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Abstract— In this paper, we propose a new cross-layer
framework, named QPART (QoS Protocol for Adhoc Re-
altime Traffic), which provides QoS guarantees to real-
time multimedia applications for wireless ad hoc networks.
By adapting the contention window sizes at the MAC
layer, QPART schedules packets of flows according to their
unique QoS requirements. QPART implements priority-
based admission control and conflict resolution to ensure
that the requirements of admitted realtime flows is smaller
than the network capacity. The novelty of QPART is that it
is robust to mobility and variances in channel capacity and
imposes no control message overhead on the network.

I. I NTRODUCTION

The fast spread of small wireless computers has enabled
the design and deployment of wireless ad hoc networks.
Typical applications proposed for such networks include
both realtime and best effort applications. While realtime
applications, such as audio/video or on-demand multime-
dia retrieval, require quality of service (QoS) guarantees
for effective communication, best effort applications, such
as file transfer, are more tolerant to changes in bandwidth
and delay. To support both types of applications in ad hoc
networks, effective QoS-aware protocols must be used to
allocate resources to flows and provide guarantees to real-
time traffic in the presence of best effort traffic.

The unique characteristics of ad hoc networks impose
great challenges on the design of such QoS-aware proto-
cols. First, since an ad hoc network has no centralized
control, only local information is available to any node
in the network. Therefore, QoS-aware protocols for ad
hoc networks must use distributed algorithms and not rely
on global information. In addition, the shared nature of
the wireless channel makes resource allocation very com-
plex since allocation of resources at an individual node
affects available resources at its contending neighbors,
which may be outside of its communication range. Fur-
thermore, the mobility of nodes may often break connec-
tions or resource reservations at each node, incurring high

message overhead from the need to reconfigure the reser-
vations. Finally, the wireless channel is highly unreliable
and its capacity may vary dramatically. Therefore, QoS-
aware protocols should not be sensitive to packet loss or
rely on exact knowledge of channel capacity.

The design of QoS-aware protocols under these chal-
lenges is non-trivial and requires coordination between
different layers of the protocol stack. The goal of our
research is to provide a cross-layer QoS mechanism,
QPART (QoSProtocol forAdhocRealtimeTraffic), that
can support QoS for realtime traffic under these chal-
lenges. Contrary to existing approaches, QPART does not
depend on control message exchanges between contend-
ing neighbors to coordinate resource allocations. Instead,
QPART achieves QoS-aware resource allocation by dy-
namically adapting the contention window sizes of nodes
based on local network congestion levels and received
QoS. Since no explicit control messages are used, QPART
imposes no message overhead and the loss of control mes-
sages does not affect its operation. In addition, QPART
does not require a node to keep any static QoS state, elim-
inating the need for expensive reconfiguration in the pres-
ence of mobility or changes in channel capacity.

The remainder of this paper is organized as follows.
Section II discusses the necessary components for provid-
ing QoS support in ad hoc networks and review existing
approaches and their limitations in providing the func-
tionality of these components. In Section III, we briefly
review the cross-layer architecture of QPART, while Sec-
tion IV explores the design details of the scheduling part
and Section V describes the QoS management part of
QPART. Section VI presents our performance evaluation
of QPART using simulations. Section VII concludes our
work and discusses future research directions.

II. QOS SUPPORT INAD HOC NETWORKS

Due to the lack of centralized control in an ad hoc
network, distributed resource allocation must be used to
allocate resources along the routes of flows to provide
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flow-based QoS guarantees. Since an ad hoc network has
no fixed infrastructure, every node in the network must
participate in distributed resource allocation and hence
must be equipped with QoS support, which requires three
necessary components: admission control, QoS-aware
scheduling and conflict resolution. In this section, we
identify the functions of these three components and their
implementation challenges. We also briefly discuss exist-
ing approaches for implementing these components and
their limitations in coping with the challenges.

A. Necessary Components for QoS Support

Providing QoS guarantees in an ad hoc network re-
quires three major components at every node in the net-
work. The first component is admission control to ensure
that the total resource requirements of admitted flows can
be handled by the network. If there are not enough re-
sources for all realtime flows, some realtime flows must be
rejected to maintain the guarantees made to other realtime
flows. The second component is QoS-aware scheduling,
which allocates resources to admitted realtime flows and
guarantees their QoS under the condition that admission
control is properly performed. The QoS-aware schedul-
ing also regulates the sending rate of best effort flows to
prevent them from degrading the QoS of realtime flows.
The third component is conflict resolution, which deals
with QoS violations and selects victim flows to be re-
jected to maintain the QoS of the remaining flows. The
unique characteristics of ad hoc networks impose three
major challenges for designing these three components.

The first challenge is due to the shared nature of the
wireless medium. In a wireless network, transmissions
from a node not only use local resources, but also con-
sume the bandwidth of neighbors in contention range.
Therefore, resource allocation must consider not only the
achievable service level of a flow, but also the impact
of a flow on the neighboring flows and their available
resources [18], greatly enhancing the complexity of re-
source allocation. Additionally, for many widely avail-
able protocols, including IEEE 802.11 [17], carrier sens-
ing is used to provide efficient collision and interference
avoidance. In these protocols, the contention range of a
node equals its carrier-sensing range, which often is more
than twice the transmission range. Therefore, two nodes
that consume each other’s bandwidth may not be able to
decode each other’s messages if they are located outside
transmission range but inside carrier-sensing range. Co-
ordination between such nodes is non-trivial since their
messages must be transmitted either over multiple hops or
with higher power, both of which can be very expensive
in terms of message overhead [18].

