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ABSTRACT 

 

Morphodynamic numerical models of 2D fan deltas can predict evolution delta area and extension rates, 

but these models have struggled to estimate channel features such as width and depth. A re-analysis of 

recent bankfull hydraulic geometry data provides an empirical closure for the formative, bankfull Shields 

Number. This closure improves on previous models that assumed a constant value for this term or used a 

biased regression scheme.  

By including this extra constraint, 1D models can simultaneously predict channel width and channel 

elevation changes, where the former is predicted based on physically-based trends of rivers near 

morphodynamic-equilibrium. New, juvenile channels are formed at the delta periphery and we find that 

young channels relate to a formative bankfull Shields number that linearly scales to our empirical relation. 

A new distributed Exner formulation is included that accounts for channel and floodplain elevations along 

with a geometric mean delta elevation. This addition allows for a basement incision modelling, which is 

relevant for river deltas growing into shallow, low slope basins, which commonly erode into the pre-delta 

surface. The incision submodel includes a below-capacity sediment transport framework and a rate-law 

function for cohesive sediment erosion. Hindcast model runs compared against the evolution of Wax 

Lake Delta, Louisiana, USA suggest the new features improve the model’s ability to predict width and 

depth trends over a 35-year period.  

A second model is introduced that investigates the effect of juvenile channels on the ability to export 

sediment from the delta topset. This model convolves a spatial bifurcation rate and flow losses related to 

juvenile channels to induce declining sediment transport down delta; the model is normalized by upstream 

variables and all variables are defined by only two parameters. Results are compared against volumetric 

changes of the Wax Lake Delta topset and the model reasonably well predicts channel properties. An 

exploration of parameter space for these variables indicates the conditions necessary for sediment 

trapping in any generic fluvially-dominant delta. 
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CHAPTER 1: INTRODUCTION 

 

River deltas lie at the interface between a river and a receiving basin. As such, the morphology and 

growth rate of deltas rely on a bevy of characteristics relative to both environments [Galloway, 1975; 

Orton and Redding, 1993]. This type of landform is therefore a complex feature, spanning terrestrial and 

marine research fields. More than one third of the world’s population lives within 100km of the nearest 

coast [Syvitski et al., 2005] and with sea level rise predicted at rates of 2.8-9.8 mm/ year [IPCC 2013], the 

coastline will necessarily migrate landward. Rivers are the most important and efficient mechanism for 

transporting terrestrial sediment to the coast [Syvitski, 2003] and, by definition, deltas are the last major 

terrestrial features where sediment can be sequestered. A recent map of elevation difference in the 

Louisiana coastline between 1932 and 2010 shows land loss everywhere – except near modern active 

channels [Couvillion et al., 2011]. In particular, the Atchafalaya and Wax Lake Deltas, both distributaries 

of the Atchafalaya River and Mississippi River, are particular hot spots for sediment deposition. This is 

the case, despite the fact that Wax Lake Delta only first appeared (in terms of subaerial land) in 1973 

[Roberts et al., 1980; Wellner et al., 2005]. The adjacent Louisiana coastline developed by past deltaic 

deposits of the Mississippi River [Frazier, 1967] is now sinking. Therefore, the design of plans to 

maintain the coastline with impending sea level rise is directly related to our understanding of deltas; both 

how they develop as juvenile deltas, e.g. Wax Lake Delta, and how they respond as mature deltas, e.g. 

Mississippi River Delta. 

The number and co-dependence of pertinent variables leads to complexity in understanding generalities in 

deltaic systems. Allogenic forces, i.e. those that are external to a specified deltaic system, such as land 

uplift/subsidence, sea level rise, or anthropogenic effects, add additional complexity. Starting with the 

end-member paradigms suggested by Galloway [1975], i.e. river-dominated, tide-dominated and wave-

dominated deltas, the complexity of the analysis can be reduced by making assumptions regarding the 

delta’s general environment. Syvitski and Saito [2007] establish a precedent for the development of such 

paradigms through mass collection of delta metrics. As expected, the river discharge (either maximum or 

monthly average) and marine energy (waves and tides) are significant in correlating different delta 

metrics. However, the comparative strength of these variables is a function of time and space. For 

example, at any given point in time, the relative strength of discharge must decrease basin-ward due to 

backwater, bifurcation, and frictional effects. Over time, the relative strength of discharge may approach 

that of the receiving basin (tide, waves) at the delta-basin interface. For example, Ta et al. [2002] 

demonstrates how the Mekong delta evolved from a tidally dominated system toward a joint tidally and 

wave dominated delta in the late Holocene.  
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The Syvitski and Saito [2007] dataset allows distinctions between relatively important, or conversely 

unimportant, variables. Some of these distinctions are obvious, e.g. the effect of total discharge into the 

delta is generally more influential toward its morphology than, for example, the wind shear during storm 

events. However, ancillary forces can be important in specific conditions; in congruence with the previous 

example, Geleynse et al. [2015] show that wind direction and magnitude can play a major role on the 

temporal position of the delta shoreline at Wax Lake Delta. Either numerical models must account for all 

the variables that affect a given process, or select based on physical insight and setting which variables or 

feedbacks are most necessary to get an appropriate solution. Proper modelling of all the variables can 

provide more detailed results, but requires more parameterization and comes at a computational cost. The 

time scale of morphological changes for a river ranges from a single flood event to thousands of years, so 

the type of model used should be selected based on the research goal.  

We seek to model the evolution of a river delta, i.e. the Wax Lake Delta, over engineering (10s of years) 

and geologic time scales (up to 1000s of years). We focus on geometrically defined models that model 

delta evolution by assuming a fixed geometry of the delta accommodation space and assess a shock-

condition at the delta foreset to account for new delta growth, e.g. Swenson et al. (2000). We seek to 

improve prediction of the most basic morphodynamic characteristics of deltas including the spatial and 

temporal evolution of channel width, channel depth, the number of channels, and the rate of delta growth, 

i.e. progradation rate. Herein, we develop several numerical models based on a 1.5D approach, which 

solves uniform flow or the steady, shallow water equations in one dimension along with additional 

equations to estimate channel width. A necessary equation to model channel width is a predictor for 

bankfull Shields number. Chapter 2 uses a major axis regression scheme to improve an empirical 

predictor for this term. Chapter 3 modifies several existing numerical models and investigates which 

features are necessary to reproduce historic delta morphodynamics; a key modification include a 

framework which accounts for incipient, juvenile channels at the delta periphery, thereby allowing the 

typical shoaling pattern observed in channels toward the delta/basin boundary. Chapter 4 develops a 

morphodynamic modelling framework that relaxes the assumption of a single, lumped channel in favor of 

an implicit network of identical channels. This model is solved through an analytical closure reliant on 

two input parameters to understand the sediment trapping efficiency as a result of channel bifurcation.  

Much of our work is focused toward modelling of Wax Lake Delta, Louisiana, USA (WLD) as it provides 

a real-world example of a growing delta with quantifiable change over a geologically short period. This 

delta has been well documented in the recent past; sediment was first routed to modern-day WLD in 1941 

when the Wax Lake Outlet Channel was constructed to protect nearby Morgan City, Louisiana from 

flooding [Wellner et al., 2005]. Roberts et al. [1997] concluded that the major building block of the young 
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WLD is sand, setting a precedent for the role of sand in the formation of man-made deltas through 

engineered diversions [Nittrouer et al., 2011]. Therefore, it represents a rich source of past measurements 

for model validation and an important analogue for understanding land-building processes through delta 

morphodynamics in other locations.  
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CHAPTER 2 : BANKFULL DEPTH VERSUS SLOPE AND GRAINSIZE – RESOLVING 

A MAJOR DISCREPANCY 

 

Abstract 

Many characteristics of alluvial rivers, including hydraulic geometry and sediment transport during 

periods of morphological activity, can be related to the bankfull Shields number. Recent papers have used 

regression analysis on large data sets of bankfull hydraulic geometry to formulate a predictive relation for 

bankfull Shields number as a function of reach-averaged channel slope and characteristic bed grain size. 

These results show different regression fits; the relationship for bankfull Shields stress is therefore still 

ambiguous. We propose a new relation via multivariate major axis regression, a symmetric, error-in-

variables regression scheme, which improves on previous attempts by introducing error in both the 

dependent variable and independent variables. We discuss the use of typical ordinary least squares, 

Bayesian, and error-in-variables regressions to inform the use of regression statistical methods to quantify 

hydraulic geometry. The results reported here back previous claims that bankfull shear velocity is rather 

invariant to median bed material.  
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Introduction 

The mobility of sediment in rivers is classically characterized in terms of a dimensionless number known 

as the Shields number (e.g. Garcia, 2008). We define the Shields number * as 

*

50

b

gRD






 (1) 

where b denotes bed shear stress (Pa),  denotes water density (kg/m3), g denotes gravitational 

acceleration (m/s2), R denotes the submerged specific gravity of sediment (-), and D50 denotes the median 

size of the bed sediment (m). The Shields number appears in many sediment transport equations (e.g. see 

Garcia, 2008). Here we focus on estimating the bankfull Shields number*bf of a self-formed alluvial river 

channel, i.e. the Shields number at incipient conditions for the flow to leave the confines of its channel 

and spill onto its floodplain. The bankfull condition of interest here is representative of reach-scale river 

morphology, rather than the specific details of local flow and channel conditions. 

River structure is classically characterized through hydraulic geometry relations, as first introduced by 

Leopold and Maddock (1953) and Leopold and Wolman (1957). These relationships characterize general 

trends in regard to river channel structure, as illustrated by e.g. Parker (1978), Dade and Friend (1998), 

Mueller et al. (2005) and Phillips and Jerolmack (2016). Among such relations, empirical predictors of 

bankfull Shields number in particular have proved useful in a variety of contexts, including sediment 

management (Parker et al., 1998), river restoration (Wilkerson and Parker, 2011), calculation of meander 

bend migration (Eke et al. 2014), estimation of paleochannel characteristics (Paola and Mohrig 1996) and 

estimation of “bankfull” discharge in submarine channels (Konsoer et al. 2013). 

The wide applicability of bankfull Shields number motivates the quest for the most accurate predictive 

relation that can be obtained from available data. Such a relation is normally cast in dimensionless form in 

order to maximize generality. Recently two such predictors have been proposed. The predictor of 

Trampush et al. (2014) was developed with (among other things) the reconstruction of paleochannel 

hydraulics in mind. The predictor of Li et al. (2015, 2016) was developed for (among other things) the 

modeling of self-formed river width, in the context of the response of river long profile to sea level rise. It 

was also used by Eke et al. (2015) in a 2D model of river meander migration. 

The two relations of Trampush et al. (2014) and Li et al. (2015, 2016) were developed using partially 

overlapping data sets. They are broadly similar in structure, with bankfull Shields number depending on 

channel slope and dimensionless characteristic bed material grain size. They are different, however, in 

one essential way. In the relation of Trampush et al. (2014), bankfull Shields number is nearly 

independent of bed slope, so that it can be estimated for paleochannels using a characteristic grain size 
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alone. In the relation of Li et al. (2015, 2016; the latter provides a modest correction to the former), 

however, bankfull Shields number depends on both characteristic grain size and channel slope. The goals 

of this paper are to: 1) provide a thorough re-analysis to resolve this discrepancy, 2) develop a revised 

closure for bankfull Shields number relative to slope and grain size, and 3) provide an interpretation of the 

resulting relationship in the context of previous and current methods. 

Relations of Trampush et al. and Li et al. 

