
Learning to Verify Safety Properties

Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, Gul Agha
Department of Computer Science,

University of Illinois at Urbana-Champaign, Urbana, IL, USA.
{vardhan,ksen,vmahesh,agha}@cs.uiuc.edu

Abstract. We present a novel approach for verifying safety properties of
finite state machines communicating over unbounded FIFO channels that
is based on applying machine learning techniques. We assume that we are
given a model of the system and learn the set of reachable states from a
sample set of executions of the system, instead of attempting to iteratively
compute the reachable states. The learnt set of reachable states is then used
to either prove that the system is safe or to produce a valid execution of
the system leading to an unsafe state (i.e. a counterexample). We have im-
plemented this method for verifying FIFO automata in a tool called Lever
that uses a regular language learning algorithm called RPNI. We apply our
tool to a few case studies and report our experience with this method. We
also demonstrate how this method can be generalized and applied to the
verification of other infinite state systems.

1 Introduction

Software systems are often abstracted as infinite state systems at the design and
modeling stage. A popular model for a variety of such systems comprises of fi-
nite state machines communicating over unbounded FIFO (first in first out) chan-
nels (FIFO automata). Examples of such abstraction include: networking protocols
where unbounded buffers are assumed, languages like Estelle and SDL (Specification
and Description Language) in which processes have infinite queue size, distributed
systems and various actor systems. A generic task in the automated verification
of safety properties of any system is to compute a representation for the set of
reachable states. For finite state systems, this is typically accomplished by doing an
exhaustive exploration of the state-space. However, for infinite state systems, except
in a few special classes [19], exhaustive exploration of the state space is impossible;
and in fact the verification problem in general can shown to be undecidable.

We develop a novel machine learning based procedure for verifying safety prop-
erties of FIFO automata. We assume that the reachable states of the system is a
regular set (or is contained in a regular set) which is a fixpoint with respect to the
transition relation of the system. Instead of trying to compute the set of reachable
states iteratively, we learn the set of reachable states from sample runs of the sys-
tem being verified. If the set of reachable states turns out to be closed (fixpoint)
under the transition relation of the system and does not contain any unsafe state,
we deem the system to be correct. On the other hand, unsafe states in the learned
reachable set are used to obtain executions that might lead to the unsafe state (i.e.
a counterexample). The counterexample may or may not represent valid executions
of the system because we may over-generalize while learning. If the counterexample

turns out to be valid then we have discovered a bug in our system. On the other
hand, if the counterexample is invalid, then we use it to refine the learnt set of
reachable states. We repeat the process until we have either proved the system to
be correct or discovered a buggy execution. Figure 1 shows the overall framework
of the learning to verify procedure.

Obtain system
traces

RPNI (learning)

witnesses/
reachable set

ValidFixpoint test

counterexampleno counterexampleno

more traces
(+ve and -ve
examples)

more negative
examples

no

yes yes

property holds fails property

Fig. 1. Learning to verify procedure

Similar to regular model checking [10], we represent states of the system by
strings and expect the set of reachable states of practical systems to be struc-
tured and representable as regular languages. We then use a modified version of
the algorithm RPNI [26, 15], that learns regular languages, to identify the set of
reachable states. We show that the algorithm that we present is a complete veri-
fication method for systems with regular reachable sets1; in other words, for such
systems we will eventually either find a buggy execution that violates the safety
property, or will successfully prove that no unsafe state is reachable. We have im-
plemented our algorithm in Java, and demonstrated the feasibility of this method
by running the implementation on simple examples and network protocols such
as the alternating-bit protocol and the sliding window protocol. Our approach is
complementary to previous methods for algorithmic verification that have been pro-
posed, and we present examples of FIFO automata that our method successfully
verifies but on which other approaches fail (see Section 7 on related work). We also

1 Actually, we require the reachable states along with witness executions to form a regular
language; for a precise condition see Section 4.

2

give the requirements under which classes of infinite state systems other than FIFO
automata can be verified using the learning approach.

The rest of the paper is organized as follows. We first (Section 2) introduce the
learning framework and recall the definition of FIFO automata. In Section 3, we
describe the verification procedure for FIFO automata. Then, (in Section 4) we give
the proof of soundness of the method and completeness under certain conditions.
In Section 5, we generalize from FIFO automata to give a learning based paradigm
for verification of infinite state systems. Finally, in Section 6, we give details of our
Java implementation with experimental results, and conclude with overall lessons
learnt and directions for future research (Section 8). Relationship of our work to
previous research on the algorithmic verification of infinite state systems in general,
and FIFO automata in particular, is deferred to Section 7.

2 Preliminaries

In this section, we describe machine learning framework that we use and recall the
definition of FIFO automata.

2.1 Learning framework

A learning algorithm is usually set in a framework which describes the types of
input data and queries available to the learner. The framework sometimes includes
a knowledgeable teacher (student-teacher framework [3]) which provides answers
to membership queries (whether a given example belongs to a given concept) and
equivalence queries (whether a given hypothesis matches the concept). However, in
practice, such a teacher may not be available. Therefore, a more general framework
for learning assumes that the learner is simply given examples included in the target
concept (positive examples) and examples not included in the target concept (neg-
ative examples). One such framework called language identification in the limit was
introduced by Gold [20] for inference of infinitary languages. In Gold’s framework,
the learner is given successively larger sequences of positive and negative examples.
If the learner is able to converge on the target language after being given a suf-
ficiently large sample of positive and negative examples, it is said to identify the
language in the limit. The sample that is needed to guarantee this identification is
said to be characteristic.

