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ABSTRACT

Sparse matrix-vector multiplication, SpMV, can be a performance bottle-

neck in iterative solvers and algebraic eigenvalue problems. In this thesis,

we present our sparse matrix compressed chunk storage format (CCF) and

SpMV CCF kernel that realizes high performance on Intel Xeon multicore

and Phi processors for unstructured matrices. CCF kernel exploits the prop-

erties of CCF to enhance load balancing and SIMD efficiency. Moreover, we

present the CCF auto-tuner that selects the most effective parameters and

the SpMV kernel to achieve the highest possible performance that CCF can

attain on a target architecture. Using 151 unstructured matrices from 38

application areas, we compare the performance of the CCF kernel to that of

MKL 2018u1 SpMV CSR, MKL 2018u2 Inspector-executor SpMV CSR, and

Compressed Vectorization-oriented sparse Row (CVR) SpMV. We execute

the kernels on a dual 24-core Skylake Xeon Platinum 8160 and a 68-core

KNL Xeon Phi 7250. Executing on the dual 24-core Skylake Xeon Platinum

8160, and compared to MKL SpMV CSR, our kernel achieves superior execu-

tion throughputs for 135 matrices (89%) with an average speed improvement

of 2.3x and maximum speed improvement of 27.5x. Our kernel outperforms

MKL Inspector-executor SpMV CSR for 109 matrices (73%) with an aver-

age speed improvement of 1.5x and maximum speed improvement of 3.0x.

Moreover, SpMV CCF outperforms SpMV CVR for 81% of the matrices with

an average speed improvement of 1.8x and maximum speed improvement of

4.2x. Executing on the 68-core KNL Xeon Phi 7250, CCF achieves high aver-

age and maximum speed improvements compared to the other three kernels

but for slightly smaller percentages of matrices. Lastly, we show that auto-

tuning CCF parameters improves the performance for more than 50 matrices

compared to the default CCF on Skylake and KNL with an average speed

improvement of 1.2x.
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CHAPTER 1

INTRODUCTION

1.1 Sparse Matrix-Vector Multiply Overview

Sparse matrix-vector multiplication (SpMV) is a fundamental performance

bottleneck in solving sparse linear systems and eigenvalue problems. In

SpMV, the operation y=A*x+y is performed, where A is a sparse matrix

and x, y are dense vectors. Sparse matrices use special data structures that

store only the nonzero elements and hence eliminate unnecessary storage

and computation. This leads to low computational intensity and poor per-

formance. Moreover, the emergence of modern processors with high thread

count and wide vector units has introduced new performance bottlenecks

that any new storage format must address and mitigate to achieve signifi-

cant improvement in performance. These performance bottlenecks are: (a)

low utilization of vector units (low SIMD efficiency), (b) load imbalance, (c)

irregular memory access pattern, and (d) low utilization of thread resources.

1.2 Common Storage Formats

Compressed Sparse Row (CSR) is a general-purpose storage format that is

commonly used due to its compact memory requirements. Parallel and vec-

torized CSR SpMV kernels divide the rows evenly among threads and each

thread processes its assigned rows in row-major order. Each row is processed

by a single vector unit. Figure 1.1 illustrates how a row is processed by

an 8-lane vector unit. A CSR kernel can suffer from low SIMD efficiency

(figure 1.2) and load imbalance (figure 1.3) when it is parallelized and vec-

torized. Low SIMD efficiency is caused by processing a row with the number

of nonzero elements less than the SIMD width (SIMDW, the number of avail-
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Figure 1.1: SpMV CSR: processing of a single row. SIMDW=8.

Figure 1.2: CSR bottlenecks: SIMD efficiency.

able lanes in the vector unit). Dividing rows evenly between threads can lead

to load imbalance when the number of nonzero elements per row (nnzr) is

irregular across rows. In such a case, threads will have different numbers of

nonzero elements to process.

The ELLPACK [1] (or ELL) format is particularly well suited to vector ar-

chitectures. ELL converts an H x W matrix with a maximum nnzr of M into

a dense matrix of H x M by padding zeros to shorter rows. ELL uses transpo-

sition and zero-padding to improve SIMD efficiency. A vectorized ELL kernel

loads elements from sequential rows, performs vector fused-multiply add, and

accumulates to a temporary vector. With transposition (or column-major or-

dering), ELL eliminates the need for the reduction operation (needed by a

CSR kernel at the end of each row processing, see figure 1.1) since each en-

try of the temporary vector has the final value for a different y element (see

2



Figure 1.3: CSR bottlenecks: load imbalance. In the case of two threads, t1
has more nonzero elements to deal with than t0. In the case of four
threads, t2 and t3 have more nonzero elements than t0 and t1.

Figure 1.4: Transforming a matrix into ELLPACK format using
zero-padding and transposition.

figure 1.4). The fundamental challenge in ELL is the excessive zero-padding

when a matrix has rows with irregular nnzr or when few rows are very long.

Thus, many storage formats such as [2, 3] were developed trying to process

the matrix in a transposed form with minimal zero-padding. Nevertheless,

these formats have an inescapable zero-padding overhead for unstructured

matrices.

1.3 Unstructured Matrices

Performing the SpMV computation on unstructured matrices is a challenging

problem especially as large and highly irregular sparse matrices (scale-free

matrices) are emerging from many application areas such as data analytics,

social networks, and transportation networks [4, 5, 6]. For scientific and

engineering unstructured matrices, [2, 3, 7, 8] proposed formats to achieve

high performance. Moreover, several formats were proposed to deal with

scale-free matrices such as [6, 9]. There is no single storage format that can

3



achieve the best performance for every unstructured matrix.

Xie et al. devised the Compressed Vectorization-oriented sparse Row

(CVR) [9] storage format and showed that SpMV CVR achieves good speed

improvements for unstructured matrices compared to five kernels: Intel MKL

SpMV CSR, Intel MKL SpMV CSR(I) [10], and kernels presented in [8], [7],

and [6]. SpMV CVR processes each row in the sparse matrix by a single SIMD

lane to improve SIMD efficiency and data locality. SpMV CVR replaces the

data overhead of zero-padding by control overhead logic that keeps track of

when a row accumulation is completed and the index in the output vector

to which it will be written. Moreover, SpMV CVR allows work stealing (in

rare cases) between the lanes of vector units to enhance load balancing.

1.4 Compressed Chunk Format (CCF) and CCF

Auto-tuner Overview

In 2013, a storage format advisor which takes a sparse matrix as an input

and identifies the best storage format to use for executing an auto-tuned

SpMV on NVIDIA GPUs was presented in [11]. Using a similar approach,

Intel released in 2015 the Math Kernel Library Inspector-executor (MKL I-e)

Sparse BLAS Routines. Users call a storage advisor subroutine which stores

the matrix in Intel classified data structures. Users then call an auto-tuner

subroutine which delivers an optimized SpMV kernel for the matrix stored

in the structures delivered by the storage advisor. In the last step, users

call the optimized SpMV kernel delivered by the auto-tuner to perform the

SpMV computation.

Independently, we have been working to develop an automatic storage for-

mat advisor/auto-tuning software to deliver high performance SpMV kernels

for Intel Xeon processors including Intel Xeon Phi. As a first step, we de-

signed and developed our sparse matrix compressed chunk storage format

(CCF) and its SpMV CCF kernel. CCF storage format and SpMV CCF

enhance load balancing and SIMD efficiency for unstructured matrices. CCF

divides the matrix into chunks of rows. A chunk can have multiple rows of

the same length or a single row. SpMV CCF works as a hybrid kernel that

uses ELLPACK to process multi-row chunks and CSR to process single-row

chunks. This technique enhances SIMD efficiency and suppresses the need for

4



zero-padding. Load balancing is achieved by dividing the nonzero elements

of the matrix evenly between the execution threads and partitioning of very

long rows on several threads. CCF has two parameters that can be tuned for

a given matrix and a given architecture to achieve higher performance. CCF

auto-tuner software automatically tries all the possible combinations of the

parameters and provides the optimal parameter values that would generate

the highest possible performance that can be achieved by the SpMV CCF

kernel on the given architecture.

For performance evaluation, we use 151 unstructured matrices from 38

application areas and two platforms: a dual 24-core Skylake Intel Xeon

Platinum 8160 and a 68-core KNL Intel Xeon Phi 7250. We compare the

performance of our SpMV CCF kernel with Intel MKL SpMV CSR, Intel

MKL Inspector-executor SpMV CSR, and SpMV CVR kernels. Our results

show that CCF significantly outperforms MKL CSR kernels and the CVR

kernel for a high percentage of matrices on both platforms. We show that

auto-tuning CCF improves the performance of CCF by an average speed im-

provement of 1.2x on both platforms. Lastly, the dual 24-core Skylake Intel

Xeon Platinum 8160 is faster than the 68-core KNL Intel Xeon Phi 7250 for

executing SpMV.

1.5 Contributions and Organization

In this thesis, we make the following contributions:

• We propose a novel storage format, CCF, that improves the SIMD

efficiency and load balancing for unstructured matrices.

• We present our highly optimized SpMV kernel that benefits from the

properties of CCF format to enhance SIMD efficiency and load balanc-

ing.

• We propose an auto-tuner software for CCF that further improves the

performance of CCF.

• We compare the performance of our SpMV CCF kernel with the lat-

est MKL SpMV CSR kernels and the SpMV CVR kernel using 151

unstructured matrices on the latest Intel HPC platforms. We show
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that SpMV CCF outperforms the other three SpMV kernels for a high

percentage of matrices with high average and maximum speed improve-

ments. We also show that the auto-tuned CCF kernel is superior to

the other formats on the dual Skylake.

This thesis is organized as follows. In chapter 2, we present related work. In

chapter 3, we introduce our sparse matrix compressed chunk storage format

(CCF) and our SpMV CCF kernel. In chapter 4, we analyze the performance

of CCF. In chapter 5, we compare the performance of our SpMV CCF kernel

to that of MKL 2018u1 SpMV CSR, MKL 2018u1 Inspector-executor SpMV

CSR, and SpMV CVR. In chapter 6, we present CCF auto-tuner. We present

our conclusions in chapter 7.

6



CHAPTER 2

RELATED WORK

The introduction of multicore, integrated many-core, and graphics processing

units (GPU) triggered a substantial amount of research on development and

evaluation of SpMV algorithms for such platforms [12, 13, 14, 2, 15, 16].

Matrix blocking is a widely used optimization technique for SpMV on

CPUs [12, 13, 15, 17]. This is because matrices of block sub-structures are

encountered in important applications [18]. Furthermore, blocking improves

the SIMD efficiency [7] and data locality [17, 19] of the SpMV computation

and reduces bandwidth requirement [18, 20].