The second challenge is caused by mobility. A broken
link causes all flows that traverse this link to be rerouted,
requiring new admission control. Therefore, in a mo-
bile network, admission control protocols with high mes-
sage overhead are highly undesirable due to frequent link
breaks in the network. Furthermore, two flows that origi-
nally have enough bandwidth may pass through nodes that
move into each other’s contention range, resulting in de-
graded service to both flows. To reestablish QoS com-
mitments, one of the flows must be picked as a victim by
terminating, rerouting or reducing its QoS requirements.
Conflict resolution components for both flows must se-
lect the victim based on the priorities of flows and should
not result in punishment of both flows. Since the two
nodes may be located outside transmission range but in-
side carrier-sensing range, coordination between the con-
flict resolution components may be difficult and may have
high message overhead if explicit message exchange be-
tween conflict resolution components is used.

The third challenge for QoS support is the unreliable
and dynamic nature of the wireless channel. Due to fad-
ing and outside interference, the wireless channel has a
high packet loss rate and the capacity of the channel may
change dramatically. In addition, today’s wireless devices
are able to adapt their coding rates according to channel
quality, which may further increase variations in channel
capacity. Such dynamics of the channel may compromise
QoS protocols that depend on reliable message exchanges
between nodes, as well as QoS protocols that rely on ex-
plicit knowledge of channel bandwidth. Therefore, all
three QoS components must be robust to packet losses and
no assumptions about channel capacity should be made.

B. Existing Approaches

Due to these tough challenges, none of the existing QoS
protocols for ad hoc networks provide satisfactory solu-
tions for providing all three major components. The exist-
ing approaches can be classified into four types, each with
its own limitations.

The first type of protocol [4], [7], [12] is designed for
a TDMA-based MAC layer. QoS-aware scheduling is
achieved by reserving dedicated time slots for realtime
flows according to their service requirements. Admis-
sion control is performed by looking for a sequence of
free time slots, while ensuring that nodes in each other’s
contention range are allocated with different time slots to
avoid collisions. However, a TDMA-based MAC layer
requires effective time synchronization between all nodes
in the network. Applying highly synchronized solutions
in an ad hoc network is expensive and synchronization
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can fail when the nodes are mobile. In addition, to en-
sure that nodes in each other’s contention range transmit
in different time slots, admission control algorithms at
each node must coordinate slot allocation tables with con-
tending neighbors, which is expensive in terms of mes-
sage overhead. Finally, the slot allocations are very vul-
nerable to mobility or channel capacity variation since re-
configuration is necessary if two nodes move into each
other’s contention range or if the coding rate of a channel
changes. Hence, conflict resolution must often reconfig-
ure slot allocations, which results in high message over-
head and is error prone in the presence of packet losses.

The second type of protocol focuses on QoS-aware
scheduling [9], [13] and avoids the cost of time synchro-
nization in TDMA-based MAC layers by operating on a
single channel MAC layer, such as IEEE 802.11. In these
protocols, each node constructs a neighborhood schedul-
ing table by learning the packet deadline information at
its neighbors, which is piggy-backed in RTS-CTS-DATA-
ACK handshakes. QoS-aware scheduling can be realized
according to the neighborhood scheduling tables. These
protocols, however, have high message overhead due to
the extra piggy-backed information in the handshake mes-
sages. Furthermore, since in a wireless network the area
of the carrier-sensing range is much larger than the area of
the transmission range, a node can only learn the sched-
ules of a small portion of its contending neighbors from
listening to the handshake messages, which greatly affects
the effectiveness of these scheduling protocols.

The third type of protocol, including IEEE 802.11e [15]
and [1], achieves service differentiation while avoiding
the overhead associated with explicit message exchange.
In these schemes, flows are grouped into several classes.
Service differentiation is achieved by assigning different
classes with different contention related parameters such
as contention window size, frame size and interframe
space. Even though these protocols may guarantee that
some class of traffic hasbetter service quality than the
others, there is no guarantee about whether a flow can get
its desired service level. Hence, these protocols do not
achieve the goal of QoS-aware scheduling.

The fourth type of protocol, including SWAN [2],
VMAC [3], INSIGNIA [10], MMWN [16] and [14], fo-
cuses on the admission control and conflict resolution
components. These protocols provide admission control
through signaling protocols that rely on achievable service
level prediction and message exchange along the routes
of flows. The local achievable service level at each node
is predicted through passive monitoring of the channel.
However, these protocols do not give enough attention
to the fact that transmissions at one node may reduce
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Fig. 1. QPART’s architecture

the available bandwidth of all nodes in its carrier-sensing
range. As a result, these protocols only ensure that a
newly added flow achieves its desired QoS but can not
prevent the QoS of existing flows from degrading due to
the contention of the new flow. A remedy for these pro-
tocols is to involve the contending neighborhood in the
estimation of achievable service levels by explicit mes-
sage exchange with these neighbors [18]. However, this
remedy has expensive message overhead since some of
the contending neighbors may not be located in transmis-
sion range and can only be reached through multihop mes-
sages. Furthermore, due to high packet loss rates in ad hoc
networks, using message exchange to coordinate resource
allocation is not reliable or accurate. The varying chan-
nel capacity may also invalidate the achievable service
level prediction. Finally, since link breaks and QoS vi-
olations may be frequent due to mobility, using signaling
to reestablish QoS guarantees and perform conflict reso-
lution imposes high message overhead since a new admis-
sion control process must be invoked for every link break.

The above discussion illustrates that a QoS protocol
should impose minimum or no message overhead and rely
on a simple MAC layer. It must also be aware of the ef-
fects of local resource allocation on neighborhood nodes.
The design of QPART incorporates all of these considera-
tions to effectively support QoS in ad hoc networks.

