
c© 2018 Lavin R. Devnani

FAULT INJECTIONS ON MISSION-CRITICAL COMPUTER SYSTEMS

BY

LAVIN R. DEVNANI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Advisers:

Professor Ravishankar K. Iyer
Professor Zbigniew T. Kalbarczyk

ABSTRACT

This thesis presents two unique sets of fault injections on mission-critical

computer systems with the goal of (1) understanding the impact of faults,

errors and failures, and (2) evaluating fault-tolerance and resilience of the

targeted systems in the presence of failures.

Our first fault injection campaign studies the effects of failures on high-

performance computing (HPC) systems. We target the Cray XE Blue Waters

JYC testbed at the National Center for Supercomputing Applications, with

the goal of improving the understanding of failure causes and propagation

observed in the field failure data analysis of Blue Waters. We use data col-

lected from system logs and network performance counters to (1) characterize

fault-error-failure sequences and recovery mechanisms in Gemini intercon-

nection networks and in Cray compute elements, (2) understand the impact

of failures on the system and user applications at different scales, and (3)

identify and recreate fault scenarios that induce unrecoverable failures, to

create new tests for system and application design. We utilize HPCArrow,

a newly developed software-implemented fault injection tool with the ability

to disable and restore user-specified network links, directional connections,

compute nodes and blades. We observe failures manifesting in the form of

applications not making forward progress and network quiescence operations

causing extended system recovery times.

Our second fault injection campaign studies the effects of faults, attacks

and failures on a smart power grid utilizing software-defined networking

(SDN) to orchestrate its data acquisition network. We evaluate our fault

models on a smart power grid simulation running Raincoat, an SDN applica-

tion that reroutes and spoofs network traffic to thwart attackers. Addition-

ally, we propose an application- and data plane-based solution to pro-actively

monitor system state and enforce user defined policies. We show that under

certain faults, (1) applications orchestrating the network become ineffective,

ii

and (2) periodically monitoring the state of the network can identify faults

or attacks before they manifest as failures. The results obtained from this

work can aid in enhancing the resiliency of future SDN applications.

iii

To my parents, for their love and support.

iv

ACKNOWLEDGMENTS

I would like to thank my research advisers Ravi Iyer and Zbigniew Kalbarczyk

for their encouragement and support during my years as a graduate student.

I would also like to thank my colleagues in the DEPEND research group,

particularly Ching Yang Tan, Sharon Tang, Fei Deng, Hui Lin, and Saurabh

Jha for their help and encouragement with my research projects.

Additionally, I would like to thank Mike Showerman, Greg Bauer, Bill

Kramer (NCSA), Jim Brandt, and Ann Gentile (SNL) for their constant and

prompt help with my Blue Waters fault injection work.

Material included in this thesis is partially based upon work supported

by the U.S. Department of Energy, Office of Science, Office of Advanced

Scientific Computing Research, under Award Number 2015-02674. This work

is partially supported by NSF CNS 13-14891. This research is part of the

Blue Waters sustained-petascale computing project, which is supported by

the National Science Foundation (awards OCI-0725070 and ACI-1238993)

and the state of Illinois. Blue Waters is a joint effort of the University of

Illinois at Urbana-Champaign and its National Center for Supercomputing

Applications.

Material included in this thesis is partially based upon work supported

by the U.S. Department of Energy, Office of Science, Office of Advanced

Scientific Computing Research, under Award Number DOE DE-OE 0000780.

v

This thesis was prepared as an account of work sponsored by an agency

of the United States Government. Neither the United States Government

not any agency thereof, nor any of their employees, makes any warranty,

express or implied, or assumes any legal liability or responsibility for the

accuracy, completeness, or usefulness of any information, apparatus, product

or process disclosed, or represents that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process,

or service by trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or favoring

by the United States Government or any agency thereof. The views and

opinions of authors expressed herein do not necessarily state or reflect those

of the United States Government or any agency thereof.

vi

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF ABBREVIATIONS . xii

CHAPTER 1 INTRODUCTION . 1

1.1 Fault Injection . 2

1.2 Challenges in Assessing System Resilience 2

1.3 Contributions . 3

1.4 Lessons Learned . 4

1.5 Future Work . 5

1.6 Terminology . 5

1.7 Thesis Organization . 6

CHAPTER 2 UNDERSTANDING THE IMPACT OF FAILURES

THROUGH FAULT INJECTIONS ON CRAY GEMINI SYSTEMS 7

2.1 Introduction . 8

2.2 Literature Review . 10

2.3 Motivation . 12

2.4 Architecture Overview . 13

2.5 Fault Models . 17

2.6 Fault Injection Tool - HPCArrow 21

2.7 Analysis Methodology . 24

2.8 Experiment Setup . 27

2.9 Results . 32

2.10 Future Work - Cray XC Platform and Aries Interconnects . . 45

2.11 Conclusion . 45

vii

CHAPTER 3 FAULT INJECTIONS ON SMART POWER GRID

NETWORK ENVIRONMENTS . 46

3.1 Introduction . 46

3.2 Background . 48

3.3 Fault Models . 52

3.4 Fault Injection and Analysis Framework 56

3.5 Case Study - Raincoat for Smart Power Grids 60

3.6 Resiliency Recommendations 67

3.7 Related Work . 71

3.8 Future Work . 71

3.9 Conclusion . 72

REFERENCES . 73

APPENDIX A FAULT INJECTION COMMANDS FOR CRAY

XE PLATFORM . 82

APPENDIX B JYC SYSTEM MAP 83

APPENDIX C APPLICATION SETS AND PARAMETERS 85

viii

LIST OF TABLES

1.1 Summary of Fault Injection Campaigns 1

2.1 Summary of Literature Reviewed for Work Presented in
Chapter 2 . 11

2.2 System Logs Analyzed in this Study, Containing Log Names
and Content Descriptions . 26

2.3 Application Descriptions and Characteristics 30
2.4 Hardware Errors Observed in Fault Injection Analysis 33
2.5 Summary of Fault Injection Campaign by Target Applica-

tion, Fault Model and Outcome Scenarios 36
2.6 Example Report Containing Event Counts for a Link In-

jection Experiment . 36

3.1 Flow Table Entry Action Fields 53
3.2 SDN Fault Injection Mechanisms 57
3.3 Flow Table Entry Corruption Experiments 63
3.4 Pipeline Processing Corruption Experiments 64
3.5 Results from Smart Power Grid Case Study 67

A.1 Fault Injection Commands for Cray XE Platform 82
A.2 Component Restoration Commands 82

B.1 Example Component Names on JYC 83

C.1 Application Set 1 Configuration 86
C.2 Application Set 2 Configuration 87
C.3 Application Set 3 Configuration 89
C.4 Application Set 4 Configuration 90
C.5 Application Set 5 Configuration 91
C.6 Application Set 6 Configuration 92
C.7 Application Set 7 Configuration 93
C.8 Application Set 8 Configuration 94

ix

LIST OF FIGURES

2.1 Cray XE platform architecture 13
2.2 State transition diagram for lane recovery procedure 16
2.3 State transition diagram for link failover procedure 17
2.4 State transition diagram of warm swap operation 18
2.5 Link failure fault model . 19
2.6 Connection failure fault model 19
2.7 Node failure fault model . 20
2.8 Blade failure fault model . 20
2.9 HPCArrow toolkit and components 21
2.10 Injection manager workflow 23
2.11 Component selection example 25
2.12 JYC system overview with node types and identifiers 28
2.13 Fault injection timeline demonstrating user, system and

application events . 31
2.14 Single connection failure with impacted application termi-

nating prematurely . 38
2.15 Blade failure with impacted application terminating prematurely 41

3.1 SDN architecture overview . 48
3.2 SCADA system of a power grid network 50
3.3 SCADA system of an SDN-managed power grid network . . . 51
3.4 Flow table entry corruptions to action fields 54
3.5 Simplified OpenFlow packet processing pipeline 55
3.6 Network overload attack . 56
3.7 Fault injection and analysis framework 58
3.8 Analysis example, identifying events of interest in Wireshark . 59
3.9 Experiment workflow for SDN fault injection 59
3.10 Example execution of the Raincoat algorithm 61
3.11 Network topology used in fault injection experiments 62
3.12 Flow table entries installed in a Raincoat managed edge switch 63
3.13 Data plane monitoring . 68
3.14 Pipeline processing with failover flow table entry 70

B.1 JYC system overview with node types and identifiers 84

x

C.1 Application set 1 placement 86
C.2 Application set 2 placement 88
C.3 Application set 3 placement 89
C.4 Application set 4 placement 90
C.5 Application set 5 placement 91
C.6 Application set 6 placement 92
C.7 Application set 7 placement 93
C.8 Application set 8 placement 94

xi

LIST OF ABBREVIATIONS

AMR Adaptive Mesh Refinement

API Application Programming Interface

ASIC Application Specific Integrated Circuit

AWP Anelastic Wave Propagation

BC Blade Controller

BTE Block Transfer Engine

CPU Central Processing Unit

CRC Cyclic Redundancy Check

FFT Fast Fourier Transform

FI Fault Injection

FMA Fast Memory Access

GNI Generic Network Interface

HPC High-Performance Computing

HSN High-Speed Network

HSS Health Supervisory System

IP Internet Protocol

LDMS Lightweight Distributed Metric Service

MCE Memory Check Error

MILC MIMD Lattice Computation

MIMD Multiple Instruction, Multiple Data

xii

MPI Message Passing Interface

NID Node IDentifier

NMI Non-Maskable Interrupt

ORB Output Request Buffer

OVS OpenVSwitch

PE Processing Element

PGAS Partitioned Global Address Space

PGI Portland Group, Inc.

PSDNS Pseudo-Spectral Direct Numerical Simulations

RDMA Remote Direct Memory Access

RMA Remote Memory Access

RMT Receive Message Table

SCADA Supervisory Control and Data Acquisition

SDN Software-Defined Networking

SEC-DED Single Error Correction-Double Error Detection

SMP Symmetric MultiProcessing

SMSG Short MeSsaGe

SMW System Management Workstation

SSID Synchronization Sequence IDentifier

SWIFI SoftWare-Implemented Fault Injection

TCP Transmission Control Protocol

UPC Unified Parallel C

WAN Wide Area Network

xiii

CHAPTER 1

INTRODUCTION

Large-scale computing clusters, high-performance computer systems, and

software-defined flexible and programmable networks are an important com-

puting enterprise in a wide variety of application domains ranging from arti-

ficial intelligence and machine learning to traditional high-performance com-

puting applications such as weather forecasting and molecular dynamics.

Partial or complete failures in any component of these systems in mission-

critical environments can have significant social and societal implications.

An increasing reliance on highly critical computer systems underscores the

need for robust and effective techniques to evaluate their resiliency and mit-

igate attacks and failures. A broad approach for assessing the resilience of

large-scale systems is fault injection [1].

In this thesis, we present two unique sets of fault injections on mission-

critical computer systems: (1) the Blue Waters JYC testbed, a Cray XE

high-performance computing (HPC) system, and (2) a software-defined net-

working (SDN) enabled smart power grid. We summarize our fault injection

campaigns in Table 1.1. While our underlying approach to evaluating the

resiliency of our target systems is the same, we develop separate injection

tools and analysis methods which enable us to adapt to specific intricacies

presented by the different systems.

Table 1.1: Summary of Fault Injection Campaigns

System Area Target Components Failure Scenarios

Blue Waters
JYC testbed

High-
performance
computing
(HPC)

Network components:
Links, Directional connections
Compute components:
Nodes, Blades

Premature termination
and hangs of
application workloads

SDN-enabled
power grid
simulation

Software-
defined
networking
(SDN)

SDN network switches:
OpenFlow table entries,
Packet processing pipelines,
PacketIn flooding attacks

SCADA Timeouts,
Measurement
Obfuscation Failures,
Denial of service

1

1.1 Fault Injection

Fault injection (FI) is a reliability evaluation technique used to study system

behaviors by deliberately and systematically introducing faults into various

levels or components of a target system. Deliberately introducing faults al-

lows system designers to (1) evaluate the correctness of fault-tolerance mecha-

nisms employed by the system, (2) understand fault-error-failure propagation

paths, and (3) assess system vulnerability to resulting failure scenarios.

Fault injection methods have been widely used to investigate fault-to-

failure propagation and to quantify the impact of failures on applications

and systems. As the complexity of newer systems increases, more rigorous

and formal techniques like model checking, state-space searching and theorem

proving become infeasible due to the immense effort required. Fault injec-

tion methods remain feasible as they allow researchers to control fault con-

ditions, workload executions and instrumentation on target systems. Many

past works have been successful in evaluating the resiliency of complex sys-

tems, such as computer processors [2], [3], software programs [4], operating

systems [5], dynamic memory [6], stream processing [7], genomic sequencing

[8], and surgical robots [9].

1.2 Challenges in Assessing System Resilience

A number of challenges exist when studying the resiliency of large and com-

plex systems. System modeling approaches, while useful in the early design

stage, often fall short of providing the ability to perform in-depth analysis

of a system or its interacting components. While analysis of field data is

usually the preferred approach, researchers often fail in connecting failure

events with their root causes or precursor faults. Additionally, existing log-

ging mechanisms may not account for all influencing factors and may not

provide a complete view of the system being studied. Furthermore, as the

complexity of newer systems increases, more rigorous and formal techniques

like model checking, state-space searching and theorem proving require an

increasing amount of effort, both computationally and on part of researchers.

Fault injection methods provide researchers the ability to study the system

under isolated faults, with complete control over experiment parameters, tar-

2

get components, workloads, and type of injected faults. This degree of control

also allows researchers to verify deterministic system behavior under faults

and failures, with the ability to repeat experiments and reproduce scenar-

ios observed in production systems. However, fault injection also requires

direct access to target systems in isolation, which may be prohibitive for

those in mission-critical spaces. Additionally, poorly designed fault injection

campaigns with low system coverage may not uncover all possible failure

scenarios. Nonetheless, fault injection methods remain effective as they offer

researchers the unique ability to study the impact of faults, errors and fail-

ures under controlled conditions on the target system and connect observed

events to root causes.

1.3 Contributions

The work presented in this thesis focuses on utilizing fault injection methods

to improve our understanding of the impact of faults, errors and failures on

(1) high-performance computers and (2) software-defined networking enabled

power grids. The key research contributions of this thesis are:

• A hierarchical understanding of systems targeted in this work, in order

to guide component selection during fault injection experiment design

and preparation.

• Newly developed fault injection tools and approaches, to enable execu-

tion of fault injection experiments. We present toolkits for fault injec-

tions on HPC systems (HPCArrow) and SDN-enabled power grids.

• Analyses methodologies and tools, to collect and analyze system, net-

work, and application-level logs after injection. We build analysis tools

and scripts around existing applications, such as LogDiver [10] and

Wireshark [11].

• A smart power grid network simulator, composed of Mininet [12], the

Pox SDN controller [13], OpenVSwitch (OVS) switches [14], and Au-

tomatak DNP3 Applications [15], to provide a simulation environment

for fault injection experiments.

3

• Resiliency recommendations based on our findings, to improve the

fault-tolerance of our target systems and mitigate attacks and failure

scenarios discovered in this work.

1.4 Lessons Learned

Over the course of the work presented in this thesis, we encountered several

challenges that required new approaches and methodologies. We summarize

our observations and experiences in this section.

• On large proprietary systems, fault-error-failure propagation paths are

often complex and not well documented. System fault-tolerance and

recovery mechanisms are not well understood and have a high degree

of uncertainty.

• To ensure reasonable coverage when studying complex systems, fault

injection experiments must either (1) account for all parameters in an

experiment, or (2) intelligently select experiment parameters to maxi-

mize the number of impactful injections.

• A significant number of system, network, and application logs are gen-

erated for each fault injection experiment. Analyzing the collected logs

requires specialized tools and much human involvement. Additionally,

existing tools often prove to be insufficient and require extensions to

be developed for use with specific systems.

• Complex systems usually contain a large number of highly individual-

ized components, each requiring a specialized understanding to work

with. Often, the implementation of a component may deviate from

a manufacturer’s documentation or specification, requiring additional

efforts to integrate into our overall study.

• Fault injection tools and analysis methods need to be constantly up-

dated as software and systems evolve over time. Updates to individual

system components may require entire toolkits to be redeveloped to

remain current.

4

1.5 Future Work

An important continuation of the work presented in this thesis is evaluating

the feasibility and trade-offs of resiliency recommendations made in Chap-

ters 2 and 3, especially as systems grow in scale and features. Looking be-

yond the target systems studies, efforts could be made to generalize tools and

analysis methodologies developed in this work. Future directions of specific

projects are further documented in Chapters 2 and 3.

1.6 Terminology

In this section, we define terms specific to fault injection methods and ap-

proaches. These terms are further used in Chapters 2 and 3. Definitions of

dependability terms below are derived from [16].

• Reliability: Probability that a system will continue functioning cor-

rectly over time.

• Error: Deviation from correct functioning of a system.

• Fault: Hypothesized cause of an error in a system.

• Malicious Fault or Attack: Faults deliberately introduced with the

objective of causing harm to a system.

• Failure: A transition from correct functioning of a system to incorrect

functioning, due to an error.

• Fault Tolerance: Ability of a system to avoid failures in the presence

of faults.

• Failover: A fault tolerance strategy whereby a system utilizes a sec-

ondary or redundant component when a primary component fails.

• Injection experiment: An experiment consisting of an introduction

of one or more faults in a deliberate and controlled manner, with the

intention of studying resulting effects of the introduced fault(s) on the

system.

5

• Baseline experiment: An experiment performed without a fault in-

jection, with the intention of studying the behavior of an error-free

system.

• Workload: An application or system execution during an experiment

to mimic real-world operation of a system.

• Application set: A set of applications with specified configurations

and input parameters.

• Fault injection campaign: A set of one or more fault injection and

baseline experiments with varying parameters for each experiment.

• Recovery: Handling of an error or failure to maintain reliable opera-

tion of a system. Errors and failures can be handled by masking their

effects or restoring the system to an error-free state.

• Restoration: Restoration of a system to an error or failure-free state.

In Chapter 2, we distinguish between automatic recoveries invoked by

the system in response to injected faults, and manual restoration of

target components by a user after an experiment has concluded.

1.7 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 presents our

work on understanding the impact of failures on the Cray Gemini platform

via fault injections on JYC, a Blue Waters testbed system at the National

Center for Supercomputing Applications. Chapter 3 presents fault injections

and failure scenarios of the Raincoat application on an SDN-enabled smart

electric power grid simulation. Additionally, we propose several resiliency

recommendations to mitigate failure scenarios discovered in our analysis.