For wide SIMD architectures, the ELLPACK, ELL [1] storage format is an

attractive choice for exploiting vector units efficiently. ELLPACK uses zero-

padding and transposition to improve SIMD efficiency. However, performing

SpMV for unstructured matrices suffers from significant overhead because of

the use of excessive zero-padding. Monakov et al. [21] devised the Sliced

ELLPACK format that divides the matrix into slices and packs each slice

into ELLPACK format to reduce zero-padding. Although Sliced ELLPACK

reduces zero-padding significantly compared to ELL, matrices with irregular

nonzero elements per row (nnzr) can still suffer from excessive zero-padding

within slices.

SELL-C-σ [3] and ELLPACK Sparse Block (ESB) [7] are variants of Sliced

ELLPACK. Both formats divide the matrix into slices and pack each slice into

ELLPACK format. Both kernels sort rows by the number of nonzero elements

per row (nnzr) in descending order within a finite window. Row sorting is

performed before creating slices to help increase the nonzero element intensity

in slices and reduce the number of padded zeros. The number of rows per slice

and the number of rows per window are tunable parameters. ESB replaces

zero-padding in a slice with a bit array that marks nonzero element positions

inside the slice. Different flavors of load balancers are studied in [7].

Liu and Vinter [8] proposed the Compressed Sparse Row 5 (CSR5) storage
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format that divides the matrix into tiles with fixed height and width to

improve load balancing and SIMD efficiency. Rows in tiles are stored and

processed in column-major order. A row can span multiple columns in a tile

or multiple tiles. A column can have elements from multiple consecutive rows.

CSR5 redesigned a segmented sum algorithm with wider SIMD utilization

[22]. Tile height and width are tunable parameters.

Vectorized hybrid COO+CSR (VHCC) [6] is designed to improve the per-

formance of highly unstructured scale-free matrices on the Xeon Phi architec-

ture. VHCC employs a 2D jagged partitioning method, tiling, and efficient

prefix sum computations to achieve high performance.

Compressed Vectorization-oriented sparse Row (CVR) [9] processes each

row of the matrix using a single lane in the vector unit. Once the row in a

SIMD lane has been processed, the next non-empty row in a matrix would

be processed. When all rows are added, CVR steals nonzero elements from

SIMD lanes that have more elements and supplies them to shorter lanes

to improve load balancing. CVR has a structure called record that keeps

track of when a row accumulation is completed and the index in the output

vector to which it will be written. Moreover, CVR incurs low pre-processing

overhead for scale-free matrices.
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CHAPTER 3

THE SPARSE MATRIX COMPRESSED
CHUNK STORAGE FORMAT

3.1 Mapping a Sparse Matrix into the Compressed

Chunk Storage Format, CCF

CCF is designed for use when executing SpMV on multi/many core vector

processors and aims at enhancing load balancing and SIMD efficiency. To

store a matrix in CCF for a given processor and runtime system, the values

of the following parameters are used before kernel execution:

1. The number of nonzero elements in the matrix, NNZ.

2. The number of threads that will be used to perform SpMV, T.

3. Vector units’ width in cores, SIMDW.

CCF groups rows of a matrix in the following three-hierarchical collections:

1. A “set” is a collection of consecutive rows assigned for processing by

a single thread. The NNZ elements of the matrix are divided equally

between sets. A set is made of a collection of bins.

2. A “bin” is a collection of rows that belong to the same set and have the

same number of nonzero elements per row, nnzr. A bin is a collection

of chunks.

3. A “chunk” is a collection of rows that belong to the same set and bin

and has the same nnzr for all rows. The maximum number of rows in

a chunk equals to SIMDW.

The following algorithm stores a matrix in CCF:

1. Create T sets of matrix rows. The number of nonzero elements in each

set is NNZ/T.
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2. In each set, sort the rows in ascending order based on the number of

nonzero elements per row. Rows with the same nnzr are assigned to a

bin of rows.

3. In each bin, the collection of the first SIMDW rows forms the first chunk

and the second SIMDW rows form the second chunk. This repeats until

the number of rows in a bin is less than SIMDW. We refer to each row

in such a bin as a “tail” row. For tail rows:

(a) If the nnzr is less than or equal to SIMDW, then accumulate these

rows in a new chunk.

(b) If the nnzr is greater than SIMDW, then accumulate each row in

a new chunk. That is, create single-row chunks.

4. Nonzero matrix elements in a multi-row chunk are reordered. CCF

stores the first element of the second row after the first element of the

first row and the first element of the third row after the first element

of the second row. This repeats until all the first elements of rows

are stored sequentially in “the first elements sequence”. The same

reordering technique is used for the second elements of rows and CCF

stores “the second elements sequence” sequentially following the “the

first elements sequence”. This repeats for “the third elements sequence”

and the remaining elements sequences until all elements in a chunk are

stored using this ordering. In case there is a row with nnzr greater

than NNZ/T, CCF divides this row into multiple parts each of length

NNZ/T. Each part is assigned to a single set and a single thread.

Figure 3.1 demonstrates the decomposition of a matrix into chunks. Figure

3.2 shows an example matrix, A, in its sparse and compressed forms. Figure

3.3 shows the steps to map A into CCF on a platform using two threads and

SIMDW =8.

3.2 CCF Data Structures

The following are the data structures used in CCF storage format:

1. Values Vector. This vector stores the sparse matrix nonzero elements

in their final order after performing rows sorting to construct chunks of
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Figure 3.1: Decomposing a matrix into chunks.

Figure 3.2: Matrix A.

each set and performing nonzero elements reordering to build elements

sequences inside chunks.

2. Columns Vector. This vector stores the column index for each nonzero

element of the sparse matrix. The same index is used to obtain a

nonzero element from Values Vector and its actual column index from

the Columns Vector. The column index of a nonzero element maps to

the proper x vector element that the kernel multiplies with this nonzero

element.

3. Y Mapping Vector. This vector maps the sorted row index to its row

11



Figure 3.3: Mapping matrix A into CCF storage format.

index in the output y vector.

4. Chunks Information Vector. Each entry of this vector is composed of

the following values:

(a) Number of rows in a chunk. The maximum number of rows in a

chunk is SIMDW.

(b) Row length of all rows in the chunk. All rows of any chunk must

have the same length.

(c) Start input index, which is the index of the first nonzero element

of the chunk in the Values Vector.

(d) “Are rows in this chunk contiguous?” This indicates whether the

rows of the chunk are contiguous or there are gaps in their indices.

(e) Start y index. This value refers to either the start row index in

the Y Mapping Vector in case that the rows are not contiguous

or start row index in the actual y vector in case that the rows are

contiguous.

5. Sets Pointer. This points to the first chunk index of each set in the

Chunks Information Vector.
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3.3 SpMV CCF Kernel Description

The SpMV CCF kernel uses a single thread to process one set of rows. A

single thread processes chunks of a set in sequential order. To process a

multi-row chunk, a thread loads elements of the first elements sequence from

the Values Vector and gathers the corresponding x vector elements by using

the actual column indices loaded from the Columns Vector (indirect memory

access of vector x). The thread multiplies the elements of the first elements

sequence by the x vector elements and accumulates the results in an accu-

mulation vector. Next, the thread loads the elements of the second elements

sequence from Values Vector and collects the corresponding x vector elements

by using the actual column indices loaded from the Columns Vector (indirect

memory access of vector x). The thread multiplies the elements of the second

elements sequence by the x vector elements and accumulates the results in

an accumulation vector. The SpMV CCF kernel repeats until all elements

sequences in a chunk are processed. If rows are contiguous in the chunk, the

kernel stores the temporary accumulation vector elements directly into the y

vector. If rows are not contiguous, the kernel loads the actual y indices from

the Y Mapping Vector and uses them to scatter the temporary accumulation

vector elements to their actual y vector values. Figure 3.4 is a high-level

illustration of processing a multi-row chunk by SpMV CCF.

If a chunk has a single row, SpMV CCF processes the row completely

and stores the result into the y vector. Figure 1.1 illustrates processing of a

single-row chunk by SpMV CCF.

3.4 CCF Performance Discussion

CCF enhances the SIMD efficiency by grouping rows with the same nnzr in

a single chunk. The formation of chunks is the fundamental concept in CCF

design. The intuition behind this design is to create chunks with SIMDW

of rows (or as close as possible to SIMDW). This enhances the utilization

of the vector units and eliminates the reduce-add vector instructions needed

at the end of each row processing in the generic SpMV CSR kernel process-

ing. Figure 1.1 shows how SpMV CCF processes a single-row chunk. It is

the same way the SpMV CSR kernel processes rows. SpMV CCF does not
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Figure 3.4: High-level graphical illustration of SpMV CCF: processing a
multi-row chunk.

need the reduce-add instruction for multi-row chunks because the final vector

has results for different rows (figure 3.4). Furthermore, grouping rows with

the same nnzr helps suppress the need for padding zeros or using mask bit

array and masked vector instructions as is done for matrices stored in the

ELLPACK Sparse Block (ESB) storage format introduced in [7].

Collecting rows with the same nnzr in a chunk is the default transformation

of CCF during the storage format preparation. However, when the number of

tail rows of a bin is less than SIMDW and the nnzr is large, processing one row

at a time utilizes vector units more efficiently than collecting these rows in a

chunk and processing multiple elements from different rows simultaneously.

As a heuristic, we use SIMDW nnzr as a threshold to identify long rows,

however this is a tunable parameter.

Load balancing is achieved by two techniques. The first is to divide the

nonzero elements of the matrix evenly between threads. The second is used

when processing very long rows. The nnzr for such rows exceeds NNZ/T and

hence the kernel uses multiple threads instead of a single thread. This is the
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only case for which a row is processed by more than a single thread in SpMV

CCF. If a matrix has a single very long row, processing this row by a single

thread will dominate the execution time and any improvement to the kernel

requires reducing the processing time of this row.

Moreover, sorting rows within the set boundaries helps avoid the false

sharing [23] problem that can occur when threads store results to the y vector.

If all the rows of a matrix are sorted without using sets (sorting across the

entire matrix), there is a possibility that threads on different cores write

to different y elements that belong to the same cache block. In this case,

unnecessary cache coherency messages would hurt the performance. Sets

represent safeguards that divide the matrix into non-overlapping y vector

regions. Thus, no false share will occur because each thread writes to its

designated region of the y vector that does not intersect with any other

thread’s region.
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CHAPTER 4

EVALUATION: PERFORMANCE
BREAKDOWN

In this chapter, we analyze all the techniques used to achieve high perfor-

mance in CCF. We study four incremental versions of CCF; each version

has one more technique than its predecessor. In chapter 5, we compare the

performance of SpMV CCF with three SpMV formats on two Intel platforms.

4.1 Methodology

4.1.1 CCF Incremental Versions

Table 4.1 shows CCF incremental versions along with the techniques used

in each version. To study the SIMD efficiency, we manually instrumented

the CSR, CCF0, and CCF1 kernels to count the number of vector arithmetic

(fused multiply-add and reduce-add) operations. Intuitively, reducing the

number of vector operations means higher SIMD efficiency. To verify load

balancing improvements, we measured the execution time of each thread in

each kernel and compared it to longest execution time of all threads.

