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Abstract.

We discuss the eÆcient solution of a large sequence of slowly varying linear systems arising
in computations for di�use optical tomographic imaging. In particular, we analyze a number of
strategies for recycling Krylov subspace information for the most eÆcient solution.

We reconstruct three-dimensional absorption and scattering information by matching computed
solutions from a parameterized model to measured data. For this nonlinear least squares problem
we use the Gauss-Newton method with a line search. This algorithm requires the solution of a large
sequence of linear systems. Each choice of parameters in the nonlinear least squares algorithm results
in a di�erent matrix describing the optical properties of the medium. These matrices change slowly
from one step to the next, but may change signi�cantly over many steps. For each matrix we must
solve a set of linear systems involving both multiple shifts and multiple right-hand sides. We discuss
strategies that minimize the overall solution time. In particular, we show how we can tune the linear
solver for both the nonlinear optimization algorithm and the underlying application. Although we
focus on a particular application and optimization algorithm, we feel that our approach is applicable
generally to problems where many linear systems must be solved.

We describe extensions to the GCRO algorithm to deal eÆciently with symmetric problems and
to combine subspace recycling with solving for multiple shifts using a single Krylov subspace. We
provide results for two sets of numerical experiments to demonstrate the e�ectiveness of the resulting
method.
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1. Introduction. In di�use optical tomography (DOT), data is obtained by
transmitting near-infrared light into a highly absorbing and scattering medium and
then recording the photon 
ux. The goal is to use the di�use optical data measured on
the surface to reconstruct three-dimensional images of the absorption and \reduced
scattering" functions in the medium. In the case of breast tissue imaging, di�erences in
the absorption and scattering may indicate the presence of a tumor or other anomaly.

The forward problem is the determination of synthetic data (photon 
ux) for
given absorption and scattering functions from some mathematical model. A number
of mathematical models have been proposed in the literature [1]. We focus on the
frequency-domain di�usion model in which the data is a non-linear function of the
absorption and scattering functions. In order to solve the imaging problem { the
determination of the absorption and reduced scattering functions { one must solve
many instances of the forward problem. This fact implies a huge computational
bottleneck for the imaging problem. The goal of this paper is to discuss techniques for
reducing the computational complexity of forward solves, thereby greatly improving
the execution time of the nonlinear imaging problem.

Speci�cally, we consider the solution of a sequence of linear systems of the form

(A(pj) + i
I)x(j)s;! = bs (1.1)
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that arise in a 3D imaging algorithm for di�use optical tomography. Here, i =
p�1,


 is a positive constant that depends on the frequency, !, and the vector pj denotes
the vector of parameters that de�ne the di�usion and absorption in tissue at the jth
step of a damped Gauss-Newton iteration (GN) to solve the nonlinear least squares
problem for an optimal set of parameters. As suggested by the notation, the matrix
depends on the current values of the parameters. The matrix A(pj) is sparse and
symmetric, which means that Krylov iterative solvers such as MINRES [3] are good
candidates for solving these linear systems.

We observe that in our application the matrices A(pj) vary slowly from one Gauss-
Newton step or line search step to the next, and they change signi�cantly over multiple
Gauss-Newton steps. In addition, we need to solve for multiple (complex) shifts and
multiple right-hand sides for each matrix. In order to solve this problem in the most
eÆcient way we must exploit all these features. For each of these features, suggestions
have been made to reduce the overall cost (for example, see [16, 15, 19] for solving for
a group of matrices that di�er by a constant times the identity and [14, 29, 7, 22, 18]
for solving for multiple right-hand sides). However, the various methods have not
been combined to address all these features at once, and we will see that this is not
a trivial issue.

The problem of solving a sequence of systems where the matrix changes slowly
is the most complicated feature to exploit. Some approaches have been proposed,
though most of them for systems that are special in some sense.

In [22] we propose to recycle from one linear system to the next the Krylov
subspaces that solvers like GCRO [8], GCROT [9], and GMRESDR [21] retain to
improve the convergence for a single linear system. GMRESDR cannot recycle a
subspace for a subsequent linear system, as it requires a Krylov space to work with;
therefore, we introduced the variant GCRODR [22]. Recycling selected subspaces
leads to signi�cant improvements in the convergence of subsequent systems.

Other approaches have been proposed as well. If all matrices in a set of symmetric
positive de�nite linear systems are pair-wise close to each other and all right-hand sides
are available simultaneously, the methods proposed by Chan and Ng [5] can be used.
However, this is not the case for our application. For a sequence of real, symmetric
positive de�nite systems, Rey and Risler have proposed to retain all converged Ritz
vectors from a previous CG iteration to reduce the e�ective condition number for a new
system [23, 24, 25]. In general, this requires excessive storage. Moreover, they lose the
advantage of a short recurrence, as they keep the full recurrence during the solution
of a single system. Since they focus on the �nite element tearing and interconnecting
(FETI) method [12], this is less of a drawback, because the interface problem is small
relative to the overall problem, and it is common to use a full recurrence in FETI.
However, for more general problems, such as the present one, it is paramount to be
more selective in deciding which subspace should be recycled for subsequent linear
systems. Finally, Fischer proposed to project right-hand sides from subsequent time
steps onto the space of previous right-hand sides and to solve only for the remainder
[13]. Note that his algorithm does not maintain orthogonality to the subspace of
previous right hand sides over the iteration.

As mentioned above, our problem includes the solution of a small set of right-
hand sides for each matrix (with �xed pj and 
). As was shown in [7, 22], subspace
recycling is quite e�ective for this problem. However, other approaches or variations
have been successful as well, in particular block methods [14, 29] and seed methods
[6, 18]. As we will see, subspace recycling is the easiest to implement, as it can solve
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the right-hand sides one by one as individual linear systems, simply recycling the
selected search space [22]. This avoids the need to change the program to deal with
varying block sizes and de
ation if the vectors inside a block become dependent.

Finally, we also want to solve for multiple shifts without (re)generating additional
Krylov subspaces. This is not complicated in itself, as the Krylov space for a shifted
problem equals the Krylov space for the original problem. However, it is not easily
combined with recycling Krylov subspaces, because the images of recycled spaces
under matrices with di�erent shifts are not the same. We derive a simple extension
to the GCRO method in Section 5 to deal with this problem.

In [22] we select and use the subspaces for recycling in a fairly straightforward way
for each particular method. In the present paper we aim to derive speci�c strategies
related to the application and the nonlinear optimization algorithm to improve con-
vergence even further. In particular, we explore which information to keep and which
to save as the damped GN method progresses. Furthermore, we present a variant of
GCRO that exploits the symmetry of the matrix and the fact that we want to solve
shifted complex systems simultaneously. The symmetry means that there is no need
to restart for a single linear system to save on storage.

The paper is organized as follows. Section 2 gives some background on GCRO
and subspace recycling. In Section 3 we give background information for the imaging
problem in di�use optical tomography. In addition, we derive the sequence of linear
systems of the form (1.1) that we wish to solve, and in Section 4 we discuss some
characteristics of the system that allow us to use recycling. We describe our algorithm
in Section 5 and give numerical results in Section 6. Conclusions and future work are
the subject of Section 7.

2. Recycling Krylov subspaces.

The ideas we exploit here �nd their origin in attempts to improve the convergence
of Krylov subspace methods for a single linear system, in particular restarted and
truncated methods. We brie
y discuss these ideas �rst. Restarting GMRES [28] may
lead to poor convergence and even stagnation. Therefore, recent research has focused
on truncated methods that improve convergence by retaining a selected subspace when
they restart [2, 8, 9, 21, 22, 27]. A taxonomy of popular choices is given in [11] and
various approaches to convergence theory for GMRES that are relevant here can be
found in [30, 32].