III. A RCHITECTUREOVERVIEW

To implement the three necessary components for QoS
support, QPART consists of two parts, theQoS-aware
Schedulerand theQoS Manager, as shown in Figure 1.
Both parts span both the network and the MAC layer. The
QoS-aware scheduler realizes the functionality of QoS-
aware scheduling, while the QoS Manager implements ad-
mission control and conflict resolution. Both parts operate
independently and require no message exchanges between
neighboring nodes or knowledge of channel bandwidth.

The QoS-aware scheduler is based on an enhanced
IEEE 802.11 MAC layer protocol. It exploits the fact
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that contention related parameters, specifically contention
window size, affect the service quality that a flow receives.
Through adaptation of contention window size based on
current service quality and network congestion level, the
QoS-aware Scheduler guarantees that admitted realtime
flows receive their desired services and controls the rate
of best effort flows so that they fill the bandwidth left by
realtime flows. This contention window adaptation mech-
anism consists of per-flow queues in the network layer,
each with aContention Window Adaptorand aPacket
Scheduler, which schedules packets from the queues and
sends them to the MAC layer (see Section IV).

The QoS Manager performs admission control and con-
flict resolution based on the priorities of realtime flows
and the congestion level of the channel. When the network
is congested, the QoS manager picks low priority real-
time flows to be rejected. The priorities of realtime flows,
which are dynamically assigned by thePriority Adaptor,
are maintained by the QoS Manager in theFlow Priority
Record. The congestion level of the channel is fed back
from theCongestion Monitorin the MAC layer to theRe-
source Resolver, which is responsible for picking victim
flows to be rejected based on the channel congestion level
and the priority information of flows in theFlow Priority
Record(see details in Section V). In the next two sections,
we present the details of the QoS-aware Scheduler and the
QoS Manager.

IV. D ISTRIBUTED QOS-AWARE SCHEDULER

The distributed QoS-aware Scheduler of QPART guar-
antees the QoS of admitted realtime flows under the con-
dition that the capacity of the network is larger than the re-
quirements of all admitted flows. It consists of an underly-
ing MAC protocol and a network layer Packet Scheduler.
The design of the QoS-aware Scheduler is based on IEEE
802.11, since it is simple, robust, does not require any cen-
tralized control and is a mature technology that has been
used in many widely available commercial products. This
section explores the design of the QoS-aware Scheduler of
QPART and shows how it can guarantee that the admitted
realtime flows achieve their required QoS.

A. Distributed Medium Access Control

The MAC algorithm in QPART is based on IEEE
802.11 DCF mode with simple modifications. In this sec-
tion, we briefly review IEEE 802.11 DCF mode and show
how service differentiations can be achieved.

1) IEEE 802.11 DCF Mode: In IEEE 802.11 DCF
mode, the transmission of each unicast packet invokes
an RTS-CTS-DATA-ACK or DATA-ACK handshake be-
tween the sender and the receiver as seen in Figure 2. A

Backoff

Neighbors of Destination

Transmission Range 
Neighbors of Source

Carrier−sensing Range
Neighbors of Source

Carrier−sensing Range
Neighbors of Destination

����������
����������
����������
����������

����������
����������
����������
����������

����������
����������
����������
����������

�����
�����
�����
�����

CTS ACK

RTS DATA

DIFS

SIFS

SIFS SIFS

DIFS

NAV(RTS)

NAV(CTS)

Backoff

Backoff

Backoff

Busy Carrier

Busy Carrier

EIFS

Busy Carrier

EIFS

Busy Carrier

EIFS EIFS

Destination

Source

Transmission Range
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node desiring to transfer a data packet first invokes the
carrier-sense mechanism to determine the busy/idle state
of the medium based on theCarrier-sensing Thresholdor
a RTS or CTS packet indicating active communication in
its neighborhood. If the medium is idle, the node defers
a DCF interframe space(DIFS). If the medium stays idle
during this DIFS period, the node may transmit its RTS
packet. If the medium is busy, the node waits until the
medium is determined to be idle for DIFS time units if the
last detected frame was received correctly orextended in-
terframe space(EIFS) time units if the last detected frame
was not received correctly. After this DIFS or EIFS idle
time, the node defers for an additional backoff period be-
fore transmitting an RTS. If the backoff timer is not yet
set, the backoff period is generated asBackoffTime= Ran-
dom()× aSlotTime, whereRandom()is a pseudo random
number uniformly distributed between 0 andcontention
window (CW)andaSlotTimeis a very small time period
(20 µs in the IEEE 802.11b standard). The backoff time
is decremented byaSlotTimeif the channel is idle dur-
ing this period and stopped when a transmission is de-
tected on the channel. The backoff timer is reactivated
when the channel is sensed idle again for more than DIFS
time units. The node transmits when the backoff timer
reaches zero. After each failed transmission attempt, the
contention window size is doubled to avoid congestion.

2) Service Quality Differentiation:Since during con-
tention for the channel, the node with the smallest back-
off time always wins, the backoff process provides a dis-
tributed method to differentiate the service that a node re-
ceives. By decreasing the contention window size, a node
essentially decreases its average backoff time and hence
increases the chances that it wins the channel when com-
peting with other nodes, affecting the node’s service qual-
ity in terms of bandwidth and packet delay. In [11], con-
tending nodes’ contention window sizes and service have
been shown to have the following proportional relation-
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ships:

Si

Sj
=

Li
CWi

Lj

CWj

, (1)

Di

Dj
=

CWi

CWj
, (2)

whereSi is the throughput of Nodei, Di is the aver-
age packet delay of Nodei andLi is the average packet
length of Nodei. Based on this proportional relation-
ship between contending nodes’ contention window sizes
and services in terms of bandwidth and delay [11], IEEE
802.11e [15] and [1] allocate different contention window
sizes to different classes of traffic so that class-based pro-
portional fairness can be achieved. However, proportional
fairness provides no guarantees about the actual service
quality that a flow receives. As the number of compet-
ing nodes and flows increases, the actual service quality
to every flows decreases.

