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Abstract— The development of wireless communication
in recent years has posed new challenges in system design
and analysis of wireless networks, among which energy
efficiency and network capacity are perhaps the most
important issues. As such, topology control algorithms
have been proposed to maintain network connectivity while
reducing energy consumption and improving network.
However, by reducing the number of links in the network,
topology control algorithms actually decrease the degree of
routing redundancy, and hence the topology thus derived
is more susceptible to node failures/departures. In this
paper, we consider k-vertex connectivity of a wireless
network. We first present a centralized greedy algorithm,
called Fault-tolerant Global Spanning Subgraph(FGSSk),
which preservesk-vertex connectivity. FGSSk is min-max
optimal, i.e., FGSSk minimizes the maximum transmission
power used in the network, among all algorithms that
preserve the k-vertex connectivity. Based on FGSSk, we
then propose a localized algorithm, calledFault-tolerant
Local Spanning Subgraph(FLSSk). We formally prove that
FLSSk preservesk-vertex connectivity while maintaining
bi-directionality of the network. We also prove FLSSk is
min-max optimal among all strictly localized algorithms.
Finally, we relax several widely used assumptions for to-
pology control, in FGSSk and FLSSk so as to enhance their
practicality. Simulation results show that FLSSk is more
power-efficient than other existing distributed/localized
topology control algorithms.

Index Terms— Topology control, fault tolerance, k-
vertex connectivity.

I. INTRODUCTION

The development of wireless communication in recent
years has posed new challenges in system design and
analysis of wireless networks, among which energy
efficiency and network capacity are perhaps the most
important issues. As such, topology control algorithms
have been proposed to maintain network connectivity
while reducing energy consumption and improving net-
work capacity [1]–[9]. Instead of transmitting with the
maximal power, nodes in a wireless multi-hop network

collaboratively determine their transmission power and
derive the network topology by forming proper neighbor
relation under a specific topology control algorithm. By
enabling wireless nodes to use adequate transmission
power, topology control not only saves energy and pro-
longs network lifetime, but also improves spatial reuse
(and hence the network capacity) and mitigate the MAC-
level medium contention.

On the other hand, by reducing the number of links
in the network, topology control algorithms actually
decrease the degree of routing redundancy. As a result,
the topology thus derived is more susceptible to node
failures/departures. This problem can be mitigated if an
adequate level of routing redundancy can be properly
figured into topology control. In particular, ak-vertex
connected network isk − 1 fault-tolerant, i.e., it can
survive the failure of at mostk − 1 nodes.

In this paper, we first present a centralized greedy
algorithm, calledFault-tolerant Global Spanning Sub-
graph (FGSSk), that preservesk-vertex connectivity
and is min-max optimal (as will be elaborated on, the
property of min-max optimality is critical to extend the
network lifetime). Based on this algorithm, we then
propose a fully localized algorithm, calledFault-tolerant
Local Spanning Subgraph(FLSSk), for topology control
in wireless networks. By fully localized we mean each
node operates on the information locally collected. This
feature enables FLSSk to adapt to topology changes
more easily. It can be proved that FLSSk preservesk-
vertex connectivity and maintains bi-directionality for
all the links in the topology, while reducing the power
consumption and improving the network capacity. We
also prove that FLSSk is min-max optimal among all
strictly localized algorithms.

After the theoretical base is formally laid and the
algorithms devised, we also examine several widely
used assumptions in topology control, e.g., use of a
common maximal transmission power among all the
nodes, obstacle-free communication channel, capability
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of obtaining position information, and seek solutions to
relax these assumptions, thus improving the practicality
of FGSSk and FLSSk. Finally we have shown via
simulation that as compared with the topologies derived
under other distributed/localized fault-tolerance centric
topology control algorithms, the topology derived under
FLSSk has smaller average node degree, smaller average
link length, and smaller average transmission power. The
former property reduces MAC-level contention, while
the latter two properties implies that only small trans-
mission power is required.

The rest of the paper is organized as follows. We first
define the network model in Section II, and summarize
related work in Section III. We then elaborate on FGSSk

and FLSSk, and their properties in Section IV. Following
that, we discuss in Section V how to relax several
assumptions made in topology control so as to promote
the practicality of FGSSk and FLSSk. Finally, we present
a simulation study of FLSSk in Section VI, and conclude
the paper in Section VII.

II. N ETWORK MODEL

In this section, we define the network model1. Con-
sider a homogeneous wireless network where each node
has the same maximal transmission power, which corre-
sponds to the common transmission rangermax. Let the
network topology be represented by an undirected simple
graph G = (V (G), E(G)) in the 2-D plane, where
V (G) = {v1, v2, . . . , vn} is the set of nodes (vertices)
in the network andE(G) is the set of links (edges).
A unique id (such as an IP/MAC address) is assigned to
each node. Here we letid(vi) = i for simplicity. For ease
of presentation, we assume for now thatG is geometric,
i.e., E(G) = {(u, v) : d(u, v) ≤ rmax, u, v ∈ V }, and
d(u, v) is the Euclidean distance betweenu andv. Note,
however, that our algorithms can function correctly for
general graphs.

We assume that the wireless channel is symmetric and
obstacle-free, and each node has the capability to gather
its own location information via, for example, several
lightweight localization techniques for wireless networks
(the interested reader is referred to, for example, [10] for
a summary).

We will further discuss how to relax the above as-
sumptions in Section V.

Definition 1 (Visible Neighborhood).The visible neigh-
borhoodNV

u is the set of nodes that nodeu can reach by
using the maximum transmission power, i.e.,NV

u = {v ∈
1Although the model used in this paper is similar to those used in

[8] and [9], there exist several subtle differences.

V (G) : d(u, v) ≤ rmax}. For each nodeu ∈ V (G), let
GV

u = (V (GV
u ), E(GV

u )) be the induced subgraph ofG
such thatV (GV

u ) = NV
u .

Definition 2 (Weight Function). Given two edges
(u1, v1), (u2, v2) ∈ E(G) and the Euclidean distance
functiond(·, ·), the weight functionw : E 7→ R satisfies:

w(u1, v1) > w(u2, v2)

⇔ d(u1, v1) > d(u2, v2)

or (d(u1, v1) = d(u2, v2)

&& max{id(u1), id(v1)} > max{id(u2), id(v2)})
or (d(u1, v1) = d(u2, v2)

&& max{id(u1), id(v1)} = max{id(u2), id(v2)}
&& min{id(u1), id(v1)} > min{id(u2), id(v2)}).