We compare the performance of CSR, CCF0, and CCF1 to show the ef-

fectiveness of the SIMD efficiency enhancement techniques used in CCF.

Moreover, we compare the performance of CCF1, CCF2, and CCF to show

the effectiveness of the load balancing techniques used in CCF. Summary

tables that compare the performance of each incremental version and the

CSR kernel are provided in the comparison sections (4.2, 4.3, 4.4, and 4.5)

to show the performance benefits achieved by each technique.
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Table 4.1: CCF incremental versions.

Technique Optimization Target
CCF0 Groups and processes rows in chunks (core functionality of CCF) SIMD efficiency
CCF1 CCF0 + processes long tail rows using CSR SIMD efficiency
CCF2 CCF1 + divides nonzero elements evenly across threads Load balancing
CCF CCF2 + partitions very long rows Load balancing

4.1.2 Platform

We use a single node dual 24-core Skylake Intel Xeon Platinum (table 5.1)

and one thread per core (48 threads). This choice of threads is sufficient

to analyze SpMV CCF performance; however, the maximum performance

of CSR and CCF might be attained by using different thread count. We

implemented the CSR kernel using AVX512 Intrinsics. The initialization

of the CSR vectors on the dual Skylake is NUMA-aware. We manually

instrumented CSR and all CCF incremental kernels to count the number of

vector operations and time the execution of threads.

4.1.3 Test Matrices

We use a test set of 151 unstructured sparse matrices taken from the Uni-

versity of Florida collection [24] and Stanford Network Analysis Platform

(SNAP) [25]. The matrices cover 38 scientific and engineering applications.

Our test set includes the unstructured matrices used in the Intel SpMV

benchmark [26] and all the matrices used by Xie et. al [9]. The appendix

lists all 151 matrices and some of their characteristics.

4.1.4 Matrices Classification

Figure 4.1 shows our hierarchical classification of our set of matrices.

The HPC matrices are from scientific and engineering applications and are

regular in nature (i.e. the distribution of the nonzero elements is regular

and the nnzr for each row is similar) while the scale-free matrices are from

more practical applications such as social networking, data analytics, and

transportation [4, 5, 6]. These matrices are highly irregular [6]. The same-

nnzr matrices have the same nnzr for every row in the matrix. These matrices

exemplify the best sample to show how ELLPACK-based formats such as
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Figure 4.1: Hierarchical classification of the matrices using a dual 24-core
Skylake with 114 MB cache.

Table 4.2: CSR vectors along with their sizes in bytes.

Vector Size in bytes
Nonzero elements NNZ x 8
Column index NNZ x 4
Row Index (NR+1) x 4
X vector NC x 8
Y vector NR x 8
Approx. Total size 12NNZ + 12NR + 8NC

CCF improve the SIMD efficiency compared to CSR.

We use the CSR data structure to express the approximate required mem-

ory for an unstructured matrix (see table 4.2). The nonzero elements in the

matrix need to be transferred to the cores before being processed. If the x

and y vectors and other auxiliary data fit the cache and incur no memory

traffic, the SpMV kernel would be bounded by streaming the nonzero ele-

ments and the column indices. Therefore, the achieved performance depends

significantly on whether these two data structures reside in the very fast

cache or need to be streamed from the slower memory.

Using CSR data structures, we define the following classes of matrices:

• Cache-resident matrices: All CSR data structures for these matrices fit

in the cache (12NNZ + 12NR + 8NC <= cache size).

• Partially-cache-resident matrices: The data structures representing such

matrices partially fit in the cache. This occurs when the total size of

the CSR data structures is greater than the cache size but the size of

summation of the sizes of the column index, x, y, and row index is less

than the cache size.
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Table 4.3: Comparing the performance of CCF0 and CSR on Skylake.

#(%) of matrices Max Avg.
CCF0 faster than CSR 55(36%) 2.3x 1.4x
CCF0 same as CSR 48(32%) - -
CSR faster than CCF0 48(32%) 2.2x 1.2x

• DRAM-resident matrices: For these matrices neither the nonzero ele-

ments vector nor the column index vector fits in the cache. The per-

formance of these matrices is memory bandwidth bound and is charac-

terized as follows:

– Flop-to-byte-ratio = 2 (add and multiply) / 12 bytes = 1/6. This

assumes that the x and y vectors and other auxiliary data incur

no memory traffic.

– Maximum possible GFLOP/s = Flop-to-byte-ratio x Maximum

memory bandwidth.

The dual 24-core Skylake has a total cache size of 114 MB (48 MB L2

cache + 66 MB L3 non-inclusive cache) and a maximum theoretical memory

bandwidth of 240 GB/s.

4.2 CCF0 vs. CSR

CCF0 improves the SIMD efficiency by grouping rows with the same nnzr

in a single chunk. CCF0 processes the rows of each chunk in column-major

order like ELLPACK but without using zero-padding. Table 4.3 shows a

comparison between CCF0 and CSR. Each kernel outperforms the other for

almost the same percentages of matrices. This indicates that each kernel is

effective for different groups of matrices.

4.2.1 HPC Matrices

To study the effectiveness of CCF0, we use the 12 same-nnzr matrices. The

chunks created for these matrices always have SIMDW rows and the workload

of all threads is balanced. Table A.1 in the appendix lists these 12 matrices

along with some of their characteristics. Figure 4.2 shows that CCF0 reduces
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Figure 4.2: Speed improvement of CCF0 compared to CSR and the
percentage of CCF0 vector operations compared to CSR vector operations
for the 12 same-nnzr matrices.

the number of vector operations and improves the performance for all the

matrices in this group.

For HPC cache-resident matrices, we observe that there is a relation be-

tween the reduction in the vector operations and the achieved performance

improvement of CCF0 compared to CSR. For the 33 matrices for which

CCF0 outperforms CSR, CCF0 always reduces the number of vector oper-

ations compared to CSR. This can be clearly noticed for the matrices with

small mean nnzr. Table 4.4 lists 8 matrices with mean nnzr less than 8. Fig-

ure 4.3 shows the comparison between performance and the vector operation

percentages of CSR and CCF0 for these matrices.

On the other hand, CSR is faster than CCF0 either when the numbers of

vector operations for the two kernels are close or when CCF0 executes many

more vector operations. Table 4.5 shows five cache-resident matrices for

which CCF0 achieves the lowest compared CCF0. These matrices have high

mean and standard deviation nnzr. Figure 4.4 shows the speed improvement

of CSR compared to CCF0 and the percentage of CCF0 vector operations

compared to CSR.

For HPC partially-cache-resident and the HPC DRAM-resident matrices,

we observe that the performances of CCF0 and CSR are close to each other

for all the matrices.

20



Table 4.4: An example of cache-resident matrices with small mean nnzr
(mean nnzr <8).

Matrix NNZ NR NC Mean nnzr SD nnzr Max nnzr
Raj1 1,302,464 263,743 263,743 4.9 88.3 40,468
darcy003 2,101,242 389,874 389,874 5.4 2 7
scircuit 958,936 170,998 170,998 5.6 4.4 353
ASIC 320ks 1,827,807 321,671 321,671 5.7 7.9 412
Economics 1,273,389 206,500 206,500 6.2 4.4 44
helm2d03 2,741,935 392,257 392,257 7 0.1 9
tmt sym 5,080,961 726,713 726,713 7 1 9
hvdc2 1,347,273 189,860 189,860 7.1 3.8 60

Table 4.5: Top five HPC cache-resident matrices for which CSR is faster
than CCF0.

Matrix NNZ NR NC Mean nnzr SD nnzr Max nnzr
std1 Jac3 1,455,848 21,982 21,982 66.2 169.3 1,030
std1 Jac2 1,248,731 21,982 21,982 56.8 145.6 898
crankseg 2 7,106,348 63,838 63,838 111.3 108.5 3,423
appu 1,853,104 14,000 14,000 132.4 36.5 294
nd6k 6,897,316 18,000 18,000 383.2 89.2 514

4.2.2 Scale-free Matrices

For scale-free matrices, CSR is faster than CCF0 for 20 matrices with an

average speed improvement of 1.2x (maximum 1.6x). There is no correla-

tion between the mean nnzr, matrix size, ratio of CCF0 vector operations

to CSR vector operations, and the delivered performance; these matrices are

highly irregular. For example, matrix road usa mean nnzr is 2.4 and the

maximum nnzr is 9. Theoretically, this matrix is a potential target of CCF0

to improve SIMD efficiency and hence performance. The first part of the

hypothesis is correct; CCF0 eliminates 85% of the CSR vector operations.

However, CCF0 performs slower than CSR; CSR is 1.6x times faster than

CCF0. We investigated this issue and found out that sorting rows in a huge

sorting window (i.e. sorting within a set per thread) for highly irregular ma-

trices achieves low performance for some matrices. Table 4.6 shows profiling

information using “perf” tool [27] for the cache traffic when using CSR and

CCF0. These counters are collected for the whole program execution with

1000 times SpMV kernel runs. CSR L1 dcache load hits are 3.2x higher than

CCF0, which means that CSR has better L1 data locality than CCF0. In
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Figure 4.3: HPC matrices with small mean nnzr. CCF0 significantly
reduces the number of vector operations and improves the performance.

Table 4.6: Profiling counters for road usa matrix using CSR and CCF0 (in
billions).

Performance Counter CSR CCF0
L1 dcache load hits 372.4 115.6
L1 dcache load misses 30.8 47.7
LLC load hits 4.5 17.0
LLC load misses 3.1 12.8

chapter 6, we show that increasing the number of sets per thread improves

the performance of this matrix (see table 6.1).

4.3 CCF1 vs. CCF0

CCF1 tries to improve the SIMD efficiency of CCF0 by using a hybrid ex-

ecution model for the tail rows of each bin. The tail rows can be grouped

in a single chunk or separated into single-row chunks based on their length

(nnzr). Table 4.7 shows a summary comparison between CCF1 and CSR. On

comparing with table 4.3, one sees that CCF1 increased the number of ma-

trices for which CCF is faster than CSR, and reduced the number of matrices
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Figure 4.4: The five HPC matrices for which CCF0 achieves the lowest
compared to CSR.

Table 4.7: Comparing the performance of CCF1 and CSR on Skylake.

#(%) of matrices Max Avg.
CCF1 faster than CSR 79(52%) 2.3x 1.3x
CCF1 same as CSR 47 (31%) - -
CSR faster than CCF1 25 (17%) 1.4x 1.1x

for which CCF is slower than CSR.

4.3.1 HPC Matrices

For the same-nnzr matrices, CCF1 has no effect on the performance because

all the chunks have SIMDW rows (no tail rows). In addition, CCF1 has a

negligible performance improvement for the matrices with small mean nnzr.

