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ABSTRACT 

 

Microgastrinae is the most diverse subfamily of Braconidae, one of the largest families 

of parasitoid wasps. Microgastrines parasitize nearly all families of Lepidoptera, but the 

majority of species are only known to attack one or two Lepidoptera species. Microgastrinae is 

diverse and much of this diversity arose during a still poorly-understood ancient rapid radiation, 

causing many short branches deep in the microgastrine phylogeny that are difficult to 

reconstruct. Due to these difficulties, many microgastrine genera, especially the more specious 

genera, may not be monophyletic and their placements within the microgastrine phylogeny are 

ambiguous.  

In Chapter 2, I constructed a 5-gene molecular phylogeny to assess the monophyly of 

the genus Parapanteles Ashmead (Braconidae: Microgastrinae), a medium-sized genus of 

microgastrine wasps that was first defined over a century ago, lacks a unique synapomorphic 

character, and its monophyly has not been adequately tested. Parapanteles larvae parasitize 

large, unconcealed caterpillars (macrolepidoptera) and have been reared from an unusually 

large diversity of hosts for a relatively small parasitoid genus. I used the extensive existing 

Cytochrome Oxidase I sequences plus four additional genes (wingless, elongation factor 1-

alpha, ribosomal subunit 28s, and NADH dehydrogenase subunit 1) to construct individual gene 

trees and concatenated Bayesian and maximum-likelihood phylogenies of Parapanteles species 

and several species from other microgastrine genera. In these phylogenies, a plurality of 

Parapanteles species were recovered as a monophyletic group within another genus, 

Dolichogenidea, while the remaining Parapanteles species were highly polyphyletic. 

In Chapter 3, I describe and assess the usefulness of the wing interference patterns of a 

monophyletic clade of Parapanteles wasps discovered in Chapter 2 for aiding in species 

identification. Wing interference patterns (WIPs) are color patterns of insect wings caused by 

thin film interference. We were able to detect consistent WIP differences between 

Parapanteles species. In some cases, WIPs can be used to diagnose sibling species that would 

otherwise require SEM images. The species-specific patterns of WIPs are diagnostically valuable 

but of uncertain evolutionary significance. 
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In Chapter 4 I used an anchored phylogenomics approach to address intergeneric 

relationships in Microgastrinae more broadly. Previous molecular phylogenies of this taxon 

have consistently recovered many short and poorly supported basal internal nodes, supporting 

the hypothesis that Microgastrinae coevolved with their hosts in an ancient rapid speciation 

event. The systematics of the 64 currently recognized extant genera are still poorly resolved 

and the monophyly of many of these genera is questionable. To address these challenges, I 

selected 89 species, broadly from within and across several microgastrine genera, and Drs. 

Emily and Alan Lemmon at Florida State University performed anchored hybrid enrichment to 

generate 370 gene fragment sequences for each. Drs. Emily and Alan Lemmon made a 

concatenated maximum-likelihood analysis of this dataset with RAxML which resolved nearly all 

nodes with high bootstrap support. This phylogeny supports several larger genera (Apanteles, 

Cotesia, Dolihcogenidea, and Glyptapanteles) as mostly monophyletic, although taxa from 

smaller, rarer genera are recovered within each. It also corroborates previous results that 

Parapanteles is a polyphyletic genus composed of several subclades of disparate genera, 

although most are within Dolichogenidea. 

Microgastrinae wasps have symbiotic viruses, known as polydnaviruses, encoded within 

their nuclear genomes that females produce and inject, along with eggs, into their host 

caterpillars. In Chapter 5 I sequenced the genomes of 16 microgastrine species from a 

monophyletic clade of Parapanteles Ashmead with extensive host-use records, and annotated 

polydnavirus genes in each genome. I found that probable duplications, pseudogenes, and 

rearrangements are common, especially in the protein-tyrosine-phosphatase polydnavirus gene 

family. These results support the model that frequent gene births and deaths are a major factor 

in polydnavirus genome evolution, and extend our knowledge of polydnaviruses to a major 

previously unexplored segment of the microgastrine phylogeny. 
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CHAPTER 1: INTRODUCTION TO MICROGASTRINAE 

 

DIVERSITY AND HOST USE 

Microgastrinae is the most diverse subfamily of Braconidae, one of the largest families 

of parasitoid wasps (Hymenoptera) (Whitfield 1995). Over two thousand microgastrine species 

have been described to date, and another 20-40k undescribed species are predicted to exist 

(Rodriguez et al. 2013). Adult microgastrines are minute, generally 2-4mm in length. Despite 

their species diversity, their natural history is remarkably consistent: all known microgastrine 

species are koinobiont (parasitoids that do not completely halt the development of their host) 

endoparasitoids (parasitoids that develop inside the body of their host) of larval Lepidoptera 

(Shaw & Huddleston 1991). However, the number of larvae per host is variable. Solitary species 

inject a single egg into a host, while gregarious species inject two or more eggs, which hatch, 

develop, and emerge together. The number of eggs injected per host varies among gregarious 

species, from two to several hundred, and correlates to host size (Le Masurier 1987). Both host 

use strategies have evolved repeatedly throughout Microgastrinae (Shaw & Huddleston 1991, 

Janzen et al. 2009). 

Historically, most microgastrines have been collected as adults, via net, yellow pan, or 

Malaise trap. While these collecting methods are efficient, wasps collected these ways have 

virtually no natural history data besides collection locale and date. The only reliable way to 

identify which host species a microgastrine parasitized as a larva is to rear it from a parasitized 

caterpillar (Whitfield & Wagner 1988, Smith et al. 2008, Rodriguez et al. 2013). Several long-

term rearing projects, most notably Area de Conservación Guanacaste (ACG) in Costa Rica, and 

Yanayacu in Ecuador have been rearing a large diversity of caterpillars from Neotropical forests 

for over a decade (Janzen et al. 2009, Dyer et al. 2015). These projects have contributed a huge 

amount of natural history data by associating caterpillars with host plants, adult moths or 

butterflies, and parasitoids. The parasitoid data has yielded important results for microgastrine 

wasps especially. While some polyphagous species exist, microgastrines from ACG are highly 

host-specific, typically attacking 1-3 host species (Smith et al. 2008).  
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Microgastrines parasitize nearly all families of Lepidoptera (Whitfield 1995), but the 

majority of species are only known to attack one or two Lepidoptera species (Smith et al. 2008). 

Therefore, despite high host specificity within species, switching between hosts of different 

families has happened frequently in the evolution of this group. Several recent genus-level 

microgastrine phylogenies corroborate this and show a trend in host-use evolution (Rodriguez 

2009, O’Connor 2011, Arias-Penna 2015). Each of these phylogenies can be divided into 

subclades that largely attack caterpillars of the same host family, although each subclade 

contains one or more species that have switched to a new host family. Furthermore, the most 

common host family attacked differs between these subclades. This supports a model in which 

many microgastrine species radiate on closely-related host species, possibly via co-evolution as 

host species diversify, but family-level host switching has been common throughout the 

evolution of microgastrines, both early in microgastrine evolution, when subclades and deeper 

nodes diversified, and more recently, when single species have switched to new host families. 

 

SYSTEMATIC & TAXONOMIC PROBLEMS 

The phylogenetics and classification of Microgastrinae is difficult for several reasons. 

Microgastrinae is diverse, and much of this diversity arose during a still poorly-understood 

ancient rapid radiation (Mardulyn & Whitfield 1999). This diversification event underlies many 

short branches deep in the microgastrine phylogeny that are difficult to reconstruct (Mardulyn 

& Whitfield 1999, Whitfield et al. 2002, Banks & Whitfield 2006).  Morphological systematics 

and classification have also been challenging. Microgastrinae wasps are small (generally 2-4mm 

in length) and many of their most accessible morphological characters are prone to 

convergence (Mason 1981, Whitfield et al. 2002, Wild et al. 2013). For example, female 

microgastrines use their ovipositors to inject their eggs into host caterpillars. Ovipositors are 

therefore under selection and prone to convergence. Microgastrine species that attack larger, 

unconcealed hosts tend to have short ovipositors, while species that attack concealed hosts 

(e.g., leaf rollers, leaf miners) tend to have longer ovipositors (Mason 1981). Despite this, 

structures of or related to the ovipositor have frequently been used in the classification and 

identification of microgastrine genera. Ridges on the propodium are also heavily relied on, 
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especially the presence or absence of a ring-shaped areola and especially for generic divisions. 

However, this structure, especially the proximal half, is heavily sculptured and difficult to 

interpret in many species, while in other species it is not clear if the areola is absent or just 

greatly reduced, contributing to many uncertain generic identifications (Mason 1981). Due to 

these morphological and molecular difficulties, many microgastrine genera, especially more 

specious genera, may not be monophyletic and their placements within the microgastrine 

phylogeny are ambiguous. I used molecular phylogenetics techniques to address the systematic 

of microgastrines here: in Chapter 2, I constructed a 5-gene molecular phylogeny to assess the 

monophyly of a particularly contentious genus, Parapanteles, and in Chapter 4 I used an 

anchored phylogenomics approach to address intergeneric relationships in Microgastrinae 

more broadly. Wing interference patterns were first identified as stable and often species-

specific structures of small insect wings in 2011 (Shevtsova et al. 2011), but have not been 

widely explored by taxonomists since then and have never been explored in Microgastrinae. In 

Chapter 3, I describe and assess the usefulness of the wing interference patterns of a 

monophyletic clade of Parapanteles wasps discovered in Chapter 2 for aiding in species 

identification. 

 

POLYDNAVIRUS 

Polydnaviruses are mutualistic viruses used by parasitoid wasps to manipulate their 

hosts (Strand & Burke 2014). Polydnaviridae encompasses two convergent but unrelated 

symbiotic viruses, the Bracoviruses in braconid wasps and the Ichnoviruses in ichneumonid 

wasps, both within the wasp superfamily Ichneumoidea (Stoltz et al. 1984, Kroemer & Webb 

2004). Both polydnaviruses are integrated into their host wasps’ nuclear genome rather than 

existing as free living viruses, they do not reproduce in their wasp’s host caterpillar and are 

dependent on vertical transmission via wasp reproduction for their own reproduction 

(Theilmann & Summers 1986, Stoltz 1990, Fleming & Summers 1991). Polydnaviruses are 

produced by female wasps in specialized calyx cells at the base of the oviduct, and are injected 

with the wasps’ eggs into the parasitized host (Stoltz et al. 1976). Polydnaviruses infect host 

tissues, especially hematocytes, where their genes are expressed and cause pathology for the 



4 
 

caterpillar (Strand & Burke 2014). Bracoviruses are found in a single monophyletic group, the 

Microgastroid complex, containing Microgastrinae and five smaller subfamilies, while 

Ichnoviruses are only found in Banchinae and Campopleginae (Hymenoptera: Ichneumonidae) 

(Strand & Burke 2014). Bracoviruses are descended from a free-living nudivirus, an 

entomopathic virus related to baculoviruses (Bézier et al. 2009), that was incorporated into the 

nuclear genome of an ancestral microgastroid wasp approximately 100 million years ago 

(Murphy et al. 2008). The origin of ichnoviruses is poorly understood, but they arose 

independently from bracoviruses through a separate but similar endosymbiotic event in which 

an unknown virus was similarly incorporated into an ichneumonid wasp’s nuclear genome 

(Béliveau et al. 2015, Herniou et al. 2015, Pichon et al. 2015).  

The role of polydnaviruses in microgastrine host-specificity or host switching has not 

previously been studied on a phylogenetic scale. The diversity in the mode of action of 

bracoviruses is hypothesized to be due to a co-evolutionary arms race between parasitoids and 

their hosts, in which bracovirus virulence genes rapidly evolve in response to adaptations in 

host caterpillar immune systems (Huguet et al. 2012, Strand & Burke 2014). Supporting this 

hypothesis, virulence gene families are prone to duplication and evolve rapidly (Desjardins et al. 

2008, Serbielle et al. 2008, Chen et al. 2011, Serbielle et al. 2012, Burke et al. 2014). In Chapter 

5, I explore the evolution of polydnaviruses in a monophyletic clade of Parapapteles with 

extensive host records, identified in Chapter 2, by sequencing the genomes of 16 Parapanteles 

species and identifying and comparing, qualitatively and phylogenetically, homologous regions 

containing polydnavirus genes. 

 

http://jvi.asm.org/search?author1=Catherine+B%C3%A9liveau&sortspec=date&submit=Submit
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CHAPTER 2: A FIVE-GENE MOLECULAR PHYLOGENY DOES NOT SUPPORT THE MONOPHYLY OF 

PARAPANTELES ASHMEAD (HYMENOPTERA: BRACONIDAE) AS CURRENTLY DEFINED 

 

ABSTRACT 

Parapanteles Ashmead (Braconidae: Microgastrinae) is a medium-sized genus of 

microgastrine wasps that was first defined over a century ago, lacks a unique synapomorphic 

character, and its monophyly has not been adequately tested. Parapanteles larvae parasitize 

large, unconcealed caterpillars (macrolepidoptera) and have been reared from an unusually 

large diversity of hosts for a relatively small parasitoid genus. I used the extensive existing 

Cytochrome Oxidase I sequences available for Parapanteles and other microgastrines to sample 

the diversity of described and undescribed species currently considered to belong to 

Parapanteles, and sequenced four additional genes for this subsample (wingless, elongation 

factor 1-alpha, ribosomal subunit 28s, and NADH dehydrogenase subunit 1). I constructed 

individual gene and concatenated Bayesian and maximum-likelihood phylogenies for this 5-

gene subsample. In these phylogenies, a plurality of Parapanteles species were recovered as a 

monophyletic group within another genus, Dolichogenidea, while the remaining Parapanteles 

species were highly polyphyletic, likely representing misplaced members of other 

morphologically similar genera. When these misplaced members are removed from 

Parapanteles, the diversity of hosts known to be attacked by the genus reduces to arctiine 

erebids, geometrids, saturniids, and notodontids. 

 

INTRODUCTION 

Parapanteles Ashmead is a genus of parasitoid wasps that exemplifies many of the 

taxonomic and systematic challenges of the subfamily Microgastrinae, the most diverse 

subfamily of Braconidae (Hymenoptera) and one of the largest groups of parasitoid wasps in 

general (Whitfield 1995; Smith et al. 2008; Rodriguez et al. 2013). As with many other genera, 

the diagnostic characters of Parapanteles are often difficult to interpret and the majority of 

species belonging to this genus are undescribed. Unlike most microgastrine genera, 

Parapanteles species attack an unusually high diversity of hosts for a genus of its size. In 
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Microgastrinae, where 80-95% of species are undescribed (Rodriguez et al. 2013, Smith et al. 

2013), ambiguous genera such as Parapanteles are major practical problems from the task of 

sorting specimens to genus to solving long-standing generic-level phylogenetic relationships. 

Parapanteles is primarily defined by a combination of two variable and continuous 

characters: a short ovipositor and a propodeal areola (Mason 1981, Valerio et al. 2009). 

Characters of or related to the ovipositor are some of the most heavily used for microgastrine 

generic divisions and morphological phylogenies (Mason 1981, Whitfield et al. 2002). Ovipositor 

morphology has immediate fitness consequences, and, as a result, ovipositor characters are 

particularly prone to convergence (Wild et al. 2013): species that attack larger, unconcealed 

hosts tend to have relatively short ovipositors, while species that attack concealed hosts (e.g., 

leaf rollers, leaf miners) tend to have relatively longer ovipositors (Mason 1981). Ridges on the 

propodeum are highly variable across genera and are also heavily used in microgastrine 

classification. Parapanteles and several other genera have a ring-shaped or pentagonal pattern 

of ridges, forming an areola on their propodea; these ridges are sometimes very faint, obscured 

by setae, or obscured by additional propodeal ridges. Sorting undescribed neotropical 

specimens to genus has been particularly challenging: many specimens with short-to-

intermediate ovipositors can be difficult to place between Parapanteles and Dolichogenidea 

(propodeal areola but generally longer ovipositor), while many with unambiguously short 

ovipositors have weak-to-faint propodeal areolas and could be placed in both Parapanteles and 

Glyptapanteles (short ovipositor, smooth propodeum). Character state decisions for these 

specimens are essentially subjective. In addition to the problem of ambiguous Parapanteles 

specimens, some described species (e.g. Parapanteles scotti, Parapanteles mariae) resemble 

Cotesia (Valerio et al. 2009) in overall appearance. The variation found within Parapanteles is 

unusual in that it causes some specimens to be confused with species in genera that are 

distantly related to each other. 

To date, 2689 microgastrine species have been described, and 20,000-40,000 more 

species are predicted to exist (Rodriguez et al. 2013, Fernández-Triana & Ward 2015). In this 

context, Parapanteles is a relatively small genus, with 27 described and at least 55 putative 

undescribed species. Fifteen of the described and nearly all known undescribed Parapanteles 



11 
 

species are neotropical, most of which were discovered by two long-term caterpillar rearing 

projects: Area de Conservación Guanacaste (ACG) in Costa Rica and Yanayacu Biological Station 

in Ecuador (Janzen & Hallwachs 2009, Valerio et al. 2009, Dyer et al. 2017). The remaining 

described species are from Africa (n=1), Australia (n=1), India (n=6), and North America (n=2) 

(Valerio et al. 2009, Janzen & Hallwachs 2009, Rousse & Gupta 2013, Gupta et al. 2014a, Gupta 

et al. 2014b, Dyer et al. 2017). 

All known microgastrine species are endoparasitoids of larval Lepidoptera (Shaw & 

Huddleston 1991), and all known Parapanteles species attack unconcealed macrolepidoptera 

larvae (Valerio 2005, Valerio et al. 2009). Host specificity is high within most Parapanteles 

species, but host use is highly diverse between species (Valerio 2005). The 27 described species 

attack caterpillars from at least 12 families of Lepidoptera, and putative Parapanteles species 

have been reared from an additional 6 families of host caterpillar (Table 2.1), which is unusually 

high for a relatively small genus (Valerio et al. 2009, Janzen & Hallwachs 2009, Rousse & Gupta 

2013, Gupta et al. 2014a, Gupta et al. 2014b, Dyer et al. 2017). In comparison, large 

microgastrine genera, such as Glyptapanteles and Apanteles, which both contain an order of 

magnitude more species than Parapanteles, attacked roughly the same number of host families 

(Janzen & Hallwachs 2009 (summarized in Table 2.2), Dyer et al. 2017).  

Microgastrine species diversity appears to have greatly increased during an ancient 

rapid radiation, and resolving generic relationships within this group is difficult (Banks & 

Whitfield 2006). Previous generic-level molecular phylogenies of this subfamily typically have 

many short and poorly-supported internal branches, especially near the bases of the trees 

(Mardulyn & Whitfield 1999, Whitfield et al. 2002, Banks & Whitfield 2006). This is a particular 

problem for Parapanteles, which has been recovered in several different places in previous 

molecular and morphological phylogenies, generally with poor support. Parapanteles has been 

recovered sister to or within Hypomicrogaster, near Dolichogenidea, or sister to various smaller 

and rarer genera (Mardulyn & Whitfield 1999, Whitfield et al. 2002, Banks & Whitfield 2006). 

These phylogenies each include a single Parapanteles specimen: either an unidentified 

Parapanteles species, or Parapanteles paradoxus. Most Parapanteles species have not been 

included in a published phylogeny. 
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Parapanteles’ sometimes ambiguous synapomorphies and the unusually high diversity 

of host caterpillars it attacks suggests that Parapanteles may be a “catch-all” genus for 

ambiguous species and not a monophyletic group. It has not been well represented in previous 

molecular phylogenies, in which it has been recovered in conflicting and often poorly-resolved 

areas. Here, I constructed a 5-gene molecular phylogeny of a representative subsample of 

described and undescribed Parapanteles species, putatively related genera, and several 

microgastrine outgroups to test the monophyly of this genus and to recover how it relates to 

other major microgastrine genera. 

 

METHODS 

Taxon sampling 

The long-term caterpillar rearing project at Area de Conservation Guanacaste (ACG), 

Costa Rica (Janzen & Hallwachs 2009) has discovered the majority of known undescribed 

Parapanteles specimens, which are morphologically identified to genus and DNA barcoded 

(Janzen & Hallwachs 2009). To approximate the diversity of Parapanteles under its current 

morphological definition, I accessed all available COI sequences for Parapanteles and several 

other microgastrine genera (Apanteles, Cotesia, Dolichogenidea, Rhygoplitis, Glyptapanteles, 

Pholetesor, Hypomicrogaster, Diolcogaster, and Microplitis) from the Barcode of Life Database 

(BOLD) (Ratnasingham & Hebert 2007) and GenBank (http://www.ncbi.nlm.nih.gov/genbank/). 

The majority of these sequences are from ACG. I sequenced COI for 110 additional Parapanteles 

specimens reared at Yanayacu Biological Station in Ecuador (Dyer et al. 2017) and included 

them in our dataset. I aligned this dataset with PASTA v1.6.3 (Mirarab et al. 2014) and edited it 

in Geneious v9.1.5 (http://www.geneious.com, Kearse et al. 2012). I discarded sequences from 

this alignment that were missing approximately 200bp or more of the 658bp COI barcoding 

region, leaving 14,247 aligned sequences (Supplemental Materials 2.2). I made a phylogenetic 

tree from this alignment with FastTree 2.1.8 (Price & Arkin 2009) using the GTR+I+G 

substitution model (Supplemental Materials 2.2). I selected 56 Parapanteles specimens for our 

subsample from disparate clades in this tree to sequence additional genes for (Supplemental 
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Materials 2.3). Dolichogenidea specimens were particularly intermixed with Parapanteles 

specimens in this tree, so I also included 13 Dolichogenidea samples in our subset. 

