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Abstract—The development of wireless communication collaboratively determine their transmission power and
in recent years has posed new challenges in system desigalerive the network topology by forming proper neighbor
and analysis of wireless networks, among which energy relation under a specific topology control algorithm. By
efficiency and network capacity are perhaps the most gnapjing wireless nodes to use adequate transmission
important issues. As such, topology control algorithms power, topology control not only saves energy and pro-
have been proposed to maintain network connectivity while ’ e L. . .

longs network lifetime, but also improves spatial reuse

reducing energy consumption and improving network. ) "
However, by reducing the number of links in the network, (&nd hence the network capacity) and mitigate the MAC-

topology control algorithms actually decrease the degree of 1€vel medium contention.

routing redundancy, and hence the topology thus derived  On the other hand, by reducing the number of links
is more susceptible to node failures/departures. In this in the network, topology control algorithms actually
paper, we consider k-vertex connectivity of a wireless decrease the degree of routing redundancy. As a result,
network. We first present a centrallized greedy algorithm, ihe topology thus derived is more susceptible to node
called Fault-tolerant Global Spanning Subgraph(FGSS.).  tajlyres/departures. This problem can be mitigated if an
which preservesk-vertex connectivity. FGSS is min-max adequate level of routing redundancy can be properly

optimal, i.e., FGSS, minimizes the maximum transmission fi d into t | trol. | ficul Bvert
power used in the network, among all algorithms that 'gured Into topology control. In particuiar, e-vertex

preserve the k-vertex connectivity. Based on FGSg we connected network i — 1 fault-tolerant, i.e., it can

then propose a localized algorithm, calledFault-tolerant Survive the failure of at most — 1 nodes.

Local Spanning SubgrapiFLSS;,). We formally prove that In this paper, we first present a centralized greedy

FLSS;, preservesk-vertex connectivity while maintaining algorithm, calledFault-tolerant Global Spanning Sub-

bi-directionality of the network. We also prove FLSS; is graph (FGSS), that preservesk-vertex connectivity

Ein_lrlnax optirlnal amongl aI_IdstIrictIy Igcalized a,'gorit?ms- and is min-max optimal (as will be elaborated on, the
inally, we relax several widely used assumptions for to- . by e it

pology control, in FGSS; and FLSS; so as to enhance their E(re?[\?v?)rrtlg ﬁ;ert?r:?eTaéaosrg(ljmilr:tyﬂlﬁscgtlggrlittr?me’xﬁgd t::een

practicality. Simulation results show that FLSS, is more fully 1 i lgorith I It-tol
power-efficient than other existing distributed/localized propose a fully localized algorithm, callé@ult-tolerant

topology control algorithms. Local Spanning SubgraplfrLSS;), for topology control
in wireless networks. By fully localized we mean each

node operates on the information locally collected. This
feature enables FLSSto adapt to topology changes
more easily. It can be proved that FLSBreservesk-
|. INTRODUCTION vertex connectivity and maintains bi-directionality for

The development of wireless communication in receatl the links in the topology, while reducing the power
years has posed new challenges in system design apndsumption and improving the network capacity. We
analysis of wireless networks, among which energjso prove that FLSSis min-max optimal among all
efficiency and network capacity are perhaps the magtictly localized algorithms.
important issues. As such, topology control algorithms After the theoretical base is formally laid and the
have been proposed to maintain network connectivitygorithms devised, we also examine several widely
while reducing energy consumption and improving netised assumptions in topology control, e.g., use of a
work capacity [1]-[9]. Instead of transmitting with thecommon maximal transmission power among all the
maximal power, nodes in a wireless multi-hop netwonkodes, obstacle-free communication channel, capability

Index Terms—Topology control, fault tolerance, k-
vertex connectivity.



of obtaining position information, and seek solutions t¥'(G) : d(u,v) < Ty} For each nodeuw € V(G), let
relax these assumptions, thus improving the practicali} = (V(GY), E(GY)) be the induced subgraph ¢t
of FGSS and FLS$. Finally we have shown via such thatV (GY) = N).
simulation that as compared with the topologies derived _. .. . . .
under other distributed/localized fault-tolerance centrBQfm'tIon 2 (Weight Function). legn wo .edges
topology control algorithms, the topology derived und f“l’v_l)’(UQ’UQ) < E(.G) and j[he Euclidean d_|st_anc.:e
FLSS. has smaller average node degree, smaller aver Lé%ctlond(-, ), the weight functionw : E — R satisfies:
link length, and smaller average transmission power. The
former property reduces MAC-level contention, while
the latter two properties implies that only small trans- < d(u1,v1) > d(uz, v2)
mission power is required. or (d(ui,v1) = d(uz,v2)

The rest of the paper is organized as follows. We first ¢ ¢ max{id(u), id(v1)} > max{id(us), id(v2)})
define the network model in Section Il, and summarize B
related work in Section Ill. We then elaborate on FGSS (a1, v1) = d(uz, v2)
and FLS$, and their properties in Section IV. Following && max{id(u1),id(v1)} = max{id(uz),id(v2)}
that, we discuss in Section V how to relax several && min{id(uy),id(vi)} > min{id(ug),id(v2)}).
assumptions made in topology control so as to promote
the practicality of FGSHand FLSS. Finally, we present  The weight functionw ensures that two edges with
a simulation study of FLSSin Section VI, and conclude different end-nodes have different weights, which can

w(uy,v1) > w(ug,v2)

the paper in Section VII. guarantee the unique outcome of the greedy algorithms
that will be proposed in Section IV. Also note that
Il. NETWORK MODEL w(u,v) = w(v, u).
In this section, we define the network moHeCon- Definition 3 (Neighbor Set). Nodewv is a neighborof

sider a homogeneous wireless network where each nedeleu’s under an algorithmALG (denotedu ALG, v),