As discussed in [22], two aspects play a role here. The �rst aspect is which
subspace to retain to maintain convergence close to that of full GMRES { we will
refer to this as the recycled subspace. The second aspect is how to use that subspace.
In an augmentation approach, we append additional vectors at the end of the Arnoldi
recurrence, in the manner of FGMRES [26], such that an Arnoldi-like relation is
formed [27]. In an orthogonalization approach, we �rst minimize the residual over
the recycled subspace, and then maintain orthogonality with the image of this space
in the Arnoldi recurrence, see, e.g., GCRO [8]. As argued in [8, 20, 22] the the
orthogonalization approach generally leads to better convergence.

Several choices have been suggested regarding the subspace to recycle after a
restart for a single linear system. One important choice is to recycle an approximate
invariant subspace, typically associated with the eigenvalues closest to the origin, but
other approximate invariant subspaces can be used as well [20, 21]. An alternative
choice is to retain the subspace that minimizes the loss of orthogonality with respect
to the discarded subspace [9]. This tends to work well for nonsymmetric problems. In
[8] the updates to the solution (residual) are recycled. This is also proposed in [2] as
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an augmentation approach. Of course, we can use knowledge of the underlying physics
of our problem and the nonlinear optimization algorithm to decide on subspaces to
recycle. We will consider combinations of all these possible strategies.

The GCRO method provides a general mechanism to include arbitrary additional
subspaces in the search space. We are not limited to recycling subspaces of previously
generated Krylov spaces; in the context of the present application several choices of
subspaces may be useful. We explain brie
y how GCRO combines the selected recycle
space with a newly generated Krylov subspace to obtain an optimal approximation
over the sum of these spaces. We present the basic steps in a mathematically equiva-
lent but slightly di�erent way from the presentation in [8]. This di�erent presentation
is more easily generalized to solving for a set of matrices that di�er only by a constant
times the identity without generating another Krylov subspace.

We consider solving the linear system Ax = b, where A 2 R
n�n and b 2 R

n .
Assume we have the matrices Uk 2 Rn�k and Ck 2 Rn�k , such that AUk = Ck and
CT
k Ck = Ik. If we choose an approximate solution to our system in Range(Uk) that

minimizes the 2-norm of the residual, then the corresponding residual, rk = b�CkC
T
k b,

will be orthogonal to Range(Ck). There are no restrictions on the matrix Uk; clearly,
the columns of Uk should be chosen so that a reasonable approximate solution can be
found for small k. (For example, the columns of Uk could contain a basis for the Krylov
subspace generated by A and b, but they might also contain previous approximate
solutions or corrections to previous approximate solutions.) If the solution so obtained
is not adequate, we expand the subspace in which we look for solutions according to
the discussion in [8]. Now let v1 = (I � CkC

T
k )b=k(I � CkC

T
k )bk. We use an Arnoldi

recurrence with (I � CkC
T
k )A and v1. This gives the following recurrence relation

(I � CkC
T
k )AVm = Vm+1Hm , (2.1)

AVm = CkC
T
k AVm + Vm+1Hm: (2.2)

Next, we want to �nd the approximation in Range([Vm Uk]) that minimizes the two-
norm of the residual, kb�A(Vmy+Ukz)k2. This can be reduced to a simpler problem
as follows.

min
y;z





b�A[Vm Uk]
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2
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; (2.5)

where e1 denotes the �rst Cartesian basis vector in Rm+1 and � = k(I � CkC
T
k )bk.

The minimization in (2.5) corresponds to a small least squares problem that can be
solved by standard methods. An eÆcient implementation would follow the approach
suggested in [28]. Note that no assumptions have been made on the space Range(Ck).
We will show below that this approach is also extended easily to a set of matrices
A+ i
I . In this case, we need to deal with the problem that Range((A+ i
I)Uk) 6�
Range(Ck) and of course Range((A+ i
I)Uk) depends on 
.

If we have found a matrix Uk that speeds up the convergence signi�cantly, we can
also reuse this matrix for the next right-hand side (with the same A and 
). This
does not require any changes in the algorithm, and allows the algorithm to learn which
spaces are best to remove over the solution of multiple right-hand sides. This approach
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to improve the convergence for multiple right-hand sides and a constant matrix does
not require any extra storage beyond what is needed for a single right-hand side.

This method can also be combined with a block method [34]. Extending this in
turn to incorporate multiple shifts is possible too. However, the use of block methods
increases the required memory signi�cantly, and complicates the resulting program,
especially when using de
ation [14]. Since we showed that subspace recycling is quite
e�ective for solving multiple right-hand sides, we will not include the use of block
techniques here. It may be a worthwhile strategy to pursue later.

Again if we have found a matrix Uk that speeds up convergence signi�cantly for
A(pj) and A(pj+1) � A(pj) is small it makes sense to try to reuse the same search
space Uk possibly extended with other search directions for the linear systems with
A(pj+1) as well. We need to update Ck in this case to re
ect the new operator. In
many cases this can be done very cheaply. This process is not complicated, and we
refer to [22] for details.

3. The DOT Imaging Application. In this section, we introduce the image
reconstruction problem for di�use optical tomography. In the course of the discussion,
we derive the systems of the form (1.1) that must be solved at each step of the
nonlinear reconstruction algorithm.

3.1. The Forward and Inverse Problems. We assume that the region to be
imaged is a box. A limited number of Ns sources will be present on the top, and a
limited number of Nd detectors will be located on the either the top or bottom or
both. We use the di�usion model [1] for photon 
ux/
uence �s;!(r) given input fs(r):

�rD(r)r�s;!(r) + �a(r)�s;!(r) + i
!

�
�s;!(r) = fs(r);

for r = (x; y; z) and � a < x < a; �b < y < b; 0 < z < c;

�s;!(r) = 0; if 0 � z � c and either x = �a; x = a; y = �b; or y = b;

:25�s;!(r) +
D(r)

2

@�s;!(r)

@�
= 0; for z = 0; or z = c:

Here, D(r) denotes the di�usion, which is related to the \reduced scattering" function
�0s(r), by D = 1=(3�0s(r)) and �a(r) denotes absorption [1]. We have used i =

p�1,
while ! represents the frequency modulation of light, and � is the speed of light in
the medium. The subscript s is an integer index which indicates that this is the
model corresponding to a single source at a known position. The function fs(r) is the
source and �s;!(r) is the photon 
ux/
uence due to the source at frequency !, given
the functions �a(r) and D(r). Knowing the source and the functions �a(r); D(r), we
could compute the corresponding �s(r) everywhere, in particular, at the detectors
(i.e., at a subset of gridpoints where z = 0 or z = c).

We discretize the PDE using �nite di�erences [4] on a uniform grid in such a
way as to achieve second-order accuracy away from the boundary. The meshwidth in
each direction is h centimeters. We use �rst order forward or backward di�erences, as
appropriate, on the boundary. The unknowns become �s(xl; yj ; zk) for l = 1:Nx; j =
1:Ny; k = 1:Nz. We will order the unknowns so that �s values at points on the top
of the box come �rst (i.e. let k = 1 and loop over all l; j), then the �s corresponding
to points on the bottom (i.e. let k = Nz and loop over all l; j), followed by the rest
of the values by ordering in increasing l, then j, then k. The corresponding vector
with entries �s(xl; yj ; zk) we will call �s;!. Likewise, we will call the vector with
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entries �a(xl; yj ; zk) �a. The vector D will have entries at half-integer grid points
(i.e. (xl�1=2; yj ; zk); (xl; yj�1=2; zk), etc.) as well as whole integer grid points because
of the particular discretization we are using.