6

CHAPTER 2

UNDERSTANDING THE IMPACT OF
FAILURES THROUGH FAULT

INJECTIONS ON CRAY GEMINI SYSTEMS

This chapter presents a set of fault injection experiments performed on the

Cray XE Blue Waters JYC testbed at the National Center for Supercomput-

ing Applications (NCSA). We use this experimental campaign to improve the

understanding of failure causes and propagation observed in the field failure

data analysis of NCSA Blue Waters. We use data collected from system logs

and network performance counters to (1) characterize fault-error-failure se-

quences and recovery mechanisms in Gemini interconnection networks and in

Cray compute elements, (2) understand the impact of failures on the system

and user applications at different scales, and (3) identify and recreate fault

scenarios that induce unrecoverable failures, to create new tests for system

and application design. In this work, we injected faults through our newly de-

veloped tool, HPCArrow, with the ability to disable and restore user-specified

network links, directional connections, compute nodes and blades. We ob-

serve failures manifesting in the form of applications not making forward

progress (i.e. crashes and hangs) and network quiesces causing extended

system recovery times.

The remainder of this chapter is organized as follows: Section 2.1 in-

troduces the resiliency challenges associated with HPC interconnection net-

works. Section 2.2 summarizes related work that addresses HPC resilience

and fault injection methods applied to large scale systems. Section 2.3

presents a motivation for this work. Section 2.4 provides an overview of the

Cray XE system- and network-level architecture, including fault tolerance,

detection and recovery mechanisms. Section 2.5 describes the network and

compute related fault models studied in this work. Section 2.6 describes the

features and functionality of our developed HPC fault injection and recovery

tool, and Section 2.7 describes our analysis of collected application, system

and performance logs. Sections 2.8 and 2.9 present details and results of our

fault injection campaign on the JYC testbed, and make recommendations to

7

address resiliency issues uncovered in this project. Finally, we conclude in

Sections 2.10 and 2.11.

2.1 Introduction

As HPC systems evolve beyond petascale computing, several resiliency con-

cerns at the system, network and application levels remain unaddressed.

With exascale systems around the corner, we expect error rates to continue

increasing to a point where traditional application-level checkpointing ap-

proaches will become unsustainable [17], [18]. To overcome the upper bound

of reliability of an HPC system (i.e. the “reliability wall”, as discussed in

[18]), the HPC community needs a better understanding of fault-to-failure

scenarios and improved system instrumentation for detecting and mitigating

errors.

Past analyses of recovery mechanisms of interconnection systems have

shown the criticality of network-related failures in Cray XE platforms by

providing empirical evidence of the impact of those failures on applications

and systems [19]. However, understanding of fault-to-failure scenarios and

their impact based on production data is limited. Analyses are ultimately

constrained to naturally occurring events while the logging and monitoring

capabilities of these systems do not provide enough information to com-

pletely map the fault-propagation path leading up to failures. In the case of

multiple errors and failures, it becomes even more difficult to diagnose such

fault-to-failure propagation paths.

In this work, we focus on improving our understanding of faults, errors

and failures on interconnection networks of HPC systems by conducting a

fault injection campaign on the Cray XE Blue Waters JYC testbed at the

National Center for Supercomputing Applications (NCSA). As part of this

project, we developed HPCArrow, a software-implemented fault injection

(SWIFI)[20] tool to inject faults and control recoveries of system components

at various levels. Our injection campaign consisted of 84 unique experiments

(15 baseline and 69 injection experiments), spanning 5 months and requiring

4,656 node hours on the target system. Over the course of our campaign,

9 unique applications were executed a total of 462 times to provide realistic

workload scenarios as we injected faults into system components. In total,

8

69 faults were injected into link, connection, node and blade components to

study the effects of faults, errors and failures across the system.

The key contributions of this project are:

• Network and compute fault injection tool for large-scale HPC

systems: We designed and developed HPCArrow, a fault injection tool

and methodology that can inject one or more faults into user-specified

links, connections, nodes, and blades on an HPC system. HPCArrow

also handles workload generation and automated fault injections with

user-defined timing requirements. Injected faults are usually accom-

panied by restore procedures to return the target system to the state

prior to fault injection. The tool currently supports failure injections on

Cray platforms with Gemini and Aries interconnects. HPCArrow was

successfully used to investigate and validate failure scenarios presented

in [19], [21], [10] and establish in-depth fault-to-failure propagation

and delays. Specific modules of this tool and their functionality are

discussed in Section 2.6.

• Assessing susceptibility of HPC runtime frameworks to faults,

failures and errors: Given the distributed nature of HPC applica-

tions, application runtime frameworks are commonly used to improve

communication efficiency and reduce development complexity. Run-

time frameworks provide varying degrees of fault tolerance, load bal-

ancing, power awareness, and automatic overlap of communication with

computation [22]. In this work, we consider workloads based on vari-

ations of the message passing interface (MPI), Charm++ and parti-

tioned global address space (PGAS) runtime frameworks. We observe

that some frameworks are more susceptible to application hangs and

crashes than others. We attempt to correlate abnormal behaviors such

as premature terminations and hangs in application executions to hard-

ware and network-level errors. These results are further discussed in

Section 2.9.

• Recommendation for notification of errors at application and

system levels: Results from our experiments revealed a lack of re-

porting of network-related errors, resulting in a lack of real-time feed-

back to applications. Extended component and system recovery dura-

9

tions present an opportunity to report information to an application

or system monitoring service, which could improve their response to

network-related failures. Placing additional detectors and/or a notifi-

cation system on the health supervisory system (HSS) could be used to

trigger higher-level recovery mechanisms and transmit low-level fault

information to the system management workstation (SMW).

• Identification of critical errors and conditions: The analyses of

error data obtained from our fault injection campaign identified critical

errors and conditions that can be used to provide real-time feedback to

applications and resource management services. For example, (1) at the

system level, one can detect and send notifications of application hang

conditions, and (2) at the application level, one can send notifications

of critical errors that can lead to corruption or unexpected terminations

of applications.

2.2 Literature Review

This project is motivated by a number of past studies on the reliability

of HPC systems, especially those on Cray platforms and interconnects. In

this section, we outline existing literature and work related to this study.

Table 2.1 summarizes the literature reviewed as part of this study.

The fault models, tools and analysis methodologies used in this work are

based on past fault injection campaigns on Cielo, a Cray XE supercomputer

at Los Alamos (LANL) and Sandia (SNL) National Laboratories [23]. The

work presented in this chapter is part of the Holistic, Measurement-Driven

Resilience (HMDR) project, a collaboration between the University of Illi-

nois at Urbana-Champaign (UIUC); Sandia (SNL), Los Alamos (LANL),

and Lawrence Berkeley (LBNL) National Laboratories; and Cray Inc. Other

fault injection campaigns on HPC systems have injected faults at the memory

[24], [25], processor [25], [26], [27], and application [4], [28] levels. A num-

ber of narrow studies [29], [30] have investigated faults and failures on the

message-passing interface (MPI). The work presented in this chapter takes

a holistic approach to studying faults and failures across various levels of

system components and application runtime frameworks.

10

Table 2.1: Summary of Literature Reviewed for Work Presented in
Chapter 2

Title Comments
[10] LogDiver: A Tool for Mea-

suring Resilience of Extreme-
Scale Systems and Applica-
tions

Presents LogDiver for analyzing
application-level resiliency on HPC
systems.

[17] Addressing Failures in Exas-
cale Computing

Presents a summary of system and
application resilience in HPCs, es-
tablishes taxonomy and discusses er-
ror prevention, detection, and recov-
ery.

[18] The Reliability Wall for Ex-
ascale Supercomputing

Quantifies the effects of reliability on
performance and generalizes a “reli-
ability wall” for exascale systems.

[19] Analysis of Gemini Intercon-
nect Recovery Mechanisms

Characterizes recovery mechanisms
of Gemini interconnects from raw
system logs.

[21] Lessons Learned from the
Analysis of System Failures
at Petascale

Analyzes failures and impact on Blue
Waters. Concludes with software be-
ing the main cause of failures.

[31] Measuring and Understand-
ing Extreme-Scale Applica-
tion Resilience

Characterizes resiliency of HPC ap-
plication runs on Blue Waters by an-
alyzing system- and application-level
logs.

[32] A Survey of Fault Tolerance
Mechanisms and Checkpoint
Restart Implementations for
High Performance Comput-
ing Systems

Reviews the failure rates of HPCs
and surveys fault tolerance ap-
proaches like rollback-recovery tech-
niques.

[33] A Large-Scale Study of Fail-
ures in High-Performance
Computing Systems

Analyzes failure data of two HPC
systems and reports time and rates
of failures and repairs.

11

2.3 Motivation

Application resilience in current HPC systems is primarily achieved through

checkpointing to mitigate software and hardware failures [32]. This brute-

force approach allows applications to revert back to a previous error-free

state upon encountering system-level failures. Application-level checkpoint-

ing is the preferred resilience mechanism due to difficulties with designing and

implementing fault tolerance at the programming framework level (e.g., the

MPI User Level Failure Mitigation approach [34]). However, this checkpoint-

and-restart approach comes with high overheads and performance penalties,

especially as we move to exascale systems with a larger number of compo-

nents. Because of the evolutionary nature of HPC technologies, it is expected

that systems, for the foreseeable future, will continue to have fault mecha-

nisms and behaviors similar to those found in current deployments [35]. Thus,

comparisons of well-explored failure scenarios across multiple generations of

systems should enable identification of persistent high impact fault scenar-

ios. Tailoring instrumentation and resilience techniques to enhance system

and application resilience characteristics in these high impact scenarios can

enhance the efficiency and throughput of both current and future platform

architectures.

System recovery mechanisms that are defined and implemented by HPC

platform vendors are typically not well understood or characterized by their

signatures in log files and platform measurables in terms of durations, im-

pacts, and success rates, particularly for complex fault scenarios. A number

of studies have explored system logs from large-scale HPC systems ([21],

[33], [36]), but connecting failures with their root causes or precursor faults

has proven difficult. The resulting fault-to-failure path models are rarely

complete, and there is a significant amount of associated uncertainty. In

addition, built-in, automatically triggered recovery mechanisms can further

obscure failure paths and may leave no trace in the log files typically used by

system administrators and made available to researchers. The research com-

munity needs a way to verify, and possibly augment, failure models through

testing in a controlled environment. In particular, the community needs tools

to enable documented and repeatable HPC environment configurations, in-

cluding instrumentation and applications placement, and injection of known

faults in a repeatable non-destructive manner on large scale HPC systems.

12

Figure 2.1: Cray XE platform architecture [21]

2.4 Architecture Overview

This section provides an architecture overview of the Cray XE platform us-

ing Gemini interconnection networks. We also document the fault tolerance

mechanisms present in Cray XE systems as well as fault detection and re-

covery processes in later subsections.

2.4.1 System Architecture

Cray XE systems are hierarchically organized into cabinets, chassis and

blades, as shown in Fig. 2.1. The high-speed network (HSN) of a Cray

XE system is laid out as a anisotropic 3-D torus. Each Cray XE6/XK7

blade consists of four compute nodes, two Gemini Application Specific In-

tegrated Circuits (ASICs), each housing two Network Interface Controllers

(NICs) and a 48-port router. NICs are attached to nodes using a Hyper-

Transport 3 host interface. Each Gemini ASIC is connected to the network

by means of 10 torus connections, two each in X+, X–, Z+, Z– and one each

in Y+ and Y–. An ASIC also connects two nodes internally using NICs.

Each connection is composed of four links and each link is composed of three

single-bit bidirectional lanes. Thus, each connection consists of 12 lanes, and

ASICs connect to one another on the network via 24 lanes in the X and Z

dimensions, and 12 lanes in the Y dimension. Further details of the Cray XE

platform architecture may be found in [19].

13

2.4.2 Fault Tolerance and Resiliency

Cray XE systems provide several levels of fault tolerance via software-level

supervisory services, hardware-level error corrections and network-level re-

dundancy.

2.4.2.1 Hardware Supervisor System (HSS) and System Resiliency
Features

The Hardware Supervisor System (HSS) is a collection of hardware compo-

nents responsible for monitoring compute nodes. The HSS consists of:

(i) Blade-level (L0) and cabinet-level (L1) controllers (see Fig. 2.1), which

monitor their housed nodes, reply to heartbeat signal requests and col-

lect data on temperature, voltage, power, network performance coun-

ters, and runtime software exceptions,

(ii) the HSS manager, which collects node health data and executes man-

agement software, and

(iii) the HSS network, which connects blade and cabinet-level controllers to

the HSS manager.

The behavior of the HSS upon detection of failures is presented in Sec-

tion 2.4.3. Further details of the HSS and system resiliency features can

be found in [21].

2.4.2.2 Hardware-Level Error Correction

Network traffic passing through Gemini ASICs is protected by a 16-bit cyclic

redundancy check (CRC). For each network packet, the CRC computation is

performed upon arrival at a Gemini ASIC and between the transition from

NIC to router. Similar to the common transport control protocol (TCP),

Gemini ensures reliable delivery of packets by using the sliding window pro-

tocol. Further, memory regions (except router table buffers) are protected

via single error correction-double error detection (SEC-DED) [37].

14

2.4.2.3 Network-Level Redundancy

To ensure successful delivery of packets, Gemini ASICs connect to one an-

other via two redundant connections in the X and Z dimensions, and one

connection in the Y dimension. Each connection is composed of two redun-

dant links, each with three redundant lanes. These layers of redundancy

allow network communication to continue in degraded mode with just one

active link with active one lane.

2.4.3 Fault Detection and Recovery

In this work, we investigate failures in compute nodes and blades and network

links, ASICs and connections in isolation as well as in combination. Cray

XE systems handle such failures by triggering automatic recovery processes.

Failures, depending on where they occur, are detected by a supervisory block

on the router ASIC, a blade controller (BC) on a blade, or a system man-

agement workstation (SMW). Each BC is locally connected to a supervisory

block on the router ASIC, and remotely connected to the SMW through the

Cray hardware supervisory system (HSS) network. Blade controllers detect

failed links and power loss to mezzanine cards housing Gemini ASICs, and

deliver information about critical failures to the SMW in order to initiate

associated recovery procedures.

Upon detection of a network-related failure, the SMW initiates a system-

wide recovery. Actions taken by the SMW during the recovery process de-

pend on the type of failures described in the following sections.

2.4.3.1 Lane Failure

Each link in a Gemini network consists of three single-bit bidirectional lanes,

allowing it to tolerate up to two lane failures and continue to operate in

degraded mode. For each lane failure, the L0 blade controller logs a failure

event and triggers a lane recovery up to a fixed number of times (defined

by the system administrator). If a lane recovery is unsuccessful, the lane is

marked “permanently failed”. Upon failure of all three lanes, the L0 blade

controller marks the link as inactive and triggers a link failover instead of

individual lane recoveries [19]. The lane recovery process is summarized as a

15

All Lanes
Healthy

1 or 2 lane(s)
down

Three lanes
down

(Link Failed)

Lane Recovery
State

Degraded
Mode

Lane failure
At least 1 active

lane

Lane
Recovered

Lane Failure
No Active
Lanes

Lane failures
No Active
Lanes

Recovery
failure

N
Attempts

Mode
Exchanges

Figure 2.2: State transition diagram for lane recovery procedure, derived
from [19]

state transition diagram in Fig. 2.2.

2.4.3.2 Link Failover

A link failover is triggered by the L0 blade controller when a link becomes

inactive, due to failures of all three lanes. A link failure could be caused by a

more widespread failure in the cabinet, blade or mezzanine. It could also be

caused by corruptions in routing tables or faults in physical cables. Gemini

ASICs continue maintaining connectivity through remaining functional links.

The link failover procedure waits to aggregate failures from other compo-

nents, determines which compute blades are alive, quiesces network traffic

and attempts to find a new route. This entire procedure varies from 30 to

600 seconds, depending on the size of the system. If the link failover process

is successful, the failed link is masked and communication paths in the net-

work are restored. A failure of the link failover process, however, causes the

HSN to fail leading to a system-wide outage [19]. The link failure process is

summarized as a state transition diagram in Fig. 2.3.

2.4.3.3 Warm Swap

The warm swap process allows system administrators to manually add and

remove compute nodes and blades on the system without impacting other

compute elements. The warm swap process initializes or disables links and

16

Start
Monitor
Failures

Cable Failure

Routing Table
Corruption

Other Failures

Link Failure

Cabinet/Blade/
Mezzanine
Failure

ASIC
Disconnected

Mask Failed
Links

Aggregate
failures

Determine
additional
failures

Determine
Active
Blades

Compute
Routes

Quiesce
Network

Unquiesce
Network

Crosscheck
and Install

Link Failover
Success

Link Failover
Failed

Failover
Finished

Failures
detected

Set alerts
and

compute
routes

Crosscheck/
installation
failed

Quiescence
failed

Route
compute
failed

Alive
status

mismatch

Figure 2.3: State transition diagram for link failover procedure, derived
from [19]

connections, computes new routes, quiesces the network, installs computed

routes and unquiesces the network. During network quiescence, traffic is

suspended across all links on the network. This process is summarized as a

state transition diagram in Fig. 2.4 .

In some cases, recovery mechanisms can mask failures without causing

major system interruptions. Analyses of field failure data indicate that: (1)

recovery mechanisms handling complex failure scenarios may not always suc-

ceed, and (2) protracted recoveries that eventually succeed may still have a

significant impact on the system and applications [21].

2.5 Fault Models

In this section, we present the fault models studied in this work. We inves-

tigate failures in compute nodes and blades and network links, ASICs and

connections. We targeted failures of these compute and network components

since they occur frequently enough in production systems to be responsible

for performance degradation [21].

17

Start
Initiate

Warm Swap

Invoke Add
Sequence

Invoke
Remove
Sequence

Subprocess
Success

Determine
Active
Blades

Warm Swap
Failure

Compute
Routes

Quiesce
Network

Unquiesce
Network

Warm Swap
Success

Initialize and
check new
blades

Test
routes

Alive
Status
Mismatch

Initialize or
disable links

No
routes
found

Quiescence
failed

Crosscheck or
Installation Failed

Crosscheck
and Install

Figure 2.4: State transition diagram of warm swap operation, derived from
[19]

2.5.1 Link Fault Model

The link fault model involves the failure of a network link between two Gemini

ASIC routers, which causes packets in flight to be dropped (see Fig. 2.5).

We recreate a link failure by deactivating a connection’s links by modifying

a status flag on either end of the target link. This emulates a scenario where

the link is intentionally deactivated by system administration software, to

prevent use of a physically damaged link or where maintenance is required.

When the status flag on one end of the target link is modified, the Gemini

ASIC on the opposite end is also affected. The link failure is detected by

the Hardware Supervisory System (HSS) which responds by masking the

target link. This causes traffic to be routed on other links on the same

connection. After the automated recovery procedure associated with link

failures completes, the link is marked as disabled on the SMW.

2.5.2 Connection Fault Model

The connection fault model considers a scenario where all network links of

a connection between two Gemini ASICs are deactivated, thereby causing a

hole in the routable topology of the system (see Fig. 2.6). The automated

recovery process responds by rerouting all traffic around the hole, via connec-

tions in other directions. For example, a failure in the Z+ direction may cause

18

Figure 2.5: Link failure fault model

Figure 2.6: Connection failure fault model

all traffic to be routed via the X+, Z+, X- connections after the automated

recovery procedure completes.