has the same maximal transmission power, which corieand only if there exists an edde, v) in the topology
sponds to the common transmission ramngg,. Let the generated by the algorithm. In particular, we use— v
network topology be represented by an undirected simpéedenote the neighbor relation if. u22%+ if and only
gr(ag)h G {: (V(G),E(}G)) 'r? the Z}D %Iane(, where)if u 258,y and v 229, 4. Theneighbor sebf nodeu
V = {vi,v9,...,v,} is the set of nodes (vertices). _ .. ALG
in the network andE(G) is the set of links (edges).IS Nazalu) = {v € V(G) :u == v}
A uniqueid (such as an IP/MAC address) is assigned foefinition 4 (Topology). The topology generated by
each node. Here we léf(v;) = ¢ for simplicity. For ease an algorithm ALG is a directed graphGare =
of presentation, we assume for now tidgais geometric, (E(Garg),V(Garg)), where V(Garg) = V(G),
ie., E(G) = {(u,v) : d(u,v) < rmaz,u,v € V}, and E(Garc) = {(u,v) : u ALG, v,u,v € V(Garg)}
d(u,v) is the Euclidean distance betweemndv. Note, o _ _ _
however, that our algorithms can function correctly fop€finition 5 (Radius). The radius, 2, of nodew is
general graphs. deflned as_the distance betyveen n@dand its _farthest
We assume that the wireless channel is symmetric agf9hPor (in terms of Euclidean distance), i.8, =
obstacle-free, and each node has the capability to gatH&XveNALc(u){w(“’U)}'

its own location information via, for example, severghefinition 6 (Connectivity). For any topology generated
lightweight localization techniques for wireless networkgy an algorithm ALG, node is said to beconnected to
(the interested reader is referred to, for example, [10] fRbde v (denotedu = v) if there exists a path(p, =
a Summary). U, P1y- -+ yPm—1,Pm = U) such thatpz ﬂ Pit1,% =

We will further discuss how to relax the above agy 1 m — 1, wherep, € V(Garg),k=0,1 m
sumptions in Section V. U ’ ’ L for sam,

It follows thatu = v if w = p andp = v for some
Definition 1 (Visible Neighborhood). The visible neigh- p € V(GaLc)-
borhoodN, is the set of nodes that nodecan reach by

using the maximum transmission power, Y, — {v € Definition 7 (Bi-Directionality). A topology generated

by an algorithm ALG isbi-directiona) if for any two

Although the model used in this paper is similar to those used PnOdesu’ v € V(GALG)’ u € NALG(U) implies v €

[8] and [9], there exist several subtle differences. ALc(u).



Definition 8 (Bi-Directional Connectivity). For any studying the properties df-connected topologies [13],
topology generated by an algorithm ALG, nodés said [14], devising algorithms to construct such topologies
to bebi-directionally connected toodewv (denotedu <  [11], [15], or both [16].

v) if there exists a patlipy = w, p1,...,Pm—1,Pm = V) Work that studies the properties of fault-tolerant
such thatp; AL<—G>p¢+1,i =0,1,...,m — 1, wherep, € topologies:: Penrose [13] studied:-connectivity in a
V(Gara),k = 0,1,...,m. It follows thatu < v if geometric random graph of n nodes derived by adding
u < pandp < v for somep € V(Gara). an edge between each pair of nodes at masgpart. He

. K | - t onlv bi proved that the minimum value ofat which the graph is

'Der'lvmg networ ”topo o9y consisting of only bl-}_connected is equal to the minimum valuerddt which

directional links facilitates link level acknowledgmentlhe graph has the minimum degreekofwith probability
which is a critical operation for packet transmissionf asn goes to infinity. The significance of this result

and retransmissions over unreliable wireless media. Bl- -+ it jinks k-connectivity, a global property of the

directionality is also an important property for floor acgraph, to node degree, a local parameter. However, the

qwsmon mechanisms such as the RTS/CTS meChan'ﬁﬂhimum value ofr is not given in the paper. Bettstetter

in IEEE 802.11. [14] also investigated the relation between the minimum

Definition 9 (Addition and Removal). The Addition node degree ané&-connectivity for geometric random

operation is to add an extra edge,u) into G4r¢ if graphs. The analytical expression of the required range

(u,v) € E(Garg) and (v,u) ¢ E(Garc). The Re- o for the almost surelys-connected network is derived

movaloperation is to delete any edge,v) € E(G41g) @and verified by simulation.

if (v,u) ¢ E(GaLa). Li et al. [16] extended Penrose’s work and gave the

" _ lower bound and the upper bound on the minimum

Both the AdQ|t!on gnd Removaloperations atempt yajye of  at which the graph isk-connected with

to create a bi-directional topology by removing unlhigh probability. The analysis shows that, for a unit-

directional edges or converting uni-directional edges ing?ea square region, the probability that the network of
bi-directional. The resulting topology aftéxddition or < isi-connected is at least” . if the common
Removalis alway bi-directional, since the transmissiogransmission radius. satisfiestr2 > Inn + (2k —

n n =

ranger,,q, for each node is the same. If the transmissiog Inlnn—2In(k—1)!4+2a, for k > 0 and n sufficiently

range 'for ,eac,h r\odg IS not the same, the res“,'?@* large. Under the homogeneous network assumption (i.e.,
movalis still t_)l—o_llrec_tlonal, while the result oa_Addlthn the maximal transmission power of each node is the
may not be bi-directional (see [9] for more dlscussmnsgame), they also proposed a localized topology control
Definition 10 (k-vertex connectivity). A graphG is k- algorithm that preserves-connectivity. The proposed
vertex connected if for any two vertices v, € V(G), structure, Yagy, is based on the Yao structure, and is
there arek pairwise-internally-vertex-disjoint paths fromconstructed by having every node choosek closest

v to vy, Or equivalently, a graph i&-vertex connected neighbors in each of the > 6 equal cones around

if the removal of anyt — 1 nodes (and all the related u. Yag, . is proved to preservé-connectivity and is a

links) does not partition the network. length spanner.
Work that devises algorithms to construct fault-