The corresponding matrix equation, after multiplication by h2, has the following
block structure: �

B D1

D2 (C + i!h
2

� I)

��
w!;s

x!;s

�
=

"
fs

(1)

fs
(2)

#
: (3.1)

where ws;! and xs;! denote the discretization of �s;!(r) on the boundary and at
internal points, respectively. The measured data due to source s that is predicted
by this forward model is a subsampled version of the subvector w!;s, which we call
 s;!.

It is important to note that in our application fs
(2) = 0 and

fs
(1) = h2[0; 0; : : :0; 1; 0; : : :0]T ;

where the position of the 1 corresponds to the location of the source.
Let ys;! denote the data subvector measured at all the detectors for a �xed source

s and frequency !. Recall that p is a vector of parameters that describe the di�usion
and absorption at all points in the region of interest. We will brie
y discuss the
choice of p below and refer the interested reader to [17] for more details. The 3D
imaging problem then becomes one of �nding the optimal parameters such that the
data predicted by the di�usion model is well matched by the data. That is, we wish
to solve

min
p

X
s;!

kWs;!(ys;! � s;!(p))k22 � min
p
kW (y�  (p))k22;

where y denotes the vector obtained by stacking the subvectors ys;!. We use the
following damped Gauss-Newton iteration (GN) to solve this non-linear least squares
problem [10]:

1. Compute  (pk), J(pk),
2. Solve J(pk)

TJ(pk)sk = �J(pk)T �(pk),
3. pk+1 = pk + �ksk,

where �k is chosen using a backtracking line search [10] and �(pk) denotes the weighted
residual in the right side of the equation above evaluated at parameter vector pk.

If the number of parameters used to de�ne di�usion and absorption is small, the
Jacobian will only have a small number of columns, and therefore step 2, solving
for the search direction, is not very computationally intensive. However, to compute
 (pk), to compute the entries in the Jacobian using an adjoint-type approach (called
a \co-state" method in [33]), and to �nd the best search direction requires solutions
of the matrix equation in (3.1) for every source and every frequency. Therefore, the
rest of this paper is devoted to analyzing the systems themselves and methods for
computing their solutions eÆciently.

3.2. The Matrix Revisited. Here, we describe properties of the matrices and
submatrices involved in solving for each �s;!. The following are important facts about
the structure of the blocks in (3.1):

� B is an invertible diagonal matrix.
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Fig. 3.1. Sparsity plot of matrix G.

� D1 has at most one non-zero per row, and these occur only in the �rst NxNy

and last NxNy columns.
� D2, although it has di�erent entries, has the same sparsity pattern as DT

1 .
A Matlab sparsity plot of the matrix in (3.1) is given in Figure 3.1 to give the

reader a visual interpretation of the structure just mentioned.
To solve systems involving this matrix, we consider G = LU where L is block unit

lower triangular and U is block upper triangular and G represents the block matrix
in (3.1). It can readily be shown that

G =

�
I 0

D2B
�1 I

��
B D1

0 C �D2B
�1D1 + i
I

�
;

where 
 = h2!=�. Thus, any system involving G, say G

�
w!;s

x!;s

�
=

�
fs

(1)

0

�
, can

be solved according to the following steps:

1. Step 1: Solve the equation L

�
as
bs

�
=

�
fs

(1)

0

�
:

(a) as = fs
(1)

(b) bs = �D2(B
�1as)

2. Step 2: Solve the equation U

�
ws;!

xs;!

�
=

�
as
bs

�
:

(a) Solve (C �D2B
�1D1 + i
I)xs;! = bs

(b) ws;! = B�1(as �D1xs;!)
Multiplying with B�1 can be done very cheaply because B is diagonal, and D1

and D2 only have (2NxNy) non-zero entries each. The computationally intensive part
of this procedure is Step 2a. Note that the system in Step 2a is exactly the system in
(1.1), except that we have ignored the superscript on xs;! for simplicity.

We conclude this section with the proof that C � D2B
�1D1 is symmetric and

positive de�nite. Note that C corresponds to the �nite di�erence discretization of
the operator �rD(r)rI + �a(r)I at the internal points on the box assuming zero
boundary conditions. It follows that the matrix C is symmetric and positive de�nite.

Recall that B is a diagonal, 2NxNy�2NxNy matrix with entries :25h2+ h
2Dl;j;m

with m = 1 or m = Nz. Due to the lexicographical ordering of the internal nodes, D1

is 2NxNy � (NxNy(Nz � 2)) with only one non-zero per row and D2 is (NxNy(Nz �
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2)) � 2NxNy with only one non-zero per column. The non-zero entries in D1 are of
the form �h

2Dl;j;m with m = 1 or m = Nz. The non-zero entries in D2 are �Dl;j; 32

or �Dl;j;Nz� 1
2
. From this we deduce that the matrix D2B

�1D1 is a diagonal matrix
with positive, non-zero entries only in the �rst and last NxNy positions.

We now use the previous two facts to prove the following theorem.
Theorem 3.1. The matrix C �D2B

�1D1 is symmetric and positive de�nite.
Proof. Symmetry follows from the symmetry of C and D2B

�1D1. Matrices
C�D2B

�1D1 and C only di�er in the �rst and lastNxNy components on the diagonal.
Since the non-zeros in the second matrix are strictly positive, the �rst and last NxNy

diagonal entries of C�D2B
�1D1 are smaller than the corresponding diagonal entries

of C. Therefore, it is suÆcient to consider the Gershgorin disks corresponding to these
rows. Consider the �rst NxNy rows (the argument for the last NxNy is analogous).
From Gershgorin's theorem we observe�

�Di;j;1:5Di;j;1

0:5h+Di;j;1
+Di;j;1:5

�
+ h2�ai;j;1 � �;

where � is an eigenvalue. Since the �rst term on the left in parentheses is posi-
tive, together with lower bounds from all other Gershgorin disks it follows that the
eigenvalues are greater than zero.

4. Summary of System Properties. In the previous section, we observed that
solving the forward problem eÆciently boils down to solving the systems in Step (2a)
eÆciently. The remainder of this paper is therefore devoted to this cause.

In this section, we discuss those system properties that can be exploited to develop
eÆcient recycling Krylov methods for solving the systems in the previous section. We
repeat the form of these systems here for convenience:

(C �D2B
�1D1| {z }

A(j)

+i
I)x(j)s;! = bs: (4.1)

The superscript is used to denote dependence on the parameter vector, pj . To simplify

notation, we use x
(j)
s for the case when ! = 0.

The Parametric Model: As in [17], we use a piecewise continuous model for
both the di�usion and absorption. In particular, we have

D = �1�1 + (1� �1)B1�1 and �a = �2�2 + (1� �2)B2�2:

The vectors �i are discrete characteristic functions - they have a `1' in a position
corresponding to an anomaly and a 0 otherwise. The matrices B1; B2 are known and
contain \basis" vectors while �1 and �2 are the unknown expansion coeÆcients. For
example, an entry in D has a value of �1 if that entry corresponds to a voxel inside
the di�usion anomaly, otherwise, its value is determined by the corresponding com-
ponent of the vector B1�1. In a piecewise constant model, for instance, B1 and B2

would be vectors of all ones and the �i would give the background value of di�usion
and absorption, respectively. A more realistic model, however, accounts for the fact
that tissue is not homogeneous, and in this case, B1, B2 would correspond to vector-
ized \images" of a lumpy background. The vectors �i are unknown, but we assume
that anomalies are modeled by ellipsoids. In this case, the entries in the vectors are
determined by the parameters specifying center location, rotation, and axis lengths.
Therefore, the list of unknown parameters include �i; �i; i = 1; 2, and up to 6 length-3
vectors specifying the locations of the 2 ellipsoids. For more details, see [17].
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Di�usion, Absorption and Matrix Updates: Typical values for �a in our
application range from :005 to :3 cm�1 whereas typical values for D range from 1=6 to
1=45 cm�1. It is usually the case that we have or can obtain good approximations to
the average background values of di�usion and absorption and use these for starting
guesses for the GN iteration [17]. As the GN iterations progress, we begin to localize
and characterize anomalous regions of absorption and di�usion whereas the back-
ground values become well-resolved early on. This is due to the fact that the anoma-
lies are so small relative to the size of the background that the data contains primarily
information about the average background values. This means that during a single
line search or when moving from one GN step to the next, A(j+1) = A(j) +E1 +E2,
where kE1k is small (corresponding to a slight change in the background parameters)
and E2 has small relative rank (corresponding to a change in the shape of the object
and values inside the object).