In our setting, we do not have access to a teacher which can answer equivalence
queries. Therefore, we restrict ourselves to Gold’s framework of identification in
the limit. Moreover, in this paper we focus on learning of regular languages; based
on the experience of regular model checking [10], regular languages are often suf-
ficient to capture the behavior of an interesting class of infinite state systems. A
well-known algorithm for the inference of regular languages in Gold’s framework is
RPNI (regular positive and negative inference) [26, 15]. In this algorithm, the tar-
get concept to be learned is a deterministic finite automata (DFA) which accepts a
regular language. The input consists of a set of positive samples S+ accepted by the
target DFA and a set of negative samples S− rejected by the target DFA. We use
a modified version of the RPNI algorithm which is described in more detail later.

3

2.2 FIFO Automata

A FIFO automaton [18] is a 6-tuple (Q, q0, C, M, Θ, δ) where Q is a finite set of
control states, q0 ∈ Q is the initial control state, C is a finite set of channel names,
M is a finite alphabet for contents of a channel, Θ is a finite set of transitions names,
and δ : Θ → Q× ((C × {?, !} ×M) ∪ {τ}) ×Q is a function that assigns a control
transition to each transition name. For a transition name θ, if the associated control
transition δ(θ) is of the form (q, c?m, q′) then it denotes a receive action, if it is of
the form (q, c!m, q′) it denotes a send action, and if it is of the form (q, τ, q′) then it
denotes an internal action. The channels are considered to be perfect and messages
sent by a sender are received in the order in which they were sent. The formal
operational semantics, given by a labelled transition systems, is defined below.

A FIFO automaton F = (Q, q0, C, M, Θ, δ) defines a labelled transition system
L = (S, Θ,→) where

– The set of states S = Q × (M∗)C ; in other words, each state of the labelled
transition system consists of a control state q and a C-indexed vector of words
w denoting the channel contents.

– If δ(θ) = (q, c?m, q′) then (p, w) θ→ (p′, w′) iff p = q, p′ = q′ and w = w′[c 7→
m · w′[c]]

– If δ(θ) = (q, c!m, q′) then (p, w) θ→ (p′, w′) iff p = q, p′ = q′ and w′ = w[c 7→
m · w[c]]

– If δ(θ) = (q, τ, q′) then (p, w) θ→ (p′, w′) iff p = q, p′ = q′ and w′ = w.

Here w[i 7→ s] stand for the C-indexed vector which is identical to w for all channels
except i, where it is s; w[i] denotes the contents of the channel i. We say (p, w) →
(p′, w′) provided there is some θ such that (p, w) θ→ (p′, w′). As usual, →∗ will
denote the reflexive transitive closure of →. For σ = θ1θ2 · · · θn ∈ Θ∗, we say
(p, w) σ→ (p′, w′) when there exist states (p1, w1) . . . (pn−1, wn−1) such that (p, w) θ1→
(p1, w1)

θ2→ · · · (pn−1, wn−1
θn→ (p′, w′). The trace language of the FIFO automaton

is
L(F) = {σ ∈ Θ∗ | ∃s = (p, w). s0

σ→ s}
where s0 = (q0, (ε, . . . , ε)), i.e., the initial control state with no messages in the
channels.

3 Verification procedure

We now describe the verification procedure in detail with reference to FIFO au-
tomata.

The central idea in our approach is to learn the set of reachable states instead
of computing it by iteratively applying the transition relation. Once the set of
reachable states is learnt, we can verify if the safety property is violated by checking
if an unsafe state is among the set of reachable states. However, in order to ensure
the soundness of our results, we need a mechanism to check if the output of the
learning algorithm is indeed correct. Observe that if the set of states learnt is closed
under the transition relation then it means that the learnt set of states contains

4

all the reachable states, and if, in addition, none of the states in the learnt set are
unsafe then we can conclude that the system satisfies the safety property. On the
other hand, if one of the states in the learnt set is unsafe, then we need a mechanism
to check whether the learning algorithm over-generalized, i.e., added states that are
not reachable. One way to accomplish this is by producing a candidate execution
to the unsafe state, and checking if that execution is indeed a valid execution of the
system. Therefore, instead of learning the set of reachable states directly, we learn
a language which allows us to identify both the reachable states and witnesses to
these in terms of transitions executed by the system.

Let us now consider the language which can allow us to find both reachable
states and their witnesses. The first choice that comes to mind is the language of
the traces, L(F). Since each trace uniquely determines the final state in the trace,
L(F) has the information about the states that can be reached. While it is easy
to compute the state s such that s0

σ→ s for a single trace σ, it is not clear how
to obtain the set of states reached, given a set of traces. In fact, even if L(F) is
regular, there is no known algorithm to compute the corresponding set of reachable
states of the labelled transition system.2 The main difficulty is that determining if
a receive action can be executed depends non-trivially on the sequence of actions
executed before the receive. We overcome this difficulty by annotating the traces in
a way that makes it possible to compute the set of reachable states.

Trace Annotation for FIFO: Consider a set Θ of co-names defined as follows:

Θ = {θ | θ ∈ Θ and δ(θ) 6= τ}

In other words, for every send or receive action in our FIFO automaton, we introduce

a new transition name with a “bar”. We say s
θ→ s′ if s

θ→ s′; executions over
sequences in (Θ∪Θ)∗ are defined naturally. The intuition of putting the annotation
of a “bar” on some transitions of a trace is to indicate that the message sent or
received as a result of this transition does not play a role in the channel contents of
the final state. In other words, a “barred” transition θ in an annotated trace of the
system denotes either a message sent that will later be received, or the receipt of a
message that was sent earlier in the trace. Thus, annotated traces of the automaton
will be obtained by marking send-receive pairs in a trace exhibited by the machine.
Let A be the function that correctly annotates an execution to produce a string
over Σ = Θ ∪ Θ. Observe, that each execution is annotated uniquely, or to put it
formally, A is an injective function. The annotated trace language of the automaton
F is AL(F) = {A(t) | t ∈ L(F)} and consists of all strings in (Θ ∪Θ)∗ that denote
correctly annotated traces of F . For example, consider the FIFO automaton shown
in Figure 2(a). Some of the words in AL(F) are: θ1, θ1θ1, θ1θ1θ1, θ1θ2, θ1θ2θ1.