k-edge connectivity can be defined accordingly. Igyerant topologies:: Bahramgiriet al. [15] augmented
W|reless_ n_etwqus, we are more concerned wivertex the CBTC algorithm [3] to provide fault tolerance.
conqect|v!ty since ak-vertex con_nected netwo_rk CamSpeciﬁcally, let the directed subgraph@f D(«), be the
survive failure ofk — 1 nodes: I.n this paper, we WI|! CON-tput of CBTC(«) algorithm. Note that i BTC(a),
centrate ork-vertex connecju\(lty and'usle' cgnnecnwty every vertexwu increases its transmission power until
to refer tok-vertex connectivity for simplicity. either the maximum angle between its two consecutive
neighbors is at most or its maximal power is reached.
lll. RELATED WORK Let G(a) be the result of applyinRemovabn D(«a). It
Since the problem of finding a minimum-cogt is proved in [15] thaG(g—’,;) preserves:-connectivity of
connected subgraph is proved to be NP-hard, ma@y As the work is extended from the CBTC algorithm, it
approximation algorithms have been proposed (see, ffrares the same assumption of a homogeneous network
example, [11] and [12] for a summary). Although moswhere the maximal transmission power of each node is
topology control algorithms [1]-[9] (see [9] for a sumthe same. However, the assumption of homogeneity may
mary) do not take fault tolerance into consideratiomot always hold in practice [9].
there have been several research efforts recently ormHajiaghayiet al. [11] presented three approximation
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(@) The original topology is2- (b) The minimum spanning tree. (c) The topology by distributec®-
connected. UPVCS is not2-connected since the

removal ofvs will result in a discon-
nected graph.

Fig. 1. An example that shows that the distribuledPVCS algorithm [11] cannot preserZconnectivity. When nodes executes the
distributed2-UPVCS algorithm, it first finds all the neighbors on the minimum spanning tre@endvs. Then it attempts to add an edge
betweenv, andwv, but fails due to their limited transmission power.

algorithms to find the minimum powek-connected CONNECT and BICONN-AUGMENTIn the way the
subgraph. Two global algorithms are based on existibtgpology is derived (i.e., different components are iter-
approaches. The first gives ab(k«a)-approximation, atively merged until one remains), they differ from the
where o is the best approximation factor for the latter in that (1) FGSSis more general, i.e., FG®S
UPVCS problem defined in the paper. The other inpreserves thé-connectivity, whileBICONN-AUGMENT
proves the approximation factor t@(k) for general only preserves2-connectivity; (2) the correctness of
graphs. The third is a distributed algorithm that giveBICONN-AUGMENTis only mentioned but not formally
an k°(©)-approximation, where is the exponent in the proved in [2], while a formal treatment of the correctness
propagation model. It first computes the minimum spapnf FGSS, is given in this paper; (3)CONNECTand
ning tree (MST) of the input graph by using a distributeBICONN-AUGMENT are both centralized algorithms
algorithm, then it adds a path amongst the neighbdteat require collection and distribution of global informa-
of each node in the returned tree. Since this distributédn, while FLSS is fully decentralized and localized;
algorithm is based on the distributed MST algorithmand (4) CONNECT and BICONN-AUGMENT operate

it is not localized, i.e., it relies on information that isunder the assumption of homogeneous networks, while
multiple hops away to construct the MST. This implieas will be formally proved in Section V, FG$Sand
more maintenance overhead and delay when the topoldgySS. can be applied to heterogeneous networks where
has to be changed in response to node mobility thre maximal transmission power of each node may be
failure. Moreover, a closer investigation of the distributedifferent.

algorithm reveals that the neighbors of a node on the

minimum spanning tree may not be able to communicate V. FAULT-TOLERANT SPANNING SUBGRAPH

with each other due to the limited transmission power. In this section, we first describe a centralized greedy
As a result, the “arbitrary path connecting neighbors” ialgorithm, Fault-tolerant Global Spanning Subgraph
the algorithm may not exist in a network of low densityFGSS,), for fault-tolerant topology control. Then we
A counter-example in Fig. 1 shows that the 2-UPVCpresent its localized versioault-tolerant Local Span-
algorithm does not always preserve 2-connectivity.  ning SubgraphFLSS,).

Ramanathan and Rosales-Hain [2] presented two
centralized algorithms, CONNECT and BICONN- A. FGS$: Fault-tolerant Global Spanning Subgraph
AUGMENT, to minimize the maximal power used per We first present a centralized greedy algorithm,
node while maintaining the (bi)connectivity of the netFGSS, that builds k-connected spanning subgraphs.
work. Both are simple greedy algorithms that iterativeli{ruskal’s algorithm [17] is a well-known algorithm to
merge different components until only one remainsonstruct the minimum spanning treedonnected span-
Although FGS$% and FLS$ bear some similarity to ning subgraph) of a given graph. FGSS a generalized



version of Kruskal’s algorithm fok > 2. The algorithm Jw € W,w € p}|. Since the paths irf,,,,(F’) are

is given in Algorithm 1. pairwise-internally-vertex-disjoint, the removal of any
one vertex inW breaks at most one path in the set.
Algorithm 1 FGS§ Given|W| =k — 1, we haves; <k — 1.
INPUT: G(V,E), ak-connected simple graph; If [Sy,u,(F')| > k, then|Sy, v, (F")| > | Sy, (F')] —
OUTPUT: Gi(Vi, Ey), a k-connected spanning sub-s; > 1, i.e., vy is still connected tas in F”. Now we
graph ofG; consider the case wheté,,,,(F’)| < k. This occurs
1.V, =V, E,:=0; only when the removal of(u;,us) breaks one path
2: sort all edges in& in an ascending order of weighty® ¢ S, .. (F). Without loss of generality, let the order
(as defined irDefinition 2); of vertices onp® be vy, ui, ug, vo. Since the removal
3: for each edgé€ug,vy) in the orderdo of (u1,us) reduces the number of pairwise-internally-
4: if ug is not k-connected tay in G, then vertex-disjoint paths between andwvs by at most one,
5: Ey. := Ex U {(ug,v0)}; |Sp0, (F) — {p°}| > k — 1. Hence|Sy, ., (F")| = k — 1.
6: else if all nodes are in the samk-connected Now we consider two cases:
componenthen 1) 51 <k = 1 [S, (F)] 2 [S (F)] = 51 > 1,
£ exit; i.e., vy is still connected tax in F”.
8 endif 2) s; = k — 1: hence every vertex ifV belongs
9: end for to some path inS,,,, (F”). Sincep? is internally-

_ _ disjoint with all paths inS,, ., (F”’), we havep’ N
By using network flow techniques [18], a query on W = (). Thuswv; is connected ta; andus is con-
whether two vertices argé-connected can be answered nected tov, in F”. Let s, be the number of paths

in O(n-+m) time for any fixedk, wheren is the number in S,,,.,(F') that are broken due to the removal of
of vertices andn is the number of edges in the graph. vertices inW, i.e., so = [{p € Sy, u,(F") : Jw €
For k < 3, there also existé)(1) time algorithms [19]. W, w € p}|. Since|Sy, ., (F')| > k andsy < k—1,
Therefore, the time complexity of FG$3s O(m(n + |Suus (F)| > 1, i.€.,u; is still connected tau, in
m)), and can be improved t0(m) for & < 3. F". Therefore, is still connected tay, in F”.