To demonstrate this, we run a simple simulation using
the NS2 simulator [5]. The topology of the simulation is
shown in Figure 3, where Flows 1 and 4 belong to the
same class with contention window size 31 and share the
same route. Flows 2 and 3 belong to another traffic class
with contention window size 63. The capacity of the chan-
nel is around 270 packets per second. Flows 1 and 2 start
at the 5th second, Flow 3 starts at the 55th second and
Flow 4 starts at the 100th second. The throughput and
delay of all flows are shown in Figures 4 and 5. At the
beginning, Flow 1 gets 2/3 of the bandwidth and Flow 2
gets 1/3 of the bandwidth. The delay of Flow 1 is half of
the delay of Flow 2. After Flow 3 starts, the throughput of
Flow 1 decreases to half of the bandwidth and the through-
put of Flows 2 and 3 are each 1/4 of the bandwidth. The
delay of both Flows 1 and 2 increase. After Flow 4 starts,
the throughput of Flows 1 and 4 become 1/4 of the band-
width while the throughput of Flows 2 and 3 remains un-
changed. This example shows that as the number of com-
peting nodes and flows changes, the actual service quality

to flows changes dramatically. It demonstrates that static
allocation of contention window sizes can not provide any
guarantees to the service qualities of flows.

B. Dynamic Contention Window Adaptation

Since static contention window allocation only pro-
vides proportional differentiation, dynamic contention
window adjustment can be used to adapt the contention
window sizes according to the network environment and
the requirements of flows. Therefore, each realtime flow
in QPART has its own packet queue and contention win-
dow and accesses the channel as if it is an independent
node. In this section, we explain how the contention win-
dow size of a realtime flow is adjusted by the Contention
Window Adaptor in QPART so that the service quality re-
ceived by a flow can meet the flow’s service requirement.

Since flows may have different QoS requirements based
on the type of application data carried in the flow, QPART
classifies flows into three types: delay-sensitive flows,
bandwidth-sensitive flows and best effort flows. The
delay-sensitive flows, such as conversational audio/video
conferencing, require that packets arrive at the destination
within a certain delay bound. The bandwidth-sensitive
flows, such as on-demand multimedia retrieval, require
a certain throughput. The best effort flows, such as file
transfer, can adapt to changes in bandwidth and delay.
Due to the different requirements of flows, each type of
flows has its own contention window adaptation rule.

1) Delay-Sensitive Flows:For a delay-sensitive flow,
the dominant QoS requirement is end-to-end packet delay.
To control delay, the end-to-end delay requirementd must
be broken down into per-hop delay requirements. Each
hop locally limits packet delay below its per-hop require-
ment to maintain the aggregated end-to-end delay below
d. For this paper, each node is assigned with the same per-
hop delay requirement,d/m, wherem is the hop count
of the flow. It is also possible to allocate per-hop delay
requirements based on node traffic load or the packet’s
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achieved service. We are currently investigating the ef-
fects of different per-hop delay allocation schemes.

To set up the contention window adaptation, the first
few packets of the flow piggyback the per-hop delay re-
quirement to relying nodes. At each relaying node, the
Contention Window Adaptor adapts the contention win-
dow to ensure per-hop packet delay requirements of the
flow. If the delay of the flow is too large, the adaptation
algorithm at the node decreases the contention window
size of the flow to decrease the delay. On the other hand,
if the delay is smaller than the requirement, the adaptation
algorithm increases the contention window size so that the
channel resources can be left for use by other flows. Based
on this approach, every node along the route of the flow
periodically updates the flow’s contention windowCW
according to the following iterative algorithm:

CW (n+1) = CW (n) × (1 + α
d/m−D(n)

d/m
), (3)

where the superscriptn represents thenth update itera-
tion, D denotes the actual peak packet delay at the node
during a update period andα is a small positive constant.
Essentially, this iterative algorithm adjusts the contention
window size of the flow to maintain the packet delay be-
low its per-hop delay requirement. The step sizeα and the
update interval should be picked appropriately to produce
fast response to changes in network condition. In our sim-
ulation, the update period is 100 ms and theα is set as
0.1. The settings of all the QPART parameters used in our
simulations can be found in Table I in Section VI.

2) Bandwidth-Sensitive Flows: For a bandwidth-
sensitive flow, the dominant QoS requirement is through-
put, which requires that at each node along the flow’s
route, the packet arrival rate of the flow should match the
packet departure rate of the flow. According to queueing
theory, the flow’s queue length should be finite. Therefore,
by maintaining a constant queue length, the throughput of
the flow can be guaranteed. Hence, the contention win-
dow adaptor for a bandwidth-sensitive flow updates the
contention window periodically as follows:

CW (n+1) = CW (n) + β(q −Q(n)), (4)

whereq is a threshold value of the queue length that is
smaller than the maximum capacity of the queue,Q repre-
sents the actual queue length andβ is a positive constant.
If Q is larger thanq, the algorithm decreasesCW to in-
crease the packet departure rate to decrease queue length.
If Q is smaller thanq, the algorithm increasesCW to de-
crease the packet departure rate and free up resources for
other flows. As the queue size varies around the threshold

valueq, the average throughput of the flow matches its re-
quirement. The threshold sizeq should be much smaller
than the capacity of the queue so that a burst of traffic does
not cause packet loss due to queue overflow. Currently we
setq according to the guidelines provided in the popular
queue management protocol RED [6].

