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Abstract

There are two primary objectives of this dissertation. The first goal is to identify certain

limits of genetic algorithms that use only fitness for learning genetic linkage. Both an ex-

planatory theory and experimental results to support the theory are provided. The other

goal is to propose a better design of the linkage learning genetic algorithm. After under-

standing the cause of the performance barrier, the design of the linkage learning genetic

algorithm is modified accordingly to improve its performance on uniformly scaled problems.

This dissertation starts with presenting the background of the linkage learning genetic

algorithm. Then, it introduces the use of promoters on the chromosome to improve the

performance of the linkage learning genetic algorithm on uniformly scaled problems. The

convergence time model is constructed by identifying the sequential behavior, developing

the tightness time model, and establishing the connection in between. The use of subchro-

mosome representations is to avoid the limit implied by the convergence time model. The

experimental results demonstrate that the use of subchromosome representations may be a

promising way to design a better linkage learning genetic algorithm.

The study finds that using promoters on the chromosome can improve nucleation poten-

tial and promote correct building-block formation. It also observes that the linkage learning

genetic algorithm has a consistent, sequential behavior instead of different behaviors on

different problems as was previously believed. Moreover, the competition among building

blocks of equal salience is the main cause of the exponential growth of convergence time. Fi-

nally, adopting subchromosome representations can reduce the competition among building

blocks, and therefore, scalable genetic linkage learning for a unimetric approach is possible.
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Introduction

Genetic algorithms (GAs) are powerful search techniques based on principles of evolution.

They are now widely applied to solve problems in many different fields. However, most

genetic algorithms employed in practice nowadays are simple genetic algorithms with fixed

genetic operators and chromosome representations. Unable to learn linkage among genes,

these traditional genetic algorithms suffer from the linkage problem, which refers to the

need of appropriately arranging or adaptively ordering the genes on chromosomes during

the evolutionary process. They require their users to possess prior domain knowledge of the

problem such that the genes on chromosomes can be correctly arranged in advance. One

way to alleviate this burden of genetic algorithm users is to make the algorithm capable of

adapting and learning genetic linkage by itself.

Harik (1997) took Holland (1975)’s call for the evolution of tight linkage quite literally

and proposed the linkage learning genetic algorithm (LLGA). The linkage learning genetic

algorithm uses a unique combination of the (gene number, allele) coding scheme and an

exchange crossover operator to permit genetic algorithms to learn tight linkage of building

blocks through a special probabilistic expression. While the linkage learning genetic algo-

rithm performs much better on badly scaled problems than simple genetic algorithms, it

does not work well on uniformly scaled problems as other competent genetic algorithms,

which are a class of genetic algorithms that can solve problems quickly, accurately, and re-

liably (Goldberg, 2002). Therefore, we need to understand why it is so and need to know

how to design a better linkage learning genetic algorithm or whether there are certain limits

of such a genetic linkage learning process.
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As suggested by Goldberg and Bridges (1990), there is a race or time-scale comparison in

the genetic linkage learning process. If we call the characteristic time of allelic convergence

tα and the characteristic time of linkage convergence tλ, it is easy to see that sets of alleles

converge more quickly than linkage does, i.e. tα < tλ. Because selection works on the fitness

to promote good alleles and demote bad ones, allele convergence receives a stronger and more

direct signal from the selection force than linkage convergence does. The force for linkage

convergence only comes from the differential selection of linkage (Goldberg, 2002), which is

generated indirectly from the schema theorem (Holland, 1975; Goldberg, 1989c; Goldberg

& Sastry, 2001). Such a condition leads to the failure of genetic algorithms because loose

linkage prevents genetic algorithms from getting correct alleles, and once the alleles converge

to wrong combinations, the result cannot be reversed or rectified. In short, to have a working

algorithm capable of learning genetic linkage, we have to make linkage convergence not slower

than allele convergence, i.e. tλ ≤ tα, to ensure the success of genetic algorithms.

In order to tackle the linkage problem and handle the time-scale comparison, a variety of

genetic linkage learning techniques are employed in existing competent genetic algorithms.

Most of the current, successful genetic algorithms that are capable of learning genetic linkage

separate the linkage learning process from the evolutionary process to avoid the time-scale

comparison and utilize certain add-on criteria to guide linkage learning instead of using

only the fitness given by the problem. Genetic algorithms that incorporate such add-on

criteria which are not directly related to the problem at hand for learning linkage are called

multimetric approaches. On the other hand, the algorithms that use only fitness to guide the

search in both linkage learning and the evolutionary process are called unimetric approaches.

While multimetric approaches oftentimes yield better performance, we are particularly

interested in the unimetric approach not only because it is usually easier to parallelize a

unimetric approach to speed up the evolutionary process but also because the unimetric ap-

proach is more biologically plausible and closer to the observation that we can make in nature.

Empirically, multimetric approaches usually perform better than unimetric approaches, and
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a question to ask is whether or not the unimetric approach has some upper limit on the

number of building blocks up to which it can handle and process. Here, using the linkage

learning genetic algorithm as the study subject, we try to understand the genetic linkage

learning process and to improve the linkage learning genetic algorithm such that the insights

and ramifications from this research project might be useful in the design genetic algorithms

as well as in related fields of biology.

Thesis Objectives

This dissertation presents a research project that aims to gain better understanding of the

linkage learning genetic algorithm in theory and to improve its performance on uniformly

scaled problems in practice. It describes the steps and approaches taken to tackle the re-

search topics, including using promoters on the chromosome, developing the convergence

time model, and adopting the subchromosome representation. It also provides the experi-

mental results for observation of the genetic linkage learning process and for verification of

the theoretical models as well as the proposed new designs. Given the nature and develop-

ment of this research project, there are two primary objectives of the dissertation:

1. Identify certain limits of genetic algorithms that use fitness alone, so-called unimetric

approaches, for learning genetic linkage. The dissertation provides both an explanatory

theory and experimental results to support the theory.

2. Propose a better design of the linkage learning genetic algorithm. After understanding

the cause of the difficulty and performance barrier, the design of the linkage learning

genetic algorithm is modified to improve its performance.

These two objectives may advance our understanding of the linkage learning genetic algo-

rithm as well as demonstrate potential research directions.
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Road Map

This dissertation is divided into eight chapters. It starts with an introduction of genetic

algorithms, genetic linkage, and the linkage learning genetic algorithm. Chapter 1 presents

the terminology of genetic algorithms, the pseudo-code of a simple genetic algorithm, the

design-decomposition theory, and the gambler’s ruin model for population sizing, followed

by a discussion of genetic linkage as well as the linkage problem. The importance of learning

genetic linkage in genetic algorithms is also discussed. Chapter 2 provides a set of classifica-

tions of the existing genetic linkage learning techniques such that different views from several

facets of these techniques are revealed and depicted. The chapter also presents the lineage of

the linkage learning genetic algorithm to demonstrate how it was developed and constructed

from its precursors and ancestors. Moreover, the position of the linkage learning genetic

algorithm among the existing genetic linkage learning techniques is identified. Chapter 3

describes in detail the linkage learning genetic algorithm, including (1) the chromosome rep-

resentation, (2) the exchange crossover operator, (3) two mechanisms that enable the linkage

learning genetic algorithm, (4) accomplishments of the linkage learning genetic algorithm,

and (5) difficulties encountered by the linkage learning genetic algorithm.

After introducing the background, importance, and motivations, the approaches, results,

and conclusions of this research project are presented in the remainder of this dissertation.

Chapter 4 presents the assumptions regarding the framework based on which we develop the

theoretical models as well as those regarding the genetic algorithm structure we adopt in

this work. Then, it describes in detail the definition of the elementary test problem and the

construction of the larger test problems. Chapter 4 provides a background establishment for

the following chapters. Chapter 5 introduces the use of promoters and a modified exchange

crossover operator to improve the performance of the linkage learning genetic algorithm.

Chapter 6 develops the convergence time model for the linkage learning genetic algorithm.

It identifies the sequential behavior of the linkage learning genetic algorithm, extends the
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linkage-skew and linkage-shift models to develop the tightness time model, and establishes

the connection between the sequential behavior and the tightness time model to construct

a convergence time model for the linkage learning genetic algorithm. According to this con-

vergence time model, chapter 7 proposes the use of subchromosome representations to avoid

the limit implied by the convergence time model. The experimental results demonstrating

that the use of subchromosome representations may be a promising way to design a bet-

ter linkage learning genetic algorithm are also presented. Finally, chapter 8 concludes this

dissertation by summarizing its contents, discussing important directions for its extension,

drawing significant conclusions, and offering a number of recommendations.
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Chapter 1

Genetic Algorithms and
Genetic Linkage

This chapter provides a summary of fundamental material on genetic algorithms. It presents

definitions of genetic algorithm terms and briefly describes how a simple genetic algorithm

works. Then, it introduces the term genetic linkage and the so-called linkage problem that

exists in common genetic algorithm practice. The importance of genetic linkage is often

overlooked, and this chapter helps explain why linkage learning is an essential topic in the

field of genetic and evolutionary algorithms. More detailed information and comprehensive

background can be found elsewhere (Goldberg, 1989c; Goldberg, 2002; Holland, 1975).

Specifically, this chapter introduces the following topics:

• An overview of genetic algorithms: Gives a skeleton of genetic algorithms and briefly

describes the roles of the key components.

• Goldberg’s design-decomposition theory: Lays down the framework for developing

facetwise models of genetic algorithms and for designing component genetic algorithms.

• The gambler’s ruin model for population sizing: Governs the requirement of the pop-

ulation size of the genetic algorithm based on both the building-block supply and

decision making. This model is employed throughout the study.

• The definition of genetic linkage and importance of linkage learning: Explains what

6



set generation t← 0
randomly generate the initial population P (0)
evaluate all individuals in P (0)
repeat

select a set of promising individuals from P (t) for mating
apply crossover to generate offspring individuals
apply mutation to perturb offspring individuals
replace P (t) with the new population
set generation t← t + 1
evaluate all individuals in P (t)

until certain termination criteria are met

Figure 1.1: Pseudo-code of a simple genetic algorithm.

genetic linkage is in both biological systems and genetic algorithms as well as gives

the reason why genetic linkage learning is an essential topic in the field of genetic and

evolutionary algorithms.

In the following sections, we will start with the overview of genetic algorithms, followed

by the design-decomposition theory for genetic algorithms, the gambler’s ruin model for

population sizing, and the introduction of genetic linkage learning.

1.1 Overview of Genetic Algorithms

Genetic algorithms are stochastic, population-based search and optimization algorithms

loosely modeled after the paradigms of evolution. Genetic algorithms guide the search

through the solution space by using natural selection and genetic operators, such as crossover,

mutation, and the like. In this section, the mechanisms of a genetic algorithm are briefly

introduced as a background of this research project. The pseudo-code of a simple genetic

algorithm is shown in Figure 1.1.
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1.1.1 Representation, Fitness, and Population

Based on the principles of natural selection and genetics, genetic algorithms encode the

decision variables or input parameters of the underlying problem into solution strings of a

finite length over an alphabet of certain cardinality. Characters in the solution string are

called genes. The value and the position in the string of a gene are called locus and allele,

respectively. Each solution string is called an individual or a chromosome. While traditional

optimization techniques work directly with the decision variables or input parameters, genetic

algorithms usually work with the codings of them. The codings of the variables are called

genotypes, and the variables themselves are called phenotypes.

For example, if the decision variable to a problem at hand is an integer x ∈ [0, 63], we

can encode x in the specified range as a 6-bit string over a binary alphabet {0, 1} and define

the mapping between an individual A ∈ {0, 1}6 and the value x(A) represented by A as

x(A) =
5∑

i=0

2iA(i) ,

where i is the position of the character in the string, and A(i) is the ith character (either 0 or

1). A, the binary string, is the genotype of x, and x(A), the integer value, is the phenotype

of x. For instance, x(A1 = 010001) = 20 +24 = 17, and x(A2 = 100110) = 21 +22 +25 = 38,

where the positions are read from right to left.

After having the solutions to the problem encoded, a method or procedure for distin-

guishing good solutions from bad solutions is in order. The procedure can be a laboratory

experiment, a field test, a complex computer simulation, or a human who decides the solu-

tion quality. Genetic algorithms work with these different modes or measurements as long

as better solutions are assigned higher fitness when compared to worse solutions. Fitness

in nature is to provide a differential signal according to which genetic algorithms guide the

evolution of solutions to the problem.

Equipped with the coding scheme to represent the solutions to the problem and the
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fitness function to distinguish good solutions from bad solutions, genetic algorithms start to

search from a population of encoded solutions instead of from a single point in the solution

space. The initial population of individuals can be created at random or with some problem-

specific knowledge. In order to evolve new solutions, genetic algorithms use genetic operators

to create promising solutions based on the solutions in the current population. The most

popular genetic operators are (1) selection, (2) crossover, and (3) mutation, which will be

described in what follows. The newly generated individuals replace the old population, and

the evolution process proceeds until certain termination criteria are satisfied.

1.1.2 Selection, Crossover, and Mutation

As previously mentioned, genetic algorithms evolve the population of solutions with genetic

operators, including selection, crossover, and mutation. The selection procedure implements

the natural selection force or the survival-of-the-fittest principle and selects good individuals

out of the current population for generating the next population according to the assigned

fitness. The existing selection operators can be broadly classified into two classes: (1) propor-

tionate schemes, such as roulette-wheel selection (Goldberg, 1989c) and stochastic universal

selection (Baker, 1985; Grefenstette & Baker, 1989), and (2) ordinal schemes, such as tour-

nament selection (Goldberg, Korb, & Deb, 1989) and truncation selection (Mühlenbein &

Schlierkamp-Voosen, 1993).

Ordinal schemes have grown more and more popular over the recent years, and one of

the most popular ordinal selection operators is tournament selection. Tournament selection

selects s, called the tournament size, individuals from the current population of size n. The

best individual among the s individuals gets one copy in the mating pool. The selection of

s individuals can be done with or without replacement. The procedure is repeated until the

mating pool is filled with n individuals. Hence, in tournament selection, the best individual

on average gets s copies in the mating pool, and the worst one gets none.

After selection, crossover and mutation recombine and alter parts of the individuals to
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generate new solutions. Crossover, also called the recombination operator, exchanges parts of

solutions from two or more individuals, called parents, and combines these parts to generate

new individuals, called children, with a crossover probability, pc. There are a lot of ways to

implement a recombination operator. As an example, consider two individuals A1 and A2:

A1 = 1 1 | 1 1 1 | 1

A2 = 0 0 | 0 0 0 | 0

The symbol | indicates the positions of the crossover points which are chosen at random.

The widely used two-point crossover generates the following two children A′
1 and A′

2:

A′
1 = 1 1 0 0 0 1

A′
2 = 0 0 1 1 1 0

Other well known crossover operators include one-point crossover and uniform crossover.

When using one-point crossover, only one crossover point is chosen at random, such as

A1 = 1 1 1 1 | 1 1

A2 = 0 0 0 0 | 0 0

Then, one-point crossover recombines A1 and A2 and yields:

A′
1 = 1 1 1 1 0 0

A′
2 = 0 0 0 0 1 1

While one-point crossover and two-point crossover choose some crossover points at random

for cutting the individual into pieces, uniform crossover exchanges each gene with a proba-

bility 0.5. Uniform crossover, on average, swaps half of genes of the individuals and therefore

achieves the maximum allele-wise mixing rate.

Mutation usually alters some pieces of individuals to form perturbed solutions. In con-

trast to crossover, which operates on two or more individuals, mutation operates on a single

individual. One of the most popular mutation operators is the bitwise mutation, in which

each bit in a binary string is complemented with a mutation probability, pm. For example,
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A = 1 1 1 1 1 1

might become

A′ = 1 1 1 1 0 1

after mutation. Mutation performs a random-walk in the vicinity of the individual in the

solution space, which may keep the solution diversity of the current population.

It has been shown that although these genetic operators are ineffectual when analyzed

individually, they can work well when cooperating with one another (Goldberg, 1999; Gold-

berg, 2002). This aspect has been explained with the concepts of the fundamental intuition

and innovation intuition by Goldberg (2002). In that study, the combination of selection and

mutation, called selectomutative genetic algorithms, is compared to continual improvement

(a form of hillclimbing), and the combination of selection and crossover, called selectorecom-

binative genetic algorithms, is compared to the cross-fertilizing type of innovation. These

analogies have been used to develop competent genetic algorithms, which are a class of

genetic algorithms that solve hard problems quickly, accurately, and reliably. Competent

genetic algorithms successfully solve problems of bounded difficulty and scale polynomially

(oftentimes subquadratically) with the problem size (Goldberg, 2002). In order to design

competent genetic algorithms, a design decomposition has been proposed (Goldberg, 1991;

Goldberg & Liepens, 1991; Goldberg, Deb, & Clark, 1992; Goldberg, 1993; Goldberg, 2002),

and a note on the design-decomposition theory is presented in the following section.

1.2 Goldberg’s Design Decomposition

As discussed in the previous section, we are interested in developing competent genetic al-

gorithms that can solve problems of bounded difficulty and scale polynomially (oftentimes

subquadratically) with the problem size. Based on Holland (1975)’s notion of a building

block (BB), Goldberg proposed a design-decomposition theory for designing a selectore-
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combinative genetic algorithm that can solve hard problems quickly, accurately, and reli-

ably (Goldberg, 1991; Goldberg & Liepens, 1991; Goldberg, Deb, & Clark, 1992; Goldberg,

1993; Goldberg, 2002). As of its current development, the design decomposition consists of

seven steps (Goldberg, 2002), which lead us step by step toward designing competent genetic

algorithms. These steps are reproduced and briefly described in the following paragraphs:

1. Know what GAs process—building blocks (BBs). This step emphasizes that

genetic algorithms work through quasi-invariant, highly fit structures—components of

good solutions—identified as building blocks by Holland (1975). The key idea is that

genetic algorithms implicitly, virtually decompose the problem into subproblems, find

subsolutions, and combine different subsolutions to form solutions of high quality.

2. Solve problems of bounded BB difficulty. Competent genetic algorithms are

capable of solving problems reliably if the building blocks involved are of low order.

According to Goldberg’s cross-fertilizing innovation, problems are hard because they

have deep or complex building blocks, or because they have building blocks that are

hard to separate, or because they have low-order building blocks that are misleading

or deceptive (Goldberg, 1987; Goldberg, 1989b; Goldberg, Deb, & Horn, 1992; Deb

& Goldberg, 1993; Deb & Goldberg, 1994). Hence, we know that there exist very

hard problems that are too difficult to solve with reasonable computational resources.

However, here we are interested in solving nearly decomposable problems of bounded

difficulty, which include a wide range of practical problems with a low difficulty level.

The primary interest is to develop competent genetic algorithms to efficiently solve

problems of certain level of difficulty through building-block processing.

3. Ensure an adequate supply of raw BBs. This step states that for a genetic algo-

rithm to successfully solve a problem, all the necessary raw building blocks should be

available in a sufficient manner. In a selectorecombinative genetic algorithm, building

blocks are mixed and recombined to create complete solutions. Therefore, this con-

12



dition suggests that the initial population should be large enough to ensure that the

supply of raw building blocks is adequate from the beginning.

4. Ensure increased market share for superior BBs. The proportion of good build-

ing blocks in the population should continue to grow over the generations to ensure the

continuous supply of good building blocks. Cooperating with the previous step, which

ensures the supply of raw building blocks from the beginning, good building blocks

can have more and more copies in the population such that a genetic algorithm can

combine them to create promising solutions. Otherwise, because of the lack of good

building blocks, there is little chance to mix and combine appropriate building blocks

to yield the global optimum.

5. Know BB takeover and convergence times. Although it is stated in the previous

step that the market share for superior building blocks has to grow and cannot grow

too slowly over the generations, the growth rate of the portion of superior building

blocks in the population should not be too fast, either. If the proportion of certain

building blocks grows too fast, a genetic algorithm will not have enough time to work on

the exchange and recombination of raw building blocks before there is no alternative

building blocks left in the population for conducting effective recombination. Such

condition may result in premature convergence of genetic algorithms or lead to the

domination of deceptive building blocks if they exist.

6. Ensure the BB decisions are well made. Because genetic algorithms work on

the fitness of an individual containing multiple building blocks, they face a statisti-

cal decision problem when deciding among competing building blocks. For example,

a bad building block might be selected over its competitors because it comes with

other good building blocks in the same individual. Given a particular building block,

fitness contribution of the building blocks from other partitions in the individual can

be considered as noise to the fitness. Therefore, this condition also suggests that the
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population size should be sufficiently large for a genetic algorithm to make statistically

correct decisions among competing building blocks.

7. Ensure a good mixing of BBs. After having the steps that can ensure the supply

of raw building blocks, the appropriate growth rate of market share for good build-

ing blocks, and the correct decisions among competing building blocks, we need to

efficiently and effectively mix and reassemble these building blocks in order to create

high quality solutions. In other words, the supply and growth of good building blocks

continuously maintains the presence of individual building blocks. A good mixing of

building blocks is the other key component to ensure a GA success by combining and

assembling these building blocks.

This design-decomposition theory explains the way genetic algorithms work, indicates the

direction to design competent genetic algorithms, and helps the development of theoretical

models for predicting the scalability of genetic algorithms. To ensure the supply of raw

building blocks, several population-sizing models were proposed for estimating reasonable

population sizes (Holland, 1973; Holland, 1975; Goldberg, 1989c; Reeves, 1993; Goldberg,

Sastry, & Latoza, 2001) based on the building-block supply. To ensure the building-block

growth, we can set the selection pressure and the crossover probability appropriately (Gold-

berg & Sastry, 2001; Goldberg, 2002) according to the schema theorem (De Jong, 1975;

Holland, 1975; Goldberg, 1989c), which describes the market share growth of building blocks

in terms of selection pressure and crossover probability.

The convergence time discussed in the design-decomposition theory dictates the time

requirement of genetic algorithms. Studies were conducted through facetwise models (Bäck,

1995; Blickle & Thiele, 1995; Blickle & Thiele, 1996; Miller & Goldberg, 1995; Miller & Gold-

berg, 1996; Thierens & Goldberg, 1994a; Thierens & Goldberg, 1994b; Thierens & Goldberg,

1998) and found that the convergence time for genetic algorithms scales up with the order of

the square root of the problem size or scales up linearly to the problem size on different types
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of problems examined in the those studies when the ordinal selection schemes are employed.

