is neither efficient nor reproducible [MQ07]. The first part of this chapter will dig
deeper into the reason behind the deficiency of stress testing, showing that different interleavings
have different probabilities to be covered in a stress testing and many bug-hidden interleavings
have very low probabilities to be covered.

Recently, several inspiring works [BFM+05, EFN+02, MQ07, Sen08] were proposed to im-
prove stress testing. All these works aim to reduce the exponential size interleaving space into
smaller sets of interleavings for practical testing to focus on.

ConTest [BFM+05] injects artificial delays at synchronization points (e.g., lock acquisition and
lock release) in order to intensify the contention for synchronization resources. This would help
expose deadlocks, but not data races or atomicity violation bugs, because the latter types of bugs
are usually caused by programmers forgetting to use appropriate synchronizations to protect shared
memory accesses.

CHESS [MQ07] cleverly limits the number of context switches during an execution to 1–4 and
therefore significantly reduces the number of interleavings to explore. However, it has to make
a difficult trade-off between coverage and testing time. Even with a couple of context switches,
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there are still a huge number of possible choices, including which locations/threads to switch from
and which locations/threads to switch to. The number of choices further increases polynomially
if three or four switches are allowed. That is why CHESS allows context switches only at syn-
chronization points when it was used by Microsoft developers on real-world programs in order
to be practical. Such a constraint will make the method less effective for exposing atomicity vi-
olation and data race bugs, just like that in ConTest as discussed earlier. CTrigger, presented in
this chapter, well complements CHESS by systematically picking out interleavings that have low
occurrence probabilities and high association with atomicity violation bugs.

Based on the same motivation, RaceFuzzer [Sen08, PS08] focuses on potential data races re-
ported by race detectors. It attempts to force all the reported race interleavings during testing in
order to separate false positives from true race bugs. While this approach is definitely useful to
help users automatically filter out false positives in race bug detection, its bug-exposing capabil-
ity significantly relies on the underlying data race detectors: if the detector does not have a good
coverage, RaceFuzzer would miss many bugs. Unfortunately, due to the inherent complexity of
concurrent programs, there are still few race bug detectors that can achieve high coverage, espe-
cially for C/C++ programs and atomicity violation bugs.

In addition, both CHESS and RaceFuzzer only select one thread to execute at a time, which
can significantly slow down each test run and cannot take full advantage of multi-core machines in
testing. While it is possible to conduct multiple testing runs on the same machine, the contention
for disk and network resources makes it impractical for I/O-intensive applications, such as server
programs. In this chapter, CTrigger framework will be proposed to address this limitation and
allow each test run to use multiple processors, just like that in stress testing.

7.1.3 Highlights
This chapter studies the interleaving characteristics of stress testing and proposes a practical
method called CTrigger to efficiently expose atomicity violation bugs in large programs.

First, to select representative interleavings to focus on, we follow the guidance of LR-Inv in-
terleaving coverage criteria (presented in Chapter 6). That is, based on the type of concurrency
bugs we target, our bug-exposing framework focuses on a special type of interleaving (the unseri-
alizable interleaving) that is inherently correlated to atomicity violation bugs [XBH05, LTQZ06].
An unserializable interleaving is an interleaving that is not equivalent to any sequential execution
of the involved operations (more details are presented in Section 7.2). As discussed in Chapter 6,
focusing on unserializable interleavings can help expose most atomicity violation bugs and also
allows a substantial reduction of the interleaving space that needs to be explored.

Second, using three large server programs, three SPLASH2 programs, and one utility program,
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we examine why stress testing is insufficient in exposing atomicity violation bugs. Our evalu-
ation shows that different unserializable interleavings have different probabilities of occurrence;
different runs in stress testing usually cover similar interleavings, high-probability ones; and low-
probability ones, which usually hide atomicity violation bugs, have little chance to be covered
without external control, and are also hard to reproduce for bug diagnosis. The primary factors
that affect interleaving probabilities are synchronizations, memory access distances, and so on.

Controlled
testing

A testing 
input

& oracle

Prune
infeasible

interleavings

more bugs (if exists) exposed; 
developers get more confidence.

Exercise high-probability interleavings;
Expose easy-occuring bugs.

Rank
low-probability
interleavings

Identify
potential

unserializable
 interleavings

Short profiling 
runs

(collect trace)

Step 1 Step 2 Step 3

Phase One
Identify target unserializable interleavings to focus on

Phase Two
Explore unserializable interleaving space

Figure 7.2: CTrigger testing framework

Third, based on these observations, a testing framework called CTrigger is designed to ef-
fectively, efficiently, and reproducibly expose atomicity violation bugs in concurrent programs.
CTrigger achieves these goals by incorporating the following new ideas step by step, as shown in
Figure 7.2.

• Focusing on unserializable interleavings. From a few profiling runs, CTrigger identifies a
large set of potential unserializable interleavings.

• Pruning infeasible interleavings. Not every potential unserializable interleaving can hap-
pen during execution due to synchronizations. For example, two accesses protected by a
lock cannot be unserializably interleaved by a remote access (access from another thread)
protected by the same lock. To prune such infeasible interleavings, we design a pruning
algorithm that considers two types of synchronization operations: order synchronization and
mutual exclusion. By pruning out infeasible unserializable interleavings, it can significantly
reduce the number of vain attempts to force those interleavings. Our experimental results
show that 37%-96% of potential unserializable interleavings in the seven tested applications
can be pruned.

• Ranking and identifying low-probability interleavings. As different interleavings have dif-
ferent probabilities to be exposed, we propose a simple metric to estimate interleaving proba-
bility and rank all unpruned unserializable interleavings. This ranking mechanism allows us
to focus on low-probability interleavings during controlled testing, leaving high-probability
ones to be covered by the simple stress-testing mechanism. Our experimental results show
that our ranking mechanism is effective. It ranks bug-triggering interleavings high, mostly
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within the top 10%, and accelerates bug exposing time by up to 457 times. Besides our work,
the ranking metric may also be useful to other concurrency testing frameworks to improve
testing efficiency.

• Minimum external control to force low-probability interleavings during testing on multi-
cores. Unlike CHESS and RaceFuzzer, both of which control execution by scheduling one
thread at a time, CTrigger inserts artificial synchronizations in only a small set of execution
points corresponding to the target interleavings of interests. This allows the tested program
to leverage multi-cores, and avoids slowing down execution periods that are unrelated to the
target interleavings.

CTrigger is evaluated on 8-core machines with real-world buggy applications, including
four server/desktop open-source programs (MySQL, Apache, Mozilla, and PBZIP2) and three
SPLASH2 benchmarks. Among these applications, MySQL, Apache, and Mozilla are widely
used, large open-source programs with up to 3.4 million lines of code. CTrigger exposes the
tested atomicity violation bugs 10–1000 times faster than stress testing and previous methods (both
synchronization-based or race-based techniques described in Section 7.1.2). For example, CTrig-
ger takes 63 seconds and 235 seconds, respectively, to expose the two real-world Apache server
bugs, whereas the stress testing requires more than 20 hours to expose them, and one of the bugs
never manifests, even after one week of stress testing!