For the HPC cache-resident matrices, CCF1 outperforms CCF0 for 25 matri-

ces with an average speed improvement of 1.3x (maximum 2.2x). Moreover,

CCF1 outperforms CSR for 44 matrices with an average speed improvement

of 1.3x (maximum 2.1x). Table 4.8 lists 5 matrices for which CCF0 has less

performance than CSR and CCF1 has higher performance than CSR. CCF1

further reduces the number of vector operations compared to CCF0. These

matrices have high standard deviation nnzr and their mean nnzr is greater

than the threshold we set to decide whether CCF preprocessor (the routine

that transforms a sparse matrix into CCF format) should compress the tail
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Table 4.8: An example of 5 HPC cache-resident matrices for which CCF0 is
slower than CSR and CCF1 is faster than CSR. CCF1 further reduces the
vector operations and improves the performance.

Matrix NNZ NR NC Mean nnzr SD nnzr Max nnzr
bbmat 1,771,722 38,744 38,744 45.7 38.4 126
li 1,350,309 22,695 22,695 59.5 29.2 108
vanbody 2,336,898 47,072 47,072 49.6 17.6 232
Protein 4,344,765 36,417 36,417 119.3 31.9 204
ct20stif 2,698,463 52,329 52,329 51.6 17 207

Figure 4.5: A comparison of CSR, CCF0, and CCF1 for example five
matrices for which CCF0 is slower than CSR and CCF1 is faster than CSR.
CCF1 further improves the performance by reducing the number of vector
operations.

rows into a multi-row chunk or separate them into single-row chunks. Figure

4.5 shows how CCF1 reduces the number of vector operations compared to

CCF0 and improves the performance of CCF0.

Most of the matrices with improved performance have a high standard

deviation nnzr. For the matrices listed earlier in table 4.5 for which CSR has

a higher performance than CCF0, figure 4.6 shows how CCF1 significantly

reduces the number of vector operations compared to CCF0 and improves

the performance of CCF0.

For the HPC partially-cache-resident and the HPC DRAM-resident ma-

trices, we observe that the two SIMD efficiency techniques implemented in

CCF0 and CCF1 provide no performance improvement over CSR.
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Figure 4.6: A performance comparison between CCF1, CCF0, and CSR for
the five HPC matrices for which CCF0 achieves the lowest compared to
CSR.

4.3.2 Scale-free Matrices

For the scale-free matrices, we observe that the two SIMD efficiency tech-

niques implemented in CCF0 and CCF1 provide no performance improve-

ment over CSR.

4.4 CCF2 vs. CCF1

CSR, CCF0, and CCF1 divide the rows evenly across threads while CCF2

divides the nonzero elements evenly across threads. Table 4.9 shows that

CCF2 significantly improves the performance of CSR when compared to

CCF1. CCF2 considerably improves the performance of the scale-free and

the very-long-row matrices. Table 4.10 shows the performance breakdown

for the top three classes of matrices. The scale-free matrices and the very-

long-row matrices are highly irregular, which is why dividing the nonzero

elements evenly helps unify the workload assigned to each thread. For the

HPC matrices, which are naturally more uniform, CCF2 also improves the

performance for 40% of matrices.

Table 4.11 lists two matrices, one from the HPC group and one from the

scale-free group, for which CCF2 considerably outperforms CCF1. Figure 4.7

shows the execution time of each thread for matrix TSC OPF 1047. Appar-
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Table 4.9: Comparing the performance of CCF2 and CSR on Skylake.

#(%) of matrices Max Avg.
CCF2 faster than CSR 79(52%) 2.3x 1.3x
CCF2 same as CSR 47 (31%) - -
CSR faster than CCF2 25 (17%) 1.4x 1.1x

Table 4.10: The effect of CCF2 on performance compared to CCF1 for the
three groups of matrices.

Group
CCF2 faster than CCF1

#(%) of matrices accelerated Max Avg.
105 HPC matrices 42 (40%) 5.0x 1.6x
37 scale-free matrices 30 (81%) 23.4x 2.9x
9 very-long-row matrices 9 (100%) 4.1x 2.2x

ently, there are many idle threads in CCF1 and one thread is taking a very

long time to finish compared to the other threads. CCF2 with load balancing

technique mitigates this problem and distributes the workload fairly. CCF2

is five times faster than CCF1. Figure 4.8 demonstrates a worse case for ma-

trix wiki-Talk, in which CCF1 is almost executing serially. CCF2 alleviates

this problem and creates a load-balanced execution. CCF2 is 23 times faster

than CCF1. We observe that even in CCF2, there is one thread that finishes

much later than the other threads. We think that this thread has too many

short rows that will need to go more frequently to the memory for loads and

stores. We leave this topic for future work.

4.5 CCF vs. CCF2

CCF employs all the four techniques that improve the SIMD efficiency and

load balancing. Very-long-row matrices suffer from few rows that are ex-

tremely long when compared to the matrix other rows. CCF seamlessly

detects these rows and partitions them into multiple segments. Each seg-

ment is processed by a single thread. CCF preprocessor divides any very

long row into segments when the row’s nnzr is greater than the total nonzero

elements of the matrix divided by the number of threads assigned for the ker-

nel execution (row nnzr >(NNZ/T)). This means that the nnzr of this row

exceeds the share of nonzero elements assigned to each thread. Table 4.12
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Table 4.11: Two matrices for which CCF2 considerably outperforms CCF1.

Matrix NNZ NR NC Mean nnzr SD nnzr Max nnzr
TSC OPF 1047 2,016,902 8,140 8,140 247.8 323.6 1,526
wiki-Talk 5,021,410 2,394,385 2,394,385 2.1 99.9 100,022

Figure 4.7: The execution time per each kernel thread of CCF1 and CCF2
for matrix TSC OPF 1047.

shows that 9 matrices with very long rows are detected by CCF preprocessor

when using 48 threads. Figure 4.9 shows the delivered GFLOP/s by all the

kernels used in this section. CCF achieves impressive speed improvements

for most of the matrices.

To demonstrate the effectiveness of this technique, we select two matrices

from table 4.12, dc2 and rajat30, and show the execution time for each thread

in the CCF2 and CCF kernels. For matrix dc2, figure 4.10 shows that CCF2

has some idle threads and the first two threads do most of the work. CCF,

on the other hand, has a more balanced workload distribution. Thus, CCF is

3.3x faster than CCF2. Figure 4.11 shows the same story for matrix rajat30.

Table 4.13 shows the final summarized comparison between CCF and CSR

using 48 threads on the Skylake. CCF accelerates the SpMV computation

for 82% of the matrices. CSR outperforms CCF for 5% of the matrices; we

will show that our auto-tuned CCF reduces this percentage to zero.
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Figure 4.8: The execution time per each kernel thread of CCF1 and CCF2
for matrix wiki-Talk.

Table 4.12: Matrices with very long rows on the Skylake using 48 threads.

Matrix NNZ NR NC Mean nnzr SD nnzr Max nnzr
rajat24 1,948,235 358,172 358,172 5.4 180.1 105,296
rajat29 4,866,270 643,994 643,994 7.6 773.9 454,521
rajat30 6,175,377 643,994 643,994 9.6 784.6 454,746
ASIC 680k 3,871,773 682,862 682,862 5.7 659.8 395,259
circuit5M 59,524,291 5,558,326 5,558,326 10.7 1,356.60 1,290,501
connectus 1,127,525 512 394,792 2,202.20 7,584.40 120,065
dc2 766,396 116,835 116,835 6.6 361.5 114,190
FullChip 26,621,990 2,987,012 2,987,012 8.9 1,806.80 2,312,481
ins2 2,751,484 309,412 309,412 8.9 590.4 309,412

4.6 Summary

In this chapter, we discussed and illustrated how CCF improves SIMD effi-

ciency and load balancing. We introduced four incremental versions of CCF

(each version employs one more technique than its predecessor). We divided

our set of test matrices into different classes based on their application areas

and memory residency (cache or DRAM). CCF0 implements the core func-

tionality of CCF. It groups and processes rows with the same nnzr in chunks.

CCF0 improves the performance of the SpMV computation for matrices with

the same nnzr and for small standard deviation (less than eight) nnzr cache-

resident HPC matrices. CCF1 enhances CCF0 by processing long tail rows

using CSR and improving the SIMD efficiency for cache-resident matrices

with high nnzr standard deviation (in tens or hundreds). CC2 improves load
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Figure 4.9: GFLOP/s of CSR, CCF0, CCF1, CCF2, and CCF for
very-long-row matrices.

Figure 4.10: The execution time per each kernel thread of CCF2 and CCF
for matrix dc2.

balancing by dividing the nonzero elements evenly between threads. CCF2

significantly improves the performance for 52% of matrices. Moreover, CCF2

considerably improves the performance of the scale-free and the very-long-row

matrices. CCF, which employs the four techniques, improves load balanc-

ing by partitioning very long rows into multiple segments. Each segment is

processed by a single thread. CCF significantly improves the performance of

matrices with very long rows.
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Figure 4.11: The execution time per each kernel thread of CCF2 and CCF
for matrix rajat30.

Table 4.13: Comparing the performance of CCF and CSR on Skylake.

#(%) of matrices Max Avg.
CCF faster than CSR 124 (82%) 20.9x 2.1x
CCF same as CSR 20(13%) - -
CSR faster than CCF 7(5%) 1.6x 1.1x
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CHAPTER 5

EVALUATION: COMPARISON WITH
OTHER FORMATS

In this chapter, we compare the double precision performance of the SpMV

CCF kernel with three other SpMV kernels on two Intel platforms using 151

unstructured matrices.

5.1 Methodology

5.1.1 Platforms

The SpMV kernels are evaluated using two platforms: a 68-core KNL Intel

Xeon Phi 7250 and a dual 24-core Skylake Intel Xeon Platinum 8160 (table

5.1). In this thesis, we refer to the Xeon Phi 7250 as KNL. Moreover, we

refer to the dual Xeon Platinum 8160 as Skylake. KNL is a standalone

machine and does not need a host to operate. Intel C++ v18.0.1 compiler

and OpenMP are used. Thread scheduling is static. For KNL, we vary the

number of threads per core from 1 to 4 and report the highest measured

performance. For Skylake, we report the highest performance for 1 and 2

sockets using 1 and 2 threads per core. We calculate the average execution

time of 1000 SpMV kernel runs. We compute the GFLOP/s by dividing

twice the number of nonzero elements in the sparse matrix by the average

execution time. We exclude the first SpMV kernel execution since it warms

up caches. We use OpenMP to capture the start and end wall-clock times of

kernel execution. Our threshold for considering a SpMV kernel faster than

another is 5%.

31



Table 5.1: Specifications of the KNL and the Skylake platforms used for
performance evaluation.