The weight functionw ensures that two edges with
different end-nodes have different weights, which can
guarantee the unique outcome of the greedy algorithms
that will be proposed in Section IV. Also note that
w(u, v) = w(v, u).

Definition 3 (Neighbor Set). Nodev is a neighborof
nodeu’s under an algorithmALG (denotedu

ALG−−−→ v),
if and only if there exists an edge(u, v) in the topology
generated by the algorithm. In particular, we useu → v

to denote the neighbor relation inG. u
ALG←−→v if and only

if u
ALG−−−→ v and v

ALG−−−→ u. Theneighbor setof nodeu

is NALG(u) = {v ∈ V (G) : u
ALG−−−→ v}.

Definition 4 (Topology). The topology generated by
an algorithm ALG is a directed graphGALG =
(E(GALG), V (GALG)), where V (GALG) = V (G),
E(GALG) = {(u, v) : u

ALG−−−→ v, u, v ∈ V (GALG)}.
Definition 5 (Radius). The radius,Ru, of nodeu is
defined as the distance between nodeu and its farthest
neighbor (in terms of Euclidean distance), i.e,Ru =
maxv∈NALG(u){w(u, v)}.
Definition 6 (Connectivity). For any topology generated
by an algorithm ALG, nodeu is said to beconnected to
node v (denotedu ⇒ v) if there exists a path(p0 =
u, p1, . . . , pm−1, pm = v) such thatpi

ALG−−−→ pi+1, i =
0, 1, . . . ,m− 1, wherepk ∈ V (GALG), k = 0, 1, . . . ,m.
It follows that u ⇒ v if u ⇒ p and p ⇒ v for some
p ∈ V (GALG).

Definition 7 (Bi-Directionality). A topology generated
by an algorithm ALG isbi-directional, if for any two
nodesu, v ∈ V (GALG), u ∈ NALG(v) implies v ∈
NALG(u).
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Definition 8 (Bi-Directional Connectivity). For any
topology generated by an algorithm ALG, nodeu is said
to bebi-directionally connected tonodev (denotedu ⇔
v) if there exists a path(p0 = u, p1, . . . , pm−1, pm = v)
such thatpi

ALG←−→ pi+1, i = 0, 1, . . . ,m − 1, wherepk ∈
V (GALG), k = 0, 1, . . . ,m. It follows that u ⇔ v if
u ⇔ p and p ⇔ v for somep ∈ V (GALG).

Deriving network topology consisting of only bi-
directional links facilitates link level acknowledgment,
which is a critical operation for packet transmissions
and retransmissions over unreliable wireless media. Bi-
directionality is also an important property for floor ac-
quisition mechanisms such as the RTS/CTS mechanism
in IEEE 802.11.

Definition 9 (Addition and Removal). The Addition
operation is to add an extra edge(v, u) into GALG if
(u, v) ∈ E(GALG) and (v, u) /∈ E(GALG). The Re-
movaloperation is to delete any edge(u, v) ∈ E(GALG)
if (v, u) /∈ E(GALG).

Both the Addition and Removaloperations attempt
to create a bi-directional topology by removing uni-
directional edges or converting uni-directional edges into
bi-directional. The resulting topology afterAddition or
Removalis alway bi-directional, since the transmission
rangermax for each node is the same. If the transmission
range for each node is not the same, the result ofRe-
moval is still bi-directional, while the result ofAddition
may not be bi-directional (see [9] for more discussions).

Definition 10 (k-vertex connectivity). A graphG is k-
vertex connected if for any two verticesv1, v2 ∈ V (G),
there arek pairwise-internally-vertex-disjoint paths from
v1 to v2. Or equivalently, a graph isk-vertex connected
if the removal of anyk − 1 nodes (and all the related
links) does not partition the network.

k-edge connectivity can be defined accordingly. In
wireless networks, we are more concerned withk-vertex
connectivity since ak-vertex connected network can
survive failure ofk−1 nodes. In this paper, we will con-
centrate onk-vertex connectivity and usek-connectivity
to refer tok-vertex connectivity for simplicity.

III. R ELATED WORK

Since the problem of finding a minimum-costk-
connected subgraph is proved to be NP-hard, many
approximation algorithms have been proposed (see, for
example, [11] and [12] for a summary). Although most
topology control algorithms [1]–[9] (see [9] for a sum-
mary) do not take fault tolerance into consideration,
there have been several research efforts recently on

studying the properties ofk-connected topologies [13],
[14], devising algorithms to construct such topologies
[11], [15], or both [16].

Work that studies the properties of fault-tolerant
topologies:: Penrose [13] studiedk-connectivity in a
geometric random graph of n nodes derived by adding
an edge between each pair of nodes at mostr apart. He
proved that the minimum value ofr at which the graph is
k-connected is equal to the minimum value ofr at which
the graph has the minimum degree ofk, with probability
1 as n goes to infinity. The significance of this result
is that it links k-connectivity, a global property of the
graph, to node degree, a local parameter. However, the
minimum value ofr is not given in the paper. Bettstetter
[14] also investigated the relation between the minimum
node degree andk-connectivity for geometric random
graphs. The analytical expression of the required range
r0 for the almost surelyk-connected network is derived
and verified by simulation.

Li et al. [16] extended Penrose’s work and gave the
lower bound and the upper bound on the minimum
value of r at which the graph isk-connected with
high probability. The analysis shows that, for a unit-
area square region, the probability that the network of
n nodes isk-connected is at leasteeα

, if the common
transmission radiusrn satisfiesπr2

n ≥ ln n + (2k −
3) ln ln n−2 ln(k−1)!+2α, for k > 0 and n sufficiently
large. Under the homogeneous network assumption (i.e.,
the maximal transmission power of each node is the
same), they also proposed a localized topology control
algorithm that preservesk-connectivity. The proposed
structure, Yaop,k, is based on the Yao structure, and is
constructed by having every nodeu choosek closest
neighbors in each of thep ≥ 6 equal cones around
u. Yaop,k is proved to preservek-connectivity and is a
length spanner.