Finding reachable states from annotated traces: Since our objective is to
identify the reachable region, we need a way to find the reachable states corre-
sponding to a set of annotated traces. For a channel c, consider a function hc :

2 This can sometimes be computed for simple loops using meta-transitions.

5

q0

θ1(c0!0)

θ2(c0?0)

(a)

q0

q1

q2

θ1(c0!0)

θ2(c0?0)

θ3(c0!1)

θ4

(b)

Fig. 2. Example FIFO automata. θ4 does not change channel contents.

(Θ ∪Θ) → M∗ defined as follows:

hc(t) =
{

m if t ∈ Θ and δ(t) = c!m
ε otherwise

Let hc also denote the unique homomorphism from (Θ ∪ Θ)∗ to M∗ that extends
the above function. Given an annotated trace ρ, the contents of channel c in the
final state are clearly given by hc(ρ).

FIFO automata with one channel: Let F = (Q, q0, {c0}, M, Θ, δ) be a single channel
FIFO automaton, with c0 being the only channel. As usual s0 = (q0, ε) will denote
the starting state of F . Given a set of annotated traces L, let Lq ⊆ L be the set of
annotated traces in L whose last transition ends in control state q. Now the set of
states reached (by traces in L) is given by

R(L) = {(q, m) | q ∈ Q and m ∈ hc0(Lq)}

For a regular set L, then it can be seen that Lq is regular, andR(L) can be computed
by a simple homomorphism, and so R(L) is regular.

Multi-channel FIFO automata: Consider a FIFO automaton F = (Q, q0, C, M, Θ, δ)
communicating over channels C = {c0, c1, . . . ck}. Now the set of states reached (by
traces in L) is given by

Rm(L) = {(q, (hc0(σ), hc1(σ), . . . , hck
(σ))) |

q ∈ Q and σ ∈ Lq}

As we will see shortly, we need a test for inclusion for the reachable states corre-
sponding to a set of annotated traces. In this respect, we cannot hope to work with
Rm(L), since as soon as have even two channels, given a regular L, Rm(L) can be
seen to be a rational relation for which inclusion is undecidable [6]. However, if we
compute the contents of each channel independently of others, we can compute an
upper approximation of Rm(L) as follows:

R(L) =
[

q∈Q

{q} × hc0(Lq)× hc1(Lq) · · ·hck(Lq)

6

It can be easily seen that R(L) is a regular language if L is regular. In general,
Rm(L) ⊆ R(L), however for many FIFO systems encountered in practice (most net-
work protocols like Alternating Bit Protocol, Sliding Window Protocol), this gives
the exact reachable region when applied to AL(F), i.e. Rm(AL(F)) = R(AL(F)).
We show later that this is sufficient for the applicability of our learning approach.

Recovering a witness from an unsafe state: If the reachable states correspond-
ing to a learned set of annotated traces have a nonempty intersection with the set
of “unsafe” states (which violate the safety property), we would like to extract a se-
quence of transitions of the system which witnesses the reachability of some unsafe
state. The motivation is that such a sequence can then be used as a counterexample
demonstrating the violation of the safety property or a negative example for the
learning algorithm.

We assume that for each control state q, we are given the unsafe channel contents
as a product of regular languages U(q, c0), U(q, c1), . . . , U(q, cn) corresponding to
channels 0 . . . n, i.e., the unsafe states are given by Su =

⋃
q∈Q{(q, u0, u1, . . . , un) | ui ∈

U(q, ci)}. Given a regular set of annotated traces, L, recall that Lq ⊆ L represents
the set of annotated traces in L whose last transition ends in control state q. For
each control state q, for each channel i, we can find the intersection of hci(Lq) and
U(q, ci) and calculate the traces Lqi ∈ Lq such that hci(Lqi) = hci(Lq) ∩ U(q, ci).
Intuitively, this gives us annotated traces which lead to a potential unsafe configura-
tion for channel ci. Now, if the intersection

⋂
i∈0...n Lqi is non empty, an annotated

trace t in this intersection leads to an unsafe configuration for each channel and
hence an unsafe state in Su. Let us call W the function which outputs t given L
and Su.

From annotated trace to system execution: In order to convert W(L) ∈
Σ∗ into a sequence of transitions, we need a way to extract the presumed system
execution from a given annotated trace. Essentially, we want a substitution RevA :
Σ 7→ Θ∗ which “reverses” the annotation A. This can be done simply by removing
the “bars” on the annotated trace. Formally, we can define RevA(θ) = RevA(θ) = θ
for all θ ∈ Θ. Extending RevA to strings in the usual way, it can be seen that that
RevA(A(t)) = t.