Let the path(u,w;,ws,...,w;,v) from u to v be

. We have proved that for any two verticeg v, € F’,
represented by an ordered setof vertices on the vy is connected tos, after the removal of any — 1

path, i.e..p = {u, wy, wy, ..., wy, v}. Let Sy (F) be @ \gpiceg fromF’—{vy,v2}. Therefore F” is k-connected.
maximal set of pairwise-internally-vertex-disjoint paths 0O

from u to v in F. Thus forvpy, ps € Sy, (F), we have

p1 Np2 = {u,v}. Lemma 2. Let G and G’ be two undirected simple
graphs such thal/(G) = V(G'). If G is k-connected,
and every edgéu,v) € E(G)— E(G’) satisfies that is
k-connected ta in G — {(ug,v) € E(G) : w(ug,vp) >
w(u,v)}, thenG’ is also k-connected.

Lemma 1. Let uv; and uy be two vertices in ak-
connected undirected grapf'. If u; and u, are k-
connected after the removal of edge , us), then F" —
(u1,u2) is still k-connected.

. !/
Proof: Equivalently, we prove that’ = F — Proof. Let B E(G) E(G)
: {(u1,v1), (ug,v2),..., (um,vmn)} be an set of
(u1,u2) is connected after the removal of aky— 1 ! . i :
, o : : .~ edges in an descending order of weight, i.e.,
vertices inF’. Consider any two vertices; and vs in
w(uy,v1) > w(ug,v2) > ... > wW(Upy,vy). We

F’. Without loss of generality, we assure;,us} N
{v1,v2} = 0 (other cases can be proved using a simil
approach). We now prove that is still connected to
vo after removal of the set of any — 1 verticesW =

define a series of graphs that are subgraphsGof
Po_ G andG = Gi! — (ui,vi), i = 1,2,...,m.
Now we prove by induction.

{wl, wa, ... ,wk_l}, wherew; € V(F,)—{Ul, UQ}. Since 1) Base GO =G IS k:—ponnected.

F is k-connected|S,, ., (F)| > k. This is obvious true  2) Induction If G'~! is k-connected, we prove that

if (v1,v2) is an edge inF. Therefore, we only consider G" is k-connected, where = 1,2,...,m. Since

the case where there is no edge fromto v in F. G —{(w,v) € E(G) : w(u,v) > w(uj,v;)} C
Let F” be the resulting graph afte,, us) and W G'1 — (uj, vy), u; is k-connected tay; in G~ —

(and related edges) are removed frémand lets; be the (u;; vi). Applying Lemma 1 toG*~*, we can prove

number of paths ir,,,, (F”) that are broken due to the that G* is still k-connected.

removal of vertices iV, i.e.,s; = [{p € Sy,u,(F’) : Now we have proved tha&:™ is k-connected. Since



E(G™) C E(G"), G’ is alsok-connected. O

Theorem 1. FGSS can preserve thé&-connectivity of
G, i.e., G}, is k-connected ifG is k-connected.

Proof: Since edges are inserted intg; in an
ascending order, whether is k-connected tov at the

lifetime is approximately the same as the lifetime of the
node that uses the maximum radius among all nodes.
By minimizing the maximum radius (and transmission
power), FGS$ achieves the maximum network lifetime.
FGSS is a centralized algorithm that requires the
knowledge of global information. Since there is, in

moment before(u,v) is inserted depends only on theyeneral, no central authority in a wireless multi-hop

edges of smaller weight. Therefore, every edgey) €
Ey = E(G) — E(Gy,) satisfies that is k-connected to
vin G—{(u,v) € E(G) : w(u,v) > w(ug,vp)}. We
can prove thats; preserves thé-connectivity of G by
applying Lemma 2 ta7. O

Let p(F') be the largest radius of all nodes i i.e.,
p(F) = max,cy(m{R.}. Now we prove that FGSS
achieves the min-max optimality, i.e., 1815, (G) be the
set of all k-connected spanning subgraphs @f then
p(Gg) = min{p(F) : F € SSk(G)}. This optimality is

proved in [2] fork = 2, we extend the result to arbitrary

k.

network, it is very difficult to collect and distribute
global information, and by doing so, the major ob-
jective of topology control — power saving — may
be defeated. It is more desirable to devise distributed
algorithms where each node makes its decision based
on the information collected. To be less susceptible to
mobility, it is also desirable that the algorithm depends
only on the information locally collected, e.g., within
one hop, and thus incurs less message overhead/delay
in collecting information. In the next section, we will
devise a localized algorithm based on FGSS

B. FLSS: Fault-tolerant Local Spanning Subgraph

Theorem 2. The maximum transmission radius (or

equivalently,
FGSQ, i.e,, p(Gi) = min{p(F') : F' € SSi(G)}.
Proof: SupposeG is k-connected. By Theo-

rem 1 Gy is also k-connected. Let(u,v) be the last
edge that is inserted int@r;, we have w(u,v) =
Max (y,,v,)e5(Gy) {w(uo, vo)} and Ry, = Ry, = p(Gy).
Let G} = Gp—(u,v), we havdS,,(G)| < k; otherwise
according to Algorithm 1(u, v) should not be included
in Gi. Now consider a graptd = (V(H), E(H)),
whereV(H) = V(G) and E(H) = {(ug,v0) € E(G) :
w(ug,vo) < w(u,v)}. If we can prove thatd is not
k-connected, we will be able to conclude that aiy=

SSk(G) must have at least one edge equal to or longey

than (u,v), which meansp(Gy) = min{p(F) : F €
SSK(G)}
Now we prove by contradiction thatd is not

power) among all nodes is minimized by In this section, we present a localized, fault tolerant

topology control algorithm, calledrault-tolerant Local
Spanning SubgrapfFLSS,). The topology is derived
by having each node build its neighbor set and adjust its
transmission power based on locally collected informa-
tion. The algorithm consists of three phases [8]:

I Information Collection each node: collects local
information of neighbors, such as their positions
and ids, and identifies theVisible Neighborhood
NY.