In both the work of Trampush et al. (2014) and Li et al. (2015, 2016), a large data set of bankfull 

hydraulic geometry measurements was used to obtain regression-based predictors for relations for 

bankfull Shields number. Li et al. (2015, 2016) used a data set modified from Wilkerson and Parker 

(2011) (W&P); 11 sets are removed from, and 16 sets are added to the W&P dataset resulting in 230 river 

reaches with characteristic bed material grain size ranging from fine sand to coarse gravel. Trampush et 

al. (2014) used a data set with 541 river reaches that includes 207 points from the Wilkerson and Parker 

(2011) data set and 334 more reaches pertaining to gravel-bed rivers. One potential explanation for the 

difference in regression results is the differences in the data sets themselves. 

The dimensionless variables in question can be evaluated through field measurement of three variables 

that relate to the basic structure of river channels: bankfull depth Hbf, reach-averaged bed slope S, and 

reference grain size D50 (median bed material grain size). Bankfull bed shear stress τb,bf, is estimated using 

the assumptions of normal flow and of a wide rectangular channel, respectively; 

,b bf bfgH S   (2) 

Between (1) and (2), bankfull Shields number can be estimated as 

*

50

bf

bf

H S

RD
  (3) 

The Shields number along with bankfull water and sediment discharge directly relate to self-formed river 

channel structure. (Parker, 2004, Parker et al. 2007, Wilkerson and Parker, 2011). The estimate of 

bankfull Shields number given by eq. (3) is seen to require estimates of Hbf, S, and D50. Here we relate 

this Shields number to bed slope S and grain size D50 .For the sake of generality, we render grain size D50 

dimensionless as follows; 

1/3

* 502

 
  
 

Rg
D D


 (4) 
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The predictors for bankfull Shields number presented in Li et al. (2015, 2016) and Trampush et al. (2014) 

are of identical form, but have substantially different dimensionless coefficients and exponents. The 

equations in question can be expressed in either of the following equivalent forms: 

1 2*

0 *bf S D
    (5) 

*

0 1 2log log log   bf S D     (6) 

where 

0

0 1 1 2 210 , ,  
      

In evaluating these relations, submerged specific gravity R is assumed to be 1.65, i.e., the value for quartz 

in water at the Earth’s surface); gravitational acceleration g is set to 9.81 m/s2; and kinematic viscosity  

is assumed to be the value for clear water at 20C, i.e. 1.0-6 m2/s. The values of these coefficients as 

presented in each paper are listed in Table 2-1; they are the direct values of Li et al. (2016) (column 4), 

and the values of Trampush et al. (2014) translated into the forms of Eq. (5) (column 1). The results from 

these papers along with data from Trampush et al. (2014) are shown in Figure 2-1. 

Table 2-1: Regression results of Eq. (5) using previous methodologies applied to two data sets.  

Coefficient 
Trampush et al. (2014) Methodology Li et al. (2015, 2016) Methodology 

Tr. Data*,† W&P‡ Data Tr. Data† W&P  Data 

λ0 17.4 23.9 613 502 

λ1 0.083 0.099 0.513 0.434 

λ2 -0.767 -0.783 -0.934 -0.951 
* Regression values from Trampush et al. (2014), then carried into form of Eq. (5) 
† Tr. Data from Trampush et al. (2014) 
‡ W&P Data from Wilkerson and Parker (2008); data set used by Li et al. (2015, 2016) 

As seen from the above, the relation for bankfull Shields number presented in either paper is fully 

dimensionless. However, the papers used different methods. Li et al. (2015) first arranged the parameters 

into the three dimensionless terms contained in Eq. (5), and then performed a multivariate ordinary least 

squares linear regression in log (base 10) space. Trampush et al. (2014), on the other hand used bankfull 

depth (Hbf), median grain size diameter (D50), and reach-averaged bed slope (S) as primary variables for 

regression. They then performed a Bayesian analysis, nominally equivalent to ordinary least squares (OLS) 

linear regression in logarithmic space, to determine log(S) as a function of log(Hbf) and log(D50). The result 

can then be algebraically manipulated in a straightforward way into the form of Eq. (5). 
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Figure 2-1: Comparison of results from Trampush et al. (2014) and Li et al. (2016) using the data set 

from Trampush et al. (2014). Filled planes are computed from relations presented by Trampush et al. 

(2014) and Li et al. (2016). Data are plotted in black solid circles; the hollow gray circles are projections 

of the data onto each of the 2-D planes. 

Thus Trampush et al. (2014) started from a model of the core variables S, Hbf, and D50, as in Eq. (7). 

0 1 50 2 bf  Log S Log D Log H    (7) 

They used this form, in part, to develop a predictive relationship for paleoslopes versus measureable 

quantities in the rock record. Li et al. (2015, 2016) regress on the dimensionless parameters, as in Eq. (6). 

The regression form used by Li et al. (2015, 2016) induces some spurious correlation, since D50 and S are 

contained in the definition of τ*
bf (Eq. 3). Thus, these two parameters appear on both sides of the 

regression relation (Eqs. (5) and (6)). However, the authors compared their regression against a similar 

regression free of spurious correlation to find similar results and concluded that any potential effects of 

spurious correlation was minimal. However, because the Trampush et al. (2014) parameterization of Eq. 



11 

 

(7) does not have any direct potential for spurious correlation, it will be used in the rest of this 

manuscript. 

Here we isolate: 1) effects of the data set; 2) difference in regression scheme; 3) methodology, i.e. Bayesian 

OLS multivariate linear regression of Trampush et al. (2014) versus frequentist OLS linear regression of Li 

et al. (2015, 2016); and 4) effect of the order of regression (in relation to the core components). 

While our results have implications for predicting paleoslopes, this manuscript will focus on the trends in 

relationship between the three dimensionless parameters, which is of first order importance in predicting 

self-formed channel morphodynamics, e.g., Kim et al. (2009). 

Methodology: Discrepancy in the Order of Regression  

Trampush et al. (2014) used a Bayesian approach, in which they assumed that the prior distributions for 

coefficients α0, α1, and α2 (Eq. 7) and an error term are normally distributed. This method results in a 

posterior probability distribution of values for each coefficient. The mode of the posterior distribution is 

the maximum a posteriori (MAP), which represents the most likely value for each of the regressed 

coefficients. Trampush et al. (2014) used the median of the posterior distribution, which is equivalent to 

the mode when the posterior distribution is normally distributed. The frequentist method of Li et al. 

(2015, 2016) results in a single value for each coefficient that reduces the cumulative sum of square 

residuals between data points and their respective predicted value. Here this is referred to as the least 

square error (LSE), equivalent to the maximum likelihood estimator (MLE) when data are normally 

distributed (Bingham and Fry, 2010). This equivalence is significant because the logarithmic-transformed 

variables log(Hbf), log(S), and log(D50) are all approximately normally distributed (Trampush et al. 2014), 

so the Li et al. (2015, 2016) method should produce the MLE in the course of computing LSE. 

Additionally, MLE and MAP are closely related as both result in the most likely estimator. MAP implies 

a Bayesian scheme with assumed prior distributions for each of the coefficients being regressed. 

Therefore, if prior distributions are uniform, i.e. all possible outcomes are initially equally likely, then 

MAP and MLE are equivalent. The same result can be achieved if data overwhelm any effects of the 

priors on the results (Hoff, 2009). Trampush et al. (2014) use a “very wide normal distribution” as their 

prior distributions. If this distribution approaches uniformity, then it should be expected that the methods 

of Trampush et al. (2014) and Li et al. (2015, 2016) would both produce the same result equivalent to the 

MLE result, but as previously noted, this is not the case. We elaborate on the reasons for this below. 

An alternative explanation could relate to the order of regression. Trampush et al. (2014) specify their 

regression function as: 
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 50,bfS f H D  (8) 

The form in Li et al. (2015), on the other hand, is *bf = f(S, D*). It can be recast in the same form as 

Trampush et al. (2014): 

*

*

50

 
bf m n

bf

H S
S D

RD
   (9) 

thus 

1

* 50

 m n

bfH R S D D  (10) 

or in general, since Hbf is on only one side, 

50( , )bfH f S D  (11) 

The diverging methodologies of these two papers can be summarized into three categories: 1) use of 

Bayesian vs. Frequentist regression techniques, 2) different data sets, and 3) different order of regressions.   

As noted above, in this particular instance, Bayesian and frequentist LSE regressions should be 

equivalent. A typical OLS frequentist multivariate regression carried out in form of Eq. (7) and shows 

identical results to the median of Bayesian regression of the same form (Trampush et al. 2014). As we are 

concerned only with the general trends as identified by median or mean regression coefficients here, 

frequentist least-squares regression techniques can be taken as acceptable moving forward. 

A second step concerns the effects of the difference in data sets. Table 2-1 compares results of Eq. (5) via 

the methodologies of Li et al. (2015, 2016) and Trampush et al. (2014) against both data sets. The results 

in Column 2 of Table 2-1 differ modestly from those in Column 4 of Table 2-1, indicating that the data 

sets, while overlapping, are different enough to result in differing regression results. However, Table 2-1 

makes it clear that the contrast between results of each paper cannot be attributed predominantly to 

different data sets. The largest differences clearly arise from the regression details and not through the 

data. 

As a third step, we look at the effect of the order of regression on the coefficients ultimately obtained for 

the final relation, Eq. (5), through algebraic manipulation from two different initial regressions. The initial 

regressions use either Hbf or S as the dependent or response variable; S is the response variable in Eqs. (7) 

and (8), and Hbf is the response variable in Eqs. (11) and (12): 

0 1 50 2  bfLog H Log D Log S    (12) 
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As the methodology and form of regression are set, this isolates the effect of the variable order on 

coefficient values in Eq. (5) through regression and algebraic manipulation of Eq. (7) and Eq. (12), 

respectively. Table 2-2 presents these results compared with results of Li et al. (2016) (second column) 

and an equivalent form of Trampush et al. (2014) (third column). 

Table 2-2: Results for Eq. (5)  from different initial regressions, i.e. S versus D50 and Hbf and Hbf versus 

S and D50.  

Coefficient 

Li et al. 

(2016) Result 

Eq. (5) results via initial regression: 

Eq.(7) – S = f(Hbf,D50) Eq. (12) – Hbf = f(S,D50) 

Tr. Data* W&P Data Tr. Data W&P Data 

λ0 502 17.4 23.9 598.9 507.5 

λ1  0.434 0.083 0.099 0.51 0.43 

λ2 -0.951 -0.767 -0.783 -0.93 -0.95 

* Values taken directly from Trampush et al. (2014); this result is equivalent to Eq. 8 in their paper. 

Table 2-2 implies that the order of regression, i.e. the choice for dependent variable, has a significant 

impact on the regressed coefficients in the form of Eq. (5). The Trampush et al. (2014) methodology can, 

as a reasonable approximation, replicate the results of Li et al. (2015, 2016) when performing the initial 

regression on Eq. (12) rather than Eq. (7), as done in their paper. Regardless of the data set, regressing S 

versus Hbf and D50 yields coefficients in Eq. (5) that are substantially different than those obtained from 

regressing Hbf versus S and D50. These results do not indicate, however, which form, if either, provides the 

most appropriate representation of the data. However, for situations where a response variable can be 

selected, the regression relation should be set up to solve for this variable. 

As the Trampush et al. (2014) dataset does not include the full W&P dataset, we make a modified dataset 

that includes non-W&P data from Trampush et al. (2014) plus the Li et al. (2015) data; this data is used 

for regressions given below,, and is referred to as the  combined dataset. 