2.5.3 Node Fault Model

The node fault model considers a scenario where a compute node fails and

causes an application running on the node to terminate (see Fig. 2.7). We

emulate a node failure by sending a non-maskable interrupt (NMI) to the

CPU on the target node, which causes the CPU to hang and not make forward

progress. A node failure or hang does not cause an automated recovery

procedure to be initiated as routing paths in the network remain unaffected.

However, traffic balance across surrounding nodes could be affected.

19

Figure 2.7: Node failure fault model

2.5.4 Blade Fault Model

The blade fault model considers a scenario where an entire blade consisting

of four compute nodes, two Gemini ASICs and 40 network links is turned

off. We emulate this scenario by turning off the voltage regulator of the

mezzanine in the target blade via an administrative command (see Fig. 2.8).

When the target blade is powered off, an automated recovery process is

initiated to handle unavailable links. We expect the automated recovery

process to route around the failed blade. Similar to the node failure scenario

described in Section 2.5.3, we expect any applications running on the nodes

within the target blade to terminate. Additionally, traffic from other blades

passing through the target blade may be affected.

Figure 2.8: Blade failure fault model

20

Workload Manager Fault Injector

Injection Manager

Application Level
Scheduler

System
Management

Workstation (SMW)

System Logs

Application
Logs

Performance
Logs

System
Administrator

Cray System

Figure 2.9: HPCArrow toolkit and components

2.6 Fault Injection Tool - HPCArrow

A major contribution of this work is the development of HPCArrow,1 a soft-

ware implemented fault-injection (SWIFI) [20] tool and methodology that

can inject one or more faults into user-specified links, connections, nodes,

and blades on an HPC system. Injected faults are usually accompanied by

restore procedures to return the target system to the state prior to fault

injection.

HPCArrow supports execution of arbitrary failure scenarios on network

and compute components. The tool currently supports failure injections on

Cray machines with Gemini and Aries interconnects. HPCArrow consists

of three major modules (see Fig. 2.9) to systematically study the effects of

1HPCArrow was developed by Lavin Devnani (author) and Sharon Tang. HPCArrow is
based on past work by Fei Deng presented in [23] and is part of the Holistic, Measurement-
Driven Resilience (HMDR) project, a collaboration between the University of Illinois at
Urbana-Champaign (UIUC); Sandia (SNL), Los Alamos (LANL), and Lawrence Berkeley
(LBNL) National Laboratories; and Cray Inc.

21

faults and failures on HPC systems and applications:

• A Workload Manager that launches applications of varying scales

at user defined locations (nodes and blades) on the target system and

collects output logs from each application run.

• A Fault Injector that injects user-specified faults into selected net-

work or compute components and manages restoration of impacted

ones.

• An Injection Manager that automates injection experiments without

requiring user intervention between each experiment run.

We expand on the specifics of these modules in Sections 2.6.1–2.6.3.

2.6.1 Workload Manager

The Workload Manager module of HPCArrow is responsible for the exe-

cution of application workloads during fault injection, failure recovery and

restore operations for each experiment run. This module allows users to

define system resources (size, position, number and types of nodes) and ap-

plication configuration (input parameters and output logging) required for

each workload run in an HPCArrow specific format. Specifying system and

application configurations in a custom format allows HPCArrow to execute

workloads on systems with different application-level schedulers. Currently,

the Workload Manager module of HPCArrow supports MOAB/Torque [38]

and Slurm [39] application-level schedulers.

Beyond specifying configurations for individual applications, the Workload

Manager module supports invocations of multiple workloads to run simulta-

neously. Users can select a ‘set’ of applications to launch at the same time,

which allows for studying the impact of fault injections across multiple work-

loads running on different compute components.

2.6.2 Fault Injector

The fault injector module executes commands that inject faults into user-

specified system components and initiate restore processes to re-enable im-

pacted components. For multiple and sequential injections, this module is

22

responsible for timing each fault injection and any subsequent recovery in-

vocations. Faults and restoration procedures are invoked via administrative

commands supplied by Cray. This module (1) translates user-selected tar-

get components into appropriate parameters for injection and recovery com-

mands, (2) executes aforementioned commands with translated parameters,

and (3) collects outputs and errors from executed commands to a centralized

injection experiment log. A summary of commands used by HPCArrow for

targeting Cray Gemini systems is provided in Appendix A.

2.6.3 Injection Manager

The Injection Manager module allows a fault injection campaign (consisting

of one or more experiments) to run without user intervention between each

experiment execution. Users can specify a series of experiments as a fault

injection campaign consisting of applications workloads, target components,

and injection/restore delays. Upon invocation of the campaign, the injection

manager executes the workflow illustrated in Fig. 2.10 for each experiment.

Monitor application
scheduler queue for

termination of currently
running and pending jobs

No

Yes

Queue
Empty?

Execute selected
applications using
Workload Manager

module

Wait for user­specified
injection delay

Injection Delay
Elapsed?

Inject fault using Fault
Injector module

Yes

No

Wait for user­specified
restore delay

Restore Delay
Elapsed?

No

Yes

Collect and timestamp
application, system and

performance logs

Figure 2.10: Injection manager workflow

23

2.7 Analysis Methodology

In this work, we analyze system-generated logs as well as performance and

monitoring data provided by collection and aggregation services running at

various levels of the system. We use results from our analysis to (1) identify

appropriate components to inject upon during our preparation stage, and (2)

identify recovery status and quantify metrics after injection.

2.7.1 Component Selection

The fault injection, automated recovery and manual restore procedures de-

scribed in Section 2.5 vary in execution time on our target system from

approximately 5 minutes for single link failures to approximately 20 minutes

for blade failures. Such an extended turnaround time, combined with limited

availability of our target system, prohibits us from performing a statistically

significant number of injections on randomly selected components.

In our initial experiments, consisting of application sets 1 to 5, we targeted

workloads and components at random from all running applications for each

experiment. In the next phase, our experiments targeted application sets 6 to

8. We selected components with maximum utilization over the course of an

experiment’s lifetime to ensure that our injections are impactful. The selected

components were connections between Gemini routers with the maximum

amount of traffic (in bytes) or nodes and blades connected to Geminis with

maximum traffic.

The Lightweight Distributed Metric System (LDMS) service, described

in [40], logs traffic throughput (in bytes/second) in the X+, X–, Y+, Y–,

Z+ and Z– directions for each Gemini on the target system. To identify

components with maximum utilization over an experiment run, we first pro-

file an application without injecting faults. A smoothed time series plot of

traffic data obtained from the LDMS service allows us to visually identify

connections with high throughput and select suitable components for fault

injections.

As an example, we demonstrate the traffic throughput of an execution of

the Kripke Charm++ application running on 8 nodes. Figure 2.11 shows

smoothened traffic plots over the duration of the workload run. Applying

our selection methodology, we would inject on links or connections of either

24

c0­0c2s2g1 c0­0c2s1g1

c0­0c2s2g0c0­0c2s1g0

0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750

0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750

Tr
af
fic

(M
B
/s
)

10

20

30

40

50

0

10

20

30

40

50

0

Time (s)

Figure 2.11: Component selection example for Kripke Charm++
applications. Each plot represents network traffic for a given Gemini and
connection over application execution.

Gemini c0-0c2s1g1 in the Z+ direction or Gemini c0-0c2s2g0 in the Z–

direction, as these connections handle the maximum amount of traffic.

2.7.2 Event Analysis

To identify the occurrence and duration of injection, recovery, and restore

events, we collect and analyze the system log files provided in Table 2.2.

These system-level log files are generated by Cray logging daemons running

at multiple levels of the system, from the SMW and component controllers to

each individual compute node. We use LogDiver [10], a tool for the analysis

of system and application-level resiliency in extreme-scale environments to

identify events of interest in the collected system logs. In this study, we use

LogDiver to (1) extract network-recovery operations, determine the comple-

tion status of recoveries, and diagnose the cause of recovery failures, and (2)

identify application termination status and reasons behind abnormal termi-

nations (crashes and hangs). Prior to execution, LogDiver is configured with

regular expressions (regex) that match with events of interest in collected

system logs. These regular expressions are constructed from information

available in Cray documentation and from manual inspection of events in

collected logs [41].

25

Table 2.2: System Logs Analyzed in this Study, Containing Log Names and
Content Descriptions

Log Name Content of Log File
smwmessages System Management Workstation (SMW) hardware and environmental history.

xtdiscover
Output from xtdiscover command, used to discover hardware components
and respond to changing hardware configurations.

events Generic system-level events, heartbeats, sequence identifiers.
commands Start and end timestamps of commands executed on SMW.
netwatch Timestamps of when network links become inactive.

nlrd

Timestamps and details of hardware-level errors, network-level failures,
automated recoveries and warm swaps.
All phases of automatic failure recoveries and warm swaps are logged.

2.7.3 Network Performance Counters

On Cray systems, the Lightweight Distributed Metric Service (LDMS) is

responsible for logging network performance for each Gemini connection [40].

In this study, LDMS is configured to sample traffic data (in bytes/second)

at 1-second intervals. However, LDMS logging is susceptible to node and

network failures. Node failures cause data collected by on-node daemons to

be lost if memory is overwritten or lost. Failures in the HSN (e.g. during

a network quiescence) also cause data points to be dropped. We overcome

potential data loss by exponentially smoothing traffic samples to one minute

moving averages, as described in Section 2.7.1.

2.7.4 Application Data

To analyze the impact of failures and recoveries on applications, we redi-

rect information reported on stdout and stderr to application logs for each

workload run. Applications report timestamps, computation steps, exit

reasons, and critical errors to varying degrees in their logs. Additionally,

the application-level scheduler reports global network quiescence and throt-

tling events when automatic failure recoveries or manual warm swap proce-

dures are invoked. Analysis of application-level output allows us to correlate

system-level failures and recoveries to events that occur during workload

runs, and identify causes of abnormal application behavior (e.g. premature

terminations and hangs).

26

2.8 Experiment Setup

The preceding sections of this chapter describe our general fault injection

approach and methodology, applicable to any Cray XE system. This section

presents details of a fault injection campaign conducted on the Cray XE Blue

Waters JYC testbed at the National Center for Supercomputing Applications

(NCSA). Our injection campaign consisted of 84 unique experiments, span-

ning 5 months and requiring 4,656 node hours on the target system. Out

of the 84 experiments, 15 consisted of baseline runs with no injections and

the remaining 69 were fault injection ones. The baseline results were later

used to compare system and application behavior to results obtained from

fault injection experiments. Over the course of our campaign, 9 unique ap-

plications were executed a total of 462 times to provide realistic workload

scenarios as we injected faults into system components. In total, 69 faults

were injected into link, connection, node and blade system components.

2.8.1 Target System Description

Our experimental campaign targeted JYC, a 96-node Cray XE/XK testbed

at the National Center for Supercomputing Applications (NCSA). JYC is a

1-cabinet, 3 chassis machine consisting of 56 XE nodes, 28 XK nodes and 14

service nodes.

The 56 XE compute nodes are spread across 14 Cray XE6 blades, with up

to four nodes being housed per blade. Each XE node consists of 2 × 16-core

AMD Opteron 6276 processes @ 2.3 GHz. An Opteron processor is composed

of 8 dual-core AMD Bulldozer modules, with each module having a 8×64 KB

L1 instruction cache, 16×16 KB L1 data cache. The processor also includes

8×2 MB L2 caches (shared between cores of each Bulldozer module), and a

2×8 MB L3 cache (shared among all cores). Memory-wise, 64 GB of DDR3

RAM (8 × 8GB DIMMs) are installed for each compute node. The installed

memory modules are protected with x8 Chipkill code that uses eighteen 8-bit

symbols to make a 144-bit ECC word (128 data bits + 16 check bits) [37],

[42]. The L1 data, L2 and L3 data caches are also protected with ECC, while

other caches are protected with parity [21].

The 28 XK nodes are spread across 7 Cray XK7 blades with 4 nodes

housed on each blade. On each node, one socket is occupied by a 16-core

27

8195

94

65

64

93

92

67

66

91

90

69

68

89

88

71

70

87

86

73

72

85

84

75

74

83

82

77

76

80

79

78

33

32

63

62

35

34

61

60

37

36

59

58

39

38

57

56

41

40

55

54

43

42

53

52

45

44

51

50

47

46

49

48

31

30

1

0

29

28

3

2

27

26

5

4

25

24

7

6

23

22

9

8

21

20

11

10

19

18

13

12

17

16

15

14

Service
Node

XE Node

XK Node

C
ab
in
et

C
ha
ss
is

Blade

Figure 2.12: JYC system overview with node types and identifiers.
A detailed representation of the system is provided in Appendix B.

Opteron 6276 processor described above. The second socket is occupied by a

NVIDIA K20X accelerator, with 2,880 single-precision CUDA cores, 64 KB

of L1 cache, 1,536 KB of dedicated L2 cache, and 6 GB of ECC protected

DDR5 RAM. Since only one socket is occupied by a general purpose CPU,

the amount of memory available to CPU tasks is halved to 32 GB (4 × 8 GB

DIMMs) when compared to XE nodes [21].

The remaining fourteen nodes are reserved for servicing the system. Twelve

out of fourteen nodes are spread across three Cray XIO blades with four nodes

per blade. These nodes consist 6-core AMD Opteron 2435 Istanbul processors

@ 2.6 GHz and x4 Chipkill 16 GB of DDR2 memory (4 × 4 GB DIMMs).

The other two service nodes contain AMD Opteron 6276 processors and are

housed alongside XE compute nodes in Cray XE6 blades [21].

28

A high-level system map of JYC is provided in Fig. 2.12. We expand

on this system map by providing node identifiers and component names in

Appendix B.

2.8.2 Application Workloads

To generate sufficient network and compute activity during our experiments,

we executed several HPC benchmark applications at various scales and ob-

served their behavior before, during and after our fault injections and re-

covery invocations. The benchmark applications were chosen from different

programming frameworks and represent characteristics of real-world HPC

workloads. Each workload was tuned to run for approximately 30 minutes,

to allow for injection, automatic recovery and manual restoration operations

to execute with sufficient time.

One of the many goals of this project is to assess the susceptibility of HPC

runtime frameworks to faults, failures and errors. To this end, we select

workloads from the following frameworks:

1. Message Passing Interface (MPI) Message Passing Interface is

a communication protocol that supports point-to-point and collective

communication between compute nodes in a distributed computing sys-

tem. The MPI layer handles synchronization and communication be-

tween processes mapped onto compute nodes in a language-independent

way, with language-specific bindings. MPI remains the dominant model

used in HPCs today [43]. We specifically look at Cray, Intel and PGI

implementations of the MPI standard in our workloads.

2. Charm++

Charm++ is a C++-based parallel programming system that imple-

ments a message-driven migratable objects programming model, sup-

ported by an adaptive runtime system. Charm++ is based on a message-

driven migratable objects programming model, and consists of a C++-

based parallel notation, an adaptive runtime system that automates

resource management, a collection of debugging and performance anal-

ysis tools, and an associated family of higher level languages [44]. We

consider applications that utilize the native uGNI communication li-

29

Table 2.3: Application Descriptions and Characteristics

Ref. Application Discipline Programming Model Characteristics

[46]
Anelastic Wave
Propagation (AWP-ODC)

Seismic MPI (PGI)
Structured Grid,
Sparse Matrix

[47]
MIMD Lattice
Computation (MILC)

Particle
Physics

MPI (Intel)
Structured Grid,
Dense Matrix

[48]
Pseudo-Spectral Direct
Numerical Simulations (PSDNS)

Fluid
Dynamics

MPI (Cray)
Structured Grid,
FFT

[49] NAMD
Molecular
Dynamics

Charm++
(SMP over uGNI)

N-body,
FFT

[50]
Adaptive Mesh
Refinement (AMR)

Numerical
Analysis

Charm++
(SMP, HugePages over uGNI)

-

[51] LeanMD
Molecular
Dynamics

Charm++
(HugePages over uGNI)

N-body,
FFT

[52] Kripke
Particle
Physics

Charm++
(HugePages over uGNI)

Structured Grid,
Dense Matrix

[53]
Unified Parallel C
Fourier Transform (UPC-FT)

Numerical
Analysis

PGAS Unified Parallel C FFT

brary available on Cray XE systems, with shared-memory optimiza-

tions using pthreads and Cray huge pages modules.

3. Partitioned Global Address Space (PGAS)

The PGAS programming model shares data between compute elements

by creating a global address space for shared memory. PGAS assumes a

global memory address space that is logically partitioned and a portion

of it is local to each compute element [45]. We specifically look at

applications using the Unified Parallel C (UPC) programming model

in this work.

The application benchmarks selected in this study are highly parallel work-

loads and span several scientific disciplines, from seismic simulations to molec-

ular dynamics. We summarize applications and their characteristics in Ta-

ble 2.3.

In order to study the impact of injected faults and recoveries across the

entire system, we simultaneously launched a set of workloads for each exper-

iment. Launching workloads across the entire system allows us to identify

failures propagating or cascading through the system and impacting appli-

cations running further away from the injected component. Applications

were chosen such that each set had a mix of runtime frameworks, application

sizes, and overall system utilization. In our injection campaign, the HPCAr-

row workload generator was configured with eight unique application sets.

Application sets and their runtime parameters are defined in Appendix C.

30

0
Time F END

Time < 0

Setup Experiment
Select Application Set
Select Injection Type &
Component

Fault
Injected

Automatic
Recovery
Triggered

F
+
 R

Impacted

Application

Crashes or

Hangs

Manual
Restoration
Invoked

Applications
Terminate
Normally

Logs collected
Time > END

Analysis
Analyze collected logs
Generate LogDiver
reports

M
R

Time = 0

Application launch

User Initiated Events

System Events

Application Events

Figure 2.13: Fault injection timeline demonstrating user, system and
application events

2.8.3 Experiment Timeline

Experiments in our fault injection campaign consist of specifying an applica-

tion workload set, an injection type and a target component. The timeline

presented in Fig. 2.13 summarizes an example experiment run. Prior to ex-

ecution, a user configures HPCArrow with (1) the selected application set

using the Workload Manager module, and (2) the injection type, component

and delay using the Fault Injector module. At time T = 0, the selected ap-

plication set is executed by submitting workload jobs to the application-level

scheduler. The Fault Injector module waits until F seconds have elapsed

before injecting a fault into the selected component. If the injected fault

causes a component to fail, an automatic recovery procedure associated with

the component is invoked by the SMW after R seconds have elapsed. This

procedure computes new routes, quiesces the network, installs new routes,

masks failures, and finally unquiesces the network. Depending on the appli-

cation impacted, a job may crash or hang due to operations performed during

the recovery phase. At time T = MR, the manual restore procedure is in-

voked by the Fault Injector module, which re-enables the failed component

and warm-swaps it back into service. During the warm swap, the network

is once again quiesced, new routes installed and unquiesced. At the end of

our experiment (when applications terminate naturally), system-, network-

and application-level logs are collected to be analyzed offline. LogDiver is

used to generate a report containing timestamps and frequency of observed

events. In this work, we select a constant value of F = 100 seconds, which

31

allows workloads to complete their initial setup and enter a steady state of

computation. The manual restoration delay (MR) is dependent on the com-

ponent type, but is configured to invoke 200 seconds after automatic recovery

is completed.