Verification algorithm We are now ready to formally describe the learning to
verify procedure which was introduced in Figure 3. We first collect positive and
negative examples of labels in Σ∗ as follows. A set T of sequences of transitions
that can be exhibited by the system is obtained by invoking a function GetT races.
Positive examples, S+ are simply the correct “annotations” which put bars on the
send-receive pairs in the strings in T , i.e. S+ = {A(t) | t ∈ T }. There are three sets of
negative examples. The first set S−

1 = {tθd | t ∈ T and θd is a disabled transition}
consists of sequences of transitions extended by a disabled transition (a transition
that cannot be taken at a certain state). The second set S−

2a = {σ ∈ Σ∗ | ∃t ∈
T such that RevA(σ) = t and σ 6= A(t)} corresponds to “incorrect” annotations.
Notice that since A is injective, all annotations of a trace t ∈ T other than A(t)

7

algorithm learnToVerify
Input:

F : model of system,
Su : regular set of “unsafe states”

Output: Property valid OR
path to an unsafe state

begin
S−

2b = ∅
(S+, S−

1 , S−
2a) =GetTraces()

while(true)do
L = modifiedRPNI (S+, S−

1 , S−
2a ∪ S−

2b)
if R(L) ∩ Su 6= ∅

lc =W(L, Su)
if RevA(lc) valid execution of F

Output RevA(lc); stop
else

S−
2b = S−

2b ∪ lc
else

if R(L) is a fixpoint
Output “Property holds”; stop

else
Tnew = GetTraces()
add Tnew to (S+, S−

1 , S−
2a)

end

algorithm modifiedRPNI
Input: S+ ∈ Σ∗, S−

1 ∈ Θ∗, S−
2 ∈ Σ∗

Output: a regular language L
begin

D ← PTA(S+)
for i = 2 to |D| do

for j = 1 to i− 1 do
if qi, qj not merged with smaller state then

D′ ← merge(D, qi, qj)
D′ ← determinize(D′, qj)
D′′ ← RevA(D′); all states in D′′ made final
if compatible(D′′, S−

1) && compatible(D′, S−
2)

D = D’;exit j-loop
return language defined by D

end

algorithm determinize
Input: A,x; Output: A
begin

for any x
θ→ x1, x

θ→ x2 and x1 6= x2

A←merge(A, x1, x2)
A← determinize(A, smaller of x1, x2)

return A
end

Fig. 3. Learning to verify algorithm

cannot be exhibited by the system. The third set, S−
2b, is a collection of spurious

counterexamples; initially this is empty.
The positive and negative examples are given to a learning algorithm based on

RPNI. Similar to RPNI, this algorithm first constructs a prefix tree automata (PTA)
from S+ which is simply a collection of the strings as paths with common prefixes
merged together. Each state in the PTA is associated with the string generated
by following the path to that state from the initial state. The states are assigned
numbers according to the standard ordering3 imposed by the associated strings. The
learning algorithm attempts to generalize from the positive examples by merging
states in the PTA in a specific order: for i going from 1 to the largest state in the
PTA, it attempts to merge qi with all states less than qi in ascending order. A merge
may cause non-determinism which is removed by further merges using the operation
determinize which results in a finite automaton D′. Another finite automaton D′′

is obtained from D′ by applying the substitution RevA and making all states final.
If D′′ is compatible with the negative set S−

1 (all strings in S−
1 are rejected by D′′)

and D′ is compatible with the negative set S−
2 = S−

2a ∪ S−
2b, the merge is accepted.

The learning algorithm is essentially the same as the traditional RPNI algorithm
except for the the use of the additional kind of negative examples corresponding to
S−

1 . For a detailed explanation of the RPNI algorithm itself, the reader is referred
to [26, 15].

3 For Σ = {a, b}, the ordering is ε, a, b, aa, ab, ba, bb, bb, aaa, . . .

8

Let the output of the modified RPNI algorithm be the regular language L. If
R(L) intersects with the unsafe states Su, then a counterexample lc (= W(AL(F), Su))
is obtained. By attempting to simulate the counterexample on the system, we can
check if RevA(l) is executable. If yes, then we have found a real counterexample and
are done, otherwise lc is added to S−

2b. If R(L) does not intersect with the unsafe
states Su, then it is tested for being a fixpoint under the reachability relation by
checking the following condition:

{s0} ∪ {s | ∃s′ ∈ R(L). s′ → s} = R(L)

If it is a fixpoint, we declare that the safety property holds. Otherwise, we get more
traces by invoking the function GetT races (successive calls to this function generate
new traces) and continue the learning procedure.

4 Correctness of the verification procedure

The soundness of the procedure is straightforward. For a learned set of traces L, if
R(L) has an empty intersection with the set of unsafe states, Su, and is a fixpoint
under the transition relation, the safety property holds. Any counterexample is finite
and gives a supposed execution of the system leading to an unsafe state which can
then be automatically checked for validity by simulation of the system.

We can also show completeness (i.e. the procedure terminates with the correct
answer) under the condition that AL(F) is regular. Then, given a “fair” method of
generating the system traces, in the limit, the learning paradigm will either prove
that the system satisfies the property or find a valid counterexample. By a fair
method, we mean one which will eventually generate any given finite trace. There
can be many different ways of generating fair traces, one of the simplest being a
breadth first traversal of all traces.

Lemma 1. If AL(F) is regular, then using any fair strategy for generating traces,
in the limit, given a sufficiently large sample, the learning procedure outputs a DFA
which generates AL(F).

Theorem 1. If AL(F) is regular and R(AL(F)) is the set of all reachable states,
then the learning to verify procedure will eventually either prove that the system
satisfies the property or find a valid counterexample.

The proofs of the lemma and the theorem are given in Appendix A. The running
time of the algorithm is dependent on the strategy for getting the traces. For a
simple breadth-first strategy, in the worst case, the algorithm might need to explore
all traces up to a depth D. Here, D is the length of the longest path starting
from the initial state in the minimal DFA representing AL(F) (assuming AL(F)
is regular). Thus, the running time can be exponential in the size of the DFA for
AL(F). However, as discussed in Section 6, we can use some heuristics to prune
down the number of traces needed. In practice, for a number of FIFO systems, the
learning procedure is able to converge to the correct answer in a fairly small time
period which is comparable to other tools.