I included all available non-Parapanteles microgastrine specimens that have sequences 

available on Genbank for at least 3 of the 5 genes used in this study. This outgroup set includes 

10 taxa from 8 other microgastrine genera, and one representative from Cheloninae, the sister 

group to other microgastroids (Whitfield & Mason 1994, Belshaw et al. 1998, Dowton & Austin 

1998, Whitfield et al. 2002, Banks & Whitfield 2006, Murphy et al. 2008, Kittel et al. 2016), 

which was used to root trees.  

 

Specimen naming conventions 

Specimens collected by the ACG rearing project in Costa Rica are either assigned to 

described species or assigned provisional informal species names based on COI sequence 

similarity and host associations (Janzen et al. 2009). Informal species names follow the 

convention of the last name of an ACG collaborator and a number (e.g. Apanteles Rodriguez01, 

Parapanteles Whitfield113). Specimens of undescribed species from ACG used in this study are 

identified by these provisional species names. 

Specimens from the Yanayacu Rearing Project in Ecuador are not automatically 

barcoded or grouped into provisional species as they are at ACG, so specimens of undescribed 

species from Yanayacu used in this study are identified by “yy” and their individual sample 

number (e.g. Parapanteles yy3653). 

 

Gene selection 

I sequenced portions of two mitochondrial genes (655 bp of cytochrome oxidase I (COI) 

(barcoding region) and 447 bp of NADH dehydrogenase subunit 1 (ND1)) and three nuclear 

genes (451 bp of wingless (WG), 418 bp of elongation factor 1-alpha (EF1a) and 666 bp of 

ribosomal subunit 28s (28S)) (primers listed in Table 2.3) to construct a molecular phylogeny. 

The DNA barcoding region of Cytochrome oxidase I is reliable for species delimitation of 

microgastrines (Whitfield et al. 2002, Banks & Whitfield 2006, Smith et al. 2008) and sequence 

data were available on the Barcode of Life Database (BOLD) (Ratnasingham & Hebert 2007) for 
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almost all species of Parapanteles and most species of Dolichogenidea, Rhygoplitis, 

Hypomicrogaster, Promicrogaster and Pholetesor that have been reared in the Neotropics 

(Janzen & Hallwachs 2009). Wingless has been useful in generic-level phylogenies of 

microgastrines (Banks & Whitfield 2006; Murphy et al 2008), and sequences were available for 

all Eois-attacking Parapanteles (Wilson et al. 2012) and all outgroup taxa with pre-existing 

sequences (Banks & Whitfield 2006). Similarly, EF1a has been used extensively in insect 

systematics and sequences were available from all Eois-attacking Parapanteles (Wilson et al. 

2012). Several microgastrine phylogenies have used ND1 and 28s (Dowton & Austin 1998, 

Michel-Salzat & Whitfield 2004, Kankare & Shaw 2004, Rodriguez 2009, O’Connor 2011), and I 

was able to incorporate existing outgroup sequences by including these genes in our dataset. 

Preliminary results placed many Parapanteles among several other genera, so I included 

additional specimens from Glyptapanteles and Apanteles. With permission from the authors 

(Rodriguez 2009, Arias-Penna 2015), I used sequences from two unpublished molecular 

phylogenies of these genera. I used COI and WG sequences from 28 Glyptapanteles species, to 

which I added sequences of EF1a, 28s, and ND1.  I sequenced all 5 genes in our dataset for 17 

additional Glyptapanteles specimens from Yanayacu, Ecuador (Arias-Penna 2015). I used 

sequences of all five genes for 19 Apanteles species (Rodriguez 2009). 

 

Sequencing 

Genomic DNA was extracted from adult microgastrines using Qiagen DNEasy Blood and 

Tissue kits following the manufacturer’s directions. For gregarious species (multiple larvae 

developing in the same host), I extracted DNA from whole specimens. For solitary species, I 

extracted DNA from one hind leg, removed above the coxa, or one mid- and/or foreleg if one or 

more hind legs were missing. I used New England Biolabs Taq DNA Polymerase with Standard 

Taq buffer and the primers and thermocycler protocols listed in Table 2.3. I purified PCR 

products with EXO SAP and performed sequencing reactions with ABI Prism BigDye Terminator 

v3.1 Cycle Sequencing Kits, typically using 1/8th-1/16th of the recommended amount of BigDye 

Terminator 3.1 Ready Reaction Mix (1µl-0.5µl) but otherwise following the manufacturer’s 

instructions. PCR products were sequenced at the W.M. Keck Center for Comparative and 
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Functional Genomics at the University of Illinois. I edited sequences with Geneious v9.1.5 

(http://www.geneious.com, Kearse et al. 2012).  

 

Alignment and Phylogenetic Analysis 

I excluded from the concatenated analyses any taxa for which I was unable to sequence 

at least 3 genes, but still included all available sequences in individual gene trees. I therefore 

included 142 taxa in our concatenated alignment, with the following numbers of taxa missing 

for each gene followed by the number of taxa included in each individual gene tree in 

parentheses: COI: 0/142 (295), WG: 4/142 (160), ND1: 50/142 (126), EF1a: 27/142 (135), 28s: 

18/142 (139). I aligned sequences with MUSCLE v3.8.31 (Edgar 2004). Our concatenated 

alignment had 2626 characters total, with 169 invariable across all taxa. I used Partitionfinder 

v1.1.1 (Lanfear et al. 2012) to select appropriate models for phylogenetic analysis based on 

their Bayesian Information Criterion (BIC) score. In all analyses I partitioned COI and ND1 

alignments into three partitions by 1st, 2nd, and 3rd codon positions, WG and EF1a into two 

partitions by 1st+2nd and 3rd codon positions, and 28s into two partitions, with the conserved 

regions flanking the D2 variable region in one partition and the variable region in the other, for 

a total of 12 partitions (Supplemental Materials 2.6). I constructed Maximum Likelihood (ML) 

trees in RAxML v8.1.15 (Stamatakis 2014) with 1000 bootstrap replicates for each gene 

independently and all genes concatenated. For each analysis I selected either GTR+G or 

GTR+I+G depending on which model was favored by the majority of partitions. I constructed an 

additional tree for each analysis with MrBayes v.3.2.2 (Ronquist et al. 2012) using mixed 

models. I ran each Bayesian analysis for 10 million generations with 4 MCMC chains, and 

sampled trees every 1000th generation. Appropriate burn-in values were estimated in Tracer 

v.1.5 (Rambaut & Drummond 2007). All trees were rooted with the closer outgroup 

Phanerotoma as the most distant outgroup, except ND1 trees, which were rooted with 

Microplitis demolitor. I graphically edited all trees in FigTree v.1.4.2 

(http://tree.bio.ed.ac.uk/software/figtree/) and poorly supported branches were manually 

collapsed in Adobe Illustrator CC 2015.3. 
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Provisional species from Ecuador 

I grouped specimens from the Yanayacu Rearing Project in Ecuador into provisional 

species based on COI sequence similarity, natural history, and then morphological similarity. I 

calculated the pair-wise distances of COI sequences with MEGA v7.0.26 (Kumar et al. 2016). 

 

RESULTS 

Individual gene trees differ significantly from each other, and none reflects all of the 

relationships I recovered in concatenated analyses. Clades that contradict the relationships 

recovered in our concatenated analysis are rare or absent in most individual gene trees. The 

largest source of conflicting relationships are basal relationships in our EF1a gene trees. The 

majority of differences between our concatenated analysis and individual gene trees are clades 

in the concatenated analysis that are partial or complete polytomies in one or more individual 

gene trees (Table 2.3). The topologies of COI and EF1a gene trees were least similar to the 

topologies of our concatenated analyses, while the topologies of our WG trees were the most 

similar to the topology of our concatenated analyses, followed by our ND1 trees.  

I recovered Parapanteles as polyphyletic in all analyses, with both described species and 

undescribed putative species morphologically identified as Parapanteles appearing within 

clades dominated by Dolichogenidea, Apanteles, Glyptapanteles, or Cotesia. In our 

concatenated analyses, the majority of Parapanteles taxa were recovered as a monophyletic 

clade within Dolichogenidea, followed by eleven Parapanteles taxa recovered throughout the 

predominantly Glyptapanteles clade, four within the Cotesia clade, and one within the 

Apanteles clade. 

I identified 10 provisional species from the Yanayacu Rearing Project in Ecuador based 

on COI sequence similarity, natural history, and then morphological similarity (Table 2.4).  

 

DISCUSSION 

I found Parapanteles to be clearly polyphyletic (Fig. 2.1). The diversity of hosts 

parasitized by Parapanteles species is inflated due to the polyphyly of this genus, and most of 

its host diversity is accounted for by misdiagnosed species, especially those that belong to 
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Cotesia or Glyptapanteles (Fig. 2.1). I recovered one strongly-supported clade containing the 

majority of named and unnamed Parapanteles species included in our dataset (Fig. 2.1, clade 

A). Species in this clade parasitize arctiine erebids, geometrids, saturniids, and notodontids (Fig. 

2.2), all relatively large and unconcealed hosts. This Parapanteles clade rendered 

Dolichogenidea paraphyletic, although the branch defining it has low support. Dolichogenidea is 

a larger genus than Parapanteles that typically parasitizes leaf miners, leaf tiers and other 

concealed microlepidotera, and COI barcode data suggest it may also be polyphyletic (Mason 

1981, Smith et al. 2013). Therefore, Parapanteles s. s. may be a clade of Dolichogenidea that 

shifted to a macrolepidopteran host, but appropriate taxonomic revision of Parapanteles will 

require a revision of Dolichogenidea that should include much broader phylogenetic sampling 

of Dolichogenidea species, and which includes the type species of both genera, which were not 

available for this study in a form suitable for molecular sampling. 

Several previous microgastrine phylogenies placed Parapanteles as close or sister to 

Hypomicrogaster, which I did not find in our results. These studies included representatives of 

many microgastrine genera, but few representatives of each (Whitfield et al. 2002, Banks & 

Whitfield 2006). Whitfield et al. (2002) included one unidentified Parapanteles species, which 

may have been from any of the disparate taxa currently considered Parapanteles. Banks & 

Whitfield (2006) used Parapanteles paradoxus, a Costa Rican species included in this study. In 

some of their analyses they recovered P. paradoxus near, sister to, and/or within 

Hypomicrogaster, and with poor support. Our concatenated analyses (Fig. 2.1) and our broad 

COI survey of microgastrine genera (Supplemental Materials 2.3) supports Hypomicrogaster as 

a distinctive monophyletic genus that is not closely related to the majority of Parapanteles 

clades. Although logistically prohibitive at the time, had these previous studies included broad 

sampling both within and across genera, they likely would not have recovered Parapanteles as 

closely related to Hypomicrogaster. 

The polyphyly of Parapanteles reflects the difficulty of assigning microgastrines to genus 

via morphology only, especially the hugely diverse neotropical taxa. As genera are currently 

defined, the presence of a propodeal areola and possession of a relatively short ovipositor are 

critical characters for separating Parapanteles from Glyptapanteles and Dolichogenidea 
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respectively (Whitfield 1997). Many of the Parapanteles that grouped within Glyptapanteles 

(and vice versa) have what was considered a faint propodeal areola rather than the complete 

absence of this character. Our results suggest that interpretation of this character, especially 

when it is weakly expressed, is somewhat subjective and unreliable. The shape of the 1st 

metasomal tergite is variable across Parapanteles species, distally increasing in width in most 

species, roughly the same width throughout in some, and narrowing sharply distally in a few 

(Valerio et al. 2009). All but two of the species in clade A of our analysis (Fig. 2.1) have 1st 

metasomal tergites that are wider distally or with roughly equal width throughout. The two 

exceptions are solitary geometrid-attacking species whose 1st metasomal tergites are longer 

and thinner and narrow sharply distally. These two species morphologically resemble 

Glyptapanteles species that attack geometrids in the same genus, Eois, which reflects many of 

the misdiagnosed Parapanteles species I recovered within Glyptapanteles and vice versa (Fig. 

2.1 clades A&D). Correct generic identification of Parapanteles, Glyptapanteles, and 

Dolichogenidea species with intermediate phenotypes for these traits is extremely difficult via 

morphology alone, especially for males, which lack ovipositors. Whenever possible, generic 

placement should be corroborated with COI data. 

Eight new Parapanteles species have been recently described from India (Rousse & 

Gupta 2013, Gupta et al. 2014a, Gupta et al. 2014b). The majority of these species were reared 

from butterflies: four from Lycaenidae species, one from a Riodinidae species, and one from a 

Nymphalidae species. Of the butterfly-attacking Parapanteles species I included in our analysis, 

most grouped within Cotesia, followed by Glyptapanteles, then one riodinid-attacking species 

within Apanteles (Fig. 2.2). Therefore, I expect that these Indian species are misdiagnosed, most 

likely Cotesia species. 

Investigations into the coevolution and ecology of two hyperdiverse neotropical taxa, 

Piper (Piperales: Piperaceae) and its specialist herbivore Eois (Lepidoptera: Geometridae), have 

identified Parapanteles wasps as the most numerous and diverse parasitoids of Eois caterpillars 

(Bodner et al. 2010, Brehm et al. 2011, Wilson et al. 2012). I included many of the same 

samples that appear in a phylogeny of Eois-attacking Parapanteles in Wilson et al. 2012 in our 

analysis. Our results suggest that these Eois-attacking Parapanteles are in fact two sister species 



19 
 

within the main Parapanteles clade I recovered (Table 2.4, provisional spp. J & K), along with 

three or more Glyptapanteles species. The COI barcoding region of provisional species J & K are 

virtually identical within species and about 2.3% different from each other (Table 2.4). Both 

species have rearing records from Eois olivacea Felder & Rogenhofer, while one has additionally 

been reared from Eois pallidicosta (Dyer et al. 2017). These two species are the most 

morphologically similar to Glyptapanteles of any of the Parapanteles species I recovered in 

clade A (Fig. 2.1), and the only species with longer narrower 1st metasomal tergites that narrow 

distally. 

In summary, this studies strongly corroborate the notion that Parapanteles, as currently 

defined, is polyphyletic, consisting of a core clade embedded within Dolichogenidea as currently 

defined, and several groups of Cotesia, Glyptapanteles and Apanteles that are difficult to 

diagnose morphologically. Should Parapanteles be retained as a valid genus upon revision and 

possible division of Dolichogenidea, it needs to be diagnosed morphologically using a more 

carefully defined set of features. The genus will thus assume a more clearly cohesive definition 

both morphologically and in terms of host relationships. In the meantime, reassignment of the 

obviously misdiagnosed members of other genera is clearly called for, as discussed above.  
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TABLES & FIGURES 

Table 2.1: Rearing/collection records and host associations of described and provisional Parapanteles species as currently morphologically defined.  

Described Species Host Families Host Subfamilies Host Spp. Range Description Reference Host-use references 

Parapantles aletiae Noctuidae Scoliopteryginae Alabama argillacea SE USA Riley 1869 Riley 1869, Valerio et al. 2009 
  Notodontidae nr nr       
Parapanteles complexus Gelechiidae Dichomeridinae "gelJanzen01 Janzen181" Costa Rica Valerio et al. 2009 Valerio et al. 2009, Janzen & Hallwachs 2009 

Parapanteles continua Saturniidae Hemileucinae Hylesia continua Costa Rica Valerio et al. 2009 Valerio et al. 2009, Janzen & Hallwachs 2009 
Parapanteles em Notodontidae Dioptinae Hemiceras conspirata Costa Rica Valerio et al. 2009 Valerio et al. 2009, Janzen & Hallwachs 2009 
  

 
 Hemiceras nigrescens 

  
  

  
  

Hemiceras sabis 
  

  

  
 

Phalerinae Rhogalia epigena 
  

  

      Rosema deolis       

Parapantles lincolnii Gelechiidae Gelechiinae Chionodes fuscomaculella Missouri, USA Valerio et al. 2009 Valerio et al. 2009 

Parapanteles mariae Lasiocampidae Macromphaliinae Euglyphis mariaDHJ03 Costa Rica Valerio et al. 2009 Valerio et al. 2009, Janzen & Hallwachs 2009 
      Euglyphis maria       

Parapantles masoni nr nr nr Australia Austin & Dangerfield 1992 NA 

Parapantles nephos Erebidae Arctiinae Carales astur Peru Valerio et al. 2009 Valerio et al. 2009 

Parapantles noae nr nr nr Costa Rica Valerio et al. 2009 NA 

Parapantles paradoxus Elachistidae nr nr 
 

Muesebeck 1958 
Muesebeck 1958, Valerio et al. 2009, Janzen & 
Hallwachs 2009 

  Notodontidae Dioptinae Dioptis longipennis 
Costa Rica, El 
Salvador 

 
  

  
 

 Tithraustes lambertae 
  

  

  
 

 Tithraustes noctiluces 
  

  

  
 

 Tithraustes seminigrata 
  

  

  
 

 Tithraustes Miller02 
  

  

  
 

Hemiceratinae Hemiceras conspirata 
  

  

  
 

 Hemiceras sp. 
  

  

  
 

Nystaleinae Dunama mexicana 
  

  

  
 

 Dunama janecoxae 
  

  

    Phalerinae Rosema sp.       
Parapanteles polus Erebidae Arctiinae Napata lelex Costa Rica Valerio et al. 2009 Valerio et al. 2009 
      Cyanopepla arrogans       

Parapantles rarus nr nr nr Costa Rica Valerio et al. 2009 NA 

Parapantles rooibos Geometridae Ennominae Isturgia exerraria Africa Valerio et al. 2005 Valerio et al. 2005 
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Table 2.1 continued       
Parapanteles scotti Erebidae nr "noctuid 92-SRNP-3601" Costa Rica Valerio et al. 2009 Valerio et al. 2009, Janzen & Hallwachs 2009 
  Noctuidae Condicinae Condica sutorDHJ01 

  
  

   Noctuinae Spodoptera androgea 
  

  
  

  
Spodoptera latifascia 

  
  

    Plusiinae Ctenopulsia oxygramma       
Parapanteles sicpolus Saturniidae Hemileucinae Gamelia mustaDHJ01 Costa Rica Valerio et al. 2009 Valerio et al. 2009, Janzen & Hallwachs 2009 
      Lonomia electra       

Parapanteles tessares Saturniidae Hemileucinae Hylesia continua Costa Rica Valerio et al. 2009 Valerio et al. 2009 

Parapantles thrix Nolidae Nolinae Meganola minuscula Missouri, USA Valerio et al. 2009 Valerio et al. 2009 

Parapantles tlinea Erebidae Arctiinae "artine 03-SRNP-22291" Costa Rica Valerio et al. 2009 Valerio et al. 2009, Janzen & Hallwachs 2009 

  
 

 Clemensia BioLep03 
  

  

  Riodinidae nr nr       

Parapanteles eros Lycaenidae Polyommatinae Chilades pandava India Gupta et al. 2014 Gupta et al. 2014 

Parapanteles arka Lycaenidae Curetinae Curetis thetis India Gupta et al. 2014 Gupta et al. 2014 

Parapanteles esha Lycaenidae Polyommatinae Prosotas dubiosa India Gupta et al. 2014 Gupta et al. 2014 

Parapanteles regale Lycaenidae Theclinae Tajuria cippus India Gupta et al. 2014 Gupta et al. 2014 

Parapanteles echeriae Riodinidae Nemeobiinae Abisara echeria India Gupta et al. 2013a Gupta et al. 2013a 

Parapanteles shivranginii nr nr nr India Sathe & Ingawale 1989 Sathe & Ingawale 1989 

Parapanteles sireeshaae Geometridae Ennominae Hyposidra successaria India Ahmad & Akhtar 2010 Ahmad & Akhtar 2010 

Parapanteles athamasae Nymphalidae Charaxinae Charaxes athamas India Gupta et al. 2013b Gupta et al. 2013b 
Described species n=27 Host families 

n=12 
    

 

Undescribed Species Host Families Host Subfamilies Host Spp. Host-use references 
 

 

Parapanteles Fernandez02 Depressariidae nr "elachJanzen01 Janzen252" 
Janzen & 
Hallwachs 2009 

  
Parapanteles Janzen01 Erebidae Hypocalinae Ipnista marina 

Janzen & 
Hallwachs 2009 

    Noctuidae Agaristinae Erocha leucotelus     

Parapanteles Janzen50 Geometridae Sterrhinae Leptostales Janzen01 
Janzen & 
Hallwachs 2009 

  
Parapanteles Janzen51 Geometridae Ennominae Macaria pernicata 

Janzen & 
Hallwachs 2009 

  
Parapanteles Janzen53 Gelechiidae Dichomeridinae Dichomeris Janzen822 

Janzen & 
Hallwachs 2009 

  
Parapanteles Rodriguez02 Riodinidae Riodininae Emesis mandana 

Janzen & 
Hallwachs 2009 

  
Parapanteles Rodriguez209 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Valerio05 Notodontidae Hemiceratinae Hemiceras nigrescens 