2.9 Results

This section provides a comprehensive overview of the results obtained from

our fault injection campaign. For each experiment, we apply our analysis

methodology described in Section 2.7 to characterize failures and recoveries

at the system level and analyze impact at the application level. In Sec-

tion 2.9.1, we provide a description of common hardware errors observed in

system logs collected from our experiments. In Section 2.9.2, we describe

errors reported by applications in response to injected faults and identify po-

tential causes for these errors. We summarize our fault injection campaign

in Section 2.9.3 by classifying each experiment by runtime framework and

application. Additionally, we provide timelines demonstrating network and

system activity of selected experiments for network and compute related fail-

ures. Finally, we conclude with a discussion of our observations and present

resiliency recommendations.

2.9.1 Hardware Error Descriptions

During fault injection and recovery, hardware error codes are logged by the

xtnlrd daemon running on the System Management Workstation (SMW).

The resulting nlrd system log contains a component-based history of hard-

ware errors in chronological order. We configure LogDiver with hardware

error codes to identify events of interest in our analysis. We summarize

the description of hardware errors identified in our fault injection campaign

in Table 2.4. While these errors are not critical at the system level (i.e.,

they do not cause network deadlocks or system crashes), they contextualize

application-level events observed during workload executions.

32

Table 2.4: Hardware Errors Observed in Fault Injection Analysis

Error Description
SSID Response Request-
Timeout

Logged due to a failure in the HSN, due to a
failed link, connection, or node. Also logged
due to severe network congestion if conges-
tion protection mechanisms fail.

SSID Response Protocol Logged during network re-routing phase of
quiescence. Also logged when unregistered
memory (e.g. memory of terminated appli-
cation) is used for network transfers.

SSID Detected Misrouted
Packet

Logged during blade warm swap proce-
dures. Routing algorithm deliberately mis-
routes packets destined for a blade being
warm-swapped.

ORB RAM Scrubbed Up-
per/Lower Entry

Logged when a network request times out
and is removed from the output request
buffer (ORB). Indicates a problem with the
Gemini HSN. Transient error which indicates
a network deadlock if continuously gener-
ated.

BTE Descriptor Invalid Logged when a block transfer engine descrip-
tor (BTE) is invalid. This error is seen when
a node is being rebooted and the Gemini is
targeted before boot completion.

RMT Request for Invalid
Descriptor

Logged when a receive message table (RMT)
request descriptor is invalid.

33

2.9.2 Application Error Descriptions

In our fault injection experiments, the HPCArrow Workload Manager is

configured to redirect application output and errors to application logs for

analysis offline. The verbosity of these logs varies depending on the appli-

cation and runtime framework used. In our analysis, we observed several

critical errors that prevented an application from making forward progress.

We summarize the observed errors in this section.

• Assertion msg nbytes > 0 failed: This message is logged by the

Charm++ runtime framework upon encountering a 0-byte sized fast

memory access (FMA) short message (SMSG) in the uGNI layer. The

uGNI layer handles low-level communication between network ASICs

and user-space software [54]. Such an error indicates that a network

packet was dropped in-flight to its destination Gemini due to a failure

in the communication path. In our experiments, we encounter this

error upon link and connection injections.

• DMAPP RC TRANSACTION ERROR: DMAPP is a communication library

which supports a logically shared, distributed memory programming

model. DMAPP provides remote memory access (RMA) between pro-

cesses within a job in a one-sided manner [54].

The DMAPP RC TRANSACTION ERROR indicates that a network transac-

tion completed with an error state, either a non-recoverable transaction

error or a transient error such as network error, uncorrectable memory

error or resource shortage [54]. The DMAPP library is used by the Uni-

fied Parallel C (UPC) runtime framework built on the PGAS model.

In our experiments, we encounter this error upon link and connection

injections.

• RCA ec node failed event: This error is generated when a node or

blade fails with a hardware error such as a memory check error (MCE).

Typically, the node is automatically marked down by the node health

checker [55]. In our experiments, this error was observed when faults

were injected into compute nodes and blades.

• ioctl(GNI IOC POST RDMA) returned error: This message is logged

by the Charm++ runtime framework upon encountering an invalid

34

argument to a remote direct memory access (RDMA) transaction. This

error leads to application crashes and hangs. In our experiments, we

encounter this error upon link and connection injections.

Besides critical errors preventing applications from making forward progress,

we also observed network related messages logged to application outputs:

• Network quiesced : This message is logged when a network quiescence is

in progress, in response to a link, connection or blade being taken out

of service or added back in (i.e. during a warm swap). We observe this

message logged in response to link, connection and blade injections.

• Network throttled : This message is logged when network congestion

occurs and the network is throttled to prevent further congestion. We

observe this condition when a link, connection or blade is taken out of

service or added back in (i.e., during a warm swap).

2.9.3 Summary of Fault Injection Experiments

Our injection campaign consists of 84 fault injection and baseline experi-

ments. Over the course of our campaign, 9 unique applications were ex-

ecuted a total of 462 times to provide realistic workload scenarios as we

injected faults into system components. In total, 69 faults were injected into

link, connection, node and blade system components. Table 2.5 summarizes

fault injection experiments classified by runtime frameworks, applications,

fault models and their outcome scenarios. Of particular interest is the PS-

DNS application, which terminated prematurely when not targeted. This

observation is discussed further in Section 2.9.5. Additionally, it is worth

noting that we expect applications to terminate prematurely upon node and

blade failures. Thus, the node and blade failure results reported are not out

of the ordinary.

We also summarize events observed during each experiment at the sys-

tem, network and application levels in a tabular format. As an example, we

provide Table 2.6 generated by LogDiver that summarizes events observed

during a link injection experiment. The numbers of occurrences of system

events and errors are reported to identify any missing recovery phases during

our experiments.

35

Table 2.5: Summary of Fault Injection Campaign by Target Application,
Fault Model and Outcome Scenarios. Descriptions of Runtime Frameworks
and Fault Models may be found in Sections 2.8 and 2.5 respectively.

Application
Workload

Size(s)
Scenarios

Completed
Successfully

Crash Hang Total

MPI
PSDNS 8, 32 3 Link 0 0 3
MILC 16 2 Link 1 Link 0 3

AWP-ODC 4, 32
3 Link

3 Connection
3 Node/Blade 0 9

Charm++
(SMP)

NAMD 16 0 0 3 Link 3

AMR 4, 32, 64 0
4 Link

4 Connection
5 Node/Blade

0 13

Charm++
(HugePages)

Kripke 4, 8 5 Link 1 Node/Blade 1 Link 7

LeanMD 8, 16 1 Link
2 Connection
3 Node/Blade

6 Link 12

AMR 2, 4
3 Link

2 Connection
3 Link

2 Node/Blade
1 Link 11

PGAS UPC-FT 8, 32 1 Connection
3 Link

2 Connection
2 Node/Blade

0 8

Total 23 35 11 69

Table 2.6: Example Report Containing Event Counts for a Link Injection
Experiment

Entry Value

Experiment ID 3

Experiment Type Link

Target Component c0-0c2s7g0l52

Application Set 5

Impacted Application AMR SMP (64 XE/XK)

Application Status Crash

Link Failed 4

Link Recovery Successful 4

SSID Request Timeout 635

SSID Response Protocol 62

Set Throttle Mask 4

Network Quiesced 2

Network Unquiesced 2

Network Throttled 4

Network Unthrottled 4

Warm Swap Successful 6

Link Auto Recovery Duration 37 seconds

Warm Swap Duration 38 seconds

36

2.9.4 Failure Scenarios

In our injection campaign, we study faults and recoveries targeting links,

connections, nodes and blades. We discuss details of experiments with inter-

esting outcomes for each fault model in the following sections.

2.9.4.1 Single Link and Single Connection Failures

For the single link failure and single connection failure fault models, we ob-

served three scenarios for application resilience: (1) impacted applications

making forward progress and terminating naturally despite link or connection

failures, (2) applications utilizing impacted links or connections terminating

prematurely, and (3) applications utilizing impacted links or connections re-

sulting in hangs (i.e. not making forward progress).

In this section, we discuss system- and network-level events that occur dur-

ing a connection failure experiment where an application utilizing the failed

connection terminates prematurely. While we do not discuss the remaining

scenarios, we apply the same analysis methodology to other experiments.

Figure 2.14 demonstrates the timeline of a connection failure experiment,

where an impacted application crashes upon a connection becoming unavail-

able. In this experiment, application set 4 was executed (see Appendix C)

and connection c0-0c1s1g0 in the Y+ direction was targeted. This experi-

ment specifically impacts the UPC-FT application running on 8 nodes, as this

workload utilizes the targeted connection during injection and recovery.

In the top plot of Fig. 2.14, three traffic curves are presented – one for the

connection that a failure was injected into, a second for remaining connec-

tions utilized by the impacted application, and third for all other connections

on the system. From time T = 0 to T = 335, we observe consistent traffic

flow on all connections. At time T = 333 seconds, a connection failure is

injected causing connection c0-0c1s1g0 to fail in the Y+ direction. Next, at

time T = 335 seconds, the automatic recovery process is triggered. This re-

covery process requires a route recalculation and network quiescence, which

temporarily suspends network traffic flow on all connections until successful

completion. At time T = 372 seconds, the automatic recovery completes by

successfully masking the impacted connection (i.e. removing the connection

from service). After completion of the automatic recovery process, traffic

37

0 100 200 700600500400300

Time (seconds)

C
um
ul
at
iv
e

Tr
af
fic
 (
TB
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
=
 3
33
 s

Connection
Failure
Injected

Autorecovery
completed

Warm Swap
Invoked

T
=
 3
72
 s

T
=
 5
66
 s

N
um
be
r
of

Er
ro
rs

0 100 200 700600500400300
Time (seconds)

20

40

60

80

100

Figure 2.14: Single connection failure with impacted application
terminating prematurely. Traffic plots (top), fault injection timeline
(middle), and hardware errors (bottom) are displayed.

38

begins flowing only on connections utilized by non-impacted applications.

Traffic does not flow on connections being utilized by the impacted appli-

cation, indicating a network- or application-level error. At time T = 566,

a manual connection restoration is invoked by the fault injector module of

HPCArrow. This manual restoration process triggers a warm swap, which

initializes all links on the masked connection, recalculates new routes and

quiesces the network. Once again, the network quiescence suspends traffic

until the warm swap procedure is successful. Upon a successful warm swap,

traffic begins flowing on connections utilized by non-impacted applications.

Analysis of hardware error logs reveals 86 SSID Request Timeouts and

11 SSID Response Protocol errors, indicating dropped network packets. In

the bottom plot of Fig. 2.14, we observe a sudden spike of errors when the

connection failure is injected at T = 333 seconds. Analysis of application

output logs reveals network quiescence due to automatic connection recovery

and manual warm swap procedures. During network quiescence, additional

SSID Response Protocol errors occur due to the impacted application not

being able to send packets between its assigned compute nodes. Addition-

ally, the UPC-FT workload reports a DMAPP RC TRANSACTION ERROR and ter-

minates upon failure injection. We discuss the cause behind this error in

Section 2.9.5.3.

2.9.4.2 Node and Blade Failures

For the node failure and blade failure fault models, we observed applications

placed on impacted nodes and blades terminating prematurely. This behav-

ior is expected as applications cannot make forward progress upon failure

of a compute component. In the case of node failures, no automatic recov-

ery process is invoked as the HSN is unaffected. This allows non-impacted

applications to continue without disruptions in traffic flow. Upon a blade

failure, however, two Gemini ASICs housed on the impacted blade are taken

out of service. This causes failures in links connected to these Geminis as

well as links connected to other ends of physical links on the failed blade.

An automatic recovery process is triggered to mask the impacted blade and

links, which causes the entire network to be quiesced, new routes installed

and network finally unquiesced. Meanwhile, traffic on other connections is

paused until the automatic recovery process completes successfully. In our

39

experiments on the JYC testbed, we observed blade recoveries executing

for approximately 30 seconds. However, we expect this number to increase

significantly for larger systems, as demonstrated in a similar fault injection

campaign on a larger Cray XE system at LANL [23].

We present an example blade failure experiment in Fig. 2.15 to highlight

traffic patterns and system-level events during injection. In this experiment,

we target blade c0-0c2s5 while running application set 1 (see Appendix C).

This experiment specifically impacts the AWP-ODC application running on 32

nodes, as this workload was placed on the targeted blade during injection

and recovery. The impacted application terminates prematurely upon blade

failure and automatic recovery.

In Fig. 2.15, we observe a series of cascading link and connection failures

due to a blade being taken out of service. Two Gemini ASICs (c0-0c2s5g0

and c0-0c2s5g1) housed on the targeted blade are taken offline, causing

outgoing links to fail. Link failures cascade to links connected to other ends

of physical links on the failed blade. In total, 80 link failures across eight

Geminis and four blades are observed.

In the top plot of Fig. 2.15, three traffic curves are presented – one for

the blade that a failure was injected into, a second for remaining blades

utilized by the impacted application, and third for all other blades on the

system. From time T = 0 to T = 355, we observe consistent traffic flow

through all blades. At time T = 341 seconds, a blade failure is injected caus-

ing Geminis c0-0c2s5g0 and c0-0c2s5g1 to fail in all directions. Next, at

time T = 355 seconds, the automatic recovery process is triggered. This re-

covery process requires a route recalculation and network quiescence, which

temporarily suspends network traffic flow on all connections until successful

completion. At time T = 408 seconds, the automatic recovery completes by

successfully masking the impacted blade (i.e. removing it from service). After

completion of the automatic recovery process, traffic begins flowing only on

blades utilized by non-impacted applications. Traffic does not flow on con-

nections being utilized by the impacted application, indicating a network-

or application-level error. At time T = 865, a manual blade restoration is

invoked by the fault injector module of HPCArrow. This manual restora-

tion process triggers a warm swap, which initializes all links on the masked

blade, recalculates new routes and quiesces the network. Once again, the

network quiescence suspends traffic until the warm swap procedure is suc-

40

0 200 800600400

Time (seconds)

C
um
ul
at
iv
e

Tr
af
fic

(G
B
)

0

200

1000

T
=
 3
41
 s

Blade
Failure
Injected

Autorecovery
completed

Warm Swap
Invoked

T
=
 4
08
 s

T
=
 8
65
 s

N
um
be
r
of

Er
ro
rs

0

200

400

600

800

400

600

800

1000

0 200 800600400

Time (seconds)

1000

C
as
ca
di
ng

Li
nk

Fa
ilu
re
s

Figure 2.15: Blade failure with impacted application terminating
prematurely. Traffic plots (top), fault injection timeline (middle), and
hardware errors (bottom) are displayed.

41

cessful. Upon a successful warm swap, traffic begins flowing only on blades

utilized by non-impacted applications.

Analysis of hardware error logs reveals 754 SSID Request Timeouts, 87

SSID Response Protocol, and 58 SSID Detected Misrouted Packet er-

rors, indicating dropped and misrouted network packets. In the bottom plot

of Fig. 2.15, we observe a sudden spike of errors when the blade failure is

injected at T = 341 seconds. The number of errors continuously increases

until the impacted blade and network links are masked out of service by

the automatic recovery procedure. In output logs of the AWP-ODC, an RCA

ec node failed event is reported due to the workload not being able to

communicate with compute nodes on the failed blade, causing it to termi-

nate immediately. Applications not impacted by the blade failure continue

to execute and terminate naturally at the end of their runs.

2.9.5 Application-Level Resilience

The results obtained from our fault injection campaign have helped in provid-

ing a better understanding of failure scenarios previously observed in [21].

While all system and network recovery procedures completed successfully

within expected time windows, in some cases application workloads were

severely affected due to crashes and hangs. We summarize our observations

for the MPI, Charm++ and PGAS runtime frameworks in this section.

2.9.5.1 Message Passing Interface (MPI)

For MPI applications, we observed premature terminations for the MILC

and PSDNS applications. Upon link and connection failures, MILC re-

ported a number of SOURCE SSID SRSP:REQUEST TIMEOUT messages due to

a GNI RC TRANSACTION ERROR. This message indicates that network packets

were dropped or there was an error in processing after data transaction [54],

which prevented the application from making forward progress.

The PSDNS application terminated prematurely when we targeted links

on chassis where the job was not placed. In the output logs of PSDNS,

we observed UNRECOVERABLE library errors, where the program indicated

that it was unable to request more memory space. It is unclear why this

error is generated in response to a failure in a link not being utilized by

42

PSDNS. This behavior is reproducible, as we observed it in multiple runs of

the same experiment. At the same time, we did not observe any premature

terminations in baseline runs of the PSDNS application.

2.9.5.2 Charm++

For Charm++ applications, we observed jobs terminating prematurely and

hanging due to link and connection failures. The LeanMD application ter-

minated prematurely when ioctl(GNI IOC POST RDMA) returned an error

due to encountering an invalid argument to a remote direct memory access

(RDMA) transaction. In some experiments, we observed the LeanMD appli-

cation not making forward progress upon link and connection failures. The

ioctl(GNI IOC POST RDMA) message was continuously logged until the job

was terminated by the application-level scheduler when its maximum allowed

time (walltime) had elapsed.

The AMR application terminated prematurely upon a link or connec-

tion failure, reporting a Assertion msg nbytes > 0 failed error due to an

SMSG send failure. This error indicates that a network packet was dropped

in-flight to its destination Gemini caused by a failure in the communication

path.

The Kripke application did not make forward progress upon injection of a

link or connection failure. No error message was reported in its output logs.

The application-level scheduler continued reporting the job as “running”,

with no indication to the user that forward progress was not being made.

The job was eventually terminated by the application-level scheduler when

its maximum allowed time (walltime) had elapsed.

2.9.5.3 Partitioned Global Address Space (PGAS)

Upon a link or connection failure, the UPC-FT application reported a

DMAPP RC TRANSACTION ERROR and terminated prematurely. This message

indicates that network packets were dropped or there was an error in pro-

cessing after data transaction [54]. This scenario is expected as PGAS ap-

plications are known to be vulnerable to network failures and recoveries [56].

PGAS applications rely on ordered delivery capabilities and atomic memory

43

operations, and any disruption to packet delivery and ordering will not allow

the application to make forward progress.

2.9.5.4 Discussion

From our fault injection analysis, we identified that application behavior

in the face of network-level failures is based on the runtime framework used.

Across all frameworks, we observe applications terminating prematurely when

link or connection failures are injected. Moreover, applications utilizing the

Charm++ runtime framework appear to hang upon network-level failures,

with no indication to application-level schedulers. Such a lack of notifications

to services running throughout the system stack leads to waste of system re-

sources and reduces the overall efficiency of HPC systems.