9

Note that the conditions required by Theorem 1 are merely sufficient for termi-
nation of the learning procedure and the verification procedure can be successfully
used for many systems even if AL(F) is not regular. In fact, an important observa-
tion is that for a number of systems with nonregular AL(F), there exists a regular
subset L′ ⊆ AL(F) such that the traces in L′ “cover” all the reachable states, i.e.
R(L′) = R(AL(F)). In other words, every reachable state in F is witnessed by
some trace in L′. For example, the set of annotated traces corresponding to the
automaton in Figure 2(a) is not regular but the regular language L′ = θ∗1 covers
all the reachable states. Note that R(L′) is not an approximation; we are simply
content with finding any regular set of annotated traces that can cover the reachable
states. In Section 6, we analyze FIFO systems which have a regular AL(F) as well
as systems for which AL(F) is not regular but a “covering” L′ ⊆ AL(F) is regular.
In all cases, the algorithm terminates with the correct reachable set.

5 Generalization to other infinite state systems

The verification procedure described for FIFO automata can be easily generalized
to other infinite state systems. The challenge is to identify the alphabet Σ which
provides the “annotation” and the functions A, RevA, R and W which are used
by the verification procedure. Notice that the procedure does not assume anything
else about FIFO automata other than the above functions. The key properties of Σ
needed to make the procedure work are summarized below.

– There exists an injective function A : L(F) 7→ Σ∗ which maps a system execu-
tion to a sequence of labels in Σ. Recall that L(F) is the language of traces
that can be executed by the system F . Let AL(F) ∈ Σ∗ be the language
{A(t) | t ∈ L(F)}.

– There exists a substitution RevA : Σ 7→ Θ∗ which “reverses” the operation A.
Extending RevA to strings in the usual way, it must be true that RevA(A(t)) =
t. In FIFOs, RevA simply removes the “bars”.

– There exists a (computable) function R such that for a set L ∈ Σ∗, R(L) gives
a set of states (supposedly) reached during the execution of the traces in L. It
is required that R(AL(F)) must be the exact reachable region of F .

– There exists a (computable) function W such that for L ∈ Σ∗, and a set of
“unsafe” states Su, if R(L) ∩ Su 6= ∅ then W(L, Su) gives a finite trace lc ∈ L
which witnesses the reachability of some state in Su.

It can be easily seen that the proof of correctness of the learning algorithm in
Section 4 generalizes to other systems if Σ satisfies the above properties. Thus, we
can think of this approach as a “paradigm” for the verification of safety properties
of infinite systems.

6 Implementation

We have implemented the verification framework for FIFO automata as part of the
Lever (LEarning to VERify) tool suite available from [23]. The tool is written in
Java and implements the learning to verify procedure shown in Figure 3. For general

10

automata related decision procedures, we use the Java package dk.brics.automata
available from [24]. Currently, the incremental learning approach is not implemented
in Lever, so if an answer to the verification problem is not solved in a particular
run, we restart the procedure with more positive samples.

For generating the annotated traces that are used for the positive and negative
examples, we use the following strategy. Starting from the initial state, we explore
the system states (cross product of the control state and channel contents) in a
breadth-first manner. To limit the number of traces generated, we do not distinguish
between FIFO states if they have the same control state and same channel contents
up to a position d from the start of the channel. We start with d = 1 and keep
increasing d if more traces are needed. We have seen that this heuristic works quite
well in practice to generate sufficient traces for the learning procedure.

We have used Lever to analyze some canonical FIFO automata verification
problems described below.

[Producer Consumer] A simple producer consumer problem with one FIFO
channel. The producer can either be in an “idle” or in a “send” state in which
it transmits either 0 or 1 to the FIFO channel.
[Data with parity] A simple data communication protocol in which the sender
sends data and a parity bit for the number of 1’s sent. The receiver uses the
parity bit as a simple check for data integrity.
[Resource arbitrator] In this example, two senders wish to broadcast over a
shared channel and use a resource manager to arbitrate which one is allowed to
use it at any time.
[Alternating bit protocol (ABP)] This consists of a sender and receiver
communicating over a data and an acknowledgment channel. We consider a
non-lossy version of ABP.
[Sliding window protocol] This is similar to ABP except that the sender can
keep multiple data messages in flight. We use a window size of 2 and maximum
sequence number also of 2.

“Producer Consumer”, “Alternating bit protocol” and “Sliding window protocol”
are fairly well-known in the FIFO research community, see for example [28]. For the
other two systems, a detailed description is available in Appendix B.

Table 1 shows the results obtained. Here “Samples” is the number of positive
samples generated, T is the running time on a 1594 MHz notebook computer with
512 MB of RAM using Java virtual machine version 1.4.1 from Sun Microsystems.
In all cases, Lever terminates with the correct reachable region. We also report the
time taken (Trmc) by the regular model checking tool [25] on the same examples.
Although a complete comparative analysis with all available tools remains to be
done, it can be seen the running time of Lever is comparable to the regular model
checking tool and in fact better for all examples except “Sliding window protocol”.4

Lever is still in the prototype stage and we see the current version as a proof of
concept of the learning to verify approach. We plan to introduce various optimiza-
tions and features which should enable Lever to handle larger and more complex
examples.
4 The encoding of sliding window protocol in the regular model checking tool is slightly

different; instead of limiting the window size, the size of the queue is bounded.

11

Samples T Trmc

Producer Consumer 42 0.4s 3.3s

Data with parity 42 0.5s 12.7s

Resource arbitrator 146 0.7s 33.2

Alternating Bit 1122 4.1s 24.7

Sliding Window 2535 81.2s 78.4

Table 1. Samples and running time

7 Related Work

Verification of infinite state systems: For automatic verification of infinite state
systems, the state space has to be represented by symbolic means. Some common
representations are: regular sets [10, 1], Presburger formulas [11], Queue Decision
Diagrams and Number Decision Diagrams [7], semi-linear regular expressions [18],
constrained QDDs [9] and constrained facts [14]. Since an iterative approach of
computing the fixpoint for reachability does not terminate for most cases, various
mechanisms are used for finding the reachable set. We now discuss some of these
techniques and show their relation to our learning approach.