Eigenvalues and Invariant Subspaces: We are interested most in the small-
est eigenvalues of the A(j). It appears that, for our examples, the matrices A(j) have
a number of small eigenvalues occurring in clusters that remain disjunct from one
system to the next, even if the eigenvalues themselves di�er from one matrix to the
next (see Figure 6.2, for example). This suggests that the corresponding invariant
subspaces for subsequent matrices remain close. We discuss this further in the next
subsection.

Similarity among Right-Hand Sides: Recalling that fs has only one non-

zero coeÆcient in, say, position ms, it follows that b
(j)
s = � (D2)ms;msh

2

Bms;ms
ems

. Since

blocks D1; D2; B and vector fs
(1) do not depend on frequency, b

(j)
s is independent

of frequency. As long as the GN iteration is converging, the values of (D2)k;ms
and

Bms;ms
do not change much in the course of the inversion because these indices refer to

positions near the boundary where the values of absorption and di�usion are already
accurately captured early in the GN process. Therefore, in the remaining discussion,
we consider iterative methods applied to the approximate systems

(A(j) + i
I)x(j)s;! = ems
(4.2)

in order to study convergence.
Similarity among Solutions: From (4.2), it is easy to see that the solutions to

any pair of systems, say systems k and j, during the damped Gauss-Newton iteration
are related by

x(k)s = (A(k))�1A(j)x(j)s :

So, the solutions do not change much as long as the matrices A(j) and A(k) remain
close.

Smooth Solutions: The vector ems
is comprised mostly of high-frequency

Fourier components. It is well known that the eigenvectors corresponding to the
smallest eigenvalues of A(j) are smooth (or low frequency) while the eigenvectors
corresponding to the largest eigenvalues represent high frequency. We can think of
(A(j))�1 as a discretization of an integration operator that when applied to ems

acts

as a blurring operator. For this reason, we expect the solutions x
(j)
s to be smooth:

that is, we expect x
(j)
s to be well represented in terms of the eigenvectors of A(j) that

correspond to the smallest eigenvalues.
Multiple Frequencies: It is well known (see, for example, [19] and the references

therein) that the Krylov vectors that are generated when solving A(j)x
(j)
s = ems
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also span the Krylov subpace generated by the shifted matrix (A(j) + i
I) and ems
.

Therefore, without storing or generating extra Krylov vectors, there exist short term
recurrences for solving the systems of non-zero 
 with little extra work. In our case,
since 
 > 0 is not too large relative to the eigenvalues of A(j), the convergence rate
should also be about the same.

When subspace recycling is used, however, it is not straightforward to produce
solutions to the complex shifted systems. We discuss this further in Section 5.4.

4.1. Invariant Subspaces. In deciding whether or not it is worthwhile to re-
cycle an approximate invariant subspace corresponding to small eigenvalues obtained
from previous runs, we must explore the relationships of the corresponding invariant
subspaces from one matrix to the next. In the previous discussion, we noted that
from experiments it appears that the smallest eigenvalues of the A(j) do not change
much and remain in more or less disjunct clusters. For a small enough perturbation
E = A(k)�A(j), this shows that the corresponding invariant subspaces from these ma-
trices must remain close. Unfortunately, kEk is much too large to assume this without
considering further details. However, recall the observation above that E = E1 +E2,
where E1 corresponds to very small changes in the background parameters, and E2

corresponds to a small rank update describing the shape of the object. From this we
conjecture that most of the changes in the matrix correspond to the high frequency
components and larger eigenvalues. Next, we show under which conditions the in-
variant subspaces corresponding to the smallest eigenvalues remain about the same
even if the corresponding eigenvalues are not very well separated from the remaining
eigenvalues.

To simplify notation, we remove all subscript and superscript notation and deal
speci�cally with a symmetric and positive de�nite matrix A and a corresponding
symmetric perturbation E. Although we used V previously to denote Krylov vectors,
in this discussion, the matrix V is used to denote the eigenvector matrix corresponding
to A.

Let A be a symmetric positive de�nite matrix, and let A have the eigendecompo-
sition,

A = [V1 V2 V3]diag(�1;�2;�3)[V1 V2 V3]
T ; (4.3)

where V = [V1 V2 V3] is an orthogonal matrix, �1 = diag(�
(1)
1 ; : : : ; �

(1)
k1 ), and �2 and

�3 are de�ned analogously. Furthermore,

�
(1)
1 � : : : � �

(1)
k1 < �

(2)
1 � : : : � �

(2)
k2 < �

(3)
1 � : : : � �

(3)
k3 :

Now we consider the changes in the invariant subspace range(V1) and the eigenvalues

�
(1)
i under a symmetric perturbation E of A, where E is not small, but the projection

of E onto the subspace range([V1 V2]) is small, say kE[V1 V2]kF � ", and kEV3kF =

� � kEkF . We also assume that kEkF is small relative to sep(�1;�3) = �
(3)
1 � �

(1)
k1

and that " is small relative to sep(�1;�2) = �
(2)
1 � �

(1)
k1 . However, we do not need

to assume that sep(�1;�2) is large. We now prove that the matrix A + E has an
invariant subspace range(V̂1) such that the canonical angles between range(V1) and
range(V̂1) are small. This result shows that an invariant subspace whose associated
eigenvalues are not well-separated from the remaining eigenvalues is still insensitive
to perturbations that are concentrated in an invariant subspace whose eigenvalues are
suÆciently far removed.
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We de�ne the following notation. For two matrices Y; Z 2 Rn�m , where n � m,
�(range(Y ); range(Z)) denotes the diagonal matrix with the canonical angles between
range(Z) and range(Y ) as coeÆcients, and �1(range(Y ); range(Z)) denotes the largest
canonical angle between range(Z) and range(Y ). We use L(A) to denote the set
of eigenvalues of A, and �max(A) and �min(A) to denote maxL(A) and minL(A)
respectively.