Premature terminations of applications across all frameworks are caused

due to drops of incoming packets, causing applications to immediately throw

errors upon failed assertions. This scenario can be avoided by a network-level

broadcast mechanism that causes application threads to pause computation

upon network failures. An impacted thread could broadcast an emergency

stop/pause message to other threads in the current application, causing them

to temporarily halt computation until network connectivity is restored. This

will allow applications to recover from failures immediately, without having

to revert to previous checkpoints and lose application state. Additionally,

application designers could implement a packet retransmission mechanism.

Gemini ASICs already handle in-flight packets with a sliding window pro-

tocol. Identifying missing or dropped packets in the sliding window could

allow applications to re-request packets from their source, allowing them to

make forward progress when failures are masked and network connectivity is

restored.

At the network level, a two-phase commit protocol could be implemented

to handle lost transactions [56]. With the two-phase commit protocol, nodes

can identify if network transactions have completed before attempting to

make forward progress. At the system level, instrumentation and detection

mechanisms could be implemented to detect processors not making forward

progress. Such detection could be used to notify application-level schedulers

of job hangs, which would allow affected workloads to be terminated early

and free up system resources.

44

2.10 Future Work - Cray XC Platform and Aries

Interconnects

The next phase of this project is to execute a similar fault injection campaign

on Voltrino and Mutrino, two Cray XC machines utilizing Aries interconnects

at Sandia National Laboratories. However, due to differences between Gem-

ini and Aries interconnects, our injection tools and analysis methodologies

would require modifications. While system and network architectures may

differ, our general approach to validating network failures and recovery op-

erations on HPC systems remains applicable to newer generations of Cray

platforms.

2.11 Conclusion

In this chapter, we presented a fault injection campaign on the Blue Waters

JYC testbed at NCSA, with a newly developed software fault injection tool

to induce failures on link, connection, node and blade components on the

Cray XE platform. Analysis of results from our fault injection experiments

reveals a lack of fault tolerance at the application layer for MPI, Charm++

and PGAS runtime frameworks. We also observe that the assumption of

a lossless Gemini network does not hold under failures. Additionally, we

note a lack of notification reporting to applications and application-level

schedulers in the event of system and network failures. In order to improve

the fault-tolerance of their applications and make forward progress in the

face of system- and network-level failures, application designers must take

into account software-level resiliency mechanisms and not rely on hardware

and network guarantees.

45

CHAPTER 3

FAULT INJECTIONS ON SMART POWER
GRID NETWORK ENVIRONMENTS

The programmability of software-defined systems, like smart electric power

grids, has allowed for the widespread adoption of software-defined network-

ing (SDN) in industrial control networks. However, the increased complex-

ity of such networks gives rise to previously unconsidered resiliency issues.

This chapter investigates the impact of faults and attacks on SDN infras-

tructures when deployed in mission-critical environments and proposes an

application- and data plane-based solution to pro-actively monitor system

state and enforce user defined policies. We evaluate our fault models on

a smart power grid simulation running Raincoat, an SDN application that

reroutes and spoofs network traffic to thwart attackers. We show that under

certain faults, (1) applications orchestrating the network become ineffective

and (2) periodically monitoring the state of the network can identify faults

or attacks before they manifest as failures. The results obtained from this

work can aid in enhancing the resiliency of future SDN applications.

3.1 Introduction

The communication network is a fundamental component of a smart power

grid infrastructure, connecting grid devices that span a wide geographic area.

Traditionally, grid communication networks have used the standard Inter-

net Protocol (IP) networking paradigm, but with the increasing complexity

and need for more efficient utilization and distribution of power in today’s

world, this traditional, non-adaptive network model cannot provide the de-

sired programmability and reconfigurability. This need for more dynamic

and reactive network functionality has led to considerations of utilizing the

software-defined networking (SDN) paradigm in place of the traditional IP

stack [57].

46

Software-defined networking is an architectural approach to manipulating

computer networks, enabling direct programmability and dynamic reconfig-

urability of network control and resources. The key to the programmability

of SDN networks is the decoupling of the packet routing process from the

forwarding functions of network packets, which are typically performed to-

gether on a single network component. This decoupling ultimately allows

network programmers to design and deploy network control algorithms more

easily and not be constrained by proprietary implementations of network

switches and controllers. While still a nascent approach, SDN has seen com-

mercial deployment in more general network environments. For example, in

the early 2010s, Google deployed B4, a private SDN-based wide area network

to globally connect its data centers and efficiently improve utilization [58].

While SDN provides the agility and reconfigurability demanded by modern

smart grid technologies, system reliability is also a key consideration and

challenge. Critical infrastructures like power grids must be able to maintain

their most crucial services in the face of natural failures and malicious attacks

and be able to recover quickly. Because of the physical separation between

control decision making and forwarding operations, SDN network intelligence

is centralized in a single network component, thus posing a single point of

failure. In order for the power grid industry to consider adopting SDN into

its technologies, understanding system resilience and risks that come with

applying SDN to smart grids is crucial and necessary.

This chapter investigates the impact of faults and attacks on the data ac-

quisition network of a smart grid managed by SDN. Unlike previous fault

injection studies, we specifically focus on the faults that introduce “silent er-

rors” (i.e. errors that allow the executions of SDN applications to continue,

but incorrectly change their functionality). In order to identify and mitigate

silent errors, we propose an application- and data plane-based monitoring

solution (refer to Section 3.2.1 for details on SDN architectures) that pe-

riodically verifies data plane integrity and detects violations of user defined

policies. While we evaluate our solution with a case study on the smart power

grid, the ideas presented in this work can be extended to software-defined

networks deployed in other mission-critical environments.

47

Host Host
Switch Switch

SDN Controller

Application Application Application

Northbound API

Southbound API

Switch
Data Plane

Control Plane

Application Plane

Figure 3.1: SDN architecture overview, showing the application plane (top),
control plane (middle), and data plane (bottom).

3.2 Background

In this section, we introduce concepts related to software-defined networking,

power grid data acquisition networks and how SDNs are integrated into smart

power grids.

3.2.1 Software-Defined Networking

The key principles of software-defined networking are the programmability

and reconfigurability that it provides. These aspects are achieved by a simple

architectural change: unlike traditional IP networks, the control layer of a

software-defined network is decoupled from the data layer.

The general architecture of an SDN network, as shown in Fig. 3.1, can be

divided into three planes or layers: the data plane, the control plane, and

the application plane [59]. The data plane consists of network switches, the

devices responsible for forwarding traffic. The control plane is the central en-

tity of an SDN network, consisting of one or more controllers that maintain

a global view of the overall network and centrally decide how to handle net-

48

work traffic. The application plane consists of various user applications (e.g.

network management, quality of service optimization like load balancing, and

system resilience enhancement) which need information about the network

state. These applications also define the network policies which are enforced

by the control plane and executed by the data plane. A benefit of the applica-

tion plane is that applications can be written and provided by third parties,

who are distinct from the routing or controller vendor. This allows network

behavior to be programmed independently from the hardware switches or

software controller. The application plane and the control plane communi-

cate via a northbound application programming interface (API) while the

the data plane and the control plane communicate via a southbound API.

The northbound API contributes to the SDN principle of programmability.

Through this API, controllers expose information about the network state,

enabling network-aware applications that can dynamically react to the live

state of the network. In traditional networks, this information is not shared

with network applications. Additionally, applications can specify their net-

working needs to the controllers. In traditional networks, this communication

is limited and static. At worst, traditional networks have to infer application

needs via traffic analysis and predict the sufficient resources to allocate. In

SDN, this information can be communicated easily and directly.

The southbound API contributes to the SDN principle of reconfigurabil-

ity. The API is commonly standardized by the OpenFlow communications

protocol [60], one of the first standards for software-defined networking. Like

traditional switches, an OpenFlow switch uses one or more flow tables to

route incoming packet sequences. Each packet is matched to an entry in

these flow tables, called a flow rule, which determines how packets should be

processed and forwarded. These flow rules are dynamically created, modified,

or removed by the controller and network applications. In turn, the switch

communicates information about traffic flow it tracks within its tables. This

ability to dynamically generate and reconfigure flow rules proves to be a very

attractive feature of SDN.

49

3.2.2 Power Grid Data Acquisition Network

Supervisory control and data acquisition (SCADA) systems are commonly

used to transfer information between devices connected to networks of power

grids, gas pipelines and waste water control systems [61]. The SCADA system

of a power grid network, shown in Fig. 3.2, consists of:

• A control center, responsible for communicating and acquiring mea-

surement data from remote devices on the network. The control center

is staffed by human operators and consists of computers and networking

equipment.

• Substations at remote sites, responsible for collecting and aggregating

measurement information of their respective sites and responding to

collection requests from the control center.

• Wide-area network(s), to connect substations at remote sites to the con-

trol center. The wide-area network (WAN) consists of network switches

and carries information using the DNP3 and Modbus protocols over

TCP/IP [62, 63].

Wide Area Network
(WAN)

Firewall

Workstation running
SCADA Master
(Operated by
Human)

Control
Center
Network

Control Center

Remote Site 1 Remote Site N

To External
Environment

Remote Site
Network

Substations collecting measurement data

Figure 3.2: SCADA system of a power grid network

50

3.2.3 SDNs in Smart Power Grids

The programmability of software-defined networking provides several bene-

fits in smart grid communication environments. By orchestrating network

switches with software applications, grid operators can improve functionality

and enhance resilience with more complex algorithms. The adoption of SDN

in smart grid would require augmenting the existing network infrastructure

with SDN controllers and applications specifically developed for smart grid

operation. Figure 3.3 demonstrates an example smart grid communication

network augmented with SDN controllers. Multiple SDN controllers may be

set up at remote sites to manage their respective local area networks. Appli-

cations running on multiple SDN controllers across the entire grid are usually

synchronized with a fixed initialization parameter (e.g. a deterministic seed

like nearest hour). Further details of SDN adoption and implementation on

smart grids may be found in [64].

Wide Area Network
(WAN)

Firewall

Workstation running
SCADA Master
(Operated by
Human)

Control
Center
Network

Control Center

Remote Site 1 Remote Site N

To External
Environment

Substations collecting measurement data

SDN
Controller

SDN Controller SDN Controller

Figure 3.3: SCADA system of an SDN-managed power grid network.
SDN controllers manage local-area networks at control center and remote
sites.

51

3.3 Fault Models

In this study, we focus on failures which may be caused by accidental events

(e.g. single event upsets at the bit-level) or induced by malicious actors on-

purpose (e.g. denial of service attacks). Such failures are silent in nature and

are difficult to detect in a timely fashion.

Our fault models target the data plane of a software-defined network and

are described in the following subsections. We specifically study faults that

occur in switches following the OpenFlow switch specification v1.5.1 estab-

lished in [65], and involve corruptions within fields of flow table entries (Sec-

tion 3.3.1), packet processing pipelines (Section 3.3.2), and malicious actions

against the network infrastructure (Section 3.3.3). In this work, we do not

inject faults or replay attacks within the SDN controller, as different im-

plementations of controller software exist. From a security viewpoint, if an

adversary has compromised a central controller or an OpenFlow link be-

tween controller and switches, he or she gains complete visibility into the

data plane.

3.3.1 Flow Table Entry Corruptions

OpenFlow switches process incoming packets by matching packet headers

against installed flow table entries. Packets that do not have entries installed

in any flow tables within a switch are forwarded to the SDN controller via

PacketIn requests for further processing or dropped entirely. Each flow table

entry consists of:

• Header (Match) fields, to match incoming packets against

• Priority, to establish matching precedence of the flow entry

• Counters, to track information about the flow and update with every

matching packet

• Instructions (Actions), to apply to and handle matching packets

• Timeouts, to evict an entry after a fixed or idle duration

• Cookie, to identify a flow to a querying controller

52

Table 3.1: Flow Table Entry Action Fields [65]

Instruction
(Action)

Behavior

Output all ports
Send the packet out all interfaces,
not including the incoming interface.

Output Controller Encapsulate and send the packet to the controller.
Output Local Send the packet to the switch’s local networking stack.

Output Table
Perform actions specified in flow table.
Only for packet-out messages.

Output Ingress Port Send the packet out the input port.

Output Normal
Process the packet using the traditional forwarding
path supported by the switch.

Output Flood
Flood the packet along the minimum spanning tree,
not including the incoming interface.

Enqueue Forward a packet through a queue attached to a port.
Drop Drop the incoming packet.

A complete list of instructions (actions) targeted in this study is specified in

Table 3.1. While switch designers may encode these actions at the hardware

level with different bit-level representations, we assume that bit corruptions

to these fields cause one action to be interpreted as another. Furthermore,

due to our fault injection mechanism, a corrupted flow always contains fields

with valid interpretations. In hardware switches, however, corrupt flows may

contain fields with invalid representations. In such cases, the behavior of the

hardware switch logic is undefined.

Bit-level corruptions of flow table entry fields could cause unintended

packet routing behavior. For example, corruptions in header fields could

cause packets to be matched with a flow not intended for them. Corruptions

in action fields could cause packets that should be dropped or forwarded to

the controller to be routed out on network ports. Additionally, attackers

could exploit potential vulnerabilities at the OS/controller layer to manipu-

late OpenFlow switches and add, drop or modify entire flow table entries.

In this work, we specifically inject corruptions into action fields to change

their interpretation to another valid action or cause the entire flow entry to

be dropped (see Fig 3.4). We specifically target action fields as corruptions

would have adverse effects on packet routing. Such corruptions are silent

and not detected until either (1) an error in the switch manifests as a failure

elsewhere, or (2) installed flows are verified against a known set of valid flows

53

Header#1 Priority Counters Actions Timeouts Cookie

Header#2 Priority Counters Actions Timeouts Cookie

Header#3 Priority Counters Actions Timeouts Cookie

Header#4 Priority Counters Actions Timeouts Cookie

Header#5 Priority Counters Actions Timeouts Cookie

Flow Table

OpenFlow Network Switch

Figure 3.4: Flow table entry corruptions to action fields

by the SDN controller or an application.

3.3.2 Pipeline Processing Manipulations

OpenFlow switches process packets through one or more flow tables in a

pipeline, with each flow table consisting of one or more entries. Packet pro-

cessing occurs in two phases - the ingress pipeline, and egress pipeline (see

Fig. 3.5). Upon matching with flow entries in one or more tables, actions

defined with matching entries are added to an “action set” to be executed

at the end of the current pipeline. Beyond executing actions in Table 3.1, a

flow table entry can also direct matching packets to tables further down in

the pipeline. Any further flow table entries matching with the packet being

processed will have their actions added to the action set as well. All ac-

tions added to the action set are executed at the end of their corresponding

pipeline, i.e. when a flow table entry does not redirect a packet further into

the pipeline or when the last flow table has processed a packet.

However, if an incoming packet does not match with a flow table entry,

actions associated with the table-miss flow entry (configured by the SDN

controller) are executed. This could involve dropping the packet, forwarding

the packet to the SDN controller or redirecting the packet to a flow table

further down the pipeline.

A disruption in either of these pipelines could cause unintended packet

routing behavior. Corruptions of pipeline forwarding actions could cause

unnecessary redirects of network packets to other flow tables, where they

54

Ingress
Port

Packet In

Flow Table
#0

Miss-Entry

Flow Table
#1

Miss-Entry

Flow Table
#N

Miss-Entry

Execute
Action

Set

Output
Port

Packet Out

Action Set = { } Action Set = {actions}

OpenFlow Switch

Figure 3.5: Simplified OpenFlow packet processing pipeline. Corruptions
are injected as (1) packets traverse through pipelines, and (2) into action
sets.

may not be handled correctly. Additionally, corruptions in the table-miss

flow entry could cause packets to be dropped instead of continuing through

the pipeline or being forwarded to the SDN controller.

In this work, we target corruptions of pipeline action sets and table-miss

entry actions. We inject faults such that values contained in action sets or

the table-miss entry take on valid representations different from the original

(e.g. a “forward to controller” action is modified to “drop” packet instead).

3.3.3 Network Overloading

In the network overloading scenario, an adversary attempts to disable or

cause degraded performance on OpenFlow switches by flooding them with an

excessive number of requests from a connected host (see Fig. 3.6). Excessive

requests forwarded to the controller saturate the southbound OpenFlow link

between the switch and SDN controller or overload the controller itself. This

type of attack is commonly known as PacketIn flooding [66]. Depending on

controller and switch policies to handle an increased traffic load, this attack

could lead to a denial-of-service scenario across the network.

In this work, we emulate a network overloading scenario by sending an

excessive number of packets from multiple hosts connected to SDN managed

switches. Network packets are generated from arbitrary network ports on

hosts to ensure that flow table entries for these packets do not exist. This

approach guarantees that PacketIn requests are sent to the SDN controller

for each network packet arriving on a target switch.

55

Host
Malicious Host

Switch Switch

SDN Controller

Host

Host
Host

Excessive
packets
forwarded to
controller

Figure 3.6: Network overload attack

3.4 Fault Injection and Analysis Framework

In order to systematically study the effects of faults, errors and failures on

SDN infrastructures, we have developed an SDN fault injection work flow

and analysis framework as part of this work. In this section, we describe

our fault injector, analysis tools, and overall work flow applied to our fault

injection experiments.

3.4.1 SDN Fault Injector

The SDN fault injector module runs as an independent entity on the simu-

lation system and is composed of wrappers around the OpenVSwitch (OVS)

administrative interface and traffic generation scripts. This module is re-

sponsible for the selection, timing and injection of faults into target network

switches being managed by a centralized SDN controller. The injection mech-

anisms employed in our fault injector module are summarized in Table 3.2.

The fault injector is executed with superuser privileges on the simulation

system. A user selects the fault model to execute, target components (i.e.

network switches, hosts, flow tables and entries) and time delay. The injector

is written in Python and can easily be integrated into larger applications for

testing and development of SDN systems.

56

Table 3.2: SDN Fault Injection Mechanisms

Fault
Model

Injection Method

Flow Table Entry
Corruptions

ovs-ofctl dump-flows

to read existing flow entries
ovs-ofctl del-flow

to delete existing flow entries
ovs-ofctl mod-flow

to update action fields of
existing flow entries

Pipeline Processing
Corruptions

ovs-ofctl mod-flow

to update action field
of table-miss entry
ovs-ofctl add-flow

to add flow with “drop” action to
clear action set in pipeline

Network
Overloading

Python traffic generation scripts
to send UDP messages to target
switches

3.4.2 Network Testbed

Our networking testbed is composed of Mininet [12], the Pox SDN controller

[13], OpenVSwitch (OVS) switches [14], and Automatak DNP3 Applications

[15]. Mininet is a network emulator that emulates hosts, links, switches,

and controllers on a single machine by utilizing lightweight virtualization to

enable a single system to host a complete network, running the same kernel,

system, and user code. The emulated hosts behave like real machines and can

run arbitrary programs. The virtual links, switches, and hosts behave like

real hardware, i.e. packets are sent out on interfaces visible to an end user.

