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Abstract

The combined characteristics of periodicity and locally resonant features in

metamaterial structures, or meta-structures, give rise to unique wave prop-

agation characteristics such as relatively low and wide band gaps. These

meta-structures have a fixed geometry and thus a fixed behavior, however

applications that require structural vibration mitigation such as spacecraft

and automotive components have variable vibration mitigation requirements

over a range of operation and external conditions. In this work, we propose

a method to thermally tune the band gaps of composite meta-structures,

which combine a periodic lattice and locally-resonant inclusions, through

changes in temperature of the structure. The concept primarily takes advan-

tage of the different moduli of the two materials in the meta-structure that

have drastically different temperature dependences, to preferentially tune the

modulus of the lattice material compared to the resonant inclusion. We in-

troduce an additional concept, termed thermal partitioning, to partially or

fully open and close band gaps by locally controlling the temperature within

the meta-structure. We demonstrate these results numerically with finite

element simulations.
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1 Introduction

Noise and vibrations create damaging conditions for structural components

in spacecraft, aircraft, and vehicles, and can be a source of user discomfort

and dissatisfaction. Typical strategies to mitigate noise and vibrations in-

volve adding damping materials/treatments or active noise/vibration control

devices a priori, which add mass to and increases the cost of the structure.

An alternative is to redesign structural components as mechanical meta-

structures, to embed the vibration mitigation properties directly into the

component. These mechanical meta-structures are structured material that

use meso-scale components to control wave propagation and vibration trans-

mission. They incorporate concepts from phononic crystals and metama-

terials to generate acoustic or elastic band gaps, or frequencies that cannot

propagate [2–4]. Meta-structures are thus passively vibration immune in cer-

tain frequency ranges and can maintain load-bearing capabilities and desired

static mechanical properties [5, 6].

In addition, constantly changing external conditions of structural compo-

nents, such as a satellite launch vehicle during liftoff through the atmosphere

or the combustion cycle of an automotive engine, cause variable vibration

characteristics that need to be mitigated. One way to address this engineer-

ing challenge is to develop a structure whose properties adapt to external

conditions such as deformation, applied load, applied temperature, and/or

humidity. This concept of tunable metamaterials or phononic crystals has

been explored in recent literature using deformations [7–9], applied loads [10],

temperature-sensitive materials [11–15], topological transformation of struc-

tures [16–18], applied voltage to control the thickness and tension in elas-

tomers [19, 20], magneto-granular materials [21] and magnetoelastic mate-
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rials [22, 23]. While prior work has shown the ability to open, close, and

generally tune band gaps with a variety of mechanisms, we instead focus on

a method to tune the band gaps in a specified direction by analyzing the

mode shapes of the meta-structure, given the ability to tune the modulus of

the meta-structure constituents with an applied temperature.

In this work, we explore the idea of using temperature as an independent

variable to tune the band gaps of 3D multi-material meta-structures that

consist of a periodic lattice and locally resonant inclusions, with periodicity

in one dimension. Recent work has shown that this combination of meso-

structures in addition to the multi-material nature enables the formation of

low and wide band gaps [1]. The coupling of the polycarbonate lattice and the

steel resonators enabled band gap engineering through small manipulations

of the lattice geometry, however these meta-structures have a fixed response

once the geometry is set. In the present work, we exploit the temperature-

dependent modulus of the lattice material to demonstrate how to tune the

resonator modes and thus the band gaps of these meta-structures with an

applied change in temperature of the structure.

The main goal of this work is to present a method to tune band gaps

of a meta-structure by exploiting an activated change in material modulus.

We present these ideas using a meta-structure whose materials moduli can

be tuned with an applied temperature, however these concepts can readily

apply to meta-structures of other materials that have tunable moduli (e.g.

shape memory alloys, or magneto-elastic materials). To explain these ideas,

we study a meta-structure with a polycarbonate lattice and a steel interior

cube (the resonator) (Fig. 1), that has been previously studied elsewhere [1].

In this work, we first experimentally determine the temperature-dependent

moduli of the chosen meta-structure constituents. We isolate the effects of the
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temperature-dependent moduli and study how these changes influence the

band gaps of the meta-structure. We subject this meta-structure to changes

in temperature using finite element simulations that use experimentally-

determined temperature-dependent material moduli. Dispersion relations of

the meta-structure at different global temperatures show that the band gaps

shift equally in the frequency spectrum, due to the thermally-induced moduli

changes in the polycarbonate lattice. We introduce a concept called “thermal

partitioning”, where different sections of the structure are subjected to dif-

ferent temperatures. This allows us to tune the stiffness of certain band gap

edge modes relative to others, resulting in partial or complete opening and

closing of band gaps. We then numerically explore other effects of temper-

ature on this specific meta-structure: thermal expansion and thermal stress

effects. Finally, we numerically calculate vibration transmission through fi-

nite meta-structures with six unit cells to confirm the band gaps calculated

in infinite meta-structures.