KNL Dual-socket Skylake
Processor Intel Xeon Phi 7250 Intel Xeon Platinum 8160
Cluster XSEDE [28] Stampede 2 XSEDE Stampede 2
Core microarchitecture Silvermont Skylake
Launch date Q2’16 Q3’17
Peak double
precision performance

3 TFLOPS 2x3 TFLOPS

Processor base frequency 1.4 GHz 2x2.1 GHz
Number of cores 68 2x24
Maximum number
of threads

272 (4 per core) 96 (2 per core)

Vectorization AVX512 AVX512
L3 cache size None 2x33 MB
L2 cache size 34 MB 2x24 MB
Main memory MCDRAM (16GB) DDR4-2666 (768 GB)
Main memory bandwidth 450 GB/s 2x120 GB/s
Memory mode Flat N/A
Clustering mode Quadrant N/A

5.1.2 Formats for Comparison

We compare our SpMV CCF kernel with the following three existing storage

formats:

• Intel MKL 2018u1 CSR which is widely used for sparse matrix repre-

sentation and commonly adopted by many works for comparison. CSR

has been deprecated in Intel MKL 2018u2. This is why we used the

CSR in MKL 2018u1. The initialization of the CSR vectors is NUMA-

aware on the dual Skylake (CSR vectors should be explicitly created

and initialized by the user).

• Intel MKL 2018u2 Inspector-executor CSR that divides the operation

into two stages: analysis and execution. The analysis phase starts by

inspecting the matrix sparsity pattern and applying matrix structure

changes. The execution stage improves the performance by reusing

the information generated in the analysis phase. We only consider the

performance of the execution phase in the performance comparisons.

• CVR [9] that achieves high performance for unstructured matrices, es-

pecially the scale-free matrices. CVR kernel achieves good speed im-
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provements for unstructured matrices compared to five existing kernels:

Intel MKL SpMV CSR, Intel MKL SpMV CSR(I) [10], and kernels pre-

sented in [8], [7], and [6].

In this chapter, we refer to MKL 2008u1 SpMV CSR, MKL 2008u2 Inspector-

executor SpMV CSR, SpMV CVR, and our SpMV CCF as CSR, I-e, CVR,

and CCF respectively. We do not consider the preprocessing time of any

format in our performance evaluation.

5.1.3 Test Matrices

We use a test set of 151 unstructured sparse matrices from 38 scientific and

engineering applications obtained from the University of Florida collection

[24] and Stanford Network Analysis Platform (SNAP) [25]. Our test set

includes the unstructured matrices used in the Intel SpMV benchmark [26]

and all the matrices used in [9]. The appendix lists all 151 matrices and some

of their characteristics. This is the same test set used in chapter 4.

5.2 Performance Comparison on Skylake

In this section, we use the same matrix classification used in figure 4.1. All

the following figures show the speed improvement achieved by SpMV CCF

compared to the other three kernels.

5.2.1 HPC Matrices

The HPC matrices are divided into four categories: same-nnzr, cache-resident,

partially-cache-resident, and DRAM-resident. Figure 5.1 shows that CCF

outperforms all the other kernels for all the matrices with the same nnzr. As

discussed in chapter 4, grouping rows into chunks is the only technique that

improves the performance of these matrices compared to CSR.

Figures 5.2, 5.3, 5.4, and 5.5 show the performance comparison between

CCF and the other three kernels. CCF outperforms the other kernels for most

of the matrices. The geomeans of the speed improvement of CCF compared

to CSR, I-e, and CVR are 1.7x, 1.3x, and 1.8x respectively. This indicates
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Figure 5.1: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for the matrices with same nnzr on Skylake.

Figure 5.2: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for HPC cache-resident matrices (1/4).

that the techniques used by CCF effectively enhance the SIMD efficiency and

load balancing for these matrices which are not memory bandwidth bound.

For the partially-cache-resident matrices, figure 5.6 shows that CCF out-

performs the other three kernels for most of the matrices but with less speed

improvement compared to the cache-resident matrices. The geomeans of the

speed improvement of CCF compared to CSR, I-e, and CVR are 1.4x, 1.1x,

and 1.1x respectively.

For the DRAM-resident matrices, all the kernels have similar performance

because the performance of these matrices is bounded by the memory band-

width of Skylake. Figure 5.7 demonstrates the achieved performance of CCF

compared to the other three kernels.
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Figure 5.3: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for HPC cache-resident matrices (2/4).

Figure 5.4: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for HPC cache-resident matrices (3/4).

5.2.2 Scale-free Matrices

The scale-free matrices are divided into three categories: cache-resident,

partially-cache-resident, and DRAM-resident. Figure 5.8 shows the perfor-

mance of CCF compared to the other three kernels for the cache-resident

matrices. CCF is even more effective than the other kernels for these highly

irregular matrices. The geomeans of the speed improvement of CCF com-

pared to CSR, I-e, and CVR are 2.7x, 1.4x, and 2.0x respectively. For matrix

wiki-Talk, CSR almost executes sequentially because of the kernel load im-

balance. CCF, CVR, and I-e have better load balancing techniques but CCF

has higher performance than CVR and I-e.

Figure 5.9 shows the performance of CCF compared to the other three

kernels for the partially-cache-resident matrices. The geomeans of the speed

improvement of CCF compared to CSR, I-e, and CVR are 2.3x, 1.1x, and
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Figure 5.5: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for HPC cache-resident matrices (4/4).

Figure 5.6: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for HPC partially-cache-resident matrices.

1.4x respectively.

Figure 5.10 shows the performance of CCF compared to the other three ker-

nels for the DRAM-resident matrices. Compared to CSR, CCF significantly

improves the performance of most of the matrices due to the alleviated load

balancing. Furthermore, CCF is slightly faster than I-e and CVR for sev-

eral matrices. However, we observe that CCF is slower than all of the other

kernels for three matrices: road central, wb-edu, and road usa. In general,

scale-free DRAM-resident matrices are highly irregular and also very large.

CCF uses one set per thread as its sorting window (sets are mainly used for

load balancing and false sharing elimination). For these irregular and large

matrices, this sorting window (set) is quite large and sorting all the rows can

reduce data locality. This is the reason behind low CCF performance for

some matrices in this category. In chapter 6, we show that increasing the
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Figure 5.7: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for HPC DRAM-resident matrices.

Figure 5.8: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for scale-free cache-resident matrices.

number of sets per thread reduces the sorting window size and improves the

performance.

5.2.3 Very-long-row Matrices

Figure 5.11 shows the performance comparison between CCF and the other

kernel for matrices with very long rows. CCF significantly outperforms CSR

and I-e. However, CCF is slightly faster than CVR because CVR also miti-

gates the challenge of very long rows by strictly dividing the nonzero elements

of the matrix evenly across threads, which means that rows can be partitioned

among multiple threads. The geomeans of the speed improvement of CCF

compared to CSR, I-e, and CVR are 4.8x, 2.1x, and 1.2x respectively.
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Figure 5.9: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for scale-free partially-cache-resident matrices.

Figure 5.10: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for scale-free DRAM-resident matrices.

5.3 Performance Comparison on KNL

KNL has a different cache size than Skylake. The total cache size of KNL is

34 MB. Thus, the matrices that belong to each class of matrices are different

on each platform. Figure 5.12 shows the matrix classification on the KNL.

The number of cache-resident matrices on KNL is much lower than Sky-

lake because of the huge difference in cache size between the two platforms.

Descriptions of both categories are given in section 4.1.3.

5.3.1 HPC Matrices

The HPC matrices are divided into four categories: same-nnzr, cache-resident,

partially-cache-resident, and DRAM-resident.

Figure 5.13 shows the performance comparison between CCF and the other
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Figure 5.11: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for very-long-row matrices.

Figure 5.12: Hierarchical grouping of the matrices using the 68-core KNL
with 34 MB cache.

three kernels for the matrices with the same nnzr. CCF significantly outper-

forms CSR and CVR with a geomean of 2.0x each. I-e slightly outperforms

CCF with a geomean of 1.0x.

For the cache-resident matrices, CCF exhibits a superior performance for

most of the matrices compared to the other kernels. These matrices reside in

the cache, which means that they are not bounded by the memory bandwidth.

As discussed in chapter 4, CCF excels in exploiting the available vector units

and creating a load balanced workloads. CCF significantly outperforms CSR

and CVR with a geomean of 2.1x each. CCF outperforms I-e with a geomean

of 1.4x. Figure 5.14 shows a comparison between the CCF and the other three

kernels.

Partially-cache-resident matrices do not completely reside in the cache

during the kernel execution. Therefore, CCF techniques are still effective
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Figure 5.13: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for the matrices with same nnzr on KNL.

Figure 5.14: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for the HPC cache-resident matrices on KNL.

but not as effective as for the cache-resident matrices. The geomeans of the

speed improvement of CCF compared to CSR, I-e, and CVR are 1.3x, 1.1x,

and 1.2x respectively. Figure 5.15 shows the comparison between the CCF

and the other three kernels.

Figure 5.16 shows the comparison between CCF and the other three kernels

for the DRAM-resident matrices. The geomeans of the speed improvement of

CCF compared to CSR, I-e, and CVR are 1.3x, 1.0x, and 1.0x respectively.

There are several matrices for which CSR, I-e and CVR outperform CCF.

This is due to the poor data locality caused by sorting rows within sets,

which are considered as a huge sorting window for the KNL small cache. In

chapter 6, we will show some examples of how to improve the performance

by increasing the number of sets per thread.
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Figure 5.15: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for the HPC partially-cache-resident matrices on KNL.

Figure 5.16: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for the HPC DRAM-resident matrices on KNL.

5.3.2 Scale-free Matrices

The scale-free matrices are divided into three categories: cache-resident,

partially-cache-resident, and DRAM-resident.

For the cache-resident matrices, CCF achieves a higher performance than

CSR for all the matrices with a geomean of 2.4x. Compared to I-e, CCF is

faster for 4 out of 5 matrices. The geomean for all the matrices is 1.3x. CVR

and CCF perform comparably to each other; however, the geomean of CCF

performance compared to CVR is 1.1x. Figure 5.17 shows the comparison

between CCF and the other three kernels.

Figure 5.18 shows a comparison between CCF and the other three kernels

for the partially-cache-resident matrices, CCF outperforms CSR and I-e for
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Figure 5.17: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for the scale-free cache-resident matrices on KNL.

Figure 5.18: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for the scale-free partially-cache-resident matrices on
KNL.

all the matrices. The geomeans of the speed improvement of CCF compared

to CSR, I-e, and CVR are 1.9x, 1.4x, and 1.1x respectively.

For the DRAM-resident matrices, CCF outperforms CSR and I-e for most

of the matrices with geomeans of 2.3x and 1.1x respectively. However, we

note that CVR is superior to the other three kernels for most of the matrices.

The geomean of CVR performance compared to CCF is 1.4x (see figure 5.19).

5.3.3 Very-long-row Matrices

Figure 5.20 shows the performance of CCF compared to CSR, I-e, and CVR

for the very-long-row matrices on KNL. Note that one matrix (Raj1) is added

to very-long-row matrices because KNL has more threads than the dual Sky-
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Figure 5.19: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for the scale-free DRAM-resident matrices on KNL.