As explained before, testing efficiency is very important due to the time pressure to release
the software as well as the substantial number of test cases. Therefore, an acceleration factor
of 10–1,000 would be very beneficial. For example, if we use CTrigger to test the program for
1 hour, we would need to run stress testing or other testing mechanisms for 10–1,000 hours to
achieve equivalent results. To perform the same calculation exercise as we did earlier with 100
different input cases and 10 different configurations on 20 machines, CTrigger would take 1,000/20
hours=50 hours≈2.1 days to finish all test cases, whereas the stress testing would take 21–2,100
days to have similar exposing capability for atomicity violation bugs, which is definitely too long
to be acceptable.

In addition, since CTrigger records the execution control that exposes a bug, it can perform
the same control to reliably re-expose the same bug for diagnosis without any deterministic replay
support. For the tested bugs, CTrigger re-exposes them mostly within 5 seconds, 300 to more than
60,000 times faster than stress testing.
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7.2 Background: Unserializable Interleavings
Facing the huge interleaving space, the first step of concurrency testing is to decide what type of
interleavings to focus on. In this section, we first give a brief review of atomicity violation bugs
(more details are in Chapter 4) and then discuss why we focus on unserializable interleavings to
expose atomicity violation bugs (you can also refer to Criteria 5.A, LR-Inv, in Chapter 6 for a
deeper understanding).

Atomicity, also called as serializability, is a property for the concurrent execution of several
operations when their data manipulation effect is equivalent to that of a serial execution of them.
Programmers often assume some code regions to be atomic. Unfortunately, their implementa-
tion may not guarantee the atomicity. Consequently, the assumed atomicity can be broken when
the code region is unserializably interleaved by accesses from another thread, which leads to an
atomicity violation bug.

As discussed in details in Chapter 4 and some recent work [VTD06], the basic type of unseri-
alizable interleavings is composed of three memory accesses (shown in Figure 7.3). Two of them,
referred to as p(receding)-access and c(urrent)-access, consecutively access a shared location from
the same thread. The third one, referred to as r(emote)-access, accesses the same memory location
in the middle of the previous two from a different thread. For example, the key part of the bug
shown in Figure 7.1 is such a basic type of unserializable interleaving. The bug manifests when
r-access S3 unserializably interleaves the p-access S1 and c-access S2.

Due to the inherent connection between atomicity violation bugs and unserializable interleav-
ings, it is natural to focus on unserializable interleavings in order to expose atomicity violation
bugs. Furthermore, for simplicity and efficiency, we can start with the basic type of unserializable
interleavings described above. Specifically, for every shared memory access instruction C, we
can try to exercise at least one unserializable interleaving associated with C, i.e., interleaving-C,
short for an unserializable interleaving with instruction C as the current access. We accordingly
define the exploration space as {interleaving-C|C is a shared-memory access instruction}. Within
this space, some unserializable interleavings may never happen due to synchronization. We will
discuss how to prune out these infeasible interleavings in later sections.

The size of the unserializable interleaving space defined above is linear 1 to the static size of
the program. It is much smaller than the entire interleaving space and is therefore practical to
thoroughly explore. In the meantime, unserializable interleaving space gives a good coverage for
all potential atomicity violation bugs. Covering this space during testing would give developers at
least some level of confidence on their software quality against atomicity violations.

1This linear-sized space provides a good foundation for testing. Of course, figuring out and exercising all feasible
unserializable interleavings inside this space would require more than linear complexity.
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p: read x

c: read x

r: write x

Thread 1 Thread 2

p: write x

c: read x

r: write x

Thread 1 Thread 2

p: read x

c: write x

r: write x

Thread 1 Thread 2

p: write x

c: write x

r: read x

Thread 1 Thread 2

Execution Order x : a shared memory location

... ... ... ...

Figure 7.3: Unserializable interleavings. ( A static instruction C’s unserializable interleaving is exer-
cised iff at least one of its dynamic instances follows above pattern during execution.)

7.3 Why Stress Testing is Not Good — An Interleaving
Characteristic Study

Stress testing (defined in Section 7.1.2) is the current dominant practice. To understand why it is
ineffective at exposing atomicity violation bugs, we quantitatively study its characteristics from
the perspective of unserializable interleaving space. The understanding will guide our design of
CTrigger and help find out how to enhance stress testing in order to disclose hidden atomicity
violation bugs.

7.3.1 Methodology
We use four widely-used open-source server/desktop applications, Apache HTTPd, MySQL,
Mozilla and PBZIP2, and three applications from the SPLASH2 [WOT+95] benchmark-suite.
These applications cover different types of functionalities and synchronization models, as shown
in table 7.1. The experiments use a dual quad-core (totally eight processors) Intel Xeon machine,
and each application is configured to have eight worker threads.

App. LOC Description Synchronization Model Workload
Apache 302K Web server lock SURGE [BC98]
MySQL 1.9M Database server lock MySQL-test*
Mozilla 3.4M Web browser suite lock JavaScript test suite*
PBZIP2 2.0K Parallel BZIP2 file compressor lock & queue a random file

FFT 1.0K FFT transformation barrier default setting
LU 1.0K Matrix factorization barrier with 8 processors

Barnes 3.0K N-body problem lock & queue

Table 7.1: Applications and workloads used in the interleaving characteristics study. (*:MySQL-test
and JavaScript test suite are designed by MySQL and Mozilla developers.)
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In order to collect the interleaving information, we use PIN binary instrumentation
tool [LCM+05] to monitor the execution. To make sure that our study can reflect the real non-
perturbed execution environment, we carefully design our instrumentation to give minimum per-
turbation in a thread-balanced way.

7.3.2 Observations
Our experimental results reveal the following observations:

(1) Is stress testing non-deterministic in a random way?
From the perspective of covering unserializable interleavings, the answer is no. As shown in
Figure 7.4, the majority of unserializable interleavings exercised by different runs (or different
iterations for server programs) are the same.

(2) Can we rely on stress testing to cover the whole unserializable interleaving space?
The answer is no. As shown in Figure 7.5 2, stress testing hardly exercises any new unserializable
interleaving after the first few runs and leaves some feasible unserializable interleavings uncovered
in every application. Actually, some feasible interleavings are never exercised in days of stress
testing. Unfortunately, these interleavings are exactly the most obnoxious ones that usually hide
difficult-to-detect and tough-to-diagnose atomicity violation bugs.