Results with Multivariate Major Axis Regression  

The regressions from Li et al. (2015, 2016), Trampush et al. (2014), and the preceding examples shown 

herein use some equivalent of Ordinary Least Squares (OLS) regression, which minimizes the sum of 

vertical (y-axis) squared residuals as the objective function. There are, however, several alternative 

techniques. Major Axis Regression (MA) and Reduced Major Axis (RMA) regression are two forms of 

Error-In-Variables (EIV) regression that are typically used where significant error exists in both the 

dependent and independent variables, e.g. McArdle (2003). 
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Parker et al. (2007) and Wilkerson and Parker (2011) have performed regressions on bankfull variables 

that are similar to the ones given here. They intentionally chose to use OLS instead of Reduced Major 

Axis (RMA) regression. Parker et al. (2007) justified this by noting that RMA method fails when there is 

poor correlation between the dependent variable and independent variables, i.e. y ≅ x0. In fact, 

coefficients in an EIV regression can never equal zero (McArdle 1988); Parker et al. (2007) show this in a 

similar example. Since RMA was not appropriate for the specific example of bankfull discharge as a 

function of bankfull depth, the authors chose to use OLS regressions exclusively for consistency. 

 

Figure 2-2: Example plot of bankfull depth Hbf versus reach-averaged bankfull slope, S, showing 

regression results for typical Ordinary Least Squares and Error-in-Variables techniques. Data set from 

Wilkerson and Parker (2011), denoted here as W&P; the same data were used in Li et al. (2015, 2016). 

In order to explore this issue, and for purposes of comparison, a form simplified to bivariate regression 

relating S and Hbf is shown in Figure 2-2, above. In this example calculation, the data set consists of 

values of S and Hbf from the Wilkerson and Parker (2011) data set with one regressed against another. The 

figure includes two OLS regressions, i.e. for S = f(Hbf) and Hbf = f(S), and two types of EIV regressions, 
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RMA and MA regression. While OLS regression uses an objective function that minimizes the sum of 

vertical residual squares, MA minimizes the sum of orthogonal residual squares, and RMA minimizes the 

sum of triangular areas computed through the product of vertical and horizontal deviations from the 

regressed line. OLS regression tends to bias towards a more nearly horizontal slope (McArdle, 2003); the 

steeper OLS regression line would become more horizontal if the axes were inverted. 

In Figure 2-2, it can be seen that the order of regression is important for OLS regression; the result for S 

versus Hbf is substantially different than the transformed result for Hbf versus S. The order of regression 

plays no role in the result for MA and RMA; MA uses orthogonal distance, which is equivalent 

irrespective of regression order, and RMA is computed from a combination of both OLS results. In 

addition, the result for MA is close to that for RMA, and both are bracketed by the two OLS results. 

Based on Figure 2-2, a central question becomes whether EIV techniques like RMA or MA are more 

appropriate than OLS techniques for the stated goal of quantifying the relationship between τ*
bf, S, and D*

 

in the form of Eq. (5). Smith (2009) discusses the situations where RMA should be selected over OLS 

regression and comments on the implied distribution of error in each regression type. It is noted therein 

that OLS regressions imply asymmetry that depends on the selection of the dependent variable, reflecting 

our findings presented in Table 2-2. The author concludes that OLS should be considered the baseline 

regression scheme, but RMA is more appropriate when, for example, the selection of variable seems 

arbitrary or the objective is to define a mutual, codependent relationship underlying the reaction between 

variables. We argue that both these conditions apply to a regression between Hbf, S, and D50, and indeed 

EIV techniques provide symmetrical solutions (e.g. McArdle (1998), McArdle, (2003), Smith (2009)), so 

rectifying the divergence in past solutions for Eq. (5). 

For further analysis, we thus adopt the Multivariate Major Axis (MA) regression applied through 

principal component analysis regression. For the case of regression with three variables, the first principal 

component hyperplane aligns with a line that minimizes the orthogonal distance of the data to the 

hyperplane axis. Therefore, this line is equivalent to the MA objective function that minimizes the sum of 

squared perpendicular distance between points and the regressed line (McArdle, 1988). We use the MA 

method in part because implementation of this method for multiple regression is quite simple, whereas a 

closed form of multivariate RMA is only feasible under certain conditions (Goodman and Tofallis, 2003). 

However, it must be noted that assumptions differ among OLS, RMA, and MA. First, as previously 

noted, both EIV regressions (MA and RMA) are symmetric as they include error on both sides of the 

regression model, while OLS regressions have only one error term. MA assumes that the magnitude of 

errors in the dependent and independent variables are equivalent. RMA uses a ratio relative to the 

variances on dependent and independent variables. For MA, this ratio is equal to one because error values 



16 

 

for dependent and independent variables are assumed identical and because the ratio for OLS is 

constrained to be either 0 or ∞ (McArdle 1988). 

In our analysis, variables are mean-centered prior to regression. As a preliminary step, we also tested several 

other conditions that include interaction terms, i.e. the product of independent variables, as well as different 

variable treatments, including variable standardization. The interaction variables HbfD50 and SD50 are small 

in OLS regressions, irrespective of the regression order, but these terms may become significant when 

performed in MA regression. Further details are included in the Appendix. 

In Table 2-3, we show the results for the coefficients in Eq. (5) obtained by applying MA to Eqs. (7) or 

(12) (same result). The MA regressions include bias correction for log-transformed variables by applying 

a factor relative to the mean square error of regressed variables (Newman, 1993). Table 2-3, using the 

combined data set, shows a useful result. In Eq. (5), i.e. 1 2*

0 *bf S D
   , the value of slope exponent 1 

(0.365) falls between the Trampush (0.083) and Li (0.434) values, and 2 (-0.876) also falls between the 

Trampush (-0.767) and Li (-0.951) values. Similarly to Figure 2, the MA multivariate regression is 

bounded by the two OLS multivariate regressions offered by Trampush et al. (2014) and Li et al. (2015, 

2016). The MA result is given below, and is plotted in Figure 3: 

* 0.365 0.876

*182 bf S D  (13) 

Three factors argue for the MA results as being superior to past OLS results: 1) the MA coefficients in 

Table 2-3 are similar for both data sets; 2) the results are independent of the order of regression, i.e. 

regressing from Eq. (7) versus Eq. (12); and 3) as shown in Figure 2-2, MA is bracketed by the two OLS 

results obtained by reversing the dependent and independent variable. 

Table 2-3: Coefficients for relation 

noted in Eq. (13). 

Coefficient Combined Data 

λ0 182 

λ1  0.365 

λ2 -0.876 

The coefficient of determination R2 and root mean square error (RMSE) for each regression form are 

included in Table 2-4. In that table, RMSE is seen to be minimized with MA regression, while R2 is seen 

to be similar to past OLS regression results. Results from Eq. (7) are algebraically manipulated to Eq. (12)

, so as to solve for log(Hbf). The correlation coefficient, R2, is computed after this translation but has an 
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RMSE value comparable to values in Table 2-4 for the case where RMSE is computed directly from Eq. 

(7). 

Table 2-4: Comparison of Root mean square error (RMSE) and R2 values with OLS and MA 

regressions. 
 OLS MA 
 S = f(Hbf,D50) Regression Hbf = f(S,D50) Regression  

RMSE 0.322 0.245 0.211 

R2 0.376 0.640 0.621 

The relation in Eq. (13) is plotted in D* vs. 
*

bf  space along discrete slope horizons ranging from 10-6 to 

10-1 in Figure 2-3. Data from the combined dataset is separated between the slope horizons and included 

below. 

 

Figure 2-3: Results from Eq. (13) are plotted with the Trampush et. al [2014] dataset. The data is 

segmented by bed slope ranges, and relation results are presented for specified values of slope. This 

figure suggests that an order of magnitude change in slope results in a change in τ*
bf that is much less 

than an order of magnitude. To read this figure for a predicted τ*
bf, find a selected value of D* and follow 

a vertical path to the appropriate slope horizon as labeled in the legend, and then follow a horizontal 

path to the τ*
bf value on the y-axis. The same result can be computed directly from Eq. (13) as well. 
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Discussion 

The MA regression is more appropriate for statistical inference than the OLS regression, as the former 

reduces bias in estimation of the data trends. However, MA only shows slight improvement in the 

magnitude of RMSE. While there are modest differences between the OLS regressions and the MA result 

presented herein (Tables 2-4 and 2-5), these differences would be amplified when extrapolating beyond 

the bounds of the regressed data set (Smith 2009). 

The symmetric regression obtained with MA lies between OLS results presented by the two papers, but 

has exponents on slope S and dimensionless grain size D* that are closer to the exponents presented by Li 

et al. (2016). The new MA results slightly weaken the claim of Li et al. (2015, 2016) that bankfull shear 

velocity is nearly independent of grain size. Li et al. (2016) report normalized bankfull shear velocity as 

Eq. (14) below; note that 
0.0245~bfu D

 . The modified versions of Eq. (14) obtained through MA 

regression takes the form of Eq. (15) below for combined data set. 

Li et al. (2016) result: 

 

*

* 0.217 0.0245

*1/3
22.4

bf

bf

u
u S D

Rg
   (14) 

MA regression with combined dataset: 

* 0.183 0.062

*13.5bfu S D  (15) 

Note that the exponent on D  has increased from 0.0245 to 0.062. 

The regression relation of Trampush et al. (2014) for Eq. (5), i.e. 1 2*

0 *bf S D
   suggests that the role of 

slope S is very weak in the relation for 
* bf . In this relation, the exponent on S (1 = 0.083) is significantly 

smaller than than the exponent on D (2 = -0.737); the ratio of these exponents has magnitude |1/2| = 

0.11. The MA regression has the same trend for the exponents of D* and S, but the difference is less 

extreme. In the case of MA regression, the same ratio has magnitude |1/2| = 0.42, so the role of slope 

cannot be considered completely negligible.  

However, as illustrated in Figure 3, there is still significant scatter in the results, similar to the results of 

past research. Bankfull hydraulic geometry has historically exhibited significant scatter in predictive 

relations, going back to Leopold and Wolman (1953). Li et al. (2015) suggest the scatter could relate to a 

factor not included in the regressions, i.e. bank material and, implicitly, the bank strength resisting bank 
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erosion. Pfeiffer et al. (2017) proposed that this scatter could be related to sediment supply to the river. 

The physical interpretation of this scatter therefore remains an open question. Indeed, it cannot be 

characterized by the regression scheme itself. In actuality, the presence of scatter is the crux of the issue 

addressed by this paper. As the variance in the covariates approaches zero, the regression results become 

invariant to the regression method (McArdle, 2003). The MA regression reduces bias so as to give a 

better estimate of the average trend within the scattered dataset. However, a more accurate regression 

could result from an appropriately expanded data set as well. 

The final relations presented herein can be applied directly within numerical models to characterize 

general trends of streamwise variation of channel depth, width, grainsize and slope (either bed slope or 

water surface slope), as in e.g. Parker et al. (2007) and Li et al. (2015). Scatter in the dataset does not 

invalidate clear general trends. However, when applying our relations to a specific river, it would be more 

appropriate to use reference values from data of the given channel as the anchor for the general trends of a 

larger data set, as in Li et al. (2015). Channel evolution predicted through this method converges to the 

predictions of Eq. (13) as the selected reference values move closer to the regressed surface represented 

by that equation (Figure 3). 

The results of this paper have focused on understanding the general relationships between τ*
bf , D

*, and S. 

The relations themselves have multiple uses including the prediction of paleoslopes via regression of the 

core variables Hbf, S, and D50 as in Eq. (7), (Trampush et al., 2014). Since our log-scaled variables are all 

normally distributed, the method presented herein can be used to evaluate mean coefficients, median 

coefficients, and maximum likelihood estimator for trends in paleoslope given rock outcrop 

measurements of Hbf and D50. However, one might rather have a probability density function of 

paleoslope for every pair of measured values. In this case, a symmetric regression applied through 

Bayesian methods would be useful. It is worth pointing out that the convergence of frequentist OLS and 

the Bayesian scheme nominally equivalent to OLS here (when regressing on the same model, e.g. Eq. (7)) 

was somewhat coincidental. These methods converged because the variables are normally distributed and 

priors in the Bayesian model were chosen to be nearly uniform. If either of these conditions were not 

satisfied, the results might diverge. 