Work that devises algorithms to construct fault-
tolerant topologies::Bahramgiriet al. [15] augmented
the CBTC algorithm [3] to provide fault tolerance.
Specifically, let the directed subgraph ofG, D(α), be the
output ofCBTC(α) algorithm. Note that inCBTC(α),
every vertexu increases its transmission power until
either the maximum angle between its two consecutive
neighbors is at mostα or its maximal power is reached.
Let G(α) be the result of applyingRemovalon D(α). It
is proved in [15] thatG(2π

3k ) preservesk-connectivity of
G. As the work is extended from the CBTC algorithm, it
shares the same assumption of a homogeneous network
where the maximal transmission power of each node is
the same. However, the assumption of homogeneity may
not always hold in practice [9].

Hajiaghayiet al. [11] presented three approximation
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(a) The original topology is 2-
connected.
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(b) The minimum spanning tree.
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v5

(c) The topology by distributed2-
UPVCS is not2-connected since the
removal ofv3 will result in a discon-
nected graph.

Fig. 1. An example that shows that the distributed2-UPVCS algorithm [11] cannot preserve2-connectivity. When nodev3 executes the
distributed2-UPVCS algorithm, it first finds all the neighbors on the minimum spanning tree,v2 andv4. Then it attempts to add an edge
betweenv2 andv4 but fails due to their limited transmission power.

algorithms to find the minimum powerk-connected
subgraph. Two global algorithms are based on existing
approaches. The first gives anO(kα)-approximation,
where α is the best approximation factor for thek-
UPVCS problem defined in the paper. The other im-
proves the approximation factor toO(k) for general
graphs. The third is a distributed algorithm that gives
an kO(c)-approximation, wherec is the exponent in the
propagation model. It first computes the minimum span-
ning tree (MST) of the input graph by using a distributed
algorithm, then it adds a path amongst the neighbors
of each node in the returned tree. Since this distributed
algorithm is based on the distributed MST algorithm,
it is not localized, i.e., it relies on information that is
multiple hops away to construct the MST. This implies
more maintenance overhead and delay when the topology
has to be changed in response to node mobility or
failure. Moreover, a closer investigation of the distributed
algorithm reveals that the neighbors of a node on the
minimum spanning tree may not be able to communicate
with each other due to the limited transmission power.
As a result, the “arbitrary path connecting neighbors” in
the algorithm may not exist in a network of low density.
A counter-example in Fig. 1 shows that the 2-UPVCS
algorithm does not always preserve 2-connectivity.

Ramanathan and Rosales-Hain [2] presented two
centralized algorithms, CONNECT and BICONN-
AUGMENT, to minimize the maximal power used per
node while maintaining the (bi)connectivity of the net-
work. Both are simple greedy algorithms that iteratively
merge different components until only one remains.
Although FGSSk and FLSSk bear some similarity to

CONNECT and BICONN-AUGMENTin the way the
topology is derived (i.e., different components are iter-
atively merged until one remains), they differ from the
latter in that (1) FGSSk is more general, i.e., FGSSk

preserves thek-connectivity, whileBICONN-AUGMENT
only preserves2-connectivity; (2) the correctness of
BICONN-AUGMENTis only mentioned but not formally
proved in [2], while a formal treatment of the correctness
of FGSSk is given in this paper; (3)CONNECTand
BICONN-AUGMENTare both centralized algorithms
that require collection and distribution of global informa-
tion, while FLSSk is fully decentralized and localized;
and (4) CONNECT and BICONN-AUGMENToperate
under the assumption of homogeneous networks, while
as will be formally proved in Section V, FGSSk and
FLSSk can be applied to heterogeneous networks where
the maximal transmission power of each node may be
different.

IV. FAULT-TOLERANT SPANNING SUBGRAPH

In this section, we first describe a centralized greedy
algorithm, Fault-tolerant Global Spanning Subgraph
(FGSSk), for fault-tolerant topology control. Then we
present its localized version,Fault-tolerant Local Span-
ning Subgraph(FLSSk).

A. FGSSk: Fault-tolerant Global Spanning Subgraph

We first present a centralized greedy algorithm,
FGSSk, that builds k-connected spanning subgraphs.
Kruskal’s algorithm [17] is a well-known algorithm to
construct the minimum spanning tree (1-connected span-
ning subgraph) of a given graph. FGSSk is a generalized
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version of Kruskal’s algorithm fork ≥ 2. The algorithm
is given in Algorithm 1.

Algorithm 1 FGSSk
INPUT: G(V,E), a k-connected simple graph;
OUTPUT: Gk(Vk, Ek), a k-connected spanning sub-

graph ofG;
1: Vk := V , Ek := ∅;
2: sort all edges inE in an ascending order of weight

(as defined inDefinition 2);
3: for each edge(u0, v0) in the orderdo
4: if u0 is not k-connected tov0 in Gk then
5: Ek := Ek ∪ {(u0, v0)};
6: else if all nodes are in the samek-connected

componentthen
7: exit;
8: end if
9: end for

By using network flow techniques [18], a query on
whether two vertices arek-connected can be answered
in O(n+m) time for any fixedk, wheren is the number
of vertices andm is the number of edges in the graph.
For k ≤ 3, there also existsO(1) time algorithms [19].
Therefore, the time complexity of FGSSk is O(m(n +
m)), and can be improved toO(m) for k ≤ 3.

Let the path(u,w1, w2, . . . , wl, v) from u to v be
represented by an ordered setp of vertices on the
path, i.e.,p = {u,w1, w2, . . . , wl, v}. Let Suv(F ) be a
maximal set of pairwise-internally-vertex-disjoint paths
from u to v in F . Thus for∀p1, p2 ∈ Suv(F ), we have
p1 ∩ p2 = {u, v}.
Lemma 1. Let u1 and u2 be two vertices in ak-
connected undirected graphF . If u1 and u2 are k-
connected after the removal of edge(u1, u2), thenF −
(u1, u2) is still k-connected.

Proof: Equivalently, we prove thatF ′ = F −
(u1, u2) is connected after the removal of anyk − 1
vertices inF ′. Consider any two verticesv1 and v2 in
F ′. Without loss of generality, we assume{u1, u2} ∩
{v1, v2} = ∅ (other cases can be proved using a similar
approach). We now prove thatv1 is still connected to
v2 after removal of the set of anyk − 1 verticesW =
{w1, w2, . . . , wk−1}, wherewi ∈ V (F ′)−{v1, v2}. Since
F is k-connected,|Sv1v2(F )| ≥ k. This is obvious true
if (v1, v2) is an edge inF . Therefore, we only consider
the case where there is no edge fromv1 to v2 in F .