Il Topology Constructioneach node defines, based

on the information inN), the proper list of

neighbors for the final topology.

Construction of Topology with Only Bi-Directional

Links (Optional): each node adjusts its list of

neighbors to make sure that all the edges are bi-

directional.

k-connected. Assume&d is k-connected and hence

|Sw(H)| > k. We haveE(H) ¢ E(G)); otherwise,
|Sun(GY)| = |Suw(H)| > k. Therefore,Ey = E(H) —
E(G},) # 0. Since edges are inserted in@), in an
ascending ordety(ui,v1) € Ey satisfies thatu; is k-
connected tan in H — {(uo,vo) € E(H) : w(ug,vp) >
w(u1,v1)}. By Lemma 2, we can prove thatis still k-
connected ta after the removal of all edges if. This
means| Sy, (G,)| > k, which is a contradiction. [

The min-max optimality of FGSSis an important

In what follows we elaborate on each of the three phases.
1) Information Collection: The information needed

by each node: is its visible neighborhoodV,”. This

can be obtained locally by having each node broadcast

periodically aHello message using the maximal trans-

mission power. The information contained inHgello

message includes at least the nadland the position of

the node. These periodic messages can be sent either in

the data channel or in a separate low-bandwidth control

channel. TheHello messages can also be combined

feature. Let the network lifetime be defined as the timevitith those that are already employed in most ad hoc
takes for the first node to deplete its energy. If we assummiting protocols. In addition, each node can piggy-back
a static network in which each node has the same eneigylocation information in data packets to reduce the
and may send data to any other node, then the networkmber ofHello exchanges.



2) Topology Construction:Given the visible neigh- For any edge: = (u,v) € E, at least one ofu,v) and
borhoodN,!", each node builds its local spanning sub-(v, w) was not inGrrss, sincee ¢ E(Gr; ¢g). Without
graph S, = (V(S,), E(S,)) over NV using algorithm loss of generality assuméu,v) was not in Grrgs.
FGSS given in Section IV-A, with one modification onThus in the process of local topology construction of
line 6-7 that the algorithm stops if is k-connected to nodeu, u was alreadyk-connected tov before (u,v)

every other node inV,. was inspected. Since edges are inserted in an ascending

Definition 11 (Neighbor Relation in FLSS,). In Fault-
tolerant Local Spanning Subgraph (FLgSnodew is a
neighbor of nodeu’s, denotedu FLSS, v, If and only
if (u,v) € E(S,). Thatis,v is a neighbor ofu’s if and
only if v is onu's local spanning subgrapls,, and is
one hop away fromu.

The network topology under FL%Ss all the nodes

in V(@) and their individually perceived neighbor rela-

order, whetheru is k-connected tov at the moment
before (u,v) is inspected depends only on the edges
of smaller weights. Thereforey is k-connected tov

in G — {(ug,v0) € E(G) : w(up,vg) > w(u,v)}.
Let G' = G g, We can conclude thatiy;; o is k-
connected by Lemma 2.

Definition 15 (Strictly Localized Algorithms). An al-
gorithm is strictly localized if its operation on any node
u is based only on the information that is originated

tions. Note that the topology isot a simple superpo- from the nodes iV .
sition of all local spanning subgraphs. In addition, the “ _ ' _ _
neighbor relation defined above is not symmetric, i.e., For any node: running a strictly localized algorithm,

FLSS Lo FLSS

u ——— v does not necessarily imply —— .
Definition 12 (Topology Gprrss). The topology,
Grrss, derived under FLSSis a directed graph
Grrss = (VGFLSS7EGFLSS)7 WhereVGFLSS = V(G)1

EGFLSS = {(’LL,U) U LSS) UV, U,V € V(G)}

3) Construction of Topology with Only Bi-Directional

Edges: As mentioned previously, some links &gy sg
may be uni-directional. We can appAddition or Re-

moval to enforce every edge to be bi-directional. Th%'e

new topologiesG};qq and Gr;qs can be defined
respectively.

Definition 13 (Topology Gj;ss). The topology,
G}CLSE, is a undirected  graph CﬁCLSS
(V(Grrss) E(Grrss)), where V(Gppgg)
V(GFLSS), E}«L—LSS = {(u,v) : (u,v) S E(GFLSS) or
(v,u) c E(GFLgs)}.

Definition 14 (Topology Gr;qq)- The topology,
Grrss» I1s a undirected graph Gy, qq
(V(Grrss) E(Grrgg)), where V(Grpgs)
V(GFLSS), E;LSS = {(u,v) : (u,v) € E(GFLSS) and
(v,u) € E(GFLgs)}.

the information whichu may rely on is quite limited.
For instancey andv € NV may be notk-connected in
GV, but k-connected inG' (which is impossible for to
know). Thereforeu has to keep local “connectedness”
as much as possible, i.e.,dfandv are notk-connected
before edggu,v) is considered(u, v) has to be in the
final topology constructed by:.. Fig. 1 gives a good
example. For nodes, N, = {vi,v3,vs,v5}. Before
edge(vs, v1) is consideredys is not yet2-connected to
Therefore, Nodes has to choose; as its neighbor in
final topology, to preserve tl2econnectivity oqu‘fs ;
otherwise, the resulting topology is ndtconnected as
shown in Fig 1(c).