To ensure good building-block decision making, a population-sizing model considering the

fitness contribution from other building blocks as the noise of fitness of the building block

in question were also developed to achieve statistically correct decisions among competing

building blocks (Goldberg, Deb, & Clark, 1992). Finally, by integrating the requirements of

the building-block supply and decision making, a refined population-sizing model considering

the evolutionary process as the gambler’s ruin problem (Feller, 1970) was proposed (Harik,

Cantú-Paz, Goldberg, & Miller, 1997; Harik, Cantuú-Paz, Goldberg, & Miller, 1999) to

provide a tighter bound on the population size required by selectorecombinative genetic al-

gorithms. Because the gambler’s ruin model for population sizing is used to determine the

population sizes in the experiments throughout this study, we will describe it in detail next.

1.3 Population-Sizing Model

As discussed in the previous section, the gambler’s ruin model for population sizing provides

a tight bound on the population size required by selectorecombinative genetic algorithms and

is used to determine the population size throughout this study. Therefore, in this section,

we reproduce the gambler’s ruin model proposed by Harik, Cantú-Paz, Goldberg, and Miller

(1997) and summarized by Sastry (2002) to introduce its idea, derivation, and implication.

Harik, Cantú-Paz, Goldberg, and Miller (1997) incorporated both the initial building-

block supply model and the decision-making model in the population-sizing relation to con-

struct the model which can provide a tight bound of the population size. They removed the

requirement used by Goldberg, Deb, and Clark (1992) that only a successful decision making

in the first generation results in the convergence to the optimum. In order to remove this

criterion, they modeled the decision making in subsequent generations with the well known

gambler’s ruin model (Feller, 1970). The proposed population-sizing equation is directly

proportional to the square root of the problem size, inversely proportional to the square root

15



of the signal to the noise ratio, and is proportional to 2k, where k is the building-block size.

Furthermore, Miller (1997) extended this population-sizing model for noisy environments,

and Cantú-Paz (1999) applied it for parallel genetic algorithms.

For deriving the gambler’s ruin model, we need to make the following assumptions: (1)

the building blocks are of same salience, (2) the building blocks are of the same size, k,

(3) the total fitness of an individual is an additive function of building blocks in all schema

partitions, (4) the fitness function is stationary, time independent, but can contain external

noise, and (5) the initial population has equal proportion of building blocks in all schema

partitions. Now, we can start to construct the model with calculating the initial building-

block supply. Based on these assumptions, the number of copies which a building block

receives in an initial population of size n is

x0 =
n

χk
, (1.1)

where χ is the cardinality of the alphabet used in the chromosome-coding scheme, k is the

building-block size, and χk are the number of possible schemata.

In addition to the building-block supply, we also need to model the decision making

between building blocks in genetic algorithms. The selection procedure is the principal op-

erator that performs decision making in the evolutionary process. However, it discriminates

the individuals on a chromosomal level instead of a building-block level. Therefore, a bad

building block might be selected over its competitors because it comes with good building

blocks from other schema partitions in the same individual. Given a particular building

block, fitness contribution of the building blocks from other schema partitions can be con-

sidered as noise to the fitness. In order to derive a relation for the probability of deciding

between building blocks correctly, we consider two individuals, one with the best building

block in a partition, and the other with the second best building block in the same partition

(Goldberg, Deb, & Clark, 1992).
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Figure 1.2: Two competing building blocks of size k, one is the best building block, H1, and
the other is the second best building block, H2 (Sastry, 2002). Reprinted by permission.
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f− fH2
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H

Figure 1.3: Fitness distribution of individuals in the population containing the two competing
building blocks, the best building block H1, and the second best building block H2 (Sastry,
2002). Reprinted by permission.

Let A1 and A2 be two individuals with m non-overlapping building blocks of size k as

shown in Figure 1.2. Individual A1 has the best building block, H1 (111 · · · 111 in Figure 1.2)

and individual A2 has the second best building block, H2 (000 · · · 000 in Figure 1.2). The

fitness values of A1 and A2 are fH1 and fH2 , respectively. To derive the probability of

correct decision making, the fitness distribution of the chromosomes containing H1 and H2

can be modeled with a Gaussian distribution, which following from the third assumption,

the additive fitness function assumption, and from the central limit theorem. The fitness

distributions of individuals containing building blocks H1 and H2 are illustrated in Figure 1.3.

The distance between the mean fitness of individuals containing H1, fH1
, and the mean fitness

of individuals containing H2, fH2
, is the signal, d, where

d = fH1
− fH2

. (1.2)
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Since fH1 and fH2 are normally distributed, fH1 − fH2 is also normally distributed with

mean d and variance σ2
H1

+ σ2
H2

, where σ2
H1

and σ2
H2

are the fitness variances of individuals

containing H1 and H2, respectively. Because the probability to correctly decide between H1

and H2 is equivalent to that of fH1 − fH2 > 0, we obtain

fH1 − fH2 ∼ N (d, σ2
H1

+ σ2
H2

) , (1.3)

and the probability to make statistically correct decisions, pdm, is given by

pdm = P (fH1 − fH2 > 0) = P

fH1 − fH2 − d√
σ2

H1
+ σ2

H2

> − d√
σ2

H1
+ σ2

H2

 .

Because (fH1 − fH2 − d)/
√

σ2
H1

+ σ2
H2

follows a unit Gaussian distribution, by using the

symmetry of the Gaussian distribution, we can obtain pdm as

pdm = Φ

 d√
σ2

H1
+ σ2

H2

 . (1.4)

Based on the assumptions that the fitness function is the sum of m independent subfunc-

tions of size k, σ2
H1

is the sum of the variances of the m− 1 subfunctions (Goldberg, Deb, &

Clark, 1992). This calculation is also valid for σ2
H2

. Moreover, since the m schema partitions

are uniformly scaled (or of the same salience), the variance of each subfunction is equal to

the average building-block variance, σ2
bb. Hence,

σ2
H1

= σ2
H2

= (m− 1)σ2
bb . (1.5)

Substituting Equation (1.5) in Equation (1.4), we obtain

pdm = Φ

(
d√

2(m− 1)σbb

)
, (1.6)
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where Φ(z) is the cumulative density function of a unit normal variate. Now we have the

initial building-block supply, x0, from Equation (1.1) and the probability to make correct

decisions between building blocks, pdm, in Equation (1.6). We are ready to integrate these

results with the gambler’s ruin model to derive the population-sizing equation.

In the gambler’s ruin problem, as shown in Figure 1.4, the gambler starts with some

initial capital, c0, and competes with an opponent with initial capital, ct − c0. The gambler

can reach one of the two absorbing states, one in which he loses all the money and the other

in which he wins all the money from his opponent. For each run of the game, the gambler

may win one unit of money from his opponent with a probability p, or lose one unit to his

opponent with a probability 1− p. The objective in this game is to win all the money from

his opponent. Harik, Cantú-Paz, Goldberg, and Miller (1997) drew an analogy between the

gambler’s ruin problem and selection of building blocks in a single partition by recognizing

that the capital of the gambler is the number of individuals containing the best building

block, H1. That is, the gambler starts with an initial capital of x0 (Equation (1.1)) and

competes with an opponent with an initial capital of n− x0, where n is the population size.

The probability of increasing the capital by an unit is the probability of correct decision

making pdm (Equation (1.6)). Genetic algorithms succeed when all the individuals in the

population have the best building block. From the gambler’s ruin model (Feller, 1970), the

probability that the best building block takes over the whole population is given by:

Pbb =
1−

(
1−pdm

pdm

)x0

1−
(

1−pdm

pdm

)n . (1.7)

Since fH1
> fH2

, pdm > 1− pdm, and for moderate-to-large values of n the denominator

approaches 1 and can be neglected. After neglecting the denominator and writing x0 in

terms of n, Equation (1.7) can be approximately reduced to

Pbb = 1−
(

1− pdm

pdm

) n

χk

. (1.8)
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p1−p

Figure 1.4: In the gambler’s ruin problem, the gambler starts with some initial capital, c0,
and competes with an opponent with initial capital, ct − c0. The gambler can reach one of
the two absorbing states, one in which he loses all the money and the other in which he wins
all the money from his opponent. For each run of the game, the gambler may win one unit
of money from his opponent with a probability p, or lose one unit to his opponent with a
probability 1− p. The objective in this game is to win all the money from his opponent.

Because Pbb is the probability for the best building block to reside in every individual, 1−Pbb

is therefore the probability that the best building block fails to take over the population. If

we let 1− Pbb the failure rate, α, we can derive an expression for the population size, n, to

ensure a specified level of success as

n =
χk log α

log
(

1−pdm

pdm

) . (1.9)

In order to simply Equation (1.9) in terms of the building-block size, k, the signal to noise

ratio, d/σ2
bb, and the number of building blocks, m, several approximations are applied. First,

we expand pdm by using the first two terms of the power series (Abramowitz & Stegun, 1972):

pdm ≈
1

2

(
1 +

d

σbb

√
π(m− 1)

)
. (1.10)

Substituting the above approximation in Equation (1.9), we obtain

n =
χk log α

log
(
1− d/(σbb

√
π(m− 1))

)
− log

(
1 + d/(σbb

√
π(m− 1))

) . (1.11)

For problems of moderate-to-large sizes or for problems with a low signal to noise ratio,

20



d/(σbb

√
π(m− 1)) tends to be small, and the following approximation,

log

(
1± d√

π(m− 1)

)
≈ ± d√

π(m− 1)
, (1.12)

can be applied to Equation (1.11). Thus, we get

n = −1

2
χk log (α)

σbb

√
π(m− 1)

d
. (1.13)

Because in this work, we use a binary alphabet containing 0, 1 to encode the solutions,

the cardinality, χ, is therefore 2. By substituting χ = 2 in Equation (1.13), we obtain the

approximate population-sizing model which determines the population size used in this work:

n = −2k−1 log (α)
σbb

√
π(m− 1)

d
. (1.14)

Furthermore, if the tournament size used in a genetic algorithm is not 2, which was

assumed in the derivation of the gambler’s ruin model, competitions among building blocks

will be slightly different. For this condition, Goldberg, Deb, and Clark (1992) made the

gambler’s ruin model valid for genetic algorithm configurations in which a tournament size

other than 2 is employed by proposing the following signal adjustment formula:

d′ = d + Φ−1

(
1

s

)
σbb , (1.15)

where s is the tournament size, and Φ−1(1/s) is the ordinate of a unit normal distribution

where the CDF equals 1/s.

Followed the guidelines for designing selectorecombinative genetic algorithms expressed

by Goldberg’s design-decomposition theory, numerous studies and researches in the field of

genetic and evolutionary computation have been conducted for tackling the issues in design

decomposition piece by piece. These studies include those on the time, such as the takeover
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time and convergence time, as well as those on the space, such as the population-sizing models

based on several different assumptions. They not only improve our understandings of the

genetic algorithm operations in theory but also enhance the design of genetic algorithms in

practice, which leads to the design of competent genetic algorithms. In the next section, we

will briefly discuss the competent genetic algorithms and point out one of the most important

mechanisms for genetic algorithms to succeed—genetic linkage learning.

1.4 Competent Genetic Algorithms

As mentioned previously, competent genetic algorithms are a class of genetic algorithms that

solve hard problems quickly, accurately, and reliably. Hard problems are roughly defined

as those problems that have large subsolutions which cannot be decomposed into simpler

ones and must be discovered whole, or have badly scaled subsolutions, or have a lot of local

optima, or have a very high degree of interaction among subsolutions, or are subject to a

high level of external noise. While designing a competent genetic algorithms, the objective is

to develop genetic algorithms that can successfully solve problems of bounded difficulty and

scale polynomially (oftentimes subquadratically) with the problem size (Goldberg, 2002).

Following the steps presented in the design-decomposition theory, a number of genetic

algorithm designs have been proposed to achieve the criteria of competent genetic algorithms.

According to the current research on selectorecombinative genetic algorithms, it is found that

effective and efficient building-block identification and exchange is critical to the success

of genetic algorithms. Many of these competent genetic algorithms address the issue of

building-block identification and exchange by utilizing a variety of techniques. Although

both building-block identification and exchange are critical and of our interests, based on

the nature of this work, we will focus on the issue of building-block identification.

In the context of this study, we consider building-block identification in the form of genetic

linkage learning and concentrate on the understanding and improvement of one of the existing
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competent genetic algorithms, called the linkage learning genetic algorithm (LLGA), which

will be introduced in a separate chapter. But before that, we first introduce the definition

of genetic linkage and emphasize the importance of linkage learning in the following section.

1.5 Genetic Linkage and the Linkage Problem

As discussed in the previous section, we consider building-block identification as genetic

linkage learning in this work. In this section, we present the definition of genetic linkage and

discuss the importance of linkage learning. Particularly, the following topics are presented

in this section:

• The definition of genetic linkage: Describes what genetic linkage is in biological systems

and genetic algorithms.

• The ordering problem: Is a way to consider the linkage problem in terms of the chro-

mosome representation in the literature.

• The importance of linkage learning: Explains the reason why linkage learning is an

essential topic in the field of genetic and evolutionary algorithms.

We will start from introducing the definition of genetic linkage and then discuss why genetic

linkage and the linkage problem are important in the context of genetic algorithms.

1.5.1 What Is Genetic Linkage?

Since genetic linkage is one of the central topics in this study, the definition of genetic

linkage in both biological systems and genetic algorithms is introduced in this section. First,

in biological systems, genetic linkage refers to the greater association in inheritance of two or

more nonallelic genes than is to be expected from independent assortment (Hartl & Jones,

1998). When a crossover event occurs during meiosis, which refers to the process of nuclear
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division in gametogenesis or sporogenesis in which one replication of the chromosomes is

followed by two successive divisions of the nucleus to produce four haploid nuclei (Hartl

& Jones, 1998), the genetic material is recombined as shown in Figure 1.5. Based on this

meiosis-crossover process, if two genes are closer to each other on a chromosome, there is a

higher probability that they will be transferred to the offspring together. Figure 1.6 gives

an illustrative example. Therefore, genes are said to be linked when they reside on the same

chromosome in biological systems, and their distance between each other determines the level

of their linkage. The closer together a set of genes is on a chromosome, the more probable

it will not be split during the meiosis-crossover process.

When using genetic algorithms, we use strings of characters as chromosomes and genetic

operators to manipulate these chromosomes. In Holland (1975)’s seminal publication, Adap-

tation in Natural and Artificial Systems, he indicated that crossover in genetic algorithms

induces a linkage phenomenon. In this study, we loosely define the term genetic linkage for

a set of genes as follows:

If the genetic linkage between these genes is tight, the crossover operator disrupts

them with a low probability and transfers them all together to the child individual

with a high probability. On the other hand, if the genetic linkage between these

genes is loose, the crossover operator disrupts them with a high probability and

transfers them all together to the child individual with a low probability.

Note that the above definition of genetic linkage is identical to its counterpart in biological

systems. Furthermore, this definition implies that the genetic linkage of a set of genes depend

on the chromosome representation and the crossover operator.

Given the definition of genetic linkage, many well known and widely applied crossover

operators, including one-point crossover and two-point crossover mentioned previously, in-

duce the linkage phenomenon on a fixed chromosome representation as their counterparts do

in biological systems. For example, if we have a 6-bit function consisting of two independent
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Figure 1.5: Crossover and meiosis. The upper part shows meiosis without crossover, and the
lower part shows a crossover event occurs during meiosis.
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3-bit subfunctions, three possible coding schemes for the 6-bit chromosome are

C1(A) = a00 a
0
1 a

0
2 a

1
3 a

1
4 a

1
5;

C2(A) = a00 a
1
1 a

0
2 a

1
3 a

0
4 a

1
5;

C3(A) = a00 a
0
1 a

1
2 a

1
3 a

1
4 a

0
5,

where Cn(A) is the coding scheme n for an individual A, and aj
i is the ith gene of A and

belongs to the jth subfunction.

Taking one-point crossover as an example, it is easy to see that genes belonging to the

same subfunction of individuals encoded with C1 are unlikely to be separated by crossover

events. However, if the individuals are encoded with C2, genes of the same subfunction

are split almost every time when a crossover event occurs. For C3, genes of subfunction

0 are easy to be disconnected, while genes of subfunction 1 are likely to stay or to be

transferred together. From the viewpoint of genetic algorithms, genetic linkage can be used to

describe and measure how close those genes belonging a building block are on a chromosome.

Moreover, Holland (1975) suggested that the chromosome representation should adapt during

the evolutionary process to avoid the potential difficulty directly caused by coding schemes.

1.5.2 Linkage Learning as an Ordering Problem

Because encoding the solutions as fixed strings of characters is common in genetic algorithm

practice, it is easy to see that genetic linkage can be identified as the ordering of the loci of

genes as the examples given in the previous section. Furthermore, early genetic algorithm

researchers used to consider the linkage problem as an ordering problem of the chromosome

representation and addressed to the same issue of building-block identification or genetic

linkage learning. That is, if a genetic algorithm is capable of rearranging the positions of

genes on the fly during the evolutionary process, the responsibility of the user to choose
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a good coding scheme can be alleviated or even eliminated. In order to achieve this goal,

Bagley (1967) used the (gene number, allele) coding scheme to study the inversion operator

for genetic linkage learning by reversing the order of a chromosome segment but did not

conclude in favor of the use of inversion. Frantz (1972) further investigated the utility of

inversion and reported that inversion was too slow and not very effective.

Goldberg and Bridges (1990) analyzed the performance of a genetic algorithm with an

idealized reordering operator. They showed that with an idealized reordering operator, the

coding traps—the combination of loose linkage and deception among lower order schemata

(Goldberg, 1987)—of a fixed chromosome representation can be overcome, and therefore,

genetic linkage learning can be achieved by an idealized reordering operator. This analysis

was extended to the tournament selection family, including pairwise tournament selection, S-

ary tournament selection, and probabilistic tournament selection (Chen & Goldberg, 2003a).

The upper bound of the probability to apply an idealized reordering operator found in the

previous analysis on proportional selection did not exist when tournament selection was used.

1.5.3 Why Is Genetic Linkage Learning Important?

Although according to Goldberg’s design-decomposition theory, building-block identification

or genetic linkage learning is critical to the success of genetic algorithms, except for compe-

tent genetic algorithms, most genetic algorithms in practice today use fixed genetic operators

and chromosome representations. These genetic algorithms either explicitly or implicitly act

on an assumption of a good coding scheme which can provide tight linkage for genes of a

building block on the chromosome. Goldberg, Korb, and Deb (1989) used an experiment

to demonstrate how genetic linkage dictate the success of a simple genetic algorithm. They

used an objective function composed of 10 uniformly scaled copies of an order-3 fully de-

ceptive function (Goldberg, 1989a; Goldberg, 1989b). Three types of codings schemes were

tested: tightly ordering, loosely ordering, and randomly ordering. The tightly ordering cod-

ing scheme is similar to C1 described in section 1.5.1. Genes of the same subfunction are
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arranged adjacent to one another on the chromosome. The loosely ordering coding scheme

is like C2, all genes are distributed evenly so that an overall loosest linkage can be achieved.

The randomly ordering coding scheme arranges the genes according to an arbitrary order.

The results obtained by Goldberg, Korb, and Deb (1989) are shown in Figures 1.7 and

1.8. We can observe in these figures that the success of a simple genetic algorithm depends

very much on the degree of genetic linkage. If the chromosome representation provides tight

linkage, a simple genetic algorithm can solve difficult problems. Otherwise, simple genetic

algorithms can easily fail. Therefore, for simple genetic algorithms, tight genetic linkage, or

a good coding scheme, is indeed far more important than it is usually considered.

In addition to the experiments done by Goldberg, Korb, and Deb (1989), some other

studies (Thierens, 1995; Goldberg, Deb, & Thierens, 1993; Goldberg, 1989c) also showed

that genetic algorithms work very well if the genes belonging to the same building block are

tightly linked together on the chromosome. Otherwise, if these genes spread all over the

chromosome, building blocks are very hard to be created and easy to be destroyed by the

recombination operator. Genetic algorithms cannot perform well under such circumstances.

In practice, without prior knowledge of the problem and linkage information, it is difficult to

guarantee that the coding scheme defined by the user always provides tight building blocks,

although it is a key to the success of genetic algorithms.

It is clear that for simple genetic algorithms with fixed genetic operators and chromosome

representations, one of the essential keys to success is a good coding scheme that puts genes

belonging to the same building blocks together on the chromosome to provide tight linkage of

building blocks. The genetic linkage of building blocks dominates all kinds of building-block

processing, including creation, identification, separation, preservation, and mixing. However,

in the real world, it is usually impossible to know such information a priori. As a consequence,

handling genetic linkage for genetic algorithms to succeed is extremely important.
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Figure 1.7: The generation maximum number of subfunctions optimized correctly by a simple
GA graphed versus generation using tight, loose, and random orderings. The tight runs are
able to optimize the function and the loose runs are not. The random runs get roughly 25%
of the subfunctions correct (Goldberg, Korb, & Deb, 1989). Reprinted by permission.

Figure 1.8: The generation average number of subfunctions optimized correctly by a simple
GA graphed versus generation using tight, loose, and random orderings (Goldberg, Korb, &
Deb, 1989). Reprinted by permission.
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1.6 Summary

In this chapter, genetic algorithms were briefly introduced, including the terminology, work-

ing principles, major components, and algorithmic flow controls. The design-decomposition

theory for developing competent selectorecombinative genetic algorithms were described,

followed by the gambler’s ruin model for population sizing which is employed in this study.

Genetic linkage in both of the biological system and the genetic algorithm was defined. Be-

cause of the way genetic algorithms work as well as fixed genetic operators and chromosome

representations that are widely used, the genetic linkage problem was also considered as an

ordering problem in the literature, which refers to the need of appropriate arrangements of

genes on the chromosome to ensure the success of genetic algorithms. Finally, the importance

of learning genetic linkage in a genetic and evolutionary approach was discussed.
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Chapter 2

Genetic Linkage Learning Techniques

The importance of learning genetic linkage has been discussed in the previous chapter and

recognized in the field of genetic and evolutionary algorithms (Goldberg, 1989c; Goldberg,

2002; Holland, 1975). A design-decomposition methodology for successful design of genetic

and evolutionary algorithms was proposed in the literature (Goldberg, 1991; Goldberg &

Liepens, 1991; Goldberg, Deb, & Clark, 1992; Goldberg, 1993; Goldberg, 2002) and intro-

duced previously. One of the key elements of the design-decomposition theory is genetic

linkage learning. Research in the past decade have shown that genetic algorithms that

are capable of learning genetic linkage and exploiting good building-block linkage can solve

boundedly hard problems quickly, accurately, and reliably. Such competent genetic and

evolutionary algorithms take the problems that were intractable for the first-generation ge-

netic algorithms and render them practical in polynomial time (oftentimes, in subquadratic

time) (Pelikan, Goldberg, & Cantú-Paz, 1999; Pelikan, Goldberg, & Cantú-Paz, 2000; Pe-

likan & Goldberg, 2001; Goldberg, 2002).