Discussions can be found in other scientific fields as to the appropriateness and applicability of various 

regression techniques, e.g. McArdle (1988), McArdle (2003), Warton (2006), and Smith (2009). 

Historically, bankfull hydraulic geometry regressions have been done with OLS regression. This method 

may be appropriate when the dependent variable(s) are subject to much less error than the independent 

variable, or if one variable is seen as a response to another (McArdle 2003). When this is not the case, 

however, a symmetric regression scheme may give more appropriate predictions. Parker et al. (2007), and 
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Wilkerson and Parker (2011) by extension, were right to forgo the use of symmetric regression schemes 

with highly uncorrelated variables. In addition, symmetric and asymmetric regression converge as 

bivariate or multivariate correlation increases (McArdle 2003). Outside of these two end-member 

scenarios, there are many situations where symmetric EIV regressions such as MA or RMA might be 

more appropriate. All hydraulic geometry variables can be expected to have measurement error, which 

fulfills one important criterion for the selection of symmetric regression. Additional conditions that could 

suggest use of symmetric EIV regression include: 1) when there is ambiguity in selection of the 

dependent/response variable, i.e. when it is unclear whether one variable is a response to another, and 2) 

when it is believed that error in the independent variables are significant. 

The above comments may be useful in the selection of a regression style in future research involving 

regression relationships among hydraulic geometry variables. In many cases, the differences between 

symmetric and asymmetric regression types may be minimal, but the results shown herein indicate how 

notably different conclusions are possible simply due to the selection of different regression schemes. 

Conclusions 

The bankfull Shields number of alluvial rivers provides a useful quantification of channel characteristics. 

We show regression results for this parameter and two other dimensionless parameters for the median bed 

material grain-size and reach-averaged bed slope. More specifically, we obtain a relation for bankfull 

Shields number τ*
bf as a function of channel slope S and dimensionless grain size D (also shown in Eq. 

(13) and 2-3): 

The trends in this relationship can be used in self-formed channel morphodynamic models (e.g. Li et al., 

2015, 2016) or for prediction of paleoslopes (e.g. Trampush et al., 2014), among other applications. The 

mode of Bayesian regression results and frequentist regression results happen to converge in the examples 

described above. However, results could differ if variables are not normally distributed or if non-uniform 

priors are used and priors are not overwhelmed by data in Bayesian regression. We note that past 

regressions of this type have used asymmetric regression techniques, such as ordinary least squares 

regression, and mean regression results depend on the selection of the response/dependent variable. We 

apply a symmetric regression scheme, which accounts for errors in the dependent and independent 

variables and produces results that do not depend on selection of the dependent variable. Herein we 

implement this with Major Axis (MA) regression. This type of scheme is more appropriate for our 

application to hydraulic geometry because there is no obvious choice for the “response” variable, and all 

terms are measured with error and natural variance. The discussion in this paper may be useful in future 

research on the determination of hydraulic geometry relations from regression schemes. The reader may 
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refer to e.g. McArdle (1988), McArdle (2003), Warton (2006) and Smith (2009) for more detailed 

discussion on methodology, and for guidance in selecting a regression type.   
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Notation List 

D50 = Median grain size [m] 

D* = van Rijn’s dimensionless grain size [-]  

g  = Gravitational acceleration, 9.81 [ms-2] 

Hbf = Bankfull depth [m] 

R  = Submerged specific gravity, 1.65 [-] 

S  = Reach-averaged bed slope [-] 

u*
bf  = Bankfull shear velocity [ms-1] 

ν  = Kinematic viscosity, 1e-6 [m2s-1] 

ρ  = Density of water, 1000 [kg/m3] 

τb  = Bed shear stress [Pa] 

τ*
bf  = Bankfull Shields number, [-] 

*

bfu  = Normalized Bankfull Shear velocity, [-] 
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CHAPTER 3 : NUMERICAL MODELS OF THE MORPHODYNAMICS OF WAX 

LAKE DELTA: THE ROLES OF JUVENILE CHANNELS, INCISION INTO 

CONSOLIDATED MUD, AND OVERBANK PROCESSES 

Abstract 

River deltas exist in a state of flux and require sufficient sedimentation to maintain their planform during 

period of sea level rise. The Wax Lake Delta is an important analogue for understanding delta evolution 

due to its fast progradation; the delta has been well measured in recent years and is one of a few areas 

along coastal Louisiana actively gaining land area. Many models are available to understand delta growth 

in a variety of complexities, but model selection largely depends on the desired question. Here we focus 

on a simple model framework and include several new features to improve morphodynamic modelling for 

channel dimensions. We compare our new model to a group of past models to understand how new model 

features affect the morphodynamic changes. The full model presented here includes a new distributed 

Exner equation, variable Shields number equation and framework for dealing with pre-delta basement 

substrate and under-developed channels at the periphery. The new model can better characterize depth 

and estimates channel area well, but computes a different spatial trend in width in comparison to field 

data. A leave-one-out analysis explains difference in delta models and observations are included to guide 

future modelling efforts.  

 

 

  



27 

 

Introduction 

Characteristic morphodynamic features of deltas 

River deltas represent a complex balance of hydrology, geomorphology, oceanography, and biology. 

Modelling the evolution of river deltas strongly depends on the question to answer. The simplest delta 

models characterize areal growth rates of the delta given boundary conditions for inflow water discharge, 

inflow sediment discharge, and the geometry of the basin to fill. Swenson et al. (2000) introduced a major 

advancement for simple models by modifying a Stefan problem, which predicts the propagation of a 

phase boundary through time, into a 1D river delta with moving shoreline. This framework has been 

expanded to include other features, including analytical closures for an upstream alluvial-bedrock 

transition (Lorenzo-Trueba et al. 2009, 2010) or for delta evolution with hyperpycnal runout turbidity 

currents (Lai and Capart, 2009). Time-stepping 1D models predict delta evolution in confined basins, e.g. 

Parker, 2004 (e-book), Parker et al. (2007). Many two-dimensional models include assumptions for a 

single channel that implicitly migrates across the fan (e.g., Kim et al., 2009a; Viparelli et al., 2011) or a 

single channel that explicitly avulses due to environmental controls (e.g., Sun et al., 2002). More complex 

models include channel networks. A recent novel model by Liang et al. (2015) generates a channel 

network without directly solving the Navier-Stokes or Shallow Water Equations through a stochastic 

parcel-based cellular routing scheme for water and sediment rather than traditional modelling of detailed 

hydrodynamics.  

Many others use Delft3D software to model the specifics of how different characteristics affect the 

overall development of deltas, e.g. sand/mud concentration (Edmonds and Slingerland, 2010, Burpee et 

al. 2013), sediment cohesion (Caldwell and Edmonds, 2014), wind (Gelensye et al., 2015), or vegetation 

(Nardin et al. 2016). Models like Delft3D can resolve complex hydrodynamics and morphodynamics 

along with sub-functions to estimate ancillary components, but these models require a considerable 

computational cost. Geometric delta models are computationally efficient and requires less 

parameterization, but use many simplifying assumptions that may not capture the desired physics. For 

example, a common assumption of past geometric delta models is uniform, normal flow, which is a 

highly simplified model of the hydrodynamics of flow into a receiving basin which may be subject to 

tidal effects. However, these models, e.g. Kim et al. (2009a), have been successful in estimating the 

progradation rate of fluvially-dominated deltas because the assumption properly accounts for the long-

term flux of sediment to the delta-basin boundary. We hereby refer models of the type of Kim et al. 

(2009a) as 1D morphodynamic models. 

1D morphodynamic models have been effective for predicting progradation rates, but have not been able 

to replicate down-delta trends in channel width and depth. We seek to modify an existing framework for 
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quasi-steady lumped-channel fan delta models with an algorithm for self-formed channel geometry, as 

well as a treatment for incision to bedrock, so as to improve capabilities of these models. 

Modelling channel width change 

Modelling channel width variation, and indeed channel hydraulic geometry in general, can be accomplished 

by imposing, among other things, a closure for the channel bankfull Shields number (e.g. Parker et al. 1998, 

Parker et al. 2008). The Parker et al. (2008) model uses a constant channel-forming Shields number value, 

which has been shown to over predict bankfull depth as it varies downstream in the Fly River, Papua New 

Guinea by Li et al. (2015). The Li et al. (2015) model computes a steady state solution of a single channel, 

assuming uniform flow. The formative bankfull Shields number relates to the dimensional shear stress 

applied to the bed during bankfull conditions. However, since river channels erode or deposit on their 

boundaries to select their own width, this value is co-dependent on river structure. As such, this term allows 

for modelling of channel width, rather than assuming a fixed width in time. Precisely how width is selected 

is still not completely understood. Parker (1978a; 1978b) first offered a theory for the physical development 

of self-formed channels. Paola (1992) hypothesized a constant Shields number. Parker et al. (1998) use a 

sparse dataset to assume a value for bankfull Shields number, e.g. in form of Eq. (1), where C is a prescribed 

constant, and develop a model for width and depth closures based on this idea. Parker et al. (2007) and 

Wilkerson and Parker (2011) assemble datasets of bankfull channel characteristics for gravel and sand, 

respectively. These authors develop empirical relations that suggest quasi-universal laws for bankfull 

geometry in the separate sub-types of alluvial rivers. Li et al. (2015) show that the bankfull Shields number 

can be predicted with only reach-average channel slope S and dimensionless grainsize, D*, as in Eq. (2). 

Dimensionless grainsize is defined by Van Rijn, 1984 as  D Rg D
1/ 3

2
50* / , where R is submerged 

specific gravity, assumed 1.65, g is gravitational acceleration (9.81 Nm-2), ν is kinematic viscosity, and D50 

is median bed material grain size. Czapiga et al. (2018) modestly adjust these results by including more 

data and changing the regression scheme. Li et al. (2015) apply their new formulation and compare with 

results of Parker et al. (2008) for the Fly River Delta. Their variable Shields number formulation improves 

on the Parker et al. (1998) formulation by reducing the effect of over-deepening and over-narrowing 

downstream. 

 
bf

C*  (1) 

  m n
bf

S D*
*  (2) 

The variable Shields number relations, i.e. Czapiga et al. (2018), Li et al. (2015, 2016), Trampush et al. 

(2014) were empirically derived from a large dataset of rivers. Both constant and slope-dependent Shields 
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number closures relate to a well-developed channel at its intrinsic bankfull geometry. We suggest that this 

methodology is not valid at the delta periphery, where new channels form as the delta progrades (e.g. 

Shaw et al. 2014). Past 1D models of river deltas that have so-called self-formed channels e.g. Kim et al. 

(2009a) do not accurately account for the process of channel evolution toward the mature bankfull 

condition development, i.e. they do not follow morphology patterns identified by Shaw et al. 2016a. Here 

we include the concept of a juvenile channel, and relate the bankfull Shields number of a juvenile channel 

to its mature counterpart.  

Added features considered here 

We start from two past 1D morphodynamic models that include self-formed channel width and constant 

formative Shields number closure. The base models include a uniform, normal flow model developed by 

Kim et al. (2009a) and a steady, shallow water hydraulics model by Parker and Sequieros (2006) (PS). 