Let F ′′ be the resulting graph after(u1, u2) and W
(and related edges) are removed fromF , and lets1 be the
number of paths inSv1v2(F ′) that are broken due to the
removal of vertices inW , i.e., s1 = |{p ∈ Sv1v2(F ′) :

∃w ∈ W,w ∈ p}|. Since the paths inSv1v2(F ′) are
pairwise-internally-vertex-disjoint, the removal of any
one vertex inW breaks at most one path in the set.
Given |W | = k − 1, we haves1 ≤ k − 1.

If |Sv1v2(F ′)| ≥ k, then |Sv1v2(F ′′)| ≥ |Sv1v2(F ′)| −
s1 ≥ 1, i.e., v1 is still connected tov2 in F ′′. Now we
consider the case where|Sv1v2(F ′)| < k. This occurs
only when the removal of(u1, u2) breaks one path
p0 ∈ Sv1v2(F ). Without loss of generality, let the order
of vertices onp0 be v1, u1, u2, v2. Since the removal
of (u1, u2) reduces the number of pairwise-internally-
vertex-disjoint paths betweenv1 andv2 by at most one,
|Sv1v2(F ) − {p0}| ≥ k − 1. Hence|Sv1v2(F ′)| = k − 1.
Now we consider two cases:

1) s1 < k − 1: |Sv1v2(F ′′)| ≥ |Sv1v2(F ′)| − s1 ≥ 1,
i.e., v1 is still connected tov2 in F ′′.

2) s1 = k − 1: hence every vertex inW belongs
to some path inSv1v2(F ′). Sincep0 is internally-
disjoint with all paths inSv1v2(F ′), we havep0 ∩
W = ∅. Thusv1 is connected tou1 andu2 is con-
nected tov2 in F ′′. Let s2 be the number of paths
in Su1u2(F ′) that are broken due to the removal of
vertices inW , i.e., s2 = |{p ∈ Su1u2(F ′) : ∃w ∈
W,w ∈ p}|. Since|Su1u2(F ′)| ≥ k ands2 ≤ k−1,
|Su1u2(F ′′)| ≥ 1, i.e.,u1 is still connected tou2 in
F ′′. Therefore,v1 is still connected tov2 in F ′′.

We have proved that for any two verticesv1, v2 ∈ F ′,
v1 is connected tov2 after the removal of anyk − 1
vertices fromF ′−{v1, v2}. Therefore,F ′ is k-connected.

Lemma 2. Let G and G′ be two undirected simple
graphs such thatV (G) = V (G′). If G is k-connected,
and every edge(u, v) ∈ E(G)−E(G′) satisfies thatu is
k-connected tov in G−{(u0, v0) ∈ E(G) : w(u0, v0) ≥
w(u, v)}, thenG′ is alsok-connected.

Proof: Let E = E(G) − E(G′) =
{(u1, v1), (u2, v2), . . . , (um, vm)} be an set of
edges in an descending order of weight, i.e.,
w(u1, v1) ≥ w(u2, v2) ≥ . . . ≥ w(um, vm). We
define a series of graphs that are subgraphs ofG:
G0 = G, and Gi = Gi−1 − (ui, vi), i = 1, 2, . . . ,m.
Now we prove by induction.

1) Base: G0 = G is k-connected.
2) Induction: If Gi−1 is k-connected, we prove that

Gi is k-connected, wherei = 1, 2, . . . ,m. Since
G − {(u, v) ∈ E(G) : w(u, v) ≥ w(ui, vi)} ⊆
Gi−1− (ui, vi), ui is k-connected tovi in Gi−1−
(ui, vi). Applying Lemma 1 toGi−1, we can prove
that Gi is still k-connected.

Now we have proved thatGm is k-connected. Since
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E(Gm) ⊆ E(G′), G′ is alsok-connected.

Theorem 1. FGSSk can preserve thek-connectivity of
G, i.e., Gk is k-connected ifG is k-connected.

Proof: Since edges are inserted intoGk in an
ascending order, whetheru is k-connected tov at the
moment before(u, v) is inserted depends only on the
edges of smaller weight. Therefore, every edge(u, v) ∈
E0 = E(G) − E(Gk) satisfies thatu is k-connected to
v in G − {(u, v) ∈ E(G) : w(u, v) > w(u0, v0)}. we
can prove thatGk preserves thek-connectivity ofG by
applying Lemma 2 toGk.

Let ρ(F ) be the largest radius of all nodes inF , i.e.,
ρ(F ) = maxu∈V (F ){Ru}. Now we prove that FGSSk
achieves the min-max optimality, i.e., letSSk(G) be the
set of all k-connected spanning subgraphs ofG, then
ρ(Gk) = min{ρ(F ) : F ∈ SSk(G)}. This optimality is
proved in [2] fork = 2, we extend the result to arbitrary
k.

Theorem 2. The maximum transmission radius (or
equivalently, power) among all nodes is minimized by
FGSSk, i.e., ρ(Gk) = min{ρ(F ) : F ∈ SSk(G)}.

Proof: SupposeG is k-connected. By Theo-
rem 1 Gk is also k-connected. Let(u, v) be the last
edge that is inserted intoGk, we have w(u, v) =
max(u0,v0)∈E(Gk){w(u0, v0)} and Ru = Rv = ρ(Gk).
Let G′k = Gk−(u, v), we have|Suv(G′k)| < k; otherwise
according to Algorithm 1,(u, v) should not be included
in Gk. Now consider a graphH = (V (H), E(H)),
whereV (H) = V (G) andE(H) = {(u0, v0) ∈ E(G) :
w(u0, v0) < w(u, v)}. If we can prove thatH is not
k-connected, we will be able to conclude that anyF ∈
SSk(G) must have at least one edge equal to or longer
than (u, v), which meansρ(Gk) = min{ρ(F ) : F ∈
SSk(G)}.

Now we prove by contradiction thatH is not
k-connected. AssumeH is k-connected and hence
|Suv(H)| ≥ k. We haveE(H) * E(G′k); otherwise,
|Suv(G′k)| ≥ |Suv(H)| ≥ k. Therefore,E0 = E(H) −
E(G′k) 6= ∅. Since edges are inserted intoG′k in an
ascending order,∀(u1, v1) ∈ E0 satisfies thatu1 is k-
connected tov1 in H −{(u0, v0) ∈ E(H) : w(u0, v0) ≥
w(u1, v1)}. By Lemma 2, we can prove thatu is still k-
connected tov after the removal of all edges inE0. This
means|Suv(G′k)| ≥ k, which is a contradiction.