Janzen & 
Hallwachs 2009  
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Table 2.1 continued 
    

  

Parapanteles Valerio06 Geometridae Larentiinae Eupithecia Janzen12 
Janzen & 
Hallwachs 2009   

Parapanteles Valerio07 Notodontidae Hemiceratinae Hemiceras clarki 
Janzen & 
Hallwachs 2009   

Parapanteles Valerio08 Erebidae Erebinae Ramphia albizona 
Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield05 Limacodidae Limacodinae Euprosterna elea 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield07 Crambidae Spilomelinae "spiloJanzen01 Janzen52" 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield08 Geometridae nr "geometrid 09-36194" 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield09 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield10 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield100 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield101 Geometridae nr "geoJanzen01 Janzen01" 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield102 Riodinidae Riodininae Napaea eucharila 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield11 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield12 Riodinidae Riodininae Emesis ocypore 

Janzen & 
Hallwachs 2009 

        Emesis cypria   
  

Parapanteles Whitfield13 Hesperiidae Eudaminae Cephise nuspesez 
Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield133 Riodinidae Riodininae Symmachia rubina 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield14 Geometridae Geometrinae Oospila dicraspedaDHJ02 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield16 Riodinidae Riodininae Caria rhacotis 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield17 Riodinidae Riodininae Necyria beltiana 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield18 Hedylidae   

Macrosoma 
rubedinariaDHJ02 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield184 Lycaenidae Theclinae Ocaria ocrisia 

Janzen & 
Hallwachs 2009 

        Ocaria ocrisiaDHJ02   
  

Parapanteles Whitfield19 Erebidae Arctiinae Scaptius obscurata 
Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield199 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield21 Geometridae Ennominae Pyrinia Janzen02 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield213 Riodinidae Riodininae Napaea beltiana 

Janzen & 
Hallwachs 2009 
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Table 2.1 continued 
      

Parapanteles Whitfield234 Riodinidae Riodininae Ithomiola calculosa 
Janzen & 
Hallwachs 2009   

Parapanteles Whitfield249 nr nr nr 
Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield300 Lycaenidae Theclinae Arawacus togarna 

Janzen & 
Hallwachs 2009   

 
  

Cyanophrys fusius 
   

Parapanteles Whitfield301 nr nr nr 
Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield302 Riodinidae Riodininae Metacharis victrix 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield303 Riodinidae Riodininae Mesosemia carissima 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield304 Riodinidae Riodininae Napaea eucharila 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield305 Riodinidae Riodininae Juditha caucana 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield44 Riodinidae Riodininae Symmachia tricolor 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield45 Riodinidae Riodininae Symmachia tricolor 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield70 Riodinidae Riodininae Thisbe irenea 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield83 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield86 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield87 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield88 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield89 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield90 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield92 Geometridae Geometrinae Nemoria "same as 02-9055" 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield93 Geometridae Sterrhinae Pleuroprucha rudimentaria 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield94 Geometridae Larentiinae Dyspteris Janzen05 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield98 nr nr nr 

Janzen & 
Hallwachs 2009 

  
Parapanteles Whitfield99 Tortricidae nr "tortricid 07-SRNP-22617" 

Janzen & 
Hallwachs 2009 

  Putative species n=55 Described and 
putative species 
n=82 

Putative species host 
familiesn=13 

Unique host families from 
putative and described 
species n=18 
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Table 2.2: Family-level diversity of host use by microgastrine genera reared from the Area de Concervación 
Guanacaste. Records access November 2015. 

Genus # of collection records 
# of COI barcode 

species 
# of unique host family 

records 
# of unique host 

species rearing records 

Apanteles 4184 328 21 448 

Glyptapanteles 2771 223 21 210 

Parapanteles 903 70 16 67 

Hypomicrogaster 1987 128 16 227 

Cotesia 815 63 14 113 

Dolichogenidea 1351 100 12 117 

Diolcogaster 2177 92 12 143 

Pseudapanteles 410 39 6 21 

Distatrix 22 9 5 12 

Papanteles 67 5 5 19 

Xanthomicrogaster 98 19 5 21 

Alphomelon 1141 34 4 87 

Snellenius 201 23 4 31 

Iconella 19 4 3 4 

Prasmodon 228 13 3 57 

Clarkinella 2 2 2 2 

Promicrogaster 113 21 2 2 

Fornicia 22 5 2 6 

Rhygoplitis 32 2 1 2 

Venanides 1 1 1 1 

Wilkinsonellus 6 1 1 2 

Lathrapanteles 29 3 1 2 

Microplitis 563 10 1 26 

Rasivalva 1 1 1 1 
 

Table 2.3: Comparison of 9 clades (A-I) recovered in our concatenated analysis to their status in individual gene 
trees. “y” indicates the clade was recovered. “polytomy” indicates that the clade was not recovered due to 
polytomy, but not otherwise contradicted by a relationship not recovered in the concatenated analysis. If a clade 
was recovered within a clade recovered as separate in the concatenated anaylsis, the genus of the majority of 
species of that clade was listed. 

Clade COI WG ND1 EF1a 28s 

A polytomy y y n y 

B polytomy y y n polytomy 

C y y y n y 

D y y y n y 

E y polytomy y n y 

F polytomy y y n polytomy 

G polytomy y y polytomy y 

H polytomy Glyptapanteles Apanteles polytomy polytomy 

I y y no data y y 
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Table 2.4: Rearing/collection records and host associations of ten new provisional species from the Yanayacu Rearing Project in Ecuador. 

Provisional Species 
name Records Host Family Host Species Host Plant Family 

Host Place 
Species 

COI 
variation 
within 
species Sister species/clade 

COI 
Distance 
to sister Notes Reference 

Parapanteles sp. B 2525 Arctiidae no record Fabaceae Erythrina 
smithiana 

0.000 Parapanteles sp. C 0.063-
0.068 

*Record is 
gregarious, but 
this caterpillar 
is very small 
and unlikely to 
support more 
than one or 
two 
parasitoids. 
Therefore, this 
record is likely 
incorrect. 

Dyer et al. 2017 

20919 Arctiidae no record Fabaceae  Erythrina 
edulis 

26049 Arctiidae no record Rosaceae Rubus sp. 

34670 Geometridae Eois olivacea* Piperaceae Piper 
lanceifolium 

37474 Arctiidae no record Rosaceae Rubus sp. 

45714 Arctiidae no record Melastomataceae Monochaetum 
lineatum 

Parapanteles sp. C 12105 Arctiidae no record Asteraceae Dendrophorbiu
m lloense  

0.000-
0.002 

Parapanteles sp. B 0.063-
0.068 

  Dyer et al. 2017 

45981 Arctiidae no record Melastomataceae Monochaetum 
lineatum 

48054 Arctiidae no record Asteraceae Dendrophorbiu
m lloense 

Parapanteles sp. D 13275 Nymphalidae no record Poaceae Chusquea 
scandens 

0.000 Parapanteles sp. H 0.016   Dyer et al. 2017 

35934 Saturniidae Pseudautomeris 
yourii 

Poaceae Chusquea 
scandens 

37263 Saturniidae Pseudautomeris 
yourii 

Onagraceae Fucshia 
scabriuscula 

37275 Saturniidae Pseudautomeris 
yourii 

Poaceae Chusquea 
scandens 

37791 Saturniidae no record Poaceae Chusquea 
scandens 

44117 Saturniidae Pseudautomeris 
yourii 

Poaceae Chusquea 
scandens 

Parapanteles sp. E* 4460 Rubiaceae Palicourea sp. Geometridae no record n/a ((Parapanteles sp. B, 
Parapanteles sp. C), 
Parapanteles sp. F) 

(0.085, 
0.082-
0.087), 
0.113 

*COI match to 
Parapanteles 
Whitfield08 
from Janzen & 
Hallwachs 
2009 

Dyer et al. 2017 

Parapanteles sp. F 37570 Arctiidae no record Piperaceae Piper sp. 'nov1' n/a (Parapanteles sp. B, 
Parapanteles sp. C) 

0.107, 
0.085-
0.090 

  Dyer et al. 2017 
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Table 2.4 continued          

Parapanteles sp. G 38822 Saturniidae Gamelia sp. Urticaceae Boehmeria 
bullata 

n/a ((Parapanteles 
continua, 
Parapanteles 
tessares), 
Parapanteles 
sicpolus) 

(0.055, 
0.057), 
0.035 

  Dyer et al. 2017 

Parapanteles sp. H 2365 Saturniidae Leucanella sp. Fabaceae Erythrina 
smithiana 

0.000 Parapanteles sp. D 0.016 1Note in 
database 

Dyer et al. 2017 

2366 Saturniidae no record Melastomataceae Tibouchina 
lepidota 

4503 Apatelodidae no record Melastomataceae Monochaetum 
sp. 

24661 no record no record no record no record 

61019 Geometridae no record Piperaceae  Piper sp. 'nov1' 

Parapanteles sp. I 6697 Geometridae no record no record no record 0.000-
0.002 

Parapanteles 
paradoxus 

0.088   Dyer et al. 2017 

42069 Arctiidae no record Poaceae Chusquea 
scandens 

43211 Geometridae no record Poaceae Chusquea 
scandens 

46466 Geometridae no record Poaceae  Chusquea 
scandens 

46620 Geometridae no record Poaceae  Chusquea 
scandens 

Parapanteles sp. J 3071 Geometridae Eois olivacea Piperaceae Piper 
lanceifolium 

0.000 Parapanteles sp. K 0.021-
0.030 

  Dyer et al. 2017 

5468 Geometridae Eois olivacea Piperaceae Piper 
lanceifolium 

14831 Geometridae Eois nr olivacea Piperaceae Piper baezanum 

27850 Geometridae Eois sp. Piperaceae Piper baezanum 

27851 Geometridae Eois sp. Piperaceae Piper baezanum 

27852 Geometridae Eois sp. Piperaceae Piper baezanum 

27853 Geometridae Eois sp. Piperaceae Piper baezanum 

32231 Geometridae Eois nr fucosa Piperaceae Piper stiliferum 

32568 Geometridae Eois olivacea Piperaceae Piper baezanum 

32642 Geometridae Eois olivacea Piperaceae Piper baezanum 

 
33819 Geometridae Eois olivacea Piperaceae Piper baezanum 

 
34115 Geometridae Eois olivacea Piperaceae Piper baezanum 

 
34142 Geometridae Eois olivacea Piperaceae Piper baezanum 

 
34164 Geometridae Eois olivacea Piperaceae Piper baezanum 

 
34403 Geometridae Eois olivacea Piperaceae Piper baezanum 
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Table 2.4 continued    

 
34413 Geometridae Eois olivacea Piperaceae Piper baezanum 

 
36533 Geometridae Eois olivacea Piperaceae Piper baezanum 

 
44615 Geometridae Eois olivacea Piperaceae Piper baezanum 

 
47239 Geometridae Eois olivacea Piperaceae Piper baezanum 

Parapanteles sp. K* 8551 Geometridae Eois pallidicosta Piperaceae Piper sp. 0.000-
0.007 

Parapanteles sp. J 0.000 *COI match to 
Dolichogenidea 
Whitfield59 
from Janzen & 
Hallwachs 
2009 

Dyer et al. 2017 

12546 Geometridae Eois sp. Piperaceae Piper sp. 

14412 Geometridae Eois pallidicosta Piperaceae Piper sp. 

23541 Geometridae Eois olivacea Piperaceae Piper 
lanceifolium 

27264 Geometridae Eois pallidicosta Piperaceae Piper sp. 

27465 Geometridae Eois pallidicosta Piperaceae Piper sp. 

27466 Geometridae Eois pallidicosta Piperaceae Piper sp. 

28620 Geometridae Eois olivacea Piperaceae Piper 
lanceifolium 

32117 Geometridae Eois sp. Piperaceae Piper sp. 

32234 Geometridae Eois sp. Piperaceae Piper 
immutatum 

33815 Geometridae Eois olivacea Piperaceae Piper baezanum 

36406 Geometridae Eois pallidicosta Piperaceae Piper sp. 'nov1' 

36534 Geometridae Eois olivacea Piperaceae Piper baezanum 

38844 Geometridae Eois sp. Piperaceae Piper sp. 'nov1' 

38845 Geometridae Eois sp. Piperaceae Piper sp. 'nov1' 

60786 Geometridae no record Piperaceae Piper sp. 'nov1' 

67394 Geometridae Eois sp. Piperaceae Piper sp. 'nov1' 

RPIIPSITII* no record no record no record no record 
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Figure 2.1: Consensus tree 
of RAxML and MrBayes 
analyses of concatenated 
5-gene dataset. Bootstrap 
supports/posterior 
probabilities are reported 
on each branch. Nodes 
with poor support from 
both bootstrapping and 
posterior probability (i.e. 
>50 bootstrap support & 
>0.9 posterior probability) 
were collapsed. Branches 
are colored by genus, with 
purple corresponding to 
Parapanteles, green to 
Dolichogenidea, red to 
Apanteles, blue to 
Glyptapanteles, and yellow 
to Cotesia. Branches of all 
other genera are black. 
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Figure 2.2: Consensus tree 
of RAxML and MrBayes 
analyses of concatenated 
5-gene dataset. Bootstrap 
supports/posterior 
probabilities are reported 
on each branch. Nodes 
with poor support from 
both bootstrapping and 
posterior probability (i.e. 
>50 bootstrap support & 
>0.9 posterior probability) 
were collapsed. Taxon 
labels are colored by 
genus, with purple 
corresponding to 
Parapanteles, green to 
Dolichogenidea, red to 
Apanteles, blue to 
Glyptapanteles, and 
yellow to Cotesia. 
Ranches of all other 
genera are black. 
Branches of Parapanteles 
specimens are colored by 
host family. 
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CHAPTER 3: THE WING INTERFERENCE PATTERNS (WIPS) OF PARAPANTELES (BRACONIDAE: 

MICROGASTRINAE) WASPS: A POWERFUL AND ACCESSIBLE TOOL FOR SPECIES-LEVEL 

IDENTIFICATION OF SMALL WINGED INSECTS 

 

ABSTRACT 

Wing interference patterns (WIPs) are color patterns of insect wings caused by thin film 

interference. Thin film interference is the same phenomenon responsible for the iridescent 

colors sometimes visible on soap bubbles, although in insects WIPs are static patterns due to 

the variable thickness of the transparent portions of wings, rather than shifting patterns due to 

a thin oil layer as in soap bubbles. While WIPs have been studied in several taxa of small 

insects, they have not been broadly adopted by insect taxonomists. We surveyed WIPs in one 

small genus of parasitoid wasps, Parapanteles (Braconidae: Microgastrinae). Using an 

inexpensive microscope camera set-up and free software (ImageJ & R), we were able to detect 

consistent WIP differences between Parapanteles species. In some cases, WIPs can be used to 

diagnose sibling species that would otherwise require SEM images. We believe WIPs are a 

largely underemployed character that can be surveyed inexpensively and will likely be similarly 

useful in other taxa of small insects. The species-specific patterns of WIPs are diagnostically 

valuable but of uncertain evolutionary significance. 

 

INTRODUCTION 

The rainbow colors that can appear on clear insect wings against dark backgrounds are 

familiar to most entomologists. Shevtsova et al. (2011) comprehensively investigated and 

described these wing colors and discovered that they are actually stable color patterns 

produced by thin film interference, where light reflected off of the upper or lower surface of a 

clear membrane constructively or destructively interferes with light approaching the 

membrane. The perceived colors occur in stable patterns that are primarily caused by the 

varying thickness of the wing itself, and are, unlike iridescent colors, static at nearly all viewing 

angles (Shevtsova et al. 2011).  
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These color patterns, “wing interference patterns” (WIPs), are a promising but under-

used tool for species-level identification of small insects. Wing interference patterns were 

entirely ignored before 2011, are still rarely reported in taxonomic works, and are even less 

frequently used in species diagnoses or identification keys. In addition to discovering them, 

Shevtsova et al. (2011) comprehensively described the physical phenomenon that causes them, 

and documented examples of WIPs in several Diptera and Hymenoptera taxa. Since then, WIPs 

have been documented in just 13 taxonomic works (Hansson 2011, Shevtsova & Hansson 2011, 

Hansson 2012, Hansson & Shevtsova 2012, Hernández-López et al. 2012, Simon 2012, 

Stigenberg 2012, Buffington & Condon 2013, Mitroiu 2013, Buffington & Forshage 2014, Zhang 

et al. 2014a, Zhang et al. 2014b, Drohojowska & Szwedo 2015, Zhang et al. 2016), one 

phylogenetic survey (Buffington & Sandler 2012), and a single experimental study (Katayama et 

al. 2014). Most of these studies focus on Hymenoptera (146 species), followed by Diptera (15 

species) and then Hemiptera (8 species) (Table 3.1). Because WIPs are a function of the varying 

thickness of wings, some authors have speculated that color may vary intraspecifically because 

overall wing thickness may be correlated to individual size (Shevtsova & Hansson 2011, 

Hernández-López et al. 2012). Therefore, they conclude that the colors of WIPs are less 

important than the patterns they form. Despite this, the majority of taxonomic works that 

document WIPs describe them in terms of qualitative colors and the relative portion of the 

wing those colors occupy (e.g. distal 1/3 magenta). Wing interference patterns have been used 

as characters in species diagnoses in only three publications to date (Hansson 2011, Shevtsova 

& Hansson 2011, Hansson & Shevtsova 2012), and have been used in a taxonomic key only 

twice (Mitroiu 2013, Zhang et al. 2014b). Buffinton & Sandler (2012) surveyed the WIPs of 66 

species across the phylogeny of Cynipoidea (Hymenoptera) and divided WIPs into four general 

categories: radiform, campiform, striatiform, and galactiform. To-date, WIPs have not been 

broadly adopted by insect taxonomists and they have almost exclusively been described 

qualitatively. 

Microgastrinae (Hymenoptera: Braconidae) is a hyper-diverse subfamily of small 

parasitoid wasps that attack Lepidoptera (Mardulyn and Whitfield. 1999). Microgastrinae 

currently has 2689 described species, representing roughly 5-10% of the estimated worldwide 
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diversity of this group (Rodriguez et al. 2012, Fernández-Triana & Ward 2015). Their diminutive 

adult size and small number of morphological characters has made the generic-level taxonomy 

of this group difficult, and species-level diagnoses, absent DNA barcoding, often rely on subtly 

variable characters or minute characters that require SEM imaging to observe (e.g. Valerio et al. 

2009). Wing interference patterns have never been reported for microgastrines. 

Parapanteles Ashmead is a small genus of Microgastrinae with several species that are 

morphologically very similar to other genera (Dolichogenidea and Glyptapanteles) and 

frequently misdiagnosed (Valerio et al. 2009, Chapter 1). Here, we document the WIPs of 7 

described and 12 putative undescribed Parapanteles species from Costa Rica and Ecuador and 

present a simple and inexpensive method for quantifying and comparing WIPs that can 

contribute to identification keys or rapid species diagnosis. 

To our knowledge, no authors to date have attempted to quantitatively describe WIPs in 

any taxa. Here we present the first study of WIPs in Microgastrinae (Hymenoptera: Braconidae), 

and the first attempt to quantitatively compare the WIPs of closely related species. 

 

METHODS 

One set of fore and hind wings were removed from each adult wasp from samples 

stored in ethanol. Where available, wings from one male and one female per brood were 

removed and slide mounted on temporary slides. All species sampled were gregarious (i.e. the 

female lays multiple eggs in a single host) except P. sp. J & P. sp. K, which are solitary (i.e. 

females lay a single egg per host). Wings were sandwiched between two microscope slides 

which were taped together at the ends. This flattens wings more reliably than using a standard 

slide cover. As in Shevtsova & Hansson 2011, a drop of India ink was spread on one slide to 

create a uniform black background behind the wings. 

Wings were photographed at 50x magnification using a Cannon Rebel Xsi camera 

attached to a Leica ## dissecting scope via [connectors] and an Amscope LED-144A-YK 144 LED 

ring light at maximum brightness. Wing images were not visually adjusted. The majority of wing 

slides were prepared and photographed by an undergraduate research assistant, Shuyang Jin. 
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The average RGB (red, green, and blue) values of pixels in each fore wing image were 

measured using the “RGB Measure” feature in ImageJ v1.49 (Schneider et al. 2012). The value 

for each color component was divided by the average of all three average color values to 

calculate the relative “redness,” “greenness,” and “blueness” of each fore wing image (e.g., 

redness=R/((R+G+B)/3)). This averages out the contribution of black (R/G/B=0/0/0), white 

(R/G/B=255/255/255), and grey (R/G/B are all equal) pixels.  

Arrays of relative redness, greenness, and blueness for each species were testing for 

normality in R v3.4 (R Core Team 2017) via the Shapiro-Wilk test and for skewness, and then 

compared across species via ANOVA and Tukey’s HSD test. Species with sample size lower than 

3 were excluded from our statistical analysis. 

Several metrics of forewing size were measured to test whether it they correlated with 

WIP patterns, because if they do then species-level differences in WIPs may simply be caused 

by some species being larger than others. Forewing length (measured from the junction of 

C+Sc+R & M+Cu to the distal end of 3/M) and area were compared to each color array. In 

additiona, overall forewing shape was measured by dividing length by width (measured from 

the junction of r-rs and the stigma to the distal end of the anal lobe) to test narrowness has any 

effect on wing thickness. Measurements were done in ImageJ v1.49 (Schneider et al. 2012) and 

tested for correlation via the Pearson Correlation test in R v3.4 (R Core Team 2017). 