Let LSS, (G) be the set of alk-connected spanning
subgraphs of G that are constructed by strictly localized
algorithms. Now we prove that FLSS achieves the min-
max optimality among all strictly localized algorithms,
i.e., p(Grrss) = min{p(F) : F € LSSk(G)}.

Theorem 4. Among all strictly localized algorithms,
FLSS minimizes the maximum transmission radius (or
power) of nodes in the network, i.ep(Grrss) =
min{p(F) : F € LSSL(G)}.

Proof: SupposeG is k-connected. Letu,v) be

4) Properties of FLSS We are now in a position to the last edge inserted intGrrss. We havew(u,v) =

state and formally prove several properties of FL.SS

Theorem 3 (Connectivity of FLSS). If G is k-
connected, thelprss, Gy gs and Gy qq are all k-
connected.

Proof: We only need to prove that; o preserves
the k-connectivity ofG, for E(G;¢q) € E(Grrss) €

E(Gfrgs)- SinceGr; 4 is bi-directional, we can treat

it as an undirected graph. Lét = E(G) — E(Ggg)-

maX(U07v0)€E(GFLSS){w(u07UO)} and R, = R,
p(Grrss). Let Gy be the induced subgraph 6frrss
where V(Go) = NY, and letG) = Go — {(u,v)}.
We have|S,,(G)| < k; otherwise (u,v) should not
be included inGy. Also defineH, = (V(Hy), E(Hyp)),
where V(Hy) = V(GY) and E(Hy) = {(ug,vy) €
E(GY) : w(ug,vo) < w(u,v)}.

To prove thatH| is not k-connected, we replac@,
Gy, G, andH with G}, Gy, G}, and H, respectively,



and follow the corresponding proof in Theorem 2. Aftefheorem 1*. FGSS can preserve thé&-connectivity in
proving Hy is not k-connected, we consider the follow-heterogeneous networks, i.&;, is k-connected ifG is
ing cases: k-connected, wheré&' is a directed graph.

. . V. . .
1) wis k-connected to in G, : since Ho IS NOtk-  Thegrem 2. The maximum transmission radius (or
Iconnected, any” L*?Sk(G)I should have had at 61y among all nodes is minimized by FGSEe.,
east one edge equal to or longer thanv), p(Gy) = min{p(F) : F € SSy(G)}, whereG is a

) . V.
2) u is not k-connected tov in Gy : 10 PreSeIVe yiractaq graph andsSy,(G) is the set of allk-connected
the connectedness as much as possible, Ay spanning subgraphs .

LSSk(G) should have includedu, v);

In both casesp(F) > p(GY) = p(Gprss), which ~ T0 show that FLSGcan be applied to heterogeneous
meansp(Grrss) = min{p(F) : F € LSS,(G)}. 0 networks, we first define the counterpart of Definition 1

in heterogeneous networks:

V. RELAXATION OF SEVERAL ASSUMPTIONS Definition 16 (Reachable Neighborhood)The reach-
Although the assumptions stated in Section |l a@ble neighborhoodV/ is the set of nodes that node
widely used in existing topology control work, somean reach by using the maximum transmission power,
of them are made for ease of analysis and may not be,, N = {v € V(G) : (u,v) € E(G)}. For each node
practical. In this section, we discuss how to relax thesec V(G), let G = (V(GY), E(GY)) be the induced

assumptions in FGSSand FLS$ so as to promote their subgraph ofG such thatV (GY) = N.Y.

use in realistic situations, We now prove thek-connectivity of FLS$. Note

_ ~ that G, 45 can no longer preservi-connectivity for
A. Relaxing the Homogeneous Network Assumption heterogeneous networks.

As mentioned in [9], the assur_npﬂon o'f hompgeneOﬁeorem 3 (Connectivity of FLSS,). If G is k-
nodes does not always hold in practice, since even nected thel prgs, G are bothk-connected
devices of the same type may have slightly different ' * TFLSS '
maximal transmission power, let alone the fact that Proof: We only need to prove thé&tr;ss preserves
devices of different types possess dramatically differetite k-connectivity ofG, sinceE(Grrss) C E(G}CLSS).
capabilities. The original topology of a heterogeneol®t £ = FE(G) — E(Grrss). For any edgee =
network, instead of being defined as an undirected graphv) € E, it is not in E(Grrss) because in the
in Section Il, should be defined as a directed gragiiocess of local topology construction of node
G = (V(G),E(G)) in the 2-D plane. HereG is was alreadys-connected ta before(u,v) was inserted.
not necessarily a geometric graph. Legt denote the Since edges are inserted in an ascending order, whether
maximal transmission range af u is k-connected tov at the moment beforéu,v) is

First we prove that FGSSpreservesk-connectivity inserted depends only on the edges of smaller weights.
and is min-max optimal even in heterogeneous networkiherefore, v is k-connected tov in G — {(uo,vo) €
The following results correspond to Lemma 1, Lemma Z/(G) : w(ug, vg) > w(u,v)}. LetG' = Grrss, we can
Theorem 1 and Theorem 2, respectively. The proof é®nclude thatzrrss is k-connected by Lemma*2 [
literally the same as that in Section IV-A, except that The min-max optimality of FLSS can be proved in
now we consider directed graphs consisting of directedstraightforward manner:

edges. This resemblance is by no means a COmC'den‘ﬁﬂaéorem 4. Among all strictly localized algorithms,

since we actgally cqnsider more general cases when I\éi_eSS; minimizes the maximum transmission radius (or
proved them in Section IV-A. power) of nodes in the network, i.ep(Grrss) =
Lemma 1*. Let u; and uy be two vertices in ak- min{p(F) : F € LSS,(G)}, whereG is a directed
connecteddirectedgraph F. If u; are k-connected to graph.

ug after the removal of edg@u;, us), thenF — (ug, us9)

is still k-connected. B. Relaxing the Obstacle Free Propagation Model

Lemma 2*. LetG and G’ be twodirectedsimple graphs  We assume in Section Il an obstacle free propagation
such thatV(G) = V(G'). If G is k-connected, and model. In this section, we state this assumption can be
every edge(u,v) € E(G) — E(G') satisfies thatu is readily dismissed.

k-connected tw in G —{(up,vo) € E(G) : w(up,vo) > We have previously assumed that the original network
w(u,v)}, thenG' is also k-connected. topology, G, is a general directed or undirected graph.