3



2 Temperature-dependent moduli of constituent

materials

An increase in temperature will cause a decrease in the moduli of the meta-

structure constituent materials, an expansion and distortion of the meta-

structure geometry, and thermal stresses within the meta-structure. Here,

we first isolate the effects of temperature-dependent moduli. The purpose

is to gain insight into how to exploit temperature-dependent moduli to tune

its vibrational properties (band gap frequency and width). We emphasize

that the specific unit cell and the materials we study is a test case to illus-

trate these concepts, and is based on prior work that experimentally verified

the band gap behavior of fixed-temperature meta-structures [1]. However,

the idea and approach is applicable to other meta-structures whose lattice

material has a tunable moduli.

(a) (b)

y

xz y x
z

Figure 1: (a) Composite meta-structure cross section, containing steel
resonator embedded in a polycarbonate cubic lattice. (b) 3D CAD model of
meta-structure unit cell, with purple highlighted faces indicating periodic
faces along x-direction.

We first measure the modulus of the constituent lattice material, polycar-

bonate, as a function of temperature. To do this, we use a Q800 Dynamic

Mechanical Analysis (DMA) to interrogate standard samples of polycarbon-

ate (dimensions 20mm x 5mm x 1mm) that were 3D printed using fused
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deposition modeling (Stratasys Fortus 360mc), with long axis printed per-

pendicular to build direction. The moduli of the samples were measured

using DMA in a tensile setup along the long axis of the sample, and we as-

sume properties in the other two dimensions scale comparatively to the bulk

material properties previously measured [1]. Three samples were subjected

to increasing temperatures of −140◦C to 140◦C at a frequency of 1Hz and

heating rate of 2◦C/min, and the storage and loss modulus were measured

at each temperature increment. This temperature range is selected based on

the working temperature of the DMA and the glass transition temperature

of the polycarbonate. Young’s modulus was calculated by taking the square

root of sum of squares of storage and loss modulus. The true modulus of the

material is unknown. So, we use t-distribution with 95% confidence interval

to come up with an estimate of the range in which the true modulus will lie.

The calculations involved are shown as follows,

E =

∑N
i=1Ei
n

(1)

E is the average modulus and n is the number of samples being tested. In

this work three samples were tested, n = 3.

s2 =

∑N
i=1 (Ei − E)2

n− 1
(2)

’s’ being the standard deviation.The estimate of the true modulus is given

by

E ± s ∗ tn−1,α/2/
√
n (3)
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For 95% confidence interval, α=1-0.95=0.05. In this particular case, t2,0.025 =

4.3027. The average Young’s modulus (with standard deviation ranging from

0.027 GPa to 0.161 GPa) dependence on temperature is shown in Fig. 2 where

the upper and lower bounds shown correspond to the 95% confidence inter-

val. Young’s modulus decreases over 54% with an increase in temperature

from −140◦C to 140◦C, while the moduli of steel is comparatively constant

over this temperature range (less than 6% change in moduli [24]).

Prior work on this meta-structure design indicated that the modal stiffness

of the modes surrounding the band gaps was controlled by the lattice stiffness

and the beams connecting the resonator to the surrounding structure [1]. In

particular, the beams connecting the resonator to the surrounding lattice

act under axial and bending deformation in a locally-resonant longitudinal

mode that controls the lower edge of the band gap. Both the lattice effective

stiffness and stiffness of the beams under axial or bending deformation are

proportional to the Young’s modulus of the bulk lattice material. Thus, we

expect the measured modulus temperature dependence to cause a decrease

in frequency of the meta-structure modes with an increase in temperature,

resulting in a decrease in the band gap frequency.
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Figure 2: The modulus of 3D printed polycarbonate averaged over three
samples as a function of temperature in the range −140◦C to 140◦C using a
DMA, and showing modulus bounds.
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3 Thermal effects on band gaps in infinite

meta-structures

3.1 Methods

To analyze the meta-structure’s thermally-dependent vibrational response,

we conduct finite element simulations on 3D meta-structures that are in-

finitely periodic in 1D using COMSOL Multiphysics. The polycarbonate

material, when 3D printed, will be orthotropic. We thus model the polycar-

bonate material as orthotropic linearly elastic, using a scaling factor of 0.88

for the modulus along the build direction (Ez = 0.88Ex, Ex = 1 GPa) [1].

For simplicity, we assume the thermal expansion coefficient is isotropic, such

that the modulus scaling factor remains constant at all applied tempera-

tures. While the thermal expansion coefficient may in fact be orthotropic in

3D printed polycarbonate, this will likely only have a small influence on the

behavior. We import the experimentally-determined temperature-dependent

modulus of the polycarbonate measured in Sec. 2. The steel resonator is

modeled as isotropic and linearly elastic, with a temperature-dependent mod-

ulus as a polynomial relation defined elsewhere [24] and extrapolated to the

lower range of temperatures studied here (to −140◦C). We analyze the

polycarbonate-steel meta-structure at three different temperatures: −140◦C,

20◦C (room temperature), and 140◦C.

To calculate the dispersion relations, we solve the following thermal-mechanical

boundary problem. We account for thermally-induced geometrical effects by

first applying a change in temperature to the unit cell and allowing it to

expand/contract. We impose boundary conditions on the faces with normal

in the x-direction such that these faces remain flat (using a combination of
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rigid connectors and a fixed connector), in order to apply periodic bound-

ary conditions to calculate the dispersion curves and resulting band gaps. In

COMSOL, thermal expansion can be applied by right clicking on the “Linear

elastic material” under Solid Mechanics and choosing “Thermal Expansion”.