 

RESULTS 

Inter- & Intraspecific variation in WIPs 

The wing interference patterns of the species surveyed are generally consistent within 

species, although intraspecific consistency is variable. Both qualitatively (Figs. 3.1-3.15) and in 

terms of relative redness, greenness, and blueness (R.RGBs) (Tables 3.2 & 3.3, Fig. 3.16), the 

species with purplish WIPs (Parapanteles tessares, P. continua, P. sicpolus, & P. sp. H) tended to 

have the most consistent WIPs, while species with reddish or yellowish WIPs tended to be more 

variable, especially Parapanteles sp. J & P. sp. K.  

All R.RGB arrays were normally distributed except two Parapanteles continua arrays, 

one Parapanteles sp. E, one Parapanteles paradoxus, one Parapanteles sicpolus, and four 
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Parapanteles tessares arrays (Tables 3.2 & 3.3). The distribution of forewing and hindwing 

R.RGBs among closely related species are often similar with one or two parameters significantly 

different (Fig. 3.16). For example, the R.RGBs of the sister species P. tessares and P. continua 

are not significantly different except for forewing relative redness (higher in P. continua) and 

relative blueness (higher in P. tessares), which corroborates the more uniformly purple 

appearance of P. tessares’s WIP. 

Males and females of most species have similar WIPs, although in P. sp. D and P. em 

male WIPs are slightly more yellowish (Figs. 3.5 & 3.6). Sexual dimorphism could not be 

assessed for 6 species: only females were available for P. sp. C, P. sp. J, P. sp. K, and P. sp. 

Valerio05, and only males were available for P. sp. I and P. sp. E.  

 

Relative redness, greenness, and blueness and wing size 

The majority of R.RGB arrays were not significantly correlated with wing length, area, or 

shape. Eleven of the 33 R.RGB tested were significantly correlated with wing length and 8 of 33 

were significantly correlated with wing area. In each case the slope of the line of regression was 

slight and no R.RGB arrays were correlated with wing shape (Table 3.4). 

 

Descriptions of WIPs of Parapanteles spp. from Ecuador & Costa Rica 

Parapanteles tessares: 

(Figure 3.1) 

Forewing: Proximal 1/2 of 2R1 boardering stigma clear, remainded and 3Rs, 2+3M, 3Cu 

predominantly purple. Thin irregular green band proximally (thickest in 3Cu), narrow band 

along distal fringe reddish yellow (yellow band sometimes absent). Otherwise clear. 

Hindwing: R1, Rs, & M proximally to distally 1/4th green to 1/2 purple to 1/4th yellow. 

Otherwise clear. 

Materials examined: 14 femals and 11 males from 13 reared broods (ACG ID #s: 07-SRNP-

31974, 07-SRNP-31983, 07-SRNP-31995, 07-SRNP-32001, 07-SRNP-32013, 07-SRNP-32056, 07-

SRNP-32059, 07-SRNP-32068, 07-SRNP-32069, 07-SRNP-32070, 07-SRNP-32073, 07-SRNP-

32074, 08-SRNP-2270) 
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Parapanteles continua: 

(Figure 3.2 a & b) 

Forewing: Proximal 1/2 of 2R1 bordering stigma clear, remainder and 3Rs, 2+3M, 3Cu 

predominantly purple. proximal 1/8th irregular green band, 1/8th-1/4th distal edge reddish 

yellow. Otherwise clear. 

Hindwing: R1, Rs, & M proximally to distally 1/3rd green to 1/3rd purple to 1/3rd yellow. 

Otherwise clear. 

Materials examined: 21 females and 20 males from 21 reared broods (ACG ID #s: 97-SRNP-

1677, 97-SRNP-1677, 97-SRNP-1679, 97-SRNP-1685, 97-SRNP-1691, 97-SRNP-1694, 97-SRNP-

1696, 97-SRNP-1703, 97-SRNP-1708, 97-SRNP-1715, 97-SRNP-1739, 97-SRNP-2099, 02-SRNP-

2213, 02-SRNP-2844, 02-SRNP-3255, 04-SRNP-3010, 05-SRNP-33563, 06-SRNP-1252, 06-SRNP-

3375, 07-SRNP-31996, 07-SRNP-32110, 08-SRNP-2322) 

 

Parapanteles sicpolus: 

(Figure 3.3) 

Forewing: Proximal 1/2 of 2R1 bordering stigma clear, remainder and 3Rs, 2+3M, 3Cu 

predominantly green. proximal 1/2 irregular green band, 1/4th purple, 1/8th-1/4th distal edge 

reddish yellow. Otherwise clear. 

Hindwing: R1, Rs, & M proximally with thin purple band, then 1/3rd green to 1/3rd purple to red 

to 1/3rd yellow. 

Materials examined: 8 females and 6 males from 8 reared broods (ACG ID #s: 03-SRNP-3418, 

03-SRNP-3419, 03-SRNP-3687, 96-SRNP-373.1, 96-SRNP-373.2, 99-SRNP-1416, 99-SRNP-1418, 

03-SRNP-22531) 

 

Parapanteles sp. H: 

(Figure 3.4) 

Forewing: Proximal 1/2 of 2R1 bordering stigma clear, remainder and 3Rs, 2+3M, 3Cu thin 

purple band proximally & purple along 3/Rs, 3/M, & 3/Cu veins, remainder reddish yellow. 

Otherwise clear. 
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Hindwing: R1, Rs, & M proximally to distally narrow green band (sometimes absent) then sub-

1/2 purple to 1/2 yellow. Otherwise clear. 

Materials examined: 3 females and 6 males from 5 reared broods (YY ID #s: 2365, 2366, 2466, 

4503). 

 

Parapanteles sp. D: 

(Figure 3.5) 

Forewing: Proximal 1/2 of 2R1 bordering stigma clear, remainder and 3Rs, 2+3M, 3Cu thin 

purple band proximally & purple along 3/Rs (sometimes very reduced so majority of WIP is 

yellow), 3/M, & 3/Cu veins, remainder reddish yellow. Otherwise clear. 

Hindwing: R1, Rs, & M proximally to distally 1/2-1/3rd purple to 1/2-2/3rds yellow. Otherwise 

clear. 

Males: yellow bands/areas tend to be larger than in females. 

Materials examined: 6 females and 4 males from 6 reared broods (YY ID #s: 8275, 

35934, 37263, 37275, 37791, 44117). 

 

Parapanteles em: 

(Figure 3.6) 

Forewing: Proximal 1/2 of 2R1 bordering stigma clear, remainder and 3Rs, 2+3M, 3Cu thin 

purple band proximally & purple along 3/Rs (sometimes very reduced so majority of WIP is 

yellow), 3/M, & 3/Cu veins, remainder reddish yellow. Otherwise clear. 

Hindwing: R1, Rs, & M proximally to distally 1/2-1/3rd purple to 1/2-2/3rds yellow. Otherwise 

clear. 

Males: yellow bands/areas tend to be larger than in females. Very similar to Parapanteles sp. D. 

Materials examined: 11 females and 5 males from 11 reared broods (ACG ID #s: 00-SRNP-8625, 

00-SRNP-8626, 00-SRNP-8627, 00-SRNP-8628, 05-SRNP-2524, 05-SRNP-2568, 07-SRNP-24390, 

07-SRNP-33320, 07-SRNP-33764, 07-SRNP-3868, 07-SRNP-58627). 
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Parapanteles sp. valerio05: 

(Figure 3.7) 

Forewing: Proximal 1/2 of 2R1 bordering stigma clear, remainder and 3Rs, 2+3M, 3Cu 

predominantly yellow, sometimes orange to red and/or slightly purple around veins. Otherwise 

clear. 

Hindwing: Rs predominantly yellow, R1 proximally 1/8th purple then predominantly yellow, M 

1/3 purple then predominantly yellow. Otherwise clear. 

Materials examined: 7 females from 7 reared broods (ACG ID #s: 07-SRNP-5195, 06-SRNP-

21433, 07-SRNP-24742, 07-SRNP-24803, 07-SRNP-24804, 07-SRNP-24807, 07-SRNP-24821). 

 

Parapanteles paradoxus: 

(Figure 3.8) 

Forewing: Proximal 1/2 of 2R1 bordering stigma proximally green to purple, remainder and 3Rs 

yellow except purple along 3/Rs vein. 2+3M & 3Cu predominantly yellow. Otherwise clear. 

Hindwing: R1, Rs, & M proximally to distally 1/2-1/3rd purple to 1/2-2/3rds yellow. Otherwise 

clear. 

Materials examined: 12 females and 4 males from 12 reared broods (ACG ID #s: 02-SRNP-68, 

06-SRNP-33973, 07-SRNP-32380, 00-SRNP-11175, 02-SRNP-431, 02-SRNP-434, 02-SRNP-436, 

02-SRNP-437, 03-SRNP-7519, 06-SRNP-429, 06-SRNP-430, 06-SRNP-1054). 

 

Parapanteles sp. I: 

(Figure 3.9) 

Forewing: Proximal 1/2 of 2R1 bordering stigma proximally green to purple, remainder and 3Rs 

yellow except purple along 3/Rs vein (thinner than as in paradoxus). 2+3M & 3Cu 

predominantly yellow. Otherwise clear. 

Hindwing: R1, Rs, & M proximally to distally 1/2-1/3rd purple to 1/2-2/3rds yellow. Otherwise 

clear. 

Materials examined: 4 females from 4 reared broods (YY ID #s: 42069, 43211, 46466, 66971). 
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Parapanteles sp. J: 

(Figure 3.10) 

WIPs somewhat irregular, but: 

Forewing: Proximal 1/2 of 2R1 bordering stigma proximally green to purple, remainder and 3Rs 

yellow. 2+3M & 3Cu predominantly yellow. Distally reddish. Otherwise clear. 

Hindwing: R1, Rs, & M proximally to distally 1/4-1/3rd purple to 3/4-2/3rds yellow. Otherwise 

clear. 

Materials examined: 5 solitary females (YY ID #s: 27850, 27851, 34403, 34413, 36533). 

 

Parapanteles sp. K: 

(Figure 3.11) 

WIPs highly variable, generally similar to J, but some predominantly yellow, some 

predominantly blue, some with thicker reddish areas. 

Materials examined: 5 solitary females (YY ID #s: 28620, 32234, 36406, 36534, 38844). 

 

Parapanteles sp. E: 

(Figure 3.12) 

Forewing: Proximal 1/2 of 2R1 bordering stigma clear, remainder and 3Rs, 2+3M, 3Cu 

predominantly yellow. Otherwise clear. 

Hindwing: R12 & Rs predominantly yellow, M 1/3 purple then predominantly yellow. Otherwise 

clear. 

Materials examined: 3 males from 3 reared broods (YY ID #s: 36197, 36198, 36520). 

 

Parapanteles tlinea: 

(Figure 3.13) 

Forewing: 2R1, 3Rs, 2+3M, & 3Cu predominantly yellow with very narrow purple bands along 

veins. Otherwise clear. 

Hindwing: R1, Rs, & M predominantly yellow with narrow purple bands along veins. M 

proximally 1/4th-1/2 purple. Otherwise clear. 
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Materials examined: 2 females and 1 male from 1 reared broods (ACG ID #: 04-SRNP-669). 

 

Parapanteles sp. B: 

(Figure 3.14) 

Forewing: Proximal 1/2 of 2R1 bordering stigma variable but predominantly green, remainder 

and 3Rs, 2+3M, 3Cu predominantly yellow, although 3Rs & 2+3M . Otherwise clear. 

Hindwing: R1 & Rs predominantly yellow, M 1/3 purple then predominantly yellow. Otherwise 

clear. 

Materials examined: 6 females and 2 males from 5 reared broods (YY ID #s: 45714, 26049, 

37474, 20919, 24670). 

 

Parapanteles sp. C: 

(Figure 3.15) 

Forewing: Proximal 1/2 of 2R1 bordering stigma clear, remainder and 3Rs, 2+3M, 3Cu 

proximally to distally 1/8th green to 1/2 purple to 3/8ths yellow. 2_3M & 3Cu sometimes 

predominantly yellow. Otherwise clear. 

Hindwing: R1, Rs, & M with thin green band proximally, then 1/2 purple to 1/2 yellow. 

Materials examined: 3 females from 3 reared broods (YY ID #s: 12105, 45981, 48054). 

 

DISCUSSION 

The wing interference patterns of Parapanteles are consistent within species and 

distinct between species, often enough to be diagnostic by themselves. Among the species 

surveyed, the WIPs of Parapanteles tessraes, P. continua, P. sicpolus, P. sp. H, and P. sp. C were 

the most distinct. These species tended to have more green and purple in their WIPs, while the 

remaining species’ WIPs were predominantly red and/or yellow.  

Wing interference patterns are directly related to the thickness of wing membranes, and 

previous publications have speculated that WIP colors should change as individuals get larger 

because cuticle thickness may increase with body size (Shevtsova & Hansson 2011, Hernández-

López et al. 2012). We are not aware of any studies investigating the allometry of body or wing 
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cuticle thickness. Among the species we surveyed, some relative redness, greenness, and/or 

blueness arrays were significantly correlated with wing size and/or area in some species, but in 

each of these cases the slope of the corresponding linear regression was very slight (Table 3.4). 

Correlation with wing size (as a proxy for body size) alone does not account for the differences 

between the WIPs of closely related Parapanteles species. 

Wing interference patterns are also directly related to the wavelength of the light 

passing through the wing membrane, which is a major weakness for using any measurement 

derived from RGB values for diagnostic purposes. The relative RGB values we measured in this 

study were not consistent if the wing was illuminated with a different light source. This 

limitation can be solved by using a consistent light source, and the light source which we used 

for all WIP photographs in this study, an Amscope LED-144A-YK 144 LED ring light, is widely 

available and relatively inexpensive. Wing interference patterns can be observed in situ on 

pinned specimens, but these are of little use compared to WIPs observed on slide-mounted 

wings. Including WIP slides (wing slides with India Ink painted on the back) of at least a few 

paratype individuals with the type series of small winged insects would ameliorate most of the 

problem posed by variations between light sources, and expand the usefulness of WIPs for 

future studies.  

The evolutionary significance of WIPs is unknown, this and other studies have found 

that they are frequently species-specific (Shevtsova et al. 2011). The colors of WIPs are visible 

in situ and in natural settings whenever insect wings are displayed in front of a dark background 

(e.g. green leaves), and the colors that compose them occur in spectra visible to most insects 

(Shevtsova et al. 2011). Anecdotally, we found that closely related sympatric species tended to 

be more subjectively different (i.e. (Parapanteles tessares, P. continua), P. sicpolus) and (P. em, 

P. valerio05) from Costa Rica and (P. sp. B, P. sp. C) from Ecuador), while closely related 

allopatric species tended to be less distinct (i.e. (P. paradoxus, P. sp. I) and (P. sp. E, P. tlinea). 

This suggests that WIPs may be used by microgastrines for conspecific recognition, although a 

much broader survey of microgastrine WIPs is required to determine if our qualitative 

observations correspond to a real correlation. However, this is entirely speculative and has not 

been experimentally tested. The only experimental study of WIPs to date found that male WIP 
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brightness was correlated with female mate choice preference in isogenic Drosophila 

melanogaster lines, but was unable to separate the effect of WIPs from other traits that may be 

correlated with them (Katayama et al. 2014). The evolutionary significance of WIPs and any role 

they have in conspecific recognition or mate preference merit future study, but any 

manipulative experiments exploring these subjects will be difficult due to the nature of the 

phenomenon and the small size of the subject species. 

In general, WIPs can be observed and documented with very little additional effort for 

most taxonomists who work on small winged insects. We predict that they can be a large 

source of new morphological characters for the taxonomy and systematics of these tiny 

animals. The only materials required are a dissecting microscope with a camera attachment, a 

ring light, glass slides, and India Ink. Wing interference patterns are often species-specific and 

useful for Parapanteles wasps, and will likely be for most other microgastrine wasps.  
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TABLES & FIGURES 

Table 3.1: Taxonomic summary of published wing interference pattern images and/or descriptions. 

Order Family Genus 
Number of 

Species Reference 

Hymenoptera Austrocynipidae Austrocynips 1 Buffintong & Sandler 2012 

 
Braconidae Spathicopis 1 Stigenberg 2012 

 
Cynipidae Andricus 1 Buffintong & Sandler 2012 

  
Aulicidea 1 Buffintong & Sandler 2012 

  
Bassettia 1 Buffintong & Sandler 2012 

  
Biorhiza 1 Buffintong & Sandler 2012 

  
Callirhytis 1 Buffintong & Sandler 2012 

  
Cerroneuroterus 1 Buffintong & Sandler 2012 

  
Diastrophus 1 Buffintong & Sandler 2012 

  
Diplolepis 1 Buffintong & Sandler 2012 

  
Disholcaspsis 1 Buffintong & Sandler 2012 

  
Dryocosmus 1 Buffintong & Sandler 2012 

  
Loxaulus 1 Buffintong & Sandler 2012 

  
Neuroterus 1 Buffintong & Sandler 2012 

  
Odontocynips 1 Buffintong & Sandler 2012 

  
Periclistus 1 Buffintong & Sandler 2012 

  
Phanacis 1 Buffintong & Sandler 2012 

  
Plagiotrochus 1 Buffintong & Sandler 2012 

  
Pseudoneroterus 1 Buffintong & Sandler 2012 

  
Rhoophilus 1 Buffintong & Sandler 2012 

  
Saphonecrus 1 Buffintong & Sandler 2012 

  
Synergus 1 Buffintong & Sandler 2012 

  
Synophromorpha 1 Buffintong & Sandler 2012 

  
Synophrus 1 Buffintong & Sandler 2012 

  
Trichogalma 1 Buffintong & Sandler 2012 

 
Eulophidae Achrysocharoides 9 Shevtsova & Hansson 2011 

  
Achrysocharoides 8 Hansson 2012 

  
Cornugon 19 Hansson 2011 

  
Omphale 36 Hansson & Shevtsova 2012 

 
Figitidae Aganaspis 1 Buffintong & Sandler 2012 

  
Agrostocynips 1 Buffintong & Sandler 2012 

  
Alloxysta 1 Buffintong & Sandler 2012 

  
Anacharis 1 Buffintong & Sandler 2012 

  
Araucocynips 1 Buffintong & Sandler 2012 

  
Banancuniculus 1 Buffintong & Sandler 2012 

  
Chrestosema 1 Buffintong & Sandler 2012 

  
Cothonaspis 1 Buffintong & Sandler 2012 

  
Dettmeria 1 Buffintong & Sandler 2012 

  
Dieucoila 1 Buffintong & Sandler 2012 

  
Emargo 1 Buffintong & Sandler 2012 



48 
 

Table 3.1 continued    

  
Euceroptres 1 Buffintong & Sandler 2012 

  
Eucoila 1 Buffintong & Sandler 2012 

  
Figites 1 Buffintong & Sandler 2012 

  
Garudella 4 Buffingtong & Forshage 2014 

  
Ganaspidium 1 Buffintong & Sandler 2012 

  
Gronotoma 1 Buffintong & Sandler 2012 

  
Hexacola 1 Buffintong & Sandler 2012 

  
Kleidotoma 1 Buffintong & Sandler 2012 

  
Leptopilina 1 Buffintong & Sandler 2012 

  
Lonchidia 1 Buffintong & Sandler 2012 

  
Melanips 1 Buffintong & Sandler 2012 

  
Myrtopsen 1 Buffintong & Sandler 2012 

  
Neralsia 1 Buffintong & Sandler 2012 

  
Nordlanderia 1 Buffintong & Sandler 2012 

  
Odonteucoila 1 Buffintong & Sandler 2012 

  
Odontosema 1 Buffintong & Sandler 2012 

  
Paraspicera 1 Buffintong & Sandler 2012 

  
Parnips 1 Buffintong & Sandler 2012 

  
Plectocynips 1 Buffintong & Sandler 2012 

  
Rhabducoila 1 Buffintong & Sandler 2012 

  
Rophtromeris 1 Buffintong & Sandler 2012 

  
Sarothrus 1 Buffintong & Sandler 2012 

  
Striatovertex 1 Buffintong & Sandler 2012 

  
Triplasta 1 Buffintong & Sandler 2012 

  
Trjpystiniola 1 Buffintong & Sandler 2012 

  
Tropideucoila 1 Buffington & Condon  2013 

  
Trybliographa 1 Buffintong & Sandler 2012 

  
Xyalaphora 1 Buffintong & Sandler 2012 

  
Xyalaspis 1 Buffintong & Sandler 2012 

 
Ibaliiae Ibalia 1 Buffintong & Sandler 2012 

  
Eileenella 1 Buffintong & Sandler 2012 

 
Liopteridae Paramblynotus 1 Buffintong & Sandler 2012 

 
Pteromalidae Watshamia 3 Mitroiu 2013 

Subtotal: 9 74 146 10 

Diptera Drosophilidae Drosophila 1 Ktayama et al. 2014 

 
Muscidae Lispe 10 Zhang et al. 2016 

 
Sarcophagidae Sarcophage 1 Zhang et al. 2014a 

  
Sphecapatodes 3 Zhang et al. 2014b 

Subtotal: 4 4 15 4 
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Table 3.1 continued    

Hemiptera Aleyrodidae Aretsaya 1 Drohojowska &  Szwedo 2015 

 
Coccidae Eriopletis 1 Simon 2012 

  
Eulecanium 1 Simon 2012 

  
Luzulaspis 2 Simon 2012 

  
Parthenolecanium 1 Simon 2012 

  Pulvinaria 1 Simon 2012 

  
Sphaerolecanium 1 Simon 2012 

Subtotal: 2 8 8 2 

Total: 15 86 169 16 
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Table 3.2: Average relative redness (RR), greenness (RG), and blueness (RB) of the forewings of fifteen Parapanteles species plus or minus one standard 
deviation, with minimum and maximum values, results of Tukey’s HSD test, skewness, and Shapiro-Wilks’ test for normality. 