3) Best Effort Flows: Best effort flows are tolerant to
changes in service levels and do not have any hard require-
ments about bandwidth or packet delay. Since there is no
per-flow service requirement, all packets from best effort
flows are put in a common queue and only one contention
window parameter is kept for all best effort flows. The
purpose of updating the contention window size of best
effort flows is to prevent best effort flows from congesting
the network and degrading the service level of realtime
flows. To achieve this, the contention window of best ef-
fort flows is updated as follows:

CW (n+1) = CW (n) × (1 + γ(f − F (n))), (5)

wheref is a congestion thresholdfor idle channel time,
F is the actual idle channel time andγ is a positive con-
stant. Here,idle channel timeis defined as the average
length between two consecutive busy periods of the chan-
nel, which decreases as the load on the network increases.
Guidelines for settingf are discussed in Section V-C.

The iterative algorithm in Equation (5) updates the con-
tention window size of best effort flows to avoid network
congestion. When the average idle channel timeF is
smaller than the threshold valuef , the network is consid-
ered congested and the contention window size of the best
effort traffic is increased to avoid decreasing the service
level of realtime traffic. On the other hand, if the network
is lightly loaded so that the idle channel time is larger than
f , the contention window size of best effort traffic is de-
creased so that the idle bandwidth can be utilized.

The design of the above three contention window adap-
tation algorithms ensures that realtime flows dynamically
adjust their contention parameters to meet their own QoS
needs. A realtime flow that did not get its required QoS
in the past due to competition from other flows decreases
its contention window size so that statistically it will have
a higher chance to obtain the channel in the future. A
best effort flow, on the other hand, increases its contention
window size when the network is considered busy and
hence releases the channel to the realtime flows. The ran-
dom generated backoff counter ensures that the channel
access attempts from different flows are spread out and
do not cause a lot of collision. Contrary to [9], [13], in
QPART, no neighborhood scheduling tables and piggy-
backed schedule information are needed. Therefore, there
is no control message overhead imposed by QPART and
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the schedules of packets are not affected by channel er-
rors. Since the QoS-aware Scheduler does not require any
knowledge of channel capacity, variations in the channel
capacity do not affect the performance of QPART.

C. Implementation Considerations

To implement the contention window adaptation algo-
rithm, flows must adapt their contention window sizes and
access the channel independently as if they are individual
nodes in an IEEE 802.11 network. Otherwise, head-of-
line blocking between flows in the same node may limit
the effectiveness of the contention window adaptation al-
gorithm. However, implementation of a per-flow con-
tention mechanism at the MAC layer is difficult since the
MAC layer has no access to flow information. Addition-
ally, it is not desirable to require the MAC layer to rec-
ognize flow types and adapt the contention window sizes
based on the QoS of flows. To solve this problem, QPART
makes minimum changes to the MAC layer and imple-
ments the contention window adaptation algorithm mainly
at the network layer, where flow information is accessi-
ble. The only modification to the MAC layer is that the
MAC layer is relieved from the task of keeping the con-
tention window and calculating the backoff time. Instead,
the backoff time is calculated in the network layer where
the contention windows of flows are kept and the backoff
time is sent to the MAC layer along with data packets.

To simulate the effect that each flow access the chan-
nel independently using their own contention window, it is
important to understand the contention resolution process.
Consider that there are multiple contending flows, each
is associated with its own contention window. After the
channel turns from busy to idle for DIFS time, every flow
starts to count down their backoff timer once peraSlot-
Time. Assume that Flowi has the smallest backoff time
so that its backoff timer reaches 0 first. Therefore, Flowi
wins the channel and starts transmission. The other flows
pause their backoff timers at a value that equals their orig-
inal backoff time minus the backoff time of Flowi. When
the transmission of Flowi stops, Flowi generates the next
backoff time and all flows resume their backoff process.

To realize this contention resolution process, at each
flow’s queue in QPART, the head of line (HOL) packet is
associated with a backoff time, which is generated by the
Backoff Generatoras a random number in[0, CW ] mul-
tiplied by aSlotTime, whereCW is the contention win-
dow size of the flow. At each node, whenever the MAC
layer is ready to transmit a packet, the Packet Scheduler
selects the HOL packet with the smallest backoff time in-
side the node and delivers it along with its backoff time to
the MAC layer. The backoff times of the remaining HOL

packets are reduced by the backoff time of the chosen
packet. When the MAC layer receives the chosen HOL
packet, it backs off according to the backoff time received
along with the packet. The node with the smallest backoff
time at the MAC layer wins the channel, which essentially
means that the flow with the smallest backoff time among
all contending flows wins the channel.

When the wining node finishes the transmission suc-
cessfully, its MAC layer informs the network layer so that
the transmitted packet is removed from its queue and a
new HOL packet and its corresponding backoff time can
be generated. If the packet transmission of the winning
node fails, its MAC layer informs the network layer of the
failure so that the failed packet remains as HOL packet in
its queue. In this case, the contention window size of the
queue is doubled and a new backoff time is regenerated
for the retransmission of the failed packet. Finally, after
the successful or failed packet transmission, the Packet
Scheduler at the node again selects the HOL packet with
the smallest backoff time among all queues and delivers it
along with its backoff time to the MAC layer for the next
transmission.

Figure 6 shows an example of this process. In this ex-
ample, there are three flows. Flows 1 and 2 are in Node
A, while Flow 3 is in Node B. Initially, each flow has two
packets in its queue, wherePi,j represents theith packet in
Flow j’s queue. Flow 1’s HOL packetP1,1 is associated
with the smallest backoff time 5 among all the flows in
Node A. Hence, the packet scheduler deliversP1,1 to the
MAC layer along with the backoff time 5. The backoff
time ofP1,2, which is the HOL packet of Flow 2’s queue,
is updated from 7 to 2 by subtracting the backoff counter
of P1,1. Similarly, the Packet Scheduler in Node B deliv-
ers packetP1,3 along with backoff time 7 to its MAC layer.
After backing off 5aSlotTime, the MAC layer in Node
A wins the contention and transmitsP1,1 and the backoff
time of Node B stops at 2. After the transmission ofP1,1,
P1,1 is removed from Flow 1’s queue andP2,1 becomes
the new HOL packet in Flow 1’s queue. A new backoff
counter 9 is generated for packetP2,1. At this time, the
HOL packet with the smallest backoff time in Node A is
P1,2. Therefore,P1,2 is chosen by the Packet Scheduler
and is sent to the MAC layer of Node A for transmission.
At this time, the MAC layer of Node B wins the channel
since it has the smallest backoff time at the MAC layer
and packetP1,3 is transmitted.