For free thermal expansion, right click on the boundary conditions to include

thermal expansion on the faces. Select the option “Inherit from domain”.

This will allow completely free thermal expansion ensuring the faces in the

periodic direction are flat. In Sec. 5, we validate this approach with simula-

tions on finite meta-structures. The unit cell is otherwise free to expand or

contract, and we account for this since a change in unit cell size will affect

the frequency of the modes. The mismatch in thermal expansion coefficients

between the polycarbonate and steel will cause a distortion of internal geom-

etry and thermal stress at the interface between the two materials, however

for the moment, we ignore these effects. In Sec. 4, we show the thermally-

induced change in geometry has a negligible effect on the dispersion relations,

but thermal stresses will likely affect the vibration behavior. We extract the

deformed unit cell geometry and use this unit cell for the dispersion analysis.

The density values should be updated owing to conservation of mass. For up-

dated density values, the volume of the domains can be obtained by selecting

the domains in the graphics window and clicking “measure” in the Geometry

tab. We apply Floquet periodic boundary conditions on the periodic faces

with normal in the x-direction (Fig. 1b), solve the eigenvalue problem at

increasing values of the wavenumber along the periodic direction, and calcu-

late the dispersion relations of the meta-structure in terms of frequency and

wavenumber dependence.
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3.2 Global Temperature Change: Dispersion Relations

The dispersion relations of the meta-structure with a globally applied tem-

perature of −140◦C, 20◦C, and 140◦C are shown in Fig. 3. From an applied

temperature of 20◦C to −140◦C, the lattice modulus increases from approx-

imately 1.3 GPa to 2.4 GPa, causing the frequency of all modes to increase.

The band gap width increases from 2,854 Hz to 3,934 Hz, the band gap cen-

ter shifts from 8,560 Hz to 11,719 Hz, and the normalized band gap width

slightly increases from 33.3% to 33.6%. If we only consider the change in

moduli due to temperature and ignore the change in length of the unit cell,

then the normalized band width remains constant. From an applied temper-

ature of 20◦C to 140◦C, the modulus decreases from approximately 1.3 GPa

to 1.1 GPa. The decrease in modulus shifts all the modes downwards. The

band gap width decreases from 2,854 Hz to 2,631 Hz and the band gap center

decreases from 8,560 Hz to 7,932 Hz. The normalized band gap width de-

creases slightly from 33.3% to 33.2%. These results show that an increase in

modulus of the polycarbonate lattice due to a decrease in temperature causes

a frequency increase of all the modes, and vice-versa. All the modes scale

linearly in the frequency spectrum with this global change in temperature,

which can be used to shift the band gaps up or down in the frequency spec-

trum. We can use this technique effectively to tune the range of forbidden

frequencies.

3.3 Thermal partitioning of the meta-structure

In the above simulations we change the applied temperature of the entire

meta-structure uniformly. This causes the modes to shift equally in the fre-

quency spectrum, resulting in a pure shift of the band gap and the normalized
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Figure 3: Dispersion curves of the meta-structure with
temperature-dependent PC modulus at a) −140◦C, b) 20◦C, and c) 140◦C.

band gap width remains exactly constant. To control individual modes rela-

tive to other modes and thus change the normalized width of the band gaps,

we introduce a new concept called thermal partitioning. In this concept, we

partition the lattice of the meta-structure into different domains (e.g. certain

beams, lattice frame, resonator coating) and subject each set of domains to

different thermal boundary conditions. This could be accomplished through

carefully controlled heat flux through the sample, or by resistive elements 3D

printed into the lattice structure. Maintaining sharp temperature differences

locally may present a bigger challenge. The idea behind this step is that

different portions of the lattice contribute different amounts to the modal

stiffness and thus frequency of each mode. By spatially controlling the ap-

plied temperature, we bring about local changes in the modulus, which can

independently control the stiffness of some modes relative to other modes.

We apply this thermal partitioning concept to tune the width of both the

first and second band gaps of the meta-structure. To do this, we first analyze
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the mode shapes of the modes surrounding the band gap, then identify a set

of beams in the lattice that have a higher contribution to modal stiffness

of one of those modes. We initially approximate this by visually depicting

which beams in the unit cell deform the most, and we then quantify this by

calculating the modal strain energy contributions of this set of beams. Modal

strain energy is commonly used to quantify how strongly different elements

contribute to the modal stiffness for damage localization in structures [25–27].

The modal elastic strain energy, Ej
i , of domain j of the ith mode can be

written as:

Ej
i =

1

2

{
U j
i

}T
[Kj]

{
U j
i

}
(4)

where Kj is the local stiffness matrix of domain j, and U j
i is the displacement

vector of domain j in the ith mode. When we measure the modal strain energy

of a single mode, Ui can be written as an arbitrary constant, c, times the

eigenvector, φi, of the corresponding mode. The modal strain energy can

now be written as:

Ej
i =

1

2
c2
{
φji
}T

[Kj]
{
φji
}

=
1

2
c2Kj

i (5)

where Kj
i is the modal stiffness contribution of domain j to the ith mode.