Automatak DNP3 applications are used to generate network traffic between

virtual hosts provided by Mininet. Figure 3.7 describes how the fault injector

and simulated environment are set up. The fault injection and packet capture

tools run as independent entities in the simulation environment. After fault

injection is complete, packet captures are saved and analyzed offline. We

describe our analysis framework in Section 3.4.3.

57

Fault Injection
Tool

Packet Capture
(TCPDump)

Offline Analysis
(tshark + scripts)

Automatak
DNP3

Substation
Applications

POX SDN
Controller

Mininet/OVS

Automatak DNP3
Control Center

Application

Edge
Switches

WAN
Hubs Substations Control

Center
SDN

Controller

Figure 3.7: Fault injection and analysis framework

3.4.3 Analysis Framework

To study the effects of faults on network traffic, we capture packet traces for

output ports on each network switch being managed by the centralized SDN

controller using tcpdump [67]. Packet captures are analyzed offline using

tshark (Wireshark’s command line utility) [11], with additional logic written

in Python. Analysis scripts are used to identify anomalies like misrouted

or dropped packets, delays in transmission, and other interesting events in

captured traffic flows (see Fig. 3.8).

3.4.4 Experiment Workflow

For each experiment, our fault injection workflow involves launching a sim-

ulated network topology using Mininet and a central SDN controller using

Pox. Next, we launch DNP3 applications to generate traffic between virtual

hosts on the network. We also launch the tcpdump utility to capture net-

work traces across all switches managed by the SDN controller. The fault

58

DNP3 Read Requests
being dropped
causing
re­transmission
attempts

Figure 3.8: Analysis example, identifying events of interest in Wireshark

injection tool is used to manipulate the state of flow tables and inject faults

into network switches. Once faults have been injected and failures observed,

we shut down network captures and the rest of the simulation environment to

prepare for the next experiment. Captured packet traces are analyzed offline

using tools described in Section 3.4.3 to identify possible failure scenarios.

Figure 3.9 summarizes our experiment workflow.

Launch Network
Simulator (Mininet)

Launch SDN
Controller (POX)

Launch Traffic
Generators

(Automatak DNP3)

Start Network
Capture
(tcpdump)

Inject Faults

Stop Network
Capture and
Simulation
Environment

Offline Packet Trace
Analysis

(tshark + scripts)

Figure 3.9: Experiment workflow for SDN fault injection

59

3.5 Case Study - Raincoat for Smart Power Grids

To demonstrate the impact on real world SDN infrastructures, we evaluate

our fault models on a simulation of a data acquisition network of a smart

electric power grid. The data acquisition network consists of a control center

and multiple substations (end devices) connected over a wide-area network

(WAN). Network switches at the first hop from the control center and end

devices are designated as edge switches. The control center runs a supervisory

control and data acquisition (SCADA) system which periodically queries

end devices for measurements using the Distributed Network Protocol v3

(DNP3). Upon receiving a SCADA DNP3 read request, substations send

their response containing power measurements over the network.

When designing such systems, the remote insider threat model is com-

monly considered. Attackers can bypass standard security measures (such as

firewalls) and establish themselves on core computing devices on the network.

Such a level of access allows attackers to inspect and potentially modify net-

work traffic from the penetrated computing device. For example, the cyber

attack on the Ukrainian power grid in December 2015 involved malicious

actors establishing a foothold within the power grid network and remotely

controlling operator stations to hijack SCADA systems. The attackers gained

access to operator stations by harvesting credentials through spear phishing

methods and caused a blackout that affected more than 225,000 residents

[68].

In this case study, we inject faults into network switches administered by

an SDN controller running the Raincoat application. Raincoat, proposed

in [69], is an algorithm that randomizes data acquisitions in power systems

with the goal of exposing and misleading attackers as they observe network

traffic to prepare their attack strategies. At runtime, a single data acquisition

operation issued by the control center to all substation devices is transformed

into multiple rounds of data delivery. An example execution run of the

Raincoat algorithm is demonstrated in Fig. 3.10.

Edge switches are configured to route DNP3 read requests from the SCADA

master to the Raincoat application, which forwards these requests to each

substation multiple times. For each round of responses, Raincoat randomly

designates a subset of responding substations as “online” and allows their

measurements to be forwarded to the controller. The remainder of responses

60

Figure 3.10: Example execution of the Raincoat algorithm [69]

from “offline” substations are intercepted and substituted with decoy mea-

surements instead. Over the course of all responses to a single read request,

Raincoat guarantees that at least one response per substation will be gen-

uine. The SCADA system in the control center is synchronized with the

Raincoat algorithm to extract genuine measurements, while the attacker ob-

serves both genuine and decoy measurements which are indistinguishable on

the network. Further details of the Raincoat framework can be found in [69].

3.5.1 Fault Injection Campaign

We conducted our fault injection experiments on the network topology shown

in Fig. 3.11. The topology consists of 9 substations, 8 edge switches, and

one control center. Edge switches are managed by a single SDN controller

(switch–controller links omitted from figure) running the Raincoat applica-

tion. As described in Section 3.4, the network topology is simulated with

Mininet, OpenVSwitch and the Pox SDN controller. The control center

and substations are Automatak DNP3 applications running on virtualized

Mininet hosts. In total, our campaign consists of 235 unique faults injections.

We repeat our fault injection campaign three times to verify deterministic

behavior of the simulated system under failures.

We summarize our experiment setup by fault model in Sections 3.5.1.1

– 3.5.1.3.

61

Control
Center

Substation Edge
Switch

WAN
Switch

SDN
Controller

Figure 3.11: Network topology used in fault injection experiments

3.5.1.1 Flow Table Entry Corruptions

The Raincoat application installs three sets of flow table entries for each

edge switch managed by the SDN controller (see Fig. 3.12). Packets from

the SCADA master to substations are forwarded to the SDN controller at

all times via a “Output to Controller” entry on all edge switches. Upon

receiving these packets from edge switches, the Raincoat application selec-

tively forwards DNP3 read requests to “online” substations. Additionally,

responses from “online” substations are handled with flow table entries that

simply forward packets out of the intended port, i.e. to the SCADA master

in the control center. Responses from “offline” substations are handled by

forwarding to the Raincoat application running on top of the SDN controller.

The Raincoat application then obfuscates original measurements within an

acceptable tolerance before forwarding to the SCADA master.

Fault injection experiments to study the flow table entry corruption fault

model are summarized in Table 3.3. Descriptions of flow table entry actions

may be found in Table 3.1. Each action is injected once per edge switch,

giving us a total of 208 unique fault injections for the table entry corruption

fault model.

62

Match packets from SCADA master#1 Output to Controller

Flow Table

Edge Switch managed by Raincoat

Match packets from "online" substations#3 Output to SCADA master port

Output to ControllerMatch packets from "offline" substations#2

Raincoat

SDN
Contoller

Offline
Substaion

Online
Substation

DNP3
Measurement
Request

Measurement
Responses

Measurement
Responses SCADA

Master

Figure 3.12: Flow table entries installed in a Raincoat managed edge switch.
Requests from the SCADA master are shown in blue, whereas responses
from substations are shown in red.

Table 3.3: Flow Table Entry Corruption Experiments

Flow Table
Entry

Original
Action

Injected
Actions

SCADA Master
to Substation

Output to controller
Drop
Enqueue
Output to
{ALL, Local, Table,
Ingress Port, Normal,
Flood}

“Online” Substation
to Master

Output to port

Modified port number
Drop
Enqueue
Output to
{ALL, Controller, Local,
Table, Ingress Port, Normal,
Flood}

“Offline” Substation
to Master

Output to controller
Drop
Enqueue
Output to
{ALL, Local, Table,
Ingress Port, Normal,
Flood}

63

Table 3.4: Pipeline Processing Corruption Experiments

Component Initial Value Injected Value

Action Set
Output Action(s), i.e.
forward to controller OR
output to SCADA master

Empty Set
via “drop” action

Table-Miss Entry
Action

Goto Table
Forward to
controller
Drop packet

3.5.1.2 Pipeline Processing Corruptions

While Raincoat does not utilize multiple flow tables in packet processing

pipelines, we modify the flow table entry installation procedure to allow us

to study corruptions in pipeline processing. Instead of installing flow entries

in the first available flow table, we deliberately install entries in a table further

down in the pipeline. Additionally, we configure table-miss entries to forward

packets to the next flow table in the pipeline sequence via “Goto” actions.

This ensures ingress packets are processed through multiple flow tables before

the intended action is applied to them and allows us to inject corruptions

into the pipeline. Our injection experiments related to the pipeline processing

corruption fault model are summarized in Table 3.4. Each fault is injected

once per edge switch, giving us 24 unique fault injections for this fault model.

3.5.1.3 Network Overloading

To simulate a network overloading scenario, we launch traffic generators on a

subset of connected substations. These traffic generators continuously send

an excessive number of network packets (as fast as the simulator allows) to

connected edge switches. Depending on whether substations are considered

“online” or “offline” by Raincoat and network switches, these packets are

forwarded to the SDN controller or to the SCADA master in the control

center. We conduct the network overloading experiment three times to verify

deterministic and repeatable behavior.

64

3.5.2 Failure Scenarios

In our analysis of captured network traces, we identify faults manifesting as

failures in the form of (1) SCADA timeouts, (2) measurement obfuscation

failures, and (3) denial-of-service. These failure scenarios and their causes

are described in Sections 3.5.2.1 – 3.5.2.3.

3.5.2.1 SCADA Timeout

In the SCADA timeout scenario, the SCADA master running in the con-

trol center receives an incomplete set of measurements within an acceptable

period from substations responding to a data acquisition command. This

happens when requests from the SCADA master are dropped en route to

a substation, or when responses from a substation are dropped en route to

the master. In some cases, packets from a substation eventually arrive at

the master due to retransmissions, but beyond our expected time limit from

when the read request is sent out.

3.5.2.2 Measurement Obfuscation Failure

In the measurement obfuscation failure scenario, packets from substations

that should be treated as “offline” by the Raincoat algorithm are transmit-

ted beyond edge switches into the wide area network instead. This occurs

when packets are incorrectly routed through the network instead of being

forwarded up to the SDN controller and applications. This causes genuine

measurements from “offline” substations to become visible to an adversary

observing network traffic, rendering the Raincoat algorithm ineffective.

3.5.2.3 Denial-of-Service

The Raincoat algorithm requires edge switches to forward SCADA read re-

quests up to the SDN controller via OpenFlow PacketIn requests. However,

flooding a large number of these requests saturates the OpenFlow channel

between edge switches and the SDN controller. This causes other requests

to remain pending or be dropped, leading to a denial-of-service scenario in

which power grid data acquisition cannot continue. Normal functionality

65

of the network is only restored when a system administrator intervenes and

disables the malicious host that is flooding the network.

3.5.3 Results

Failure scenarios that resulted from faults injected during our campaign are

summarized in Table 3.5.

Raincoat installs flow table entries that redirect incoming packets to (1)

the SDN controller or (2) out on a specific port (see Fig. 3.12). Upon inject-

ing faults that modify flow table entries to forward packets out on all ports

(or when flooding packets across the spanning tree), we observe traffic from

DNP3 substations considered “offline” by Raincoat being forwarded to the

control center, instead of being forwarded to the SDN controller for obfus-

cation. Modifying actions to output to “Table”, “Ingress Port”, “Enqueue”,

or “Drop” causes DNP3 packets to be dropped or sent back to the sender,

instead of being forwarded to the control center or SDN controller. This

eventually causes SCADA timeouts, where a full set of measurements is not

received within an acceptable window of time (10 seconds in our experiment).

Additionally, we observe a number of SCADA timeouts (i.e. data acquisi-

tion requests pending for longer than 10 seconds) upon corrupting table-miss

actions and action sets in processing pipelines. By clearing action sets as

packets progressed through their ingress pipeline, packets are immediately

dropped. By corrupting table-miss actions to “Drop”, we are able to drop

packets instead of continuing through the pipeline. We also observe a mea-

surement obfuscation failure when a table-miss action is corrupted to “For-

ward to controller”. The corrupt table-miss action sends packets from “on-

line” substations to the Raincoat application instead of the SCADA master.

Raincoat responds by obfuscating measurements contained in these packets

before forwarding them to the SCADA master. However, this scenario can

be avoided by distinguishing packets from “online” and “offline” substations

within the Raincoat algorithm’s control logic.

Finally, upon overloading the network, we are able to create a denial-of-

service scenario where data acquisition could not continue due to the SDN

controller being non-responsive. While the network is being overloaded, the

SDN controller does not respond to PacketIn requests from edge switches.

66

Additionally, no new flow table entries are installed by the SDN controller.

This causes DNP3 requests and responses to be dropped upon arriving at an

edge switch once existing flows have expired.

Table 3.5: Results from Smart Power Grid Case Study

Injected Fault
SCADA
Timeout

Measurement
Obfuscation

Failure

Denial of
Service

Corrupt Flow Action
Output

All Ports "

Controller
Local

Table "

Ingress Port "

Normal

Flood "

Enqueue "

Drop "

Corrupt Pipeline
Action Set

Clear action set "

Corrupt Table-Miss
Entry Action

Forward to controller "

Drop packet "

Table Overflow Attack "

"indicates injected fault manifesting as failure scenario faults

3.6 Resiliency Recommendations

The failure scenarios described in Section 3.5.2 can be overcome by leveraging

data plane monitoring and metering features provided in newer versions of

OpenFlow. In this section, we propose three approaches to mitigate failures

described in our power grid case study.

3.6.1 Continuous Monitoring via SDN Applications

To identify silent corruptions before they manifest as failures, we propose an

application-based solution that continuously monitors the state of the data

plane and detects corruptions of flow table state. Our solution leverages

features made possible by SDNs – network visibility and programmability –

that are not achievable with traditional networking. This approach to net-

work monitoring requires only minor changes to the northbound interface

67

between SDN applications and the controller. Instead of directly interacting

with the controller, applications route their requests via an auxiliary moni-

toring application, as shown in Fig. 3.13.

Figure 3.13: Data plane monitoring via auxiliary SDN application

Upon receiving flow installation requests from other SDN applications, the

monitoring application forwards these requests to the controller. At the same

time, the application caches flow information contained in these requests into

a “golden” set. The integrity of flow table entries is periodically verified for

each network switch. Any deviation from the cached “golden” set causes an

alarm to be raised within the monitoring application. This periodic verifica-

tion approach detects bit-level corruptions as well as malicious modifications

of flow tables.

Inconsistencies in flow table states cause an alarm to be triggered within

the monitoring application. A system administrator can respond to alarms

raised by taking precautionary measures like scanning the network for un-

known hosts or identifying faulty switches. While we implement our monitor-

ing solution as a separate SDN application, its functionality can be integrated

into existing applications without significant additional overhead.

68

3.6.2 Rate-Limiting via Metering Flows

Beyond monitoring flow table states, we can mitigate denial-of-service failure

scenarios by metering traffic flows installed in flow tables. OpenFlow v1.3.0

and beyond provide a meter table on each network switch, which allows traffic

to be managed based on the rate of incoming packets. We can configure

per-flow meters to implement rate-limiting by constraining bandwidth and

limiting excessive requests to controllers and other hosts on the network.

For example, we can define a simple meter flow rule for flow table entries

on each network switch to limit the number of requests and responses to 1

packet per second. In OpenFlow, such a metering policy would be defined

with the following parameters:

• Band Type: drop, which drops packets beyond the specified rate

• Rate: 1 packet (per second)

• Burst (granularity): 1 packet

This rate limit metering policy will limit SCADA requests to 10 per data

collection round (10 seconds) by dropping packets in violation. While this

approach will not prevent a malicious host from sending network packets, it

can be used to protect against spamming switches and the SDN controller,

potentially avoiding a denial-of-service attack.

OpenFlow v1.5.1 supports an additional band type called dscp remark.

Specifying dscp remark in place of drop as the band type in a meter entry

would allow the network switch to differentiate between senders and de-

prioritize or drop packets from malicious or unknown hosts, while allowing

genuine hosts to continue sending and receiving packets. However, the dscp

remark band type is not supported in OpenVSwitch’s implementation of

OpenFlow at the time of this publication, and hence not evaluated in this

work. Furthermore, there is limited support of meter tables on hardware

implementations of OpenFlow network switches. Thus, this approach must

be carefully evaluated with the available hardware and software stack when

deployed in a mission-critical environment.

69

3.6.3 Failover Flow Table Entries

We can also leverage multiple flow tables in the OpenFlow processing pipeline

to provide a failover or redundant flow table entry, if the original entry is

corrupted or evicted (see Fig. 3.14). Installing a failover flow table entry

further down in the pipeline allows switches to process packets when the

original flow table entry is corrupted. When a network packet arrives at a

switch with a corrupt flow entry, it will not be matched in the original table

causing the packet to rely on the table-miss entry for routing decisions. The

table-miss entry will force the packet to a table further down in the pipeline

where it can be matched with a redundant failover entry instead and continue

processing as intended by the application. This approach mitigates incorrect

routing decisions by corrupt flow table entries on SDN-managed network

switches.

Header#1 Actions

Table Miss EntryTM Goto Table N+1

Flow Table N

OpenFlow Network Switch

Corrupt Table Entry

Flow Table N+1

Fa
il
o
ve
r

Table­Miss Occurs

Incoming
Packet

Outgoing
Packet

Packet Processing Pipeline

Failover Entry#1 Actions

Figure 3.14: Pipeline processing with failover flow table entry

To implement this failover strategy, application designers will have to in-

stall redundant flows in separate tables on a network switch. Additionally,

the table-miss entry in the flow table containing the primary flow will have to

be configured to forward requests to a table containing the redundant flow.

We tested our implementation of failover entries by evicting the primary flow

in a target network switch. In all tests, the table-miss entry was activated

which forwarded the ingress packet to the table containing the redundant

flow. The ingress packet was processed as expected in all cases.

While this is a quick solution to handling corrupt flows, it comes with

several caveats:

• The failover table entry is only utilized if the original flow table entry

does not match with the incoming packet, i.e. this solution does not

70

apply to corrupt original entries with valid representations of other

actions.

• The table-miss entry can only forward packets to tables further down

in the pipeline. This failover strategy cannot be applied to the final

table in a packet processing pipeline.

• This solution relies on the table-miss entry forwarding to the correct

flow table in the processing pipeline. This may not occur for switches

with widespread faults or deliberate attacks that target multiple flow

tables or entries, where the table-miss entry is also corrupted.

3.7 Related Work

In this chapter, we covered faults and attacks against SDN infrastructures in

mission-critical systems. A number of past works have evaluated the reliabil-

ity and security of SDN systems. [70] introduces the idea of using SDNs in

industrial networks to improve security. Existing works [71, 72, 73, 74, 75, 76]

cover the impact of specific attacks against SDN systems. Additionally, [77],

[78] cover attacks and fault injections in the control plane. However, unlike

our work, [77] focuses on injecting attacks in the Southbound API between

network hubs and SDN controllers, and [78] performs fault injections within

specific implementations of SDN controllers. To the best of our knowledge,

our work is unique as it considers failures at the OpenFlow networking switch

level in industrial control systems, independent of controller or application.