Figure 5.20: The speed improvement of SpMV CCF compared to the other
three SpMV kernels for the very-long-row matrices on KNL.

lake. CCF significantly outperforms CSR and I-e for all the matrices with

geomeans of 6.5x and 3.7x. CCF is faster than CVR for 50% of the matrices.

The geomean of CCF performance compared to CVR is 1.1x.

5.4 Performance Summary on KNL and Skylake

5.4.1 Achieved GFLOP/s

Table 5.2 shows a summary of the achieved performance of each kernel on

each platform. CCF has the highest maximum, average, and minimum

GFLOP/s on both platforms. CCF achieved 3.5% of KNL and the dual
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Table 5.2: Maximum, average, and minimum delivered GFLOP/s for our
151 unstructured matrices on KNL and Skylake.

KNL Skylake
kernel Max Avg. Min Max Avg. Min
CSR 73.12 25.09 0.16 145.51 47.93 0.66
I-e 102.59 36.07 1.24 169.53 60.26 4.80

CVR 53.71 28.74 1.64 103.22 48.07 3.16
CCF 104.96 41.27 2.06 209.71 79.90 5.25

Table 5.3: The performance of CCF compared to CSR on KNL and
Skylake.

KNL Skylake
#(%) of matrices Max Avg. #(%) of matrices Max Avg.

CCF faster than CSR 137(90%) 32.6x 2.7x 135(89%) 27.5x 2.3x
CCF same as CSR 8 (6%) - - 13 (9%) - -
CSR faster than CCF 6 (4%) 1.6x 1.3x 3(2%) 1.6x 1.4x

Skylake peak performance.

5.4.2 The Effectiveness of CCF Compared to CSR, I-e, and
CVR on KNL and Skylake

Tables 5.3, 5.4, and 5.5 summarize the speed improvement achieved by CCF

compared to each of the other three kernels. The effectiveness of CCF com-

pared to the other three kernels on Skylake is noticeably higher than on

KNL. This is because Skylake has a larger cache which increases the number

of matrices that belong to the cache-resident and partially-cache-resident cat-

egories. As we observed previously, CCF is superior to the other kernels for

cache-resident and partially-cache-resident matrices. For the HPC DRAM-

resident matrices, CCF, I-e, and CVR have similar performance on Skylake

and KNL. On KNL, CVR outperformed all other kernels for most scale-free

DRAM-resident matrices.

5.5 Skylake vs. KNL

To compare KNL and Skylake, we took the maximum delivered performance

by any kernel on the two platforms and compared the performance of KNL
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Table 5.4: The performance of CCF compared to I-e on KNL and Skylake.

KNL Skylake
#(%) of matrices Max Avg. #(%) of matrices Max Avg.

CCF faster than I-e 81(53%) 11.4x 1.8x 109(73%) 3.0x 1.5x
CCF same as I-e 45(30%) - - 30(19%) - -
I-e faster than CCF 25(17%) 1.8x 1.2x 12(8%) 1.4x 1.2x

Table 5.5: The performance of CCF compared to CVR on KNL and
Skylake.

KNL Skylake
#(%) of matrices Max Avg. #(%) of matrices Max Avg.

CCF faster than CVR 95(63%) 3.1x 1.7x 124(81%) 4.2x 1.8x
CCF same as CVR 12(8%) - - 20(13%) - -
CVR faster than CCF 44(29%) 3.8x 1.4x 7(5%) 1.6x 1.3x

Table 5.6: The performance of KNL compared to Skylake using the
best/fastest of the four kernels (CSR, I-e, CVR, and CFF) for each matrix.

#(%) of matrices Max Avg.
KNL faster than Skylake 24(16%) 2.0x 1.4x
KNL same as Skylake 8 - -
Skylake faster than KNL 119(79%) 4.4x 2.3x

and Skylake for each matrix. Table 5.6 summarizes the performance compar-

ison of KNL and Skylake. It is apparent that Skylake outperforms KNL for

most of the matrices using any of the four SpMV kernels. Skylake is faster

than KNL for all the matrices that are cache-resident on Skylake. This is

expected because Skylake is computationally more powerful than KNL (the

dual Skylake peak performance is twice the KNL peak performance). On

the other hand, KNL is faster than Skylake for 24 matrices. These matrices

are either partially-cache-resident or DRAM-resident matrices. This is also

expected since the memory bandwidth of KNL is almost twice that of dual

Skylake.

5.6 Preprocessing Overhead

In this section, we measure the overhead of CCF preprocessing that trans-

forms a matrix into the CCF format (described in chapter 3). We use the

dual 24-core Skylake (table 5.1) and one thread per core (48 threads). For

each matrix in our set, we divide the preprocessing time by a single SpMV

45



Figure 5.21: Number of SpMV CCF calls that amortize the preprocessing
overhead on Skylake.

call time. This gives the number of SpMV calls that amortize the prepro-

cessing overhead. Figure 5.21 shows the average number of SpMV calls that

amortize the preprocessing overhead for each category of matrices on Sky-

lake. For our set of matrices, the average preprocessing overhead is 16 SpMV

calls, which is a small overhead for real world applications that call SpMV

kernels hundreds or thousands of times.

5.7 Summary

In this chapter, we compared the performance of CCF with CSR, I-e, and

CVR on Skylake and KNL. We showed that CCF has a superior performance

compared to the other kernels for cache-resident and partially-cache-resident

matrices. For HPC DRAM-resident matrices, CCF, I-e, and CVR have simi-

lar performance on Skylake and KNL. On KNL, CVR outperformed all other

kernels for most scale-free DRAM-resident matrices. Moreover, we showed

that the dual Skylake is faster than KNL for all the matrices that are cache-

resident on Skylake due to its higher computational power. KNL is faster

than Skylake for 24 matrices (partially-cache-resident or DRAM-resident ma-

trices). This is due to KNL’s higher memory bandwidth. Lastly, we showed

that the average preprocessing overhead is 16 SpMV calls.
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CHAPTER 6

CCF AUTO-TUNING

In this chapter, we describe the CCF auto-tuner and show a revised perfor-

mance comparison between the auto-tuned CCF and the other three kernels:

CSR, I-e, and CVR on Skylake and KNL.

6.1 Parameters for Auto-tuning

CCF has two main parameters whose values partake in the delivered perfor-

mance: a) the number of assigned sets per thread (SPT) and b) the chunk

size (CS), which determines the maximum number of rows that a chunk

can accommodate. The default value of the chunk size is SIMDW of the

target architecture. CCF also can use multiples of SIMDW as chunk sizes

but SpMV CCF must be aware of the chunk size used in the preprocessing

step. For the SPT parameter, the default value is one. This is due to the

intuition behind using sets, which is load balancing. Tuning SPT and CS

improves performance for several matrices. Table 6.1 shows examples illus-

trating that tuning these parameters can improve the performance of SpMV

CCF significantly.

CCF auto-tuner seamlessly tries all the possible parameter combinations

and delivers the optimal parameter values that CCF uses to achieve the

highest performance on a given architecture.

6.2 Auto-tuner Description

Figure 6.1 shows a pseudocode of the CCF auto-tuner skeleton. For a given

matrix, the CCF auto-tuner exhaustively tries all combinations of the param-

eters and identifies their optimal values. Using each combination of parame-

ters, the CCF auto-tuner calls the CCF preprocessor routine. Furthermore,
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Table 6.1: Example on how the optimal choice of CCF parameters can
improve the performance of CCF SpMV kernel on dual 24-core Skylake
Platinum.

Matrix
CCF GFLOP/s using the
default parameter values

CCF GFLOP/s using
tuned parameter values

Speed improvement of the
auto-tuned CCF kernel

Optimal
SPT

Optimal
CS

road usa 6.65 11.79 1.8x 4 32
soc-LiveJournal1 11.95 19.03 1.6x 32 32
wb-edu 15.1 22.47 1.5x 32 8
connectus 44.77 65.98 1.5x 32 16
rajat30 49.51 66.52 1.3x 8 16

the preprocessor automatically detects whether or not the matrix has very

long rows and creates CCF data structures accordingly. Using the given pa-

rameters and whether or not the matrix has very long rows, the auto-tuner

executes the proper SpMV kernel multiple times and records the elapsed

execution time. After CCF auto-tuner tries all possible combinations, the

combination with the least execution time represents the optimal values of

the parameters.

For the SPT parameter, the auto-tuner searches the values: 1, 2, 4, 8,

16, 32, and 64. We observed no benefit of using any SPT value greater

than 64 for our current set of matrices and the two platforms (Skylake and

KNL). SpMV CCF kernel does not need to know the SPT value in advance to

execute; OpenMP API automatically detects the number of sets and divides

them evenly across threads. For the CS parameter, the auto-tuner uses the

values: 8, 16, 24, and 32 for its search space. There is a different SpMV

kernel for each CS value. Using kernels that are specialized for particular

chunk sizes avoids extra loop overhead in SpMV CCF. Based on the values

of CS and the very long rows decision (see figure 6.1), CCF auto-tuner selects

from the following SpMV kernels:

1. For matrices without very long rows:

(a) Spmv-ccf-8: supports CCF data structures with CS = 8.

(b) Spmv-ccf-16: supports CCF data structures with CS = 16.

(c) Spmv-ccf-24: supports CCF data structures with CS = 24.

(d) Spmv-ccf-32: supports CCF data structures with CS = 32.

2. For matrices with very long rows:

(a) Spmv-ccf-8-long: supports CCF data structures with CS = 8.
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Figure 6.1: The skeleton of the CCF auto-tuner pseudocode.

(b) Spmv-ccf-16-long: supports CCF data structures with CS = 16.

(c) Spmv-ccf-24-long: supports CCF data structures with CS = 24.

(d) Spmv-ccf-32-long: supports CCF data structures with CS = 32.

6.3 Auto-tuner Performance Analysis

In this section, we show some cache profiling data for three matrices that

achieved higher performance when using the CCF auto-tuner on the Skylake.

“Perf” tool is used [27]. Tuning the SPT and CS parameters improves the
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Figure 6.2: Performance and L1 dcahce hits as the CS parameter varies for
matrix TSOPF RS b39 c30.

data locality of the SpMV kernel for these matrices. For simplicity, we study

the tuning of each parameter separately.

6.3.1 Tuning the Chunk Size and Fixing the Number of Sets
per Thread to One

By increasing the chunk size, the number of rows per chunk increases, which

means that processing in the column direction involves more rows. For some

matrices, processing more elements in the column direction improves data lo-

cality. Figure 6.2 shows how the number of L1 dcache hits increases and per-

formance improves as the CS parameter increases for matrix TSOPF RS b39 c30.