Because it is hard to guarantee that the user-designed chromosome representation pro-

vides tightly linked building blocks when the problem domain knowledge is unavailable, a

variety of genetic linkage learning techniques have been proposed and developed to handle

the linkage problem, which refers to the need of good building-block linkage. These genetic

linkage learning techniques are so diverse, sophisticated, and highly integrated with the ge-

netic algorithm that it is a difficult task to review all of them from a simple, unified, and
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straightforward point of view. Therefore, the purpose of this chapter is to provide different

facetwise views of the existing genetic linkage learning techniques proposed in the literature,

followed by a discussion of the lineage of the linkage learning genetic algorithm and its posi-

tion among the existing genetic linkage learning techniques. Particularly, the following main

topics are presented in this chapter:

• Review the existing genetic linkage learning techniques according to different facets of

genetic algorithms, including

– the means to distinguish good individuals from bad individuals;

– the method to express or represent genetic linkage;

– the way to store genetic linkage information.

• Present the lineage of the linkage learning genetic algorithm to demonstrate how it was

developed and constructed from its precursors and ancestors;

• Identify the position of the linkage learning genetic algorithm among the existing ge-

netic linkage learning techniques to establish its connection to other methodologies in

general and to emphasize on its importance in particular.

This chapter starts with reviewing the existing genetic linkage learning techniques according

to different facets, followed by the relations between the linkage learning genetic algorithm

and its precursors or ancestors. Finally, the chapter discusses the position of the linkage

learning genetic algorithm among the existing genetic linkage learning techniques based on

the proposed aspects in this chapter.

2.1 Unimetric Approach vs. Multimetric Approach

In this section and the following two sections, we will review the existing genetic linkage

learning techniques according to different facets and aspects, including the means to dis-
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tinguish good individuals from bad individuals, the method to express or represent genetic

linkage, and the way to store genetic linkage information. First, we start with classifying

the genetic linkage learning techniques based on the means employed in the algorithm to

distinguish good individuals from bad individuals in this section.

According to the means to distinguish good individuals in the population or a good

model for generating individuals from bad ones, we can roughly classify existing genetic and

evolutionary approaches into the following two categories:

Unimetric approach. A unimetric approach acts solely on the fitness value given by the

fitness function. No extra criteria or measurements are involved for deciding whether

an individual or a model is better.

Multimetric approach. In contrast to unimetric approaches, a multimetric approach em-

ploys extra criteria or measurements other than the fitness function given by the prob-

lem for judging the quality of individuals or models.

Unimetric approaches, loosely modeled after natural environments, are believed to be more

biologically plausible, while multimetric approaches are of artificial design and employ certain

bias which does not come from the problem at hand to guide the search. Specifically, the

reasons and motivation to propose this classification to discriminate unimetric approaches

and multimetric approaches are two-fold:

1. Biological plausibility: One of the most important reasons to propose this classifica-

tion is that we believe nature appears unimetric. Because the “fitness” of an individual

in nature depends on whether or not it can adapt to its environment and survive in its

environment, there is obviously no other extra measurement or criterion to enforce or

guide the evolution of the species to go to certain direction, such as becoming as simple

as it can be. However, given the current research results in this field that most good

evolutionary approaches are multimetric ones, which utilize one or more user-defined

measurements to determine the solution quality, such as preference for simpler models,
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we would like to separate unimetric approaches from multimetric ones and to know if

there are limits to performance of unimetric methods. The theoretical results obtained

on unimetric approaches might be of some significance or interests in biology, although

the computational models are highly simplified.

2. Technological motivations: In addition to the biological viewpoints, there are also

technological motivations to classify the existing genetic linkage learning techniques

into unimetric approaches and multimetric approaches. For most multimetric methods,

the algorithmic operations are serial in design, while unimetric methods are oftentimes

easy to parallelize. The multimetric algorithms usually require access to all or a large

part of the individuals in the population at the same time. This kind of requirement

removes potential parallel advantages because it either incurs a high communication

cost due to the necessary information exchange or demands a completely connected

network topology to lower the communication latency. Therefore, it may be a fore-

seeable bottleneck when handling problems of a large number of variables. On the

other hand, although many unimetric methods, such as the linkage learning genetic

algorithm, do not perform as well as multimetric ones, they oftentimes use pairwise op-

erators or operators that operate on only a few individuals. Hence, they are relatively

easy to parallelize, and a wide range of parallelization methods are applicable.

According to these motivations, the means to distinguish good individuals in the population

or a good model for generating individuals from bad ones is adopted to classify the existing

genetic linkage learning techniques.

For example, because all the simple genetic algorithms and the linkage learning ge-

netic algorithm use only fitness values to operate, they are definitely considered as uni-

metric approaches. Moreover, the simple genetic algorithms with inversion (Bagley, 1967),

punctuation marks (Schaffer & Morishima, 1987), or the linkage evolving genetic operator

(LEGO) (Smith & Fogarty, 1995; Smith & Fogarty, 1996), are also included in unimetric
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approaches because no extra measurements are utilized in these algorithms for comparing

the solution or model quality.

On the other hand, most advanced genetic algorithms today, including the gene expres-

sion genetic algorithm (gemGA) (Kargupta, 1996), the estimation of distribution algorithms

(EDAs) (Mühlenbein & Paaß, 1996), the Bayesian optimization algorithm (BOA) (Pelikan,

Goldberg, & Cantú-Paz, 1999), the extended compact genetic algorithm (ECGA) (Harik,

1999; Lobo & Harik, 1999), and the like, are classified as multimetric approaches because

they explicitly employ extra mechanisms or measurements for discriminating good individ-

uals or models from bad ones. In addition to the obvious classification, approaches such

as the messy genetic algorithm (mGA) (Goldberg, Korb, & Deb, 1989) and the fast messy

genetic algorithm (fmGA) (Goldberg, Deb, Kargupta, & Harik, 1993) are in between the

two classes. The messy genetic algorithm and the fast messy genetic algorithm compare

individuals with the fitness value, but the use of building-block filtering indeed builds an

implicit extra mechanism that prefers shorter building blocks into these algorithms.

Based on the classification of unimetric and multimetric approaches, the linkage learning

genetic algorithm is especially of our interests because the difficulties encountered by the

linkage learning genetic algorithm might indicate certain limits to genetic linkage learning

for the unimetric approach. As mentioned previously, the most successful genetic and evolu-

tionary approaches are all multimetric approaches. Even the fast messy genetic algorithm,

which is in between the unimetric approach and the multimetric approach, is less successful

and appears to have limits as well (Kargupta, 1995; Merkle, 1996). Thus, as a unimetric

approach, we would like to know if the difficulties that the linkage learning genetic algorithm

encountered are a solvable problem or intrinsic properties existing in the unimetric approach.
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2.2 Physical Linkage vs. Virtual Linkage

After classifying the genetic linkage learning techniques according to the facet of how they

distinguish good individuals or models from bad ones, in this section, we discuss the aspect

of the method these algorithms use to express or represent genetic linkage. According to the

method to represent genetic linkage, we can broadly classify existing genetic and evolutionary

approaches into the following two categories:

Physical linkage. A genetic and evolutionary algorithm is said to use physical linkage if

in this algorithm, genetic linkage emerges from physical locations of two or more genes

on the chromosome.

Virtual linkage. On the other hand, if a genetic and evolutionary algorithm uses graphs,

groupings, matrices, pointers, or other data structures that control the subsequent

pairing or clustering organization of decision variables, it is said to use virtual linkage.

Physical linkage is closer to biological plausibility and inspired directly by it, while virtual

linkage is an engineering or computer science approach to achieve the desired effect most

expeditely. In particular, similar to the reasons that were discussed in the previous section,

the motivations to look into this classification are also two-fold:

1. Biological plausibility: Because genetic and evolutionary algorithms are search tech-

niques based on principles of evolution, it is one of our main interests to learn from

nature and to borrow useful insights, inspirations, or mechanisms from genetics or

biology. Given that the natural evolution apparently proceeds via genetic operations

on the genotypic structures of all creatures, genetic and evolutionary algorithms that

employ the mechanisms which are close to that in nature should be recognized and

emphasized. By pointing out this feature of characteristic of the genetic and evolu-

tionary algorithms that use the mechanisms existing in biological systems, we might

be able to theorize certain genetic operations in biological systems with those genetic
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algorithms using physical linkage, such as the fast messy genetic algorithm and the

linkage learning genetic algorithm.

2. Algorithmic improvement: From a standpoint of efficient or effective computation,

genetic and evolutionary algorithms using virtual linkage usually yield better perfor-

mance than those using physical linkage. Together with the biological point of view,

this might imply two possible situations:

(a) Using virtual linkage in genetic algorithms can achieve a better performance.

This kind of artificial systems can do better than their biological counterparts on

conducting search and optimization;

(b) The power of natural systems has not been fully understood and utilized yet.

More critical and essential mechanisms existing in genetics and biology should be

further examined and integrated into the algorithms to improve the performance.

Hence, for the purpose of search and optimization, in the first situation, we should focus

on developing better algorithms that employ virtual linkage, such as the probabilistic

model-building genetic algorithms (PMBGAs) or EDAs (Mühlenbein & Paaß, 1996).

In the other situation, we should appropriately choose useful genetic mechanisms and

integrate these mechanisms into the artificial algorithms. The steps we will take in this

study to improve the linkage learning genetic algorithm assume the second situation.

According to these motivations, the method to express or represent genetic linkage is used

to classify the existing genetic linkage learning techniques in this section.

For example, all the genetic algorithms use fixed chromosome representations without

any extra graph, grouping, matrix, pointer, or data structure to describe genetic linkage fall

into the category of physical linkage. These algorithms include the ones using binary strings,

integer strings, or real-variable strings as chromosomes as long as they use the chromosome

alone for operations and evolution. Another important set of algorithms belonging to the
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category of physical linkage is the genetic algorithms that use the (gene number, allele)

coding scheme (Bagley, 1967; Rosenberg, 1967). This set of genetic algorithms includes

inversion (Bagley, 1967), the messy genetic algorithm (Goldberg, Korb, & Deb, 1989), the

fast messy genetic algorithm (Goldberg, Deb, Kargupta, & Harik, 1993), and the linkage

learning genetic algorithm.

Moreover, the category of virtual linkage includes all PMBGAs or EDAs (Larrañaga

& Lozano, 2001; Pelikan, Goldberg, & Lobo, 2002), such as the Bayesian optimization

algorithm (Pelikan, Goldberg, & Cantú-Paz, 1999), the extended compact genetic algo-

rithm (Harik, 1999; Lobo & Harik, 1999), the factorized distribution algorithm (FDA)

(Mühlenbein & Mahnig, 1999), and so on. It also contains the probabilistic inference

framework for modeling crossover operators (Salman, Mehrotra, & Mohan, 1998; Salman,

Mehrotra, & Mohan, 1999; Salman, Mehrotra, & Mohan, 2000), such as the general linkage

crossover (GLinX) and the adaptive linkage crossover (ALinX).

The classification of physical linkage and virtual linkage based on the method to express

or represent genetic linkage emphasizes on the mechanism of genetic operations and the

representation that the algorithm uses for search or optimization. In this study, we are

interested in understanding and improving the linkage learning genetic algorithm because

the linkage learning genetic algorithm uses physical linkage, in which the genetic linkage of

a building block is represented by the gaps on the chromosome between the genes of that

building block. As discussed in this section, we assume that the power of natural systems

has not been fully understood and utilized. After gaining better understanding of the linkage

learning genetic algorithm, certain critical mechanisms existing in genetics will be integrated

into the linkage learning genetic algorithms to improve its performance in this dissertation.
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2.3 Distributed Model vs. Centralized Model

The last facet of the genetic and evolutionary algorithm we explore in this work for classifying

the genetic linkage learning techniques is the way for these approaches to store genetic linkage

information. Based on the way to store genetic linkage information, we can divide the existing

genetic and evolutionary approaches into the following two categories:

Distributed Model. If a genetic and evolutionary algorithm has no centralized storage of

genetic linkage information and maintains the genetic-linkage model in a distributed

manner, we call such a genetic algorithm a distributed-model approach.

Centralized Model. In contrast to distributed-model approaches, a centralized-model ap-

proach utilizes a centralized storage of genetic linkage information, such as a global

probabilistic vector or dependency table, to handle and process genetic linkage.

Similar to the unimetric approach, distributed-model approaches are also loosely modeled

after evolutionary conditions in nature and more biologically plausible, while centralized-

model approaches are developed to achieve the maximum information exchange and to obtain

the desired results. The reasons to propose this classification to show the difference between

distributed-model approaches and centralized-mode approaches are presented as follows:

1. Biological plausibility: Once more, we propose this classification in order to put

an emphasis on the similarities as well as the dissimilarities between the genetic al-

gorithms and the biological systems. Apparently, there exists no centralized genetic-

linkage model in nature. Genotypes are distributed on all creatures or individuals. As

described in the previous sections, genetic algorithms fall in the category of distributed

model might serve as highly simplified computation models which can give insight of

the way nature or evolution works.

2. Computational motivations: On the other hand, based on the classification, centralized-

model approaches should be expected to have better performance when executing
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computation, such as search or optimization, because by centralizing the genetic-

linkage model, genetic-linkage information existing in the population gets well mixed

and exchanged in very little time compared to that in a distributed-model approach.

Therefore, centralized-model approaches have such an edge to outperform distributed-

model. However, this advantage might also be a disadvantage for centralized-model

approaches. Centralized-model approaches are serial in nature, and they are very hard

to parallelize. Distributed-model approaches are parallel by design. Thus, distributed-

model approaches might have better scalability when handling large-scale problems.

According to the above reasons, the way to store genetic linkage information is adopted to

classify the existing genetic linkage learning techniques.

For example, simple genetic algorithms are distributed-model approaches because any

information existing in the population is stored in a distributed manner over the indi-

viduals. The linkage learning genetic algorithm, the messy genetic algorithm (Goldberg,

Korb, & Deb, 1989), the fast messy genetic algorithm (Goldberg, Deb, Kargupta, & Harik,

1993), and the gene expression messy genetic algorithm (gemGA) (Kargupta, 1996) also

belong to this category for the same reason. Moreover, the linkage identification proce-

dures, including the linkage identification by nonlinearity check (LINC) (Munetomo & Gold-

berg, 1998), the linkage identification by non-monotonicity detection (LIMD) (Munetomo &

Goldberg, 1999), the linkage identification based on epistasis measures (LIEM) (Munetomo,

2002a), and the linkage identification with epistasis measure considering monotonicity con-

ditions (LIEM2) (Munetomo, 2002b), as well as the collective learning genetic algorithm

(CLGA) (Riopka & Bock, 2000; Riopka, 2002) are in this class.

Furthermore, similar to the category of virtual linkage, the centralized-model approaches

include most PMBGAs or EDAs (Larrañaga & Lozano, 2001; Pelikan, Goldberg, & Lobo,

2002), such as the Bayesian optimization algorithm (Pelikan, Goldberg, & Cantú-Paz, 1999),

the extended compact genetic algorithm (Harik, 1999; Lobo & Harik, 1999), the factorized

distribution algorithm (Mühlenbein & Mahnig, 1999), and so on. The probabilistic inference

40



framework for modeling crossover operators (Salman, Mehrotra, & Mohan, 1998; Salman,

Mehrotra, & Mohan, 1999; Salman, Mehrotra, & Mohan, 2000), such as the general linkage

crossover and the adaptive linkage crossover, and the dependency structure matrix driven

genetic algorithm (DSMGA) (Yu, Goldberg, Yassine, & Chen, 2003) are also considered as

centralized-model approaches.

According to this classification, as a distributed-model approach, the linkage learning

genetic algorithm is of our interests not only because it might serve as a computational

model for the evolutionary process in nature but also because it has the potential to scale

up well, compared to the centralized-model approaches. In the following section, the lineage

of the linkage learning genetic algorithm is presented to demonstrate how it was developed

and constructed from those algorithms and techniques proposed in the literature.

2.4 LLGA: Precursors and Ancestors

Although we will introduce in detail the linkage learning genetic algorithm in the next

chapter, in this section, we present its precursors and ancestors proposed in the literature as

a historical background. In particular, we describe the following topics in this section:

• Chromosome representation: The tag-based approach, or called messy coding, and the

use of non-coding segments;

• Genetic operator: The inversion operator and the partially mapped crossover for re-

ordering, the cut and splice operators for manipulating genetic material in the messy

genetic algorithm and the fast messy genetic algorithm.

We start with the direct bloodline of the linkage learning genetic algorithm, which goes from

the inversion operator to the messy genetic algorithm and the fast messy genetic algorithm.

Then, combining with the use of non-coding segments and the partially mapped crossover,

the lineage of the linkage learning genetic algorithm is complete.
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First of all, the linkage learning genetic algorithm uses the (gene number, allele) coding

scheme, which dates back to 1967 and was called the tag-based approach (Bagley, 1967) or

later, messy coding (Goldberg, Korb, & Deb, 1989). As discussed in section 1.5.2, the linkage

problem was considered as the ordering problem, and Bagley (1967) used the inversion

operator to work with messy coding in order to appropriately arrange the genes on the

chromosome such that the building blocks can survive the crossover disruption and transfer

to the offspring by reversing the order of a segment of a chromosome encoded as a (gene

number, allele) string. Although studies (Bagley, 1967; Rosenberg, 1967; Frantz, 1972)

showed that the inversion operator was too slow for learning genetic linkage, Holland (1975)

still recognized the importance of genetic linkage learning and suggested the use of it.

By using messy coding, the messy genetic algorithm (mGA) (Goldberg, Korb, & Deb,

1989; Goldberg, Deb, & Korb, 1990; Deb, 1991; Deb & Goldberg, 1991) attempted to achieve

the competent genetic algorithm. Due to the use of messy coding, mGA handled under-

specified and over-specified chromosomes and employed two messy operators, cut and splice,

to process the individuals encoded as (gene number, allele) strings of variable lengths. The

cut operator separated a string into two segments with a probability which increased with

the string length, while the splice operator concatenated two strings to form one string with

a fixed probability. A unique feature of mGA was that mGA utilized three heterogeneous

phases: the initialization phase, the primordial phase, and the juxtapositional phase. More-

over, for the flow-control, mGA utilized the epoch-wise iteration, which was quite different

from traditional genetic algorithms, to improve the solution quality in discrete steps.

Although mGA was able to solve hard problems accurately and reliably, it failed to be a

competent genetic algorithm because O(`k) computations were required in the initialization

phase (Goldberg, Deb, & Korb, 1990), where ` was the problem length, and k was the order

of building blocks. In order to satisfy the computational speed criterion, Goldberg, Deb,

Kargupta, and Harik (1993) modified mGA and developed the fast messy genetic algorithm

(fmGA), which can accurately and reliably solve difficult problem in subquadratic computa-
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tional time. The first modification was to use the probabilistically complete initialization to

replace the partial enumeration of building blocks so that the number of computations re-

quired in the initialization phase can be reduced to O(`). With the probabilistically complete

initialization, the building-block filtering was designed to make the population composed of

tightly linked building blocks by using selection and gene deletion repeatedly in the primor-

dial phase. The third modification was to probabilistically increase the threshold number of

genes employed for avoiding the competitions among irrelevant individuals during selection.

For the chromosome representation of the linkage learning genetic algorithm, the (gene

number, allele) coding scheme is one of the key components. Another essential component

proposed in the literature is the use of non-coding segments which was previously called

introns in the chromosome representation. Levenick (1991) inserted non-coding segments

into the chromosome representation and studied the effect. Forrest and Mitchell (1993) in-

vestigated into the effect of non-coding segments on the Royal Road functions. Thorough

empirical studies on genetic algorithms with non-coding segments have been conducted (Wu,

Lindsay, & Smith, 1994; Wu & Lindsay, 1995), and a survey on non-coding segments in genet-

ics was given as well (Wu & Lindsay, 1996). By integrating the (gene number, allele) coding

scheme and the non-coding segment, the chromosome representation of the linkage learning

genetic algorithm was constructed after making the chromosome a circle and enabling the

genes and non-coding elements to move freely around the chromosome.

After constructing the chromosome representation, a genetic operator which is capable

of handling this type of chromosomes is in order for the linkage learning genetic algorithm.

Goldberg and Lingle (1985) argued that the inversion operator was not sufficiently powerful

to solve the ordering problem and proposed the partially mapped crossover (PMX) (Goldberg

& Lingle, 1985) which allowed the exchange of both ordering and allele information between

chromosomes during crossover events so that genetic linkage can be changed along with the

allele configuration. In that study, they showed that PMX was able to solve a medium-

sized traveling salesman problem to its optimum solution and the binary operator was more
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capable than the earlier unary operator, the inversion operator. Based on the idea of the cut

and splice operators in mGA and fmGA which dissect and reassemble the genetic material,

the exchange crossover operator was developed with the hint from PMX that genetic linkage

and allele configuration should evolve along with each other.

Two key components—the chromosome representation and the exchange crossover operator—

of the linkage learning genetic algorithm were constructed and developed based on the his-

torical work presented in this section. For the chromosome representation, Harik (1997)’s

contribution was to design the chromosome as a circle, to permit the genes and non-coding

elements to reside anywhere on the chromosome, and to propose the probabilistic expression

mechanism for interpreting the chromosome. For the exchange crossover operator, Harik

(1997) combined these ideas from different directions and integrated them together to work

on the chromosome representation. As a consequence, keys components of the linkage learn-

ing genetic algorithm were completed.

2.5 LLGA: Unimetric, Physical Linkage, and

Distributed Model

After reviewing the genetic linkage learning techniques from different aspects of genetic al-

gorithms and introducing the historical work based on that the linkage learning genetic

algorithm was developed, in this section, we recap three classifications and point out the po-

sition of the linkage learning genetic algorithm—unimetric, physical linkage, and distributed

model—among the existing genetic linkage learning techniques.

First of all, because the linkage learning genetic algorithm use only fitness alone for

distinguishing solutions of good quality from that of bad quality, it is classified as a unimetric

approach. As a unimetric approach, the linkage learning genetic algorithm is of our interests

because the difficulties encountered by the linkage learning genetic algorithm might indicate

certain limits to genetic linkage learning for the unimetric approach. Currently, the most
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successful genetic and evolutionary approaches are multimetric approaches. Even the fast

messy genetic algorithm, which is in between the unimetric approach and the multimetric

approach, as described in section 2.1, is less successful and appears to have limits. Thus, as a

unimetric approach, we would like to know if the difficulties that the linkage learning genetic

algorithm faced are a solvable problem or intrinsic properties of the unimetric approach.