(3) Why do some unserializable interleavings have low probability to be exercised?
Different interleavings have completely different occurrence probabilities. For example, Figure 7.4
shows that some interleavings are exercised in all stress testing runs, i.e., about 100% occurrence
probability. On the contrary, as we discussed above, some interleavings are never exercised during
days of experiment, i.e., almost 0% probability. Further examination reveals the following major
factors to determine the probability: (i) program synchronizations, such as lock, barrier, flag-
synchronization, etc, that make some interleavings always happen and some never happen; (ii)
distances between related instructions: when two memory accesses from a thread are close to each
other, the chance is very small for them to be unserializably interleaved by a remote conflicting
access; (iii) the number of dynamic instances of a static instruction: the more dynamic instances a
static instruction has, the more likely that one of them will be unserializably interleaved.

7.3.3 Implications to Exposing Atomicity Violation Bugs
In summary, we can see that stress testing is not good at exposing atomicity violation bugs be-
cause it cannot effectively exercise the unserializable interleaving space. Without perturbation

2Since similar trends are demonstrated in all these applications and workloads, we only show the results for FFT,
Barnes, MySQL-test (union) and Apache-HTTPd.
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Figure 7.4: Interleaving Similarity across runs. (Each bar shows the number of unserializable interleav-
ings covered in each run. The dark part includes the interleavings exercised by all runs, i.e., having 100%
occurrence frequency. The interleavings with less than 100% frequencies are included in the white part.)
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Figure 7.5: The accumulative set of exercised unserializable interleavings grows slowly after the
first few runs. (The full space includes all potential unserializable interleavings. How to calculate the full
space is discussed in Section 7.4.1).

to the execution, stress testing repeatedly tests those high-probability unserializable interleav-
ings. Atomicity violation bugs can easily hide in those low-probability unserializable interleav-
ings and escape into production runs. Such bugs are usually the most obnoxious, difficult-to-
catch and tough-to-diagnose concurrency bugs due to their rare occurrences (without external con-
trol) [LJZ07, LPSZ08, LTQZ06, XBH05].

Based on this observation, CTrigger focuses on exploring low-probability unserializable in-
terleavings. In the following sections, we will discuss (i) how CTrigger identifies potential un-
serializable interleavings (Section 7.4.1); (ii) how CTrigger prunes out infeasible unserializable
interleavings to avoid wasting testing efforts (Section 7.4.2); (iii) how to identify low probability
interleavings to prioritize the testing runs (Section 7.4.3); (iv) how to systematically control the
execution and make above low-probability interleavings more likely to occur (Section 7.5).

7.4 CTrigger Phase One: Identify Which Unserializable
Interleavings to Focus On

Based on the observations described in above two sections, we design a framework called CTrigger
to expose hidden atomicity violation bugs in concurrent programs. It is composed of two phases

111



(shown in Figure 7.2 in Introduction): at the first phase, for a given concurrent program and a
given test input, CTrigger conducts trace analysis to obtain a list of unserializable interleavings
for exploration. At the second phase, CTrigger explores these unserializable interleavings through
controlled testing and exposes hidden atomicity violation bugs.

In this section, we discuss how CTrigger obtains the target unserializable interleaving list
through three steps (marked as Step 1, 2 and 3 in Figure 7.2). We will discuss the second phase in
the next section.

Please note that we take similar assumptions with recent work on concurrency testing [MQ07,
Sen08, EFN+02]. We assume that programmers have a test case suite and they go through CTrig-
ger’s phase 1 and 2 for each test input. We also assume that, for one input, the code statements
executed at different runs are mostly, maybe not completely, the same.

7.4.1 Step 1: Profiling and Identifying Potential Unserializable
Interleavings

In CTrigger, we use a few profiling runs with a given test input to collect memory access infor-
mation and conduct trace analysis to build the initial list of unserializable interleavings, which
consists of potential (may not be all feasible) unserializable interleavings.

In a program, not every memory access instruction has its corresponding unserializable inter-
leaving. Since an unserializable interleaving is composed of three accesses, a p(receding)-access,
a c(urrent)-access and an r(emote)-access (refer to Section 7.2), at the first step, CTrigger goes
through every memory access instruction C and checks whether C has a p-access and an r-access.
If so, we identify interleaving-C as a potential unserializable interleaving.

Specifically, for an instruction C, a p-access is its preceding access from the same thread to the
same memory location and an r-access is an access from a different thread to the same memory
location. In addition, the access types of p-access, r-access, and C should match one of the four
unserializable interleaving patterns shown in Figure 7.3. Both p- and r-accesses can be easily
identified, if they exist, by checking the memory access trace of the program execution.

In CTrigger, this step is based on profiling. Certainly, it can also be done via static analysis,
but static analysis will be limited by the pointer aliasing problem and the lack of concurrency
information, especially for C/C++ programs.

7.4.2 Step 2: Pruning Infeasible Unserializable Interleavings
Among the potential unserializable interleavings, some can never happen due to synchronizations.
It is important to prune them to avoid the vain attempt to force them. In this subsection, we discuss
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how CTrigger analyzes traces to prune out infeasible unserializable interleavings. Specifically, we
want to identify tuples such as (p, c, r) where the r-access can never be executed between the
p-access and the c-access.

Algorithms and Implementations

Different synchronization operations affect concurrent execution in different ways. Without losing
generality, CTrigger categorizes synchronization operations into two types, order synchronization
and mutual exclusion, and designs pruning algorithms accordingly (shown in Figure 7.6). Ad-
ditionally, CTrigger also prunes other types of infeasible interleavings such as those caused by
memory recycling.

Infeasible interleavings caused by order synchronization An order synchronization opera-
tion, such as a barrier and a thread create/join, forces certain order between events from different
threads. In our scenario, order synchronization could force an r-access to be executed before p

or after c. When either case occurs, r can never be executed between p and c. By checking this
condition, CTrigger can prune out infeasible interleavings caused by order synchronizations. The
process is shown on Figure 7.6(b).

In our implementation, CTrigger records all barrier and thread-create/join operations into the
trace. In trace analysis, CTrigger uses vector timestamps to maintain and compare the order rela-
tionship between accesses. Note that vector timestamps used in CTrigger are similar but different
from those used in conventional happens-before race detection algorithms [NM91]: CTrigger does
not increase vector timestamps at lock/unlock operations, because lock/unlock does not force ab-
solute orders.