Figure 6.3 shows performance and LLC load misses for matrix rajat29. The

LLC misses decrease until CS=24, then start to increase again. This, of

course, reflects on the delivered performance. We used different performance

counters in figures 6.2 and 6.3 because the CCF kernel exhibits different

cache traffic behavior for each matrix. For example, for matrix rajat29 we

observed that the L1 cache traffic does not significantly change as CS is in-

creased. Furthermore, matrix rajat29 also benefits from tuning SPT, but we

do not show it here.
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Figure 6.3: Performance and LLC misses as the CS parameter varies for
matrix rajat29.

6.3.2 Tuning the Number of Sets per Thread and Fixing the
Chunk Size to Eight

CCF divides the matrix into sets that have the same number of nonzero el-

ements for load balancing. Moreover, each thread sorts rows with the set

boundary to avoid false sharing of the y vector elements. For most of the

matrices, CCF outperforms CSR, I-e, and CVR kernels. However, we note

that CCF performance is very low compared to the other three kernels for

some of the scale-free DRAM matrices. These matrices are highly irregular

and very large. Hence, sorting rows with one set per thread is considered as

a huge sorting window that reduces the inherent data locality of the neigh-

boring nonzero elements. The solution is to increase the number of sets per

each thread which reduces the boundaries of the sorting windows. Figure 6.4

illustrates how LLC load misses decrease and performance improves as the

number of sets per thread increases. The auto-tuned CCF outperforms CSR,

I-e, and CVR by 1.1x, 1.2x, and 1.1x respectively.

6.4 Performance Improvement Summary

In this section, we show revised summary tables that compare the perfor-

mance of the auto-tuned CCF kernel with CSR, I-e, and CVR kernels on

Skylake and KNL. We also show a summary table that compares the auto-
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Figure 6.4: Performance and LLC misses as the CS parameter varies for
matrix road usa.

tuned CCF kernel with the default CCF kernel on Skylake and KNL. In this

section we refer to the auto-tuned CCF kernel as CCF-AT.

6.4.1 Auto-tuned CCF vs. CSR, I-e, and CVR

Tables 6.2, 6.3, and 6.4 show a summary comparison between CCF-AT and

the other three kernels on KNL and Skylake. Compared to the summary

tables presented in chapter 5 (tables 5.3, 5.4, and 5.5), we note that CCF-

AT improved the performance of CCF on both platforms. On Skylake, CVR

and CSR are not faster than CCF-AT for any matrix. Compared to I-e,

I-e is only faster for two matrices with 10% improvement. This shows that

CCF-AT is the winning kernel for all matrices in our set on Skylake. On

KNL, CCF-AT is significantly faster than CSR. CSR is only faster for one

matrix. Compared to I-e and CVR, CCF-AT outperforms both kernels for

high percentages of matrices. However, we observe that I-e is faster than

CCF-AT for 8 matrices, 7 of which are HPC matrices. This indicates that I-

e is taking advantage of the regular structure of these matrices. Furthermore,

CVR outperforms CCF-AT for 37 matrices, 22 of which are scale-free DRAM-

resident matrices. CVR is more effective than CCF-AT for the scale-free

DRAM-resident matrices on KNL. CVR incurs high overhead tracking row

accumulation and indexing the output vector, however, processing rows in

their original order is more effective on KNL.
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Table 6.2: The performance of the auto-tuned CCF kernel (CCF-AT)
compared to the CSR kernel on KNL and Skylake.

KNL Skylake
#(%) of matrices Max Avg. # (%) of Matrices Max Avg.

CCF-AT faster than CSR 144(95%) 32.7x 2.8x 142(94%) 32.5x 2.5x
CCF-AT same as CSR 6 (4%) - - 9 (6%) - -
CSR faster than CCF-AT 1 1.1x 1.1x 0 - -

Table 6.3: The performance of the auto-tuned CCF kernel (CCF-AT)
compared to the I-e kernel on KNL and Skylake.

KNL Skylake
#(%) of matrices Max Avg. # (%) of Matrices Max Avg.

CCF-AT faster than I-e 91(60%) 11.5x 1.8x 120(80%) 3.9x 1.5x
CCF-AT same as I-e 52(34%) - - 29(19%) - -
I-e faster than CCF-AT 8(6%) 1.7x 1.2x 2(1%) 1.1x 1.1x

Figure 6.5 shows how CCF and CCF-AT compare to CVR for the scale-

free DRAM-resident matrices on KNL. It is obvious that CCF-AT improved

the performance of CCF for most of the matrices. The geomean of CVR

performance compared to CCF is reduced from 1.4x to 1.1x using the auto-

tuner.

6.4.2 Auto-tuned CCF vs. the Default CCF

Table 6.5 demonstrates the performance improvement achieved by auto-

tuning the CCF storage format and its kernel on KNL and Skylake. The

CCF auto-tuner improves the performance of more than 50 matrices with an

average speed improvement of 1.2x on both platforms.
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Table 6.4: The performance of the auto-tuned CCF kernel (CCF-AT)
compared to the CVR kernel on KNL and Skylake.

KNL Skylake
#(%) of matrices Max Avg. # (%) of Matrices Max Avg.

CCF-AT faster than CVR 105(70%) 3.6x 1.7x 139 (92%) 4.5x 1.8x
CCF-AT same as CVR 9(6%) - - 12 (8%) - -
CVR faster than CCF-AT 37(24%) 1.6x 1.2x 0 - -

Figure 6.5: The performance of CCF and CCF-AT compared to CVR for
the scale-free DRAM-resident matrices on KNL.

Table 6.5: The performance of the auto-tuned CCF kernel compared to the
default CCF kernel on KNL and Skylake.

KNL Skylake
#(%) of matrices Max Avg. # (%) of Matrices Max Avg.

CCF-AT faster than CCF 52(34%) 3.1x 1.2x 59(40%) 1.8x 1.2x
CCF-AT same as CCF 99(66%) - - 92 (60%) - -
CCF faster than CCF-AT 0 - - 0 - -
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CHAPTER 7

CONCLUSION

This thesis presented our novel sparse matrix compressed chunk storage for-

mat (CCF) and its optimized SpMV kernel for Intel many-core and Intel

multi-core platforms. CCF improves the SIMD efficiency and load balancing

using four techniques: collecting rows in chunks, dividing nonzero elements

evenly across threads, using CSR processing when the number of rows in a

bin is less than SIMDW, and partitioning very long rows.

We presented a thorough performance analysis of CCF by breaking down

CCF into incremental versions and classifying matrices into categories based

on their applications and residency (cache or DRAM). We compared each

incremental version with its predecessor per each matrix category and ex-

plained the strengths and weaknesses in CCF.

We compared the performance of our SpMV CCF kernel with Intel MKL

2018u1 SpMV CSR, Intel MKL 2018u2 Inspector-executor SpMV CSR, and

SpMV CVR kernels on two platforms: a dual 24-core Skylake and a 68-core

KNL. On the dual 24-core Skylake, and compared to MKL SpMV CSR, our

kernel achieves superior execution throughputs for 135 matrices (89%) with

an average speed improvement of 2.3x and maximum speed improvement of

27.5x. Our kernel outperforms MKL Inspector-executor SpMV CSR for 109

matrices (73%) with an average speed improvement of 1.5x and maximum

speed improvement of 3.0x. Moreover, CCF outperforms CVR for 81% of

the matrices with an average speed improvement of 1.8x and maximum speed

improvement of 4.2x. On the 68-core KNL, CCF achieves high average and

maximum speed improvements compared to the other three kernels but for

slightly smaller percentages of matrices.

We studied the impact of tuning the number of sets per thread and the

chunk size on performance and presented the CCF auto-tuner that automat-

ically chooses the optimal values for these parameters. The auto-tuned CCF

improved the performance for more than 50 matrices on Skylake and KNL
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with and average improvement of 1.2x. On the dual 24-Skylake, the auto-

tuned CCF is guaranteed to achieve the best possible performance compared

to the other kernels.
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APPENDIX A

THE UNSTRUCTURED MATRICES USED
FOR EVALUATION

A.1 Same-nnzr Matrices

Table A.1: Same-nnzr matrices.

Matrix NNZ NR NC Mean nnzr SD nnzr Max nnzr
Epidemiology 2,100,225 525,825 525,825 4 0 4
shallow water1 f 327,680 81,920 81,920 4 0 4
tmt unsym 4,584,801 917,825 917,825 5 0 5
ch7-9-b4 1,587,600 317,520 105,840 5 0 5
ch8-8-b4 1,881,600 376,320 117,600 5 0 5
ch7-9-b5 2,540,160 423,360 317,520 6 0 6
parabolic fem 3,674,625 525,825 525,825 7 0 7
n4c6-b7 1,305,720 163,215 104,115 8 0 8
n4c6-b8 1,790,055 198,895 163,215 9 0 9
n4c6-b10 1,456,422 132,402 186,558 11 0 11
lp nug30 1,567,800 52,260 379,350 30 0 30
QCD 1,916,928 49,152 49,152 39 0 39

A.2 HPC Matrices

The matrices in this section are sorted by the CSR data structure size. The

following capital letters indicate the category of the matrix on each platform:

• L: the matrix has very-long rows

• C: the matrix is cache-resident

• P: the matrix is partially-cache-resident

• D: the matrix is DRAM-resident
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Table A.2: HPC matrices.