The information needed by FGHELSS; is the edges D. Relaxing the Assumption of Perfect Omni-directional
that exist inG. An edge that was not formed in theAntenna Patterns

network, whether because the two endpoints of the edgeMany topology control algorithms assume a Unit

are not within the transmission range of each other g Graph (UDG) model, i.e., the antenna pattern of
because there exists a obstacle in between, does not ha\ireless device is a p’erfec,t disk. This is also the
any impact on the results of FGFELSS;. Also from hqerlying assumption for algorithms that use explicit
the point of view of a node, it only knows whether or channel propagation models. Since the same models are
not there exists a link between itself and another nod plied to all directions, the antenna patterns have to

v, but has no way to infer the exact reason (either (g jsotropic, which in turn implies that the transmission
the two nodes are not within transmission range of eagh., is a perfect disk.

other; or (b) the obstacle between the two nodes blockstha antenna model does not affect FGSSince

the communication). As long as the original topologngSSk is a centralized algorithm that can be given

(which has taken into consideration of obstacles in trﬂ)%rfect global information. For FLSS the antenna
network) isk-connected, FGSFFLSS; can be applied 4o model influences the manner in which the in-

to provide a min-max optimal solution to preser¥e ormation on NV can be collected. Given an arbitrary

connectivity. Therefore, the assumption of obstacle-fregianna pattern, we can simply employ the information
wireless channel can be relaxed without any modificatiqf\ssemination technique in Section V-C. It is obvious

to FLSS.. that the information dissemination technique does not
rely on any specific antenna pattern, except that the
estimation of edge length becomes quite difficult. This is

due to the fact that the antenna pattern is not necessarily

C. Relaxing the Requirement on Position Information . o : o
isotropic, i.e., the power attenuation may vary in different

It is assumed in Section Il that each node is equippggections. We are currently investigating how to address

with the capability of gathering its own location infor-this problem.

mation. In this subsection, we relax this requirement.
As mentioned in Section V-B, what is required by VI. PERFORMANCEEVALUATION

FGSS/FLSS; is the information of all the existing edges In this section, we evaluate the performance of FL.SS
in the network. FGSBFLSS; can operate without the against two distributed/localized algorithms, CBTC [15],
knowledge of specific positions of nodes in the networ‘kau)p’,g [16], and Hajiaghayi’s algorithm [11] with respect
as follows. If each node knows it own position, either by several metrics via simulation. The parametein
special hardware or localization service provided by th(aow is set to 6 in order to minimize the average power
network, it will be fairly easy to gather the knowledge of16].
existing edges. Otherwise, we augment FL.$8th an  For the sake of fair comparison, we have to use
extra run of information dissemination. First, each nodg:veral common assumptions among all the algorithms,
periodically broadcasts, using its maximal transmissigR., the UDG model. The performance of the centralized
power, a very shorHi message which includes only itsalgorithm FGS$ is also shown as a baseline. As will be
nodeid and its transmission power. Upon receiving sughown in the following discussion, the performance of
a message from a neighbor nadeeach node: estimates FLSS; is only slightly worse than that of FG$S
the length of the edgév,u) based on the attenuation |n the first set of simulation, we assume that nodes
incurred in the transmission. Denote the set of edggge uniformly distributed in d000m x 1000m region.
incident atu as E. = {(v,u) : v € N,'}). After u has The transmission range for all nodes261.195m. We
collected the information o], « can then broadcastvary the number of nodes in the region from 70 to 300.
this information in anEdge message. Each node willEach data point is the average of 50 simulation runs.
be able to construct the edge get\V,") based on the Radius and average link length Fig. 2 shows
Edge messages received from all of its neighbors.  the average radius and the average maximum radius
Although this solution may incur more communicatiofor the topologies derived under NONE (with no to-
and computation overhead, and make F|.$8s “local- pology control), CBTC, YAQ., FLSS and FGSS.
ized”, it eliminates the need for the position informationThe average radius of FL$Ss much smaller than
and thus is better suited for wireless sensor networlteat of other algorithms. This implies nodes in FLSS
where the cost and the energy consumption should e much less average power to transmit. The average
kept as low as possible. maximum radius of CBTC or YAg), comes very close
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with respect to radiusk(= 2). Fig. 4. Comparison of NONE, CBTC, YAQ, FLSS; and FGS$
with respect to average degree=£ 2).

to that of NONE. This means the CBTC and YA®
cannot really improve the network lifetime. In contrasgnd potentially affect. Fig. 4 shows the average node
the average maximum radius of FLSS8 significantly degree of the topologies derived under CBTC, YAQ
smaller, which implies that FLSS can greatly prolongLSS, and FGS$. The average degree under NONE
the network lifetime. The average link length of théncreases almost linearly with the number of nodes.
topologies derived under different algorithms is showhhe average degree under CBTC and YACalso in-
in Fig. 3. FLSS outperforms the others, and moreovesreases as the number of nodes increases. In contrast,
its performance is very close to that of the centralizale average degree under FGS&hd FLSS actually
algorithm FGSS. decreases. Fig. 5 gives the average maximum node de-
Node degree We also compare the average nodgree and the largest value of the maximum node degrees
degree of the topologies derived under different algamong all the nodes in the topologies derived under
rithms, where the node degree is defined as the num@BTC, YAGs 2, FLSS, and FGS$. Both values under
of nodes within the transmission radius of a nod&GSS/FLSS, are significantly smaller than those under
The node degree is an indication of the level of MAGIONE/CBTC/YAQG; . All the results show that FLSS
interference (and hence the extent of spatial reusen achieve better spatial reuse, and the performance
i.e., the smaller the node degree of a node, the lésgprovement becomes even more prominent when the
number of nodes its transmission may interfere witinetwork density becomes higher.
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with respect to the maximum degreke £ 2).