Algorithm: FEASIBLE_ORDER ( p, c, r )
Input   : Three memory accesses

  and their vector-timestamps (VTM)

Output: TRUE if r can be executed between 

               p and c; FALSE, otherwise. 

    if      ( VTM (r) < VTM (p) ) 

return FALSE;

    elsif ( VTM (r) > VTM (c) ) 

          return FALSE;

    else               return TRUE; 

Algorithm: FEASIBLE_ME ( p, c, r )
Input   : Three memory accesses;

  their critical section ID (CID);

  the guards to critical sections (LOCK)

Output: TRUE if r can be executed between 

p and c; FALSE, otherwise. 

    if     ( LOCK (p)  LOCK (c) ==  )

return TRUE;

    elsif ( CID (p) != CID (c) ) 

return TRUE;

    elsif ( LOCK (p)  LOCK (c)  LOCK (r) != )

return TRUE;

    else        return FALSE; 
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Algorithm: FEASIBLE ( C )
Input   : A  memory access instruction C

Output: TRUE, if interleaving-C is feasible 

              FALSE, otherwise. 

  for c = dynamic instance of C 

         p = PRED ( c ) ;

         for r = REMOTE ( c )

               if (    FEASIBLE_ORDER (p, c , r) 

      &&  FEASIBLE_ME (p, c , r) )

return TRUE; 

    return FALSE;

Figure 7.6: CTrigger feasible interleaving analysis algorithm. (PRED and REMOTE denote preceding
access(es) and remote accesses(es). They are collected in step 1.)

Infeasible interleavings caused by mutual exclusion Synchronization operations, such as a
lock or a transaction, enforce mutual exclusions instead of orders among protected code regions.

When we consider mutual exclusions in the program, an r-access cannot interleave a p-access

113



and a c-access iff there exist two mutual exclusive critical sections so that one holds the r and
the other holds both the p and c. Following this, we can prune infeasible interleavings caused by
mutual exclusions (Figure 7.6(c)).

Specifically, CTrigger records all lock/unlock operations into the trace. During trace anal-
ysis, CTrigger maintains a lock set for each shared memory access and uses that to determine
which critical section(s) the access belongs to. Different from the lock-set race detection algo-
rithm [SBN+97], the lock-sets maintained by CTrigger record dynamic, rather than static, lock
instances that protect each access. In this way, CTrigger can tell whether two accesses are inside
the same critical section.

Memory recycling issue CTrigger also considers infeasible interleavings caused by memory
address recycling. Specifically, two instructions may access the same memory address during the
course of execution, but actually can never conflict with each other. It occurs when they access
different program variables that happen to have the same address due to memory recycling. CTrig-
ger prunes this type of infeasible interleavings by intercepting memory allocation and deallocation
operations and differentiating memory locations allocated at different time.

Discussions

Above pruning analysis works well for real-world server programs written in C, as we will see in
the experiments (Section 7.7). Most infeasible interleavings can be correctly identified. However,
a small number of infeasible interleavings may be missed due to un-identified customized syn-
chronization operations. This issue is handled at CTrigger’s second phase: when trying to force
an interleaving, CTrigger sets an expiration time for each artificial delay. Once the time expires,
CTrigger gives up and continues exploring other interleavings. Since most infeasible interleavings
are pruned, the wasted effort in phase two is very small.

Our current prototype can be extended to consider other synchronization operations. For ex-
ample, if programs use transactional memory for synchronization, CTrigger can trace transaction-
begin and transaction-end, and analyze the interleaving feasibility in a similar way to what we do
in Figure 7.6 (c).

7.4.3 Step 3: Ranking Low-Probability Interleavings
As discussed in Section 7.3.2, different interleavings have different probabilities in occurrence
during stress testing. Some interleavings rarely occur but have high likelihood to hide atomicity
violation bugs, especially those bugs that are hard to reproduce for diagnosis. Therefore, it is de-
sirable to identify and prioritize low-probability interleavings during testing in order to effectively
expose bugs.
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This section first discusses the major factors that affect the probability of interleavings. It then
introduces our probability ranking metrics and explain the detailed ranking algorithms. Note that
accurately calculating the interleaving probability is difficult and also unnecessary. CTrigger aims
at using simple and yet effective metrics to select low-probability interleavings.

Two major Factors that Affect Interleaving Probability

The occurrence probability of an unserializable interleaving is affected by many factors in real
applications. Among them, two factors are most important: how close the two local accesses (p-
access and c-access) are, and how far away a remote access (r-access) is from the local accesses.
Intuitively, when a p-access and a c-access are close to each other, the time window can be too
small for a remote access (to the same memory location) to interleave in between. Similarly, when
a remote access is far away from the local accesses, the chance of an interleaving is small. Above
intuition is demonstrated in Figure 7.7 through a toy program. Section 7.7.5 will measure how
CTrigger ranking mechanism based on the above intuitions has helped the bug exposing.

      for ( i = 0; i < warmup; i ++ )
         printf (“ hello”);

P: x = 1;

      for ( i = 0; i < local_gap; i ++ )
         printf (“hello”);

C: printf (“%d”, x);

      for ( i = 0; i < warmup - remote_distance; i ++ )
          printf (“ hello”);

R: x = 2;

Thread 1 Thread 2

The probability of C printing out 1 (or 2) is affected by 
local_gap and remote_distance

Figure 7.7: A toy example showing how local-gap and remote-distance affect the interleaving
probability (assume thread 1 and 2 start execution at the same time).

Based on the intuition above, we define the following two simple metrics to estimate the prob-
abilities and to rank the unserializable interleavings (Figure 7.8).
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remote 
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critical 
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Figure 7.8: Local gap and remote distance.

• Local gap is the execution time distance between a p-access and a c-access for an unserial-
izable interleaving (p, c, r) as defined in Section 7.2. This metric represents the size of an
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interleavable window, i.e., the period where an r-access can interleave between the p- and
c-accesses.

• Remote distance is the time difference between an interleavable window and an r-access.
As remote distance increases, the r-access gets farther from the interleavable window and is
less likely to interleave the p and c.

There is actually a big difference between the local gap and the remote distance. Local gap is
the distance between two accesses from one thread. Therefore, it is stable across runs and is always
a good indicator of the interleaving probability. On the contrary, the property of remote distance
highly depends on the nature of applications. In some cases, such as that in Figure 7.7, remote
distance has big impact on the interleaving probability. In some other cases, when the execution
time of R is totally independent with the execution of P and C, the measured value of remote
distance is completely random and should not be used to estimate the interleaving probability.
Because of this, our current prototype of CTrigger uses the local gap as the primary ranking metric,
and refers to the remote distance only when multiple interleavings have similar local gaps.

How to Compute the Metrics?

The main idea of CTrigger ranking mechanism is straightforward. CTrigger first analyzes the
profiling run traces and gets the local gap for every unserializable interleaving. It then generates
the ranking based on the local gaps: the smaller the local gap is, the higher an interleaving is ranked
— as it is less likely to happen without external control.

Although the above basic idea is simple, several issues need to be addressed:
(1) How to measure the distance? We use CPU performance counter (accessible through

RDTSC x86 assembly instruction) to measure local gaps. This scheme can include the different
latencies of different operations, such as disk I/O, into gap information. Currently we do not
consider the effect of context switches in local gap measurement. Fortunately, the time slice for
preemptive context switches is very large, so only few instructions will be affected.