The min-max optimality of FGSSk is an important
feature. Let the network lifetime be defined as the time it
takes for the first node to deplete its energy. If we assume
a static network in which each node has the same energy
and may send data to any other node, then the network

lifetime is approximately the same as the lifetime of the
node that uses the maximum radius among all nodes.
By minimizing the maximum radius (and transmission
power), FGSSk achieves the maximum network lifetime.

FGSSk is a centralized algorithm that requires the
knowledge of global information. Since there is, in
general, no central authority in a wireless multi-hop
network, it is very difficult to collect and distribute
global information, and by doing so, the major ob-
jective of topology control — power saving — may
be defeated. It is more desirable to devise distributed
algorithms where each node makes its decision based
on the information collected. To be less susceptible to
mobility, it is also desirable that the algorithm depends
only on the information locally collected, e.g., within
one hop, and thus incurs less message overhead/delay
in collecting information. In the next section, we will
devise a localized algorithm based on FGSSk.

B. FLSSk: Fault-tolerant Local Spanning Subgraph

In this section, we present a localized, fault tolerant
topology control algorithm, calledFault-tolerant Local
Spanning Subgraph(FLSSk). The topology is derived
by having each node build its neighbor set and adjust its
transmission power based on locally collected informa-
tion. The algorithm consists of three phases [8]:

I Information Collection: each nodeu collects local
information of neighbors, such as their positions
and ids, and identifies theVisible Neighborhood
NV

u .
II Topology Construction: each node defines, based

on the information inNV
u , the proper list of

neighbors for the final topology.
III Construction of Topology with Only Bi-Directional

Links (Optional): each node adjusts its list of
neighbors to make sure that all the edges are bi-
directional.

In what follows we elaborate on each of the three phases.
1) Information Collection: The information needed

by each nodeu is its visible neighborhoodNV
u . This

can be obtained locally by having each node broadcast
periodically aHello message using the maximal trans-
mission power. The information contained in aHello
message includes at least the nodeid and the position of
the node. These periodic messages can be sent either in
the data channel or in a separate low-bandwidth control
channel. TheHello messages can also be combined
with those that are already employed in most ad hoc
routing protocols. In addition, each node can piggy-back
its location information in data packets to reduce the
number ofHello exchanges.
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2) Topology Construction:Given the visible neigh-
borhoodNV

u , each nodeu builds its local spanning sub-
graphSu = (V (Su), E(Su)) over NV

u using algorithm
FGSSk given in Section IV-A, with one modification on
line 6–7 that the algorithm stops ifu is k-connected to
every other node inNV

u .

Definition 11 (Neighbor Relation in FLSSk). In Fault-
tolerant Local Spanning Subgraph (FLSSk), nodev is a
neighbor of nodeu’s, denotedu

FLSS−−−−→ v, if and only
if (u, v) ∈ E(Su). That is,v is a neighbor ofu’s if and
only if v is on u’s local spanning subgraphSu, and is
one hop away fromu.

The network topology under FLSSk is all the nodes
in V (G) and their individually perceived neighbor rela-
tions. Note that the topology isnot a simple superpo-
sition of all local spanning subgraphs. In addition, the
neighbor relation defined above is not symmetric, i.e.,
u

FLSS−−−−→ v does not necessarily implyv
FLSS−−−−→ u.

Definition 12 (Topology GFLSS). The topology,
GFLSS, derived under FLSSk is a directed graph
GFLSS = (VGF LSS

, EGF LSS
), whereVGF LSS

= V (G),
EGF LSS

= {(u, v) : u
FLSS−−−−→ v, u, v ∈ V (G)}.

3) Construction of Topology with Only Bi-Directional
Edges: As mentioned previously, some links inGFLSS

may be uni-directional. We can applyAddition or Re-
moval to enforce every edge to be bi-directional. The
new topologiesG+

FLSS and G−FLSS can be defined
respectively.

Definition 13 (Topology G+
FLSS). The topology,

G+
FLSS, is a undirected graph G+

FLSS =
(V (G+

FLSS), E(G+
FLSS)), where V (G+

FLSS) =
V (GFLSS), E+

FLSS = {(u, v) : (u, v) ∈ E(GFLSS) or
(v, u) ∈ E(GFLSS)}.
Definition 14 (Topology G−FLSS). The topology,
G−FLSS, is a undirected graph G−FLSS =
(V (G−FLSS), E(G−FLSS)), where V (G−FLSS) =
V (GFLSS), E−FLSS = {(u, v) : (u, v) ∈ E(GFLSS) and
(v, u) ∈ E(GFLSS)}.

4) Properties of FLSSk: We are now in a position to
state and formally prove several properties of FLSSk.

Theorem 3 (Connectivity of FLSSk). If G is k-
connected, thenGFLSS , G+

FLSS and G−FLSS are all k-
connected.

Proof: We only need to prove thatG−FLSS preserves
thek-connectivity ofG, for E(G−FLSS) ⊆ E(GFLSS) ⊆
E(G+

FLSS). SinceG−FLSS is bi-directional, we can treat
it as an undirected graph. LetE = E(G)−E(G−FLSS).

For any edgee = (u, v) ∈ E, at least one of(u, v) and
(v, u) was not inGFLSS, sincee /∈ E(G−FLSS). Without
loss of generality assume(u, v) was not in GFLSS.
Thus in the process of local topology construction of
nodeu, u was alreadyk-connected tov before (u, v)
was inspected. Since edges are inserted in an ascending
order, whetheru is k-connected tov at the moment
before (u, v) is inspected depends only on the edges
of smaller weights. Therefore,u is k-connected tov
in G − {(u0, v0) ∈ E(G) : w(u0, v0) > w(u, v)}.
Let G′ = G−FLSS , we can conclude thatG−FLSS is k-
connected by Lemma 2.

Definition 15 (Strictly Localized Algorithms). An al-
gorithm is strictly localized if its operation on any node
u is based only on the information that is originated
from the nodes inNV

u .