Second, according to the second classification, the linkage learning genetic algorithm uses

physical linkage. In this study, we are interested in understanding and improving the link-

age learning genetic algorithm because the linkage learning genetic algorithm uses physical

linkage, in which the genetic linkage of a building block is represented by the gaps on the

chromosome between the genes of that building block. As discussed in section 2.2, we as-

sume that the power of natural systems has not been fully understood and utilized. After

gaining better understanding of the linkage learning genetic algorithm, certain critical mech-

anisms existing in genetics should be integrated into the linkage learning genetic algorithms

to improve its performance.

Finally, the linkage learning genetic algorithm is obviously a distributed-model approach

because there exists no centralized genetic-linkage model or global linkage collecting and

processing in the linkage learning genetic algorithm. According to this classification, as a

distributed-model approach, the linkage learning genetic algorithm is of our interests not

only because it might serve as a computational model for the evolution in nature but also

because it has the potential to scale up well, compared to the centralized-model approaches.

2.6 Summary

As pointed out by Holland (1975), learning genetic linkage is essential to the success of

genetic and evolutionary algorithms if the prior knowledge of the problem is unavailable.

Recognizing the importance of solving the linkage problem, many genetic linkage learning

techniques have been proposed to tackle the linkage problem. These genetic linkage learning
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techniques are so diverse, sophisticated, and highly integrated with the genetic algorithm

that it is difficult to review all of them from a simple, unified, and straightforward viewpoint.

This chapter provided different facetwise views of the existing genetic linkage learning

techniques, including the means to distinguish good individuals from bad ones, the method to

represent genetic linkage, and the way to store genetic linkage information. Then, it presented

a discussion of the lineage of the linkage learning genetic algorithm and its position among

the existing genetic linkage learning techniques according to three different classifications.
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Chapter 3

Linkage Learning Genetic Algorithm

In order to handle linkage evolution and to tackle the ordering problem, Harik (1997) took

Holland’s call for the evolution of tight linkage quite literally and proposed the linkage learn-

ing genetic algorithm (LLGA), which is capable of learning genetic linkage in the evolution-

ary process. The linkage learning genetic algorithm used a special probabilistic expression

mechanism and a unique combination of the (gene number, allele) coding scheme and an

exchange crossover operator to create an evolvable genotypic structure that made genetic

linkage learning natural and viable for genetic algorithms. As the subject of this study, the

design, works, accomplishments, and limitations of the linkage learning genetic algorithm are

presented and discussed in this chapter. Detailed background and comprehensive description

can also be found elsewhere (Harik & Goldberg, 1996; Harik, 1997; Harik & Goldberg, 2000).

This chapter presents the following topics of the linkage learning genetic algorithm:

• the chromosome representation;

• the exchange crossover operator;

• two mechanisms that enable the LLGA;

• accomplishments of the LLGA;

• difficulties encountered by the LLGA.
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We start with the design of the linkage learning genetic algorithm, including the chromosome

representation and the exchange crossover operator. Then, the two identified existing linkage

learning mechanisms are described, followed the accomplishments and limitations of the

linkage learning genetic algorithms.

3.1 Chromosome Representation

The linkage learning genetic algorithm adopts a unique chromosome representation, which

is an integration of several important components that makes the linkage learning genetic

algorithm capable of expressing genetic linkage via the chromosomal structure and gene

arrangement. The LLGA chromosome representation is composed of

• moveable genes;

• non-coding segments;

• probabilistic expression.

Each of these elements is described in what follows.

The LLGA chromosome consists of moveable genes encoded as (gene number, allele) pairs

as shown in Figure 3.1(a) and is considered as a circle of circumference 1.0. The genes in

the linkage learning genetic algorithm are allowed to reside anywhere on the chromosome,

while those in a traditional genetic algorithm are unmoveable and fixed at their own loci.

In order to create a genotypic structure capable of expressing genetic linkage, non-coding

segments are included on the LLGA chromosome. Non-coding segments act as non-functional

genes, which have no effect on fitness at all. By using non-coding segments, genes no longer

have to connect to each other, and genetic linkage can be expressed more accurately.

Furthermore, the method of probabilistic expression (PE) was proposed to preserve diver-

sity at the building-block level. A PE chromosome contains all possible alleles for each gene.
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Figure 3.1: Probability distributions of gene 3’s alleles represented by PE chromosomes.

For the purpose of evaluation, a chromosome is interpreted by selecting a point of interpre-

tation (POI) and choosing for each gene the allele occurring first in a clockwise traversal of

the circular LLGA chromosome. After interpretation, a PE chromosome is expressed as a

complete string and evaluated to obtain the fitness. Besides, the point of interpretation is

determined on the offspring individual when crossover occurs.

As a consequence, a PE chromosome represents not a single solution but a probability

distribution over the range of possible solutions which might be expressed when different

points of interpretation are chosen. Figure 3.1 illustrates the probability distribution over

possible alleles of gene 3 of the chromosome. As shown in the figure, when different points

of interpretation are selected, a PE chromosome might be interpreted as different solutions.

Figure 3.2 shows 3 genes of a PE chromosome composed of 6 genes. If point A is the point

of interpretation, the chromosome will be considered as ((5,1) (4,0) (4,1) (3,0) (3,1)

(5,0)) and interpreted as ((5,1) (4,0) (4,1) (3,0) (3,1) (5,0)) ⇒ ***001, where

the struck genes are shadowed by their complement genes. And, if point B is the point of

interpretation, the chromosome will be considered as ((4,0) (4,1) (3,0) (3,1) (5,0)

(5,1)) and interpreted as ((4,0) (4,1) (3,0) (3,1) (5,0) (5,1)) ⇒ ***000.

If we consider a PE chromosome as containing exactly one copy of each shadowed gene,

the probabilistic expression can be generalized to let a chromosome contain more than one
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Figure 3.2: Different points of interpreta-
tion might interpret a PE chromosome as
different solutions.
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(3,0)

Point of interpretation

Figure 3.3: Example of an EPE-2 chromo-
some. Each gene can have up to 2 copies
with the complement allele.

copy of a shadowed gene (Harik, 1997), which is called extended probabilistic expression

(EPE). EPE is defined with a parameter k, which indicates that there can be up to k copies

of a shadowed gene for any given gene. That is, an EPE-k chromosome can contain at most

k copies of a shadowed gene. For example, Figure 3.3 shows an illustrative example of EPE-

2 chromosomes, which is ((5,1) (5,0) (4,0) (4,1) (3,0) (3,1) (3,1) (5,0)). Given

the point of interpretation, the chromosome is interpreted as ((5,1) (5,0) (4,0) (4,1)

(3,0) (3,1) (3,1) (5,0)) ⇒ ***001. In this example, gene 4 has only one copy of the

shadowed gene, (4,1), as it can have in a PE chromosome, but both genes 3 and 5 have

two copies of the shadowed genes. Therefore, when using EPE-k, a shadowed gene can have

from 1 to k copies on the chromosome.

3.2 Exchange Crossover

In addition to the probabilistic expression and extended probabilistic expression mechanisms,

the exchange crossover operator is another key mechanism for the linkage learning genetic

algorithm to learn genetic linkage. Exchange crossover is defined on a pair of LLGA chromo-

somes. One of the chromosomes is the donor, and the other is the recipient. The operator

cuts a random segment of the donor, selects a grafting point at random on the recipient, and

grafts the segment cut from the donor onto the recipient. The grafting point is the point
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of interpretation of the generated offspring. Starting from the point of interpretation, the

redundant genetic material caused by injection is removed right after crossover to ensure the

validity of the offspring.

3.3 Linkage Definition and

Two Linkage Learning Mechanisms

With the integration of probabilistic expression and exchange crossover, the linkage learning

genetic algorithm is capable of solving difficult problems without prior knowledge of good

linkage. Traditional genetic algorithms have been shown to perform poorly on difficult

problems (Thierens & Goldberg, 1993; Goldberg, Deb, & Thierens, 1993) without such

knowledge. To better decompose and understand the working behavior of the linkage learning

genetic algorithm, two key mechanisms of linkage learning: linkage skew and linkage shift

has been identified and analyzed (Harik & Goldberg, 1996; Harik, 1997). Therefore, in order

to introduce the current theoretical framework of the linkage learning genetic algorithm, we

present the following topics in this section:

• The method to quantify the genetic linkage of a building block which enables the

development of quantitative models of the linkage learning mechanisms;

• Linkage skew, which occurs when an optimal building block is transferred from the

donor to the recipient;

• Linkage shift, which occurs when an optimal building block resides in the recipient and

survives an injection.

In this section, we will introduce Harik’s definition for quantifying genetic linkage (Harik &

Goldberg, 1996), followed by presenting the two linkage learning mechanisms identified by

Harik and Goldberg (1996).
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3.3.1 Quantifying Linkage

For studying the linkage learning process, Harik’s definition for quantifying linkage (Harik

& Goldberg, 1996) is adopted in this study. Linkage is defined as the sum of the squares

of the inter-gene distances of a building block, considering the chromosome as a circle of

circumference 1.0. Assuming that there is an order-k building block, k genes on the circular

chromosome split the circle into k segments, or gaps. Number these k gaps 1, 2, . . ., k, and

let yi represent the length of gap i for all i = 1, 2, . . . , k. Since the circumference of the circle

is 1.0, we have the relationship among the lengths of these k gaps as

k∑
1

yi = 1 . (3.1)

Then, Harik’s definition for quantifying linkage, λ, can be expressed as

λ =
k∑
1

y2
i . (3.2)

Figure 3.4 shows an example for calculating the linkage of a three-gene building block.

The definition is appropriate in that genetic linkage in such definition specifies a measure

directly proportional to the probability for a building block to be preserved under exchange

crossover. It was theoretically justified by Harik and Goldberg (1996) that for any linkage

learning operator working on the same form of chromosome representation, the expected

linkage of a randomly spaced order-k building block is

2

k + 1
, (3.3)

which also represents the average random linkage in the initial population of the linkage

learning genetic algorithm.
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Figure 3.4: Calculation of the genetic linkage for a three-gene building block.

3.3.2 Linkage Skew

After quantifying the genetic linkage of a building block, we are now ready to develop the

quantitative models for the linkage learning mechanisms. We present the linkage-skew model

in this section, and then linkage-shift model in the following section.

Linkage skew, the first linkage learning mechanism (Harik & Goldberg, 1996), occurs

when an optimal building block is successfully transferred from the donor into the recipient.

The conditions for an optimal building block to be transferred are (1) the optimal building

block resides in the cut segment and (2) the optimal building block gets expressed before an

inferior one does. The effect of linkage skew was found to make linkage distributions move

toward higher linkages by propagating tightly linked building blocks all over the population.

Linkage skew does not make the linkage of a building block of any particular individual

tighter because it occurs when an optimal building block is transferred and expressed. The

transferred building block has the same linkage as it has before crossover. However, the

tighter the building block is, the higher probability it gets transferred as a whole. Therefore,

linkage skew helps genetic linkage learning by propagating tightly linkage building blocks.

Let Λt(λ) be the probability density function of the random variable λ, which represents

the genetic linkage of the optimal building block at generation t. The following linkage-skew

model to describe the evolution of genetic linkage under linkage skew only has been proposed
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by Harik and Goldberg (1996):

Λt+1 = Λt +
σ2 (Λt)

Λt

, (3.4)

where σ2 (Λt) is the variance in the linkage distribution at time t.

3.3.3 Linkage Shift

Linkage shift is the second linkage learning mechanism (Harik & Goldberg, 1996). It occurs

when an optimal building block resides in the recipient and survives a crossover event. For

the optimal building block to survive, there cannot be any gene contributing to a deceptive

building block transferred. If some genes of a deceptive building block get transferred to

the recipient, the optimal building block on the recipient will be disrupted because the

transferred genes get expressed before the genes of the optimal building block do. Therefore,

linkage shift gets the linkage of a building block in an individual tighter by deleting duplicate

genetic material which is unrelated to the optimal building block and caused by injection of

exchange crossover. Compared to linkage skew, linkage shift gets genetic linkage of building

blocks in each individual tighter by removing gaps consisting of non-coding elements or

unrelated functional genes between the genes contributing to the optimal building block.

In addition to the model for linkage skew, Harik and Goldberg (1996) also proposed the

following recurrence equation to describe and understand linkage shift:

λ0(t + 1) = λ0(t) + (1− λ0(t))
2

(k + 2)(k + 3)
, (3.5)

for an order-k building block.
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3.4 Accomplishments of the LLGA

As presented in the previous sections, by integrating the evolvable genotypic structure con-

sisting of moveable genes, non-coding segments, and probabilistic expression, the linkage

learning genetic algorithm successfully achieves genetic linkage learning and handles the

linkage problem. More specifically, the major accomplishments of the linkage learning ge-

netic algorithm include:

• Proposed probabilistic expression to level the battlefield of the race between allelic

convergence and linkage convergence;

• Identified the two linkage learning mechanisms to understand the linkage learning

process in a bottom-up manner;

• Achieved successful genetic linkage learning on problems composed of exponentially

scaled building blocks.

Each of these accomplishments is described in what follows.

As mentioned previously, there is a race or time-scale comparison in the genetic linkage

learning process, which was suggested by Goldberg and Bridges (1990). Denote the charac-

teristic time of allelic convergence tα and the characteristic time of linkage convergence tλ,

because selection works on the fitness to promote good alleles and demote bad ones, allele

convergence receives stronger and more direct signal from the selection force than linkage

convergence does, sets of alleles converge more quickly than linkage does. That is, tα < tλ.

Such a condition leads to the failure of genetic algorithms because loose linkage prevents

genetic algorithms from getting correct alleles, and once the alleles converge to wrong com-

binations, the result cannot be reversed or rectified.

One of the most important accomplishments of the linkage learning genetic algorithm

is the use of probabilistic expression. By employing probabilistic expression, allelic conver-

gence is effectively slowed down because the shadowed genes can exist on the chromosome
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throughout the evolutionary process and can get expressed again with certain probability

even at the late stage of the run. This delay of allelic convergence gives a chance for ge-

netic linkage to converge. Therefore, the linkage learning genetic algorithm makes linkage

convergence not slower than allele convergence (tλ ≤ tα) by using probabilistic expression.

Moreover, Harik identified the two linkage learning mechanisms, linkage skew and linkage

shift, of the linkage learning process by theorizing how the genetic linkage of a building block

gets tight under the exchange crossover operator. By doing so, Harik not only provided

an explanatory theory to describe the way the genetic linkage is learned and to predict

the evolution of the genetic linkage of a single building block under these two mechanisms

but also started a fundamental framework based on which we develop more comprehensive

theoretical models, including the tightness time and the convergence time models, in this

study to advance our understandings of the linkage learning genetic algorithm in theory and

to propose a better design of the linkage learning genetic algorithm.

Overall, the linkage learning genetic algorithm successfully achieved genetic linkage learn-

ing on problems composed of badly scaled building blocks. With its sophisticated, unique

design, the linkage learning genetic algorithm can keep allelic diversity until linkage conver-

gence and solve exponentially scaled problems quickly, reliably, and accurately. Figure 3.5

shows a successful run of applying the linkage learning genetic algorithm to solve a 76-bit

problem composed of 19 exponentially scaled building blocks. Each building block is an

order-4 trap as described in section 4.2. The scaling factor to construct the test problem

is 7. As shown in the figure, the linkage learning genetic algorithm successfully identified

each building block in equal increments of time and solved the whole problem. The overall

convergence time for the linkage learning genetic algorithm on exponentially scaled problems

is linear to the problem size in terms of the number of building blocks.
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Figure 3.5: The linkage learning genetic algorithm is able to solve a 76-bit problem composed
of 19 exponentially scaled order-4 traps with a scaling factor 7. Each building block is
identified and gets tightly linked in equal increments of time. The overall convergence time
is linear to the problem size in terms of the number of building blocks (Harik, 1997).

3.5 Difficulties Faced by the LLGA

As described in the previous section, the linkage learning genetic algorithm can successfully

learn genetic linkage and tackle the linkage problem to solve problems consisting of expo-

nentially scaled building blocks by slowing down the allelic convergence with probabilistic

expression. some extent. However, the linkage learning genetic algorithm does not perform

as well as Harik and Goldberg originally expected on the uniformly scaled problem. As men-

tioned previously and reported by Harik (1997), when the building blocks of the problem

are exponentially scaled, the linkage learning genetic algorithm can solve it in linear time in

terms of the number of building blocks, but when the building blocks are uniformly scaled,

the linkage learning genetic algorithm needs a population size growing exponentially with

the problem size. Figure 3.6 shows that the linkage learning genetic algorithm requires an

exponentially growing population size in terms of the number of building blocks to solve

the uniformly scaled problem. Moreover, in our recent study, if we do not use a popula-
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tion size growing exponentially, the time required to solve a uniformly scaled problem grows

exponentially as shown in Figure 6.4 in section 6.3.1.

Based on the performance reported on exponentially scaled building blocks and uniformly

scaled building blocks, the linkage learning genetic algorithm seems to behave differently

when handling different types of problems. Why the behavior of the linkage learning genetic

algorithm seems inconsistent when solving multiple building blocks of different scalings was

previously unknown, and it is one of the important questions that is answered in this study.

After resolving the issue of the seemingly inconsistent behavior and identifying the consis-

tent sequential behavior, another important objective of this work is to propose effective mod-

ifications to eliminate the performance barrier of the linkage learning genetic algorithm on the

uniformly scaled problem. A good number of efforts and attempts have been made to improve

the performance of the linkage learning genetic algorithm in the past few years, including

utilizing niching techniques (Harik, 1997), compressing the non-coding segments (Lobo, Deb,

Goldberg, Harik, & Wang, 1998), employing multiple points of interpretation (Lobo, 2001),

investigating the properties of building blocks of different scalings (Lobo, 2001), applying

various selection pressure, crossover probability, and population sizes (Harik, 1997; Chen,

2002). These attempts either did not achieve any improvement or provided only marginal

improvements. Therefore, in a few words, there are undiscovered mysteries, mechanisms,

or limits of the linkage learning genetic algorithm. This study seeks better understanding

of these facets of the linkage learning genetic algorithm and tries to provide solutions or

explanations to the difficulties faced by the linkage learning genetic algorithm.

3.6 Summary

In this chapter, key elements of the linkage learning genetic algorithm, such as circular chro-

mosomes, exchange crossover, and the two previously identified linkage learning mechanisms

were introduced. Then, the accomplishments of the linkage learning genetic algorithm were
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Figure 3.6: The linkage learning genetic algorithm requires an exponentially growing popula-
tion size to solve a problem composed of uniformly scaled building blocks, which are order-4
tmmps. Straight lines on a semi-log scale are indicative of exponential growth (Harik, 1997).
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presented and described. Finally, the difficulties faced by the linkage learning genetic algo-

rithm were discussed, followed by the motivations to conduct this research. In what follows,

a chapter presents the assumptions regarding the framework based on which we develop the

theoretical models and regarding the genetic algorithm structure we adopt in this work. It

provides a background establishment for the remainder of this dissertation.
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Chapter 4

Preliminaries:
Assumptions and the Test Problem

After introducing the background and motivation of the linkage learning genetic algorithm,

we will start to improve and understand the linkage learning genetic algorithm by proposing

practical mechanisms as well as developing theoretical models. However, before going further,

we need to establish a ground based on which the models will be constructed and the

experiments will be conducted in the following chapters. In particular, this chapter focuses

the following topics:

• Describe the framework based on which we develop the models and present the genetic

algorithm structure we used in this study;

• Introduce the test problem, including the elementary problem and the way to construct

larger problems, that we employ throughout this work.

This chapter starts with introducing the key assumptions that we use throughout this study,

followed by the definition and construction of the test problem.

4.1 Assumptions

The primary assumptions used in this study include:

• Selectorecombinative genetic algorithms;
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• Generational genetic algorithms;

• Non-overlapping population;

• Fixed population size;

• Stationary fitness function;

• Uniformly or exponentially scaled building blocks.

Each of these assumptions is described and discussed in detail as follows:

• Selectorecombinative genetic algorithms. In this work, a selectorecombinative ge-

netic algorithm is assumed. Selectorecombinative genetic algorithms are those genetic

algorithms that use only selection and crossover as the genetic operators. According

to the concept of the innovation intuition proposed by Goldberg (2002), the combina-

tion of selection and crossover is compared to the cross-fertilizing innovation, which

performs global search and is more difficult to understand, whereas the combination of

selection and mutation is a form of hillclimbing, which performs local search and easier

to understand. Furthermore, in traditional genetic algorithms, crossover, or the recom-

bination operator, is the main operator, and mutation is considered as a background

operator applied with a low probability. Therefore, the combination of selection and

crossover largely determines the behavior and performance of the search procedure,

and we concentrate on selectorecombinative genetic algorithms in this work.

• Generational genetic algorithms. The flow-control of the genetic algorithm we

consider in this work is generationwise. In generationwise genetic algorithms, evolution

occurs through discrete steps. At one generation, all the individuals in the population

are evaluated. Highly fit individuals get selected by the selection procedure and are

recombined by the crossover operator to generate new individuals. The procedure is

repeated until the new population is full, and then, the next generation starts.
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• Non-overlapping population. We assume a non-overlapping population in this

study. The new individuals generated by the combination of selection and crossover

replace all of the old individuals. For example, if we start the genetic algorithm with

a population of size n, the genetic operators, which are selection and crossover, create

n new individuals, and then, these n new individuals replace the old n individuals. It

is possible the some of the generated new individuals are identical to some of the old

individuals, but the non-overlapping population means no old individual directly goes

into the next population regardless of what the individual is.

• Fixed population size. The population size is assumed constant. The constant

population size assumption indicates that the number of individuals created by the

genetic operators is kept equal to the size of the initial population. Therefore, the

population size does not change over generations.

• Stationary fitness function. The fitness function we consider in this work is as-

sumed stationary. That is, the fitness function is not time-dependent or time-variant.

Although we are using a fitness function without noise to test the linkage learning

genetic algorithm in this study, the fitness function can be noisy or stochastic.

• Uniformly or exponentially scaled building blocks. We assume that the con-

tribution to the overall fitness of the building blocks are either uniformly scaled or

exponentially scaled. These two scalings are employed not only because of their preva-

lence in the literature but also because they are abstract versions of many decom-

posable problems (Goldberg, 2002). Uniformly scaled problems resemble those with

subproblems of equal importance, while exponentially scaled problems represent those

with subproblems of distinguishable importance. We will describe these two scaling

methods in detail in the following section on the construction of the test problem.