Energy saving We compare the various algorithm§im"ar setting to that in [11]. Note that we are unable

with respect to the average expended energy ratio (EER)accurately control the density of the original graph
defined in [11] as (with the maximal transmission range), thus we compare

the algorithms under the topology of roughly the same
average degree. Fig. 7 gives the comparison results,
where FGSS and FLSS are shown to perform better
where E,,. is the average transmission power over athan the distributed version @&UPVCS in almost every
the nodes in the network, anfl,,,. is the maximal setting, and worse than the global versionkeff PVCS.
transmission power that can reach the transmission range Tradeoff between topology robustness and per-
of 261.195m. Here we use the free-space propagatidarmance: In the third set of simulations, we com-
model to calculate the transmission power. Fig. 6 givgsre FLSS and FLSS against a localized topology
the comparison results for both= 2 andk = 3. FLSS, control algorithm, LMST [8], that renders-connected
clearly has the advantage. subgraphs. As shown in Fig. 8, FLS&nders topologies

In the second set of simulations, we compare FGS8at have larger average degrees, longer average radii,
and FLS$ with both the distributed and centralizedand longer average maximum radii, and consume more
versions ofk-UPVCS [11] in terms of EER, for both power than LMST. However, the topologies are also
k = 2 and k = 3. The simulation is conducted in amore robust and are resilient to— 1 failures (the same

EER = Leve

max

x 100,
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conclusion can be drawn ds increases). This shows
the tradeoff between the robustness of the topology anc
the other performance metrics (e.g., power consumption
network lifetime, spatial reuse, and MAC level interfer-
ence).
Finally we compare LMST, FLSSand FLSS with

respect to network capacity and energy efficiency. In
this set of simulationp. nodes are randomly distributed

20

Expended Energy Ratio (EER)

10

in a 1500m x 200m region, with half of them being %
sources and the other half being destinations. To ob-
serve the effect of spatial reuse, the deployment region
should be large enough as compared to the transnigy. s.

I
100

I
150 200 250 300

Comparison of LMST, FLSSand FLSS with respect to

sion/interference range. To reduce the number of nodegaverage radius, average node degree and EER.

and to expedite simulation, we use a rectangular re-
gion, rather than a square region. In the simulation,
the propagation model is the two-ray ground model, the



Energy (J)

Data Delivered/Energy (bytes/J)

Fig. 9.

Data Delivered (bytes)

* - NONE

A LMST
_ FLSS,

190

o FLSS,
25 T L L L L L L L
100 110 120 130 140 150 160 170 180
# Nodes
(a) Total throughput (bytes).
7000 ;
% NONE
A LMST
6500 O~ Eizz -
P
- 3 _ *
6000 | g 4
_ - P N
_ P
a
5500 - e TLnb
- o
* P
- - PN
5000 - - <
* i
- - A
- B -
4500 *7 e
-7 o - A
A7 -
4000 e e A
47 e
- o8 A
P _
3500 -
pug A
3000 &
N
2500 i i i i i i i
100 110 120 130 140 150 160 170 180
# Nodes

(b) Total energy consumption (Joule).

2000

190

N
1800

=
@
<}
S
T

1400

1200

1000

-
S
S

o
<3
S

400

;
* NONE
A LMST

o FLSS,

_o FLSS, ]

14‘10 1;0 1(‘50 1;0
# Nodes
(c) Energy efficiency (bytes/J).

I I I
100 110 120 130

180

Comparison of LMST, FLSSand FLSS with respect to
the network capacity and the energy efficiency under CBR traffic.

13

MAC protocol is IEEE 802.11, the routing protocol is
AODV, and the traffic sources are CBR (note that results
obtained by using TCP traffic with bulk FTP sources
exhibit similar trends, and hence are not reported here).
The start time of each connection is chosen randomly
from [0s, 10s]. Each simulation run lasts for 100 seconds.

We compare the total amount of data delivered (in
bytes, Fig. 9(a)), the total energy consumption (in
Joule, Fig. 9(b)), and the energy efficiency (in bytes/J,
Fig. 9(c)). It can be observed that with the increase in
the level of network connectivity ( in the order of LMST,
FLSS, FLSS, NONE), the total throughput decreases,
the total energy consumption increases, and the energy
efficiency decreases. This result again demonstrates the
trade-off between the robustness (or routing redundancy)
and the network capacity/energy efficiency.

VIl. CONCLUSIONS

In this paper, we have taken into account of fault
tolerance in topology control in wireless ad-hoc networks
and sensor networks. We first present a centralized
greedy algorithm, FGSS$to find ak-connected spanning
subgraph of the topology. We prove that FG$fBeserve
k-connectivity and is min-max optimal among all cen-
tralized algorithms. By min-max optimality we mean that
the maximum transmission power (radius) used among
all the nodes is minimized. The min-max optimality
is critical in prolonging the network lifetime. Since
localized algorithms rely only on the information that can
be locally collected and are hence more power-efficient
when the overhead incurred in information collection is
considered, we propose, based on FgSs localized
topology control algorithm FLSS We prove FLS$
preservesk-connectivity and bi-directionality, and is
min-max optimal among all strictly localized algorithms.

After the theoretical base is laid and FLS8evised,
we proceed to examine several widely used assumptions
in topology control, e.g., uniform maximal transmission
power, obstacle-free communication channel, capability
of obtaining position information, and perfect antenna
pattern, relax these assumptions for FG38d FLSS
SO as to promote their practicality.

Although FLSS outperforms other localized algo-
rithms in random networks in terms of power con-
sumption, it does not give any performance bound on
power consumption as many centralized algorithms do
[12] (in contrast, the distributed version of Hajiaghayi's
algorithm [11] is shown to give a performance bound,
but does not preserveconnectivity as shown in Fig. 1).
The dominating reason for the lack of a performance
guarantee is that FLS3s greedy and highly localized.
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Although it performs very well in most cases, we highly13] M. D. Penrose, “On k-connecitivity for a geometric random
suspect that the information available within each node’s 9raph,”Random Structures and Algorithmeol. 15, no. 2, pp.
transmission range is too limited to upper-bound tf[§4
performance under some rare, extreme cases. As par
of our future research, we will extend FLS® utilize

more information in the network so as to provide some
performance bound.

15]
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