Several features are incorporated into both models. Models that use the shallow water equations for 

hydraulics, i.e. backwater models, will require a new, distributed Exner equation that simultaneously 

accounts for both channel and floodplain/island morphodynamics, and treat the problem in terms of 

average delta elevations, rather than channel bed elevations. Specifically, sediment continuity is 

computed over the average delta and sediment is allocated to cause morphodynamic change in channel 

and floodplain elevations. This allows us to model channel elevation below the water surface elevation 

while maintaining a net-depositional environment. Implementations with the constant formative Shields 

number and variable Shields number relation by Czapiga et al. (2018) are considered with and without 

accounting for incipient channel formation at the delta periphery, i.e. juvenile channels. Due to the 

presence of a confining basement layer consisting of consolidated shelf clay at Wax Lake Delta (Shaw et 

al. 2013), we include additional equations for bedrock-alluvial transitions after Viparelli et al. (2014), and 

a rate-excess law closure for erosion of the consolidated clay basement material (e.g. Garcia, 2008, eq. 4-

35).   

We define juvenile channels as those with banks that are entirely inundated for at least some threshold 

percentage of time. Hoyal and Sheets (2009) describe morphodynamic differences between upstream and 

downstream channels in their experiments, and note the juvenile channels are much wider and shallower 

than the mature channels upstream. Chatanantevet and Lamb (2014) observe a continuous shoaling 

pattern in their experiments where flow velocity in channel is slowed and water ostensibly leaves over the 

subaqueous channel banks. Subaqueous channel banks are ubiquitous in Wax Lake Delta (e.g., Shaw et 

al., 2013; Wellner et al., 2006; Carle, 2013), and are likely common in deltas in general. Viparelli et al. 

(2011) relate vegetation type to inundation rate. Carle (2013) note that vegetation types are correlated to 

inundation rates, which provides a link between radial length from the delta apex and inundation rate. 
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Geleynse et al. (2015) compute shoreline extent at different conditions; their results show 50-65% of 

WLD’s radial topset extent is inundated during floods. Hiatt and Passalacqua (2015) show flow lost in 

WLD channels to the islands via tie-channels and overbank flow. Hiatt and Passalacqua (2017) model the 

effect of bank roughness on flow confinement with subaqueous banks. 

Application to Wax Lake Delta 

In so far as we validate our model (presented below) with field measurements at WLD in coastal 

Louisiana, USA, it is of value to introduce the site. This site represents a micro-tidal and rapidly 

prograding delta with >30 years of collected data via bathymetric surveys before and after initial 

deposition, along with aerial imagery to estimate the temporal changes to delta topset extent, channel 

widths and inter-channel widths.  

While WLD is the stimulus for our research, our methodology will not be specific to WLD, so it can be 

representative of generic deltaic growth. The Kim et al. (2009a) model provides a simple framework for 

modelling the morphodynamic evolution of WLD, and the authors used their model to infer potential 

growth of river diversions in coastal Louisiana. Due to several simplifying assumptions, including a 

uniform flow condition, the Kim et al. (2009a) results are not directly comparable with bathymetric data. 

Here we find that this restriction is largely removed when the normal flow assumption is relaxed and 

gradually varied flow is considered. We must also investigate how recent scientific advancements affect 

the predictions made by Kim et al. (2009a). In particular, the assumptions for uniform flow and spatially 

constant bankfull Shields number are relaxed herein; juvenile channels are also be included for a 

downstream portion of the delta. All conditions are validated against generalized bathymetry measured 

from Wax Lake Delta over a period of 35 years.  

We have identified several key features that current morphodynamic delta models of this type do not 

address, but it is unclear which features are necessary to reproduce the basic morphodynamics in a 

growing fluvially-dominated delta. Therefore, we have modified the existing framework of past models to 

test the importance of accounting for under-developed channels, bedrock/basement interaction effects and 

the effect of constant versus variable formative Shields number. We also assess when the assumption of 

uniform flow is acceptable. 

Methodology 

Our model considers a 2D fan delta, but follows the 1D moving-boundary framework as illustrated in 

Figure 3-1. There are four elevations modelled, channel bed elevation ηc, floodplain elevation ηf, 

basement elevation ηbase and the geometric average delta elevation  . The physical model space can be 

described in polar coordinates such that the radial distance from the delta apex to any given point is r and 
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the angle of the delta topset is θ. The topset has an assumed topset angle θ0 and the radial extent of the 

delta topset is denoted as ss, while the radial distance to the foreset-bottomset transition is sb. The 

basement is assumed to be a specified constant-slope plane.  

 

Figure 3-1: A schematic profile of the cross-section of delta model domain. The delta is separated into 

topset, foreset, and bottomset areas, where the slopes of foreset and basement are assumed. The model 

tracks four separate elevations representing the pre-delta basement ηbase, channel ηc, floodplain ηf /water 

surface ξ (they are equivalent), and geometric average delta elevation 


. Foreset slope and the basement 

slope are assumed to have values that do not vary in time. The length of delta topset is shown as ss and 

the length from apex to foreset-bottomset transition is sb, both of which can increase as the delta evolves. 

The topset is assumed to have a pie-shaped planform, the down-delta slope of which can vary. Because 

the slopes of the topset and basement can differ, the elevation ηbase is also a function of θ according to 

simple geometric relation. A representative flood inundation length scale rflood, is defined such that a 

representative flood inundates channel banks for r > rflood (Figure 3-2). This demarcates the transition to 

juvenile channels. As channel banks become more subaqueous, channel confinement decreases and 

discharge leaves the channel via overbank flow, e.g. Hiatt and Passalacqua (2015), Shaw et al. (2016a). 

The model assumes channels at radial length r ≤ rflood possess fully confining banks and resemble mature 

bankfull channel architecture. Conversely, channels at radial length r > rbank are in varying degrees of a 

transitional state between the incipient channel form where flow is nearly axisymmetric up to the 

condition where the representative flood no longer inundates the banks.  
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Figure 3-2: Schematic of model domain in plan view, showing along-delta coordinate r, inundation 

length rflood, delta angle , total delta width Btotal, distance to shoreline ss and distance to topset-

basement break sb. The model has an inflow water and sediment discharge as Qw and Qt, respectively. 

The input water discharge is distributed evenly at the delta periphery, but not necessarily so for the 

sediment flux. The topset contains areas with subaerial and subaqueous banks and the overbank 

inundation of a typical flood is identified as occurring downstream of rflood. 

Equations for water mass and momentum and sediment conservation are written in dimensionless form 

relative to the current extent of the delta topset. The model assumes all bed material load leaving the delta 

topset is captured within the delta foreset; this implies that the delta progrades. We use appropriate 

assumptions regarding the shape of the delta foreset and the pre-delta elevation to compute delta 

extension as bed material load aggrades the delta. The dimensionless spatial coordinate r̂ scales the radial 

distance from the delta apex r against the radial extent of the delta apex ss, i.e. from apex to topset-foreset 

transition. 
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Below Capacity Transport relation 

A framework of interest for models that use the shallow water equations for hydraulics concerns the 

interactions between channel beds and a confining basement layer. This framework must account for 

declining sediment loads as bed material is winnowed away, leaving only bare basement surface. Typical 

sediment transport equations relate the normalized bed shear stress, i.e. Shields’ stress to the sediment 

transport rate. Therefore, the equations implicitly assume that there is always sediment available to be 

moved; this is clearly not the case as a channel incises into a non-fluvial basement layer. Shaw et al. 

(2013) show the Wax Lake Outlet feed channel and most of the delta channels have relatively little 

sediment on the channel bottom; the authors suggested that a method developed by Sklar and Dietrich 

(2004) for erosion of bedrock due to particle abrasion could be modified for delta application at WLD. 

Zhang et al. (2015) use part of the framework of Sklar and Dietrich (2004) in their bedrock incision 

model and imply that the aerial fraction of cover of the bedrock by alluvium, pc, increases with thickness 

of alluvial cover. These authors assume a macro-roughness height representative to the scale of the 

intrinsic bumpiness of the bedrock. When the bed elevation ηc is greater than the basement elevation ηbase 

plus the macro-roughness height, the bed is fully alluviated; when channel elevation is less than a macro-

roughness height above the bedrock/basement, pc < 1 and a below capacity transport condition prevails. 

The capacity sediment flux Qtc is the value predicted when the bed is fully alluvial, and the actual 

sediment flux Qt = pcQtc decreases as pc decreases, i.e. as the bed becomes deficient in alluvium. Viparelli 

et al. (2014) use this form for the lower Mississippi River and substitute the macroroughness height for a 

representative dune height, Lac. We use this formulation as in Eqs. (7) and (8). 


t c t c

Q p Q ,  (7) 
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Most previous authors have applied this methodology to bedload transport, but we apply it here to a total 

bed material load condition that includes suspended transport of the bed material As Shaw et al. (2013) 

elaborate, this methodology relates local transport conditions to the transport capacity and local 

availability of sediments. When sediment is travelling in suspension, the transport capacity is not 

necessarily limited by a local decrease to cover fraction. However, there are currently no simpler means to 

qualify below capacity transport conditions. Ignoring the spatial lag between sediment entrainment and 

advection length can affect local details, but the mean sediment transport rate in the delta will not be 

affected. In the future, this implementation should be revisited using a more sophisticated methodology 

accounting for entrainment and deposition of bed sediment. 

Distributed Exner Equation 

The modeled delta width is divided into two regions for channelized and non-channelized area. Non-

channel regions are denoted as a floodplain here and marked with subscript f. Since channel width Bc is 

modeled and total accommodation width Btotal, measured normal to the axial coordinate r is specified 

(Figure 3-3), floodplain width Bf is passively determined as the difference between Bc and Btotal. We 

assume channel and floodplain areas have characteristic elevations separated by local channel depth, Eq. 

(9), and the geometric average elevation  of the delta as in Eq. (10) 

  
f c bf

H  (9) 

   
total c c f f

B B B  (10) 
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Figure 3-3: Schematic for a distributed Exner equation of sediment conservation at any arbitrary cross 

section in the delta. The total width is composed of channel Bbf and floodplain Bf. The basement elevation 

ηbase represents the pre-delta elevation, and the channel elevation ηc is separated from the floodplain 

elevation ηf by bankfull depth Hbf. 

Water and sediment move through the channel, but are implicitly distributed across the entire delta topset. 

The Exner equation is computed with the average delta elevation  . We modify the typical Exner 

equation to include an intermittency factor If (as in e.g. Parker, 2004, Parker et al., 2008) and a 

proportional unit deposition of washload material for every unit of sand deposited Ω (as in e.g. Kim et al. 

2009a). The percent cover pc is included in the Exner equation, Eq. (11), similarly to Viparelli et al. 