Based on these assumptions, we develop the theoretical modes to describe the behavior of the

linkage learning genetic algorithms and implement the algorithm to conduct the experiments
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for observation and verification. In the next section, we will describe the test problem

employed throughout this work for studying the linkage learning genetic algorithm.

4.2 Test Problem

In this research project, a family of trap functions (Ackley, 1987; Deb & Goldberg, 1993;

Deb, Horn, & Goldberg, 1993; Deb & Goldberg, 1994) is adopted as the elementary test

problem. We use the trap function as the subproblem to construct all of the larger test

problems used in the experiments in this study. The most important reason to choose trap

functions as our test problems is that trap functions provide decent linkage structures among

variables, and good genetic linkage is necessary for solving the problems consisting of traps.

Since we concentrate on studying genetic linkage of building blocks and the linkage learning

process, instead of other arbitrary functions, which might provide no linkage structure among

variables or of which the properties are unknown to us, trap functions are very appropriate

for our purpose of study.

A trap function is a piecewise-linear function defined on unitation, which is the number

of ones in a binary input string. The function divides the variable domain into two sets. One

of them leads to a global optimum, and the other leads to a local optimum. Specifically, an

order-k trap function can be expressed as

trapk(u) =

 u u = k

k − 1− u otherwise
. (4.1)

Figure 4.1 shows the order-4 trap function used in most of the experiments in the present

work. Note that for this particular order-4 trap function, the ratio r of the local optimum

and the global optimum is r = 3/4 = 0.75. As indicated by Deb and Goldberg (1993), this
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Figure 4.1: The order-4 trap function used in this study and two examples for concatenating
six, order-4 trap functions—one is uniformly scaled and the other is exponentially scaled—to
form larger test problems. The scaling factor is 2 in the exponential scaling example.

order-4 trap is fully deceptive because

r = 0.75 ≥ rmin =
k − 1

2k − 3
=

4− 1

8− 3
= 0.6 ,

where k = 4 for order-4 trap functions. This order-4 trap function is chosen as the elementary

test problem because it is fully deceptive, and we are interested in solving the problems of

bounded difficulty as discussed in section 1.2.

Moreover, in order to construct larger test problems, we mainly consider two types

of scaling methods to combine these traps, which are considered as elementary subprob-

lems. One method is to scale them uniformly, and the other is to scale them exponentially.

These two scalings are employed not only because of their prevalence in the literature of

genetic algorithms but also because they are abstract versions of many decomposable prob-

lems (Goldberg, 2002). Uniformly scaled problems resemble the decomposable problems with
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Figure 4.2: Two different scaling methods used in this study to concatenate multiple building
blocks to construct larger test problems. As shown in (a), each of the uniformly scaled
building blocks contributes to the fitness equally, while as shown in (b), the salience of each
exponentially scaled building block is scaled exponentially according to some scaling factor.

subproblems of equal salience, while exponentially scaled problems represent those with sub-

problems of distinguishable importance. As an illustration, Figure 4.2 shows these two kinds

of scalings for a six-building-block problem. Note that in exponentially scaled problems,

for convenience, we scale the contribution to fitness of each building block according to its

position, but the idea is only to create building blocks of distinguishable salience.

4.3 Summary

In this chapter, the assumptions regarding the framework based on which we develop the

theoretical models as well as regarding the genetic algorithm structure we adopted in this

work were described. After introducing the key assumptions that we employ throughout this

dissertation, the definition of the elementary test problem, which are trap functions, and the

construction of the larger test problems used in the study were presented in detail. In the

following chapters, we will start to improve and understand the linkage learning genetic

algorithm by proposing practical mechanisms as well as developing theoretical models in

order to achieve scalable genetic linkage learning for a unimetric approach.
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Chapter 5

A First Improvement:
Using Promoters

Harik (1997) took Holland (1975)’s call for evolution of tight genetic linkage and proposed

the linkage learning genetic algorithm (LLGA), which used a special probabilistic expression

mechanism and a unique combination of the (gene number, allele) coding scheme and an

exchange crossover operator to create an evolvable genotypic structure that made genetic

linkage learning natural and viable for genetic algorithms. This integration of data structure

and mechanism led to successful genetic linkage learning, particularly on problems composed

of badly scaled building blocks. Interestingly, the nucleation procedure, which refers to the

process of building-block formation, was less successful on problems with uniformly scaled

building blocks, and this chapter seeks to better understand why this was so and to correct

the deficiency by adopting a coding mechanism, promoters†‡, that exists in genetics.

In particular, this chapter focuses on the following topics:

• Investigate the key deficiency which prevents the linkage learning genetic algorithm

from effectively separating building blocks;

• Introduce the use of promoters and a modified exchange crossover operator to work

†Promoters were previously called start expression genes in the original paper.
‡Promoters are those regions on the DNA structure from where the transcription process begins. We use

the term promoters in this work to indicate the starting points on the artificial chromosome from where the
interpretation procedure begins. The use of this term is not precisely biologically correct but a metaphor in
the algorithm we develop in the study.
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with promoters to improve the performance of the linkage learning genetic algorithm

on uniformly scaled problems.

This chapter starts with an investigation of the difficulty encountered by the original linkage

learning genetic algorithm when it is working on uniformly scaled problems, followed by

proposing the use of promoters, which is a coding mechanism existing in genetics, to overcome

the difficulty. The experimental results demonstrating the performance improvement on

uniformly scaled problems are then presented.

5.1 A Critique of the Original LLGA

The linkage learning genetic algorithm was original, provocative, and interesting. It works

quite well on badly scaled problems. Unfortunately, it performs poorly on uniformly scaled

problems. To better understand that failure, in this section, we investigate what the linkage

learning genetic algorithm is supposed to do and observe how and why it fails.

5.1.1 Test Function

In order to observe the process in which the linkage learning genetic algorithm solves prob-

lems, we need to set up a controlled testing environment first. In this chapter, a family of

trap functions (Ackley, 1987; Deb & Goldberg, 1993; Deb, Horn, & Goldberg, 1993; Deb

& Goldberg, 1994) described in section 4.2 is adopted as subproblems for constructing all

test problems because trap functions provide decent linkage structures among variables, and

good linkage is necessary for solving problems consisting of traps. Thus, the experimental

results can be analyzed and compared to what we expect. In particular, the order-4 trap

function,

trap4(u) =

 u u = 4

3− u otherwise
, (5.1)
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is used in all of the experiments in this chapter. Moreover, the overall fitness of the test

problem is a sum of the fitness values of all subproblems as the construction of uniformly

scaled problems described in section 4.2.

5.1.2 What Is the LLGA Supposed to Do?

One of the main motivations behind the linkage learning genetic algorithm was to permit

a genetic algorithm to gather genes belonging to different building blocks separately and

tightly. Note that there are two things needed here. Not only do individual building blocks

need to be tight, they also need to be separate to permit effective building-block exchange

via crossover. The analysis of linkage skew and linkage shift provided by Harik and Goldberg

(1996) addresses the tight linkage side of the ledger, but it says little or nothing about the

evolution of separate building blocks.

In selectionist schemes, sometimes good things happen of their own accord, so we examine

a four-building-block problem and see if separate and tight linkage can be evolved. In

particular, we use the original linkage learning genetic algorithm with EPE-2 to solve a

problem composed of four uniformly scaled order-4 traps described in the previous section.

In this experiment, we use the following parameter settings which are arbitrarily chosen and

not fine tuned. The population size is 300. The tournament size is 3. The crossover rate

is 1.0. There are 800 non-coding elements encoded on the chromosome. Then, we examine

typical individuals at generations 0, 50, 100, 150, and 200 shown in Figure 5.1.

As shown in the figure, at generation 0, the genetic material is randomly distributed on

the chromosome. The solid line-segments between genes represent consecutive non-coding

elements. Later, some genes are getting together to form partial building blocks at generation

50. Longer partial building blocks are formed at around generations 100 and 150, the genes

belonging to the same building block also get closer and closer. In the end of the run, the

four building blocks are formed correctly and separately on the chromosome.

As we can observe in this particular run, the linkage learning genetic algorithm does

69



���
� ���
�

Gene of BB 2
Gene of BB 1 Gene of BB 3

Gene of BB 4

���
�

���
�
��	
	

�

�
������ 

�� �
�
�������������� �
�
�� ���� �

�
�� �
�
�� ���
���
�������������
�
������ �  � !�!!�!"
"
#�##�#$�$$�$%�%%�%&
&
''(
(
)�))�)*�**�*+�+
+�+
,, --../�//�/0

0
1�11�12
2
334
4

556
6
778
8
9�99�9:
:
;;<
<
==>
>
??@
@
A�AA�AB
B
CCD
D

E�EE�EF
F
G�GG�GH�HH�HI�II�IJ�JJ�JK�KK�KL�LL�L M

M
NN O
O
PP Q
Q
RR S
S
TT U
U
VV W
W
XX YYZZ

[[\
\
]�]]�]^�^^�^ _
_
`` aabb c

c
dde�ee�ef�ff�f g
g
hhi�ii�ij
j
kkl
l
m�mm�mn
n
oop
p
qqr
r
s�ss�st
t
u�uu�uv
v
wwx
x
yyz
z

{{|
|
}�}}�}~�~~�~ �
�
�� �
�
�� ���� �

�
�� �
�
�� �
�
��

������������ �
�
�� �
�
�����������������
���
������ �
�
�� �
�
�������������� ���� �

�
�������� �  �  ¡
¡
¢¢ £�££�£¤�¤¤�¤ ¥

¥
¦¦ §
§
¨¨©�©©�©ª�ªª�ª «
«
¬¬��®�®®�®¯�¯¯�¯°�°°�° ±
±
²² ³
³
´´µ�µµ�µ¶
¶
··¸
¸
¹¹º
º

»»¼
¼
½�½½�½¾�¾¾�¾ ¿
¿
ÀÀ Á
Á
ÂÂ Ã
Ã
ÄÄÅ�ÅÅ�ÅÆ
Æ
ÇÇÈ
È
ÉÉÊ
Ê
Ë�ËË�ËÌ�ÌÌ�Ì Í
Í
ÎÎ Ï
Ï
ÐÐÑ�ÑÑ�ÑÒ�ÒÒ�Ò ÓÓÔÔÕ�ÕÕ�ÕÖ�ÖÖ�Ö ×

×
ØØ Ù
Ù
ÚÚÛ�ÛÛ�ÛÜ�ÜÜ�Ü Ý
Ý
ÞÞ ß
ß
ààá�áá�áâ�ââ�â ã
ã
ää å
å
ææç�çç�çè�èè�è é
é
êê

0

50

100

150

200

Generation

Figure 5.1: In a successful run, the original linkage learning genetic algorithm is able to
correctly separate the four building blocks in the problem and make each of them tightly
linked on the chromosome (Chen & Goldberg, 2002). The building-block formation process
is called nucleation, in which building blocks are correctly separated and tightly linked.

construct separate and tight building blocks as desired. We call this building-block formation

process nucleation that correctly separates building blocks and gets them tightly linked. This

might seem to put an end to the matter, but we examine a run that did not go this way.

5.1.3 How Does the LLGA Fail?

The process above yields results along the lines of those hoped for. However, it is not the

only result we might get when we use the linkage learning genetic algorithm to solve four

uniformly scaled building blocks. Another possible result is that genes of different building

blocks get together to form a single, intertwined building block, which is composed of genes

belonging to several building blocks and getting mixed together.

By examining the results of an unsuccessful run of the identical experiment shown in

Figure 5.2, we can easily observe the process of forming an intertwined building block. We

call this process misnucleation, in which building blocks are not separated correctly and

misidentified building blocks are formed.

As in the previous case, the genetic material is initially randomly distributed on the
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Figure 5.2: In an unsuccessful run, the original linkage learning genetic algorithm cannot
correctly separate the four uniformly scaled building blocks. An intertwined building block
of two actual building blocks is formed during the process, called misnucleation, in which
building blocks are not separated correctly and misidentified building blocks are formed
(Chen & Goldberg, 2002).

chromosome as shown in the figure. At generation 50, partial building blocks are being

constructed gradually. At generations 100 and 150, we can easily see that two of the four

building blocks tend to intertwine each other. The genes belonging the these two building

blocks start to go closer to one another. Finally, only two actual building blocks are correctly

identified and separated. The other two building blocks are intertwined as they were a single

building block on the chromosome.

In this case, two building blocks formed an intertwined building block along the misnu-

cleation process. The intertwined building block was regarded as a single building block on

the chromosome, and the linkage learning genetic algorithm could only make it tight instead

of separated. Hence, the real building blocks cannot be identified under such a condition.

The intertwined building block prevented the building blocks from being mixed well and

effectively and therefore also prevented the problem from being solved.

71



5.1.4 Separation Inadequacy: Key Deficiency of the LLGA

Based on the results presented in the previous sections and those from a good number of

experiments, the original linkage learning genetic algorithm seems only able to deal with

a very small number (around 2 to 5) of uniformly scaled building blocks. Misnucleation

becomes very likely to happen when the number of building blocks increases much beyond

that number because the nature of uniformly scaled problems requires all of the building

blocks to be identified and separated at the same time, but the original linkage learning

genetic algorithm has no mechanism to do that. Therefore, the original linkage learning

genetic algorithm performs poorly on uniformly scaled building blocks.

By revisiting the two linkage learning mechanisms, we find that there are only two cate-

gories of the genetic material:

1. the genetic material that affects the solution;

2. the genetic material that does not affect the solution.

Neither the linkage skew nor the linkage shift separates different building blocks and makes

each of them tightly linked. What they actually do is make the genetic linkage of the genetic

material that improves the solution quality tighter, no matter the genetic material belongs

to the same building block or not. The original linkage learning genetic algorithm does not

have an appropriate mechanism for appropriate building-block separation.

The same argument also applies to the badly scaled problems. When the linkage learning

genetic algorithm solves a badly scaled problem, it deals with the building blocks one by one.

Fitness scaling causes the most salient building block to be processed first, then the next

most salient, and so on. Therefore, the original linkage learning genetic algorithm can easily

handle badly scaled problems or problems consisting of the building blocks of distinguishable

salience because under this condition, effectively, the linkage learning genetic algorithm faces

only one or a few building blocks at a time.
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As shown by the observation in the previous sections and as discussed above, there is no

appropriate, specific mechanism built in the linkage learning genetic algorithm to correctly

separate building blocks. The reason why the linkage learning genetic algorithm can still

handle and separate a few number of uniformly scaled building blocks is that the schema

theorem (Holland, 1975; De Jong, 1975; Goldberg, 1989c; Goldberg & Sastry, 2001) delivers

marginal differentiable signals for separating building blocks and drives the linkage learning

genetic algorithm toward building-block separation.

To see this, according to the schema theorem, schemata (or building blocks) with shorter

defining lengths are favored in the evolutionary process and are harder to be disrupted

by crossover. For simple genetic algorithms with fixed genetic operators and chromosome

representations, this implication of the schema theorem may provide only the description of

the dynamics of genetic algorithms without regarding genetic linkage. However, in the linkage

learning genetic algorithm, since the genotypic structure is evolvable, this insight from the

schema theorem also provides us the explanation of the evolution of genetic linkage. Because

shorter building blocks are harder to be disrupted by crossover, the genes belonging to the

same building block tend to maintain their relative positions on the chromosome once they

are put close to one another. Otherwise, the genes may be randomly distributed again due

to the disruption of crossover. Therefore, the schema theorem delivers passive power to the

linkage learning genetic algorithm to separate building blocks. The whole building-block

formation process can be described as follows:

1. The genes of one building block are distributed at random on the chromosome.

2. If these genes are close to one another by chance, they tend to maintain their relative

positions on the chromosome because of a low probability to be disrupted by crossover.

3. Otherwise, if these genes are far from one another, by the schema theorem, they tend

to be disrupted by crossover. In the linkage learning genetic algorithm, the effect of

disruption of exchange crossover is equivalent to redistributing these genes at random.
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According to this process, the schema theorem does not play an active role in building-block

formation. It provides only passive, marginal power to separating building blocks. Hence,

building blocks are only sometimes formed under this circumstance. Because the power to

separate building blocks delivered by the schema theorem is not enough, the original linkage

learning genetic algorithm usually cannot correctly separate more than five building blocks

at the same time.

5.2 Improve Nucleation Potential with Promoters

After knowing this limit of the original linkage learning genetic algorithm, what we should

do now is to improve the nucleation and separation of building blocks. In the original linkage

learning genetic algorithm, any point can be a point of interpretation. Such a design provides

no advantage for building-block separation at the chromosome-representation level because

totally random points of interpretation create the instability of building-block formation.

In order to overcome this, we introduce the use of promoters that act as the only possible

points of interpretation (Chen & Goldberg, 2002). This should lower the instability of

building-block formation and improve nucleation potential during the evolutionary process.

We also modify the exchange crossover operator so it can work with promoters. The modified

exchange crossover operator uses the point of interpretation of the donor as one of the cutting

points to further reduce the randomness of building-block formation. Additionally, in the

modified linkage learning genetic algorithm, the probabilistic expression is used instead of

the extended probabilistic probabilistic expression. In the remainder of this section, these

modifications are discussed in detail. The experimental results show that the modifications

indeed make the linkage learning genetic algorithm have better ability to correctly identify

and separate uniformly scaled building blocks.
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Figure 5.3: Calculation for the genetic linkage of a three-gene building block with promoters
on the chromosome. The genetic linkage is calculated according to the expressed genes only.

5.2.1 How Do Promoters Work?

Promoters are special non-coding elements in the chromosome. While in the original linkage

learning genetic algorithm, all functional genes and non-coding elements could be chosen as

a point of interpretation of the offspring after crossover, in the modified version of the LLGA,

only promoters can be the points of interpretation. The way to quantify the genetic linkage

is identical to that described in section 3.3.1. Figure 5.3 shows an example to calculate the

genetic linkage of a three-gene building block with promoters.

In the original modified linkage learning genetic algorithm, when doing the exchange

crossover operator, the grafting point selected on the recipient is the new point of interpre-

tation of the generated offspring. When using promoters in the chromosome representation,

only promoters can be chosen as a point of interpretation. That is, the grafting point can

still be any functional gene or non-coding element. But in a crossover event, the nearest

promoter before the grafting point is determined as the point of interpretation of the off-

spring. Therefore, after randomly choosing the grafting point, we find the the first promoter

just before the grafting point and make it the point of interpretation of the child individual.

The genetic material between the promoter and the grafting point is first transferred to the

child, then the segment from the donor is duplicated, and finally the rest of the recipient

gets copied. Figure 5.4 illustrates how promoters work, and the black circles are promoters.
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Figure 5.4: After selecting the grafting
point on the recipient, the nearest pro-
moter before the grafting point is then the
point of interpretation of the offspring.

Point of interpretation
(5,1)

(4,0)

(4,1)

(3,0)

(3,1)

(5,0)

Cutting point

Materials to transfer

Figure 5.5: After selecting the cutting
point on the donor, the genetic material
after the cutting point and before the cur-
rent point of interpretation is transferred.

5.2.2 Modified Exchange Crossover

After adding promoters to the chromosome, the exchange crossover operator needs to be

modified so it can work with promoters. By modifying the exchange crossover operator, we

create a further relationship between this genetic operator and the point of interpretation.

The modified exchange crossover operator can reduce randomness of building-block formation

and improve nucleation potential.

The original exchange crossover operator cuts a random segment from the donor and

injects the segment into the recipient. In order to reduce the randomness, the modified ex-

change crossover operator selects only one cutting point at random. The other cutting point

used by the modified exchange crossover operator is always the gene or non-coding element

just before the point of interpretation of the donor. At the chromosome-representation level,

the operation is like one-point crossover; while at the expressed-string level, the operation is

like uniform crossover. Figure 5.5 shows the portion of the genetic material to be transferred.

More specifically, the modified exchange crossover operator works as follows:

1. Select a grafting point at random on the recipient;

2. Determine the point of interpretation of the child as described in section 5.2.1;

3. Copy the genetic material between the current point of interpretation and the grafting
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point to the child;

4. Select the cutting point at random on the donor;

5. Graft the genetic material between the cutting point and the point of interpretation

of the donor to the child;

6. Copy the rest genetic material of the recipient to the child;

7. Remove the duplicate functional genes and non-coding elements of the child to ensure

the validity.

By applying these steps, the exchange crossover operator is modified to work with the LLGA

chromosomes that contains promoters.

5.2.3 Effect of the Modifications

In order to observe and verify the effect of the modifications we made in the previous sections,

now we use the linkage learning genetic algorithm equipped with promoters to solve the

problem composed of four uniformly scaled building blocks as we did in section 5.1. Identical

to the experimental settings we used in section 5.1, the population size is 300, the tournament

size is 3, the crossover rate is 1.0, and there are 800 non-coding elements encoded on the

chromosome. Furthermore, the modified linkage learning genetic algorithm has an extra

parameter: the number of promoters, ns. In the experiment, the number of promoters on

each chromosome is set to 20. That is, ns = 20. Figure 5.6 shows that the modified linkage

learning genetic algorithm can correctly separate the four uniformly scaled order-4 traps.

In addition to those experiments on four building blocks, we vary the number of building

blocks to see if the modified version of linkage learning genetic algorithm can do better to

separate uniformly scaled building blocks on larger problems. We still use order-4 traps in

this experiment. Except for the number of building blocks, all parameters are identical to

the previous experiments in this chapter.
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Figure 5.6: Using the modified linkage learning genetic algorithm to solve a problem com-
posed of four uniformly scaled order-4 traps (Chen & Goldberg, 2002).

Figure 5.7 shows that the original linkage learning genetic algorithm failed if the number

of building blocks is greater than 6. It cannot correctly separate the building blocks and

reliably solve the problem. According to these experimental results, equipped with promoters

and the modified exchange crossover operator, the linkage learning genetic algorithm is

capable of separating and identifying up to eleven building blocks correctly.