Modal strain energy is thus proportional to the modal stiffness of the struc-

ture. So by measuring the modal strain energy of individual beams or other
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domains of the unit cell, we quantify the contribution of these respective

domains to the overall modal stiffness. The total modal stiffness can be

expressed as a sum over all domains of the unit cell,

Ki =
N∑
j=1

Kj
i (6)

where N is the total number of domains of the meta-structure unit cell, and

Kj
i is the contribution from jth domain to the total modal stiffness, Ki. We

define Ki
j

as the normalized stiffness contribution of domain j of the total

modal stiffness of mode i:

Ki
j

=
Kj
i

Ki

(7)

We use this parameter K
j

i as a metric to determine which domains to

thermal partition, and thus modulate the band gap. We then tune the tem-

perature of those beams independently of the rest of the lattice. This results

in one edge mode shifting in frequency more so than the other edge mode,

resulting in a change in band gap width.

3.3.1 Tuning the first band gap

We first apply thermal partitioning to change the width of the first band gap.

To understand which domains of the unit cell to partition, we consider the

edge mode shapes of the first band gap. The upper edge mode of the band

gap is a torsional mode, Fig. 4(b), where the out-of-plane beams (beams
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perpendicular to the direction of periodicity) have a larger contribution to

the modal stiffness compared to the lower edge mode, based on their relative

modal strain energy contributions: the out-of-plane beams contribute to 3%

of the strain energy of lower edge mode, but 21% of the strain energy of

the upper edge mode. The corresponding pie chart depicting relative modal

strain energies is shown in Fig. 5(b), 6(b). Thus, a change in modulus of the

out-of-plane beams will preferential change the frequency of the upper edge

mode while keeping the frequency of the lower edge mode roughly constant.

(a) (b) (c)

Figure 4: (a) Lower edge mode of the first band gap involves a mixture of
longitudinal and flexural motion; b) upper edge mode of the first band gap
(and lower edge mode of the second band gap) is a torsional mode; c) upper
edge of the second band gap is a shear mode. 1D periodicity is in the
x-direction.

The lower edge mode of this band gap is a combination of a longitudinal

resonator mode along the direction of periodicity and a rotational resonator

mode, as seen in Fig. 4(a) [1]. The in-plane beams (beams along the direction

of periodicity) contribute more to the stiffness of the lower edge mode more

than they contribute to the upper edge mode, as quantified by the modal

strain energy distribution: the in-plane beams contribute 61% of the total

strain energy of the lower edge mode, while the same beams contribute only

12% of the upper edge mode, Fig. 5(a), 6(a). This can also be understood

as the in-plane beams are acting under axial deformation in this mode and

the out-of-plane beams act under bending deformation, and beams are much

14



stiffer under axial deformation compared to bending. Thus, we expect that a

modulus change of in-plane beams will cause a larger shift of the lower edge

mode compared to the upper edge mode.

3%

97%61%

39%

In-plane beams
Rest of the lattice

(b)(a)

Out of plane beams
Rest of the lattice

Figure 5: Relative strain energy contribution from (a) In-plane beams; b)
Out of plane beams to the longitudinal mode, Fig. 4(a).

21%

79%

12%

88%

Out of plane beams
Rest of the lattice

In-plane beams
Rest of the lattice

(b)(a)

Figure 6: Relative strain energy contribution from (a) In-plane beams; b)
Out of plane beams to the torsional mode, Fig. 4(b).

To study the effects of this thermal partitioning concept on the meta-

structure band gaps, we choose to partition the unit cell in two different

ways to preferentially shift the frequency of either the upper or lower band

gap edge mode: (1) to tune the upper edge mode, we partition the lattice

into a set of out-of-plane-beams and the remainder of the lattice, and (2)

to tune the lower edge mode, we partition the lattice into a set of in-plane

beams and the remainder of the lattice.

We first subject the out-of-plane beams (red) shown in Fig. 7(d) to a
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temperature of 140◦C and the rest of the lattice is held at −140◦C. The

dispersion curves for this configuration are shown in Fig. 7(c). We compare

this to the dispersion curves where the entire meta-structure is subjected to

−140◦C, Fig. 7(a). The first band gap width has reduced by 990 Hz with

the band gap center now at 11,117 Hz. As predicted, thermal partitioning

in this case shifts the upper edge of the band gap downwards, decreasing

the normalized bandwidth from 33.6% to 26.5%. By subjecting the out-

of-plane beams to a higher temperature, we decrease the modulus of these

beams, which results in a decrease in modal stiffness and thus frequency

of the modes to which these beams contribute. The shift in lower edge of

the first band gap is 107 Hz, whereas the upper edge decreased by 1,097 Hz,

confirming these beams preferentially contribute to the modal stiffness of the

upper edge mode compared to the lower edge mode. Thus, this approach of

thermal partitioning gives us a way to shift one mode roughly independently

of another, resulting in a change in band gap width.

To shift the upper edge of the band gap upwards, the out-of-plane beams

(blue) are maintained at −140◦C while keeping the entire structure at 140◦C

as shown in Fig. 8(d). We compare the dispersion curve of this structure

(Fig. 8(c)) to the dispersion curve where the entire meta-structure is sub-

jected to 140◦C, Fig. 8(a). We now see that the upper mode of the first band

gap moves up from 9,248 Hz to 9,879 Hz, whereas the lower mode is almost

at the same frequency (6,617 Hz to 6,697 Hz). The normalized band width

increases from 33.2% to 38.4%. A decrease in temperature of out-of-plane

beams corresponds to an increase in modulus, which increases the frequency

of the upper edge mode. This concept of thermal partitioning works in both

directions: we can partially open and partially close band gaps.