Furthermore, we assume that

Æ � min(�
(2)
1 � "; �

(3)
1 � �)� 2"� (�

(1)
k1 + ")� "; (4.4)

Æ̂ = Æ

�
1� 2"2

Æ2

�
; (4.5)

and as a consequence of (4.4) that Æ > 2".
Theorem 4.1. Let A be SPD and have the eigendecomposition given in (4.3), and

let E, ", �, Æ, and Æ̂ be de�ned as above. Then, there exists a matrix V̂1 conforming
to V1 such that range(V̂1) is a simple invariant subspace of A+E, and

tan �1

�
range(V1); range(V̂1)

�
� "

Æ̂
:

Furthermore, the eigenvalues �̂
(1)
j of A + E corresponding to the invariant subspace

range(V̂1) satisfy

8 �̂(1)j : 9�(1)i such that j�̂(1)j � �
(1)
i j � "+

2"2

Æ
; (4.6)

and in particular,

�max( V̂
T
1 (A+E)V̂1 ) � �

(1)
k1 + "+

2"2

Æ
: (4.7)

Proof. We consider the perturbation E, such that

V T (A+E)V =

0
@�1 + E11 0 0

0 �2 + E22 ET32
0 E32 �3 + E33

1
A+

0
@ 0 ET21 ET31
E21 0 0
E31 0 0

1
A : (4.8)

By the assumptions above we also have




� E21
E31

�




F

� "; (4.9)

kE11kF � ", kE22kF � " and kE33kF � �. From (4.8) we see that

L1 � V T
1 (A+E)V1 = �1 + E11; (4.10)

L23 � [V2 V3]
T (A+E)[V2 V3] =

�
�2 + E22 ET32
E32 �3 + E33

�
: (4.11)

From [31, Corollary IV.3.4] it follows that

�max(�1 + E11) � �
(1)
k1 + kE11k � �

(1)
k1 + "; (4.12)

�min(�2 + E22) � �
(2)
1 � kE22k � �

(2)
1 � "; (4.13)

�min(�3 + E33) � �
(3)
1 � kE33k � �

(3)
1 � �: (4.14)



12 M. Kilmer and E. de Sturler

Now we can apply [31, Corollary IV.3.4] once more to obtain

�min(L23) � min(�
(2)
1 � "; �

(3)
1 � �)� 2": (4.15)

From (4.12){(4.15) we have sep(L1; L23) > Æ. Furthermore, let R � (A + E)V1 �
V1L1 = V2E21+V3E31. Then, from symmetry it follows that V T

1 (A+E)�L1V T
1 = RT ,

and we have kRkF = kRTkF � ". Finally, we have

kRkFkRTkF
sep(L1; L23)2

� "2

Æ2
<

1

4
;

and by [31, Corollary V.2.2] we know there exists a matrix V̂1 conforming to V1 such
that range(V̂1) is a simple invariant subspace of A+E, and

tan �1

�
range(V1); range(V̂1)

�
� k tan�

�
range(V1); range(V̂1)

�
kF � 2

"

Æ
:(4.16)

Since A and A+E are symmetric and we have established the existence of V̂1, we can
obtain an better bound using [31, Theorem V.3.10]. This theorem conforms nicely
to our special case. However, we need to establish the minimal distance between
eigenvalues of L1 and the eigenvalues of L̂23 � V̂ T

23(A + E)V̂23, where range(V̂23) =
range(V̂1)

? and V̂23 has orthonormal columns. From [31, Theorem V.2.1] specialized
to the symmetric case, we know there exists a matrix P , such that kPkF � 2"=Æ and
L( L̂23 ) = L(L23�P [ET21 ET31]). From kP [ET21 ET31]k � 2"2=Æ and [31, Corollary IV.3.4],
we have the following bound

�min(L̂23) � min(�
(2)
1 � "; �

(3)
1 � �)� 2"� 2"2

Æ
= Æ̂: (4.17)

Finally, we obtain from [31, Theorem V.3.10]

tan �1(range(V1); range(V̂1)) � k tan�(range(V1); range(V̂1))kF � "

Æ̂
; (4.18)

which is about a factor 2 better than (4.16). Analogously to (4.17) we have from [31,

Theorem V.3.10] for each eigenvalue �̂
(1)
j of V̂ T

1 (A+E)V̂1 that

9�(1)i such that j�̂(1)j � �
(1)
i j � "+

2"2

Æ
: (4.19)

In particular, this gives

�max( V̂
T
1 (A+E)V̂1 ) � �

(1)
k1 + "+

2"2

Æ
: (4.20)

Our numerical experiments con�rm our conjecture except for a few Gauss-Newton
steps, when the new matrix is quite far from previous ones. In those cases, the projec-
tion of E on the (smooth) invariant subspace corresponding to the smallest eigenvalues
is still small, though not always small enough to guarantee that the individual clusters
of those eigenvalues do not merge. However, more importantly, the kEk is suÆciently
large that we cannot preclude the invariant subspaces corresponding to large eigenval-
ues from perturbing those corresponding to the smallest ones. Note that the problem
is too large to actually check the projection of E on invariant subspaces corresponding
to medium or larger eigenvalues. However, Figures 6.2 and 6.7 include examples with
relatively large canonical angles corresponding to systems at the start of a line search.
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Fig. 5.1. Several steps of the Gauss-Newton with Line Search algorithm.
The black circles denote the end of a line search (and one the start of the overall
procedure); the black stars denote the �rst and intermediate steps from the line
search.

5. Algorithm. Let us outline some aspects related to the optimization algo-
rithm. We combine the GN algorithm with a line search. As we will see in the
numerical results section, the �nal steps in each line search tend to be small. There-
fore, the solutions obtained toward the end of each line search are not too di�erent for
a few GN iterations. However, over many GN steps they tend to di�er more signi�-
cantly. See Figure 5.1. An obvious way to exploit this is by using the solution of the
previous step as a starting guess. However, this will work better or worse depending
on whether the previous step was the �rst step of a line search, to-wards the start or
the end of a line search, and so on. In practice, it is not easy to choose the best among
several previous solutions as the best choice is governed by the progression of the al-
gorithm (it is not necessarily the latest one). However, recycling a small subspace
of previous solutions for the search space relieves this problem. In fact, we can vary
this additional subspace depending on whether we are at the start of a line search or
near the end and how large the line search parameter is. We can also update this
additional search space as we go. In future work, we will explore the use of GCROT-
like techniques to better measure the e�ectiveness of subspaces. Strategies based on
this approach turn out to be very e�ective; we will give more details in this section
where we discuss the application and the optimization algorithm. The idea to use
previous solutions to accelerate convergence of a Krylov method was also proposed in
[13], although in [13] they were only used to provide a better initial guess.

The recycling algorithm that we propose is based on the observations in the
previous section. In particular, we use the proximity of certain invariant subspaces
and tune which old solutions to recycle to the phase of the GN algorithm with line
search. To keep the notation as simple as possible, we begin by reviewing the basic
GCRO algorithm, then we discuss modi�cations that allow us to solve for multiple
right-hand sides and multiple frequencies.

5.1. Recycled-GCRO for DOT. Consider the sequence of systems

A(j)x
(j)
1 = em1 ;

for the source s = 1. We will always recycle, in a matrix U , the most recent solution
that occurred at the end of a line search. We may recycle previous solutions from
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within a particular line search. We do not know whether a line search is complete until
after the corresponding system has been solved. However, before we solve a system,
we can test whether we are \close" to the end of a line search. We assume this is
the case if the relative residual norm of the current system for the solution at the
end of the previous line search is below a certain threshold. This information helps
to keep the smallest possible recycling space. It may not be necessary to keep a large
approximate invariant subspace to reduce the initial residual over that part of the
spectrum when we keep solutions in the recycle space that have the e�ect of reducing
the residual over the same part of spectrum anyway (c.f. discussion in Section 5.2).
The recycled-GCRO method proceeds as follows.

Algorithm 1

1. Solve A(1)x
(1)
1 = em1 with MINRES. Set x(curr) = x

(1)
1 ; x(beg) = [].

2. Form approximate eigenvectors for A(1) from information generated from the
MINRES run. Save these eigenvectors in the matrix W .

3. For j = 2; : : :
(a) If (kA(j)x(curr) � em1k=kem1k � tol) and not at beginning of LS

U = [Wind; x
(curr)],

Else
U = [W;x(curr); x(beg)].