5.3 Summary

This chapter introduced the use of promoters in the linkage learning genetic algorithm, which

is a coding mechanism exists in biological systems. First, the test function used to study the

algorithm was presented. Then, the key deficiency of the linkage learning genetic algorithm,

the lack of a building block separation mechanism, was pointed out with example runs. The

effect of promoters on the LLGA chromosome and the modification of exchange crossover

were described in detail, followed by the experimental results which demonstrated that the

use of promoters improved the performance of the linkage learning genetic algorithm on

uniformly scaled problems.
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Figure 5.7: Using the linkage learning genetic algorithm equipped with promoters and a
modified exchange crossover operator to solve problems consisting of different numbers of
uniformly scaled building blocks. As shown in the figures, up to eleven building blocks can
be correctly separated and identified (Chen & Goldberg, 2002).
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Chapter 6

Convergence Time for the
Linkage Learning Genetic Algorithm

As indicated in the previous chapter, inspired by the coding mechanism existing in genetics,

introducing the use of promoters in the linkage learning genetic algorithm can reduce ran-

domness of building-block formation and improve nucleation potential. Although adopting

promoters enhances the performance of the linkage learning genetic algorithm on uniformly

scaled problems, better understanding of the algorithm from a theoretical point of view

should be still addressed in order to design a better algorithm. This chapter aims to gain

better understanding of the linkage learning genetic algorithm in theory. Particularly, a

convergence time model is constructed to explain why the linkage learning genetic algorithm

needs exponentially growing computational time to solve uniformly scaled problems.

Therefore, in this chapter, we will develop the convergence time model for the linkage

learning genetic algorithm step by step and focus on the following topics:

• Identify a consistent, sequential behavior of the linkage learning genetic algorithm on

both exponentially scaled problems and uniformly scaled problems;

• Develop a tightness time model for quantifying the linkage learning time for a single

building block based on the two identified linkage learning mechanisms;

• Understand the different situations when the linkage learning genetic algorithm handles

a problem of one building block and of multiple building blocks;
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• Construct the convergence time model by channeling the model built for one building

block into that for multiple building blocks and integrating these results with the

identified sequential behavior.

We start with describing the settings of all the experiments for observing the working be-

havior of the linkage learning genetic algorithm and verifying the theoretical results. Based

on the observation, the sequential behavior of the linkage learning genetic algorithm is iden-

tified. By extending the two linkage learning mechanisms, linkage skew and linkage shift,

the tightness time model for a single building block is proposed, followed by the connection

between the sequential behavior and the tightness time model when multiple building blocks

exist in the problem. Finally, a convergence time model for the linkage learning genetic

algorithm is constructed thereafter by integrating these results and models.

6.1 Experimental Settings

In order to identify the behavior of the linkage learning genetic algorithm, we need to establish

the experimental environment in which we can observe how the linkage learning genetic

algorithm works and compare the observation to what we expect. In this section, we will

describe the test problems and algorithmic parameters in what follows.

First, trap functions (Ackley, 1987; Deb & Goldberg, 1993; Deb, Horn, & Goldberg, 1993;

Deb & Goldberg, 1994) are used to construct the test problems in this chapter. As described

in section 4.2, trap functions are employed because they provide decent linkage structures,

and good linkage is required to solve problems consisting of traps. Specifically, an order-k

trap function can be expressed as

trapk(u) =

 u u = k

k − 1− u otherwise
. (6.1)

For uniformly scaled problems, the fitness is a sum of all the fitness values of each building
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Table 6.1: Parameters used to calculate the population sizes based on the gambler’s ruin
model for population sizing and order-4 trap functions.

Parameter Value

α 0.1
k 4
σbb 1.102
d 1.0
d′ 0.5253

block. To construct exponentially scaled problems, the scaling factor is 5.0 in this chapter.

Tournament selection without replacement is employed in the algorithm. Although Harik

(1997) proposed using a high selection pressure to drive both search and linkage learning

processes, according to our recent study (Chen & Goldberg, 2002), the selection pressure

required is not necessarily so high. As a consequence, we set the tournament size to 3.

The population size is another essential parameter of genetic algorithms. Using a fixed

population size to handle problems of various sizes is inappropriate for the present work

because the difficulty of a problem usually increases with the problem size. In this chapter,

we employ the gambler’s ruin model (Harik, Cantú-Paz, Goldberg, & Miller, 1997; Harik,

Cantuú-Paz, Goldberg, & Miller, 1999) described in section 1.3 for population sizing with

the signal adjusted by Equation (1.15) for tournament size 3. Specifically, Table 6.1 shows

the parameters used in this chapter to calculate the population sizes based on the gambler’s

ruin model for population sizing, and Table 6.2 shows the population sizes, n, we use in the

experiment to handle the problems consisting of different numbers of building blocks, m.

Other parameters are set as follows. The crossover rate is 1.0 such that the crossover

event always happens. The maximum number of generations is 10,000. The number of

promoters is set to 2m, where m is the number of building blocks in the problem. The

number of non-coding elements is set to 100m to maintain a constant disruption probability

as soon as a building block is tightly linked. Finally, all results in this chapter are averaged

over 50 independent runs for each experiment.
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Table 6.2: Population sizes, n, used in the experiment to handle the problems consisting of
different numbers of building blocks, m.

m n m n m n m n

1 N/A 6 154 11 218 16 266
2 70 7 168 12 228 17 276
3 98 8 182 13 238 18 284
4 120 9 194 14 248 19 292
5 138 10 206 15 256 20 300

6.2 Sequentiality for Exponentially Scaled BBs

As indicated in section 3.5, the linkage learning genetic algorithm seems to have an inconsis-

tent behavior when solving the problem consisting of multiple building blocks with different

scalings. Therefore, the first step here is to identify a consistent underlying working behavior

if it exists. Experiments for exponentially scaled problems and uniformly scaled problems

are conducted respectively for observing the working behavior of the linkage learning genetic

algorithm. As expected, the empirical results reveal a consistent, sequential behavior. In

this section and the following section, the procedures to observe the sequential behavior on

exponentially scaled problems and uniformly scaled problems are presented.

We start with the exponentially scaled problem. Harik (1997) identified that the problems

composed of exponentially scaled building blocks are solved by the linkage learning genetic

algorithm sequentially. These building blocks get tightly linked and solved one by one.

In what follows, we conduct our own experiments to verify this sequential behavior of the

linkage learning genetic algorithm on exponentially scaled problem.

6.2.1 Time to Convergence

First, we use the linkage learning genetic algorithm to solve exponentially scaled problems

composed of different numbers of building blocks. The range of the number of building

blocks in the test problems is from 4 to 20. The number of generations is recorded when the
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Figure 6.1: Time for the linkage learning genetic algorithm to converge when solving prob-
lems composed of exponentially scaled building blocks. The convergence time grows linearly
with the number of building blocks. The convergence condition is defined as the difference
between the number of building blocks solved in the generational best individual and the
average number of building blocks solved in the current population is less than 0.0001 for
consecutive 20 generations. The experimental results are averaged over 50 independent runs
(Chen & Goldberg, 2004a).

population converges. A population is defined as converged if the following condition is true

for consecutive 20 generations:

The difference between the number of building blocks solved in the generational

best individual and the average number of building blocks solved in the current

population is less than 0.0001.

The experimental results are shown in Figure 6.1. As we can see, the time for the linkage

learning genetic algorithm to converge when solving exponentially scaled problems increases

linearly as the number of building blocks increases.
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Table 6.3: Experiments for observing the building-block propagation when using the linkage
learning genetic algorithm to solve exponentially scaled building blocks. In an experiment,
the test problem is composed of totally m + j building blocks in which j building blocks are
pre-solved before running the algorithm.

Number of pre-solved BBs (j) Total number of BBs (m + j)

0 3, 4, · · · , 10
1 4, 7, · · · , 11
2 5, 8, · · · , 12
3 6, 9, · · · , 13

6.2.2 Building-Block Propagation

Now we verified that the time for solving exponentially scaled problems grows linearly with

the size of the problem as previously reported. For more detailed information about the

working behavior, we would like to understand the difference between solving m building

blocks from scratch and solving m+j building blocks with j building blocks already solved. In

this set of experiments, we solve and tighten several building blocks before running the linkage

learning genetic algorithm and observe the convergence time under different settings and

configurations. Specifically, Table 6.3 lists all the experiments conducted for this purpose.

Figure 6.2 shows the experimental results. It is observed that for convergence time, solving

m + j exponentially scaled building blocks with j building blocks pre-solved is equivalent

to solving m building blocks from scratch. This means that the solved building blocks

are propagated smoothly through the process without being disrupted. Otherwise, solving

m + j building blocks with j building blocks pre-solved would take more time than solving

m building blocks does.

6.2.3 Time to Tighten the First Building Block

Linear convergence time with proper building-block propagation implies that the time for the

first building block to converge should remain constant. Thus, for every g generations, one

building block is solved and effectively disappears from the processing scope of the linkage
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Figure 6.2: Convergence time for solving exponentially scaled building blocks with some
building blocks pre-solved. It shows that the time required to solve m + j building blocks
when j building blocks are solved equals the time needed to solve m building blocks. The
experimental results are averaged over 50 independent runs (Chen & Goldberg, 2004a).
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Figure 6.3: Time for the linkage learning genetic algorithm to tighten the first building
block holds constant for different numbers of building blocks when solving exponentially
scaled problems. The experimental results are averaged over 50 independent runs (Chen &
Goldberg, 2004a).

learning genetic algorithm. Note that the “first building block” here does not necessarily

mean the building block of the highest number, the most salient building block, or any

particular building block. The “first building block” refers to the building block achieving

certain genetic linkage first among all building blocks. The results are shown in Figure 6.3.

As predicted, the time for the first building block to converge seems to hold constant when

solving the problem consisting of different numbers of building blocks.

6.3 Sequentiality for Uniformly Scaled BBs

After observing the behavior of the linkage learning genetic algorithm on exponentially scaled

building blocks, we verified the sequentiality reported previously by Harik. In order to

establish a consistent behavior for the linkage learning genetic algorithm, in this section, we

turn to uniformly scaled building blocks to observe the outcome of similar experiments.
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6.3.1 Time to Convergence

Similar to what we did in section 6.2.1, we use the linkage learning genetic algorithm to solve

problems consisting of uniformly scaled building blocks. We vary the number of building

blocks from 3 to 15 and record the number of generations when the convergence condition

is true for consecutive 20 generations. Figure 6.4 shows the results of the experiments. The

convergence time to solve uniformly scaled problems grows exponentially with the number

of building blocks. If we consider the overall computational complexity, these results do not

contradict those reported by Harik, because the overall complexity grows exponentially.

6.3.2 Building-Block Propagation

For uniformly scaled problems, we also wish to know if there is any difference between

solving m building blocks from scratch and solving m + j building blocks with j building

blocks already solved such that a possible consistent working behavior can be established.

We use the identical experiments listed in Table 6.3 as we did in section 6.2.2. Figure 6.5

shows the experimental results. It was unexpected that for convergence time, solving m + j

uniformly scaled building blocks with j building blocks solved is also equivalent to solving

m building blocks from scratch. Because the convergence time grows exponentially, it was

expected that building block creation and disruption play a more important role than they

do in solving exponentially problems. However, the empirical results of this experiment

show that building-block propagation also works well when solving problems consisting of

uniformly scaled building blocks.

6.3.3 Time to Tighten the First Building Block

According to the experimental results from the previous experiments, we might expect that

for uniformly scaled building blocks, the time for the first building block to converge grows

exponentially. Because building-block propagation also works for uniformly scaled problems,
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Figure 6.4: Time for the linkage learning genetic algorithm to converge when solving uni-
formly scaled building blocks. The convergence time grows greater than exponentially with
the number of building blocks. Straight lines on a semi-log scale are indicative of exponential
growth. The results are averaged over 50 independent runs (Chen & Goldberg, 2004a).
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Figure 6.5: Convergence time for solving uniformly scaled building blocks with some building
blocks pre-solved. It shows that the time required to solve m+j building blocks when j build-
ing blocks are solved equals the time needed to solve m building blocks. The experimental
results are averaged over 50 independent runs (Chen & Goldberg, 2004a).
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there seems no way for the convergence time to increase exponentially if the time to tighten

the first building block does not grow exponentially. Figure 6.6 shows the time for the linkage

learning genetic algorithm to tighten the first building block. As predicted, the time for the

first building block to converge grows exponentially with the number of building blocks. It

implies that the convergence time growth is mainly determined by the time to tighten the

first building block in both cases.

These results not only ensure the building-block propagation but also imply that if there

are m unsolved building blocks in question, when a building block is solved, the situation

or configuration is equivalent to that there are m − 1 unsolved building blocks and the

whole process restarts. Hence, we propose the first-building-block model for describing the

sequential behavior of the linkage learning genetic algorithm in the next section.

6.4 Macro View: Sequential Behavior

Based on those empirical results obtained in the previous sections, we identified a consistent,

sequential behavior of the linkage learning genetic algorithm. In this section, we propose a

simple model, called the first-building-block model (FBB model) in a top-down manner to

describe the sequential behavior of the linkage learning genetic algorithm (Chen & Goldberg,

2004a). The FBB model is proposed from the macro view because this model is established

according to the observation made by us as an external observer instead of based on the

underlying mechanisms of the algorithm. By assuming that the convergence time is an

accumulation of the time to tighten the first building block, we can develop the first-building-

block model as follows. First, we define the function tfbb as

tfbb(m) = time to tighten the first building block (6.2)
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Figure 6.6: Time for the linkage learning genetic algorithm to tighten the first building
block grows exponentially with the number of building blocks when solving uniformly scaled
problems. The results are averaged over 50 independent runs (Chen & Goldberg, 2004a).
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and the function tc for the convergence time as

tc(m) = convergence time for solving m building blocks. (6.3)

By our assumption of the first-building-block model, we can express tc as

tc(m) =
m∑

i=1

tfbb(i) + tc0 , (6.4)

where tc0 is a constant. The sequential behavior is therefore established through the first-

building-block model. By rewriting tc as

tc(m) =
m∑

i=i0

tfbb(i) + tc(i0 − 1) , (6.5)

the model can be empirically verified. The experimental results as shown in Figures 6.7 and

6.8 are averaged over 50 independent runs and agree with the proposed model in both cases

of the exponentially scaled problem and the uniformly scaled problem.

6.5 Extending Linkage Learning Mechanisms

After identifying the consistent, sequential behavior of the linkage learning genetic algorithm

and proposing the FBB model to describe this behavior from the macro view in the previous

sections, the next step toward the convergence time model for the whole genetic linkage

learning process is to derive the tightness time, which is the linkage learning time for a single

building block (Chen & Goldberg, 2003b). We first examine the current theoretical analysis

of the linkage learning mechanisms (Harik & Goldberg, 1996; Harik, 1997). Models for both

linkage learning mechanisms, linkage skew and linkage shift, are refined and extended in this

section. The theoretical results are confirmed with experiments. Then, in the next section,

a model for tightness time is constructed based on the extended models and empirically
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Figure 6.7: The experimental results on problems composed of exponentially scaled building
blocks agrees with the first-building-block model described by Equation (6.5). The experi-
mental results are averaged over 50 independent runs (Chen & Goldberg, 2004a).

verified. Because artificial evolutionary systems usually create fitness associated with a

greedy choice of the best alleles before linkage has evolved, understanding the race between

allelic convergence and linkage convergence is critical to designing linkage learning genetic

algorithms that work well. Therefore, tightness time is one of the fundamental elements

contributing to the theoretical understanding.

6.5.1 Extending the Linkage-Skew Model

As discussed, we first extend linkage skew and then refine linkage shift. Linkage skew, the first

linkage learning mechanism, occurs when an optimal building block is successfully transferred

from the donor onto the recipient. The conditions for an optimal building block to be

transferred are (1) the optimal building block resides in the cut segment and (2) the optimal

building block gets expressed before the deceptive one does. The effect of linkage skew was

found to modify the whole linkage distribution by eliminating loosely linked building blocks

and propagating tight building blocks among individuals. Linkage skew does not make the
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Figure 6.8: The experimental results on problems composed of uniformly scaled building
blocks agrees with the first-building-block model described by Equation (6.5). The experi-
mental results are averaged over 50 independent runs (Chen & Goldberg, 2004a).

95



genetic linkage of a building block of any single particular individual tighter. Instead, it

makes the average of the genetic linkage distribution higher.

Let Λt(λ) be the probability density function of the random variable λ which represents

the linkage of an optimal building block at generation t. The following model to describe the

evolution of linkage under linkage skew only has been proposed (Harik & Goldberg, 1996):

Λt+1(λ) =
λΛt(λ)

Λt

. (6.6)

Based on Equation (6.6), the genetic linkage average at generation t + 1 can be calculated

as (Harik, 1997):

Λt+1 =

∫ 1

0

λΛt+1(λ) dλ =

∫ 1

0

λ
λΛt(λ)

Λt

dλ =
Λ2

t

Λt

, (6.7)

and thus,

Λt+1 = Λt +
σ2 (Λt)

Λt

, (6.8)

where σ2 (Λt) is the variance in the linkage distribution at generation t.

In addition to the average, which is the first moment, of Λt+1(λ), we can actually calculate

all other moments of Λt+1(λ) in the same way:

Λn
t+1 =

∫ 1

0

λnΛt+1(λ) dλ =

∫ 1

0

λn λΛt(λ)

Λt

dλ =
Λn+1

t

Λt

. (6.9)

According to the properties of a probability distribution, the moments about the origin

completely characterize a probability distribution (Zwillinger & Kokoska, 2000). From Equa-

tion (6.9), we can construct all the moments about the origin of Λt+1(λ) as follows:

Λn
t+1 =

Λn+1
t

Λt

n = 1, 2, 3, · · · (6.10)

Hence, the relation between Λt(λ) and Λt+1(λ) is established with their moments.
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After knowing the relation between Λt(λ) and Λt+1(λ), the moment generating function

(mgf) defined by the following formula can help us simplify the calculation:

mΛt(s) = E
[
esΛt

]
=

∫ ∞

−∞
esλΛt(λ) dλ . (6.11)

Assume that the moment generating function of Λt(λ) exists, it can be written as

mΛt(s) = E
[
esΛt

]
= E

[
1 + Λts +

(Λts)
2

2!
+

(Λts)
3

3!
+ · · ·

]
= 1 + Λts + Λ2

t

s2

2!
+ Λ3

t

s3

3!
+ · · ·

(6.12)

The rth moment of Λt(λ) can be obtained with

Λr
t = m

(r)
Λt

(0) =
drmΛt(s)

dsr

∣∣∣∣
s=0

. (6.13)

Given the relation between Λt(λ) and Λt+1(λ) and the property of the moment generating

function, we can now get the moment generating function of Λt+1(λ) as

mΛt+1(s) = m
′

Λt

(
s

m
′
Λt

(0)

)
. (6.14)

Therefore, we have a model to calculate Λt+1(λ) from Λt(λ) when the moment generating

function of Λt(λ) is available.

Furthermore, also based on Equation (6.10), we can obtain the following result:

Λn
t =

Λn+1
t−1

Λt−1

=
Λn+2

t−2 /Λt−2

Λ2
t−2/Λt−2

=
Λn+2

t−2

Λt−2

= · · ·

=
Λt+n

0

Λ0

,

(6.15)
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which clearly indicates that under linkage skew, any moment of the linkage distribution at

any given generation can be predicted with the information of the initial linkage distribution.

The linkage learning process is solely determined by the initial distribution if there is only

linkage skew working in the process.

Based on its property, linkage skew does not really tighten building blocks in any in-

dividual. It drives the genetic linkage distribution to a higher state by propagating tight

building blocks among individuals. Therefore, the genetic linkage cannot exceed the maxi-

mum linkage in the initial population. The evolution of linkage described by Equation (6.14)

is bounded by the initial maximum linkage.

The extended linkage-skew model was empirically verified with the problems consisting

of order-4 and order-6 trap functions. We follow an experimental procedure identical to

that presented by Harik and Goldberg (1996). In the initial population, all of the indi-

viduals contain the optimal building block with random linkages. At every generation, all

individuals go through the exchange crossover operator and are crossed with artificially gen-

erated individuals containing deceptive building blocks with random linkages for simulating

the condition defined for linkage skew. In crossover events, the individuals containing the

optimal building block are donors, and the generated individuals containing the deceptive

building block are recipients. After crossover, only the offspring has the optimal building

block survives and gets a copy in the next generation. The purpose for such experimental

procedure is to observe the evolution of linkage solely under linkage skew.

In order to simulate infinite-length chromosomes, we let the functional genes occupy only

one percent of the chromosome. That is, for the order-4 building block, the 4 genes are

embedded in a 400-gene chromosome with 396 non-coding elements; for the order-6 building

block, the 6 genes are embedded in a 600-gene chromosome with 594 non-coding elements.

The population size is 5,000 in both cases of order-4 and order-6 traps. All experiments are

repeated 50 times and the results are averaged over these 50 independent runs.

For the illustration purpose, we show only the prediction of the average, which is the first
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moment, and the variance, which is the second moment minus the square of the average,

in figures, although the extended linkage-skew model can predict all moments of the link-

age distribution at any given generation. Figures 6.9 and 6.10 show the experimental results

compared to the theoretical prediction. The theoretical prediction was made based on Equa-

tion (6.15). With Equation (6.15), we predict the growth of the average linkage. However,

as discussed previously, since linkage skew does not actually change the linkage of building

blocks in any individual, the linkage cannot exceed the maximum linkage existing the initial

population and is therefore bounded by the maximum initial linkage. Figures 6.9(a) and

6.10(a) specifically show the results that we expected. The growth of the linkage is a patch-

quilt of the theoretical prediction and upper bound. Therefore, as shown in the figures, the

experimental results agree with the prediction of our facetwise model pretty well, and the

extended linkage-skew model is experimentally confirmed.

6.5.2 Extending the Linkage-Shift Model

After extending linkage skew, the next step is to refine linkage shift. Linkage shift is the

second linkage learning mechanism (Harik & Goldberg, 1996). It occurs when an optimal

building block resides in the recipient and survives a crossover event. For an optimal building

block to survive, there cannot be any gene contributing to a deceptive building block trans-

ferred. Linkage shift gets the genetic linkage of a building block in an individual higher with

deletion of duplicate genetic material caused by injection of exchange crossover. Compared

to linkage skew, linkage shift gets the linkage of building blocks in each individual higher.

For linkage shift, the following recurrence equation was used (Harik & Goldberg, 1996) to

depict the effect of the second mechanism on building blocks that survive crossover events:

λ0(t + 1) = λ0(t) + (1− λ0(t))
2

(k + 2)(k + 3)
, (6.16)

for an order-k building block. Tracking only the average of genetic linkage, we can approxi-
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Figure 6.9: Linkage skew on an order-4 trap building block. As expected, under only linkage
skew, the experimental results agree with the patch-quilt of the extended linkage-skew model,
Equation (6.15), and the upper bound, the maximum linkage. The constructed facetwise
model can predict the evolution of genetic linkage for an order-4 trap building block. The
experimental results are averaged over 50 independent runs (Chen & Goldberg, 2003b).
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Figure 6.10: Linkage skew on an order-6 trap building block. As expected, under only linkage
skew, the experimental results agree with the patch-quilt of the extended linkage-skew model,
Equation (6.15), and the upper bound, the maximum linkage. The constructed facetwise
model can predict the evolution of genetic linkage for an order-6 trap building block. The
experimental results are averaged over 50 independent runs (Chen & Goldberg, 2003b).
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mately rewrite Equation (6.16) as

Λt+1 = Λt + (1− Λt)
2

(k + 2)(k + 3)
. (6.17)

Given a fixed k, let c = 2
(k+2)(k+3)

, we can get the following recurrence relation:

Λt+1 = Λt + c(1− Λt)

= Λt + c− cΛt

= Λt (1− c) + c .