The above example shows that with minimum changes
to the MAC layer, each flow in QPART’s per-flow con-
tention mechanism acts like an independent node in an
IEEE 802.11 network. There is no head-of-line blocking
between flows in the same node. Each flow updates their
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contention window independently and controls their own
channel access frequency. This independence ensures that
the QoS guarantees can be achieved by adapting the con-
tention window sizes of the flows.

V. QOS MANAGER

The goal of the QoS manager is to realize admission
control and conflict resolution by maintaining the total
requirements of realtime traffic below network capacity.
When the total requirements exceed network capacity,
the QoS Manager selects victim flows and informs their
senders to either terminate, reroute or reduce QoS require-
ments. The selection process of victim flows is based on
the prioirties of flows, which are dynamically assigned
based on network policies. In this section, we first discuss
the design of the two components of QPART, thePrior-
ity Adaptorand theResource Resolver, and then analyze
the relationship between the contention window adapta-
tion algorithm of best effort traffic and the QoS Manager.

A. Priority Adaptor

The QoS Manager selects victim flows based on the pri-
orities of flows, which are assigned to flows according to
network policies. The actual choice of a priority assign-
ment algorithm is orthogonal to the design of QPART,
which simply enforces the priorities once they are cho-
sen. In this section, we describe several possible options
for priority allocation policies, which can be used solely
or combined together to satisfy different network require-
ments.

The first policy allocates priorities to flows according to
their importance. The more important a flow is, the higher
its priority should be. Using this policy, a newly arrived
flow with higher importance can kick flows with lower

importance out if the network does not have enough re-
sources for all flows. For ad hoc networks that are used in
emergency situations, this allocation policy is appropriate
since messages with high importance should be able to
kick out unimportant messages if needed.

For an ad hoc network that does not have classified im-
portance level, a policy that allocates priorities to flows
according to their age may be desirable, which have been
implemented in our simulations. With this policy, the Pri-
ority Adaptor increases the priority,P , of a flowk period-
ically as follows:{

P
(n+1)
k = P

(n)
k + 1, ifP (n)

k < Pmax,

P
(n+1)
k = P

(n)
k , ifP (n)

k = Pmax,
(6)

wherePmax is the highest possible priority. This priority
adpatation algorithm essentially allocates higher priorities
to existing flows so that the newly arrived flows are more
likely to be rejected than existing flows.

It is also possible that some network may need to pe-
nalize realtime flows that exist too long since these flows
consume too much bandwidth and reduce the capacity of
network that can be used by other flows. The policy of this
network is to periodically decrease the priority of a flow
if the age of the flow is longer than a certain threshold.
It is also possible to increase the number of simultaneous
flows by discouraging high QoS requirement flows. In this
case, a flow requiring a high service level is allocated with
a lower priority since it requires more resources from the
network and potentially reduces the number of flows the
network can sustain.

Different priority adaptation rules may also be com-
bined together to provide a variety of admission poli-
cies. For example, the age-based policy may be combined
with the importance-based priority policy to give priori-
ties between flows with the same level of importance. The
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choice of which adaptation rules to use depends on the
needs of the ad hoc network. We are currently investigat-
ing the use of different priority policies and their impoact
on QoS in wireless networks.

B. Resource Resolver

The QoS-aware Scheduler in Section IV-B guarantees
that admitted realtime flows achieve their desired QoS
when network capacity is larger than the requirements of
the realtime traffic. However, if the total admitted realtime
flows exceed the capacity of the network, no scheduling
algorithm can guarantee the QoS of flows. The goal of
the Resource Resolver is to ensure that the total require-
ments of realtime flows are smaller than network capacity
through admission control and conflict resolution.

In wired networks, a node has global knowledge of the
flows sharing its link and centralized control of its link
bandwidth allocation. Therefore, a node can easily accu-
rately predict a new flow’s impact on existing flows and
the new flow’s expected service. Therefore, admission
control in wired networks is traditionally performed be-
fore the new flow starts. If the new flow passes admission
control, it is guaranteed that there are always enough re-
sources for the flow and conflict resolution is not needed.

On the contrary, a wireless node has no centralized con-
trol of its bandwidth allocation or global knowledge about
the flows that are competing for the channel. Therefore
before the new flow starts, it is very difficult to accurately
predict the impact of a new flow on the service of existing
flows or the expected service of the new flow. In addi-
tion, even if the new flow passes admission control, there
is no guarantee that there are always enough resources for
the flow due to the mobility of nodes and variances in the
channel capacity. Therefore, we argue that there is little
value and high cost to perform admission control before
a new flow starts. Instead, admission control should only
be activated to reject flows when the new flow actually af-
fects the service of existing flows or cannot get its desired
service. However, conflict resolution is a necessity due to
the dynamics of the wireless network.

Based on this rationale, we design the Resource Re-
solver of QPART to realize admission control and conflict
resolution following an on-demand methodology. When
a new flow arrives, it starts transmitting packets immedi-
ately. The QoS-aware Scheduler guarantees that if there
are enough resources, the existing realtime flows can
adapt their contention windows to maintain their desired
QoS. When there is not enough network capacity, the Re-
source Resolver detects the increased congestion level in
the network on demand and appropriately selects victim
flows to be rejected to maintain the QoS of the remaining

flows. The Resource Resolver can similarly handle re-
source shortages caused by active flows moving into each
other’s contention range or decreasing channel capacity.
Essentially, the Resource Resolver realizes the goals of
both admission control and conflict resolution by prevent-
ing network congestion caused by newly arrived flows,
mobility of nodes or variances in channel capacity.