For any nodeu running a strictly localized algorithm,
the information whichu may rely on is quite limited.
For instance,u andv ∈ NV

u may be notk-connected in
GV

u , but k-connected inG (which is impossible foru to
know). Therefore,u has to keep local “connectedness”
as much as possible, i.e., ifu andv are notk-connected
before edge(u, v) is considered,(u, v) has to be in the
final topology constructed byu. Fig. 1 gives a good
example. For nodev5, NV

v5
= {v1, v3, v4, v5}. Before

edge(v5, v1) is considered,v5 is not yet2-connected to
v1. Therefore, Nodev5 has to choosev1 as its neighbor in
the final topology, to preserve the2-connectivity ofGV

v5
;

otherwise, the resulting topology is not2-connected as
shown in Fig 1(c).

Let LSSk(G) be the set of allk-connected spanning
subgraphs of G that are constructed by strictly localized
algorithms. Now we prove that FLSS achieves the min-
max optimality among all strictly localized algorithms,
i.e., ρ(GFLSS) = min{ρ(F ) : F ∈ LSSk(G)}.
Theorem 4. Among all strictly localized algorithms,
FLSSk minimizes the maximum transmission radius (or
power) of nodes in the network, i.e.,ρ(GFLSS) =
min{ρ(F ) : F ∈ LSSk(G)}.

Proof: SupposeG is k-connected. Let(u, v) be
the last edge inserted intoGFLSS. We havew(u, v) =
max(u0,v0)∈E(GF LSS){w(u0, v0)} and Ru = Rv =
ρ(GFLSS). Let G0 be the induced subgraph ofGFLSS

where V (G0) = NV
u , and let G′0 = G0 − {(u, v)}.

We have|Suv(G′0)| < k; otherwise(u, v) should not
be included inG0. Also defineH0 = (V (H0), E(H0)),
where V (H0) = V (GV

u ) and E(H0) = {(u0, v0) ∈
E(GV

u ) : w(u0, v0) < w(u, v)}.
To prove thatH0 is not k-connected, we replaceG,

Gk, G′k, andH with GV
u , G0, G′0, andH0 respectively,
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and follow the corresponding proof in Theorem 2. After
proving H0 is not k-connected, we consider the follow-
ing cases:

1) u is k-connected tov in GV
u : sinceH0 is not k-

connected, anyF ∈ LSSk(G) should have had at
least one edge equal to or longer than(u, v),

2) u is not k-connected tov in GV
u : to preserve

the connectedness as much as possible, anyF ∈
LSSk(G) should have included(u, v);

In both cases,ρ(F ) ≥ ρ(GV
u ) = ρ(GFLSS), which

meansρ(GFLSS) = min{ρ(F ) : F ∈ LSSk(G)}.

V. RELAXATION OF SEVERAL ASSUMPTIONS

Although the assumptions stated in Section II are
widely used in existing topology control work, some
of them are made for ease of analysis and may not be
practical. In this section, we discuss how to relax these
assumptions in FGSSk and FLSSk so as to promote their
use in realistic situations.

A. Relaxing the Homogeneous Network Assumption

As mentioned in [9], the assumption of homogeneous
nodes does not always hold in practice, since even
devices of the same type may have slightly different
maximal transmission power, let alone the fact that
devices of different types possess dramatically different
capabilities. The original topology of a heterogeneous
network, instead of being defined as an undirected graph
in Section II, should be defined as a directed graph
G = (V (G), E(G)) in the 2-D plane. HereG is
not necessarily a geometric graph. Letru denote the
maximal transmission range ofu.

First we prove that FGSSk preservesk-connectivity
and is min-max optimal even in heterogeneous networks.
The following results correspond to Lemma 1, Lemma 2,
Theorem 1 and Theorem 2, respectively. The proof is
literally the same as that in Section IV-A, except that
now we consider directed graphs consisting of directed
edges. This resemblance is by no means a coincidence,
since we actually consider more general cases when we
proved them in Section IV-A.

Lemma 1∗. Let u1 and u2 be two vertices in ak-
connecteddirectedgraph F . If u1 are k-connected to
u2 after the removal of edge(u1, u2), thenF − (u1, u2)
is still k-connected.

Lemma 2∗. Let G andG′ be twodirectedsimple graphs
such thatV (G) = V (G′). If G is k-connected, and
every edge(u, v) ∈ E(G) − E(G′) satisfies thatu is
k-connected tov in G−{(u0, v0) ∈ E(G) : w(u0, v0) ≥
w(u, v)}, thenG′ is alsok-connected.

Theorem 1∗. FGSSk can preserve thek-connectivity in
heterogeneous networks, i.e.,Gk is k-connected ifG is
k-connected, whereG is a directed graph.

Theorem 2∗. The maximum transmission radius (or
power) among all nodes is minimized by FGSSk, i.e.,
ρ(Gk) = min{ρ(F ) : F ∈ SSk(G)}, where G is a
directed graph andSSk(G) is the set of allk-connected
spanning subgraphs ofG.

To show that FLSSk can be applied to heterogeneous
networks, we first define the counterpart of Definition 1
in heterogeneous networks:

Definition 16 (Reachable Neighborhood).The reach-
able neighborhoodNR

u is the set of nodes that nodeu
can reach by using the maximum transmission power,
i.e., NR

u = {v ∈ V (G) : (u, v) ∈ E(G)}. For each node
u ∈ V (G), let GV

u = (V (GV
u ), E(GV

u )) be the induced
subgraph ofG such thatV (GV

u ) = NV
u .

We now prove thek-connectivity of FLSSk. Note
that G−FLSS can no longer preservek-connectivity for
heterogeneous networks.

Theorem 3∗ (Connectivity of FLSSk). If G is k-
connected, thenGFLSS, G+

FLSS are bothk-connected.

Proof: We only need to prove thatGFLSS preserves
thek-connectivity ofG, sinceE(GFLSS) ⊆ E(G+

FLSS).
Let E = E(G) − E(GFLSS). For any edgee =
(u, v) ∈ E, it is not in E(GFLSS) because in the
process of local topology construction of nodeu, u
was alreadyk-connected tov before(u, v) was inserted.
Since edges are inserted in an ascending order, whether
u is k-connected tov at the moment before(u, v) is
inserted depends only on the edges of smaller weights.
Therefore,u is k-connected tov in G − {(u0, v0) ∈
E(G) : w(u0, v0) > w(u, v)}. Let G′ = GFLSS, we can
conclude thatGFLSS is k-connected by Lemma 2∗.