(2014) and is also included within the sediment flux Qt via Eq. (7). The dimensionless form of distributed 

Exner equation, derived in accordance with Eqs. (3) ~ (6), is shown in Eq. (12). 
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Change in the average delta elevation is proportionally distributed to predict changes in floodplain and 

channel elevations. Discrete changes in the terms in Eqs. (9) and (10) obey Eqs. (14) and (13), 

respectively. Additionally, since the delta is divided into one channel and one floodplain area, an increase 

in channel width relates to an equal and opposite decrease in floodplain width as in Eq. (15). 

                    
total c c bf c f f f f

B B B B B  (13) 

      
f f c c bf

H  (14) 
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These relations can be manipulated into Eqs. (16) and (17) that predict change in channel and floodplain 

elevations at any arbitrary location. 
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Juvenile Channels 

As the formative, bankfull Shields number formulation of Eqs. (1) and (2) relate to river channels, these 

equations should not be directly applied to the condition of incipient channel form. We make a first-order 

hypothesis that the bankfull Shields number of an incipient channel scales linearly to its mature 

counterpart, i.e. Eq.(18), where γ is a decay factor that ranges on (0,1) and 
bf mature
*
, is the value 

representative of the mature channel structure. 

  
bf bf mature
* *

,  (18) 

Incipient channel formation directly relates to absence of subaerial bank structure, which reduces channel 

confinement. Shaw et al. (2016) has shown typical flow patterns in the distal end of Wax Lake Delta 

where channels are bordered by subaqueous banks. Hiatt and Passalacqua (2015) measure discharge at 

several cross-sections down two channels at WLD to show that approximately 40% of the flow is lost 

during an inter-flood period. Flow so lost is incorporated through an additional parameter ε that represents 

the portion of flow maintained in the channel as in Eq. (19), where Qw is the bankfull discharge in the 

channel and Qw,tot is the discharge of the feed channel. It can be shown in the Appendix that values for γ 

and ε are approximately equal at the delta periphery, so we assume they are equal in this framework as a 

first-order assumption. Flow loss from the channels are also incorporated when deriving equations for 

hydraulics.  


w w tot

Q Q ,  (19) 

The delta inundation varies significantly throughout the year, with peak inundation occurring during 

floods normally related to the spring (Gelensye et al., 2015). The distributed Exner framework discussed 

above requires the floodplain elevation to be exactly Hbf above the bed elevation, so subaqueous bank 
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development cannot be directly modelled here. It is assumed, however, that the channel intrinsically 

migrates across the floodplain, as in Kim et al. (2009a). We also use an intermittency factor of flooding (If 

< 1), and model with a single representative flood discharge. Measurements from Gelenyse et al. (2015) 

show the typical inundation length scale of floods range from 35 – 50% of the full topset length; from 

these results we assume a value for rflood = 0.5ss, where ss is the radial distance from delta apex to the 

topset-foreset break. Therefore, 
bf
*

, takes the form of Eq. (20) or Eq (21), depending whether a constant 

value or a slope-dependent relation is used. 

 
bf bf const sand
* *

, ,
 (20) 

  m n
bf

S D*
*  (21) 

Here, since we apply the model to a sand-bed delta, we use  
bf const sand
*
, , 1.86 after Parker (2004) when 

applying Eq. (20), and use β = 182, n = -0.87, m = 0.365 from Czapiga et al. (2018) when applying Eq. 

(21). 

We assume an exponential decay function for γ and allow ε to range from (0,1] with specified rate 

coefficients, as in Eqs. (22) and (23). The rate coefficients are computed from field data at WLD; as 

detailed in the appendix, kτ is scaled via depth measurements and kQw is estimated from discharge 

measurements of Hiatt and Passalacqua (2015). The function for  takes form of Eq. (22); when γ = 1, the 

bankfull Shields number approaches its mature value. 
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Both parameters are defined to be temporally constant in dimensionless space according to Eq. (24), 

implying a condition of self-similarity. The dimensioned domain expands over time as the delta 

progrades, resulting in a decreased streamwise gradient for both γ and ε. The boundary separating mature 

and juvenile, rflood, channels must propagate at the speed of delta propagation, so channels at a given 

dimensioned distance from the delta apex mature over time. 
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An alternative method can also consider temporal evolution in γ, which takes the forms of Eq. (25). 
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The maximum value γmax = 1, corresponds to a mature channel structure, C1 is a fitting coefficient, and 

vs,fine is the settling velocity of fine grained material (assumed to be 63 microns here). This equation 

includes a representative timescale for fine material to fall one channel depth, which is considered a proxy 

for the timescale of levee development, which acts to confine flow and increase streamwise transport 

capacity. Less mature channels develop the fastest and this effect augments through basinward shoaling, 

which reduces Hbf near the periphery. The derivative is defined in physical space, and γ, ε assume an 

initial value defined by Eqs. (22) and (23), respectively. This equation translated to dimensionless space 

takes the form of Eq. (26). The first term in the right hand side of this equation is always positive, and the 

second term is initially negative as the assumed initial condition considers channels to be immature at the 

delta periphery.  

Over time, as γ increases, the slope of γ decreases and eventually approaches a value corresponding to a 

spatially mature channel at all nodes. We now consider conditions just basinward of the topset-foreset 

break; Shields stress can be recast as Eq. (27). Shields stress can be estimated here by assuming 

unconfined flow and zero-gradient conditions for channel depth Hbf and friction slope Sf. This form 

creates a minimum value, by using in-channel properties at the topset-foreset break and applying them 

assuming channel width expands to the delta topset arc length, so encompassing the entire delta width. 

The parameter γmin can be defined from this minimum shear condition as in Eq. (28). 
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A ghost node, immediately basinward of the delta topset is implemented according to Eq. (29). 
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This equation is defined in dimensionless derivative because it always relates to a location immediately 

basinward from the delta topset after flow becomes completely unconfined. The first term is identical to 

Eq. (25), and the 2nd term is always negative and relates the value of γghost to the progradation rate of the 

delta. Altogether, the equation is dimensionally homogenous and quantified the tendency toward channel 

maturation via sediment deposition along the banks and away from channel maturation as the delta 

progrades, creating new channels. The slope of γ at the topset-foreset break can be approximated with a 

central difference scheme, with γghost immediately basinward from the last node.  

The decay rate in bankfull Shields number is related to the lack of flow confinement, so there is a physical 

trend that relates ε and γ. However, the details of this trend are unknown at this time, and since measured 

values show similar magnitude, we assume they are equal. Therefore, their derivatives are also set to be 

equal; as the temporal evolution of γ is modelled, we assume γ = ε is always true.  

Uniform flow model 

The Kim et al. (2009a) model uses closures for bankfull width Bbf, bankfull depth Hbf, and reach-averaged 

bed slope S of an assumed single, lumped channel with constant bankfull Shields Number, normal flow 

hydraulics, and the Engelund-Hansen (1967) sediment transport equation for unimodal sand bed channels 

via Parker (2004). These are included in Eqs. (30)-(32) and modified from the original equations by 

incorporating Eqs. (19) and (20). 
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Li et al. (2015, 2016) modify these equations with slope-dependent forms of Bankfull Shields Number 

and Chezy coefficient. These equations depend on bankfull water discharge Qw, bankfull sediment 

discharge Qt, median bed material grainsize D50, constants for gravitational acceleration g, submerged 

specific gravity R, and other parameters. We modify the Li et al. (2016) equations here with amendments 

for juvenile channels according to Eqs. (33)-(36). 
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The values of the coefficients in the above equations are: m = 0.365, nCZ = -0.19; Cz = 2.53.  = 182 and 

CH = 0.05 (Czapiga et al, 2018; Li et al., 2015) The other model components, including Exner equation, 

shoreline migration rate and topset-foreset and foreset-bottomset migration rates are identical to Kim et 

al. (2009a). 

Gradually Varied Flow model with juvenile, leaky channels 

Hydraulics are also solved with the shallow water equations assuming either constant τ*
bf and Cz, (as in 

Parker and Sequieros, 2006), or with slope-dependent forms of each. In all cases, the equations must 

account for flow leaking from the channels via overbank or tie-channels. Water discharge in leaky 

channels was defined in Eq. (19) and the spatial derivative of this equation constitutes the conservation of 

water mass in the 1D shallow water equation corresponding to Eq. (37). The conservation of momentum 

equation is shown in Eq. (38). 
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Here Abf is the bankfull channel area equivalent to the product of Hbf*Bbf. The left side of Eq. (38) is 

expanded via the chain rule as shown in Eq. (39). 
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The spatial gradient in water discharge is provided via the equation for mass conservation in Eq. (37). The 

spatial gradient in area can be rewritten as Eq. (40). Expanding Eq. (39) and recombining into Eq. (38) 

gives Eq. (41). 
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Substituting in definitions for the square of the Froude number Fr2 into Eq. (42) and bed slope S into Eq. 

(43) and rearranging allows further simplification to Eq. (44). 
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The resulting equations includes a term for the spatial derivative of channel width Bbf. For most real-

world rivers, this term could be scaled out by the width to depth ratio, Hbf/Bbf since width is typically 

much larger than depth. The leaky channel parameter ε is either known or modelled independently. 

However, the equations can also be transformed into a more useful form, as shown below.  

 

Friction slope can be recast as a function of the square of Froude number and Chezy friction coefficient in 

Eq. (45). 

f
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Our past definitions in Eqs. (21) and (36) show slope-dependent forms for Cz and τ*
bf. These formulas are 

based on river channels where the data is assumed to be captured at near-equilibrium conditions and 

normal-flow conditions are assumed such that water surface slope and bed slope are parallel. We relax 

this assumption by replacing S with Sf in Eqs.(21) and (36). Combining Eq. (36), modified to use Sf, with 

Eq. (45) gives the squared-Froude number as a function of friction slope alone.  
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Combining Eqs. (46) and (47) gives a simplification for the square of the Froude number: 
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The spatial derivatives of Eq. (42) and Eq. (48) are given in Eq. (49) and Eq. (50), respectively. These can 

be simplified into the form of Eq.(51): 
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The above relations can be combined yield backwater forms: 
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Shoreline Migration 

Shoreline migration is computed similarly to past models. However, these models had only a single 

elevation drop from foreset to basement, so the foreset extends from the channel elevation down to the 

basement elevation. The model described herein assumes that the foreset begins at the average delta 

elevation and follows a constant, assumed foreset slope Sa to the pre-delta basement layer. The basement 

surface is assumed to have constant slope, and the delta extends radially across this planar surface. 

Normal flow models use the shoreline migration equations from Kim et al. (2009a) (as shown in more 

detail with a moving delta apex in Kim et al., 2009b). Shoreline migration for the backwater models uses 

a modification of Kim et al. (2009b) to relax the assumption of normal flow. The Parker and Sequieros 

(2006) model assumes a conical frustum shape for the basement slope such that basement slope Sb cannot 

be considered constant.  

The dimensionless speed of migration of the topset-foreset break ss  (shoreline migration speed) and the 

foreset-bottomset break bs are described in Eq. (54) and Eq. (55) respectively. A full derivation of the 

former is included in the appendix. The latter is identical to the Parker and Sequieros (2006) method.  
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The delta topset progradation speed plays an important role in the dimensionless Exner equation in Eq. 

(12), but the shoreline migration rate requires the specification of the temporal derivative of the average 

delta elevation at the last node, i.e. sr s . We assume this value to be initially zero, and then update the 

value after change in elevation has been predicted. The shock condition at the topset-foreset transition 

includes the term ϴ related to connection of the radial topset to the flat basement plane it migrates over. 