In the approach using meta-transitions and acceleration [7, 9, 18], a sequence of
transitions, referred to as a meta-transition, is selected and the effect of its infinite
iteration calculated. There is no possibility of a spurious counterexample but it may
not be possible to find all meta-transitions needed to compute the exact reachable
set. This is complementary to our learning approach, since meta-transitions can be
also be incorporated into our learning algorithm.

Another popular approach for FIFO, parametric, integer and stack systems is
regular model checking [10, 1]. A regular set is used to represent the states and a
transducer is used to represent the transition relation. The problem is reduced to
finding a finite transducer representing the the infinite composition of this relation.
This can be done by subset construction [10]; by using an equivalence relation
to merge states [1]; or by “iterating transducers” [13, 8]. However, there are some
examples in which even if such a finite transducer exists, the procedure may not
be able to converge to it. One such example of a FIFO automaton is shown in
Figure 2(b) in Section 3. We used the regular model checking tool from [25] to
analyze this example, but both the subset-construction method and method based
on equivalence relation failed to terminate even after two hours. A careful analysis
revealed that for this example, at each step of the regular model checking method,
the intermediate transducer keeps accumulating new states in a pattern that causes
its size to grow without bound. On the other hand, our learning-based tool is able
to automatically find the reachable set in about fifty milliseconds. We have shown
that if the reachable states and the traces witnessing the reachable states form a
regular set, our learning method will eventually be able to find it. It is certainly
possible that in other examples, transducer construction may be able to find the
reachable region faster. Thus, our approach can be seen as complementary and seen
to extend the range of systems that can be automatically analyzed.

An approach for computing the reachable region that is closely related to ours
is widening. In this approach, the transition relation is applied to the initial con-
figuration some number of times and then by comparing the sets thus obtained,

12

the limit of the iteration is guessed. A simple widening principle in the context
of regular model checking is given in [10] which is extended in [29] for parametric
systems. Bultan [11] uses a widening technique for Presburger formulas to enable
faster convergence for fixpoint. Bartzis et al. [5] present a widening technique for
arithmetic automata. At a very high level, both widening and our approach use
similar ideas. In both methods, based on certain sample points obtained using the
transitions, a guess is made for the fixpoint being searched for. Exploring the con-
nections between the two approaches is an interesting direction for future work. One
important difference is that widening (except for certain special contexts where it
can be shown to be exact) is a mechanism to prove the correctness of a system and
cannot be used to prove a system to be incorrect. On the other hand, the approach
presented here allows one to both prove a system to be correct and to detect bugs.

Another technique for verification of infinite systems uses bisimulation minimiza-
tion algorithms [22]. A crucial requirement for the success of bisimulation technique
is that the reachable set of equivalence classes be finite. It is easy to construct FIFO
automata which fail to satisfy this property, although the automata are quite sim-
ple and may be analyzed using our machine learning framework automatically. One
such automaton is shown in Figure 2(a).

Use of machine learning for verification: The application of techniques from ma-
chine learning for verification is relatively new. Peled et al. [27] give a method called
“Black Box Checking” which is extended by Groce et al. [21] as Adaptive Model
Checking. Briefly, in this method, one starts with a possibly inaccurate model and
incrementally updates it using Angluin’s [3] query based learning of regular sets.
Cobleigh et al. [12] also use a variant of Angluin’s algorithm to learn the assump-
tions about the environment to aid compositional verification. Boigelot et al. [4]
present a technique for constructing a finite state machine that simulates all ob-
servable operations of a given reactive program. Ammons et al. [2] use machine
learning to discover formal specifications of the protocols that a client of an appli-
cation program interface must observe. Edelkamp et al. [16] consider the problem
of finding “bad” states in a model as a directed search problem and use AI heuristic
search methods to attempt to find these states. Ernst et al. [17] have developed a
system called Daikon which attempts to discover likely invariants in a program by
analyzing the values taken by its variables while the program is exercised in a test
suite.

Our approach in using the machine learning techniques for verification is unique
in that we are not trying to learn an unknown system model but rather the behav-
ior of a system which is already fully described. This is closest in spirit to Ernst et
al. [17], although the domain of application and objective are completely different.
Another difference with other learning methods is that we do not use Angluin’s al-
gorithm. Angluin’s algorithm needs a teacher which can answer equivalence queries;
answering such queries is typically hard to achieve. Instead, we use an algorithm
called RPNI [26, 15] which simply needs positive and negative samples of the concept
to be learned.

13

8 Conclusion and future work

We have presented a novel approach based on machine learning to verify finite state
machines communicating over unbounded FIFO channels. A prototype implemen-
tation, called Lever, has been developed and the approach has been shown to
be feasible in analyzing practical networks protocols like alternating bit and slid-
ing window. We have also shown how this approach can be generalized to analyze
infinite state systems other than FIFO automata.

There are many promising directions for future work. The procedure can be
applied to other systems such as: automata with unbounded integers; real-time
and hybrid systems; parameterized systems; counter automata; and push-down au-
tomata with multiple stacks. The approach could be extended to handle not only
safety properties but also liveness and more general temporal properties. The fea-
sibility of using this approach for probabilistic systems could also be studied. For
the machine learning aspect, algorithms can be developed to learn classes that are
more expressive than regular languages. Another interesting direction is to inves-
tigate the feasibility of using machine learning even for finite state systems. Other
avenues for future work include research for getting better execution traces and
practical optimizations and engineering for the Lever tool.

References

1. P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. Algorithmic improvements in
regular model checking. In Computer-Aided Verification (CAV’03), volume 2725 of
LNCS, pages 236–248. Springer, 2003.