(2) How to deal with synchronizations between local accesses? Synchronization operations
would affect the effective interleavable windows and thereby should be considered when calcu-
lating local gaps. For example, when each of p, c, and r accesses is protected by a same lock
separately (Figure 7.8(b)), the local gap should measure the execution period starting from the
end of p’s critical section to the beginning of c’s critical section. The rational is that r cannot be
concurrently executed with either critical section that contains p or c.

(3) How to deal with multiple instances of the same static instruction? Intuitively, the more dy-
namic instances a static instruction has, the more likely an interleaving would occur. Consequently,
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CTrigger takes the summation of all local gaps from all the dynamic instances of an unserializable
interleaving.

At the end, CTrigger gets a list of likely feasible unserializable interleavings ranked based
on estimated occurrence probability. CTrigger further excludes the interleavings that are already
exercised during the profiling runs, and delivers the remaining list to its second phase: interleaving
exploration and bug exposing.

7.5 CTrigger Phase Two: Explore Unserializable Interleaving
Space

After CTrigger identifies and ranks unserializable interleavings in the first phase, it tries to force
these interleavings via controlled execution. In this phase, CTrigger systematically controls the
concurrent execution to exercise unserializable interleavings that are not yet exercised by profiling
runs, starting from the ones with the lowest (estimated) occurrence-probabilities.

Execution control for one interleaving Unlike previous work such as CHESS [MQ07] and
RaceFuzzer [Sen08, PS08] that control thread schedule and execute only one thread at a time,
CTrigger controls execution by suspending a thread’s execution at appropriate places to increase
the occurrence probability of the targeting unserializable interleaving. The period of suspension is
carefully controlled to avoid significant performance degradation.
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Thread 1 Thread 2
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Thread 1 Thread 2

The injected artificial delay
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The original execution spot, were there no noise

Figure 7.9: CTrigger’s execution control
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Figure 7.10: Issues in execution control

Specifically, for an unserializable interleaving, CTrigger suspends corresponding threads be-
fore its c-access C or r-access R whenever necessary during the execution (Figure 7.9). This can
help increase the local gap and decrease the remote distance of the target unserializable interleav-
ing, and therefore increase its occurrence probability.

Although above ideas are intuitive, there are several efficiency and effectiveness issues we need
to address:
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(1) How long should the suspension be? An intuitive answer is to suspend the execution until
the interleaving occurs, i.e., suspend c’s thread until r executes or suspend r’s thread until c is
ready to execute. Unfortunately, the unserializable interleaving may never occur, as shown in
Figure 7.10 (a). To avoid such endless suspension (deadlock), CTrigger sets a time-out threshold
for each suspension point.

(2) When should a thread be suspended? An intuitive answer is to suspend a thread whenever
it is about to perform the c or r access as long as the interleaving has not occurred. However, this
intuitive solution has several problems. First of all, when more than one thread (e.g., two) execute
the c instruction (Figure 7.10 (b)), suspending both threads may actually decrease the interleaving
probability. Therefore, CTrigger only suspends one thread at a time. Secondly, a static instruction
might have many dynamic instances. Suspending before every instances can result in huge slow-
downs. For efficiency concerns, CTrigger sets a threshold for the number of times that threads are
suspended for each unserializable interleaving.

(3) The danger of waiting inside a critical section Suspending a thread inside critical sections
might also block other threads that are waiting to enter critical sections. Although it will not lead
to a deadlock, as CTrigger has an expiration time for each suspension, it may prevent the targeting
interleavings from happening. CTrigger can address this issue by suspending the execution right
before the outermost critical section that holds the targeting instruction.

(4) Context sensitivity The occurrence of some unserializable interleavings depends on the
program context or thread context. That is, they only happen when the involved instructions are
executed upon certain stack frame or by certain threads. CTrigger provides the option to collect
call-stack and thread information from trace analysis and use such information in execution control.

Execution control for a list of interleavings Controlled testing for a ranked list of unseri-
alizable interleavings is a complex planning problem, because exploring one interleaving might
interfere with the exploration of another interleaving. Facing this problem, CTrigger follows a
simple greedy principle — one interleaving at a time. After the targeting interleaving occurs or the
time expires, it moves on to the next interleaving. Note that it does not mean one interleaving per
run. Each run can still explore multiple target interleavings.

As regards to which one to explore first, CTrigger provides two options. The first option is to
simply go down the ranked list and explore unserializable interleavings one by one. While simple,
it may be inefficient if a high-ranking interleaving appears late during the execution. The second
option is to consider a set of interleavings with similar ranks at a time. CTrigger suspends execution
for whichever interleavings whose involving instructions appear first. In our experiments, we
use the first option for a short list of unserializable interleavings (such as those in SPLASH2
applications) and the second option for a long list of unserializable interleavings (such as those
in sever applications).
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Implementation CTrigger controls execution via binary instrumentation using Intel’s PIN
tool [LCM+05]. CTrigger takes the list of unserializable interleavings provided by previous CTrig-
ger analysis, and instruments every instruction that involves in at least one unserializable interleav-
ing. At run time, CTrigger intercepts every dynamic instances of these instructions and injects
delay according to the above strategies.

Outcome Interpretation If a target unserializable interleaving is successfully forced by
CTrigger’s controlled execution and the software misbehaves, a bug is then exposed. Certainly,
various bug detection tools can be used during the execution to detect subtle errors that do not lead
to visible program misbehaviors (e.g., crashes). In this case, CTrigger records the specific execu-
tion control it added during the bug-triggering run and can retry the same control to reproduce the
bug reliably for diagnosis.

If a target unserializable interleaving is successfully forced by CTrigger’s controlled execution
and the software does not misbehave or the underlying bug detection tool does not detect any
error, programmers gain more confidence about the software quality in this case. In the meantime,
benign atomicity violations can also be identified.

If the targeting interleaving does not happen even after the controlled execution, most likely the
targeting interleaving is actually infeasible and it probably skips our pruning process due to cus-
tomized synchronization mechanisms. Such information can still be useful as it can help identify
customized synchronization operations and help bug detection and concurrent program analysis.

7.6 Methodology
To evaluate our ideas and CTrigger framework, we apply CTrigger on seven applications and eval-
uate how well it can expose the tested atomicity violation bugs inside these applications. These
applications include three large open-source server/client applications, i.e., Apache, MySQL and
Mozilla, one utility application, PBZIP2, and three SPLASH2 [WOT+95] benchmarks. We eval-
uate one or two real-world atomicity violation bugs in each application, including five in Apache,
MySQL, Mozilla, and PBZIP2 and three in SPLASH2 introduced by external macro writers. The
details of the evaluated applications and bugs are described in Table 7.1 (in Section 7.3.1) and
Table 7.2. We chose to use real-world bugs instead of manually injected ones because the former
is much more representative.