This is defined as Eq. (56); further details are given in the appendix. 
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Incision into pre-delta substrate 

Shaw et al. (2013) elaborate on the importance for understanding pseudo-bedrock dynamics on the 

morphology of the Wax Lake Delta. The Holocene-aged clay deposits apparently act to inhibit the 

channel erosion. The authors suggest a methodology from Lamb et al. (2008) that abrades the basement 

surface causing incision and found similar results to measured erosion rates in the Wax Lake Outlet. This 

model has several detailed parameters related to the bedrock characteristics that have yet to be fully 

detailed in the field. We instead use a simpler model and parameterize the coefficients based on measured 

bedrock changes through time. The basic function for erosion rate is a rate-excess law, as in Eq. (57), 

where erosion occurs when a critical threshold bed shear stress is met. This is a typical form to estimate 

erosion rate of cohesive sediments, e.g. (Garcia, 2008, Eq. 4-35) is based on dimensioned bed shear stress 

and critical shear stress of cohesive sediments. As in the referenced example, we assume ncoh = 1 and 

parameterize αcoh and τb,coh based on modelled morphodynamic changes. The coefficient αcoh affects the 

temporal rate of basement incision and τb,coh affects the spatial extent of basement incision. The latter is 

additionally modulated by the presence of juvenile channels, which relate to a reduction in bed shear 

stress. The cover effect is introduced in Eq. (58), as the basement layer is only eroded when bedrock is 

exposed. The tools-effect model developed by Sklar and Dietrich (2004) implies bedrock erosion is 

maximal when pc = 0.5, but, the implementation present here allows maximum incision as pc approaches 

zero. This is because the substrate is treated a consolidated mud rather than bedrock, so that shear stress 

rather than tools plays the key role in determining the incision rate (e.g. Garcia, 2008). We use Eq. (58) 

for this purpose; it is translated into dimensionless terms as in Eq. (59). This methodology is only used 

when backwater hydraulics and the distributed Exner equation are also implemented; models with normal 

flow closure are not able to predict channel incision. 
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Results 

Generalized width and elevation data at Wax Lake Delta 

The delta first showed signs of subaerial growth in 1973 (Roberts et al., 1980; Wellner et al., 2006), 

though subaqueous development certainly preceded this result. Parker and Sequieros (2006) and Kim et 

al. (2009a) select 1980 as the initial condition for their model runs per results of Majersky et al. (1997) 

that suggest the start of rapid delta progradation at that time. We use similar initial conditions suggested 

in Kim et al. (2009a). Data were collected for cumulative channel width, channel bed elevation, and 

floodplain/island elevation during four years spaced by ~10 years: 1989, 1998, 2006, and 2015. These 

data are not monotonically spaced per data availability. Data from the two earliest years (1989, 1998) 

were collected by the United States Army Corps of Engineers (USACE); these data consist of single beam 

bathymetry and topography surveys. A 2006 DEM with partial coverage of Wax Lake Delta is available 

via the United States Geological Survey. The 2015 dataset is a coupled multibeam bathymetric survey and 

aerial LiDAR topographic survey (Shaw et al. 2016b); this data set has considerably finer resolution and 

data density than the other sources. The models to be tested herein have generic delta architecture and 

assume a single lumped channel that is intended to be representative of all delta channels combined.  

 

Figure 3-4: Generalized Elevations from Wax Lake Delta in 1989, 1998, and 2015. Here “Fp Median” 

denotes floodplain median elevation, “Ch Median” denotes channel median elevation, and “Ch 10% ex.” 

denotes thalweg elevation. Data were designated as channel or floodplain areas based on visual 

inspection of imagery from each year. Data are binned based on radial distance from the delta apex and 

category, then the median of channel and floodplain areas and the channel elevation that exceeds 10% of 

all points in the subset are computed. 
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The complete dataset is generalized by segmenting into discrete bins separated by specified radial 

distances from the delta apex (Figure 3-4). For each data year, the approximate boundary between 

channel and inter-channel areas is defined by the measured elevation and through inspection of a 

LANDSAT Raw Annual satellite image of the delta. The elevation data were separated with these 

observations to create sample sets for both channel and floodplain elevations. The cumulative distribution 

function of depth within these regions is computed along with the median value. The channel thalweg is 

estimated as the elevation that exceeds 10% of the sample set because the minimum measured elevations 

may be outliers. The model predicts bankfull channel depth, which relates to average channel depth in a 

cross section. It is not feasible to measure bankfull depths in the 1989 and 1998 datasets due to alignment 

of the data, nor in 2006 due to insufficient coverage of the DEM. This type of measurement is feasible 

with the 2015 DEM, and a test at the delta apex shows Hbf = 10m, while depths at the thalweg are around 

15m (Figure 3-4). Median channel elevation, channel thalweg elevation, and median floodplain/island 

elevations are plotted in Figure 3-4. In that figure, “Fp Median” denotes floodplain median elevation, “Ch 

Median” denotes channel median elevation, and “Ch 10% ex.” Denotes thalweg elevation. 

Cumulative channel width is also collected at selected radial distances away from the delta apex that 

correspond with the center of each bin and plotted in Figure 3-5. Delta area is measured in 2015 using the 

DEM based on the subaqueous extent of delta channels. Channel area estimates are computed by creating 

a mask of channel area based on elevation and through visual inspection of banklines from LANDSAT 

annually averaged raw imagery. Total channel area only includes main channels, i.e. sub-channels 

connecting into islands are not included. Only channel area beyond the delta apex is included. In all years, 

the measured data show rapid spatial width expansion, followed by a decline downstream. Over time, the 

2500m wide section seems to extend basinward. The trend for decreased total width beyond this region 

relates to asymmetry of the delta topset. Average channel width is mostly invariant in space, so the 

decrease should not be compared to model results that assume axisymmetric growth patterns. See the 

Appendix for a more detailed explanation. 
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Figure 3-5: Cumulative channel width of all channels at a given radial distance from the delta apex. 

The pre-delta substrate elevation is modelled from an initial condition via measurements by Shaw et al. 

(2013). Substrate elevations within the delta are generalized by radial distance from the delta apex, and 

the feed channel is assumed to extend past the delta apex per observations of the authors. The Wax Lake 

Outlet feeder channel depth varies along the channel, but approaches approximately 13m at the delta 

apex. Values in Shaw et al. (2013) are presented in terms of a mean sea level (year 2000) datum, and 

translated by assuming constant sea-level rise and subsidence rates, which are identical in all model runs. 

All elevations were converted to MLLW to match the 2015 DEM via vDatum software (Parker et al., 

2003) and relations between mean sea level and MLLW at the Amerada Pass tidal gage in Atchafalaya 

Delta. Similarly, the modelled water surface elevation is taken as the modern day MSL value adjusted to 

MLLW reference frame; we subtract the assumed sea level rise rate over 35 years (from 1980 to 2015) so 

the modelled sea level rise in 2015 matches. The assumed pre-delta surface for modelling delta basement 

interactions is illustrated in Figure 3-6. 
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Figure 3-6: The consolidated clay pre-delta/basement elevation is expressed as a function of radial 

length from the delta apex. The blue asterisks represent basement elevation estimated by Shaw et al. 

(2013), the black squares are the means of values in discrete bins from the delta apex, and the red line 

represents a simplified representation of initial condition of the model. The initial basement elevation in 

the upstream feed channel is approximately -13m (MLLW m) per measurements by Shaw et al. (2013). 

The normal flow closures for width, depth and slope require known values for water and sediment 

discharge, median grain size, and the juvenile channel decay factors ε and γ. By assuming conditions at 

Wax Lake Delta after Kim et al. (2009a) we compute channel dimensions in the delta, assuming normal 

flow, by solving a range of decay factors. Water discharge Qw = 4800 m3/s, sand discharge Qt = 0.16 m3/s, 

and D50 = 0.1 mm. Measurements at Wax Lake Delta suggest ε = 0.6 and γ = 0.6 at the delta periphery, so 

we can make a first-order assumption that these values are equal. Figure 3-7 shows predicted values for 

Bbf, Hbf, and S normalized by the mature conditions when ε = γ = 1; these results are shown over a range 

of ε and γ from 0 to 1, which resemble changes from juvenile to mature channel structure. 
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Figure 3-7: A phase diagram of relative relationship between depth, width, and slope as the juvenile 

channel decay factor γ and flow confinement parameter ε increases from [0,1). These results are derived 

from the normal flow closures presented here and relate to the Wax Lake Delta values Qbf = 4800 m3/s, 

Qt = 0.16 m3/s, and D50 = 0.1 mm, as per Kim et al. (2009). All values are normalized by the mature 

values predicted when γ=1, thus they converge to the point (1,1). The figure shows that, assuming normal 

flow, as the decay factor  approaches zero, channels become infinitely wide and infinitesimally deep. 

Comparing results at  γ=0.4, depth  decreases by an order of magnitude, width increases by a factor of 5 

and slope increases by a factor of one.  

Model results 

A total of 40 numerical runs were completed to understand how inclusion of different features affect 

development of typical delta morphodynamics in a geometric style model. The model inputs are shown in 

Table 3-1. Input conditions for Wax Lake Delta from Kim et al. (2009a) are used, and are consistent for 

all runs; only various model features are turned on/off. The delta angle is updated from the Kim et al. 

(2009a) values as elaborated in the Appendix. Each run represents a different binary combination of 

model features, i.e. with a given feature, such as juvenile channels, turned on and turned off.  
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Table 3-1: Input Values for model runs. 

Term Symbol Value Units 

Channel-forming water discharge Qw 4800 m3/s 

Mean-annual sediment yield Qt,feed 25.6/38.4 Mt/yr 

Fraction of sand in sediment yield fsand 0.183 - 

Flood intermittency If 0.35 - 

Units washload deposited per unit sand Ω 0.49 - 

Bed material grainsize D50 0.1 mm 

Submerged specific gravity R 1.65 - 

Sediment porosity λp 0.6 - 

Chezy coefficient Czconst 20 - 

Coefficient in Cz eqn (Li et al. 2015) aCz 2.53 - 

Exponent in Cz eqn (Li et al. 2015) nCz -0.19 - 

Initial water surface elevation (MLLW) ξd0 0.186 m 

Initial channel elevation (MLLW) (Normal Flow) ηc,0 0.186 m 

Initial channel elevation (MLLW) (Backwater) ηc,0 -1.5 - 

Initial basement elevation (MLLW) ηbase,0 -2 m 

Initial delta length ss,0 4300 m 

Initial delta slope S0 varies - 

Initial basement slope Sb 1.80E-04 - 

Foreset slope Sa 0.002 - 

Delta topset angle θ 86 Degrees 

Sea-level rise rate dξ/dt 2 mm/yr 

Subsidence rate σ 5 mm/yr 

Initial slope of guide channel (Normal) Sguide 0 - 

Initial slope of guide channel (Backwater) Sguide 0 - 

Initial width of guide channel Bg 300 m 

Initial Width of guide channel floodplain Bg,f 1700 m 

Length of guide channel Lg,0 25000 m 

Model start time - 1980 - 

Model end time - 2015 - 

Channel forming Shields number (constant) τ*bf,const 1.86 - 

Channel forming Shields number (variable) β 182 - 

Channel forming Shields number (variable) m 0.365 - 

Channel forming Shields number (variable) n -0.87 - 

Rate coefficient for flow leaking from channels kQw 0.5 - 

Rate coefficient for decayed Shields stress kτ 0.5 - 

Macroroughness height/dune height Lac 0.5 m 

Coefficient clay basement incision αcoh 1.00E-08 - 

Critical shear stress for cohesive basement τ*
c 4 Pa 

Coefficient for temporal γ growth C1 1.00E-06 - 

Coefficient for temporal γ decay C2 1.00E+03 - 
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For normal flow models, 3 binary conditions are tested including: Constant Shields number vs. Variable 

Shields Number, presence of Juvenile channels vs. only fully mature channels, and Smaller or Larger 

sediment feed rate (Qt,feed); this requires 23 (8) model combinations. Models with backwater hydraulics 

also include additional binary conditions for: assumed fixed-width feed channel versus a self-formed 

width feed channel and presence of cohesive basement material vs. a fully alluvial basement. The 

backwater runs include 25 (32) combinations, thus reaching 40 total runs. All models include the same 

initial basement elevation. When the basement is a consolidated clay surface rather than alluvium, the 

below-capacity transport and basement incision framework are used to model development of this 

interface. Model runs are compared against measured data presented here along with data from past 

researchers at Wax Lake Delta. In conditions where present-day data is not available, values are estimated 

from the 2015 DEM and/or aerial imagery. The figures given below in this section make reference to a 

full model which includes variable bankfull Shields number, juvenile channels, incision in a pre-delta 

substrate material and the larger sediment feed rate value. The figures also use models identical to Kim et 

al. (2009a) and similar to Parker and Sequieros (2006) as base case comparisons for normal flow and 

backwater hydraulics, respectively. 