(6.18)

By solving the recurrence relation, the new linkage-shift model is obtained as

Λt = 1− (1− Λ0)(1− c)t . (6.19)

Therefore, the rate of linkage learning is mainly determined by the genetic linkage average of

the initial linkage distribution. Moreover, the higher order the building block is, the longer

it takes to evolve to some specific level of genetic linkage.

As for linkage skew, the extended linkage-shift model is also empirically verified. The

experimental procedure that we used to verify the extended linkage-skew model is repeated

to verify the extended linkage-shift model. The only difference is that in crossover events, the

individuals containing the optimal building block are recipients, and the generated individ-

uals containing the deceptive building block are donors. Moreover, the experiment settings

are also identical to that used to test the extended linkage-skew model. For linkage shift,

we predict the average of genetic linkage on both order-4 and order-6 traps. Figure 6.11

shows the experimental results. The theoretical prediction was made according to Equa-

tion (6.19). We also employ the adjustment scheme proposed by Harik and Goldberg (1996)

to reflect the difference between the infinite-length chromosome model and the real LLGA

chromosomes in experiments. In this study, the maximum possible genetic linkage in both
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cases is (0.99)2 = 0.9801, and the extended linkage-shift model, Equation (6.19), is adjusted

accordingly. As indicated in Figure 6.11, the experimental results agree with the adjusted

theoretical prediction, and we are now given a good reason to believe that the extended

model is accurate.

6.6 Micro View: Tightness Time

Equipped with the extended models for genetic linkage learning, we are now ready to develop

the tightness time model in a bottom-up manner to describe the linkage learning time needed

by a single building block. The tightness time model is proposed from the micro view because

this model is constructed based on the underlying linkage learning mechanisms. Based on the

observation and intuition, the working relationship between linkage skew and linkage shift is

as follows. Linkage shift is responsible for making the genetic linkage of a building block in

each individual tighter; linkage skew is responsible for propagating the tight building blocks

all over the population. Considering linkage shift as a refiner, linkage skew as a propagator,

and that the effect of linkage skew comes pretty fast based on the experimental results, the

genetic linkage learning bottleneck is in fact linkage shift. Hence, we start to develop the

model for tightness time based on the most critical component in the framework first.

Start from Equation (6.19), we can obtain

t =
log(1− Λt)− log(1− Λ0)

log(1− c)
. (6.20)

Then, it can be rewritten as a function of linkage λ:

t(λ) =
log(1− λ)− log(1− Λ0)

log(1− c)
. (6.21)

By taking the propagation effect of linkage skew into account, a constant cs standing for the

linkage learning speed-up caused by linkage skew is added into the model. Thus, we obtain
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Figure 6.11: Linkage shift on an order-4 trap and an order-6 trap. The experimental results
shows that under only linkage shift, the extended linkage-shift model, Equation (6.19), can
predict the evolution of genetic linkage for both order-4 and order-6 traps. The experimental
results are averaged over 50 independent runs (Chen & Goldberg, 2003b).
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the tightness time model as follows:

t`(λ) =
log(1− λ)− log(1− Λ0)

cs log(1− c)
, (6.22)

where t`(λ) is the tightness time for a given genetic linkage λ, and cs ≈ 2 is a constant which

is determined empirically.

Furthermore, given the initial genetic linkage distribution, Λ0 remains constant during

the whole evolutionary process. For simplicity, we can define

ε = 1− λ ,

ε0 = 1− Λ0 .

Also, c = 2
(k+2)(k+3)

≈ 2
k2 when k → ∞. Therefore, Equation (6.22) can be rewritten as a

function of ε as

t′`(ε) =
k2

2cs

log
ε

ε0

. (6.23)

Equation (6.23) shows that tightness time is proportional to the square of the order of

building blocks. The longer the building block, the much longer the tightness time. Moreover,

tightness time is proportional to the logarithm of the desired linkage.

Experiments were also performed to verify the model for tightness time. In order to

verify the tightness time model, we also employ the identical experimental procedure as we

verified the extended linkage-skew and linkage-shift models. Since we are interested in the

combined effect of linkage skew and linkage shift, in the crossover events, the individual

containing the optimal building block from the population is a donor with a probability of

0.5, and after determining the role of the individual, the role of the generated individual

containing the deceptive building block is decided accordingly. Using the same parameter

settings as we used to verify linkage skew and linkage shift, both genetic linkage learning

mechanisms work together in the experiments as described. Figure 6.12 shows the experi-
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Figure 6.12: Tightness time for an order-4 and an order-6 traps. The experimental results
shows that under both linkage skew and linkage shift, the tightness time model, Equa-
tion (6.22), can predict the evolution of genetic linkage for both order-4 and order-6 traps.
The experimental results are averaged over 50 independent runs (Chen & Goldberg, 2003b).
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mental results. The theoretical prediction made based on Equation (6.22) is also adjusted

with the maximum possible genetic linkage 0.9801 according to the chromosome encoding

in the experiments. The obtained numerical data agree with our tightness time model quite

well, and our hypothesis and tightness time model are therefore empirically verified.

6.7 From One Building Block to m Building Blocks

After identifying the sequential behavior of the linkage learning genetic algorithm in a top-

down manner and developing the tightness time model for a single building block based on the

linkage learning mechanisms in a bottom-up manner, the missing link here is to understand

how multiple building blocks affect the tightness time for the first building block when the

building blocks are uniformly scaled in the problem. Therefore, we will now identify the effect

of multiple building blocks on the tightness time for a single building block to learn genetic

linkage in this section. Then, in the following section, we will construct the convergence time

model for the linkage learning genetic algorithm by integrating the models from the macro

view, the micro view, and the connection in between.

Because the tightness time model assumes (1) a single building block and (2) all events

are useful and effective for genetic linkage learning, when dealing with m uniformly scaled

building blocks, we need to take into consideration the probability of a linkage learning event.

First of all, we define a linkage learning event as either a linkage-skew event or a linkage-shift

event. Note that when we analyze the tightness time, the probability of a linkage learning

event, p``(1), is assumed to be 1.0 for m = 1. When handling uniformly scaled building

blocks, p``(m) will be lower than 1.0 due to the interaction among the building blocks of

equal importance. Since we are interested in the dimensional model of convergence time, the

following analysis assumes the middle stage of the genetic linkage learning process.
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6.7.1 Genetic Material from the Donor

First, we consider the genetic material from the donor. When exchange crossover operates, a

donor and a recipient are selected from the current population. Based on the linkage learning

mechanisms, assume that (1) a segment from the donor containing only one complete building

block (and probably other incomplete building blocks) contributes genetic linkage learning

and (2) the m building blocks are uniformly distributed on the chromosome in the middle

stage of the genetic linkage learning process. On average, there are m/2 building blocks

transferred from the donor to the recipient. The number of possible conditions are

(
m
m
2

)
. (6.24)

Therefore, the probability for the segment coming from the donor to contain only one com-

plete building block is (
m

1

)/(
m
m
2

)
. (6.25)

Note that the above analysis is inspired by that proposed by Thierens (1995) for analyzing

the genetic algorithm.

6.7.2 Genetic Material on the Recipient

In addition to the genetic material coming from the donor, p``(m) also depends on the

genetic material residing on the recipient. If the building block in question is disrupted by

the grafting point, there will be no linkage learning event. Base on the calculation of random

linkage (Harik, 1997), the probability for a building block of order k to reside on one of the

two segments is described by Equation (3.3). If the building block is in the segment before

the grafting point, a linkage-shift event occurs. If the building block is in the segment after

the grafting point, a linkage-skew event happens.
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6.7.3 Tightness Time for m Uniformly Scaled Building Blocks

After combining the results obtained from the above analysis and discussion, the probability

of a genetic linkage learning event can be expressed as the following equation:

p``(m) =
2

k + 1

[(
m

1

)/(
m
m
2

)]
. (6.26)

By integrating the tightness time model for a single building block and the probability of

genetic linkage learning events, we obtain the tightness time model for m uniformly scaled

building blocks as

t(m, ε) = t`(ε)
1

p``(m)
;

= t`(ε)
k + 1

2

[(
m
m
2

)/(
m

1

)]
.

(6.27)

Applying the Stirling approximation

m! ≈
(m

e

)m√
2πm , (6.28)

we obtain

t(m, ε) = t`(ε)

(
k + 1

2

) √
2√
π

2m

m
√

m
;

= t`(ε)
k + 1√

2π

2m

m
√

m
.

(6.29)

Figure 6.13 shows that the experimental results agree with the tightness time model for m

uniformly scaled building blocks. The figure shows the trend of the number of generations

needed for the genetic linkage λ of the first building block among m uniformly scaled building

block to achieve 0.80 during the evolutionary process.
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Figure 6.13: Time for the genetic linkage λ of the first building block among m uniformly
scaled building block to achieve 0.80 during the evolutionary process. The experimental
results are averaged over 50 independent runs (Chen & Goldberg, 2004a).
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6.8 Convergence Time Model for the LLGA

Finally, by integrating the results from the sequential behavior (Equation (6.4)), the tightness

time model (Equation (6.23)), and the connection in between (Equation (6.29)), we can

obtain the linkage learning genetic algorithm convergence time model for some desired genetic

linkage as follows:

tc(m, ε) =
m∑

i=1

t(i, ε) + tc0 ;

=
m∑

i=1

(
t`(ε)

k + 1√
2π

2i

i
√

i

)
+ tc0 ;

=
m∑

i=1

((
k2

2cs

log
ε

ε0

)
k + 1√

2π

2i

i
√

i

)
+ tc0 ;

=

(
k2(k + 1)

2cs

√
2π

log
ε

ε0

) m∑
i=1

2i

i
√

i
+ tc0 ,

(6.30)

where cs and tc0 are constants and determined empirically, m is the number of uniformly

scaled building blocks, k is the length of the single building block, ε = 1 − λ, and λ is the

desired genetic linkage. As shown in Figure 6.14, the experimental results agree with the

proposed convergence time model for the linkage learning genetic algorithm.

6.9 Summary

In this chapter, the sequential behavior was observed while the linkage learning genetic algo-

rithm was solving both exponentially scaled problems and uniformly scaled problems. The

first-building-block model was proposed accordingly from the macro view. By extending and

integrating the linkage learning mechanisms, the tightness time model for a single building

block to learn genetic linkage was developed from the micro view. Establishing the con-

nection between these models, a convergence time model for the linkage learning genetic

algorithm was constructed and empirically verified. The proposed convergence time model
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Figure 6.14: Convergence time for the linkage learning genetic algorithm to solve problems
composed of multiple uniformly scaled building blocks (the desired genetic linkage λ = 0.80).
The experimental results are averaged over 50 independent runs (Chen & Goldberg, 2004a).
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explains why the linkage learning genetic algorithm requires exponential time to solve uni-

formly scaled problems and gives us an insight into how the linkage learning genetic algorithm

processes building blocks.

We identified a consistent, sequential behavior of the linkage learning genetic algorithm.

It was previously believed that when solving a uniformly scaled problem, the linkage learning

genetic algorithm works on all building blocks simultaneously, while when solving an expo-

nentially scaled problem, the linkage learning genetic algorithm works on the most salient

building block, the second most salient building block, and so on. By identifying the sequen-

tial behavior of the linkage learning genetic algorithm, we gain better understanding about

how the linkage learning genetic algorithm works—on one building block at a time. The

difference is that for exponentially scaled building blocks, the most salient building block is

tightened first with a very high probability due to its selection advantage, but for uniformly

scaled building blocks, each building block has the same probability to be tightened first.

Recognizing the sequential behavior might shed light on developing a better design of the

linkage learning genetic algorithm which can perform well on exponentially scaled problems

as well as uniformly scaled problems.

The proposed convergence time model indicates that the time required by the linkage

learning genetic algorithm to solve a uniformly scaled problem grows exponentially with the

number of building blocks. The exponential growth of time, according to our analysis, mainly

comes from the competition among the building blocks of equal salience. The decrease of the

probability of crossover events increases the genetic linkage learning time correspondingly.

Therefore, based on the model, the possible ways to improve the performance of the linkage

learning genetic algorithm on uniformly scaled problems might include (1) effectively reduc-

ing the number of building blocks simultaneously processed by the linkage learning genetic

algorithm and (2) employing certain mechanisms or procedures to make the linkage learning

genetic algorithm to process building blocks sequentially. These two ways to improve the

performance of the linkage learning genetic algorithm may be promising research directions.
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Chapter 7

Introducing
Subchromosome Representations

While the linkage learning genetic algorithm achieved successful genetic linkage learning on

problems with badly scaled building blocks, it was less successful on problems consisting

of uniformly scaled building blocks. The convergence time model for the linkage learning

genetic algorithm developed in the previous chapter explains the difficulty faced by the

linkage learning genetic algorithm and reveals the performance limit of the linkage learning

genetic algorithm on uniformly scaled problems. This chapter seeks to enhance the design

of the linkage learning genetic algorithm based on the time models in order to improve the

performance of the linkage learning genetic algorithm.

The study initiates a better design of the linkage learning genetic algorithm that can

lead to scalable genetic linkage learning. In particular, the subchromosome representation

is proposed in this chapter to avoid the performance limit implied by the convergence time

model and to escape from the combinatorial overload, which is caused by attempts to move

too much genetic material on the chromosome. This chapter focuses on the following topics:

• Introducing the subchromosome representation;

• Verifying the utility of the subchromosome representation.

The chapter starts with the limit to competence of the linkage learning genetic algorithm

indicated by the convergence time model. Then, it presents a preliminary implementation of

114



the proposed representation. Finally, the experimental results that demonstrate the utility

of subchromosomes are presented.

7.1 Limit to Competence of the LLGA

First of all, before providing the prescription to remedy the performance issue of the linkage

learning genetic algorithm, we need to understand the implication of the convergence time

model and then enhance the design of the linkage learning genetic algorithm accordingly.

In addition to describing the way the linkage learning genetic algorithm works on uniformly

scaled problems as well as explaining the seemingly inconsistent behavior of the linkage

learning genetic algorithm on problems with building blocks of different scalings, the conver-

gence time model (Equation (6.30)) for the linkage learning genetic algorithm proposed in

chapter 6 also reveals a critical limit to competence of the linkage learning genetic algorithm

that the computational time for the linkage learning genetic algorithm to solve uniformly

scaled problems grows exponentially with the number of building blocks in the problem.

By examining the proposed convergence time model more carefully, we can find that the

parameters involved in the model are either the properties of the problem to solve, such as

the order of building blocks, k, and the number of building blocks, m, or the uncontrollable

constants and variables, such as the linkage-skew coefficient, cs, and the level of linkage, ε.

Unlike many facetwise models that contain algorithmic parameters and can shed light on how

to appropriately set these parameters to enable the genetic algorithm, little guidance can be

obtained from the time model for setting the existing algorithmic parameters of the linkage

learning genetic algorithm. For example, the schema theorem (De Jong, 1975; Holland,

1975; Goldberg, 1989c) describes the market share growth of building blocks in terms of

selection pressure and crossover probability. It shows us the correct way to choose these

two parameters. However, the convergence time model cannot provide us such practical

indications because there is no algorithmic parameters involved in the model. Therefore,
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instead of trying to adjust those existing algorithmic parameters, another way to improve

the performance of the linkage learning genetic algorithm on uniformly scaled problems has

to be taken. In the remainder of this chapter, we seek a new design to enhance the linkage

learning genetic algorithm based on the insight provided by the convergence time model,

take an initial step to realize the design, and present the preliminary experimental results.

7.2 Subchromosome Representations

According to the convergence time model for the linkage learning genetic algorithm de-

scribed by Equation (6.30), one possible way to enhance the performance of the linkage

learning genetic algorithm on uniformly scaled problems is to modify the LLGA chromo-

some representation such that the number of building blocks, m, is effectively lowered at run

time. Thus, the exponential growth of convergence time can be reduced. This section intro-

duces the subchromosome representation to the linkage learning genetic algorithm (Chen &

Goldberg, 2004b). The subchromosome representation is first described in detail, and then,

the exchange crossover operator for handling subchromosome representations is discussed.

7.2.1 Chromosome Representation

The subchromosome representation in the linkage learning genetic algorithm separates a

LLGA chromosome into several parts, called subchromosomes. The structure of a subchro-

mosome is identical to that of a regular LLGA chromosome. Like an LLGA chromosome

described in sections 3.1 and 5.2.1, a subchromosome contains moveable genes, non-coding

segments, as well as promoters and is interpreted with probabilistic expression. The union

of all subchromosomes belonging to one individual forms a complete LLGA chromosome.

In subchromosome representations, there is no separate fitness measurement for each sub-

chromosome. The fitness that corresponds to the solution obtained from interpreting the

complete chromosome is used by all subchromosomes. Therefore, the unimetric character-
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Figure 7.1: The structure of a subchromosome is identical to that of an LLGA chromosome.
Each subchromosome contains moveable genes, non-coding segments, as well as promoters
and is interpreted with probabilistic expression. The union of all subchromosomes belonging
to one individual forms a complete LLGA chromosome. The fitness corresponding to the
solution obtained from interpreting the complete chromosome is considered the fitness of
each subchromosome.

istic of the linkage learning genetic algorithm is still maintained because there is no extra

measurement regarding the structure of the chromosome added into the fitness. Figure 7.1

shows an LLGA chromosome consisting of subchromosomes.

The goal of subchromosome representations is to create a flexible encoding mechanism

that makes LLGA chromosomes capable of grouping closely related building blocks to form

higher-level building blocks in addition to moving genes together on the chromosome to form

the first-level building blocks. Similar to genetic linkage learning, the process of forming

higher-level building blocks should be integrated with the evolutionary and problem-solving

process. The subchromosomes of an LLGA chromosome shown in Figure 7.1 can be con-

sidered as building blocks of the second level. The subchromosome representation can be

designed to hierarchically express building blocks of even higher levels, such as the third

level, the fourth level, and so on.

However, as an initial step to realize this representation scheme and as a pilot study of the

effect to use subchromosomes in the linkage learning genetic algorithm, only subchromosomes

of the second level are implemented and examined in this chapter. Moreover, the groups of

building blocks are pre-defined as well as correctly placed, and genes on each subchromosome

do not migrate to other subchromosomes. Within a subchromosome, genes and non-coding
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segments are still randomly distributed in the initialization step as they are on a regular

LLGA chromosome without subchromosomes.

7.2.2 Exchange Crossover

Due to the adoption of the new representation, the exchange crossover operator is modified

to handle subchromosomes. Since in this chapter, the subchromosomes are pre-defined and

do not exchange its own genetic material with other subchromosomes as described in the

previous section, for simplicity, after determining the donor and the recipient, the exchange

crossover operator works on subchromosomes one by one. For a pair of subchromosomes,

one from the donor and the other from the recipient, exchange crossover works as it does on

conventional LLGA chromosomes as described in sections 3.2 and 5.2.2. It cuts the genetic

material from the subchromosome of the donor and injects them into the corresponding

subchromosome of the recipient. The transferred genetic material is determined at random

for each pair of subchromosomes. Figure 7.2 shows how the modified exchange crossover

operator works on a pair of LLGA chromosomes consisting of subchromosomes.

7.3 Empirical Verification

The experiments to observe the effect of using the subchromosome representation in the

linkage learning genetic algorithm are presented in this section. First, the parameter settings

of the experiments are described in detail. Then, the experimental results are shown in the

remainder of this section.

7.3.1 Experimental Settings

As we did in the previous chapters, trap functions (Ackley, 1987; Deb & Goldberg, 1993;

Deb, Horn, & Goldberg, 1993; Deb & Goldberg, 1994) described in section 4.2 are also used

for examining the effect of adopting subchromosome representations in the linkage learning
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Figure 7.2: For a pair of subchromosomes, exchange crossover works as it does on conven-
tional LLGA chromosomes. The operator cuts the genetic material from the subchromosome
of the donor and injects them into the corresponding subchromosome of the recipient. The
transferred genetic material is determined at random for each pair of subchromosomes.

genetic algorithm because trap functions provide decent linkage structures, and good linkage

is required in order to solve problems consisting of traps. The experiments in this chapter

were done for order-4 traps, and all traps contribute equally to the fitness. In particular, the

order-4 trap function is expressed as

trap4(u) =

 u u = 4

3− u otherwise
. (7.1)

To simulate the infinite-length chromosome, we let one order-4 building block embedded

in 250 genes, including functional genes and non-coding elements. For example, for five

order-4 building blocks, the 20 genes are embedded in a 1,250-gene chromosome with 1,230

non-coding elements. Table 7.1 lists all experiments conducted for determining the effect of

using subchromosome representations in the linkage learning genetic algorithm. The total

number of building blocks in one experiment is nbb (the number of building blocks per
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Table 7.1: All experiments conducted for examining the effect of using subchromosome
representations in the linkage learning genetic algorithm. From 2 to 8 building blocks per
subchromosome, all conditions for the total number of building blocks less than or equal to
80 are included in the experiments in this chapter.

BBs per Subchromosome (nbb) Number of Subchromosomes (ns)

2 2, 3, 4, 5, 6, . . . , 36, 37, 38, 39, 40
3 2, 3, 4, 5, 6, . . . , 22, 23, 24, 25, 26
4 2, 3, 4, 5, 6, . . . , 16, 17, 18, 19, 20
5 2, 3, 4, 5, 6, . . . , 12, 13, 14, 15, 16
6 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
7 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
8 2, 3, 4, 5, 6, 7, 8, 9, 10

subchromosome) × ns (the number of of subchromosomes). From 2 to 8 building blocks per

subchromosome, all conditions for the total number of building blocks less than or equal to

80 are included in the experiments in this chapter.

The gambler’s ruin model (Harik, Cantú-Paz, Goldberg, & Miller, 1997) described in

section 1.3 is utilized for population sizing. Other parameters are set as follows. The

crossover rate is 1.0 such that the crossover event always happens. The maximum number

of generations is 100,000. The number of promoters on each subchromosome is set to 2m,

where m is the number of building blocks on the subchromosome. Finally, each experiment

was repeated with 50 independent runs.