Species n 
Ave. Forewing 

RR Min - Max 
Tukey'
s HSD 

Skewnes
s 

Shapiro
-Wilks 

P-value 
Ave. Forewing 

RG Min - Max 
Tukey'
s HSD 

Skewnes
s 

Shapiro
-Wilks 

P-value 
Ave. Forewing 

RB Min - Max 
Tukey'
s HSD 

Skewnes
s 

Shapiro
-Wilks 

P-value 
Parapanteles 

tessares 25 1.012 ± 0.025 0.97 - 1.066 f 0.43 0.38 0.827 ± 0.025 0.798 - 0.889 cd 1.17 0.01 1.161 ± 0.036 1.045 - 1.198 a -2.11 0.00 
Parapanteles 

continua 41 1.05 ± 0.021 1.009 - 1.094 e 0.22 0.44 0.864 ± 0.018 0.8 - 0.891 bc -1.19 0.01 1.086 ± 0.025 1.042 - 1.148 b 0.22 0.75 
Parapanteles 

sicpulus 14 1.042 ± 0.013 1.016 - 1.057 ef -0.78 0.25 0.884 ± 0.009 0.871 - 0.9 ab 0.59 0.55 1.074 ± 0.017 1.055 - 1.111 b 0.90 0.13 
Parapanteles sp. 

H 9 1.088 ± 0.022 1.065 - 1.131 d 1.13 0.19 0.813 ± 0.026 0.773 - 0.849 d 0.09 0.73 1.099 ± 0.039 1.021 - 1.15 b -1.04 0.35 
Parapanteles sp. 

D 10 1.169 ± 0.029 1.125 - 1.213 bc -0.15 0.86 0.834 ± 0.044 0.774 - 0.909 cd 0.57 0.54 0.997 ± 0.051 0.923 - 1.101 cd 0.59 0.50 

Parapanteles em 16 1.149 ± 0.025 1.094 - 1.189 c -0.52 0.60 0.836 ± 0.038 0.787 - 0.937 cd 1.21 0.09 1.016 ± 0.031 0.954 - 1.069 c -0.22 0.96 
Parapanteles sp. 

valerio05 7 1.178 ± 0.032 1.122 - 1.213 abc -0.98 0.44 0.868 ± 0.041 0.816 - 0.921 bc 0.33 0.41 0.954 ± 0.06 0.885 - 1.062 de 0.82 0.58 
Parapanteles 

paradoxus 16 1.199 ± 0.023 1.152 - 1.233 ab -0.29 0.91 0.912 ± 0.022 0.874 - 0.94 ab -0.38 0.25 0.89 ± 0.033 0.829 - 0.947 f 0.43 0.05 
Parapanteles sp. 

I 4 1.214 ± 0.05 1.149 - 1.267 ab -0.71 0.87 0.929 ± 0.026 0.907 - 0.96 a 0.47 0.28 0.857 ± 0.037 0.824 - 0.891 f 0.01 0.06 
Parapanteles sp. 

J 5 1.212 ± 0.015 1.195 - 1.237 ab 1.07 0.50 0.887 ± 0.029 0.856 - 0.917 ab 0.03 0.25 0.9 ± 0.04 0.846 - 0.936 ef -0.70 0.25 
Parapanteles sp. 

K 5 1.142 ± 0.078 1.025 - 1.239 c -0.58 0.90 0.889 ± 0.026 0.858 - 0.915 ab -0.17 0.42 0.968 ± 0.069 0.902 - 1.084 cde 1.52 0.25 
Parapanteles sp. 

E 3 1.183 ± 0.017 1.167 - 1.201 abc 0.51 0.81 0.915 ± 0.028 0.883 - 0.933 ab -1.71 0.11 0.902 ± 0.013 0.889 - 0.916 ef 0.54 0.80 
Parapanteles 

tlinea 3 1.163 ± 0.026 1.141 - 1.192 bc 1.19 0.52 0.915 ± 0.026 0.886 - 0.934 ab -1.57 0.28 0.922 ± 0.043 0.874 - 0.959 def -1.05 0.58 
Parapanteles sp. 

B 8 1.216 ± 0.029 1.172 - 1.25 a -0.55 0.45 0.897 ± 0.051 0.814 - 0.944 ab -0.75 0.10 0.887 ± 0.063 0.806 - 1.015 f 1.13 0.52 
Parapanteles sp. 

C 3 1.119 ± 0.018 1.102 - 1.137 cd 0.21 0.92 0.832 ± 0.018 0.812 - 0.849 cd -0.72 0.73 1.049 ± 0.03 1.014 - 1.069 bc -1.64 0.21 
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Table 3.3: Average relative redness (RR), greenness (RG), and blueness (RB) of the hindwings of fifteen Parapanteles species plus or minus one standard 
deviation, with minimum and maximum values, results of Tukey’s HSD test, skewness, and Shapiro-Wilks’ test for normality. 

Species n 
Ave. Hindwing 

RR Min - Max 
Tukey's 

HSD Skewness 

Shapiro-
Wilks P-

value 
Ave. Hindwing 

RG Min - Max 
Tukey's 

HSD Skewness 

Shapiro-
Wilks P-

value 
Ave. Hindwing 

RB Min - Max 
Tukey's 

HSD Skewness 

Shapiro-
Wilks P-

value 
Parapanteles 

tessares 25 1.067 ± 0.019 1.041 - 1.112 ef -0.58 0.02 0.853 ± 0.022 0.827 - 0.918 ab 1.46 0.00 1.081 ± 0.026 1.031 - 1.122 a 0.94 0.06 
Parapanteles 

continua 41 1.049 ± 0.026 1.007 - 1.126 f 0.03 0.84 0.89 ± 0.012 0.858 - 0.916 a -0.63 0.31 1.062 ± 0.025 1.004 - 1.127 ab 1.02 0.02 
Parapanteles 

sicpulus 14 1.045 ± 0.012 1.016 - 1.064 f 2.16 0.00 0.894 ± 0.009 0.873 - 0.909 a -0.64 0.47 1.062 ± 0.016 1.04 - 1.111 ab -0.73 0.68 
Parapanteles 

sp. H 9 1.07 ± 0.014 1.057 - 1.095 ef 0.11 0.18 0.839 ± 0.018 0.81 - 0.87 b 0.09 1.00 1.091 ± 0.015 1.073 - 1.109 a 0.89 0.22 
Parapanteles 

sp. D 10 1.151 ± 0.042 1.095 - 1.231 bcd 0.14 0.87 0.835 ± 0.029 0.793 - 0.874 b -0.09 0.35 1.014 ± 0.046 0.934 - 1.094 bcd 0.61 0.74 
Parapanteles 

em 16 1.129 ± 0.023 1.085 - 1.159 cd -0.60 0.29 0.84 ± 0.034 0.795 - 0.931 b 1.09 0.10 1.031 ± 0.046 0.914 - 1.118 bc -0.54 0.39 
Parapanteles 
sp. valerio05 7 1.17 ± 0.033 1.112 - 1.222 abcd 0.22 0.75 0.891 ± 0.034 0.847 - 0.934 a 0.20 0.46 0.939 ± 0.06 0.846 - 1.042 ef -0.34 0.73 
Parapanteles 

paradoxus 16 1.168 ± 0.026 1.112 - 1.213 bcd 1.06 0.26 0.863 ± 0.023 0.831 - 0.913 ab 0.53 0.71 0.969 ± 0.034 0.922 - 1.057 def -0.14 0.70 
Parapanteles 

sp. I 4 1.222 ± 0.043 1.171 - 1.26 a 1.23 0.55 0.875 ± 0.029 0.835 - 0.898 ab -1.14 0.29 0.904 ± 0.065 0.844 - 0.994 f -0.34 0.30 
Parapanteles 

sp. J 5 1.191 ± 0.039 1.125 - 1.227 ab 0.54 0.93 0.854 ± 0.043 0.806 - 0.909 ab 0.20 0.71 0.955 ± 0.078 0.864 - 1.069 def -1.63 0.18 
Parapanteles 

sp. K 5 1.142 ± 0.041 1.101 - 1.188 bcd 0.72 0.81 0.867 ± 0.038 0.829 - 0.915 ab 0.40 0.41 0.99 ± 0.03 0.955 - 1.035 cde 0.19 0.27 
Parapanteles 

sp. E 3 1.172 ± 0.052 1.112 - 1.204 abcd 1.73 0.03 0.895 ± 0.014 0.878 - 0.906 a -1.48 0.35 0.933 ± 0.066 0.894 - 1.01 ef -1.72 0.06 
Parapanteles 

tlinea 3 1.186 ± 0.039 1.148 - 1.226 abc 0.45 0.83 0.874 ± 0.033 0.837 - 0.902 ab -1.12 0.55 0.94 ± 0.072 0.872 - 1.015 def 0.20 0.93 
Parapanteles 

sp. B 8 1.169 ± 0.032 1.121 - 1.201 abcd 0.04 1.00 0.872 ± 0.031 0.837 - 0.912 ab 0.24 0.23 0.959 ± 0.047 0.887 - 1.031 def -0.82 0.11 
Parapanteles 

sp. C 3 1.106 ± 0.018 1.093 - 1.127 de -0.69 0.74 0.839 ± 0.005 0.835 - 0.844 b 1.62 0.23 1.055 ± 0.016 1.038 - 1.07 abc 1.60 0.25 
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Table 3.4: Average length, area, and shape (length/height) or the forewings of fifteen Parapanteles species plus or minus one standard deviation, with 
coefficient of determination and the p-value of Pearson correlation tests of each measurement for each forewing color array (relative redness, greenness, and 
blueness). 

Species n 

Forewing 
Length 
(mm) 

Length/RR 
r2 P-

value 

Length/RG 
r2 P-

value 

Length/RB 
r2 P-

value 

Forewing 
Area 

(mm2) 

Area/RR 
r2 P-

value 

Area/RG 
r2 P-

value 

Area/RB 
r2 P-

value 

Forewing 
Height 
(mm) 

Shape 
(L/H) 

Shape/RR 
r2 P-

value 

Shape/RG 
r2 P-

value 

Shape/RB 
r2 P-

value 
Parapanteles 

tessares 25 2.33 ± 
0.09 0.04 0.37 0.18 0.03 0.18 0.03 0.61 ± 

0.04 0.00 0.89 0.13 0.08 0.07 0.19 0.61 ± 
0.04 

3.83 ± 
0.15 0.00 0.91 0.00 0.73 0.00 0.78 

Parapanteles 
continua 41 2.5 ± 

0.18 0.09 0.06 0.16 0.01 0.29 0.00 0.67 ± 
0.05 0.06 0.13 0.15 0.01 0.24 0.00 0.67 ± 

0.05 
3.76 ± 
0.13 0.01 0.56 0.01 0.51 0.03 0.33 

Parapanteles 
sicpulus 14 2.74 ± 

0.13 0.24 0.08 0.07 0.34 0.24 0.07 0.74 ± 
0.04 0.25 0.07 0.04 0.47 0.23 0.08 0.74 ± 

0.04 
3.7 ± 
0.18 0.03 0.53 0.03 0.53 0.04 0.47 

Parapanteles 
sp. H 9 3.11 ± 

0.47 0.06 0.53 0.00 0.88 0.01 0.82 0.82 ± 
0.13 0.06 0.51 0.00 0.00 0.02 0.72 0.82 ± 

0.13 
3.81 ± 
0.08 0.10 0.42 0.37 0.08 0.34 0.10 

Parapanteles 
sp. D 10 3.59 ± 

0.15 0.00 0.95 0.66 0.00 0.48 0.03 0.93 ± 
0.06 0.01 0.79 0.76 0.00 0.49 0.02 0.93 ± 

0.06 
3.88 ± 
0.14 0.00 0.98 0.13 0.30 0.10 0.36 

Parapanteles 
em 16 2.36 ± 

0.21 0.45 0.00 0.79 0.00 0.29 0.03 0.64 ± 
0.06 0.42 0.01 0.85 0.00 0.35 0.02 0.64 ± 

0.06 
3.71 ± 
0.14 0.00 0.84 0.01 0.71 0.03 0.55 

Parapanteles 
sp. valerio05 7 

2.4 ± 
0.13 0.07 0.58 0.48 0.09 0.10 0.48 

0.62 ± 
0.04 0.02 0.77 0.55 0.06 0.18 0.35 

0.62 ± 
0.04 

3.87 ± 
0.2 0.30 0.20 0.10 0.49 0.25 0.25 

Parapanteles 
paradoxus 16 2.36 ± 

0.21 0.08 0.28 0.04 0.49 0.01 0.76 0.62 ± 
0.05 0.08 0.28 0.12 0.19 0.00 0.92 0.62 ± 

0.05 
3.81 ± 
0.23 0.00 0.88 0.01 0.73 0.01 0.73 

Parapanteles 
sp. J 5 2.96 ± 

0.21 0.02 0.82 0.02 0.83 0.00 0.95 0.78 ± 
0.07 0.03 0.77 0.03 0.77 0.00 0.93 0.78 ± 

0.07 
3.81 ± 
0.12 0.62 0.11 0.01 0.85 0.16 0.50 

Parapanteles 
sp. K 5 2.66 ± 

0.47 0.62 0.11 0.02 0.83 0.74 0.06 0.7 ± 
0.12 0.09 0.16 0.02 0.82 0.61 0.12 0.7 ± 

0.12 
3.81 ± 
0.17 0.16 0.51 0.05 0.71 0.29 0.35 

Parapanteles 
sp. B 8 2.11 ± 

0.1 0.00 0.87 0.86 0.00 0.49 0.05 0.51 ± 
0.03 0.08 0.49 0.69 0.01 0.28 0.18 0.51 ± 

0.03 
4.16 ± 
0.15 0.37 0.11 0.04 0.65 0.18 0.30 
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Figure 3.1: Wing interference patterns of Parapanteles tessares. Female 
wings are shown to the left and males to the right. Horizontal pairs of wing 
images are of sibling wasps from the same reared brood while each 
vertical set is from a distinct brood.  
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Figure 3.2 a&b: 
Wing 
interference 
patterns of 
Parapanteles 
continua. Female 
wings are shown 
to the left and 
males to the 
right. Horizontal 
pairs of wing 
images are of 
sibling wasps 
from the same 
reared brood 
while each 
vertical set is 
from a distinct 
brood.  

 

a b 
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Figure 3.3: Wing interference patterns of 
Parapanteles sicpolus. Female wings are 
shown to the left and males to the right. 
Horizontal pairs of wing images are of 
sibling wasps from the same reared brood 
while each vertical set is from a distinct 
brood.  
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Figure 3.4: Wing interference 
patterns of Parapanteles sp. H. 
Female wings are shown to the 
left and males to the right. 
Horizontal pairs of wing images 
are of sibling wasps from the 
same reared brood while each 
vertical set is from a distinct 
brood.  
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Figure 3.5: Wing interference 
patterns of Parapanteles sp. D. 
Female wings are shown to the 
left and males to the right. 
Horizontal pairs of wing images 
are of sibling wasps from the 
same reared brood while each 
vertical set is from a distinct 
brood.  
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Figure 3.6: Wing interference patterns of Parapanteles em. 
Female wings are shown to the left and males to the right. 
Horizontal pairs of wing images are of sibling wasps from the 
same reared brood while each vertical set is from a distinct 
brood.  
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Figure 3.7: Wing interference patterns of Parapanteles sp. 
valerio05. Female wings are shown to the left and males to the 
right. Horizontal pairs of wing images are of sibling wasps from 
the same reared brood while each vertical set is from a distinct 
brood.  
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Figure 3.8: Wing interference patterns of Parapanteles 
paradoxus. Female wings are shown to the left and males 
to the right. Horizontal pairs of wing images are of sibling 
wasps from the same reared brood while each vertical set 
is from a distinct brood.  
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Figure 3.9: Wing interference 
patterns of Parapanteles sp. I. All 
wings shown are from males, 
and each vertical set is from a 
distinct brood.  
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Figure 3.10: Wing interference patterns of Parapanteles sp. J. All 
wings shown are from females, and each vertical set is from a 
distinct brood.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Wing interference patterns of Parapanteles sp. K. All 
wings shown are from females, and each vertical set is from a 
distinct brood.  
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Figure 3.12: Wing interference patterns of Parapanteles sp. E. All 
wings shown are from males, and each vertical set is from a 
distinct brood.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Wing interference patterns 
of Parapanteles tlinea. Female wings are 
shown to the left and males to the right. 
Horizontal pairs of wing images are of 
sibling wasps from the same reared 
brood while each vertical set is from a 
distinct brood.  
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Figure 3.14: Wing interference patterns of Parapanteles sp. B. 
Female wings are shown to the left and males to the right. 
Horizontal pairs of wing images are of sibling wasps from the same 
reared brood while each vertical set is from a distinct brood.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Wing interference patterns of Parapanteles sp. C. All 
wings shown are from females, and each vertical set is from a 
distinct brood. 
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Figure 3.16: Box-and-whiskers plots of forewing and hindwing wing interference pattern relative rednesses (RR), greennesses (RG), and bluenesses (RB) shown 
in phylogenetic order. The cladogram above the figure is based on results from Chapter 1. RR box-and-whiskers are shown in red, RB in blue, and RG in green. 
Per-species, forewings are shown to the left of hindwings and shaded a slightly lighter color (for colorblind: all RR values are greater than their corresponding 
RG values, so all red box-and-whisker plots are above green box-and-whisker plots in the figure). Results of Tukey’s HSD test are displayed above or below each 
box-and-whisker.



66 
 

REFERENCES 

Buffintong, ML, & RJ Sandler. 2012. The occurrence and phylogenetic implication of wing 

interference patterns in Cynipoidea (Insecta: Hymenoptera). Invertebrate Systematics 25: 

586-597. 

Buffington, ML, & M Condon. 2013. The description and bionomics of Tropideucoila 

blepharoneurae Buffington and Condon, new species (Hymenoptera: Figitidae: Zaeucoilini), 

parasitoid of Blepharoneura Loew fruit flies (Tephritidae).  Proceedings of the Entomological 

Society of Washington 115(4): 349-357. 

Biffington, ML, & M Forshage. 2014. The Description of Gurudella Buffington and Forshage, 

New Genus (Hymenoptera: Figitidae: Eucoilinae). Proceedings of the Entomological Society 

of Washington 116(3): 225-242. 

Drohojowska, J, & J Szwedo, 2015. Early Cretaceous Aleyrodidae (Hemiptera: Sternorrhyncha) 

from the Lebanese amber. Cretaceous Research 52: 368-389. 

Fernández-Triana, JL, & D Ward. 2015. Microgastrinae Wasps of the World. 

http://microgastrinae.myspecies.info (6/8/2017). 

Hansson, C. 2011. Cornugon (Hymenoptera: Eulophidae: Entedoninae) a new genus from 

tropical America including ten new species. Zootaxa 2873: 1-26. 

Hansson, C. 2012. Achrysocharoides Girault (Hymenoptera, Eulophidae) new to tropical 

America, with eight new species. Zookeys 173: 79-108. 

Hansson C, & E Shevtsova. 2012. Revision of the European species of Omphale Haliday 

(Hymenoptera, Chalcidoidea, Eulophidae). ZooKeys 232: 1–157. 

Hernández-López, A, R Rougerie, S Augustin, DC Lees, R Tomov, M Kenis, E Çota, E Kullaj, C 

Hansson, G Grabenweger, A Rogues, & C López-Vaamonde. 2012. Host tracking or cryptic 

adaptation? Phylogeneography of Pediobius saulius (Hymenoptera, Eulophidae), a 

parasitoid of the highly invasive horse-chestnut leafminer. Evolutionary Applications 5(3): 

256-269. 

Katayama, N, JK Abbott, J Kjærandsen, Y Takahashi, & EI Svensson. 2014. Sexual selection on 

wing interference patterns in Drosophila melanogaster. Proceedings of the National 

Academy of Sciences 111(42): 15144-15148. 



67 
 

Mardulyn, P, & JB Whitfield. 1999. Phylogenetic signal in the COI, 16S, and 28S genes for 

inferring relationships among genera of Microgastrinae (Hymenoptera; Braconidae): 

evidence of a high diversification rate in this group of parasitoids. Molecular Phylogenetics 

and Evolution 12(3): 282-294. 

Mitroiu, MD. 2013. Taxonomic review of Afrotropical Watshamia Bouček (Hymenoptera: 

Pteromalidae), with description of a new species. Entomological Science 166: 191-195. 