2. G. Ammons, R. Bod́ık, and J. R. Larus. Mining specifications. ACM SIGPLAN
Notices, 37(1):4–16, Jan. 2002.

3. D. Angluin. Learning regular sets from queries and counterexamples. Inform. Comput.,
75(2):87–106, Nov. 1987.

4. B. Boigelot and P. Godefroid. Automatic synthesis of specifications from the dynamic
observation of reactive programs. In E. Brinksma, editor, Tools and Algorithms for
the Construction and Analysis of Systems, pages 321–334, Enschede, The Netherlands,
1997. Springer Verlag, LNCS 1217.

5. C. Bartzis and T. Bultan. Widening arithmetic automata. In Computer Aided Veri-
fication’04 (to appear), 2004.

6. J. Berstel. Transductions and Context-Free-Languages. B.G. Teubner, Stuttgart, 1979.

7. B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD thesis, Collec-
tion des Publications de la Faculté des Sciences Appliquées de l’Université de Liége,
1999.

8. B. Boigelot, A. Legay, and P. Wolper. Iterating transducers in the large (extended
abstract). In CAV: International Conference on Computer Aided Verification, 2003.

9. A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-channel sys-
tems with nonregular sets of configurations. Theoretical Computer Science, 221(1–
2):211–250, June 1999.

10. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In E. A.
Emerson and A. P. Sistla, editors, Proceedings of the 12th International Conference
on Computer-Aided Verification (CAV’00), volume 1855 of LNCS, pages 403–418.
Springer, 2000.

14

11. T. Bultan. Automated symbolic analysis of reactive systems. PhD thesis, Dept. of
Computer Science, University of Maryland, College Park, Md., 1998.

12. J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu. Learning assumptions
for compositional verification. In Proceedings of the 9th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pages
331–346, 2003.

13. D. Dams, Y. Lakhnech, and M. Steffen. Iterating transducers. Journal of Logic and
Algebraic Programming, 52-53:109–127, 2002.

14. G. Delzanno and A. Podelski. Model checking in CLP. LNCS, 1579:223–239, 1999.
15. P. Dupont. Incremental regular inference. In Proceedings of the 3rd International

Colloquium on Grammatical Inference (ICGI-96): Learning Syntax from Sentences,
volume 1147 of LNAI, pages 222–237, Berlin, September 1996. Springer.

16. S. Edelkamp, A. Lafuente, and S. Leue. Protocol verification with heuristic search. In
AAAI Symposium on Model-based Validation of Intelligence, 2001.

17. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering
likely program invariants to support program evolution. In International Conference
on Software Engineering (ICSE’99), pages 213–224, 1999.

18. A. Finkel, S. Purushothaman Iyer, and G. Sutre. Well-abstracted transition systems:
Application to FIFO automata. Information and Computation, 181(1):1–31, 2003.

19. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theo-
retical Computer Science, 256(1–2):63–92, 2001.

20. E. M. Gold. Language indentification in the limit. Inform. Control, 10:447–474, 1967.
21. A. Groce, D. Peled, and M. Yannakakis. Adaptive model checking. In Tools and

Algorithms for the Construction and Analysis of Systems (TACAS’02), volume 2280
of LNCS, pages 357–371, 2002.

22. D. Lee and M. Yannakakis. Online minimization of transition systems (extended
abstract). In ACM, editor, Proceedings of the 24th annual ACM Symposium on Theory
of Computing, pages 264–274, New York, NY, USA, 1992. ACM Press.

23. LEVER. Learning to verify tool. http://osl.cs.uiuc.edu/~vardhan/lever.html,
2004.

24. A. Møller. dk.brics.automaton. http://www.brics.dk/~amoeller/automaton/,
2004.

25. M. Nilsson. Regular model checking tool. http://www.regulalrmodelchecking.

com, 2004.
26. J. Oncina and P. Garcia. Inferring regular languages in polynomial update time. In

Pattern Recognition and Image Analysis, volume 1 of Series in Machine Perception
and Artificial Intelligence, pages 49–61. World Scientific, Singapore, 1992.

27. D. Peled, M. Y. Vardi, and M. Yannakakis. Black box checking. In FORTE/PSTV,
Beijing, China, 1999.

28. A. S. Tanenbaum. Computer Networks, 2nd Ed. Prentice-Hall, Englewood Cliffs, NJ,
1989.

29. T. Touili. Regular model checking using widening techniques. In ENTCS, volume 50.
Elsevier, 2001.

15

A Proof of correctness of the learning procedure

For a regular language L ∈ Σ∗, the prefixes are defined as Pr(L) = {u | ∃v, uv ∈
L}. Let L/u = {v | uv ∈ L} denote the right-quotient of L by u. The stan-
dard order of strings in Σ∗ is denoted by <, e.g. for Σ = {a, b}, the ordering
is ε, a, b, aa, ab, ba, bb, bb, aaa, . . .

Definition 1. The set of short prefixes of a language L is defined as follows:

Sp(L) = {x ∈ Pr(L) | 6 ∃u ∈ Σ∗ with L/u = L/x and u < x}

Given a canonical (minimal) DFA F for a regular language L, every state of F
corresponds to an unique element in the set Sp(L) and F as many states as elements
in |Sp(L)|.
Definition 2. The kernel N(L) is defined as follows:

N(L) = {ε} ∪ {xa | x ∈ Sp(L), a ∈ Σ, xa ∈ Pr(L)}
The kernel is an extension of a short prefix by a transition in the canonical DFA.
Note that Sp(L) ⊆ N(L). Thus, the set of short prefixes represent the states of a
canonical DFA and kernel represents the set of transitions of a canonical DFA.

Lemma 2. If AL(F) is regular, then using any fair strategy for generating traces,
in the limit, given a sufficiently large sample (S+, S−

1 , S−
2), the modified RPNI al-

gorithm outputs a DFA which generates AL(F).