7.3.2 Experimental Results

For each experiment listed in Table 7.1, the success rate is calculated according to the results

obtained in the 50 independent runs. Here, a success is determined by the final solution

quality. The solution quality is the ratio between the number of correctly solved building

blocks in the end of the run and that of the total building blocks in the trial. For example, if

in a particular run for solving 20 building blocks, 12 building blocks are correctly solved, the

solution quality of this run is 0.6. If the final solution quality of a run is equal to or greater
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Figure 7.3: Results of the experiments with less than or equal to 80 building blocks. The
number of building blocks distributed on each subchromosome varies from 2 to 8. “No Sub”
indicates the linkage learning genetic algorithm without the subchromosome representation.
The results show that utilizing subchromosome representations in the linkage learning genetic
algorithm can significantly improve its performance on the uniformly scaled problems up to
five times higher in terms of the total number of building blocks. These results are collected
from 50 independent runs for each combination of the number of subchromosomes and the
number of building blocks on one subchromosome (Chen & Goldberg, 2004b).

than 0.9, the run is recorded as a success. The success rate is therefore the ratio between

the number of success trials and that of the total runs.

Figure 7.3 gives the success rates of all the experiments with the total number of building

blocks less than or equal to 80 as listed in Table 7.1. The number of building blocks dis-

tributed on each subchromosome varies from 2 to 8. The results for each number of building

blocks on subchromosomes are shown with different line-point styles in the figure. As shown

in Figure 7.3, utilizing subchromosome representations in the linkage learning genetic algo-

rithm can significantly improve the performance of the linkage learning genetic algorithm

on the uniformly scaled problems. Compared to the results reported in chapter 5, the link-

age learning genetic algorithm with the subchromosome representation can solve uniformly

scaled problems about five times larger in terms of the total number of building blocks than
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that can be solved by the linkage learning genetic algorithm without subchromosomes.

In addition to the performance improvement, Figure 7.3 also shows that the limit for

the linkage learning genetic algorithm with the subchromosome representation in our first

attempt of implementation to solve uniform scaled problems seems to be around 50 in terms

of the total number of building blocks. Even with different numbers of building blocks dis-

tributed on one subchromosome, no successful trial was found among all the experiments

with totally 60 or more building blocks. However, according to the importance of building-

block identification and exchange we discussed in section 1.4 and the insight we gained from

studying the linkage learning genetic algorithm, we had to use a crossover probability as high

as 1.0 in the linkage learning genetic algorithm without subchromosomes in order to effec-

tively promote the linkage learning process (building-block identification), which proceeds

with only the differential selection of linkage (Goldberg, 2002), which is generated indirectly

from the schema theorem (Holland, 1975; Goldberg, 1989c; Goldberg & Sastry, 2001).

Such a high crossover probability not only promotes the linkage learning process but also

raises the probability to disrupt building blocks (Thierens & Goldberg, 1993; Thierens, 1995).

Therefore, by using the same setting of the crossover probability in these experiments, the

procedure to apply exchange crossover on subchromosomes may cause serious building-block

disruption, as it does in the linkage learning genetic algorithm without subchromosomes.

While the original design of the linkage learning genetic algorithm prevents us from lowering

the disruption rate and maintaining the mixing rate at the same time, the linkage learning

genetic algorithm with the subchromosome representation provides us a viable way to ap-

propriately adjust the probability for applying the exchange crossover operator. Because an

LLGA chromosome is now composed of several subchromosomes as proposed, although the

exchange crossover operator executes the same task on a pair of subchromosomes, we can

lower the overall crossover probability by randomly choosing some pairs of subchromosomes

to go through exchange crossover. In such a manner, it is now possible for us to adjust the

crossover probability without losing too much mixing capability.
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Figure 7.4: Instead of applying exchange crossover to all pairs of subchromosomes, each pair
is now chosen with a probability of 0.5 for applying exchange crossover in order to reduce
building-block disruption as much as possible without influencing the mixing rate too much.
The results indicate that the subchromosome representation works well in the range of these
experiments. These results are collected from 50 independent runs for each combination of
the number of subchromosomes and the number of building blocks on one subchromosome
(Chen & Goldberg, 2004b).

Based on the discussion, the exchange crossover operator is slightly modified as follows.

Instead of applying exchange crossover to all pairs of subchromosomes, each pair is now

chosen with a probability of 0.5 for applying exchange crossover in order to reduce building-

block disruption as much as possible without influencing the mixing rate too much. The

previous experiments were repeated for only nbb = 5 and 6 to check the effect of adjust-

ing the crossover probability. The results are shown in Figure 7.4 and indicate that the

subchromosome representation works well in the range of these experiments.

7.4 Summary

This chapter started with describing the limit to competence of the linkage learning genetic

algorithm. The subchromosome representation was employed in the linkage learning genetic
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algorithm for effectively lowering the number of building blocks to escape from the limit

implied by the convergence time model. An initial step to realize subchromosome represen-

tations in the linkage learning genetic algorithm was taken in this chapter. The preliminary

experimental results of using subchromosomes in the linkage learning genetic algorithm indi-

cated that the proposed coding scheme can improve the performance of the linkage learning

genetic algorithm on uniformly scaled problems.

In addition to showing that the subchromosome representation can improve the per-

formance of the linkage learning genetic algorithm, the initial step for implementing the

representation also leads to a possible way to make the linkage learning genetic algorithm

capable of incorporating prior linkage information. With the use of subchromosomes, the

distribution of genes, non-coding segments, and building blocks can be determined accord-

ing to the available linkage information. In the linkage learning genetic algorithm without

subchromosomes, utilizing prior linkage information is extremely difficult if not impossible.

Overall, the results reveal a promising path for achieving scalable genetic linkage learning.

Finally, before running off to try more new variations of the algorithm and to do more

mass quantities of computation, we should think carefully about the key lessons of this chap-

ter. In going from the limited results of Figure 7.3 to the much better results of Figure 7.4,

we recall that the primary difference was the limited amount of mechanical disruption that

was permitted in the modified subchromosome exchange crossover. In looking back over all

studies of the linkage learning genetic algorithm to this point, it is clear that these proce-

dures can only tolerate a certain amount of rearrangement disruption. Large amounts of

fitness variance are not problematic because they can be overcome through larger popula-

tions; however, attempts to move too much genetic material around have always caused a

combinatorial overload that cannot be sorted out. In designing mechanisms to move genes

around either physically or virtually, we must recognize that the overall structure can assim-

ilate only so much movement at any one time. Attention to this should guide the design of

mechanisms to realize the potential of the linkage learning genetic algorithm.
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Chapter 8

Conclusions

This chapter concludes the dissertation. It starts with the summary of the progress, results,

and status of the research project, followed by tasks of potential future projects, including

the tasks that can proceed immediately and those that contribute to our long-term goals

and objectives. Finally, the main conclusions from this dissertation are discussed.

8.1 Summary

In this dissertation, we studied the scalability of the linkage learning genetic algorithm

from both theoretical and practical aspects. After identifying the drawback of the original

linkage learning genetic algorithm that there was no proper mechanism to separate uniformly

scaled building blocks, the use of promoters on the chromosome was proposed to improve

nucleation potential and avoid misnucleation. In order to advance our understanding of the

operations of the linkage learning genetic algorithm in theory, by integrating the observed

sequential behavior, the tightness time model, and the connection between the two models

from different views, the convergence time model was constructed for explaining the behavior

of the linkage learning genetic algorithm. Based on the convergence time, the subchromosome

representation was designed for the linkage learning genetic algorithm to escape from the

limit to speed of convergence indicated by the convergence time model, and an initial step

to realize the design was already taken.
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Chapter 1 contained an introduction of genetic algorithms. Definitions of genetic algo-

rithm terms and the global flow-control of a simple genetic algorithm were presented. The

design-decomposition theory and the gambler’s ruin model for population sizing were de-

scribed. Then, it introduced the concept of genetic linkage in both biological systems and

genetic algorithms. The linkage problem, also known as the ordering problem, that exists in

common genetic algorithm practice was described in detail, and the importance of handling

and learning genetic linkage in genetic algorithms was also discussed. Chapter 1 connected

the fields of biology and genetic algorithms, provided a potential way to interpret the results

in the context of biology, and presented the key reason to develop linkage learning techniques.

Chapter 2 provided a set of classifications of existing genetic linkage learning techniques

such that different views from several facets of these techniques were revealed and depicted.

It also presented the lineage of the linkage learning genetic algorithm to demonstrate how it

was developed and constructed from its precursors and ancestors and identified the position of

the linkage learning genetic algorithm among the existing genetic linkage learning techniques

so that the connection to other methodologies can be established and the importance of the

linkage learning genetic algorithm can be emphasized. Chapter 2 helped to understand the

different views of the existing genetic linkage learning techniques as well as the relation

between the linkage learning genetic algorithm and other linkage learning methodologies.

Chapter 3 described in detail the linkage learning genetic algorithm, including (1) the

chromosome representation, (2) the exchange crossover operator, (3) two mechanisms that

enable the linkage learning genetic algorithm, (4) accomplishments of the linkage learning

genetic algorithm, and (5) difficulties encountered by the linkage learning genetic algorithm.

The linkage learning genetic algorithm uses moveable genes, non-coding elements, exchange

crossover, and a special expression mechanism, probabilistic expression, to create an evolv-

able genotypic structure that makes genetic linkage learning natural and viable for genetic

algorithms. The identified linkage learning mechanisms revealed how the linkage learning

genetic algorithm learns the linkage of a single building block and described the evolution
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of genetic linkage under different mechanisms. The accomplishments of the linkage learning

genetic algorithm were included, and main difficulties faced by the linkage learning genetic

algorithm were presented in this chapter.

Chapter 4 presented the assumptions regarding the framework based on which we devel-

oped the theoretical models as well as regarding the genetic algorithm structure we adopted

in this work. After introducing the key assumptions that we employed throughout this dis-

sertation, the definition of the elementary test problem, which were trap functions, and the

construction of the larger test problems used in the study were described in detail. Chapter 4

provided a background establishment for the following chapters.

Chapter 5 introduced the use of promoters and a modified exchange crossover operator to

work with promoters in the linkage learning genetic algorithm to improve its performance on

uniformly scaled problems. In contrast to the original linkage learning genetic algorithm, in

which every non-coding element and functional gene can be the point of interpretation of the

offspring, only promoters can be the new point of interpretation after crossover in the mod-

ified version. Chapter 5 first investigated the difficulty encountered by the original linkage

learning genetic algorithm when it was working on uniformly scaled problems. Then, a cod-

ing mechanism that exists in genetics to overcome the difficulty was proposed. Promoters,

the modified exchange crossover operator, and corresponding modifications to the linkage

learning genetic algorithm were described in detail. The experimental results provided in

this chapter demonstrated that the linkage learning genetic algorithms with promoters was

able to overcome the difficulty encountered by the original version.

Chapter 6 developed the convergence time model for the linkage learning genetic algo-

rithm step by step. It started with describing the settings of all the experiments for observing

the behavior of the linkage learning genetic algorithm and verifying the theoretical results.

Based on the observation, the sequential behavior of the linkage learning genetic algorithm

was identified from the macro view. By extending the two linkage learning mechanisms,

the tightness time model for a single building block to learn genetic linkage was proposed
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from the micro view. By establishing the connection between the sequential behavior and

the tightness time model for the cases of multiple building blocks, a convergence time model

for the linkage learning genetic algorithm was constructed. Although adopting promoters

on the chromosome enhances the performance of the linkage learning genetic algorithm on

uniformly scaled problems, better understanding of the algorithm from a theoretical point

of view should be still addressed in order to design a better algorithm. Chapter 6 aimed to

gain better understanding of the linkage learning genetic algorithm in theory. By construct-

ing a convergence time model, we are now able to explain why the linkage learning genetic

algorithm needs exponentially growing time to solve uniformly scaled problems.

Chapter 7 proposed the use of subchromosome representations in the linkage learning

genetic algorithm. It started with the limit to competence of the linkage learning genetic

algorithm indicated by the convergence time model. Then, the subchromosome representa-

tion was described in detail, including how the conventional LLGA chromosome was encoded

with subchromosomes and how the exchange crossover was modified to work with these sub-

chromosomes. The experimental results for observing the utility of subchromosomes were

also presented to demonstrate that the use of subchromosome representations may be a

promising way to design a better linkage learning genetic algorithm. The subchromosome

representation was developed to avoid the performance limit implied by the convergence time

model. Chapter 7 initiated a better design of the linkage learning genetic algorithm that may

lead to scalable genetic linkage learning. It presented a preliminary implementation of the

proposed representation and verified the performance improvement with empirical results.

8.2 Future Work

This dissertation has investigated the difficulty faced by the linkage learning genetic algo-

rithm in theory with developing the time models, including the tightness time and conver-

gence time, and extended the scalability of the linkage learning genetic algorithm by devising
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new chromosome designs, such as the use of promoters and subchromosomes. Based on the

results in both theory and practice obtained in this work, the following is a list of research

directions for future consideration suggested by the author.

• Realization of the subchromosome representation. The experimental results

presented in chapter 7 are tantalizing in that parallel evolution of linkage of large

number of gene groupings has been demonstrated provided the appropriate genes are

associated in the same linkage group. The key challenge left is to develop mechanisms

to permit or encourage the evolution of these proper associations. Different mechanisms

can be imagined for this purpose, and the potential of each is introduced and briefly

outlined in the following paragraphs:

Gene migration: Gene migration moves genes among subchromosomes belonging

one LLGA chromosome. Proper associations can be achieved through gene mi-

gration and favored by the evolutionary process.

Gene duplication or redundant genes: Similar to using coexisting alleles of one

gene on LLGA chromosomes with probabilistic expression, gene duplication in-

creases the probability to form correct gene groups or clusters on subchromosomes

by introducing redundant genes.

Adaptive expression: Working with the redundant genes on subchromosomes, adap-

tive expression resolves the conflicts caused by gene duplication and promotes

those building blocks which are correctly identified.

• Formal methods for designing genetic operators. While genetic and evolutionary

algorithms are proposed for solving black-box-optimization problems, many successful

applications of genetic and evolutionary algorithms actually use certain customized

operators or specialized components, such as problem specific chromosome represen-

tations or specially designed genetic operators involving the problem domain knowl-

edge. Although the representation issue has been tackled in the field of genetic linkage
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learning techniques, still, the design of genetic operators is usually done in an ad-hoc

manner. One of the possible ways to achieve formal methods for designing genetic

operators is to adopt the current research implications from genetic linkage learning

techniques, such as the linkage learning genetic algorithm. Looking into the compu-

tational results of the linkage learning step and designing genetic operators based on

those results should be a promising direction to develop formal methods for designing

genetic operators to handle specific problems.

• Practical linkage learning genetic algorithm. The linkage learning genetic algo-

rithm has been known to perform well on exponentially scaled problems and poorly

on uniformly scaled problems as mentioned in chapter 3. This dissertation further

demonstrates that the convergence time which the linkage learning genetic algorithm

requires for solving uniformly scaled problems grows exponentially. However, because

the scaling of building blocks in practical problems might not be necessarily strictly

uniform like what we use for studying the behavior of the algorithm, the linkage learn-

ing genetic algorithm might still be used to handle real-world applications, although

this research project does not focus on solving real-world problems. According to our

recent study which indicates that the signal difference between building blocks does

not need to be significantly large for the linkage learning genetic algorithm to perform

as expected, it seems promising to put the linkage learning genetic algorithm in the

practical use and identify the appropriate problem classes for the algorithm.

• Incorporating prior linkage information. As pointed out in section 7.4, accord-

ing to the original design of the LLGA chromosome, it is very difficult for the linkage

learning genetic algorithm to utilize prior linkage information when such knowledge is

available. Several extra operators or mechanisms have to be added into the linkage

learning genetic algorithm in order to implement this ability. With the help of subchro-

mosomes, incorporating available linkage information becomes viable and easy. Genes
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closely related to one another can be simply placed on the same subchromosome, while

those unrelated genes can be placed on other subchromosomes. This extension to the

linkage learning genetic algorithm should be useful for the practical use.

• Theory on genetic linkage models. Yu and Goldberg (2004) developed a theoret-

ical framework on the quality and efficiency of model building for genetic algorithms,

which is closely related to the theoretical aspect of the linkage learning genetic algo-

rithm, because the distributions of functional genes as well as non-coding elements

on the LLGA chromosome can be considered as implicit probabilistic models. It is

possible to utilize the same theoretical results or to employ the similar modeling tech-

nique to derive an equivalent critical number of errors for the linkage learning genetic

algorithm. Such derivation might shed light on explaining the observation that the

linkage learning genetic algorithm can only tolerate a certain amount of rearrangement

disruption and provide better understanding of building genetic linkage models.

• Biological ramifications. Since genetic and evolutionary algorithms were developed

based on the paradigms and principles of evolution in nature, it is possible to find a

way to channel the theoretical and computational results of this field into the related

fields of biology. For the linkage learning genetic algorithm, as a unimetric approach,

the interpretation and translation of those theoretical models and practical frameworks

in the context of biology might serve as highly simplified computational models and

possibly provide insights from different points of view. Therefore, interdisciplinary

cooperation is in order for this research direction such that our understanding of genetic

and evolutionary computation as well as biology and nature might be advanced.
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8.3 Main Conclusions

This dissertation addresses the scalability issue of the linkage learning genetic algorithm from

both theoretical and practical aspects. By making use of simple, dimensional models, we

gain better understanding of the behavior of the linkage learning genetic algorithm in theory.

By adopting coding mechanisms existing in genetics and biological systems, we improve

the performance of the linkage learning genetic algorithm on uniformly scaled problems in

practice. According to the status and outcomes of this research project, the main conclusions

that may be drawn from this dissertation are listed as follows:

• Promoters improve nucleation potential. The observation of the genetic link-

age learning process showed that the randomness of choosing cutting points, grafting

points, and points of interpretation caused the instability of allele expression and led to

misnucleation of building blocks. By introducing promoters to the chromosome repre-

sentation, such randomness was effectively reduced, and the modified linkage learning

genetic algorithm was made able to solve more uniformly scaled building blocks than

the original version could. Therefore, promoters can improve nucleation potential and

promote correct formation of building blocks.

• The linkage learning genetic algorithm has a consistent, sequential behavior.

It was previously believed that when solving a uniformly scaled problem, the linkage

learning genetic algorithm worked on all building blocks simultaneously, while when

solving an exponentially scaled problem, the linkage learning genetic algorithm worked

on the most salient building block, the second most salient building block, and so on.

However, in this dissertation, we successfully identified a consistent, sequential behavior

of the linkage learning genetic algorithm. By identifying the sequential behavior, we

gained better understanding about how the linkage learning genetic algorithm handled

and processed the building blocks of different scalings.
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• Tightness time is derived based on linkage skew and linkage shift. Harik

and Goldberg (1996) proposed two linkage learning mechanisms, linkage skew and

linkage shift, to explain why and how the linkage learning genetic algorithm worked.

In this dissertation, we extended and combined the two linkage learning mechanisms

and derived the tightness time model for describing the time needed to tighten a single

building block. This time model was obtained from the micro view of the linkage

learning process and played an essential role in constructing the convergence time

model for the linkage learning genetic algorithm.

• Competition among building blocks of equal salience slows down the genetic

linkage learning process. According to section 6.7, one of the key components in

the convergence time model that contributes to the time delay of the linkage learning

genetic algorithm is the interaction or competition among multiple building blocks

of equal salience. The competition severely slows down the genetic linkage learning

process because the probability of linkage learning events is significantly reduced.

• Convergence time grows exponentially with the number of building blocks

of equal salience. As shown by Equation (6.30), given a fixed length of the building

block and a desired genetic linkage, the convergence time for the linkage learning

genetic algorithm to solve a uniformly scaled problem grows exponentially with the

number of building blocks. Such a high order of computational time poses a limit

to competence of the linkage learning genetic algorithm because the time required to

finish a computation renders the problem infeasible to be solved.

• Subchromosome representations reduce the competition among building

blocks. The subchromosome representation was employed in the linkage learning ge-

netic algorithm for effectively lowering the number of building blocks, and therefore, it

reduced the competition among building blocks by separating them on different sub-

chromosomes. An initial step to realize subchromosome representations was taken in
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this dissertation, and the preliminary experimental results indicated that the proposed

coding scheme can improve the performance of the linkage learning genetic algorithm

on uniformly scaled problems.

• Prior linkage information can be incorporated into the linkage learning ge-

netic algorithm. The initial step for implementing the subchromosome representa-

tion in this dissertation also led to a possible way to make the linkage learning genetic

algorithm capable of incorporating prior linkage information. In the linkage learning

genetic algorithm without subchromosomes, utilizing prior linkage information is ex-

tremely difficult because of those necessary, significant modifications. With the use of

subchromosomes, the distribution of genes, non-coding segments, and building blocks

can be appropriately arranged in order to utilize the available linkage information.

• Scalable genetic linkage learning for a unimetric approach is possible. By

using the subchromosome representation, the linkage learning genetic algorithm might

be able to solve uniformly scaled problems of reasonable sizes. Although we took only

an initial step to implement the proposed representation, the experimental results ob-

tained in this work indicated a promising direction which should lead to scalable genetic

linkage learning for the linkage learning genetic algorithm as a unimetric approach.

More work along this line still needs to be done from both theoretical and practical

aspects. From the theoretical aspect, more accurate and sophisticated models of the linkage

learning process are required for further understanding the nature of genetic linkage learning.

Advancing our knowledge on linkage learning or building-block identification in theory may

shed light on better designs of genetic algorithms. On the other hand, from the practical

aspect, the results presented in this work reveal a promising path for achieving scalable

genetic linkage learning. New representations, linkage learning mechanisms, or building-block

identification procedures should be investigated, constructed, and verified for improving the

performance of the linkage learning genetic algorithm.
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Bäck, T. (1995). Selective pressure in evolutionary algorithms: A characterization of se-

lection mechanisms. Proceedings of the Sixth International Conference on Genetic Al-

gorithms (ICGA-95), 2–8.

Bagley, J. D. (1967). The behavior of adaptive systems which employ genetic and cor-

relation algorithms. Doctoral dissertation, University of Michigan, Ann Arbor, MI.

(University Microfilms No. 68-7556).

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. Proceedings of the

International Conference on Genetic Algorithms and Their Applications , 101–111.

Blickle, T., & Thiele, L. (1995). A mathematical analysis of tournament selection. Pro-

ceedings of the Sixth International Conference on Genetic Algorithms (ICGA-95), 9–16.

Blickle, T., & Thiele, L. (1996). A comparison of selection schemes used in evolutionary

algorithms. Evolutionary Computation, 4 (4), 361–394.
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