R Core Team. 2017. R: A Language and Environmnent for Statistical Computing, R Foundation 

for Statistical Computing, Vienna, Austria. https://www.R-project.org. 

Rodriguez, JJ, JL Fernández-Triana, MA Smith, DH Janzen, W Hallwachs, TL Erwin, & JB Whitfield. 

2012. Extrapolations from field studies and known faunas converges on dramatically 

increased estimates of global microgastrine parasitoid wasp species richness (Hymenoptera: 

Braconidae). Insect Conservation and Diversity 6(4): 530-536. 

Schneider, CA, WS Rasband, & KW Eliceiri. 2012. NIH Image to ImageJ: 25 years of image 

analysis. Nature Methods 9(7): 671-675.  

Shevtsova, E, C Hansson, DH Janzen, & J Kjærandsen. 2011. Stable structural color patterns 

displayed on transparent insect wings. Proceedings of the National Academy of Sciences 

108(2): 668-673. 

Shevtsova E, C Hansson. 2011. Species recognition through wing interference patterns (WIPs) in 

Achrysocharoides Girault (Hymenoptera, Eulophidae) including two new species. ZooKeys 

154: 9–30. 

Simon, E. 2012. Preliminary study of wing interference patterns (WIPs) in some species of soft 

scale (Hemiptera, Sternorrhyncha, Coccoidea, Coccidae). ZooKeys 319: 269. 

Stigenberg, J. 2012. Spathicopis van Achterberg, 1977 (Braconidae, Euphorinae) a new wasp 

genus for Sweden, with a spoon shaped ovipositor. Entomologisk Tidskrift 133(4) 1-4. 

Valerio, AA, JB Whitfield, & DH Janzen. 2009. Review of the world Parapanteles Ashmead 

(Hymenoptera: Braconidae: Microgastrinae), with description of fourteen new Neotropical 

species and the first description of the final instar larvae. Zootaxa 2084: 1-49.  

Zhang, M, J Chen, X Gao, T Pape, D Zhang. 2014a. First description of the female Sarcophage 

(Sarcorohdendorfia) gracilior (Chen, 1975) (Diptera, Sarcophagidae). ZooKeys 396: 43-53. 



68 
 

Zhang, M, WW Chu, T Pape, & D Zhang. 2014b. Taxonomic review of the Sphecapatodes ornate 

group (Diptera: Sarcophagidae: Miltogramminae), with description of one new species. 

Zoological Studies 53:48. 

Zhang, D, YQ Ge, XY Li, XH Liu, M Zhang, & RR Wang. 2016. Review of the Lispe caesia-group 

(Diptera: Muscidae) from Palaearctic and adjacent regions, with redescriptions and one new 

synonymy. Zootaxa 4098 (1): 043-072. 



69 
 

CHAPTER 4: A GENUS-LEVEL MICROGASTRINAE (HYMENOPTERA: BRACONIDAE) PHYLOGENY 

USING ANCHORED HYBRID ENRICHMENT METHODS 

 

ABSTRACT 

Microgastrinae is a hyper-diverse subfamily of Braconidae (Hymenoptera) that 

parasitizes the larvae of most, if not all, ditrysian Lepidoptera. Previous molecular phylogenies 

of this taxon have consistently recovered many short and poorly supported basal internal 

nodes, supporting the hypothesis that Microgastrinae coevolved with their hosts in an ancient 

rapid speciation event. Microgastrines are also small, about 2-4mm long, and are 

disproportionately species rich for their morphological diversity, which is estimated to be 

between 10,000-40,000 species worldwide. Due to these challenges, the systematics of the 64 

currently recognized extant genera are still poorly resolved and the monophyly of many of 

these genera is questionable. To address these challenges, I selected 89 species, broadly from 

within and across several microgastrine genera, and Drs. Emily and Alan Lemmon at Florida 

State University performed anchored hybrid enrichment to generate 370 gene fragment 

sequences for each. Drs. Emily and Alan Lemmon made a concatenated maximum-likelihood 

analysis of this dataset with RAxML which resolved nearly all nodes with high bootstrap 

support. This phylogeny supports several larger genera (Apanteles, Cotesia, Dolihcogenidea, 

and Glyptapanteles) as mostly monophyletic, although taxa from smaller, rarer genera are 

recovered within each. It also corroborates previous results that Parapanteles is a polyphyletic 

genus composed of several subclades of disparate genera, although most are within 

Dolichogenidea. 

 

INTRODUCTION 

Microgastrinae, one of the most diverse taxa of parasitoid wasps. Many challenges have 

made the taxonomy and phylogenetics of this group difficult, both of which have changed 

frequently over the course of the subfamily’s history (Nixon 1965, Mason 1981, Whitfield et al. 

2002, Banks & Whitfield 2006). The subfamily is cosmopolitan, extremely diverse (20,000-

40,000 species, with 2689 described to date (Rodriguez et al. 2013, Fernández-Triana & Ward 
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2015)), and both economically and ecologically important as parasitoids of lepidopteran larvae 

(Shaw & Huddleston 1991). Resolving the generic-level phylogeny of this group is therefore 

important and, due to a wealth of sampling and advances in sequencing technology, is now 

more achievable than ever. 

The phylogenetics and classification of Microgastrinae have been impeded by their 

extreme diversity, paucity of easily observed characters due to their small size (generally 2-

4mm in body length), and their hypothesized ancient rapid radiation. Microgastrinae is diverse 

and long-term caterpillar rearing projects coupled with intensive DNA barcoding surveys have 

hugely expanded species count estimates for this taxon (Smith et al. 2008, Janzen et al. 2009, 

Janzen & Hallwachs 2009, Rodriguez et al. 2013, Smith et al. 2013, Dyer et al. 2017). These 

projects have collected and identified thousands of provisional species but have been 

predominantly restricted to the Americas, which highlights the amount of entirely undiscovered 

species that probably exist elsewhere, such as in Old World tropical environments. Much of 

Microgastrinae’s diversity arose during a poorly-understood ancient rapid radiation which 

corresponds with the diversification of their lepidopteran host species around the same time 

(Mardulyn & Whitfield 1999, Bands & Whitfield 2006). This diversification event has increased 

the frequency of poorly supported branches in previous phylogenies and contributed to the 

inconsistency of generic relationships between phylogenies constructed by previous molecular 

studies (Mardulyn & Whitfield 1999, Whitfield et al. 2002, Banks & Whitfield 2006).   

Microgastrinae currently contains 64 genera which have predominantly been defined 

using morphological methods alone. Many of their most accessible morphological characters 

are prone to convergence (Mason 1981, Whitfield et al. 2002, Wild et al. 2013). For example, 

female microgastrines’ ovipositors are used to inject eggs into the body cavity of host 

caterpillars are therefore under selection. Microgastrine species that attack larger, unconcealed 

hosts tend to have short ovipositors, while species that attack concealed hosts (e.g., leaf rollers, 

leaf miners) tend to have longer ovipositors. The suites of characters associated with shorter or 

longer ovispositors were heavily relied on in the last major revision of Microgastrinae (Mason 

1981), which has undoubtedly led to some unnatural taxa due to convergent evolution. Most 

recent taxonomic publications deal with samples that have been DNA barcoded and contain a 
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COI tree (e.g. Whitfield et al. 2012, Fernández-Triana et al. 2013, Fernández-Triana et al. 2014), 

but very few phylogenetic studies of microgastrines have used additional genes. Therefore, 

beyond the uncertainty surrounding intergeneric phylogenetic relationships, most generic 

concepts of Microgastrinae have not been adequately scrutinized with molecular evidence. 

Many larger genera are probably polyphyletic to some degree, and many smaller genera, 

although often morphologically distinctive, are likely subclades of larger genera. 

To address these issues, a good microgastrine phylogeny needs to include multiple 

species per genus where possible to test the monophlyly of included genera, include as many 

genera as possible to meaningfully represent the diversity of Microgastrinae itself, and include 

as much data per species as possible to ameliorate the difficulty of ancient short branches. 

Thousands of ethanol-preserved samples suitable for phyologenomic sequencing methods are 

readily available from the aforementioned rearing and DNA barcoding projects (Janzen & 

Hallwachs 2009, Smith et al. 2013, Dyer et al. 2017) so assessing whether a set of samples is a 

good representation of a current generic concept is relatively simple for New World taxa. 

Anchored hybrid enrichment (AHE) is now relatively inexpensive compared to the costs of 

traditional Sanger sequencing for multi-gene phylogenies and produces orders of magnitude 

more data per sample (Lemmon et al. 2012). Anchored hybrid enrichment has also been used 

successfully to produce robust phylogenies of other taxa with similar problems due to ancient 

rapid radiations (e.g. Etyan et al. 2015, Prum et al. 2015, Stout et al. 2016, Dornburg et al. 2017, 

Léveillé-Bourret et al. 2017). The goal of this study is to use DNA barcode sequence data to 

inform taxon selection for AHE to represent a broad diversity within and between microgastrine 

genera while being limited to a small number of samples compared to the overall diversity of 

the taxa included. 

 

METHODS 

Taxon Selection, DNA extraction, and DNA quantification 

My goals for taxon selection in this study were, in order of priority: to focus on 

persistent questions in microgastrine systematics, to including multiple disparate species per 

genus to approximate the breadth of species each genus currently contains, and to include 
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representative species from as many genera as possible. The genera I prioritized where Cotesia, 

Glyptapanteles, Apanteles, Dolichogenidea, and Parapanteles. I used the large COI tree 

generated for Chapter 2 (Chapter 2 Supplemental Materials 2.3) to select taxa from as many 

different clades within each genus as possible. I then added or removed taxa to the dataset 

based on the per-species availability of ethanol-preserved adult wasps or the availability of 

existing DNA extractions from previous studies, and then ultimately the quality of each DNA 

extraction. All specimens used in the final dataset that have been sequenced for COI are 

indicated in Figure 4.1. I included one Chelonus species (Braconidae: Cheloninae) as an 

outgroup. 

Where available, I used existing high-quality DNA extractions generated by myself (8 

Dolichogenidea and 8 Parapanteles extractions from Chapter 1) or previous Whitfield lab 

members (25 Costa Rican Cotesia species (e.g. Cotesia Whitfield###) were extracted by 

Jaquiline O’Connor, 13 Glyptapanteles species were extracted by Diana Arias-Penna, one 

Xanthomicrogaster species extracted by Andrew Debevec, and I used 11 extractions from 

several genera that were generated by Mardulyn & Whitfield 1999, Whitfield et al. 2002, or 

Bands & Whitfield 2006). Except for samples from Mardulyn & Whitfield 1999 and Whitfield et 

al. 2002 (DNA extraction method not specified, but probably Phenol-Chloroform), existing DNA 

extractions and the 23 additional samples I extracted for this study were performed with 

Qiagen DNEasy Blood and Tissue kits following the manufacturer’s protocol. I screened all DNA 

extractions for quality via gel electrophoresis and quantified each extraction via Qubit dsDNA 

HS Assay Kits on a Qubit 2.0 Fluorometer at the W.M. Keck Center for Comparative and 

Functional Genomics at the University of Illinois. 

 

Anchored hybrid enrichment and phylogenetic analysis 

Library preparation, enrichment, and anchored hybrid enrichment of each genomic DNA 

samples was performed by Drs. Alan and Emily Lemmon and/or their laboratory technicians at 

the Center for Anchored Phylogenomics at Florida State University using 57066 probes 

designed to target 541 loci. Probes were designed based on exon sequences of conserved genes 

in ant, bee, and ichneumonid genomes. Libraries were sequenced in two Illumina MiSeq lanes.  
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Reads were screened, assembled, and matched to homologous sequences using the pipeline 

outlined by Lemmon et al. 2012. Loci were individually aligned using MUSCLE (Edgar 2004) and 

then concatenated. Loci missing for two or more species were discarded. Maximum-likelihood 

phylogenetic analysis was performed on the concatenated dataset using RAxML v. 8.1.21 

(Stamatakis 2014) using the GTR+G substitution model with one partition per locus and 1000 

bootstrap replicates. 

 

RESULTS 

After elimination of loci missing from two or more species, anchored hybrid enrichment 

generated sequences for 14973983 base pairs from 168247 sites across 370 loci from 89 

species. Of these, 64725 were variable and 52862 were phylogenetically informative. The 

concatenated alignment contained about 11.5% missing characters. 

The RAxML phylogeny (Figure 4.2) had high bootstrap support for most nodes: 77% of 

nodes were supported with bootstrap values of 100, 11.5% were between 75-99, and 11.5% 

were below 75. Of the larger genera included, Cotesia was recovered within Glyptapanteles but 

with poor support and two major clades of Glyptapanteles were recovered. The majority of 

Parapanteles species were recovered within Dolichogenidea, with two within Cotesia and one 

within Apanteles. Cotesia and Glyptapanteles were recovered sister to Dolichogenidea and 

Parapanteles, Apanteles was recovered sister to Hypomicrogaster, but with low support 

(bootstrap=75), and Microplitis was recovered in the most basal clade. Of the smaller genera 

included, Alphomelon was recovered within Apanteles; Exoryza and Pholetesor were within 

Dolichogenidea; and Prasmodon, Xanthomicrogaster, and Diolcogaster were recovered in the 

basal clade that contained Microplitis. No confidently identified Protopanteles were available 

for this study, but one representative of several tropical species that resemble both 

Protopanteles and Glyptapanteles was included in this study, and was recovered within 

Glyptapanteles.  
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DISCUSSION 

Mason’s 1981 reclassification of microgastrine genera separated the subfamily into five 

tribes: Apantelini, of which Apanteles, Exoryza, Pholetesor, Dolichogenidea, and Alphomelon 

were included in this study; Microgastrini, of which Prasmodon, Hypomicrogaster, and 

Xanthomicrogaster were included; Forniciini, which was not represented in this study; Cotesiini, 

of which Glyptapanteles, Protapanteles, Cotesia, and Diolcogaster were included; and 

Microplitini, of which Microplitis was included. Previous molecular phylogenies have not 

broadly supported these tribes, but the results of different analyses within and between those 

studies were both too variable to draw strong conclusions (Mardulyn & Whitfield 1999, 

Whitfield et al. 2002, Bands & Whitfield 2006). Here, Apantelini is not recovered as a natural 

group: Apanteles and Alphomelon are grouped together, although Apanteles contains 

Alphomelon, the clade containing both is sister to Hypomicrogaster of Microgastrini, and 

Dolichogenidea, Pholetesor, and Exoryza are sister to most members of Cotesiini, although 

Dolichogenidea contains Exoryza, and Pholetesor. Cotesiini is not generally supported either: 

while Glyptapanteles and Cotesia, two major genera of Cotesiini are grouped together, Cotesia 

is recovered within Glypapanteles (with poor support). Parapanteles is recovered within 

Dolichogenidea of Apantelini (corroborating the results of Chapter 1), and Diolcogaster is 

recovered in the basal clade containing the remaining gerena from Microplitini (Microplitis) and 

Microgastrini (Prasmodon and Xanthomicrogaster). 

All previous Microgastrinae molecular phylogenies have had numerous poorly 

supported internal nodes, especially between representatives of different genera (Mardulyn & 

Whitfield 1999, Whitfield et al. 2002, Bands & Whitfield 2006). The phylogeny produced by this 

study is much less ambiguous and support for most nodes is robust. Although many genera are 

missing from this study, these results place genera that have been recovered in variable 

positions in previous phylogenies, such as Dolichogenidea, Parapanteles, and Hypomicrogaster 

(Mardulyn & Whitfield 1999, Whitfield et al. 2002, Bands & Whitfield 2006), more confidently 

than ever before. Expansion of this method to Microgastrinae more comprehensively and will 

likely solve most of the lingering phylogenetic problems of this group. Unfortunately most long-

term rearing and DNA barcoding projects of Microgastrinae have been restricted to the New 
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World, and adding Old World taxa to this approach in a meaningful way will require a massive 

collection effort. 
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FIGURES 

 

Figure 4.1: Fasttree approximated maximum-likelihood phylogeny of 14247 microgastrine COI samples. Taxon 
labels are colored by genus, with purple corresponding to Parapanteles, green to Dolichogenidea, teal to 
Pholetesor, red to Apanteles, blue to Glyptapanteles, yellow to Cotesia, pink to Hypomicrogaster, and grey to 
Microplitis. Taxa labels of all other genera are black. Subsamples selected for anchored hybrid enrichment analysis 
are indicated by extended taxon labels. 
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Figure 4.2: RAxML maximum 
likelihood phylogeny of 370 
concatenated anchored hybrid 
enrichment loci of 
microgastrine wasps. 
Bootstrap values are shown 
above or below corresponding 
branches. Tip labels are 
colored by genus, with purple 
corresponding to 
Parapanteles, green to 
Dolichogenidea, red to 
Apanteles, blue to 
Glyptapanteles, yellow to 
Cotesia, and black to all other 
genera.  
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CHAPTER 5: POLYDNAVIRUS VIRULENCE GENE DUPLICATION AND EVOLUTION IN 

PARAPANTELES WASPS (BRACONIDAE: MICROGASTRINAE) 

 

ABSTRACT 

Microgastrinae wasps have symbiotic viruses, known as polydnaviruses, encoded within 

their nuclear genomes, that females produce and inject, along with eggs, into their host 

caterpillars. Larval microgastrines cannot successfully parasitize their hosts without 

polydnaviruses. Virtually all that is known about microgastrine polydnaviruses are known from 

five species from three genera. Here I sequenced the genomes of 16 microgastrine species from 

a monophyletic clade of Parapanteles Ashmead with extensive host-use records, and annotated 

polydnavirus genes in each genome. I found that probable duplications, pseudogenes, and 

rearrangements are common, especially in the protein-tyrosine-phosphatase polydnavirus gene 

family. These results support the model that frequent gene births and deaths are a major factor 

in polydnavirus genome evolution, and extend our knowledge of polydnaviruses to a major 

previously unexplored segment of the microgastrine phylogeny. 

 

INTRODUCTION 

Polydnaviruses are mutualistic viruses used by two groups of parasitoid wasps to 

manipulate the immune response and physiology of those wasps’ larval hosts. Banchine and 

campoplegine ichneumonids (Hymenoptera: Ichneumonoidea) have ichnovirus polydnaviruses 

(a few have virus-like particles derived from alpha-nudiviruses), while bracoviruses are similar 

but unrelated polydnaviruses, derived from beta-nudiviruses, found in the braconid 

microgastroid complex (Stoltz et al. 1984, Kroemer & Webb 2004, Drezen et al. 2017). 

Microgastrine wasps rely on bracoviruses to successfully parasitize their lepidopteran hosts by 

altering physiology and suppressing the immune system of these hosts (Strand & Burke 2014). 

The microgastroid complex (microgastrines and 5 other subfamilies) acquired bracoviruses 

approximately 100 million years ago, shortly before undergoing a rapid diversification of genera 

and species, and bracoviruses continue to evolve with host immune adaptations (Banks & 

Whitfield 2006, Murphy et al. 2008, Strand & Burke 2014).  
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Bracovirus genomes have been studied in five species from three highly diverse and 

cosmopolitan genera: Cotesia congregata, C. vestalis, Glyptapanteles flavicoxis, G. indiensis and 

Microplitis demolitor (Espagne et al. 2004, Desjardins et al. 2008, Chen et al. 2011, Burke & 

Strand 2012, Burke 2016). Cotesia and Glyptapanteles are closely related and diverged from 

Microplitis approximately 53 million years ago (Murphy et al. 2008). Cotesia and Glyptapanteles 

are among the most species-rich microgastrine genera and none have well resolved species 

phylogenies. The extent to which bracoviruses have influenced host use and speciation in 

Microgastrinae is therefore not well known.  

Bracovirus genomes consist of genes that produce nudivirus-like viral particles, and 

genes that are packaged into these viral particles as circular DNA segments (Strand & Burke 

2014). The genes that produce the nudivirus-like viral particles, generally viral capsid and 

envelope proteins and various RNA and DNA polymerases, originate from an ancestral nudivirus 

(Bézier et al. 2009). The genes that are packaged into the viral particles, referred to as the 

“encapsidated genome”, are of diverse origin, including orthologs of wasp genes, but generally 

do not include nudivirus-origin genes (Bézier et al. 2009, Huguet et al. 2012). In the calyx cells 

of female wasps, disparate regions of the nuclear genome known as “proviral loci” contain 

pieces of the encapsidated genome and are copied in varying abundance to produce 15-30 

unique circular DNA fragments ranging from 2.5-50kb long each containing virulence genes 

(Webb et al. 2006, Chen et al. 2011, Burke et al. 2014). Bracoviruses are therefore 

amalgamations of nudivirus-origin genes that produce the protein structure of viral particles 

and wasp- and unknown-origin genes that are copied and packaged into those viral particles to 

cause pathology in the host caterpillar. 

The most well-known function of bracoviruses is reduction or disablement of the 

immune response of their wasps’ hosts, preventing those hosts from killing wasp eggs and 

larvae (Strand & Burke 2014). The genes in the encaspidated genome that contribute to this 

effect are referred to as “virulence genes". These virulence genes are expressed in the tissues 

of microgastrines’ hosts, often through integration into host cell DNA (Beck et al. 2011). The 

specific mechanism of immunosuppression varies between wasp species and includes 

disruption of host haemocyte function, destruction of host haemocytes, and disruption of 
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major insect immunity pathways, such as the phenoloxidase (PO) cascade and the Toll and 

immune deficiency (IMD) pathways (Kroemer & Webb 2004, Strand & Burke 2014).  