Similarly, to tune the lower edge of the band gap, we subject the in-plane
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Figure 7: Results of thermal partitioning to decrease width of first band
gap (c,d) and close the second band gap (e,f): (a) Reference meta-structure
dispersion relation of unit cell (b) subjected to −140◦C. (c) Dispersion
relation of lattice subjected to thermal partitioning shown in (d), where out
of plane beams (red) are subjected to 140◦C and the rest of the lattice
(blue) is subjected to −140◦C. (e) Dispersion relation of lattice subjected
to thermal partitioning shown in (f), where some out-of-plane beams (red)
are subjected to 140◦C and the rest of the lattice (blue) is subjected to
−140◦C.

beams to −140◦C and the rest of the lattice to a high temperature as seen in

Fig. 8(f). When we compare the dispersion curves in Fig. 8(e) with that of

the high temperature analogue, Fig. 8(a), we see that lower mode initially at

6,617 Hz increases to 8,086 Hz, decreasing the normalized band width from

33.2% to 17.2%, almost by half. The upper edge of the first band gap moves

up slightly from 9,248 Hz to 9,611 Hz, because of the smaller contribution

from the in-plane modes to the torsional modal stiffness compared to the

longitudinal mode.
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Figure 8: Results for thermal partitioning to increase (c,d) and decrease
(e,f) the first band gap width: (a) Reference meta-structure dispersion
relation of entire unit cell subjected to 140◦C as in (b). Widening the band
gap: (c) Dispersion relation of lattice subjected to thermal partitioning in
(d), where out-of-plane beams (blue) are subjected to −140◦C and the rest
of the lattice (red) is subjected to 140◦C. Narrowing the first band gap: (e)
dispersion relation of lattice subjected to thermal partitioning in (f), where
in-plane beams (blue) are subjected to −140◦C and the rest of the lattice
(red) is subjected to 140◦C.

3.3.2 Tuning the second band gap

Thermal partitioning analysis can be applied to tune other band gaps of the

meta-structure. For the second band gap, the lower and upper edge modes

are shown in Fig. 4(b,c), respectively. The lower edge mode is a torsional

mode and the upper edge mode is a shear mode, both with deformation

concentrated in the lattice. Closing the second band gap can be achieved by

moving the shear mode downwards or the torsional mode upwards. Here, we

choose the former approach. The relative displacements of the out-of-plane
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beams in the XZ plane are higher for the shear mode than the torsional

mode. Starting from the condition where the entire structure is subjected

to −140◦C, we increase the temperature of one set of out-of-plane beams

as shown in Fig. 7(f) to 140◦C. By increasing the applied temperature of

these beams, the stiffness of the shear mode decreases. This causes the shear

mode to decrease below the torsional mode, completely closing the band gap,

Fig. 7(e).

3.3.3 Algorithm for thermal partitioning

In the prior section, we presented a method to shift the band gap width with

thermal partitioning through a manual process. In order to maximize the

band gap shift, we introduce a simple algorithm to find the optimal shift,

given some discretization of the PC lattice. To do this, we discretize the unit

cell into small domains: specifically, each of the individual 96 beams that

connect the resonator to lattice, the external lattice frame, the resonator,

and the resonator coating. We then define a vector, C1, that contains the

normalized modal strain energy contribution to mode 1 from each of these

individual domains, where mode 1 is the lower edge of the band gap of

interest. We define vector C2 that contains the normalized modal strain

energy contribution to mode 2 from each of the individual domains, where

mode 2 is the upper edge of the band gap of interest. We aim to maximize

(or minimize) vector C3 = C2 − C1, to obtain the maximum difference in

strain energy between the modes. This simply translates into selecting the

domains that have a positive (or negative) value to shift mode 2 upwards

relative to mode 1 (or mode 1 downwards relative to mode 2).

We use the built-in linear programming solver in MATLAB, “intlinprog”,

to optimize our domain space. To find the optimal configuration, we parametrize
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the domains as binary variables. We then apply a change in temperature to

the domains selected by the algorithm, i.e. those with value 1 at the end of

the optimization process. Note in this approach, we assume the influence of

one domain does not depend on whether other domains nearby are thermal

partitioned.

We apply the thermal partitioning algorithm to the first band gap to find

the optimal set of domains to partition. The optimal set includes the in-

plane beams, just as we chose in the previous analysis (Fig. 8(f)), with the

addition of the polycarbonate coating around the resonator, as shown in

Fig. 9(d). This results in a minimum band width of 12.6% (Fig. 9(c)), as

opposed to 17.2% that resulted from the manual process shown in Fig. 8(e).

We also consider the complementary case of Fig. 9(d) in order to maximize

the band gap. The first band gap width increases to 49.4% as seen in Fig. 10,

much larger than the increase to 38.4% resulting from the manual process in

Fig. 8c.

We then apply the algorithm to the second band gap. The optimal set

of domains to thermal partition includes some out-of-plane beams as shown

in Fig. 9(f). This is similar to our approximation studied in Fig. 7(f). This

results in a complete closing of the second band gap, shown in Fig. 9(e), and

the modes shift even further in opposite directions compared to Fig. 7(e).