(b) A(j)U = C, [C;R] = qr(C; 0), set1 U = UR�1.
(c) Compute x0 = U(CT em1). (Ensures x0 is optimal in the sense that the

residual is minimized over all solutions in Range(U).)
(d) Set P = (I � CCT ): Compute r0 = Pb.
(e) Solve PA(j)Pv = r0 by MINRES.
(f) update x; r

(g) If (at end of LS), x(curr) = x
(j)
1

(h) If (at beginning of LS), x(beg) = x
(j)
1

Here, Wind indicates that we may wish to keep fewer approximate eigenvectors
according to the discussion preceding the algorithm (see discussion in Section 5.2 and
numerical example 1) . The logic for tailoring the choice of the columns of U to the
GN process comes from the discussion in the previous section. First, based on our
observations for this application, we expect the approximate invariant subspace cor-
responding to the smallest eigenvalues of the �rst matrix to be close to an invariant
subspace of other matrices in the GN sequence corresponding to the smallest eigen-
values. If the GN iteration is converging, we expect that at the end of two consecutive
line searches, the corresponding matrices will be related since the purpose of the line
search is to produce the parameter update vector that allows the GN process to con-
verge. Likewise, if we are at the beginning of a line search sequence, matrices from
that sequence should be related, too. An analysis of the e�ect of these choices on the
convergence of the MINRES steps is provided in the next subsection.

5.2. Algorithm Analysis. Given that U always contains the matrix W which
we assume is a good approximation for the invariant subspace corresponding to the
smallest eigenvalues for all the systems, we expect the systems in (3e) to converge as
if the smallest eigenvalues have been de
ated from A(j). In fact, Theorem 4.1 from

1From an implementation standpoint, we would not perform the matrix-matrix product UR�1.
Rather, we would keep R around, and when we needed to perform UR�1 times a vector, as in the
next step, we would do backward substitution with R followed by multiplication with U . However,
this explicit notation simpli�es the introduction of the algorithm.



Recycling Methods for DOT 15

[22] (which closely follows Theorem 2.1 in [30]) says that this should be the case.

Next, we consider the e�ect of keeping a previous solution x(curr), in U . Assume
the number of columns in the current U matrix is J . For ease of discussion, let us
permute the columns of U so that the �rst column of U is x(curr) (notice the ordering
is unimportant, since it does not change the orthogonal projector).

At the end of (3b), we observe that

1

�1
A(j)x(curr) = c1;

where c1 is the �rst column of C. However, x(curr) = (A(k))�1ems
for some previous

index k. Therefore,

1

�1
A(j)(A(k))�1ems

= c1:

We have A(j)(A(k))�1 = I + ~E for error matrix ~E = �E1(A
(k))�1 � E2(A

(k))�1,
with E1, E2 as the small norm and relatively small rank terms de�ned previously.
Therefore,

~v := (I � c1c
T
1 )ems

= ems
� c1c

T
1 (�1c1 � ~Eems

)

= ems
� �1c1 + c1(c

T
1
~Eems

)

Then the initial residual is

r0 = (I � CJ�1C
T
J�1)~v

where CJ�1 represents all the remaining columns in C. Thus we have

r0 = (I � CJ�1C
T
J�1)(ems

� �1c1) + (cT1
~Eems

)c1:

But it is readily shown that

ems
� �1c1 = (A(k) �A(j))x(curr):

The solution x(curr) is smooth and as seen earlier, A(k)�A(j) is small over the invariant
subspace of A(j) corresponding to the smallest eigenvalues. The vector ems

� �1c1
should already be small in norm. Since CJ�1 contains approximate eigenvectors
corresponding to the smallest (and smoothest) eigenvectors, then clearly r0 will be
even smaller in norm, particularly if (ems

� �1c1) lies predominately in the direction
of these eigenvectors anyway. Furthermore, the term cT1

~Eems
= �cT1 E1x

(curr) �
cT1 E2x

(curr). The �rst term in this expression should be small in norm. Since E2

lies predominantly in the direction corresponding to larger magnitude eigenvalues but
x(curr) is smooth, the second term must also be small. In summary, not only do
we observe that the norm of r0 is small, but the smoothness properties ensure it is
smallest in directions corresponding to the larger magnitude eigenvalues and that it
has been reduced in directions corresponding to the smallest magnitude eigenvalues.
Hence, corrections to the residual occur primarily over the remaining subspace, which
accounts the convergence behavior observed in our numerical examples.
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5.3. Multiple Right-Hand Sides. The next consideration is the solution for
multiple right-hand sides. We need to solve

A(j)x(j)s = ems
; s > 1:

First, we replace Step (2) to accommodate the right-hand sides. Once the �rst system
for the �rst source has been solved, we have approximate eigenvector information.
We can use this eigenvector information when we solve for the remaining right-hand
sides, and we can also collect additional eigenvector information as we solve those
eigensystems. Thus, the new step becomes

� Form approximate eigenvectors for A(1) from information generated from the
MINRES run. Save these eigenvectors in the matrix W .

� For s = 2; : : : ; Ns

{ Set U =W .
{ Perform steps 3b-3e of Algorithm 1

{ Update x
(1)
s with this information

{ Add columns to W if desired.
Then, to solve for x

(j)
s for the remaining sources, we insert a loop over the re-

maining sources after Step (3). In this way, all the right-hand sides use a di�erent
last column (or two) in the U matrix, depending on the source. However, for every
right-hand side, the �rst several columns of the U matrix are comprised of the (�nal)
approximate eigenvector matrixW . Therefore, Step (3b) is cheaper for sources s � 2,
since all but the last column (or two) of C were determined during the run on the
�rst source.

5.4. Multiple shifts 
. Finally, we discuss the solution for multiple frequencies
using a single Krylov subspace. During Step 3e, we have
v1 = (I � CC)T ems

=k(I � CCT )ems
k and the matrix recurrence (cf. (2.1))

AVm = CBm + Vm+1Tm; (5.1)

where Bm = CTAVm and the leading m � m submatrix of Tm is symmetric and
positive de�nite. From this recurrence, we obtain

(A(j) + i
I)[Vm jU ] = [Vm+1(Tm + i
Im) + CBm jC + i
U ] =

= [Vm+1 jC jU ]
2
4 Tm + i
Im 0

Bm I
0 i
I

3
5

= [Vm+1 jC j Û ]
2
4 I 0 V T

m+1Û
0 I CTU
0 0 N

3
5
2
4 Tm + i
Im 0

Bm I
0 i
I

3
5 ;

where the last step involves the reduced QR decomposition of [Vm+1 jC jU ], so that
[Vm+1;s jC j Û ] is an orthogonal matrix. Notice that [Vm+1 jC] is already an orthog-
onal matrix.

If we restrict our approximate solutions to be in Range(U) � Range(Vm), then
we need to solve a least squares problem2

4 I 0 V T
m+1U

0 I CTU
0 0 N

3
5
2
4 Tm + 
Im 0

Bm I
0 
I

3
5� y

z

�
�
2
4 �e1

CT ems

0

3
5
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for every choice of 
 and put x
(j)
s;! = Vmy + Uz. This is equivalent to solving2

4 Tm + i
Im i
V T
m+1U

Bm I + i
CTU
0 i
N

3
5� y

z

�
�
2
4 �e1

CT ems

0

3
5 : (5.2)

This equation leads to an algorithm for updating the solutions to systems in which

 6= 0. After Step (3e) in Algorithm 1, we insert the following piece of code:
Algorithm 2a: based on solving (5.2)

For each 
:

� Solve (5.2) for

�
y
z

�
.

� Set x
(j)
s;! = Vmy + Uz.