The platform setting is the same as that in Section 7.3.1. The selection of testing inputs for
the server/client applications are based on the original bug reports on corresponding forums (since
CTrigger focuses on testing the interleaving space, not the inputs, figuring out the bug-triggering
inputs is out of our scope).
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Application Bug Id Bug description
Apache#1 Server crash during cache management

Apache Apache#2 Log-file corruption
MySQL MySQL DB log missing database actions
Mozilla Mozilla* Wrong results of java-script execution
PBZIP2 PBZIP2 Crash during file decompression

FFT FFT A problem in platform-dependent macro (introduced
LU LU by external macro providers) leading to atomicity

Barnes Barnes violation bugs that generate wrong outputs

Table 7.2: Applications and atomicity violation bugs evaluated in CTrigger. (*: Mozilla code is
slightly modified to help compare the execution result with the oracle.)

Note that, for all bugs, CTrigger does not assume any prior-knowledge about the bug-triggering
interleavings. It strictly follows the process described in previous sections to systematically iden-
tify and exercise low-probability unserializable interleavings. For instance, we do not know the
existence of the SPLASH2 macro bugs in advance. CTrigger exposes those bugs when it tests
SPLASH2 using the default inputs.

We evaluate the effectiveness, efficiency and reproducibility of CTrigger: whether the bugs can
be exposed, how quickly the bugs can be exposed, and how reliably the bugs can be reproduced
after their first manifestation. We compare CTrigger with four other bug exposing mechanisms on
the same platform as shown in Table 7.3.

Stress Stress testing
Pure-Pin Stress testing running upon the PIN binary instrumentation framework

This is the baseline for the next three schemes, which are all implemented by us upon PIN.
Sync-
based

A bug exposing mechanism that injects delay at synchronization operations just like Con-
Test [BFM+05]. The released version of CHESS [MQ07] is similar, also sync-based.

Race-
based

A bug exposing mechanism that forces suspect data races reported by a race detector. This is similar
to RaceFuzzer [Sen08]. Our implementation is based on PIN and the state-of-the-art open-source
Valgrind-lockset race detection tool [NS07]. It is extended by our execution control to run multi-
threads concurrently instead of one thread at a time like in the original RaceFuzzer.

CTrigger Our method presented in this chapter

Table 7.3: Evaluated concurrency testing methods

7.7 Experimental Results

7.7.1 Efficiency and Effectiveness
Bug exposing time Overall, as shown in Table 7.4, CTrigger can expose all the tested atomicity
violation bugs efficiently, within 1–235 seconds. It is about 10 to over 1000 times faster than all
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BugId. Stress Pure-Pin Synch-based Race-based CTrigger CTrigger Speedup*
Apache#1 > 1 week NO NO NO 235.0 > 2573.6 X
Apache#2 80604.0 NO 14976.0 126.0 63.6 1267.4 X
MySQL 287.0 5431.0 3796.0 3.5 2.0 143.5 X
Mozilla NO NO NO 65759.6 66.2 > 1305.1 X
PBZIP2 NO NO 32.0 2.6 2.6 > 9391.3 X

FFT 673.0 2284 NO NO 0.94 716.0 X
LU 188.6 3459 NO NO 4.2 44.9 X

Barnes 248.7 NO NO NO 17.6 14.1 X

Table 7.4: Time (unit: second) spent to expose every tested atomicity violation bugs. (NO: the bug
was not exposed in our maximum testing time, which is one day for Apache, MySQL, Mozilla, and half day
for other small applications. *: the speedup is compared with stress testing.)

alternative testing methods for all tested bugs, except for Apache#2, MySQL and PBZIP2 bugs
where its efficiency is comparable with Race-based testing. CTrigger is especially effective for
large server/client applications. For example, CTrigger needs just 4 minutes to expose Apache
bug#1, which can not be exposed by any alternative testing schemes within one full day. Ac-
tually, even after one week, the bug was still not exposed with stress testing (Note that this bug
did appear during production runs and bothered the Apache server users. That is why it was re-
ported in Apache’s bugzilla database and was later fixed by developers). All these results indicate
that CTrigger can greatly reduce the testing time and make atomicity violation bug detection and
diagnosis more efficient.

It is not hard to understand that Pure-Pin testing is as ineffective as stress testing. Actually,
since PIN framework (even without any instrumentation) slows down each testing run, it takes
longer than stress testing to expose the tested atomicity violation bugs.

Synch-based testing perturbs the execution at synchronization points. It can help expose the
PBZIP2 bug within half a minute, because this bug is caused by an unserializable access to a
lock variable and the program crashes at lock acquisition time. However, Synch-based testing
cannot help the other seven tested bugs because these bugs, like most real-world atomicity violation
bugs, were introduced because programmers forgot to use synchronization operations. As a result,
Synch-based testing slows down each testing run without improving the chances of exposing the
tested bugs. Its bug exposing time is similar to that of Pure-Pin.

As regards to Race-based testing, the eight tested bugs can be divided into three categories.
The first category includes Apache#2, MySQL, and PBZIP2. These bugs are successfully caught
by Valgrind as race suspects. By leveraging the race detection results, Race-based testing can
expose these bugs in similar amount of time with CTrigger. It is still slower than CTrigger in
case of Apache#2, because the rareness-based ranking mechanism enables CTrigger to focus on
buggy-interleavings earlier than Race-based testing. The second category includes Apache#1 and
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BugId. Profiling Runs CTrigger Analysis Controlled Testing
Apache#1 61.4 1.1 172.5
Apache#2 61.4 1.1 1.1
MySQL 0.90 0.10 0.90
Mozilla 8.0 1.0 57.2
PBZIP2 0.56 0.0006 2.01

FFT 0.52 0.23 0.19
LU 1.40 2.58 0.18

Barnes 4.88 7.81 4.94

Table 7.5: The breakdown of CTrigger bug exposing time (unit: second). (CTrigger analysis includes
the three steps of setting up unserializable interleaving space.)

the three SPLASH2 bugs. Valgrind fails to detect these bugs and affects Race-based testing to be
as inefficient as Pure-Pin and Synch-based testing. This indicates that the bug exposing capability
of Race-based testing greatly relies on the underlying race detector’s coverage. The last category
is the Mozilla bug. Interestingly, the buggy code is reported by Valgrind as race suspects. How-
ever, the race between the reported racing instructions does not always lead to atomicity violation.
Enforcing the race is insufficient to expose this atomicity violation bug.
CTrigger bug exposing time breakdown Table 7.5 shows the time spent in every step of CTrig-
ger for exposing above bugs. CTrigger trace collection and analysis take about 1 to 60 seconds.
The tracing time mainly depends on how fast the set of unserializable interleavings exercised by
stress testing becomes stable, and the analysis time is affected by the execution’s memory footprint
size.