The min-max optimality of FLSSk can be proved in
a straightforward manner:

Theorem 4∗. Among all strictly localized algorithms,
FLSSk minimizes the maximum transmission radius (or
power) of nodes in the network, i.e.,ρ(GFLSS) =
min{ρ(F ) : F ∈ LSSk(G)}, where G is a directed
graph.

B. Relaxing the Obstacle Free Propagation Model

We assume in Section II an obstacle free propagation
model. In this section, we state this assumption can be
readily dismissed.

We have previously assumed that the original network
topology,G, is a general directed or undirected graph.
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The information needed by FGSSk/FLSSk is the edges
that exist in G. An edge that was not formed in the
network, whether because the two endpoints of the edge
are not within the transmission range of each other or
because there exists a obstacle in between, does not have
any impact on the results of FGSSk/FLSSk. Also from
the point of view of a nodeu, it only knows whether or
not there exists a link between itself and another node
v, but has no way to infer the exact reason (either (a)
the two nodes are not within transmission range of each
other; or (b) the obstacle between the two nodes blocks
the communication). As long as the original topology
(which has taken into consideration of obstacles in the
network) isk-connected, FGSSk/FLSSk can be applied
to provide a min-max optimal solution to preservek-
connectivity. Therefore, the assumption of obstacle-free
wireless channel can be relaxed without any modification
to FLSSk.

C. Relaxing the Requirement on Position Information

It is assumed in Section II that each node is equipped
with the capability of gathering its own location infor-
mation. In this subsection, we relax this requirement.

As mentioned in Section V-B, what is required by
FGSSk/FLSSk is the information of all the existing edges
in the network. FGSSk/FLSSk can operate without the
knowledge of specific positions of nodes in the network
as follows. If each node knows it own position, either by
special hardware or localization service provided by the
network, it will be fairly easy to gather the knowledge of
existing edges. Otherwise, we augment FLSSk with an
extra run of information dissemination. First, each node
periodically broadcasts, using its maximal transmission
power, a very shortHi message which includes only its
nodeid and its transmission power. Upon receiving such
a message from a neighbor nodev, each nodeu estimates
the length of the edge(v, u) based on the attenuation
incurred in the transmission. Denote the set of edges
incident atu asET

u = {(v, u) : v ∈ NW
u }). After u has

collected the information onET
u , u can then broadcast

this information in anEdge message. Each node will
be able to construct the edge setE(NW

u ) based on the
Edge messages received from all of its neighbors.

Although this solution may incur more communication
and computation overhead, and make FLSSk less “local-
ized”, it eliminates the need for the position information,
and thus is better suited for wireless sensor networks
where the cost and the energy consumption should be
kept as low as possible.

D. Relaxing the Assumption of Perfect Omni-directional
Antenna Patterns

Many topology control algorithms assume a Unit
Disk Graph (UDG) model, i.e., the antenna pattern of
a wireless device is a perfect disk. This is also the
underlying assumption for algorithms that use explicit
channel propagation models. Since the same models are
applied to all directions, the antenna patterns have to
be isotropic, which in turn implies that the transmission
area is a perfect disk.

The antenna model does not affect FGSSk, since
FGSSk is a centralized algorithm that can be given
perfect, global information. For FLSSk, the antenna
pattern model influences the manner in which the in-
formation onNW

u can be collected. Given an arbitrary
antenna pattern, we can simply employ the information
dissemination technique in Section V-C. It is obvious
that the information dissemination technique does not
rely on any specific antenna pattern, except that the
estimation of edge length becomes quite difficult. This is
due to the fact that the antenna pattern is not necessarily
isotropic, i.e., the power attenuation may vary in different
directions. We are currently investigating how to address
this problem.

VI. PERFORMANCEEVALUATION

In this section, we evaluate the performance of FLSSk

against two distributed/localized algorithms, CBTC [15],
Yaop,k [16], and Hajiaghayi’s algorithm [11] with respect
to several metrics via simulation. The parameterp in
Yaop,k is set to 6 in order to minimize the average power
[16].

For the sake of fair comparison, we have to use
several common assumptions among all the algorithms,
i.e., the UDG model. The performance of the centralized
algorithm FGSSk is also shown as a baseline. As will be
shown in the following discussion, the performance of
FLSSk is only slightly worse than that of FGSSk.

In the first set of simulation, we assume that nodes
are uniformly distributed in a1000m × 1000m region.
The transmission range for all nodes is261.195m. We
vary the number of nodes in the region from 70 to 300.
Each data point is the average of 50 simulation runs.

Radius and average link length: Fig. 2 shows
the average radius and the average maximum radius
for the topologies derived under NONE (with no to-
pology control), CBTC, YAO6,2, FLSS2 and FGSS2.
The average radius of FLSS2 is much smaller than
that of other algorithms. This implies nodes in FLSS2

use much less average power to transmit. The average
maximum radius of CBTC or YAO6,2 comes very close
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Fig. 2. Comparison of NONE, CBTC, YAO6,2 FLSS2 and FGSS2
with respect to radius (k = 2).

to that of NONE. This means the CBTC and YAO6,2

cannot really improve the network lifetime. In contrast,
the average maximum radius of FLSS2 is significantly
smaller, which implies that FLSS can greatly prolong
the network lifetime. The average link length of the
topologies derived under different algorithms is shown
in Fig. 3. FLSS2 outperforms the others, and moreover
its performance is very close to that of the centralized
algorithm FGSS2.

Node degree: We also compare the average node
degree of the topologies derived under different algo-
rithms, where the node degree is defined as the number
of nodes within the transmission radius of a node.
The node degree is an indication of the level of MAC
interference (and hence the extent of spatial reuse),
i.e., the smaller the node degree of a node, the less
number of nodes its transmission may interfere with,
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Fig. 3. Comparison of NONE, CBTC, YAO6,2 FLSS2 and FGSS2
with respect to average link length (k = 2).
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Fig. 4. Comparison of NONE, CBTC, YAO6,2 FLSS2 and FGSS2
with respect to average degree (k = 2).

and potentially affect. Fig. 4 shows the average node
degree of the topologies derived under CBTC, YAO6,2,
FLSS2 and FGSS2. The average degree under NONE
increases almost linearly with the number of nodes.
The average degree under CBTC and YAO6,2 also in-
creases as the number of nodes increases. In contrast,
the average degree under FGSS2 and FLSS2 actually
decreases. Fig. 5 gives the average maximum node de-
gree and the largest value of the maximum node degrees
among all the nodes in the topologies derived under
CBTC, YAO6,2, FLSS2, and FGSS2. Both values under
FGSS2/FLSS2 are significantly smaller than those under
NONE/CBTC/YAO6,2. All the results show that FLSS2
can achieve better spatial reuse, and the performance
improvement becomes even more prominent when the
network density becomes higher.