Proof (Sketch). Let D be the canonical DFA which generates AL(F). Let Sp and N
respectively denote the set of “short prefixes” and “kernel” of AL(F). Since the short
prefixes and kernel are finite, given a fair strategy of generating the traces, we are
guaranteed to eventually get a set of positive examples, S+, whose prefixes include
all short prefixes and kernel strings. It is known from the proof of RPNI [15], that
if we have such positive examples, then the ordered merge used by RPNI outputs a
DFA isomorphic to D provided that ∀x ∈ Sp, ∀y ∈ N if x and y are non-equivalent,
i.e., if AL(F)/x 6= AL(F)/y, then there are enough negative examples in S−

1 and
S−

2 to prevent a merge of x and y. We show that in the limit we are guaranteed to
get enough negative examples. Consider some x ∈ Sp and some y ∈ N such that
AL(F)/x 6= AL(F)/y. First consider the case that there is a string u such that
xu ∈ AL(F) but yu 6∈ AL(F). Recalling that L(F) is the language of all allowed
sequences of transitions, there are two possibilities why yu 6∈ AL(F):

– RevA(yu) ∈ L(F) but A(RevA(yu)) 6= yu. Intuitively, the sequence of tran-
sitions is correct but they have a wrong “annotation”. By a fair strategy, we
get negative examples S−

2a corresponding to all wrong “annotations” of valid
transition sequences, hence in the limit we will have some negative example to
detect this situation.

– RevA(yu) 6∈ L(F). Let v be the minimal prefix of u such that RevA(xv) ∈ L(F)
but Rev(yv) 6∈ L(F). Since any string shorter than Rev(yv) is in L(F), Rev(yv)
is a sequence of valid transitions extended by a disabled transition. By using a

16

fair strategy, we will eventually get a negative example in S−
1 equal to Rev(yv).

When we check for compatibility with S−
1 , we set all states final in the DFA

obtained after merge. This enables the detection of the case that RevA(xv) ∈
L(F) but Rev(yv) 6∈ L(F)

The other possibility that yu ∈ AL(F) but xu 6∈ AL(F) is handled in the same
manner.

Theorem 2. If AL(F) is regular and R(AL(F)) is the set of all reachable states,
then the learning to verify procedure will eventually either prove that the system
satisfies the property or find a valid counterexample.

Proof (Sketch). Since we use a fair strategy for generating traces, by Lemma 1 if we
keep generating more traces, eventually we will learn AL(F). In this case,R(AL(F))
would be a fix point and if the safety property holds, the procedure does not find
a counterexample and proves that the system satisfies the property. If the safety
property does not hold then the reachable states have a non empty intersection with
the unsafe states and we are guaranteed to find a valid counterexample.

The only way that the procedure may not terminate is if it keeps getting spurious
counterexamples in an infinite sequence. At any stage of the learning process, let
(S+, S−

1 , S−
2a, S−

2b) be the set of positive and negative examples and let L be the
language learned by RPNI based on these examples. As mentioned before, RPNI
constructs a prefix tree automata (PTA) which simply consist of paths leading to
strings in S+ with common prefixes merged together. L is obtained by merging
states in the PTA while making sure none of the negative examples are accepted.
For a given S+, if the counterexample lc for safety property is found to be spurious,
then in the next stage RPNI is provided with (S+, S−

1 , S−
2a, S−

2b ∪ {lc}). The new
language L′

l is necessarily different than Ll since they do not agree on the acceptance
of lc. Since the PTA is finite, merging different states can generate only finitely many
languages. In the extreme case, no state in the PTA is merged; but then there cannot
be any spurious counterexample since the PTA is based on S+ which are obtained
from valid executions. Hence, the procedure cannot get “stuck” getting an infinite
sequence of negative examples without any change in the traces obtained.

B Detailed description of examples

B.1 Data with parity

The system consists of a sender and a receiver whose automata are shown in Fig-
ure 4. The sender attaches a “parity” bit if the number of 1’s is not even which
is verified by the receiver. The FIFO system is simply a cross product of the two
automata with the bad states being any state in which the receiver is at the control
state qb.

B.2 Resource arbitrator

Consider a system with two senders which share a channel c0 for broadcasting data.
In order to ensure that only one sender transmits at a time, there is a resource

17

θ0(c0!1)

θ1(c0!1) θ2(c0!parity)

θ3(c0!end)

θ4(c0!end)

Sender

qb

θ5(c0?1)

θ6(c0?1) θ7(c0?parity)

θ8(c0?end)

θ8(c0?end)

θ9(c0?end)

Receiver

Fig. 4. FIFO automata for data transmission with parity

manager to which a request has to be sent for the use of channel c0. The resource
managers grants the request to one sender and waits for that sender to indicate
that it is done before listening for more requests. For simplicity, we assume that
the first sender transmits a pattern 01∗ on c0 while the second sender transmits 2∗.
The safety property we want to verify that in any control state, the channel c0 does
not have transmissions from the two senders mixed up, i.e., for any control state,
contents of c0 other than ((01)∗|2∗)∗ is considered “unsafe”. Figure 5 shows the
description of the senders and the resource manager; the automaton to be analyzed
is the cross product of all these three automata. It can be seen that AL(F) for this
automaton is regular.

θ0(c1!req) θ1(c1?ack)

θ2(c1!done)

θ3(c0!0)

θ4(c0!1)

Sender 1

θ5(c2!req) θ6(c2?ack)

θ7(c2!done)

θ8(c0!2)Sender 2

θ9(c1?req) θ10(c1!ack)

θ11(c1?done)

θ12(c2?req)θ13(c2!ack)

θ14(c2?done)

Resource manager

Fig. 5. FIFO automata for resource arbitrator

18