CTrigger needs less than 5 seconds of controlled testing to expose most of the tested atomicity
violation bugs. Such efficiency is the combined effects of CTrigger infeasible interleaving pruning,
ranking and execution control strategies. In almost all cases, the bug-triggering interleavings are
ranked very high in the low-probability interleaving list (refer to Section 7.7.5 for detailed ranking
results). As a result, the bugs are exposed very quickly after few seconds of controlled testing.
However, in the cases of Apache#1 and Mozilla, the bug-triggering interleavings are ranked rel-
atively low and thus take longer testing time. In both cases, multiple benign atomicity violations
are exercised and validated to be benign before the bugs get exposed.

7.7.2 Unserializable Interleaving Coverage
CTrigger can effectively explore low-probability unserializable interleavings, and improve the cov-
erage within the unserializable interleaving space.

Figure 7.11 shows the unserializable interleavings additionally explored by CTrigger for
Apache compared with the stress testing (profiling runs). These additionally covered interleavings
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Figure 7.11: Unserializable interleavings additionally explored by CTrigger. (The base line is the
unserializable interleavings covered in profiling runs. The first 60 seconds are devoted to profiling and have
no additional coverage.)

include both bug-triggering ones and non-bug-related ones, as denoted by Figure 7.11. Cover-
ing bug-triggering ones helps CTrigger to expose the two Apache bugs; covering non-bug-related
ones validates the correctness of these low-probability interleavings. In contrast, the number of
interleavings explored in stress testing is saturated after around 60–70 seconds.

7.7.3 Reproducing a Previously-Exposed Bug

BugId. Stress Pure-Pin Sync-based Race-based CTrigger Speedup*
Apache#1 – – – – 76.2 –
Apache#2 NO – 11664.0 0.70 1.3 > 66461.5 X
MySQL 348.0 5239.7 10054.0 0.90 0.90 386.7 X
Mozilla – – – 5.44 4.39 –
PBZIP2 – – 0.43 0.52 0.44 –

FFT 1658 5633 – – 0.18 9211 X
LU 562.3 NO – – 0.18 3124 X

Barnes 165.4 – – – 0.45 367.6 X

Table 7.6: Time (unit: second) spent to reproduce a exposed bug. (NO: the bug was not reproduced
within one day. *: speedup is calculated based on stress testing. –: we do not measure reproducing time
when the bug cannot be exposed even once as shown in Table 7.4. )

As shown in Table 7.6, CTrigger can efficiently reproduce all tested atomicity violation bugs,
mostly within 5 seconds. This high bug reproducibility provided by CTrigger can greatly help pro-
grammers’ bug diagnosis. CTrigger achieves the high reproducibility by recording and replaying
its execution control. After an atomicity violation bug is exposed, CTrigger immediately knows
which unserializable interleaving causes the manifestation of this bug. By repeating the same exe-
cution control and enforcing the same unserializable interleaving, the atomicity violation bug can
be easily repeated.
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Race- and Synch-based testing also record and repeat the perturbation they inject during the
bug exposing runs. However, the perturbation record-and-replay scheme only helps the bug repro-
ducing when the original bug exposing is directly caused by the perturbation, instead of by random
effects. For example, Race-based testing can quickly repeat Apache#2, MySQL, and PBZIP2 bugs
because the recorded perturbation and the enforced data races are the cause of the bug manifesta-
tion at the first places. In other cases, including almost all the cases of Synch-based testing, the
perturbation is not the root cause of the bug exposing. Repeating it cannot help bug reproducing.
For example, it still takes hours for Sync-based testing to reproduce Apache#2 and MySQL bugs.

Finally, as we can see in the table, for stress testing and Pure-Pin, reproducing a bug is always
as difficult as exposing it at the first time, because neither mechanism records any interleaving
information when a bug is exposed.

7.7.4 CTrigger Infeasible Interleaving Pruning

BugId. # of Mem-Acc # of Potential Unserializable # of Feasible Unserializable Pruning Percentage
Instructions Interleavings* Interleavings (compared w/ potential ones)

Apache 2551 297 157 47.1%
MySQL 2257 113 25 77.9%
Mozilla 2376 76 48 36.8%
PBZIP2 149 93 25 73.1%

FFT 311 205 21 89.8%
LU 377 177 7 96.0%

Barnes 716 470 143 69.6%

Table 7.7: The effectiveness of the infeasible interleaving pruning. (* : The two Apache bugs can be
triggered using the same input. Therefore, only one result is put here. MySQL uses a different input with
that in Section 7.3.)

Identifying infeasible interleavings is critical for CTrigger to set a reachable testing goal. Ta-
ble 7.7 shows that CTrigger feasibility analysis is very effective: 37–96% of the potential unseri-
alizable interleavings are successfully identified as infeasible. In order to examine the stability of
the feasibility analysis results, we execute each SPLASH2 application for 20 times. The sets of
feasible interleavings generated from each of these 20 runs are exactly the same.

7.7.5 CTrigger Low-Probability Interleaving Ranking
In this subsection, we evaluate how CTrigger ranking mechanism helps improve the efficiency of
exposing hidden atomicity violation bugs.

For comparison, we applied an alternative scheme to decide the order of controlled testing: first
come first serve. Specifically, we rank the unserializable interleavings based on their occurrence
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order, rather than estimated occurrence probability, during the execution. Using this ranking, we
similarly apply the controlled testing and measure how long it takes to expose the tested atomicity
violation bugs.

As shown in Figure 7.12, CTrigger speeds up the alternative ranking method by up to 457.2
times in terms of total time to expose the tested bugs. This validates our observation that atomicity
violation bugs usually hide inside low-probability interleavings. The results also show that CTrig-
ger’s ranking method is effective: CTrigger ranks the bug-triggering interleavings high, as shown
in Figure 7.13, using its local-gap based probability estimation.
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Figure 7.12: Speedups of CTrigger
over the alternative ranking mecha-
nism

Apache#1 7th out of 157
Apache#2 1st out of 157
MySQL 1st out of 25
Mozilla 14th out of 48
PBZIP2 3rd out of 25

FFT 2nd out of 21
LU 1st out of 7

Barnes 4th out of 143

Figure 7.13: CTrigger low-probability ranking:
the rank of a bug-triggering interleaving among
all feasible interleavings.

7.8 Summary
This chapter has presented a study of the interleaving characteristics in stress testing and proposed
a new method, called CTrigger, to expose difficult-to-detect and tough-to-diagnose atomicity vio-
lation bugs that are often hidden in low-probability unserializable interleavings. CTrigger achieves
this by selecting representative interleavings, pruning infeasible ones, identifying low-probability
ones, and controlling program execution to improve their occurrence probabilities.