Matrix NNZ NR NC
Mean

nnzr

SD

nnzr

Max

nnzr

Category

on Skylake

Category

on KNL

bcsstm38 7,842 8,032 8,032 1.00 1.30 15 C C

bcsstm38 f 10,485 8,032 8,032 1.30 1.90 20 C C

shallow water1 204,800 81,920 81,920 2.50 0.80 4 C C

dc2 766,396 116,835 116,835 6.60 361.50 114,190 L L

2cubes sphere 874,378 101,492 101,492 8.60 3.80 29 C C

rim 1,014,951 22,560 22,560 45.00 26.60 112 C C

ex11 1,096,948 16,614 16,614 66.00 16.20 90 C C

3D 51448 3D 1,056,610 51,448 51,448 20.50 28.40 5,671 C C

TSOPF RS

b39 c30
1,079,986 60,098 60,098 18.00 14.00 32 C C

viscorocks 1,162,244 37,762 37,762 30.80 7.70 42 C C

torso2 1,033,473 115,967 115,967 8.90 0.60 10 C C

scircuit 958,936 170,998 170,998 5.60 4.40 353 C C

std1 Jac2 1,248,731 21,982 21,982 56.80 145.60 898 C C

li 1,350,309 22,695 22,695 59.50 29.20 108 C C

twotone 1,224,224 120,750 120,750 10.10 15.00 185 C C

std1 Jac3 1,455,848 21,982 21,982 66.20 169.30 1,030 C C

raefsky3 1,488,768 21,200 21,200 70.20 6.30 80 C C

Economics 1,273,389 206,500 206,500 6.20 4.40 44 C C

lhr71c 1,528,092 70,304 70,304 21.70 26.30 63 C C

hvdc2 1,347,273 189,860 189,860 7.10 3.80 60 C C

Raj1 1,302,464 263,743 263,743 4.90 88.30 40,468 C L

2cubes sphere f 1,647,264 101,492 101,492 16.20 2.70 31 C C

venkat25 1,717,792 62,424 62,424 27.50 2.30 44 C C

venkat50 1,717,792 62,424 62,424 27.50 2.30 44 C C

bbmat 1,771,722 38,744 38,744 45.70 38.40 126 C C

IG5-18 1,790,490 47,894 41,550 37.40 32.90 120 C C

appu 1,853,104 14,000 14,000 132.40 36.50 294 C C

TSC OPF 1047 2,016,902 8,140 8,140 247.80 323.60 1,526 C C

mixtank new 1,995,041 29,957 29,957 66.60 38.30 154 C C

exdata 1 2,269,501 6,001 6,001 378.20 649.60 1,503 C C

matrix 9 2,121,550 103,430 103,430 20.50 17.80 4,057 C C

ASIC 320ks 1,827,807 321,671 321,671 5.70 7.90 412 C C

vanbody 2,336,898 47,072 47,072 49.60 17.60 232 C C

FEM Harbor 2,374,001 46,835 46,835 50.70 27.80 145 C C

rajat24 1,948,235 358,172 358,172 5.40 180.10 105,296 L L

darcy003 2,101,242 389,874 389,874 5.40 2.00 7 C C

ct20stif 2,698,463 52,329 52,329 51.60 17.00 207 C C

FEM Accelerator 2,624,331 121,192 121,192 21.70 13.80 81 C P

thermomech dK 2,846,228 204,316 204,316 13.90 1.40 20 C P

ins2 2,751,484 309,412 309,412 8.90 590.40 309,412 L L

helm2d03 2,741,935 392,257 392,257 7.00 0.10 9 C P

oilpan 3,597,188 73,752 73,752 48.80 13.50 70 C P

laminar duct3D 3,833,077 67,173 67,173 57.10 37.90 89 C P

FEM Cant 4,007,383 62,451 62,451 64.20 14.10 78 C P

Protein 4,344,765 36,417 36,417 119.30 31.90 204 C P

t3dh a 4,352,105 79,171 79,171 55.00 14.50 81 C P

offshore 4,242,673 259,789 259,789 16.30 2.80 31 C P

ship 001 4,644,230 34,920 34,920 133.00 55.20 438 C P

TF19 4,370,721 241,029 317,955 18.10 9.80 90 C P

torso3 4,429,042 259,156 259,156 17.10 4.40 22 C P

ASIC 680k 3,871,773 682,862 682,862 5.70 659.80 395,259 L L

para-10 5,416,358 155,924 155,924 34.70 22.30 6,931 C P

rajat29 4,866,270 643,994 643,994 7.60 773.90 454,521 L L

FEM Spheres 6,010,480 83,334 83,334 72.10 19.10 81 C P

pwtk 5,926,171 217,918 217,918 27.20 6.20 90 C P

tmt sym 5,080,961 726,713 726,713 7.00 1.00 9 C D

ESOC 6,019,939 327,062 37,830 18.40 0.80 19 C P

TSOPF RS

b2052 c1
6,761,100 25,626 25,626 263.80 310.50 635 C P

boneS01 6,715,152 127,224 127,224 52.80 17.60 81 C P

nd6k 6,897,316 18,000 18,000 383.20 89.20 514 C P

crankseg 2 7,106,348 63,838 63,838 111.30 108.50 3,423 C P

rajat30 6,175,377 643,994 643,994 9.60 784.60 454,746 L L

shipsec5 7,236,289 179,860 179,860 40.20 27.20 126 C P

bmw7st 1 7,339,667 141,347 141,347 51.90 12.70 435 C P
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Table A.2 continued from previous page
Matrix NNZ NR NC

Mean

nnzr

SD

nnzr

Max

nnzr

Category

on Skylake

Category

on KNL

FEM Ship 7,813,404 140,874 140,874 55.50 11.10 102 C D

cont11 l 5,382,999 1,468,599 1,961,394 3.70 0.90 5 C D

cage13 7,479,343 445,315 445,315 16.80 5.10 39 C D

Rucci1 7,791,168 1,977,885 109,900 3.90 0.30 4 C D

m t1 9,753,570 97,578 97,578 100.00 28.60 237 C D

mip1 10,352,819 66,463 66,463 155.80 350.70 66,395 P D

thermal2 8,580,313 1,228,045 1,228,045 7.00 0.80 11 P D

bmwcra 1 10,644,002 148,770 148,770 71.50 18.50 351 P D

hood 10,768,436 220,542 220,542 48.80 12.80 77 P D

pwtk f 11,634,424 217,918 217,918 53.40 4.70 180 P D

rail4284 11,284,032 4,284 1,096,894 2634.00 4209.30 56,182 P D

F1 13,590,452 343,791 343,791 39.50 42.20 378 P D

crankseg 2 f 14,148,858 63,838 63,838 221.60 95.90 3,423 P D

nd24k 14,393,817 72,000 72,000 199.90 101.00 483 P D

Si41Ge41H72 15,011,265 185,639 185,639 80.90 127.00 662 P D

human gene2 18,068,388 14,340 14,340 1260.00 1375.10 7,229 P D

mouse gene 18,221,931 45,101 45,101 404.00 645.80 6,790 P D

af shell3 17,588,875 504,855 504,855 34.80 1.30 40 P D

Ga41As41H72 18,488,476 268,096 268,096 69.00 105.40 702 P D

12month1 22,624,727 12,471 872,622 1814.20 4554.40 75,355 P D

StocF-1465 21,005,389 1,465,137 1,465,137 14.30 2.60 189 P D

ldoor 23,737,339 952,203 952,203 24.90 19.70 77 P D

F1 f 26,837,113 343,791 343,791 78.10 40.80 435 P D

rajat31 20,316,253 4,690,002 4,690,002 4.30 1.10 1,252 D D

nd24k f 28,715,634 72,000 72,000 398.80 76.90 520 P D

cage14 27,130,349 1,505,785 1,505,785 18.00 5.40 41 D D

FullChip 26,621,990 2,987,012 2,987,012 8.90 1806.80 2,312,481 L L

inline 1 36,816,342 503,712 503,712 73.10 35.60 843 D D

Emilia 923 41,005,206 923,136 923,136 44.40 3.70 57 D D

spal 004 46,168,124 10,203 321,696 4525.00 1492.00 6,029 D D

ldoor f 46,522,475 952,203 952,203 48.90 11.90 77 D D

Hook 1498 60,917,445 1,498,023 1,498,023 40.70 14.00 93 D D

Geo 1438 63,156,690 1,437,960 1,437,960 43.90 4.40 57 D D

circuit5M 59,524,291 5,558,326 5,558,326 10.70 1356.60 1,290,501 L L

bone010 71,666,325 986,703 986,703 72.60 15.80 81 D D

cage15 99,199,551 5,154,859 5,154,859 19.20 5.70 47 D D

Flan 1565 117,406,044 1,564,794 1,564,794 75.00 11.40 81 D D

A.3 Scale-free Matrices

Table A.3: Scale-free matrices.

Matrix NNZ NR NC
Mean

nnzr

SD

nnzr

Max

nnzr

Category

on Skylake

Category

on KNL

soc-sign-epinions 841,372 131,828 131,828 6.40 32.90 2,070 C C

connectus 1,127,525 512 394,792 2202.20 7584.40 120,065 L L

language 1,216,334 399,130 399,130 3.00 20.70 11,555 C C

NotreDame actors 1,470,404 392,400 127,823 3.70 10.30 646 C C

citationCiteseer 2,313,294 268,495 268,495 8.60 16.30 1,318 C C

web-Stanford 2,312,497 281,903 281,903 8.20 11.30 255 C C

com-dblp.ungraph 2,099,732 426,000 426,000 4.90 9.10 343 C P

cnr-2000 3,216,152 325,557 325,557 9.90 20.50 2,716 C P

amazon0312 3,200,440 400,727 400,727 8.00 3.10 10 C P

Webbase 3,105,536 1,000,005 1,000,005 3.10 25.30 4,700 C P

IMDB 3,782,463 428,440 896,308 8.80 15.30 1,334 C P

web-Google 5,105,039 916,428 916,428 5.60 6.60 456 C D

com-youtube 5,975,248 1,157,830 1,157,830 5.20 50.30 28,754 C D

Stanford Berkeley 7,583,376 683,446 683,446 11.10 284.80 83,448 C D

web-BerkStan 7,600,595 685,230 685,230 11.10 16.40 249 C D

roadNet-CA 5,533,214 1,971,281 1,971,281 2.80 1.00 12 C D

wiki-Talk 5,021,410 2,394,385 2,394,385 2.10 99.90 100,022 C D

flickr 9,837,214 820,878 820,878 12.00 87.70 10,272 P D
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Table A.3 continued from previous page
Matrix NNZ NR NC

Mean

nnzr

SD

nnzr

Max

nnzr

Category

on Skylake

Category

on KNL

higgs 14,855,842 456,627 456,627 32.50 49.10 1,259 P D

in-2004 16,917,053 1,382,908 1,382,908 12.20 37.20 7,753 P D

eu-2005 19,235,140 862,664 862,664 22.30 29.30 6,985 P D

patents 14,970,767 3,774,768 3,774,768 4.00 5.30 36 D D

cit-Patents 16,518,948 3,774,768 3,774,768 4.40 7.80 770 D D

as-Skitter 22,190,596 1,696,415 1,696,415 13.10 136.90 35,455 D D

coPapersDBLP 30,491,458 540,486 540,486 56.40 66.20 3,299 D D

topcats 28,511,807 1,791,489 1,791,489 15.90 30.40 3,907 D D

coPapersCiteseer 32,073,440 434,102 434,102 73.90 101.30 1,188 D D

pokec 30,622,564 1,632,804 1,632,804 18.80 32.10 8,763 D D

wikipedia-20070206 45,030,389 3,566,907 3,566,907 12.60 33.00 7,061 D D

road central 33,866,826 14,081,816 14,081,816 2.40 0.90 8 D D

wb-edu 57,156,537 9,845,725 9,845,725 5.80 20.30 3,841 D D

soc-LiveJournal1 68,993,773 4,847,571 4,847,571 14.20 36.10 20,293 D D

ljournal-2008 79,023,142 5,363,260 5,363,260 14.70 37.00 2,469 D D

road usa 57,708,624 23,947,347 23,947,347 2.40 0.90 9 D D

hollywood-2009 113,891,327 1,139,905 1,139,905 99.90 271.90 11,468 D D

kron g500-logn21 182,082,942 2,097,152 2,097,152 86.80 755.60 213,905 D D

com-orkut.ungraph 234,370,166 3,072,600 3,072,600 76.30 154.80 33,313 D D

socfb-konect 185,044,029 59,216,215 59,216,215 3.10 22.60 4,960 D D
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