This approach of discretization can identify the extrema values of all the

possible combinations of domains, to find the configuration with the largest

change band gap width. With a finer discretization of the unit cell geometry,

a possibly larger band gap shift could be obtained.
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Figure 9: Results of thermal partitioning algorithm to decrease width of the
first band gap (c,d), and close the second band gap (e,f): (a) Reference
meta-structure dispersion relation of unit cell subjected to 140◦C. (c)
Dispersion relation of lattice subjected to thermal partitioning shown in
(d), where some domains (blue) are subjected to −140◦C and the rest of
the lattice (red) is subjected to 140◦C. (e) Dispersion relation of lattice
subjected to thermal partitioning shown in (f), where some domains (blue)
are subjected to −140◦C and the rest of the lattice (red) is subjected to
140◦C.
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Figure 10: Results of thermal partitioning algorithm to widen the first band
gap: (a) Reference meta-structure dispersion relation of (b) unit cell
subjected to −140◦C. (c) Dispersion relation of lattice subjected to thermal
partitioning shown in (d), where some domains (red) are subjected to
140◦C and the remaining domains (blue) are subjected to −140◦C. The
first band gap and second band gap have enhanced band gap widths as seen
in (c) with values 49.4% and 3.3% respectively.
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4 Thermally-induced geometry and stress effects on

meta-structures

Other thermal effects on the meta-structures are related to its constituent

materials thermal expansion coefficients: a temperature increase will cause an

expansion and distortion of the meta-structure geometry due to a mismatch

in thermal expansion coefficients between polycarbonate and steel. This

mismatch will also induce thermal stresses within the meta-structure. An

increase in the overall unit cell size of the meta-structure should cause a

corresponding decrease in band gap frequency, since the frequency of Bragg-

scattering induced band gaps scales inversely with the unit cell size. Prior

work indicated the band gaps supported by the meta-structure studied here

are indeed induced by Bragg scattering mechanisms [1]. All these effects,

in addition to the change in material moduli, co-exist together. Here, we

study the effects and their relative contribution to the band gaps of the

meta-structure.

4.1 Contributions of geometric changes on band gaps

To study the change in geometry and dimensions of the meta-structure due

to temperature, we consider a single unit cell. We apply a temperature

change using finite element simulations (COMSOL Multiphysics) and allow

the meta-structure unit cell to expand or contract, keeping the faces in the

periodic direction flat as shown in Fig. 1(b) (see Sec. 3.1). The results of

this simulation for an applied temperature of −140◦C, shown in Fig. 12,

demonstrate the thermal contraction of the meta-structure in all dimensions

(Fig. 12a), as well as stresses induced in the meta-structure (Fig. 12b). The

change in the overall unit cell dimensions due to the maximum thermal ex-
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pansion or contraction is 0.9%.

We compare the dispersion curves of the meta-structure with only a change

in modulus to dispersion curves with both the modulus and unit cell size

change effects taken into account, Fig. 11. The unit cell length change causes

a frequency shift of 21 Hz (0.18%) of the first band gap center frequency. This

is negligible compared to frequency shift due to change in modulus values

of 37.1% at this applied temperature. Even though the change is small, the

change in unit cell size due to thermal expansion is considered in all the

results shown in this work.

Other related negligible effects include the modulus change of the steel

resonator by 6% from room temperature to −140◦C (from 205 GPa to 211.6

GPa) [24], since the resonator does not contribute to the stiffness of the

modes. Further, an increase in unit cell size simultaneously leads to a de-

crease in density if the boundary conditions are considered free, however

this also leads to a negligible frequency shift since the change in unit cell

dimensions are less than 1%.

4.2 Influence of thermal stress on meta-structure

The applied temperature induces a small amount of thermal stress through-

out most of the meta-structure since it is free to expand or contract, see

Fig. 12(b). However, at the interface of the polycarbonate lattice and steel

resonator there are high thermal stresses, with a maximum value in the poly-

carbonate of around 120.6 MPa von Mises stress, within a thin layer of the

polycarbonate layer that interfaces with the steel for the applied tempera-

ture of −140◦C. Higher stresses around 266.6 MPa are concentrated in the

steel resonator. In the high temperature case, the maximum stress in the
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Figure 11: Dispersion curves that account for both change in modulus and
unit cell size (represented by a circle marker) and for only a change in
modulus (represented by a Plus sign marker).

polycarbonate is 58.58 MPa and the maximum stress in the steel is 96.94

MPa. While these high stresses are partially due to the mismatch in ther-

mal expansion coefficients, they likely include artifacts from the numerical

method due to stress concentrations at the corner of the steel resonator,

which may be non-physical. In a physical system, these stresses may in-

duce failure in the polycarbonate and at the polycarbonate-steel interface at

the lowest temperatures studied here, since the stress in the polycarbonate

exceeds its ultimate tensile strength. However, analysis on thermal stress

effects in finite meta-structures show smaller stresses at this interface when

the meta-structure ends are held fixed (see Sec. 5). Still, the large tem-

perature ranges studied in this work may not be practical for this specific

polycarbonate-steel meta-structure. However, these results could readily be

implemented in meta-structure consisting of other materials with actuated

moduli (e.g. shape memory alloys, or magneto-elastic materials).