11

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

# Nodes

A
ve

ra
ge

 M
ax

 D
eg

re
e

NONE
CBTC
YAO

6,2
FLSS

2
FGSS

2

(a) Average maximum degree.

50 100 150 200 250 300
10

20

30

40

50

60

70

80

90

# Nodes

La
rg

es
t M

ax
im

um
 D

eg
re

e

NONE
CBTC
YAO

6,2
FLSS

2
FGSS

2

(b) Largest maximum degree.

Fig. 5. Comparison of NONE, CBTC, YAO6,2 FLSS2 and FGSS2
with respect to the maximum degree (k = 2).

Energy saving: We compare the various algorithms
with respect to the average expended energy ratio (EER)
defined in [11] as

EER =
Eave

Emax
× 100,

whereEave is the average transmission power over all
the nodes in the network, andEmax is the maximal
transmission power that can reach the transmission range
of 261.195m. Here we use the free-space propagation
model to calculate the transmission power. Fig. 6 gives
the comparison results for bothk = 2 andk = 3. FLSSk

clearly has the advantage.
In the second set of simulations, we compare FGSSk

and FLSSk with both the distributed and centralized
versions ofk-UPVCS [11] in terms of EER, for both
k = 2 and k = 3. The simulation is conducted in a
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Fig. 6. Comparison of NONE, CBTC, YAO, FLSS and FGSS with
respect to expended energy ratio (EER).

similar setting to that in [11]. Note that we are unable
to accurately control the density of the original graph
(with the maximal transmission range), thus we compare
the algorithms under the topology of roughly the same
average degree. Fig. 7 gives the comparison results,
where FGSS and FLSS are shown to perform better
than the distributed version ofk-UPVCS in almost every
setting, and worse than the global version ofk-UPVCS.

Tradeoff between topology robustness and per-
formance: In the third set of simulations, we com-
pare FLSS2 and FLSS3 against a localized topology
control algorithm, LMST [8], that renders1-connected
subgraphs. As shown in Fig. 8, FLSSk renders topologies
that have larger average degrees, longer average radii,
and longer average maximum radii, and consume more
power than LMST. However, the topologies are also
more robust and are resilient tok− 1 failures (the same
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Fig. 7. Comparison of FGSS, FLSS, and the global and distributed
versions ofk-UPVCS ( [11]) with respect to EER.

conclusion can be drawn ask increases). This shows
the tradeoff between the robustness of the topology and
the other performance metrics (e.g., power consumption,
network lifetime, spatial reuse, and MAC level interfer-
ence).

Finally we compare LMST, FLSS2 and FLSS3 with
respect to network capacity and energy efficiency. In
this set of simulation,n nodes are randomly distributed
in a 1500m × 200m region, with half of them being
sources and the other half being destinations. To ob-
serve the effect of spatial reuse, the deployment region
should be large enough as compared to the transmis-
sion/interference range. To reduce the number of nodes
and to expedite simulation, we use a rectangular re-
gion, rather than a square region. In the simulation,
the propagation model is the two-ray ground model, the
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Fig. 8. Comparison of LMST, FLSS2 and FLSS3 with respect to
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Fig. 9. Comparison of LMST, FLSS2 and FLSS3 with respect to
the network capacity and the energy efficiency under CBR traffic.

MAC protocol is IEEE 802.11, the routing protocol is
AODV, and the traffic sources are CBR (note that results
obtained by using TCP traffic with bulk FTP sources
exhibit similar trends, and hence are not reported here).
The start time of each connection is chosen randomly
from [0s, 10s]. Each simulation run lasts for 100 seconds.

We compare the total amount of data delivered (in
bytes, Fig. 9(a)), the total energy consumption (in
Joule, Fig. 9(b)), and the energy efficiency (in bytes/J,
Fig. 9(c)). It can be observed that with the increase in
the level of network connectivity ( in the order of LMST,
FLSS2, FLSS3, NONE), the total throughput decreases,
the total energy consumption increases, and the energy
efficiency decreases. This result again demonstrates the
trade-off between the robustness (or routing redundancy)
and the network capacity/energy efficiency.

VII. C ONCLUSIONS

In this paper, we have taken into account of fault
tolerance in topology control in wireless ad-hoc networks
and sensor networks. We first present a centralized
greedy algorithm, FGSSk, to find ak-connected spanning
subgraph of the topology. We prove that FGSSk preserve
k-connectivity and is min-max optimal among all cen-
tralized algorithms. By min-max optimality we mean that
the maximum transmission power (radius) used among
all the nodes is minimized. The min-max optimality
is critical in prolonging the network lifetime. Since
localized algorithms rely only on the information that can
be locally collected and are hence more power-efficient
when the overhead incurred in information collection is
considered, we propose, based on FGSSk, a localized
topology control algorithm FLSSk. We prove FLSSk
preservesk-connectivity and bi-directionality, and is
min-max optimal among all strictly localized algorithms.

After the theoretical base is laid and FLSSk devised,
we proceed to examine several widely used assumptions
in topology control, e.g., uniform maximal transmission
power, obstacle-free communication channel, capability
of obtaining position information, and perfect antenna
pattern, relax these assumptions for FGSSk and FLSSk
so as to promote their practicality.

Although FLSSk outperforms other localized algo-
rithms in random networks in terms of power con-
sumption, it does not give any performance bound on
power consumption as many centralized algorithms do
[12] (in contrast, the distributed version of Hajiaghayi’s
algorithm [11] is shown to give a performance bound,
but does not preservek-connectivity as shown in Fig. 1).
The dominating reason for the lack of a performance
guarantee is that FLSSk is greedy and highly localized.
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Although it performs very well in most cases, we highly
suspect that the information available within each node’s
transmission range is too limited to upper-bound the
performance under some rare, extreme cases. As part
of our future research, we will extend FLSSk to utilize
more information in the network so as to provide some
performance bound.
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