The diversity in the mode of action of bracoviruses is hypothesized to be due to a co-

evolutionary arms race between parasitoids and their hosts, in which bracovirus virulence 

genes rapidly evolve in response to adaptations in host caterpillar immune systems (Huguet et 

al. 2012, Strand & Burke 2014). In contrast, the bracovirus viral-origin genes responsible for 

producing and packaging viral particles in the calyx cells of female wasps are hypothesized to be 

conserved and to evolve at constant rates. The results of studies analyzing signatures of 

selection in bracovirus virulence genes conflict: one study of four Cotesia species bracoviruses 

identified several virulence genes under positive selection (Jancek et al. 2013), while another 

study of two Microplitis bracoviruses found most virulence genes were under purifying 

selection (Burke 2016). Further supporting the arms-race hypothesis, virulence gene families 

are prone to duplication and evolve rapidly (Desjardins et al. 2008, Serbielle et al. 2008, Chen et 

al. 2011, Serbielle et al. 2012, Burke et al. 2014). Furthermore, virulence gene families may be 

acquired or lost frequently throughout microgastrine evolution (e.g. egf-motif genes in 

Microplitis, cys-motif genes in Cotesia and Glyptapanteles) (Huguet et al. 2012).  

Despite these acquisitions, losses, and duplications, two virulence gene families are 

present in all known bracoviruses: ankyrin repeat (ANK) genes and protein tyrosine 

phosphatase (PTP) genes (Huguet et al. 2012). Some ankyrin repeat genes are known to disrupt 

Toll and IMD pathways (Thoetkiattikul et al. 2005, Bitra et al. 2012). The PTP gene family is 

diverse and highly duplicated in bracovirus genomes and is associated with manipulations of 

host physiology, including immunosuppression (Provost et al. 2004, Falabella et al. 2006, 

Ibrahim & Kim 2008, Serbielle et al. 2012). In addition to immunosuppression, bracoviruses also 

manipulate hosts’ development and growth in ways that favor the development of parasitoid 

larvae. Bracoviruses do this by altering developmental hormone titers, retarding host 

development and preventing metamorphosis, and by manipulating host metabolic pathways to 

increase investment in tissues consumed by developing parasitoid larvae (Gundersen-Rindal 

2012, Strand & Burke 2014). The specific genes responsible for these hormonal and metabolic 

alterations are not known, although some PTP genes are involved in these physiological 
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alterations (Falabella et al. 2006, Kim et al. 2013). Copy numbers of both gene families vary 

between all known microgastrine bracovirus genomes: M. demolitor has 12 ANK and 13 PTP 

genes, G. indiensis has 9 ANKs and 42 PTPs, G. flavicoxis has 8 ANKs and 31 PTPs, C. vestalis has 

6 ANKs and 33 PTPs, and C. congregata has 6 ANKs and 27 PTPs (Espagne et al. 2004, Desjardins 

et al. 2008, Chen et al. 2011, Burke et al. 2014). Phylogenetic analyses of both gene families 

suggests that many conspecific paralogues of both genes are more closely related to each other 

than to potential orthologues in other species, further suggesting that duplications are common 

in these gene families (Chen et al. 2011).  

In order to fully understand polydnavirus evolution, polydnavirus genomes must be 

sequenced from many more species of microgastrines. However, this poses several challenges. 

Microgastrines are small animals that contain small amounts of DNA, few species are kept in 

laboratory colonies, most microgastrine species are difficult to identify morphologically, and 

most existing specimens are either dried and pinned or preserved in ethanol. In female wasps, 

calyx cells produce viral particles which contain the encapsidated genome of the wasp’s 

bracovirus (Stoltz et al. 1976, Webb et al. 2006, Bézier et al. 2009). Several previous studies 

have isolated and sequenced the complete encapsidated bracovirus genomes from the calyx 

cells (Espagne et al. 2004, Desjardins et al. 2008, Chen et al. 2011, Burke & Strand 2012, Burke 

2016). The small size of these tissues necessitates pooling of multiple females’ calyces before 

sequencing. Due to the small amount of tissue per wasp and the non-uniform copy number of 

each fragment, previous studies have used deep-sequencing approaches of pooled calyx 

extractions to sequence bracovirus encapsidated genomes (Chen et al., Burke et al. 2014, Burke 

2016).  This approach is impractical for surveying bracoviruses from a broad diversity of 

microgastrine species. While many microgastrines are gregarious, meaning multiple sibling 

wasps emerge from a single host, and, if well preserved, calyces from multiple females from a 

brood can be pooled, the number of individuals per brood varies widely between species and 

many other species are solitary (Shaw & Huddleston 1991, Janzen et al. 2009). 

The entire bracovirus genome, including the nudivirus-origin genes that are not 

packaged into viral particles, are dispersed throughout the nuclear genome of microgastroids 

(Webb et al. 2006, Bézier et al. 2009, Burke et al. 2014). Nuclear DNA from female or male 
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wasps can therefore be sequenced to identify bracovirus genes in previously unstudied species. 

In Hymenoptera, males are haploid, and their lack of heterozygosity makes them ideal for next-

generation DNA sequencing methods. However, bracovirus gene families evolve at different 

rates, are acquired and lost across genera, and are prone to gene loss and duplication (Strand & 

Burke 2014).  

The monophyletic clade containing most Parapanteles species identified in Chapter 2 is 

ideal for studying polydnaviruses because is located within an extremely diverse portion of the 

broader microgastrine phylogeny, distant from Cotesia, Glyptapanteles, and Microplitis 

(Chapter 4 Figure 4.1) (whose bracoviruses have been virtually completely unstudied), it 

contains several examples of closely related species that parasitize relatively closely related 

hosts, and it also contains several family-level host-shifts (Chapter 2 Figure 2.2). In this chapter, 

I sequenced 16 Parapanteles species from the core monophyletic clade of Parapanteles 

identified in Chapter 2. and identified and annotated polydnavirus virulence genes in each. My 

main goals were to determine the number and relative genomic locations of genes from major 

polydnavirus gene families in each species and to broadly identify trends in their evolution.  

 

METHODS 

DNA Extractions, Illumina sequencing & Assembly 

I extracted genomic DNA from the whole body of a single male from each of 16 

Parapanteles species using Qiagen QIAamp Micro DNA Kits. Extractions were quantified using 

Qubit dsDNA HS Assay Kits on a Qubit 2.0 Fluorometer at the W.M. Keck Center for 

Comparative and Functional Genomics at the University of Illinois Urbana-Champaign.  

Library preparation and sequencing for each DNA extraction was performed at the W.M. 

Keck Center for Comparative and Functional Genomics. One 400 bp-insert shotgun genomic 

library was prepared from each extraction using the Hyper Library construction kit from Kapa 

Biosystems. Libraries were sequenced with other samples on an Illumina HiSeq 4000 lane for 

151 cycles using HiSeq 4000 sequencing kit version 1. Parapanteles continua was titrated to be 

about 15% of the DNA loaded into a HiSeq 4000 lane containing samples from other research 

projects. Parapanteles em, P. sp. C, P. sp. G, P. sp. J, P. sp. whitfield08, P. tessares, and P. tlinea 
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were sequenced together on a second lane, and P. paradoxus, P. sicpolus, P. sp. B, P. sp. D, P. 

sp. F, P. sp. I, P. sp. K, and P. sp. valerio05 were sequenced together on a third lane. FASTQ files 

were generated and demultiplexed with bcl2fastq v.2.17.1.14 Conversion Software (Illumina). 

I trimmed raw reads using Trimmomatic v0.32 (Bolger et al. 2014) and assembled each 

genome using SOAPdenovo v.2.04 (Luo et al. 2012) with k=49, except for Parapanteles continua 

which was assembled using the same programs and paramaters by Kim Walden at the 

University of Illinois Urbana-Champaign. I assessed genome completeness using BUSCO v3.0.1 

with the odb9 Hymenoptera input dataset containing 4415 “universal sing-copy orthologs” 

available via the author’s website (Simão et al. 2015, busco.ezlab.org). The program BUSCO 

(Benchmarking Universal Single-Copy Orthologs) assesses the completeness of a genome 

assembly by searching within it for a set of genes with a single ortholog through a specific 

taxon, producing gene models for each gene found and a summary of the number of complete, 

duplicated, fragmented, and missing genes it found. I included the M. demolitor genome 

assembly (Mdem2) available on Genbank (Genome ID: 12766) from Burke et al. (2014, 2018) 

for comparison. 

 

BUSCO & species tree  

I imported BUSCO gene assemblies for each Parapanteles genome into Geneious 

v.10.1.3 and selected the first 101 genes which had relatively complete gene sequences for all 

16 species. I aligned each gene via MUSCLE v.3.8.31 (Edgar 2004). This resulted in over 1 million 

aligned base pair total, so I trimmed each alignment down to well-aligned (presumably exonic) 

regions, concatenated all alignments, and constructed a phylogenetic tree using RAxML v.8.2.7 

with 1000 bootstrap replicates using the GTR+I+G substation model and all genes partitioned 

(Stamatakis 2014). 

 

Gene searches & annotations  

I converted the FASTA file of each Parapantles genome assembly into a searchable 

BLAST database with BLAST+ v.2.5.0 in Geneious v.10.1.3 (Kearse et al. 2012). I accessed 474 

translated sequences from bracovirus virulence genes, including redundant orthologs of genes 



87 
 

from several species, from GenBank (SM 5.19). I used the Query-centric alignment only option 

of BLAST in Geneious to BLAST search the sets of 474 virulence genes against each genome 

assembly, with the maximum number of hits per query set to 15. I then organized all hits by 

scaffold/contig, reverse transcribed them, and mapped them to the reference of each 

individual scaffold with hits.  

In all previously sequenced polydnaviruses most viral segments contain multiple 

virulence genes and in Microplitis demolitor most of the proviral loci that produce those 

segments are adjacent to each other in the genome (Desjardin et al. 2008, Chen et al. 2011, 

Burke et al. 2014). Consequently, I predicted that search hits for polydnavirus virulence genes 

that were near other distinct search hits for polydnavirus virulence genes were more likely 

actual polydnavirus virulence genes than lone search hits on scaffolds with no other apparent 

polydnavirus genes. Therefore, I initially limited gene annotations to scaffolds from each 

genome that had two or more distinct search hits and annotated the gene or gene fragments 

on each of these scaffolds. This resulted in 890 gene annotations. I created a BLAST database of 

all 16 Parapanteles genome assemblies together and BLAST searched my initial 890 gene 

models against this database using a standard hit table limited to the top 50 BLAST hits. I then 

created a list of the scaffold or contig containing the top BLAST hit for each Parapanteles 

species, excluding those searches that only produced conspecific hits (e.g. a Parapanteles sp. B 

gene that returned 50 Parapanteles sp. B hits) (SM 5.20). I used this list to identify 27 sets of 

scaffolds related to each other by gene content across Parapanteles species (SM 5.21). I limited 

further annotations to scaffold sets that contained multiple distinct viral ankyrin and/or protein 

tyrosine phosphatase genes (SM 5.22, sets 10, 11, 15, 16, 18, 19, 20) and annotated all 

polydnavirus gene BLAST search hits on the scaffolds in these sets that I had not previously 

annotated. I labeled genes with unexpected stop codons as potential pseudogenes and genes 

with incomplete sequences due to incomplete genome assembly as fragments. 

 

Gene trees and rough alignment potentially homologous scaffolds 

I extracted the nucleotide sequences of all viral ankyrin and protein-tyrosine 

phosophatase gene and gene fragment annotations from their corresponding scaffolds. I 
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combined these with available PTP and ANK nucleotide sequences of Microplitis demolitor and 

Cotesia congregata accessed from Genbank (SM 5.23), aligned each gene family with MAFFT v. 

7.388 (Katoh et al. 2002, Katoh & Standley 2014), and constructed phylogenies for each with 

RAxML v.8.2.7 with 1000 bootstrap replicates using the GTR+G substitution model and no 

internal partitions. To visualize patterns of PTP gene duplications, I color-coded homologous 

genes and roughly aligned scaffold sets by lining up those genes in Geneious v10.1.3. I created 

this “rough alignment” entirely by hand: it is not a base-pair or codon alignment and is only 

intended to help visualize the orientation and arrangement of PTP and ANK genes across 

Parapanteles genomes, not to infer homology at the sequence level more broadly. 

 

RESULTS 

Genome sequencing and assemblies  

Each genomic DNA shotgun library produced on average 41.8 million reads with an 

average assembled genome size of 123.7 megabases. The average N=50 for all species was 

146.5kb; the average coverage was 102x. The P. tlinea library produced the most raw reads 

(61.8 million) while P. tessares produced the biggest genome assembly (140.5 megabases) and 

P. sp. whitfield08 had the highest N=50 (416.6kb). The P. tessares library produced the fewest 

raw reads (33.1 million), P. sp. whitfield08 had the smallest assembled genome (110 

megabases), and P. sp. J had the lowest N=50 (68.6kb) (Table 5.1). 

 

BUSCO 

Of 4415 Hymenoptera-specific BUSCOs searched, the current Microplitis demolitor 

genome assembly returned 4014 complete single-copy BUSCOs (91%), 38 complete duplicated 

BUSCOs (<1%), 184 fragments (4%), and 179 missing BUSCOs (4%). Parapanteles sp. assemblies 

from this study had on average 3555 complete single-copy BUSCOs (81%), 19 duplicate BUSCOs 

(<1%), 471 fragmented BUSCOs (11%), and 355 missing BUSCOs (8%) (Table 5.2). The P. 

continua assembly had the fewest complete (68%) and the most missing (17%) BUSCOs, while 

P. sp. G, I, & K had high numbers of complete BUSCOs (85% on average) and the lowest 
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numbers of missing BUSCOs (6% on average). 143 BUSCOs were missing from all Parapanteles 

sp., of which 125 were also missing from M. demolitor (SM 5.19). 

 

Refined species tree 

I combined well-aligned fragments, ranging from 575bp to 13.6kb, from 101 

orthologous gene models retrieved by BUSCO into a 306.5kb concatenated alignment. The 

RAxML tree constructed from this alignment fully corroborates the species relationships 

recovered in Chapter 2 with uniformly improved bootstrap support (Figure 5.1). 

 

Gene annotations 

I initially limited gene annotations to scaffolds with multiple distinct polydnavirus gene 

BLAST search hits. From these, I annotated 890 gene or gene fragments across 336 scaffolds or 

contigs (SM 5.20). I identified an additional 765 scaffolds containing potential polydnavirus 

virulence genes by BLAST searching the original 890 gene annotations against all Parapanteles 

genomes together, although most of these additional scaffolds or contigs contain just one 

polydnavirus gene or gene fragment (SM 5.21). I annotated the remaining BLAST search results 

on seven sets of scaffolds/contigs containing multiple PTP and/or ANK genes (SM 5.22, sets 10, 

11, 15, 16, 18, 19, & 20). I found 170 ANK genes or gene fragments and 435 PTP genes or gene 

fragments on these scaffold sets (Tables 5.3 & 5.4). Among these many were incomplete due to 

gaps in genome assembly and I labeled them fragments. Forty seven of the 170 ANK genes and 

124 of the 435 PTP genes contain unexpected in-frame stop codons that I could not explain 

with introns and I labeled them as potential pseudogenes. None of the PTP nor ANK genes from 

these scaffold sets have obvious introns. Most PTP genes were approximately 800-900bp long 

and most ANK genes were approximately 500bp long (SM 5.23-5.26). 

 

Gene trees 

The RAxML PTP gene tree (Figure 5.22) recovered 27 distinct clades of Parapanteles PTP 

genes, of which the basal nodes of four were supported by a bootstrap value below 95 (Figure 

5.2, PTP 1.1 (bootstrap of 88), PTP 5 (bootstrap of 93), PTP 6 (bootstrap of 10), and PTP 7 
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(bootstrap of 66). Thirteen Parapanteles PTP clades are more immediate sisters to a C. 

congregata or M. demolitor PTP than to another Parapanteles PTP clade (Figure 5.2, PTP clades 

5, 9, 10, 11, 14, 15, 18, 19, 20, 23, 24, 25, & 26). The PTP gene tree contains at least 116 gene 

duplications within Parapanteles PTP clades (Figure 5.2, yellow stars) and nine that predate 

these clades (Figure 5.2, white stars). I divided PTP gene clade 1 into two subsets (1.1 and 1.2) 

because it is duplicated in all but P. sp. B, P. sp. C, and P. sp. J. Each of the 27 PTP clades contain 

at least one gene duplication in at least one Parapanteles and at least one potential 

pseudogene.  

The RAxML ANK gene tree (Figure 5.3) recovered 11 distinct clades of Parapantles ANK 

genes. All but Parapantles ANK clade 1 are supported by a bootstrap value below 95. Four 

Parapanteles ANK clades are more immediate sisters to a C. congregata or M. demolitor ANK 

gene than to another Parapanteles ANK clade (Figure 5.3, ANK clades 2, 5, 10, & 11). The ANK 

gene tree contains at least 40 gene duplications within Parapanteles ANK clades (Figure 5.3, 

yellow stars). Parapanteles ANK clades 4, 7, and 8 have no gene duplications but are incomplete 

and missing orthologs from several species. Parapanteles ANK clades 4, 8 and 11 have no 

apparent pseudogenes: clades 4 and 8 are incomplete, but clade 11 contains 9 gene 

duplications.  

The Parapanteles sp. B virulence genome appears heavily duplicated, containing 2-3 

more copies of most PTP and ANK orthologs than other species and accounting for about a 

third of all potential pseudogenes I identified (Figures 5.2-5.6 and Tables 5.3 & 5.4). Gene 

counts by species of PTP and ANK genes are summarized in Tables 5.3 & 5.4. 

 

Rough alignment of PTP-containing scaffold sets  

Among the PTPs genes that I annotated I found five clusters located near each other in 

the genome. The first PTP cluster consists of PTPs 1.1, 1.2, 2, 3, 4, 6, 7, 9, 12, 13, 18, and 26 

(Figure 5.4), the second consists of PTPs 5, 8, 14, 17, 21, 23, and 24 (Figure 5.5), the third 

consists of PTPs 15 and 25, the fourth PTPs 10, 21, and 22, and the fifth PTPs 16, 19, and 20 

(Figure 5.6). In most cases PTPs which I recovered as sisters in the PTP gene tree are not 

adjacent to each other. Adjacent PTPs tend to be from disparate parts of the gene tree with 
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two exceptions: PTPs 1.1/1.2 and 2 have adjacent copies in some species (Figure 5.4) and PTPs 

21 and 22 are adjacent to each other in most species (Figure 5.6). 

Parapanteles sp. B contains the most gene duplications for both ANKs and PTPs, having 

5 or more paralogs of 8 PTPs and 4 ANKs. This species accounts for 48 of the 124 potential PTP 

pseudogenes and 10 of the 26 potential ANK pseudogenes I identified (Figures 5.2 & 5.3, Tables 

5.3 & 5.4). Many of the individual duplicates are located on often very long scaffolds which 

contain few or no other polydnavirus virulence genes (especially prevalent in Figures 5.4 & 5.6).  

 

DISCUSSION 

Microgastrine polydnavirus virulence genomes are available from just five species to 

date: Cotesia congregata, Cotesia vestalis, Glyptapanteles flavicoxis, Glyptapanteles indiensis, 

and Microplitis demolitor (Desjardins et al. 2008, Chen et al. 2011, Burke et al. 2014). Cotesia 

and Glyptapanteles are large and diverse genera that are either sisters or paraphyletically 

related; Microplitis is moderately large by comparison and is one of the earliest genera to 

diverge from the rest of Microgastrinae. The Parapanteles species I included in this study are 

not closely related to any of these three genera, but are somewhat more closely related to 

Cotesia/Glyptapanteles than they are to Microplitis (Whitfield et al. 2002, also Chapters 2 & 4). 

Phylogenetically and in gross numbers of PTP and ANK genes, Parapanteles are more similar to 

Cotesia and Glyptapanteles polydnaviruses than they are to Microplitis polydnaviruses. Ten of 

13 PTPs and 2 of 4 ANKs with sisters from non-Parapanteles genera are sister to Cotesia 

congregata rather than Microplitis demolitor (Figs. 5.2 & 5.3). The most thoroughly studied 

Cotesia and Glyptapanteles polydnaviruses have 27 or more PTPs and under 10 ANKs 

(Desjardins et al. 2008, Chen et al. 2011) while Microplitis demolitor has just 16 PTPs and 14 

ANKs (Burke et al. 2014). The number of PTPs I found in each Parapanteles species ranges from 

7-71 but the average was 27, and 11 of the 16 species included in this study have at least 20 

(Table 5.3). The average number of ANKS per species was 11 (Table 5.4).   