25



(a) (b)

250
200
150
100

MPa

50

Figure 12: (a) Results of thermal simulation with applied temperature of
−140◦C, illustrating contracted unit cell with thermally-induced stresses
plotted spatially. (b) von Mises stress (with units MPa) due to mismatch of
thermal expansion coefficients between polycarbonate (lattice) and steel
(resonator), plotted on the deformed unit cell. The wireframe illustrates the
unit cell geometry at room temperature, and the solid structure illustrates
the deformed geometry at applied temperature of −140◦C.
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5 Numerical validations with finite meta-structures

To numerically validate the band gaps in infinitely periodic meta-structures

subjected to thermal tuning, we numerically analyze finite length meta-

structures consisting of six-unit cells (Fig. 13) using COMSOL Multiphysics.

On either ends of the lattice we add a 0.55mm thick plate on which to apply a

uniform harmonic displacement, consistent with prior work [1]. We compare

the vibration transmission response of the finite meta-structures to the band

gap behavior numerically calculated in infinite meta-structures.

We first test the boundary condition of enforcing flat faces along the di-

rection of periodicity in the dispersion analysis. To test this, we first subject

the finite meta-structure to thermal expansion, ensuring flat faces only on

the boundaries where loads are applied; note all other faces are free to ex-

pand, contract, or deform. We export the deformed mesh after this thermal

expansion step, and then subject this deformed structure to frequency do-

main analysis. We keep one end fixed and subject the other to a harmonic

displacement along the x-direction (direction of periodicity) in range of 0-20

kHz. The transmission is calculated as the ratio of reaction force on the fixed

end of the meta-structure and the applied force.

Figure 13: CAD model of 6-unit cell finite meta-structure

The vibration transmission for 6-unit cell meta-structures are shown in

Fig. 14(a,b,c) at room temperature, −140◦C, and a thermal partitioned ex-

ample (corresponding to Fig. 8(e,f)), respectively. For the room temperature

case, a range of minimized transmission is shown between 7,350 Hz and 12,750
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Hz, which is in good agreement with band gap calculated from the dispersion

analysis, between 7,133 Hz and 9,987 Hz. In the finite FEM, the excitation

is along the x-direction. Modes that have displacement along the x-direction

are preferentially excited, which explains the higher upper edge mode seen in

finite meta-structure simulations that corresponds to the higher axial mode.

This was calculated in previous work and validated experimentally [1]. Mini-

mized transmission for −140◦C meta-structure was calculated to be between

10,000 Hz and 17,350 Hz, which is in good agreement with the correspond-

ing band gap from the dispersion analysis, between 9,752 Hz and 13,686 Hz

(Fig. 3(a)). Minimized transmission for the thermal partitioned example is

similarly in good agreement to the calculated band gap. Overall, these re-

sults provide confidence that the boundary conditions applied in the infinite

meta-structure analysis provides accurate results for finite meta-structures.
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Figure 14: Normalized vibration transmission for 6-unit cell meta-structure
at (a) room temperature [1], (b) −140◦C, and (c) thermal partitioned as in
Fig. 8(e,f).

To explore effects of thermal stress induced by the applied temperature
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change, we do a pre-stressed frequency domain analysis on the structure

shown in Fig. 13 to account for shift in frequencies due to internal thermal

stresses. A similar analysis was previously done elsewhere [15]. The meta-

structure is held in place using fixed boundary condition on both faces. The

structure is subjected to an applied temperature of −140◦C, and the thermal

stresses that develop are considered as the initial state for the frequency

domain step. The results of this thermal step are shown in Fig. 15(a), where

the von Mises stress is superimposed on the finite meta-structure geometry;

note the highest thermal stress in the polycarbonate is 84.7 MPa, and the

maximum in the steel is 118.7 MPa. For the case where the finite meta-

structure is subjected to an applied temperature of 140◦C, the maximum

stress in the polycarbonate is 29 MPa and in the steel resonator is 41.4 MPa.

So, in the high temperature case, the entire meta-structure remains in the

elastic range, while the lowest temperature case there may be failure and/or

delaminations in the polycarbonate.

The difference in the maximum stress at both 140◦C and −140◦C com-

pared to those calculated and shown in Fig. 12(a) is likely because the fi-

nite meta-structure in Fig. 15(a) is fixed at either end, thus preventing full

expansion of the polycarbonate lattice. This induces some thermal stress

throughout the entire meta-structure as opposed to the thermal stresses be-

ing concentrated at the interface of the steel and polycarbonate. The pre-

stressed vibration transmission results for the finite meta-structure with ap-

plied temperature of −140◦C is shown in Fig. 15(b), along with the vibration

transmission of the same meta-structure with undeformed geometry and de-

void of any stresses. An applied decrease in temperature shifts the band gap

center upwards by 275 Hz as shown in Fig. 15(b). A decrease in temperature

will lead to a decrease in cross-sectional area, shifting the frequency down-
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wards whereas the tensile thermal stresses developed due to constraints lead

to stress hardening, thereby shifting the frequency upwards. In this specific

case, the combination of these effects cause the frequency of the modes to

increase. In the high temperature pre-stressed study the modal frequencies

would shift downwards due to stress softening.