Care must be taken in solving the least squares problem if range(U) is very close
to an invariant subspace of A(j). In particular, if range(C) does contain eigenvectors
of A(j), then range(U) is an invariant subspace of A(j) and so U = C�, for some �.
In this case, the least squares problems simpli�es considerably as V T

m+1U = 0. Thus,
we need to solve the least squares problem (compare to (2.5))2

4 Tm + i
Im 0
Bm I + i
�
0 i
N

3
5� y

z

�
�
2
4 �e1

CT ems

0

3
5 : (5.3)

Having only to solve (5.3) is the ideal situation because then the problem can
separated into two minimization problems: one for which y is solved, followed by one
for which z is solved. But the solution for y requires Vmy, rather than y explicitly,
and the term Vmy can be obtained from short-term recurrences without keeping the
vectors Vm around using a MINRES-type approach.
Algorithm 2b: based on solving (5.3) For each 
:

� Determine Vmy using short-term recurrences.
� Determine z.
� Set x

(j)
s;! = Vmy + Uz

On the other hand, if the columns of C do not span an invariant subspace of A(j),
then we really should solve (5.2). Unfortunately, there exists no short-term recurrence

for Vmy in this case, so we are forced to save the Vm in order to form x
(j)
s;!. However,

for a �xed source, only one set of vectors Vm needs to be saved from which solutions
at all other frequencies can be computed.

We advocate Algorithm 2b when storage is at a premium and/or when we know
that U is a good approximate invariant subspace, and Algorithm 2a otherwise.

One other element in Algorithm 1 must be changed to accommodate additional


. We must change Step 3a to include one or two new columns, imag(x
(curr)
s;! ) (and

imag(x
(beg)
s;! )), depending on which part of the conditional statement is executed. The

justi�cation is as follows. Let E = A(j)�A(k) and note that we also have E = A
(j)
! �

A
(k)
! . One can show that A(j)(x

(j)
s � x

(k)
s ) = Ex

(k)
s while A

(j)
! (x

(j)
s;! � x

(k)
s;!) = Ex

(k)
s;! .

Assuming the real part of x
(k)
s;! is close to x

(k)
s , the di�erence between these right-hand

sides is primarily due to the imaginary part of x
(k)
s;! . Since we look for solutions to the

complex system in Range(U)� Range(Vm), it makes sense to include imag(x
(k)
s;!) in

U .
We expect either algorithm to perform suÆciently well when 
 = h2!=� is not

too large in an absolute sense. In our application, 
 will typically be less than or
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equal to O(10�4) and we will not be solving the system for very many values of 
.
However, if 
 is very large, neither algorithm will necessarily produce solutions with
a small relative residual norm. This stems from the fact that in solving the projected
problem, we may leave out directions from the Krylov subspace in which the solutions
to the complex systems have large components. Future research includes plans for
avoiding this dilemma.

6. Numerical Results. In this section, we give the results of our proposed
algorithm on two sequences of matrices generated from two di�erent runs of the
parameteric nonlinear inversion scheme outlined previously. In the �rst experiment,
a piecewise constant model for di�usion and absorption was used. In the second, a
piecewise continuous model was used. There were 16 sources and 32 detectors. In
both experiments, the nonlinear inversion scheme was run using only data for the 0
frequency case; however, we apply our algorithm to both the 0 frequency case and
shifted systems at 5 MHz in order to test our algorithm. The region was discretized2

into 31x31x21 voxels of volume h3, with h = :2cm. The sizes of the matrices in both
experiments were 18,259 x 18,259. The sources and detectors were located in a 3cm x
3cm plane over the center of the grid. The starting guesses for the ellipsoids describing
the anomaly were the largest possible ellipsoids �tting in the 3x3x4cm region under
the sources. Starting guesses for the other parameters were then obtained by �xing
the shape parameters and using 1-5 GN steps to �nd the best values for those starting
ellipsoids.

All experiments were conducted in Matlab using IEEE double precision 
oating
point arithmetic.

6.1. Experiment 1. We ran our algorithm on the �rst 40 systems that were gen-
erated by a damped GN run trying to reconstruct piecewise constant absorption and
di�usion images. Systems numbered 2, 5, 7, 10, 13-19 (odd), 22-40 (even) correspond
to the beginning of a line search, systems numbered 4, 6, 9, 12, 14-18 (even), 21-41
(odd) correspond to the end of a line search, and the remaining systems correspond
to the middle of a line search.

First, we test our hypothesis that the invariant subspaces corresponding to the
smallest eigenvalues of these matrices do not change much, whether we compare within
a line search or across line searches. Recall that if the columns of W (j) form an
orthonormal basis for the eigenspace associated with the smallest M eigenvalues for
matrix A(j), and the same holds for W (k) and A(k), then the cosines of the canonical
angles between Range(W (k)) and Range(W (j)) are given by [31, Corollary I.5.4],

cos�[Range(W (j)); Range(W (k))] = �[(W (j))TW (k)];

where �[V ] denotes the singular values of the argument V . The sines of the canon-
ical angles are therefore

p
1� �2i , where the �i denote the cosines of the canonical

angles. In Figure 6.1, we display the sines of the canonical angles between pairs of
subspaces corresponding to the smallest eigenvalues of matrices. We observe that the
invariant subspaces corresponding to the smallest eigenvalues are in fact relatively
close as predicted by Theorem 4.1. The plot for the sines with M = 3 and M = 12
illustrates the relative insensitivity of the eigenspace corresponding to the smallest 3
and smallest 12 eigenvalues, respectively. The indices have no correspondence with

2These experiments represent small test cases designed to test the regularization scheme itself.
Ideal practical implementations of the inversion routine, which are not feasible without fast forward
solvers such as those we present here, will require voxelations giving millions of unknowns.
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Fig. 6.1. Experiment 1. Plots of sin�[Range(W (j)); Range(W (k))] for various (j; k) for sub-
spaces of dimension M = 3 (left) and M = 12 (right).
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Fig. 6.2. Experiment 1. Smallest 12 eigenvalues of A(j), j = 1; 2; 3.

the eigenvectors themselves, nor do the canonical angles re
ect the angles between
corresponding eigenvectors. The values of j and k in the pictures were selected to
illustrate the fact that the relevant invariant subspaces of matrices corresponding to
updates in the GN process remain fairly close to each other (e.g. 1 and 4, 4 and 6, 1
and 14), whereas those from matrices from distinct line searches (e.g. 1 and 3, 1 and
5, 1 and 13) di�er more. Nevertheless, even these do not di�er that much, particularly
if a larger dimensional invariant subspace is used. The smallest 12 eigenvalues of A(j)

for j = 1; 2; 3 are given in Figure 6.2.

We ran Algorithm 1, adjusted as in Section 5.3, for the multiple right-hand side
problem for zero frequency and adjusted for an additional non-zero frequency of !=5
MHz using Algorithms 2a and 2b. We saved 2 harmonic Ritz vectors from each of the
�rst 6 right-hand sides in the initial phase of Algorithm 1 in order to try to capture
an invariant subspace of A(1) of dimension 12 corresponding to small eigenvalues. We
used a threshold value of 10�3, derived by trial-and-error, to distinguish between the
beginning of a line search step and steps near the end. The left plot in Figure 6.3
shows the magnitudes of the spectral coeÆcients of the initial residuals for systems 2
through 5 which correspond to the 50 smallest eigenvalues, while the right plot gives
the magnitudes corresponding to the 50 largest eigenvalues. Systems 2, 3 and 4 are
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Fig. 6.3. Experiment 1. Left: Plots of (W (j))T r0 for j = 2; 3; 4; 5 for source 1 where W (j)

corresponds to the eigenvector matrix associated with the 50 smallest eigenvalues of A(j). Right:
Same, except for 50 largest eigenvalues of A(j).

all from the same line search, and we observe that the spectral components decrease
by roughly one order of magnitude with each system. System 5 corresponds to the
beginning of a new line search whose matrix and solution are not as close to those
from the �rst line search. We observe a corresponding increase in the magnitudes of
the spectral coeÆcients over the small eigenvalues whereas a comparison of the �gures
shows that the initial residual is typically smaller over the subspace corresponding to
the largest eigenvalues. This behavior is consistent both with the analysis of the initial
residual in Section 5.2 and with the observed convergence behavior for system 5 in
the sense that the solver must work harder to reduce the residual signi�cantly over
these components.