To understand how the Resource Resolver detects in-
creased congestion, note that the QoS-aware Scheduler
adapts the contention window sizes of realtime flows to
try to satisfy the QoS of the flows. If there are not enough
resources, none of the realtime flows can achieve their de-
sired QoS and they repeatedly decrease their contention
window sizes down to zero. In this case, the packet colli-
sion rate is so high that the network throughput decreases
to zero. Such a contention window “blow out” signals a
resources shortage for realtime flows. Therefore, QPART
runs a Congestion Monitor at the MAC layer, which pas-
sively monitors idle channel time. When the contention
window sizes of flows start to decrease due to resource
shortages, the idle channel time decreases, triggering vic-
tim flow selection by the Resource Resolver to prevent
contention window blow out.

To select victim flows, the priority of a flow is mapped
to a threshold value of the idle channel time, called thead-
mission threshold. The higher the priority, the smaller the
admission threshold. LetPk be the priority of flowk and
θ be the difference between the admission thresholds of
two consecutive priority levels. The admission threshold,
T , for flow k can be expressed as:

Tk = (Pmax − Pk)× θ + η, (7)

whereη is the smallest admission threshold. When idle
channel time goes below the admission threshold of a
flow, a flow becomes a rejection candidate in the Resource
Resolver. Rejection of the candidate flows reduces con-
gestion on the channel and increases channel idle time.
Therefore, contention window blow out is avoided. To
prevent several flows with the same priority level from be-
ing rejected simultaneously and to eliminate the effects of
temporary interference from outside sources, before a re-
jection candidate flowk gets rejected, the Resource Re-
solver waits a random short period of time, called the
rejection defer time, which is randomly generated in the
range[t1, t2]. t1 andt2 are priority related bounds of the
rejection defer time and are calculated as:

t1 = Pk × δ,
t2 = (Pk + 1)× δ,

(8)

whereδ is the interval betweent1 andt2.
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At the end of this rejection defer time, the Resource
Resolver rechecks the idle channel time. If the idle chan-
nel time is still smaller than the flow’s admission thresh-
old, the rejection process starts. The flow’s packets are
dropped and its sender is informed to terminate, reroute or
decrease the QoS requirements of the flow. If at the end
of the rejection defer time, the idle channel time is larger
than the flow’s admission threshold, indicating that con-
gestion has been alleviated due to the rejections of other
flows or the absence of the interference, the flow is not
rejected and is removed from the rejection candidate list.

Since a higher priority flow always has a smaller admis-
sion threshold than a lower priority flow, a lower priority
flow always hits its admission threshold earlier. In addi-
tion, a higher priority flow always has a longer rejection
defer time than a lower priority flow since a higher prior-
ity flow’s t1 is larger than thet2 of a lower priority flow.
By setting a large enoughθ andδ, the differentiation in
the admission thresholds and rejection defer times can en-
sure that a lower priority flow is always rejected before a
higher priority flow. However, too large aδ may reduce
the congestion response speed of the Resource Resolver
and too large aθ may result in the rejection of flows when
the network is not congested. We are currently investigat-
ing the tradeoffs for properly settingθ andδ.

When the Resource Resolver rejects a flow, the rejected
flow releases the channel resources so that the congestion
level of the network decreases and the idle channel time
increases. When enough flows are rejected so that the net-
work capacity can accommodate the remaining flows, the
idle channel time returns back to a normal level. At this
point, the Resource Resolver stops rejecting flows.

Since the Resource Resolvers are completely dis-
tributed and require no control message exchanges be-
tween neighboring nodes, there is no need to worry about
the effects of control message loss. There is also no need
for resource reservations since the QoS-aware Scheduler
guarantees the service quality to realtime flows. When a
flow is rerouted due to link breaks, the unused resources
on the old route are immediately released and no update
of the reservation information is needed.

C. Contention Window Adaptation Algorithm of Best Ef-
fort Flows: Revisited

Since a realtime flow is penalized when the congestion
level of the network reaches its admission threshold, the
adaptation algorithm of best effort flows must be carefully
designed so that they do not cause rejections to any re-
altime flows. As described in Section IV-B, best effort
flows increase their contention window sizes when the
idle channel time is smaller than the congestion threshold

CW update interval 0.1s Priority update interval 0.1s
α 0.1 β 1 γ 0.1 q 5 pkts
f 1ms θ 2µs η 0.1ms δ 2ms

Pmax 250

TABLE I
CONFIGURATION OFQPART PARAMETERS

to decrease the congestion level of the network. To guar-
antee that contention from best effort flows does not de-
crease the idle channel time below the admission thresh-
olds of realtime flows, the congestion threshold of best ef-
fort flows should always be higher than the maximum ad-
mission threshold of realtime flows,Pmax×θ+η. There-
fore, as load increases, the best effort flows are the first to
reduce their rate before any realtime flow is rejected.

VI. EVALUATION

To evaluate the effectiveness of QPART’s QoS support,
we compare the performance of QPART with SWAN [2]
using the NS2 simulator [5]. We choose SWAN since
it is the only existing QoS protocol that does not re-
quire resource reservation state in the network and claims
to achieve low message overhead, which is essentially
the same goal as QPART. The NS2 implementation of
SWAN is the latest distribution by the SWAN project. The
QPART implementation uses the age-based priority pol-
icy, where existing flows have higher priorities than new
flows. The routing protocol used in the simulations is
DSR [8]. The channel bandwidth is 11Mbps. The evalua-
tion demonstrates the performance of QPART in terms of
its ability to provide QoS-aware scheduling based on the
types of flows and its ability to maintain both delay and
bandwidth guarantees to flows in both single and multi-
hop networks. The configuration of QPART parameters
are shown in Table I.