The thermal stress and length scale effects were here studied independently

in FEM simulations. Numerical results on finite meta-structures show that

the effects from thermal expansion and thermally-induced stresses have com-

peting effects in terms of the frequency response of the meta-structure. How-

ever, both these effects cause insignificant shift in frequencies compared to

the shift in band gaps due to change in lattice material modulus.
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Figure 15: (a) Thermally expanded structure indicating von Mises stress
with units of MPa. Black edges indicate the undeformed structure at room
temperature. (b) Vibration transmission of a finite meta-structure with six
unit cells subjected to a temperature of 140◦C with deformed (dashed line)
and without deformed geometry (solid line).
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6 Prestressed and Mesh sensitivity Analysis in

COMSOL

To understand how frequencies change with temperature, we consider a sim-

ple beam, Fig. 16, with dimensions 10mm x 1mm x 1mm and do a Prestressed

analysis in COMSOL. Built-In material “Steel AISI 4340”, from COMSOL

material library was used to model the beam. An eigenfrequency study of

this beam indicates the existence of the first longitudinal mode at 128081.5

Hz. We apply a harmonic load along the longitudinal direction and the res-

onance peak is in close agreement with the modal frequency obtained from

eigenfrequency study as seen in Fig. 17.

10 mm 1 mm

Figure 16: Cantilever beam having a square cross-section with dimensions
10mm x 1mm x 1mm.

We subject the beam to temperature change, ∆T=100K, keeping one end

fixed allowing free thermal expansion subjecting the structure. The deformed

structure is exported and the new density value is calculated by applying con-

servation of mass. Eigenfrequency analysis of the thermally expanded struc-

ture is shown in Fig. 17 and is found to be 128159.6 Hz. Using “Prestressed

Eigenfrequency” analysis the longitudinal mode is found at 128160.3 Hz com-

pared to the deformed structure analysis of 128159.6 Hz. This small error

can be attributed to different meshing of the thermally expanded (deformed)

and original structures. A finer mesh size will bring the difference even
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The eigenfrequency of the thermally expanded beam is calculated using two
different methods, first by exporting the deformed structure and second
using Prestressed Eigenfrequency study in COMSOL

lower. The frequency of the longitudinal mode is proportional to
√
EA/L.

When subjected to a temperature change, the frequency is proportional to
√

1 + α∆T =
√

1 + 12.3 ∗ 10−6 ∗ 100 = 1.000614811. Therefore the ana-

lytically predicted eigenfrequency when subjected to thermal expansion is

128081.5 ∗ 1.000614811 = 128160.246. The predicted and computed results

are in very close agreement. A Prestressed frequency domain analysis is

performed and the peak in transmission is in close agreement with the cal-

culated eigenfrequencies. For transmission plots it is accurate to use surface

integration of reaction force(solid.RFx) than a surface integration of trac-
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tion(solid.Tax).

In order to do a constrained thermal analysis the reference point in thermal

expansion step should be set to the coordinates of the plane of constraint

as shown in Fig. 18. Compressive thermal stresses will shift the frequencies

lower because of stress softening and tensile stresses will move the frequencies

higher due to stress hardening.

Figure 18: The reference point coordinates should be set to the location of
“Prescribed Displacement” face

A mesh sensitivity analysis was performed in order to check the conver-

gence of the finite element solution. The convergence plots for the first 16

modes are shown in Fig. 19, where the x-axis indicates the degrees of free-

dom and y-axis represents the % error. The highest degrees of freedom

corresponding to a minimum maximum element size was chosen as the refer-

ence and error at higher maximum element sizes was calculated with respect

to this reference. A maximum element size of 0.74mm was chosen to have

sufficiently large degrees of freedom.
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Figure 19: Sensitivity analysis results of the first 16 eigenfrequencies are
shown. The maximum degrees of freedom is set as the reference to measure
the % error. For the eigenfrequency analysis, the chosen element size
resulted in degrees of freedom slightly more than 500,000.
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7 Conclusions

We have demonstrated tunability of band gaps in lattice-resonator meta-

structures using an applied temperature. Global changes in temperature

of the entire meta-structure shift all the modes equally in the frequency

spectrum, whereas thermal partitioning enables partial opening and closing

of band gaps. Subjecting the structure to thermal partitioning gives greater

control of individual modes.

The meta-structure band gap properties are only shown numerically here,

and prior work has experimentally validated these meta-material band gaps

at room temperature [1]. While experimental validations of global tempera-

ture tuning presented here could be realized, thermal stresses induced at the

boundary of lattice and resonator due to the mismatch in thermal expan-

sion coefficients between polycarbonate and steel may cause delaminations

at the interface of the polycarbonate and steel. The temperatures studied are

also somewhat impractical for polycarbonate material, and the stability of

the structure may be questionable around the glass transition temperature

of polycarbonate. Further, thermal partitioning would be very difficult to

achieve experimentally, given that beams within a few millimeters of each

other would need to be drastically different temperatures. However, these

concepts and results provide a platform that could be successfully applied to

other materials that induce a modulus change upon external application, for

example shape memory alloys or magneto-elastic materials.

35



References

[1] K. H. Matlack, A. Bauhofer, S. Krödel, A. Palermo, C. Daraio, Com-
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