Figure 6.4 gives the total number of matrix-vector products to solve each sys-
tem using our recycling algorithm. This number includes the matrix-vector products
required to compute the columns of C. The residuals for all the real systems were
required to have a relative norm of 10�6. Note the savings in matrix-vector products
for the right-hand sides other than the �rst of a single system, because most of the
columns of C are computed only once for each s. Moreover, the projection has the
desired e�ect of reducing the total number of iterations needed on the projected sys-
tem. We think it is possible to design further tuning strategies to reduce the peaks in
the curve for source 1 while maintaining the reduction in matrix-vector products for
the other systems; this is a subject for future research.

For comparison purposes, we note that if we used MINRES with a zero starting
guess for every system and right-hand side, the number of matrix-vector products
would be roughly constant at about 81 iterations for each system. Even MINRES
with the solution at the end of the most recent line search as a starting guess could
not achieve the reduction in the number of iterations we achieve with our algorithm,
as demonstrated in Figure 6.4. Additionally, the level-3 BLAS matrix-matrix prod-
uct (A(j)U) performed prior to running MINRES on the projected system is faster
than the equivalent number of matrix-vector products performed inside (unprojected)
MINRES.

The relative residual norms for the �rst 20 systems, for source 1, are given in
Figure 6.5. Note that the convergence rate becomes higher and the initial relative
residual norm becomes smaller as we move through one sequence of systems in a line



Recycling Methods for DOT 21

5 10 15 20 25 30 35 40
10

20

30

40

50

60

70

80

90

system number j

m
at

rix
−v

ec
to

r p
ro

du
ct

s

source 1
source 4
MINRES, s=1
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Fig. 6.5. Experiment 1. Relative residual norms are displayed for the �rst 20 systems, source 1.

search.
The plot in Figure 6.6 illustrates the relative residual norms that are achieved

when solving the complex system with ! = 5MHz when Algorithm 2a and 2b are
used to update the complex solution vectors. In neither case do we exactly attain
a relative residual norm of 10�6, the stopping criterion for the corresponding real
system. However, for our application, we feel this is suÆcient. In future work, we
consider alternatives for the shifted frequency case. Since previous solutions occur in
the U matrix, this accounts for the slight upward creep of the graphs toward the end
of the sequence of systems.

6.2. Experiment 2. In this experiment, the background di�usion and absorp-
tion were generated to have a \lumpy" variation [17], so the matrices that were gener-
ated correspond to piecewise continuous, rather than piecewise constant, absorption
and di�usion. The total number of GN steps was 24 and the total number of system
matrices was 51. For the �rst 40 systems the indices corresponding to the beginning
of a line search are 2,5,8,10,13-39 (odd) while indices corresponding to the end of a



22 M. Kilmer and E. de Sturler

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−5

system number j

re
la

tiv
e 

re
si

du
al

 n
or

m

source 1
source 4

5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−5

system number j

re
la

tiv
e 

re
si

du
al

 n
or

m

source 1
source 4

Fig. 6.6. Experiment 1. Left: Relative residual norm per system solve, systems 1:40, sources
1 and 4, for !=5 MHz, results computed using Algorithm 2a. Right: Relative residual norm per
system solve, systems 1:40, sources 1 and 4, for != 5 MHz computed using Algorithm 2b.

line search are 4,7,9,12,14-40 (even).
The sines of the canonical angles between di�erent pairs of small-eigenvalue sub-

spaces and for di�erent subspace dimensions are given in Figures 6.7. In Figure 6.8
the smallest 12 eigenvalues are displayed. Consistent with Theorem 4.1 and our con-
jecture that the changes in the matrices are concentrated in the invariant subspaces
corresponding to higher frequencies (larger eigenvalues), the smallest eigenvalues re-
main in disjunct clusters.

Figures 6.7 and 6.8 seem to indicate that the smallest 8 or so eigenvalues cor-
respond to an invariant subspace that remains well separated from its orthogonal
complement. Therefore, in the initialization phase of Algorithm 1, we added two vec-
tors to W corresponding to the smallest harmonic Ritz values of ~Tm for each of the
�rst 4 sources. In Figure 6.9, we see the e�ect of keeping these 8 columns plus the
other vectors proposed in Section 5.3. In this experiment,Wind =W , and a threshold
value was used to distinguish system positioning within the line search. Just as for
the �rst experiment, note the savings in matrix-vector products for the right-hand
sides after the �rst for a single system. Again, we compare our results to MINRES
with x(curr) from Algorithm 1 as the starting guess.

Relative residual norms for Algorithm 1 for the �rst 20 systems for source 1 are
given in Figure 6.10. We observe an increased rate of convergence and smaller initial
residuals in the course of a line search.

Finally, the relative residual norms for the complex systems at ! = 5MHz are
given in Figure 6.11 for Algorithm 2a and 2b. In general, the behavior is more uniform
for these systems as opposed to those in the �rst experiment due to the fact that the
invariant subspaces corresponding to the small eigenvalues among the matrices are
more closely related.

7. Conclusions and Future Work. We have discussed various strategies for
Krylov subspace recycling to improve the convergence of linear solvers for a sequence
of slowly changing linear systems arising in computations for optical tomography.
We have combined strategies based on recycling approximate invariant subspaces and
strategies based on recycling subspaces from previous solutions. Furthermore, our
algorithms are based on a careful analysis which strategy is most useful at each stage
of the optimization algorithm. This analysis also takes the underlying application,
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Fig. 6.7. Experiment 2. Left: Plots of sin�[Range(W (j)); Range(W (k))] for various (j; k)
assuming a subspace dimension of 3. Right: Assuming a subspace dimension of 8.
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Fig. 6.8. Experiment 2. Plot of smallest 12 eigenvalues for A(j), j = 1; 2; 3. Note that the
smallest magnitude eigenvalues remain in clusters and do not cross clusters.
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Fig. 6.9. Experiment 2. Number of matrix-vector products per system solve for systems 1:40
and sources 1 and 4. The number of matrix-vector products for source 4 is representative of all
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at the end of the most recent line search. Without subspace recycling, these numbers for source 1
are representative for all sources.
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Fig. 6.10. Experiment 2. Relative residual norms for systems 1 to 20, source 1.
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Fig. 6.11. Experiment 2. Left: Relative residual norms for systems 1 to 40, sources 1 and 4,
!=5 MHz using Algorithm 2a. Right: Relative residual norms for systems 1 to 40, sources 1 and
4, !=5 MHz using Algorithm 2b.

di�use optical tomography, and matrix symmetry into account. Furthermore, we
have adapted the GCRO algorithm to combine subspace recycling with solving for
multiple shifted systems using a single Krylov subspace. Our numerical results, based
on two model problems for di�use optical tomography, show that our strategies are
quite e�ective. Although we have focused on a particular application and optimization
algorithm, we feel that this approach to tuning the linear solver is applicable generally
to problems where many linear systems must be solved.

Important future work in this area is to study how characteristics of the lin-
ear systems arising in di�use optical tomography, such as invariant subspaces and
eigenvalues, change for small changes in model parameters. This may lead to further
improvements for linear solvers and also improved line search strategies for the non-
linear solver. This issue is, of course, equally important for other applications where
we must solve a large sequence of slowly changing problems, such as crack propaga-
tion [22]. Future work will combine modeling aspects from applications with matrix
theory.
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