A. QoS-aware scheduling

To demonstrate QPART’s ability of schedule packets
according to QoS requirements of flows, we simulate two
five-hop flows competing with each other for bandwidth
as shown in Figure 7. Flow 1 starts at time 20s and is
delay-sensitive with a delay requirement of 20ms. Flow 2
starts at time 55s and is bandwidth-sensitive. The rates of
Flow 1 and Flow 2 are both 30 512Byte packets per sec-
ond. Figures 8 and 9 show the delay in log scale and the
throughput of the two flows. The delay bound of Flow 1
is indicated by the solid line in Figure 8. It can be seen
that QPART successfully schedules Flow 1 and Flow 2
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Fig. 9. Flow Throughput

according to their different requirements. QPART main-
tains the delay of Flow 1 constantly below its delay re-
quirement at the cost of increasing the delay of Flow 2,
which is acceptable since Flow 2 is bandwidth-sensitive
and QPART maintains its throughput guarantees (see Fig-
ure 9). SWAN, however, does not understand the different
service requirements of the flows so that both flows ex-
perience large delays after Flow 2 starts. Additionally,
SWAN does not maintain a stable throughput for Flow 2
from 55s to 80s due to its slow response to queue length
increases.

B. QoS guarantees in single hop networks

In this section, we compare QPART and SWAN’s abil-
ity to keep QoS guarantees in single hop networks. The
simulation area is500m× 500m square and every flow is
one hop. Each simulation runs for 200 seconds.

The first set of simulations examines QPART’s ability
to keep QoS guarantees to delay-sensitive flows. Flow 1
is delay-sensitive with a delay requirement of 5ms and a
rate of 40 512Byte packets per second. At time 1s, Flow
1 starts and then 8 to 32 competing flows are injected into
the network. To vary the load on the network, the types
of competing flows are varied from bandwidth-sensitive
CBR flows to delay-sensitive CBR flows with 10ms delay
requirements and then to best effort FTP flows. The rate of
the competing CBR flows are varied from 20 pkts/second
to 50 pkts/second. Figures 10 and 11 show the log-scale
packet delay of Flow 1 under QPART and SWAN re-
spectively, where the legends describe the types and rates
(pkts/sec) of Flow 1’s competing flows. It can be seen that
QPART maintains the delay of Flow 1 below its delay re-
quirement under all circumstances while SWAN violates
its delay guarantees to Flow 1 in all scenarios as the load
of the network increases.

To examine QPART’s ability to keep QoS guarantees
to bandwidth-sensitive flows, the settings in the second
set of simulations are the same as the first simulation, ex-
cept that Flow 1 is bandwidth-sensitive. Figures 13 and 14

show the throughput of Flow 1 under QPART and SWAN
respectively. It can be seen that QPART maintains the
throughput of Flow 1 while SWAN violates its bandwidth
guarantees to Flow 1 as the network load increases.

C. QoS guarantees in multihop networks

For our final evaluation, we compare QPART and
SWAN’s ability to keep QoS guarantees for multihop
flows. In the simulation, there are 8 delay-sensitive flows,
8 bandwidth-sensitive flows and 8 best effort FTP flows
that try to start consecutively during the first 115 seconds
of the simulation. The sources and destinations of the
flows are randomly selected from 100 nodes located in
a1000m× 1000m square. The hop counts of flows range
from 1 to 7. Each delay sensitive flow has a delay require-
ment of 100ms and generates 50 80Byte packets per sec-
ond. Each bandwidth-sensitive flow generates 50 512Byte
packets per second. The packet size of FTP flows is
512Byte. Figure 12 shows the average delay of the delay-
sensitive flows and Figure 15 shows the violation of band-
width guarantees to bandwidth-sensitive flows, which is
the total throughput of the admitted flows subtracted by
the total packet generation rate of these flows. QPART
maintains the delay of the admitted delay-sensitive flows
below their 100ms delay requirement and shows no viola-
tions to the bandwidth guarantees. SWAN, however, ad-
mits too many flows so that both the delay and bandwidth
of its flows degrade as the load of the network increases.
In addition, Figure 12 also shows that SWAN has large
peaks in the packet delay. These peaks are due to the DSR
route discovery messages that flood the network whenever
a new flow is added to the network. QPART’s packet de-
lay, however, is not affected by the route discovery mes-
sages. This is because the route discovery messages are
put at the head of the best effort traffic queue and the
QoS-aware Scheduler automatically adapts the contention
window sizes of realtime traffic and best effort traffic to
guarantee the delay for delay-sensitive flows. Therefore,
QPART provides more stable packet delay and throughput
than SWAN.
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Fig. 10. QPART’s delay guarantees to Flow
1 (single hop).
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(single hop).
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flows (multihop).
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Fig. 13. QPART’s bandwidth guarantees to
Flow 1 (single hop).
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VII. C ONCLUSIONS

In this paper, we introduce a new QoS support proto-
col QPART, which is simple, distributed and light weight.
QPART support different types of traffic by offering both
delay guarantees and bandwidth guarantees. An important
benefit of QPART is that it does not require the network
to maintain resource reservation states and has very low
message overhead since complex signaling is not needed.
Through simulations, we compare the performance of
QPART with SWAN and demonstrate QPART’s ability to
provide delay and bandwidth commitments to flows. In
the future, we will investigate the effects of different val-
ues of the parameters, includingq, f , θ andη, on the per-
formance of QPART.
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