3.8 Future Work

While this project lays the groundwork for understanding failures in mission-

critical SDN infrastructures, several aspects are yet to be addressed:

• Validating fault models with hardware testbeds

Our experimental approach made use of software simulators to emu-

late networking environments. Consequently, some of our assumptions

may not necessarily hold true with industrial grade systems. Ideally,

71

we would like to validate our fault models with a physical networking

testbed comprising of network components from various vendors.

• Validating fault models with additional applications

In this work, we covered the case study of Raincoat on the smart power

grid. Future work could validate our proposed fault models with more

complex applications and identify additional failure scenarios.

• Singular point of failure

In SDN architectures, the controller is a singular point of failure. Using

the results of this work, we would like to ascertain whether automatic

failures could cause the controller to fail and render the network unus-

able.

• Attacks against SDN systems

Future work could identify whether an adversary could leverage the

results presented in this work to cause attacks against SDN systems to

succeed.

3.9 Conclusion

In this work, we demonstrated that our fault models can create an inconsis-

tent state between the decoupled data and control planes on SDN systems.

Such inconsistencies often lead to errors which manifest as failures in the

environment that render the SDN controller and application ineffective. As

demonstrated in the smart power grid case study, even applications with

minimal interaction with the control plane are susceptible errors and failures

in the data plane. However, equipped with results from this project, develop-

ers could integrate recommendations proposed in Section 3.6 to enhance the

resiliency of their SDN applications and mitigate automatic and malicious

failures.

72

REFERENCES

[1] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques
and tools,” Computer, vol. 30, no. 4, pp. 75–82, Apr 1997.

[2] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and
R. K. Iyer, “An experimental study of soft errors in microprocessors,”
IEEE Micro, vol. 25, no. 6, pp. 30–39, Nov. 2005. [Online]. Available:
http://dx.doi.org/10.1109/MM.2005.104

[3] D. Chen, G. Jacques-Silva, Z. Kalbarczyk, R. K. Iyer, and B. Mealey,
“Error behavior comparison of multiple computing systems: A case
study using linux on pentium, solaris on sparc, and aix on power,” in
2008 14th IEEE Pacific Rim International Symposium on Dependable
Computing, Dec. 2008, pp. 339–346.

[4] K. Pattabiraman, N. M. Nakka, Z. Kalbarczyk, and R. K. Iyer, “Sym-
PLFIED: Symbolic program-level fault injection and error detection
framework,” IEEE Trans. Comput., vol. 62, no. 11, pp. 2292–2307,
Nov. 2013. [Online]. Available: http://dx.doi.org/10.1109/TC.2012.219

[5] R. K. Iyer, Z. Kalbarczyk, and W. Gu, Benchmarking the
Operating System against Faults Impacting Operating System Functions.
Wiley-Blackwell, 2008, ch. 15, pp. 311–339. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470370506.ch15

[6] K. S. Yim, Z. Kalbarczyk, and R. K. Iyer, “Measurement-based analysis
of fault and error sensitivities of dynamic memory,” in 2010 IEEE/IFIP
International Conference on Dependable Systems Networks (DSN), June
2010, pp. 431–436.

[7] G. Jacques-Silva, B. Gedik, H. Andrade, K.-L. Wu, and R. K.
Iyer, “Fault injection-based assessment of partial fault tolerance in
stream processing applications,” in Proceedings of the 5th ACM
International Conference on Distributed Event-based System, ser.
DEBS ’11. New York, NY, USA: ACM, 2011. [Online]. Available:
http://doi.acm.org/10.1145/2002259.2002292 pp. 231–242.

73

[8] S. Y. Lee, “Analysis of the impact of sequencing errors on blast using
fault injection,” M.S. thesis, University of Illinois at Urbana-Champaign,
Urbana, Illinois, 2013.

[9] H. Alemzadeh, D. Chen, X. Li, T. Kesavadas, Z. T. Kalbarczyk, and
R. K. Iyer, “Targeted attacks on teleoperated surgical robots: Dynamic
model-based detection and mitigation,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
June 2016, pp. 395–406.

[10] C. D. Martino, S. Jha, W. Kramer, Z. Kalbarczyk, and R. K. Iyer,
“Logdiver: A tool for measuring resilience of extreme-scale systems and
applications,” in Proceedings of the 5th Workshop on Fault Tolerance
for HPC at eXtreme Scale, ser. FTXS ’15. New York, NY, USA: ACM,
2015. [Online]. Available: http://doi.acm.org/10.1145/2751504.2751511
pp. 11–18.

[11] “Wireshark,” accessed: 2018-06-18. [Online]. Available:
https://www.wireshark.org/

[12] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in Networks, ser.
Hotnets-IX. New York, NY, USA: ACM, 2010. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868466 pp. 19:1–19:6.

[13] “POX wiki,” Mar. 2015, Website, Open Network-
ing Lab, accessed: 2018-06-18. [Online]. Available:
https://openflow.stanford.edu/display/ONL/POX+Wiki

[14] “Production quality, multilayer open virtual switch,” accessed:
2018-06-18. [Online]. Available: http://www.openvswitch.org/

[15] “OpenDNP3,” accessed: 2018-06-18. [Online]. Available:
http://www.automatak.com/opendnp3/

[16] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Trans. Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.
[Online]. Available: http://dx.doi.org/10.1109/TDSC.2004.2

74

[17] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A. A. Chien,
P. Coteus, N. A. Debardeleben, P. C. Diniz, C. Engelmann, M. Erez,
S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy,
S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley,
and E. V. Hensbergen, “Addressing failures in exascale computing,”
Int. J. High Perform. Comput. Appl., vol. 28, no. 2, pp. 129–173, May
2014. [Online]. Available: http://dx.doi.org/10.1177/1094342014522573

[18] X. Yang, Z. Wang, J. Xue, and Y. Zhou, “The reliability wall for exascale
supercomputing,” IEEE Trans. Comput., vol. 61, no. 6, pp. 767–779,
June 2012. [Online]. Available: http://dx.doi.org/10.1109/TC.2011.106

[19] S. Jha, V. Formicola, Z. Kalbarczyk, C. Di Martino, W. T. Kramer,
and R. K. Iyer, “Analysis of Gemini interconnect recovery mechanisms:
Methods and observations,” Cray User Group, pp. 8–12, 2016.

[20] J. H. Barton, E. W. Czeck, Z. Z. Segall, and D. P. Siewiorek,
“Fault injection experiments using FIAT,” IEEE Trans. Comput.,
vol. 39, no. 4, pp. 575–582, Apr. 1990. [Online]. Available:
http://dx.doi.org/10.1109/12.54853

[21] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop,
and W. Kramer, “Lessons learned from the analysis of system
failures at petascale: The case of Blue Waters,” in Proceedings
of the 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, ser. DSN ’14. Washington,
DC, USA: IEEE Computer Society, 2014. [Online]. Available:
https://doi.org/10.1109/DSN.2014.62 pp. 610–621.

[22] “Charm++: Parallel programming framework.” [Online]. Available:
http://charmplusplus.org/

[23] V. Formicola, S. Jha, D. Chen, F. Deng, A. Bonnie, M. Mason,
J. Brandt, A. Gentile, L. Kaplan, J. Repik, J. Enos, M. Showerman,
A. Greiner, Z. Kalbarczyk, R. Iyer, and W. Kramer, “Understand-
ing fault scenarios and impacts through fault injection experiments in
Cielo,” in Cray User Group, May 2017.

[24] T. Naughton, W. Bland, G. Vallee, C. Engelmann, and S. L.
Scott, “Fault injection framework for system resilience evaluation:
Fake faults for finding future failures,” in Proceedings of the
2009 Workshop on Resiliency in High Performance, ser. Resilience
’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1552526.1552530 pp. 23–28.

75

[25] D. T. Stott, B. Floering, Z. Kalbarczyk, and R. K. Iyer, “A
framework for assessing dependability in distributed systems with
lightweight fault injectors,” in Proceedings of the 4th International
Computer Performance and Dependability Symposium, ser. IPDS ’00.
Washington, DC, USA: IEEE Computer Society, 2000. [Online].
Available: http://dl.acm.org/citation.cfm?id=857196.857849 p. 91.

[26] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-Qin:
A methodology for evaluating the error resilience of GPGPU applica-
tions,” in 2014 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), Mar. 2014, pp. 221–230.

[27] C. Constantinescu, “Teraflops supercomputer: Architecture and
validation of the fault tolerance mechanisms,” IEEE Trans. Comput.,
vol. 49, no. 9, pp. 886–894, Sep. 2000. [Online]. Available:
https://doi.org/10.1109/12.869320

[28] D. M. Blough and P. Liu, “FIMD-MPI: a tool for injecting faults into
MPI applications,” in Proceedings 14th International Parallel and Dis-
tributed Processing Symposium. IPDPS 2000, 2000, pp. 241–247.

[29] T. Naughton, C. Engelmann, G. Vallée, and S. Böhm, “Supporting
the development of resilient message passing applications using simu-
lation,” in 2014 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, Feb. 2014, pp. 271–278.

[30] K. Feng, M. G. Venkata, D. Li, and X. H. Sun, “Fast fault injection
and sensitivity analysis for collective communications,” in 2015 IEEE
International Conference on Cluster Computing, Sep. 2015, pp. 148–157.

[31] C. D. Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer, “Measuring
and understanding extreme-scale application resilience: A field study
of 5,000,000 HPC application runs,” in 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, June
2015, pp. 25–36.

[32] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey
of fault tolerance mechanisms and checkpoint/restart implementa-
tions for high performance computing systems,” J. Supercomput.,
vol. 65, no. 3, pp. 1302–1326, Sep. 2013. [Online]. Available:
http://dx.doi.org/10.1007/s11227-013-0884-0

[33] B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 4, pp. 337–351, Oct. 2010. [Online].
Available: http://dx.doi.org/10.1109/TDSC.2009.4

76

[34] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and
J. J. Dongarra, “An evaluation of user-level failure mitigation
support in MPI,” in Proceedings of the 19th European Conference on
Recent Advances in the Message Passing Interface, ser. EuroMPI’12.
Berlin, Heidelberg: Springer-Verlag, 2012. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-33518-1 24 pp. 193–203.

[35] U.S. Department of Energy Office of Science, “Resilience for extreme
scale supercomputing systems,” DOE National Laboratory Announce-
ment Number LAB 14-1059, July 2014.

[36] L. Bautista-Gomez, A. Gainaru, S. Perarnau, D. Tiwari, S. Gupta,
C. Engelmann, F. Cappello, and M. Snir, “Reducing waste in extreme
scale systems through introspective analysis,” in 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), May
2016, pp. 212–221.

[37] T. J. Dell, “A white paper on the benefits of chipkill-correct ECC for
PC server main memory.” IBM Microelectronics Division, Nov. 1997.

[38] “Torque resource manager.” [Online]. Available:
http://www.adaptivecomputing.com/products/open-source/torque/

[39] “Slurm workload manager.” [Online]. Available:
https://slurm.schedmd.com/

[40] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,
A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan,
M. Showerman, J. Stevenson, N. Taerat, and T. Tucker, “The
lightweight distributed metric service: A scalable infrastructure
for continuous monitoring of large scale computing systems and
applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’14. Piscataway, NJ, USA: IEEE Press, 2014. [Online]. Available:
https://doi.org/10.1109/SC.2014.18 pp. 154–165.

[41] Cray, “Gemini network resiliency guide.” [Online]. Available:
http://docs.cray.com/books/S-0032-E/

[42] AMD Inc. BIOS and Kernel Developers Guide, for AMD Family 16h,
Advanced Micro Devices, Inc., Feb. 2015.

[43] S. Sur, M. J. Koop, and D. K. Panda, “High-performance and
scalable MPI over infiniband with reduced memory usage: An
in-depth performance analysis,” in Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, ser. SC ’06. New York, NY, USA: ACM,
2006. [Online]. Available: http://doi.acm.org/10.1145/1188455.1188565

77

[44] L. Kale, “Charm++,” in Encyclopedia of Parallel Computing, D. Padua,
Ed. Springer Verlag, 2011.

[45] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-
Ghazawi, A. Mohanti, Y. Yao, and D. Chavarŕıa-Miranda, “An eval-
uation of global address space languages: Co-array fortran and unified
parallel C,” in Proceedings of the Tenth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. ACM, 2005, pp.
36–47.

[46] P. Chen and E.-J. Lee, Anelastic Wave Propagation (AWP). Cham:
Springer International Publishing, 2015, pp. 15–90. [Online]. Available:
https://doi.org/10.1007/978-3-319-16604-9 2

[47] A. Bazavov et al., “MIMD lattice computation (MILC) collaboration.”
[Online]. Available: http://physics.indiana.edu/s̃g/milc.html

[48] D. A. Donzis, P. Yeung, and D. Pekurovsky, “Turbulence simulations
on O(104) processors,” in TeraGrid ’08 Conf, 2008.

[49] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid,
E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten,
“Scalable molecular dynamics with NAMD,” Journal of Computational
Chemistry, vol. 26, no. 16, pp. 1781–1802. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.20289

[50] A. Langer, J. Lifflander, P. Miller, K.-C. Pan, L. Kale, and P. Ricker,
“Scalable algorithms for distributed-memory adaptive mesh refine-
ment,” in Proceedings of the 24th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD 2012),
New York, USA, October 2012.

[51] V. Mehta, “LeanMD: A Charm++ framework for high performance
molecular dynamics simulation on large parallel machines,” M.S. the-
sis, University of Illinois at Urbana-Champaign, 2004.

[52] A. J. Kunen, T. S. Bailey, and P. N. Brown, “KRIPKE–a massively
parallel transport mini-app,” 2015.

[53] “NPB UPC-FT.” [Online]. Available:
http://www.nersc.gov/users/computational-systems/cori/nersc-8-
procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/npb-upc-
ft/

[54] Cray, “XC series GNI and DMAPP API user guide (CLE 6.0.UP05)
S-2446.” [Online]. Available: https://pubs.cray.com/content/S-2446/

78

[55] “Blue Waters user portal — FAQ.” [Online]. Available:
https://bluewaters.ncsa.illinois.edu/faq

[56] S. Jha, V. Formicola, C. D. Martino, M. Dalton, W. T. Kramer,
Z. Kalbarczyk, and R. K. Iyer, “Resiliency of HPC interconnects: A
case study of interconnect failures and recovery in Blue Waters,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–1, 2017.

[57] J. Zhang, B.-C. Seet, T.-T. Lie, and C. H. Foh, “Opportunities for
software-defined networking in smart grid,” in 2013 9th International
Conference on Information, Communications Signal Processing, Dec.
2013, pp. 1–5.

[58] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” in Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, ser. SIGCOMM ’13. New York, NY, USA: ACM,
2013. [Online]. Available: http://doi.acm.org/10.1145/2486001.2486019
pp. 3–14.

[59] SDN Architecture Overview, 1st ed., Open Networking Foundation, Dec.
2013.

[60] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[61] K. A. Stouffer, J. A. Falco, and K. A. Scarfone, “Sp 800-82. guide to
industrial control systems (ICS) security: Supervisory control and data
acquisition (SCADA) systems, distributed control systems (DCS), and
other control system configurations such as programmable logic con-
trollers (PLC),” National Institute of Standards & Technology, Gaithers-
burg, MD, United States, Tech. Rep., 2011.

[62] IEEE Standard for Electric Power Systems Communications-Distributed
Network Protocol (DNP3), IEEE Std. 1815-2012, Oct. 2012.

[63] “Modbus messaging on TCP/IP implementation guide v1.0b,” Idaho
National Laboratory, Tech. Rep., 2006.

79

[64] X. Dong, H. Lin, R. Tan, R. K. Iyer, and Z. Kalbarczyk, “Software-
defined networking for smart grid resilience: Opportunities and
challenges,” in Proceedings of the 1st ACM Workshop on Cyber-Physical
System Security, ser. CPSS ’15. New York, NY, USA: ACM, 2015.
[Online]. Available: http://doi.acm.org/10.1145/2732198.2732203 pp.
61–68.

[65] OpenFlow Switch Specification v1.5.1, Open Networking Foundation,
Mar. 2015.

[66] “Attacks - sdnsecurity.org,” accessed: 2018-06-18. [Online]. Available:
http://www.sdnsecurity.org/vulnerability/attacks/

[67] “TCPDUMP/LIBPCAP public repository,” accessed: 2018-06-18.
[Online]. Available: http://www.tcpdump.org

[68] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber at-
tack on the Ukrainian power grid,” Electricity Information Sharing and
Analysis Center (E-ISAC), Washington, DC, USA, Tech. Rep., 2016.

[69] H. Lin, “Detection and prevention of intrusions in power systems cyber-
physical infrastructure,” Ph.D. dissertation, University of Illinois at
Urbana-Champaign, Urbana, Illinois, 2017.

[70] M. Cheminod, L. Durante, L. Seno, F. Valenza, A. Valenzano, and
C. Zunino, “Leveraging SDN to improve security in industrial networks,”
in 2017 IEEE 13th International Workshop on Factory Communication
Systems (WFCS), May 2017, pp. 1–7.

[71] S. Shin and G. Gu, “Attacking software-defined networks: A first
feasibility study,” in Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2491185.2491220 pp. 165–166.

[72] L. Dridi and M. F. Zhani, “SDN-Guard: DoS attacks mitigation in
SDN networks,” in 2016 5th IEEE International Conference on Cloud
Networking (Cloudnet), Oct. 2016, pp. 212–217.

[73] P. Zhang, H. Wang, C. Hu, and C. Lin, “On denial of service attacks
in software defined networks,” IEEE Network, vol. 30, no. 6, pp. 28–33,
Nov. 2016.

[74] S. M. Mousavi and M. St-Hilaire, “Early detection of DDoS attacks
against SDN controllers,” in 2015 International Conference on Comput-
ing, Networking and Communications (ICNC), Feb. 2015, pp. 77–81.

80

[75] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking
(SDN) and distributed denial of service (DDoS) attacks in cloud com-
puting environments: A survey, some research issues, and challenges,”
IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 602–622,
2016.

[76] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, “Security in software
defined networks: A survey,” IEEE Communications Surveys Tutorials,
vol. 17, no. 4, pp. 2317–2346, 2015.

[77] B. E. Ujcich, U. Thakore, and W. H. Sanders, “Attain: An attack injec-
tion framework for software-defined networking,” in 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), June 2017, pp. 567–578.

[78] U. Ghosh, X. Dong, R. Tan, Z. Kalbarczyk, D. K. Yau, and
R. K. Iyer, “A simulation study on smart grid resilience under
software-defined networking controller failures,” in Proceedings of the
2Nd ACM International Workshop on Cyber-Physical System Security,
ser. CPSS ’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2899015.2899020 pp. 52–58.