The experiments with seven real-world server/desktop and scientific applications on 8-
processor machines show that CTrigger is effective at exposing atomicity violation bugs. It
achieves 2 – 4 orders of magnitude speedup on bug exposing time over stress testing on the tested
real-world atomicity violation bugs. For some server bugs that need several days of stress testing
to manifest, CTrigger can expose them within 4 minutes. CTrigger can also reliably reproduce the
atomicity violation bugs for diagnosis after their first manifestation, 2 – 5 orders of magnitudes
faster than stress testing. With the significantly improved efficiency and reproducibility of bug ex-
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posing, CTrigger well complements the existing techniques on improving the quality of concurrent
programs: bug detectors can detect bugs more quickly and accurately; and developers can save a
lot of efforts in bug diagnosis.

Our work is only the beginning on addressing the important problem of exposing atomicity
violation bugs. It can be improved by more accurate infeasible interleaving pruning, better selec-
tion of rare interleavings and execution control. Future work can also combine it with test input
generation and other interleaving testing mechanisms.
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Chapter 8

Conclusions and Future Work

This dissertation makes contributions along three directions to address the concurrency bug prob-
lem and improve the dependability of the increasingly pervasive concurrent programs. These three
directions are understanding concurrency bugs, detecting concurrency bugs, and exposing concur-
rency bugs.

Along the direction of understanding concurrency bugs, this dissertation presents one of the
first comprehensive characteristic studies of a large set (105) of real-world concurrency bugs col-
lected from four widely used C/C++ open-source applications. This study reveals many interesting
properties regarding the bug patterns, manifestation conditions, and fix strategies of concurrency
bugs. Specifically, the characteristics presented here have motivated and guided the following work
of detecting atomicity violation bugs, multi-variable concurrency bugs, and designing interleaving
coverage criteria in this dissertation. Future research on bug detection, testing, and concurrent
programming language design can also benefit from this study.

Along the direction of detecting concurrency bugs, this dissertation makes the following con-
tributions: proposes the idea of automatically inferring programmers’ synchronization intention;
identifies two important types of synchronization intentions (Access-Interleaving invariant and
multi-variable access correlation); and builds two tools (AVIO and MUVI) to effectively detect
two types of important concurrency bugs.

• The AVIO detection tool focuses on one of the most common concurrency bugs: atomicity
violation bugs. It looks at atomicity violation bugs from the perspective of a new program in-
variant, the access-interleaving (AI) invariant, that is simple yet essential to synchronization
correctness. AVIO automatically infers AI-invariants through training and detects atomicity
violation bugs when AI-invariants are violated. In our evaluation, AVIO can effectively de-
tect more atomicity violation bugs than existing tools with fewer false positives. In addition,
the two designs of AVIO (pure software-based and hardware-supported) make it suitable for
both online detection and offline diagnosis usage scenarios.

• The MUVI detection tool looks at an important type of concurrency bug that has rarely been
studied before: the multi-variable concurrency bug. MUVI identifies a semantic property,
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variable access correlation, as the essence behind this type of bug. It automatically infers
variable access correlation through data-mining source code. Using the inferred access corre-
lation, MUVI detects not only multi-variable concurrency bugs, but also inconsistent-update
semantic bugs. Experiments show that MUVI can infer many access correlations with good
accuracy. MUVI also detected many new bugs from widely used open-source applications,
including Linux, Mozilla, and MySQL. Furthermore, the MUVI work demonstrates that vari-
able access correlation is a common and important program semantic property. The access
correlation inferred by MUVI can be used by other tools such as AutoLocker [MZGB06]
and Colorama [CMvPT07] to improve the dependability of concurrent programs.

Finally, this dissertation contributes to the direction of exposing concurrency bugs by designing
a hierarchy of interleaving coverage criteria and building a framework to expose atomicity violation
bugs.

• The proposed coverage criteria hierarchy is composed of seven interleaving coverage criteria
designs based on different concurrency fault models. These criteria span a wide spectrum
of testing complexities and bug-exposing capabilities. Together, they provide good guidance
for systematic exploration of the interleaving space.

• CTrigger is a testing framework that can effectively, efficiently, and reliably expose atom-
icity violation bugs. Guided by above coverage criteria study, CTrigger focuses on unse-
rializable interleavings to expose atomicity violation bugs. CTrigger trace analysis algo-
rithms can identify from the profiling traces what are feasible interleavings and what are
low-probability interleavings. With this analysis setting the focus, CTrigger carefully con-
trols the testing runs to exercise feasible and rare unserializable interleavings, and effectively
expose atomicity violation bugs. Experiments show that CTrigger can expose the tested real-
world atomicity violation bugs with 2–4 orders of magnitude speedup over stress testing, the
current common practice. CTrigger can also reliably repeat the bug manifestation process,
2–5 orders of magnitudes faster than stress testing.

This dissertation has made contributions to understanding, detecting and exposing concurrency
bugs. Of course, many open problems are still left as future work to finally address the concurrency
bug problem.

Along the lines of bug detection, false negatives, false positives, and performance are three
haunting problems. This dissertation presents AVIO and MUVI to catch two big categories of
false negatives from previous bug detection tools. The proposed CTrigger framework can also
provide some dynamic bug detection tools with a better testing coverage and therefore fewer false
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negatives. It remains for future work to look at other types of concurrency bugs that cannot be de-
tected yet. In terms of the false positive, in this dissertation, AVIO leverages the training process to
effectively reduce the false positives. However, training does not work for many other bug detec-
tion approaches, including static analysis-based approaches and most existing data race detectors.
How to make the training idea more general or find other techniques to reduce false positives is
an interesting and challenging problem. High overhead is another big problem of concurrency bug
detection. Bug detection overhead not only slows down the diagnosis process but also perturbs
the program execution and affects the manifestation of concurrency bugs. In this dissertation, new
hardware extension is designed to speed up atomicity violation bug detection. Whether we can
leverage existing or simpler hardware extensions to support concurrency bug detection remains for
future work.

Along the line of bug exposing, the work in this dissertation is only a starting point. First of all,
how to accurately identify infeasible interleavings and how to effectively enforce specified unse-
rializable interleavings still need further improvement and will likely benefit from more program
analysis. Second, this dissertation, just like all previous work on this problem, assumes that input
generation is taken care of by previous sequential testing techniques and is beyond the scope of
interleaving testing. This assumption is fair and useful at the current stage. However, after inter-
leaving testing techniques are improved, eventually, we need to consider inputs and interleavings
together to support effective and practical concurrent program testing.

This dissertation does not look at how to avoid concurrency bugs and how to fix them after
they are detected. Both are important research directions. Although avoiding concurrency bugs is
very difficult, many recent proposals (e.g., transactional memory model) have been made in this
direction. It is an interesting research topic to see how synchronization invariants would change
under new programming language constructs. Currently, fixing bugs mostly depends on the pro-
grammers’ manual effort and judgment. The characteristics study presented in this dissertation can
provide guidance for future research to provide more support for the bug-fixing process.
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