I found numerous duplications and potential pseudogenes in both the PTP and ANK 

gene families and that PTPs arranged closely together in the genome are often not closely 

related (Figs. 5.4-5.6). Parapanteles polydnavirus gene duplications and arrangements follow 
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similar patterns to those found in other species where duplications of clusters of virulence 

genes are more common than tandem duplications of individual genes (Friedman & Hughes 

2006, Desjardins et al. 2008, Chen et al. 2011, Burke et al. 2014). Of the five polydnavirus 

virulence genomes that have been sequenced, each have different numbers of genes and 

different numbers of viral segments (Desjardins et al. 2008, Chen et al. 2011, Burke et al. 2014, 

2018). At least one viral segment in Microplitis demolitor is a recent duplicate of another 

segment (Burke et al. 2014, segments K & K1). Viral segments have little or no synteny across 

genera besides flanking regions containing integration motifs (Burke et al. 2014, 2018). In 

addition, chromosomal recombination has been identified in Cotesia species that caused a 

rearrangement in virulence gene orientation (Bézier et al. 2013). Based on the results and 

analysis presented here, I predict that, as in M. demolitor, most proviral loci are adjacent to 

each other in Parapanteles species and the patterns of duplication and pseudogenation in 

Parapanteles species is due to duplications of regions containing multiple genes, possibly of 

whole viral segments, and rearrangements in this genomic region.  

Broadly, these results support the gene-birth-and-death model of polydnavirus gene 

family evolution proposed by previous studies and observed in other species (Friedman & 

Hughes 2006, Desjardins et al. 2008, Chen et al. 2011, Burke et al. 2014). However, previous 

comparative studies of polydnavirus evolution only compared viral genomes of up to five 

microgastrine species at a time (Desjardins et al. 2008, Chen et al. 2011, Jancek et al. 2013, 

Burke et al. 2014, Burke 2016). Besides one study which looked at polydnavirus evolution in 

Microplitis sister species (Burke 2016) and one that looked at polydnavirus evolution in two 

populations of C. sesamiae (Jancek et al. 2013), previous studies have compared polydnaviruses 

of relatively distantly related species from three different genera, Microplitis, Cotesia, and 

Glyptapanteles (Desjardins et al. 2008, Chen et al. 2011, Burke et al. 2014, 2018). This study is 

the first to investigate polydnavirus structure and evolution across a clade of closely related 

species with a well-defined species tree. Furthermore it adds 16 more microgastrine genome 

sequences, where previously the only microgastrine genome sequence available was M. 

demolitor (Burke et al. 2014, 2018).  
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Many questions about polydnavirus evolution in Parpaanteles wasps remain and will be 

addressed with this dataset. My immediate next goals are to identify the boundaries of proviral 

loci in Parapanteles species, assess whether genomic rearrangements are more frequent in 

scaffolds carrying polydnavirus virulence genes than they are more broadly, and to identify a 

mechanism causing the frequent duplications of these genes. Many of the putative PTPs and 

ANKs I identified here, especially the potential pseudogenes, may not be located on functional 

proviral segments. Proviral loci have two types of integration motifs: Wasp Integration Motifs 

(WIMs) are conserved sequences that flank proviral loci and are recognized by nudivurs-origin 

polydnavirus genes to copy proviral loci into circular viral segments. Host Integration Motifs 

(HIMs) are conserved sequences located within viral segments and play a role in integrating the 

viral segment into host hemocytes (Beck et al. 2011). While extremely useful in identifying the 

ends of proviral loci, WIMs are short and discerning between them and convergently similar loci 

throughout the genome is not trivial. Female microgastrines produce high concentrations of 

polydnavirus segments in the calyx cells of their ovaries and incorporating genome sequences 

of pooled female calyx cells from several Parapanteles species to this study, either by 

assembling and annotating those genomes or by mapping raw reads onto the genome 

assemblies I produced for this study, will also be extremely useful in identifying proviral 

segments and their boundaries. 

Another important research direction is to explore the specific causes of Parapanteles 

polydnavirus gene duplications. Diverse transposable elements, including p-elements and 

polintons, have been found in other microgastrine polydnaviruses (Webb et al. 2006, Desjardins 

et al. 2008, Dupuy et al. 2011) and are probably involved in some of the duplication events 

observed here.  The virulence genes of P. sp. B are both the most heavily duplicated and heavily 

pseudogenized of any species in this study, but duplications and pseudogenizations are 

common in all species and both PTP and ANK gene families (Figures 5.2-5.6, Tables 5.3 & 5.4). 

Important future steps include investigating the cause of the duplications in P. sp. B and 

whether other Parapanteles virulence gene duplications were caused by similar mechanisms. 

In the current study my main goal was to broadly characterize PTP and ANK gene 

duplicates and pseudogenes. Looking at patterns of selection across polydnavirus genes across 
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Parapanteles species is another important area of future research. Jancek et al. (2013) found 

different polydnavirus virulence genes under positive selection across three species of Cotesia 

and between two populations of one of those species that attack different hosts. In contrast to 

these results, Burke (2016) found the majority of virulence gene in M. demolitor under purifying 

selection when compared to its sister species, M. mediator. This study shows some indications 

that the former may be more likely in Parapanteles in that different species seem to have 

different functional and different pseudogenized sets of PTPs and ANKs. For example, PTPs 5, 8, 

17, & 24 are complete and appear functional in P. sp. J & P. sp. K but not in most other species 

(Figure 5.6).  
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TABLES & FIGURES 

Table 5.1: Sequencing and assembly summaries for shotgun-sequencing genome summaries prepared from single males from 16 Parapanteles species. 

Species Sample ID # Host family Extraction 
DNA 

concentration 
(ng/ul) 

Total 
Extraction 
DNA (ng) 

Raw reads 
(bp) 

 Assembly size 
(bp)  

N50 (bp)  Average 
coverage  

Number of 
scaffolds 

Longest scaffold (bp) 

Parapanteles continua 08-srnp-1895 Saturniidae  n/a   n/a  59,375,923 119,429,209 156,077 149 27,521 883,829 

Parapanteles tessares 07-srnp-31983 Saturniidae 0.971 92.245 33,107,695 140,495,598 119,018 71 64,304 1,215,459 

Parapanteles sicpolus 03-srnp-3418 Saturniidae 1.94 184.3 40,243,688 121,184,736 170,933 100 21,823 1,993,319 

Parapanteles sp. G yy38822 Saturniidae 2.12 201.4 38,368,866 124,624,894 137,255 92 34,083 1,278,449 

Parapanteles sp. D yy44117 Saturniidae 2.14 203.3 42,954,221 116,790,194 117,898 110 31,612 1,010,306 

Parapanteles sp. valerio05 06-srnp-21433 Notodontidae 0.93 88.35 44,671,538 133,812,320 114,323 100 42,704 1,331,134 

Parapanteles em 07-srnp-33300 Notodontidae 1.13 107.35 44,967,128 130,144,387 107,957 104 49,782 1,253,865 

Parapanteles paradoxus 06-srnp-429 Notodontidae n/a n/a 38,471,170 122,717,495 83,654 94 39,057 788,596 

Parapanteles sp. I yy43211 Geometridae 0.855 81.225 35,844,532 123,887,601 87,214 87 33,252 958,379 

Parapanteles tlinea 08-srnp-31404 Erebidae 2.11 200.45 61,842,437 125,029,492 71,794 148 65,682 622,957 

Parapanteles sp. B yy37474 Erebidae 1.71 162.45 38,354,042 122,084,715 157,929 94 25,042 1,334,768 

Parapanteles sp. C yy48054 Erebidae 1.98 188.1 41,973,472 119,227,408 131,566 106 36,982 1,094,935 

Parapanteles sp. F yy37570 Erebidae 1.2 114 39,403,814 112,460,424 290,153 105 25,632 1,799,439 

Parapanteles sp. whitfield08 09-srnp-36520 Geometridae 0.776 73.72 37,408,045 109,979,891 416,607 102 26,939 2,272,552 

Parapanteles sp. J yy33819 Geometridae 1.22 115.9 38,408,004 128,083,191 68,560 90 46,122 1,058,342 

Parapanteles sp. K yy14412 Geometridae 0.716 68.02 34,083,436 129,001,494 112,390 79 39,821 2,381,266 

Average - - - - 41,842,376 123,684,566 146,458 102 38,147 1,329,850 
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Table 5.2: Output summaries of BUSCO analysis of 16 Parapanteles species and Microplitis demolitor. Adjusted missing excludes BUSCOs which were missing 
from both Microplitis demolitor and all Parapanteles species.  

Species Complete single-
copy 

Complete 
dupilcated 

Fragmented Missing % Missing Adjusted 
missing 

% Adjusted 
Missing 

Total Searched 

Parapanteles continua 2993 15 662 745 17% 634 15% 4415 

Parapanteles tessares 3701 24 406 284 6% 173 4% 4415 

Parapanteles sicpolus 3742 21 371 281 6% 170 4% 4415 

Parapanteles sp. G 3813 19 340 253 6% 142 3% 4415 

Parapanteles sp. D 3336 16 642 421 10% 310 7% 4415 

Parapanteles sp. valerio05 3653 19 424 319 7% 208 5% 4415 

Parapanteles em 3477 17 548 373 8% 262 6% 4415 

Parapanteles paradoxus 3663 24 425 303 7% 192 4% 4415 

Parapanteles sp. I 3796 22 341 256 6% 145 3% 4415 

Parapanteles tlinea 3021 13 762 619 14% 508 12% 4415 

Parapanteles sp. B 3727 18 339 271 6% 160 4% 4415 

Parapanteles sp. C 3557 17 504 337 8% 226 5% 4415 

Parapanteles sp. F 3685 16 432 282 6% 171 4% 4415 

Parapanteles sp. whitfield08 3484 17 546 368 8% 257 6% 4415 

Parapanteles sp. J 3617 22 464 312 7% 201 5% 4415 

Parapanteles sp. K 3611 21 325 258 6% 147 3% 4415 

Average 3554.75 18.8125 470.6875 355.125 8% 244.125 6% 4415 

Microplitis demolitor 4014 38 184 179 4% 68 2% 4415 
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Table 5.3: Number of complete (C), potential pseudogene (P), and fragmented (F) copies of each of 26 distinct protein tyrosine phosphatase (PTP) genes by 
Parapanteles species. 
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Table 5.3 continued
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Table 5.4: Number of complete (C), potential pseudogene (P), and fragmented (F) copies of each of 11 distinct viral ankyrin (ANK) genes by Parapanteles 
species. 
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Figure 5.1: Maximum-likelihood RAxML species tree of fragments from 101 distinct gene models produced by 
BUSCO for 16 Parapanteles species and Microplitis demolitor. Brach colors correspond to parasitoid host family. 
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Figure 5.2: Maximum-likelihood RAxML gene tree of Parapanteles protein tyrosine phosphatase (PTP) gene 
annotation nucleotide sequences. Branches are colored by PTP (1.1-26) and tips are colored by species and host 
use: Species that parasitize caterpillars in Saturniidae are in shades of purple, species that parasitize caterpillars in 
Notodontidae are in shades of blue, species that parasitize caterpillars in Erebidae are in shades of red, and species 
that parasitize caterpillars in Geometridae are in shades of green. Stars with yellow fill on branches indicate 
duplication events within Parapanteles, stars with white fill on branches indicate potential duplications that 
predate Parapanteles but are not seen in Cotesia congregata or Microplitis demolitor. Red circles at the ends of 
tips indicate potential pseudogenes. Branch labels indicate bootstrap support based on 1000 bootstrap replicates. 
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Figure 5.2 continued
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Figure 5.2 continued
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Figure 5.3: Maximum-likelihood RAxML gene tree of Parapanteles viral ankyrin (ANK) gene annotation nucleotide 
sequences. Branches are colored by ANK (1-11) and tips are colored by species and host use: Species that 
parasitize caterpillars in Saturniidae are in shades of purple, species that parasitize caterpillars in Notodontidae are 
in shades of blue, species that parasitize caterpillars in Erebidae are in shades of red, and species that parasitize 
caterpillars in Geometridae are in shades of green. Stars with yellow fill on branches indicate duplication events 
within Parapanteles, stars with white fill on branches indicate potential duplications that predate Parapanteles but 
are not seen in Cotesia congregata or Microplitis demolitor. Red circles at the ends of tips indicate potential 
pseudogenes. Branch labels indicate bootstrap support based on 1000 bootstrap replicates. 
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Figure 5.3 continued
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Figure 5.4: Rough-alignment of scaffold set 11 (SM 5.22). Protein tyrosine phosphatase (PTP) genes are colored by homology in shades of light yellow, green, 
blue, and purple. Viral ankyrin (ANK) genes are colored by homology in shades of red and orange. All other genes are colored in shades of white, grey, and 
black. Segments between gaps are separate scaffolds or contigs. Red rectangles with white fill indicate where scaffolds were truncated to visually simplify the 
figure. A simplified PTP gene tree is shown at the top of the figure with each PTP collapsed, labelled, and color-coded. Lines from the PTP gene tree and 
between genes on scaffolds indicate homology. White circles with black fill indicate potential pseudogenes and white circles with grey fill indicate fragmented 
genes (incomplete due to partial sequencing). A cladogram of species relationships based on Figure 5.1 is to the left of the species labels with branches colored 
by host family (purple for Saturniidae, blue for Notodontidae, red for Erebidae, and green for Geometridae). 
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Figure 5.5: Rough-alignment of scaffold sets 15 & 18 (SM 5.22). Protein tyrosine phosphatase (PTP) genes are colored by homology in shades of light yellow, 
green, blue, and purple. Viral ankyrin (ANK) genes are colored by homology in shades of red and orange. All other genes are colored in shades of white, grey, 
and black. Segments between gaps are separate scaffolds or contigs. Red rectangles with white fill indicate where scaffolds were truncated to visually simplify 
the figure. A simplified PTP gene tree is shown at the top of the figure with each PTP collapsed, labelled, and color-coded. Lines from the PTP gene tree and 
between genes on scaffolds indicate homology. White circles with black fill indicate potential pseudogenes and white circles with grey fill indicate fragmented 
genes (incomplete due to partial sequencing). A cladogram of species relationships based on Figure 5.1 is to the left of the species labels with branches colored 
by host family (purple for Saturniidae, blue for Notodontidae, red for Erebidae, and green for Geometridae). 
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Figure 5.6: Rough-alignment of scaffold sets 10, 11 (partial), and 16. (SM 5.22). Protein tyrosine phosphatase (PTP) genes are colored by homology in shades of 
light yellow, green, blue, and purple. Viral ankyrin (ANK) genes are colored by homology in shades of red and orange. All other genes are colored in shades of 
white, grey, and black. Segments between gaps are separate scaffolds or contigs. Red rectangles with white fill indicate where scaffolds were truncated to 
visually simplify the figure. A simplified PTP gene tree is shown at the top of the figure with each PTP collapsed, labelled, and color-coded. Lines from the PTP 
gene tree and between genes on scaffolds indicate homology. White circles with black fill indicate potential pseudogenes and white circles with grey fill 
indicate fragmented genes (incomplete due to partial sequencing). A cladogram of species relationships based on Figure 5.1 is to the left of the species labels 
with branches colored by host family (purple for Saturniidae, blue for Notodontidae, red for Erebidae, and green for Geometridae).
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APPENDIX A: CHAPTER 2 SUPPLEMENTAL MATERIALS 

 

The supplementary file “Chapter_2_SM.zip” includes:  

Chapter 2 Supplemental Materials (SM): 

SM 2.1: Genbank accession numbers of sequences used in 14247 sample COI tree of 

microgastrine genera. 

SM 2.2: Pasta Alignment of sequences used in 14247 sample COI tree of microgastrine 

genera 

SM 2.3: Fasttree approximated maximum-likelihood phylogeny of 14247 microgastrine 

COI samples. Taxon labels are colored by genus, with purple corresponding to 

Parapanteles, green to Dolichogenidea, teal to Pholetesor, red to Apanteles, blue to 

Glyptapanteles, and yellow to Cotesia. Taxa labels of all other genera are grey. 

Subsamples selected for 5-gene concatenated analysis are indicated by extended taxon 

labels. 

SM 2.4: List of primers and annealing temperatures used in this study. 

SM 2.5: Genbank accession numbers of sequences used in 5-gene concatenated analysis 

and individual gene trees. 

SM 2.6: Partitionfinder model scheme used in Bayesian analysis. 

SM 2.7: Alignment of sequences used in COI trees. 

SM 2.8: Alignment of sequences used in WG trees. 

SM 2.9: Alignment of sequences used in ND1 trees. 

SM 2.10: Alignment of sequences used in 28s trees. 

SM 2.11: Alignment of sequences used in EF1a trees. 

SM 2.12: Alignment of sequences used in 5-gene concatenated trees. 

SM 2.13: Unedited RAxML COI tree. 

SM 2.14:  Unedited Bayesian COI tree. 

SM 2.15:  Unedited RAxML WG tree. 

SM 2.16:  Unedited Bayesian WG tree. 

SM 2.17: Unedited RAxML ND1 tree. 
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SM 2.18: Unedited Bayesian ND1 tree. 

SM 2.19: Unedited RAxML 28s tree. 

SM 2.20: Unedited Bayesian 28s tree. 

SM 2.21: Unedited RAxML EF1a tree. 

SM 2.22: Unedited Bayesian EF1a tree. 

SM 2.23: Unedited RAxML concatenated tree. 

SM 2.24: Unedited Bayesian concatenated tree. 
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APPENDIX B: CHAPTER 4 SUPPLEMENTAL MATERIALS 

 

The supplementary file “Chapter_4_SM.zip” includes:  

Chapter 4 Supplemental Materials (SM): 

SM 4.1: Phylip-format alignment of 370 concatenated anchored hybrid enrichment loci. 

SM 4.2: Partitions of each anchored hybrid enrichment locus used in RAxML maximum 

likelihood analysis. 
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APPENDIX C: CHAPTER 5 SUPPLEMENTAL MATERIALS (GENOME ASSEMBLIES 1 OF 2) 

 

The supplementary file “Chapter_5_SM_5.1-5.8.zip” includes:  

Chapter 5 Supplemental Materials (SM) Genome Assemblies 1 of 2: 

SM 5.1: De novo genome assembly of single male Parapanteles tessares genomic DNA. 

SM 5.2: De novo genome assembly of single male Parapanteles continua genomic DNA. 

SM 5.3: De novo genome assembly of single male Parapanteles sicpolus genomic DNA. 

SM 5.4: De novo genome assembly of single male Parapanteles sp. G genomic DNA. 

SM 5.5: De novo genome assembly of single male Parapanteles sp. D genomic DNA. 

SM 5.6: De novo genome assembly of single male Parapanteles sp. Valerio05 genomic 

DNA. 

SM 5.7: De novo genome assembly of single male Parapanteles em genomic DNA. 

SM 5.8: De novo genome assembly of single male Parapanteles paradoxus genomic 

DNA. 
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APPENDIX D: CHAPTER 5 SUPPLEMENTAL MATERIALS (GENOME ASSEMBLIES 2 OF 2) 

 

The supplementary file “Chapter_5_SM_5.9-5.16.zip” includes:  

Chapter 5 Supplemental Materials (SM) Genome Assemblies 2 of 2: 

SM 5.9: De novo genome assembly of single male Parapanteles sp. I genomic DNA. 

SM 5.10: De novo genome assembly of single male Parapanteles tlinea genomic DNA. 

SM 5.11: De novo genome assembly of single male Parapanteles sp.F genomic DNA. 

SM 5.12: De novo genome assembly of single male Parapanteles sp. Whitfield08 

genomic DNA. 

SM 5.13: De novo genome assembly of single male Parapanteles sp. C genomic DNA. 

SM 5.14: De novo genome assembly of single male Parapanteles sp. B genomic DNA. 

SM 5.15: De novo genome assembly of single male Parapanteles sp. J genomic DNA. 

SM 5.16: De novo genome assembly of single male Parapanteles sp. K genomic DNA. 
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APPENDIX E: CHAPTER 5 SUPPLEMENTAL MATERIALS (PHYLOGENETIC FILES) 

 

The supplementary file “Chapter_5_SM_5.17-5.30.zip” includes:  

Chapter 5 Supplemental Materials (SM) Phylogenetic Files: 

SM 5.17: MUSCLE alignment of 101 BUSCO gene models for 16 Parapanteles species. 

SM 5.18: Unedited RAxML maximum likelihood tree of 101 BUSCO gene models for 16 

Parapanteles species. 

SM 5.19: List of BUSCOs by OrthoDB ID number missing from all Parapanteles species 

and all Parapanteles species plus Microplitis demolitor. 

SM 5.20: Tallies of gene and gene fragment annotations by gene family and 

Parapanteles species of the initial 890 polydnavirus virulence genes annotated. 

SM 5.21: List of top BLAST hit-containing scaffold or contig in each Parapanteles species 

for each of the initial annotated 890 polydnavirus virulence genes, excluding 238 genes 

which only returned conspecific hits. 

SM 5.22: Sets of scaffolds and contigs with similar virulence genes. Similarity is based on 

BLAST search results of virulence genes listed in SM 5.21. The initially annotated 890 

virulence genes are located on highlighted scaffolds and contigs. Sets in bold typeface 

were annotated completely for this study. 

SM 5.23: Nucleotide sequences of PTP gene annotations. 

SM 5.24: Translated protein sequences of PTP gene annotations. 

SM 5.25: Nucleotide sequences of ANK gene annotations. 

SM 5.26: Translated protein sequences of ANK gene annotations. 

SM 5.27: MAFFT alignment of PTP nucleotide sequences. 

SM 5.28: Unedited RAxML maximum likelihood PTP gene tree. 

SM 5.29: MAFFT alignment of ANK nucleotide sequences. 

SM 5.30: Unedited RAxML maximum likelihood ANK gene tree. 

 