81

APPENDIX A

FAULT INJECTION COMMANDS FOR
CRAY XE PLATFORM

The fault injector module of HPCArrow supports execution of arbitrary fail-

ures and restorations on link, connection, node and blade components of a

Cray XE machine with Gemini ASIC routers. Commands are executed on

a system management workstation (SMW) by an administrator. Fault in-

jection commands and their parameters are summarized in Table A.1, and

restoration commands are summarized in Table A.2. Note that all restoration

commands must be run as the ‘crayadm’ user on the SMW.

Table A.1: Fault Injection Commands for Cray XE Platform

Component(s) Command Comments

Link
Connection

xtmemio -w ::{gemini} {0x0006000128 | \
(link row << 22) | (link col << 19)} 2 0

{gemini}: Component name of targeted Gemini.
{link row} and {link col}: Row and column of link.
For example, a target link "c0-0c0s1g0l45" should be
specified as:
{gemini} = "c0-0c0s1g0"

{link row} = 4
{link col} = 5

For connection failures, the command must be repeated
for each link in the target connection.

Node xtnmi {node}

{node}: Component name of targeted node.
For example, {node} = "c0-0c0s3n2"

Note: Must be run as ‘crayadm’

Blade
rsh -l root {blade} "/opt/bin/i2c \
2:0x60/2=0x02,0x00"

{blade}: Component name of targeted blade.
For example, {blade} = "c0-0c0s3"

Table A.2: Component Restoration Commands

Component(s) Command Comments

Link xtwarmswap -s {link}, {link end} -p p0
{link}: Failed link to restore
{link end}: Other end of failed link to restore

Connection xtwarmswap -s {links} -p p0

{links}: Comma separated list of links
to restore from impacted connection.
Other ends of impacted links must also be
specified.

Node xtbootsys --reboot -L CNL0 {node}
{node}: Component name of node to restore.

Note: Requires an interactive terminal session.

Blade
Remove: xtwarmswap --force --remove {blade}
Swap: xtwarmswap --add {blade}
Boot: xtcli boot CNL0 {blade}

{blade}: Component name of blade to restore.
Remove, swap and boot commands must be
executed in sequence.

82

APPENDIX B

JYC SYSTEM MAP

JYC is a 96-node Cray XE/XK testbed at the National Center for Super-

computing Applications (NCSA). The machine consists of one cabinet (three

chassis) with 56 XE nodes, 28 XK nodes and 14 service nodes.

System components are referred to by their component names (cnames).

Component names are based on their physical locations within the system

and follow a hierarchical convention. Cabinets are referred to by their X and

Y position in the physical machine layout. Since JYC is a single cabinet

system, the cabinet name is simply c0-0. Chassis within each cabinet are

referred to by their vertical position, with c0 being the bottommost chassis

and c2 being to topmost chassis within a cabinet. Blades within each chassis

are referred to by their position from left to right, with s0 being the leftmost

blade and s7 being the rightmost blade. The two Gemini ASICs on each

blade are referred to by g0 and g1. Finally, the four nodes on each blade

are referred to by n0, n1, n2, and n3. Nodes n0 and n1 are connected to

Gemini g0, whereas nodes n2 and n3 are connected to Gemini g1. Figure B.1

demonstrates the layout and naming convention on JYC. Node identifiers

(NIDs) are also provided within node boxes. Examples of component names

mapped to NIDs are provided in Table B.1.

Table B.1: Example Component Names on JYC

Component/NID Component Name (cname)
Cabinet 0 c0-0

Chassis 1 in
Cabinet 0

c0-0c1

Blade 4 in
Chassis 1, Cabinet 0

c0-0c1s4

Node 55 c0-0c1s4n2

Gemini 0 in
Blade 4, Chassis 1, Cabinet 0

c0-0c1s4g0

83

8195

94

65

64

93

92

67

66

91

90

69

68

89

88

71

70

87

86

73

72

85

84

75

74

83

82

77

76

80

79

78

33

32

63

62

35

34

61

60

37

36

59

58

39

38

57

56

41

40

55

54

43

42

53

52

45

44

51

50

47

46

49

48

31

30

1

0

29

28

3

2

27

26

5

4

25

24

7

6

23

22

9

8

21

20

11

10

19

18

13

12

17

16

15

14

Service
Node

XE Node

XK Node

C
ha
ss
is
 0

C
ha
ss
is
 1

C
ha
ss
is
 2

Node 0

Node 1

Node 2

Node 3

B
la
de
 0

B
la
de
 1

B
la
de
 2

B
la
de
 3

B
la
de
 4

B
la
de
 5

B
la
de
 6

B
la
de
 7

Figure B.1: JYC system overview with node types and identifiers

84

APPENDIX C

APPLICATION SETS AND PARAMETERS

In order to study the impact of injected faults and recoveries across the entire

target system, we simultaneously launch a set of workloads for each experi-

ment. Launching workloads across the entire system allows us to identify fail-

ures that propagate or cascade through the system and impact applications

running further away from the injected component. Applications are chosen

such that each set has a mix of runtime frameworks, application sizes, and

overall system utilization. In our injection campaign, the HPCArrow work-

load generator is configured with eight unique application sets. Tables C.1

– C.8 define the following fields for their respective application sets:

• Application Name. For Charm++ applications, we distinguish be-

tween symmetric multiprocessing (SMP) and HugePages variants.

• Size, in terms of number of nodes and node types.

• Processes per node (PPN). Cray XE nodes support 32 simultaneous

processes/threads whereas Cray XK nodes support 16. When executing

on a combination of node types, the number of processes per node is

limited to the minimum number of processes supported by each node

type. Additionally, Charm++ SMP applications abstract processing

elements (PEs) from available processor cores. Effectively, each PE is

composed of multiple threads. For such applications, we define their

PPN as number of PEs× number of threads.

• Node Identifiers, describing the placement of applications within the

system. Application locations are also visualized in Figs. C.1 – C.8.

• Parameters, describing input files and parameter values for each ap-

plication.

85

Table C.1: Application Set 1 Configuration

Application Name Size PPN Node IDs Parameters

AWP-ODC 32 XE 16 32− 63
Default benchmark parameters
NX = NY = NX = 712

NPX = NPY = NPZ = 8

Kripke (HugePages) 8 XK 16 66− 69, 90− 93

NITER = 13

ZSET = 5:5:5

ZONES = 12,12,12

DLIST = 1:12,2:6,3:4,4:3,6:2,12:1

GLIST = 1:64,2:32,4:16,8:8,16:4,32:2,64:1

LEGENDRE = 9

LeanMD (HugePages) 8 XK 16 72− 75, 84− 87

dimX = dimY = dimZ = 16

Steps = 1900

FirstLBStep = 20

LBPeriod = 20

UPC-FT 4 XE 32 6, 7, 24, 25
Class B with MAX ITER = 21500

NX = 4

NY = 32

8195

94

65

64

93

92

67

66

91

90

69

68

89

88

71

70

87

86

73

72

85

84

75

74

83

82

77

76

80

79

78

33

32

63

62

35

34

61

60

37

36

59

58

39

38

57

56

41

40

55

54

43

42

53

52

45

44

51

50

47

46

49

48

31

30

1

0

29

28

3

2

27

26

5

4

25

24

7

6

23

22

9

8

21

20

11

10

19

18

13

12

17

16

15

14

Unused

AWP­ODC

Kripke

LeanMD

UPC­FT

Figure C.1: Application set 1 placement

86

Table C.2: Application Set 2 Configuration

Application Name Size PPN Node IDs Parameters

AMR (HugePages) 4 XE 32 2, 3, 28, 29

MAX DEPTH = 10

BLOCK SIZE = 8

ITERATIONS = 175

LB FREQ = 3

ARRAY DIM = 512

AMR (SMP) 32 XE 2× 16 32− 63

MAX DEPTH = 10

BLOCK SIZE = 8

ITERATIONS = 800

LB FREQ = 3

ARRAY DIM = 512

AWP-ODC 2 XE 32 15, 16
Default benchmark parameters
NX = NY = NX = 368

NPX = NPY = NPZ = 4

Kripke (HugePages) 4 XE 32 6, 7, 24, 25

NITER = 13

ZSET = 5:5:5

ZONES = 12,12,12

DLIST = 1:12,2:6,3:4,4:3,6:2,12:1

GLIST = 1:64,2:32,4:16,8:8,16:4,32:2,64:1

LEGENDRE = 9

LeanMD (HugePages) 4 XE 32 12, 13, 18, 19

dimX = dimY = dimZ = 16

Steps = 1775

FirstLBStep = 20

LBPeriod = 20

LeanMD (HugePages) 2 XE 32 11, 20

dimX = dimY = dimZ = 16

Steps = 950

FirstLBStep = 20

LBPeriod = 20

UPC-FT 4 XE, 28 XK 16 64− 95
Class B with MAX ITER = 21500

NX = 32

NY = 16

87

8195

94

65

64

93

92

67

66

91

90

69

68

89

88

71

70

87

86

73

72

85

84

75

74

83

82

77

76

80

79

78

33

32

63

62

35

34

61

60

37

36

59

58

39

38

57

56

41

40

55

54

43

42

53

52

45

44

51

50

47

46

49

48

31

30

1

0

29

28

3

2

27

26

5

4

25

24

7

6

23

22

9

8

21

20

11

10

19

18

13

12

17

16

15

14

Unused

AMR
(HugePages)

AMR
(SMP)

AWP­ODC

Kripke
(HugePages)

LeanMD
(HugePages)

LeanMD
(HugePages)

UPC­FT

Figure C.2: Application set 2 placement

88

Table C.3: Application Set 3 Configuration

Application Name Size PPN Node IDs Parameters

AMR (HugePages) 2 XE 32 60, 61

MAX DEPTH = 10

BLOCK SIZE = 8

ITERATIONS = 95

LB FREQ = 3

ARRAY DIM = 512

AWP-ODC 4 XK 16 74, 75, 84, 85
Default benchmark parameters
NX = NY = NX = 364

NPX = NPY = NPZ = 4

LeanMD (HugePages) 4 XE 32 6, 7, 24, 25

dimX = dimY = dimZ = 16

Steps = 1775

FirstLBStep = 20

LBPeriod = 20

UPC-FT 2 XE 32 16, 17
Class B with MAX ITER = 21500

NX = 2

NY = 32

8195

94

65

64

93

92

67

66

91

90

69

68

89

88

71

70

87

86

73

72

85

84

75

74

83

82

77

76

80

79

78

33

32

63

62

35

34

61

60

37

36

59

58

39

38

57

56

41

40

55

54

43

42

53

52

45

44

51

50

47

46

49

48

31

30

1

0

29

28

3

2

27

26

5

4

25

24

7

6

23

22

9

8

21

20

11

10

19

18

13

12

17

16

15

14

Unused

AMR
(HugePages)

AWP­ODC

 LeanMD
(HugePages)

UPC­FT

Figure C.3: Application set 3 placement

89

Table C.4: Application Set 4 Configuration

Application Name Size PPN Node IDs Parameters

AMR (HugePages) 2 XE 32 16, 17

MAX DEPTH = 10

BLOCK SIZE = 8

ITERATIONS = 95

LB FREQ = 3

ARRAY DIM = 512

AWP-ODC 4 XE, 28 XK 16 64− 95
Default benchmark parameters
NX = NY = NX = 712

NPX = NPY = NPZ = 8

Kripke (HugePages) 2 XE 32 16, 17

NITER = 13

ZSET = 4:4:4

ZONES = 12,12,12

DLIST = 1:12,2:6,3:4,4:3,6:2,12:1

GLIST = 1:64,2:32,4:16,8:8,16:4,32:2,64:1

LEGENDRE = 9

UPC-FT 8 XE 32 34− 37, 58− 61
Class B with MAX ITER = 21500

NX = 8

NY = 32

8195

94

65

64

93

92

67

66

91

90

69

68

89

88

71

70

87

86

73

72

85

84

75

74

83

82

77

76

80

79

78

33

32

63

62

35

34

61

60

37

36

59

58

39

38

57

56

41

40

55

54

43

42

53

52

45

44

51

50

47

46

49

48

31

30

1

0

29

28

3

2

27

26

5

4

25

24

7

6

23

22

9

8

21

20

11

10

19

18

13

12

17

16

15

14

Unused

AMR
(HugePages)

AWP­ODC

 Kripke
(HugePages)

UPC­FT

Figure C.4: Application set 4 placement

90

Table C.5: Application Set 5 Configuration

Application Name Size PPN Node IDs Parameters

AMR (SMP) 36 XE, 28 XK 1× 16 32− 95

MAX DEPTH = 10

BLOCK SIZE = 8

ITERATIONS = 850

LB FREQ = 3

ARRAY DIM = 512

AWP-ODC 2 XE 32 18, 19
Default benchmark parameters
NX = NY = NX = 368

NPX = NPY = NPZ = 4

UPC-FT 4 XE 32 6, 7, 24, 25
Class B with MAX ITER = 21500

NX = 4

NY = 32

8195

94

65

64

93

92

67

66

91

90

69

68

89

88

71

70

87

86

73

72

85

84

75

74

83

82

77

76

80

79

78

33

32

63

62

35

34

61

60

37

36

59

58

39

38

57

56

41

40

55

54

43

42

53

52

45

44

51

50

47

46

49

48

31

30

1

0

29

28

3

2

27

26

5

4

25

24

7

6

23

22

9

8

21

20

11

10

19

18

13

12

17

16

15

14

Unused

AMR
(SMP)

AWP­ODC

UPC­FT

Figure C.5: Application set 5 placement

91

Table C.6: Application Set 6 Configuration

Application Name Size PPN Node IDs Parameters

AMR (HugePages) 2 XE 2× 16 20, 21

MAX DEPTH = 10

BLOCK SIZE = 8

ITERATIONS = 95

LB FREQ = 3

ARRAY DIM = 512

Kripke (HugePages) 4 XE 32 2, 3, 28, 29

NITER = 13

ZSET = 5:5:5

ZONES = 12,12,12

DLIST = 1:12,2:6,3:4,4:3,6:2,12:1

GLIST = 1:64,2:32,4:16,8:8,16:4,32:2,64:1

LEGENDRE = 9

LeanMD (HugePages) 4 XE 32 40− 55

dimX = dimY = dimZ = 16

Steps = 1775

FirstLBStep = 20

LBPeriod = 20

MILC 16 XE 32 32− 39, 56− 63

NX = NY = NZ = NT = 32

Warmups = 0

Trajectories = 1

Iterations = 10000

MILC 2 XE 32 16, 17

NX = NY = NZ = NT = 16

Warmups = 0

Trajectories = 2

Iterations = 10000

NAMD (SMP) 4 XE 2× 16 6, 7, 24, 25 Input: stmv.4.namd
PSDNS 28 XK, 4 XE 16 64− 95 Dimensions: 512
PSDNS 4 XE 32 12, 13, 18, 19 Dimensions: 128

8195

94

65

64

93

92

67

66

91

90

69

68

89

88

71

70

87

86

73

72

85

84

75

74

83

82

77

76

80

79

78

33

32

63

62

35

34

61

60

37

36

59

58

39

38

57

56

41

40

55

54

43

42

53

52

45

44

51

50

47

46

49

48

31

30

1

0

29

28

3

2

27

26

5

4

25

24

7

6

23

22

9

8

21

20

11

10

19

18

13

12

17

16

15

14

Unused

AMR
(HugePages)

Kripke
(HugePages)

 LeanMD
(HugePages)

MILC

MILC

NAMD
(SMP)

PSDNS

PSDNS

Figure C.6: Application set 6 placement

92

Table C.7: Application Set 7 Configuration

Application Name Size PPN Node IDs Parameters

AMR (HugePages) 4 XE 32 12, 13, 18, 19

MAX DEPTH = 10

BLOCK SIZE = 8

ITERATIONS = 175

LB FREQ = 3

ARRAY DIM = 512

Kripke (HugePages) 8 XK 16 72− 75, 84− 87

NITER = 13

ZSET = 5:5:5

ZONES = 12,12,12

DLIST = 1:12,2:6,3:4,4:3,6:2,12:1

GLIST = 1:64,2:32,4:16,8:8,16:4,32:2,64:1

LEGENDRE = 9

LeanMD (HugePages) 8 XK 16 64− 67, 92− 95

dimX = dimY = dimZ = 16

Steps = 1900

FirstLBStep = 20

LBPeriod = 20

MILC 4 XE 32 2, 3, 28, 29

NX = NY = NZ = NT = 16

Warmups = 0

Trajectories = 4

Iterations = 10000

NAMD (SMP) 16 XE 2× 16 32− 39, 56− 63 Input: stmv.16.namd
PSDNS 8 XE 32 44− 51 Dimensions: 256

8195

94

65

64

93

92

67

66

91

90

69

68

89

88

71

70

87

86

73

72

85

84

75

74

83

82

77

76

80

79

78

33

32

63

62

35

34

61

60

37

36

59

58

39

38

57

56

41

40

55

54

43

42

53

52

45

44

51

50

47

46

49

48

31

30

1

0

29

28

3

2

27

26

5

4

25

24

7

6

23

22

9

8

21

20

11

10

19

18

13

12

17

16

15

14

Unused

AMR
(HugePages)

Kripke
(HugePages)

 LeanMD
(HugePages)

MILC

NAMD
(SMP)

PSDNS

Figure C.7: Application set 7 placement

93

Table C.8: Application Set 8 Configuration

Application Name Size PPN Node IDs Parameters

AMR (HugePages) 4 XK 16 64, 65, 94, 95

MAX DEPTH = 10

BLOCK SIZE = 8

ITERATIONS = 105

LB FREQ = 3

ARRAY DIM = 512

Kripke (HugePages) 4 XK 16 70, 71, 88, 89

NITER = 14

ZSET = 4:4:4

ZONES = 12,12,12

DLIST = 1:12,2:6,3:4,4:3,6:2,12:1

GLIST = 1:64,2:32,4:16,8:8,16:4,32:2,64:1

LEGENDRE = 9

LeanMD (HugePages) 2 XE 32 48, 49

dimX = dimY = dimZ = 16

Steps = 950

FirstLBStep = 20

LBPeriod = 20

MILC 4 XE 32 78− 81

NX = NY = NZ = NT = 16

Warmups = 0

Trajectories = 4

Iterations = 10000

NAMD (SMP) 4 XE 2× 16 36, 37, 58, 59 Input: stmv.4.namd
PSDNS 4 XE 32 42, 43, 52, 53 Dimensions: 128

8195

94

65

64

93

92

67

66

91

90

69

68

89

88

71

70

87

86

73

72

85

84

75

74

83

82

77

76

80

79

78

33

32

63

62

35

34

61

60

37

36

59

58

39

38

57

56

41

40

55

54

43

42

53

52

45

44

51

50

47

46

49

48

31

30

1

0

29

28

3

2

27

26

5

4

25

24

7

6

23

22

9

8

21

20

11

10

19

18

13

12

17

16

15

14

Unused

AMR
(HugePages)

Kripke
(HugePages)

 LeanMD
(HugePages)

MILC

NAMD
(SMP)

PSDNS

Figure C.8: Application set 8 placement

94