Delta progradation from 1980 to 2015 is presented in Figure 3-8. Measured delta extent from past years is 

included for comparison (Roberts et al. 2003, Dumars, 2002, Wellner et al. 2006). The delta extent in 

2015 is estimated from the 2015 DEM; the modern delta is elongated along the main axis of the delta, 

which has shorter radial extents toward the boundary of the accommodation space. The delta angle is 

selected to minimize total error of the measured arc lengths at discrete radial distances from the delta 

apex; this process is discussed in more detail in the Appendix. This angle is smaller than values used in 

Parker and Sequieros (2006) and Kim et al. (2009a), and relates to the mean delta extent. The result of the 

Kim model is reproduced here for comparison along with a model similar to Parker and Sequieros (2006). 

The latter is characterized by backwater hydraulics and constant Shields number; it differs from the 

original model via the distributed Exner framework and the assumption of a flat basement rather than a 

conical frustum, and updated input conditions. The envelope of all model runs increases in breadth 

quickly, and then seems to converge to a constant value. The full model, characterized by self-formed 

feed channel, variable Shields number, juvenile channels, bed rock incision, and the larger Qt,feed rate 

compares similarly to measured delta progradation rates as the reference models. 
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Figure 3-8: Envelope of model results for progradation rate ss versus time, including all 40 runs. The 

gray lines represent individual runs and the dark black lines define the envelope of values. Data from 

past field researcher are shown; an additional point for 2015 is estimated as detailed in Appendix B. 

Area of the delta topset is plotted against time in Figure 3-9. Measured data from Majersky et al. (1997) 

and Roberts et al. (2003) are included with an additional value for 2015. Model results as presented by 

Parker and Sequieros (2006) and a regression of subaqueous delta area estimated via aerial imagery by 

Shaw et al., (in preparation) are also included. The two reference models and the full model compare well 

with measured results. All three models appear to approach parallel to the growth rate estimated by Shaw 

et al. (in preparation). The uncertainty amongst models appears to plateau at the end of simulation time as 

the total model run envelope approaches a constant width. 
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Figure 3-9: Delta area predictions for all 40 model runs. Models with similar features to Parker and 

Sequieros (2006) and Kim et al. (2009) are presented with the full model with dark markers. Measured 

data from past researchers are included for comparison; an additional 2015 data point based on the 

subaqueous channel extent of the 2015 DEM surface is also included. Results from Parker and Sequieros 

(2006), with their input parameters and conditions, are shown as a heavy dashed line. Also shown is a 

regression fit on estimated subaqueous channel area from aerial imagery (Shaw, Personal Comm.) is 

shown with a centerline dash. 

Cumulative channel area integrated across the entire delta topset is plotted in Figure 3-10. This figure 

shows more significant model variation than found in comparison to ss and AD. The reference models both 

under-predict the total channel area in the delta, while the full model follows the observed temporal trend 

for channel area that increases over time. 
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Figure 3-10: Total channel area across the topset over time. Data collected by extracting a channel mask 

of the subaerial extent of channels from annually averaged imagery. Results from the reference models 

are shown, along results from all 40 runs with and without backwater. 

Models with normal flow conditions are compared using data for delta extent and area in Figure 3-11. The 

field data presented in each subplot is identical across each row. The lines from the predictions are also 

identical across each row, but the shading is different so as to emphasize different features. 

Figure 3-11-a1 and Figure 3-11-a2 compare modeled results for delta extent and delta area, respectively as 

a function of time, along with observations (circles) and modeling envelopes (thick black lines). In this 

figure the thin black lines correspond to variable * and the thin gray lines correspond to constant *. 

Figure 3-11-b1 and Figure 3-11b2 contain the same information, except that the thin black lines 

correspond to the inclusion of juvenile channels and the thin gray lines correspond to mature channels 

only. Figure 3-11-c1 and 3-11-c2 again contain the same information, except that the thin black lines 

correspond to a larger sediment feed rate, and the thin gray lines correspond to a smaller feed rate. The 

results are similar among all cases. 
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Figure 3-11: Results for all normal flow models are compared against measurements of delta topset 

extent ss (top) and delta area AD (bottom). All plots in the same column show the same data, but with 

different representation. The black outer lines represent the envelope of all runs, i.e. all cases with 

backwater and normal flow closures. Each column represents a different pair of conditions;; the first 

column shows results with variable τ*
bf (dark) and constant τ*

bf  (light), the 2nd column shows juvenile 

channels (dark) and fully-mature channels (light), and the last column shows results with larger Qt,feed 

(dark) and smaller Qt,feed (light). 

Modelled channel width, as represented by a single lumped channel, is compared to cumulative channel 

widths at specified distances from the delta apex in Figure 3-12. All model runs are shown in gray and the 

two reference models and full model are highlighted with symbols. No models are capable of accurately 

capturing the total channel width or its variation at WLD, which includes a rapid width increase from 300 

m in the Wax Lake Outlet feeder channel to approximately 2500m over a distance of several kilometers. 

(The actual length depends on year). The reference models both predict narrow channels with little spatial 

variation. The full model predicts increased channel width down delta, but under predicts the initial 

expansion at 5 km from the delta apex. As noted above, the trend for decreasing total channel width 

beyond the wide section is due to delta asymmetry, so it is not considered in our analysis. 
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Figure 3-12: Modelled width for all normal flow and backwater hydraulic models with particular focus 

on a model similar to Parker and Sequieros (2006) (PS), the normal flow model of Kim et al. (2009)  and 

the full model including variable Shields number, basement incision, and juvenile channels. The Ref. 

Model relates to constant bankfull Shields stress, juvenile channels, and basement incision; the model 

most closely follows the width trends at WLD. Generalized field data for each of four years are noted in 

each subplot.  

Models that assume a fixed width feed channel develop a narrower and deeper channel than the self-

formed model. Models that best represents channel width at WLD (Constant bankfull Shields number, 

juvenile channels, incision into pre-delta substrate) simply keep the morphology of the initial condition 

set by Figure 3-6. The constant Shields number model also predicts a constant dimensioned bed shear 

stress, which is smaller than the specified critical Shields stress for cohesive sediment erosion. This model 

does indeed predict rapid downstream widening of the channel in the upstream part of the domain, as 

shown by the triangle markers in the figures, but this is the result of the model’s inability to erode 

basement substrate. The variable Shields number model (full model in the figure) has different results 

because it is capable of eroding the substrate. 
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Figure 3-13: Modelled channel and floodplain elevations for all backwater hydraulic models, with 

particular focus on a model similar to Parker and Sequieros (2006) (PS) and the full model including 

variable Shields number, basement incision, and juvenile channels. Generalized field data for channel 

and inter-channel areas for each of four years is noted in each subplot.  

Channel and floodplain elevations for all model runs are shown in Figure 3-13. Measured elevations for 

the channel and floodplain pertain to the generalized measurements discussed above. A reference 

backwater extension of the Parker and Sequieros (2006) model is highlighted for comparison. Channel 

and floodplain elevation measurements vary widely depending on model features. The full model 

presented here assumes a self-formed feed channel that has considerably higher elevation than the 

measured thalweg elevation. 

Models that predict deeper channels either: assume a fixed width in the feed channel, or use a lower Qt,feed 

with in conjunction with constant bankfull Shields number model. The reference model predicts 

increasing depth downstream, while the full model better follows basinward trends in measured depth, in 

that it shows a pattern of shoaling downstream. 
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It can be useful to assess the effectiveness of model features by performing a leave-one-out analysis, 

where several model runs with one feature removed from the full model are compared against results of 

the full model. The effect of different model features on development of total channel width is included in 

Figure 3-14. This figure includes the full model with a single feature turned off (or turned on for the 

fixed-width feed channel scenario) along with the base reference models for normal flow and backwater 

hydraulics.  

 

Figure 3-14: Comparison of predicted total channel width between several models that use a backwater 

hydraulic implementation. The PS Model is a backwater extension of the Parker and Sequieros (2006) 

model, i.e. constant τ*
bf and Cz, The Kim Model is identical to the model of Kim et al. (2009a), and FM 

represents the full model presented herein. The full model is compared to similar versions that include 

one modification per run, e.g. full model with constant rather than variable τ*
bf. Relevant field data are 

included in the plot. 

The full model with constant bankfull Shields stress produces different trends in width when compared to 

the similar model with bankfull Shields Number, but these are related to the initial conditions as noted 

above. Including a fixed-width guide channel forces a narrower feed channel, but the downstream trend in 

width is quite similar to the full model. Assuming a basement composed of alluvium, a channel with little 
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spatial variation in width extends to rflood, after which the channel width increases linearly. Finally, 

omitting juvenile channels results in spatially uniform width, as compared to width that increases 

downstream direction in the full model. When basement substrate is included, the model erodes basement 

until the shear stress matches the critical shear stress; if, for example, the full model were to predict a 

higher elevation for the feed channel, it would produce results similar to the base case. 

Figure 3-15 shows the same leave-one-out model analysis effect on channel and floodplain elevations. 

The fixed-width feed channel model most closely resembles measured results at Wax Lake Delta. This 

model requires a forced width transition zone for model stability, which erases some of the dynamic 

effects found in the full model.  

 

Figure 3-15: Comparison of predicted elevation between several models that use a backwater hydraulic 

implementation. The PS Model has similar features to the Parker and Sequieros (2006) model, i.e. 

constant τ*
bf and Cz, and FM represents the full model presented herein. The full model is compared to 

similar versions that include one modification per run, e.g. full model with constant rather than variable 

τ*
bf. Relevant field data are included in the figure. 
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The assumption of self-similar γ and ε is relaxed and applied to the full model to investigate how temporal 

evolution of these parameters may affect delta morphodynamics. Figure 3-16 illustrates the temporal and 

spatial evolution of γ and ε given the assumption of self-similarity (left side of figure) and temporal 

evolution via Eq. (26) (right side of figure). For the condition of self-similarity, slope decreases as the 

physical domain expands. In both models, the transition between mature and juvenile channels migrates 

downstream over time. The temporal evolution model involves rapid decrease in γ, ε, followed by steady 

increase over time. Differences between predicted channel and floodplain elevations from each model are 

included in Figure 3-17.  

 

Figure 3-16: (left) Spatial variation in γ and ε for typical model conditions, i.e. assumption of self-

similarity in dimensionless space. When γ= ε=1, the channels have a mature structure and maintain their 

discharge; the slope of γ and ε flattens over time. (right) Temporally evolving γ and ε; both conditions 

have identical initial conditions, but the temporally evolving model develops a different decay pattern in 

space. 
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Model results are generally similar and both tend to create an eroded bench just beyond the initial 

transition between deep feed channel and the shallow delta channel. This eroded region propagates 

downstream with delta progradation. The model with temporal evolution in γ and ε predicts a sharp 

transition between the eroded region and non-eroded region immediately basinward, while the self-similar 

version is more gradual. 

 

Figure 3-17: Modeled evolution of channel and floodplain elevations through time for the full model with 

the self- similar formulation for γ and ε versus the full model with temporally evolving γ and ε. 

Generalized field results from channel and inter-channel areas are included for comparison. 

Discussion 

Performance of normal flow models 

The phase diagram in Figure 3-7 isolates the variation in behavior of the parameters Hbf, Bbf, and S when 

the effect of juvenile channels are included. More specifically, it studies how the ratio of each parameter 

to its mature value changes as the parameter  or  increases, so reducing the channel-forming Shields 

number. The case considered is normal flow. A realistic parameter range for γ and ε is not known, but 
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measurements at WLD show that both values have minimum value around 0.6. While we plot this phase 

space with  or  in the range (0,1), γ = ε = 0 does not necessarily relate to the incipient channel form; this 

value likely relates more to a no-flow condition, while the incipient channel can be generalized as 

axisymmetric flow over an unchannelized deltaic surface. The trend in Figure 3-7 is clearly non-linear, as 

the values deviate rapidly from their mature values as γ, ε approach zero. Depth is the most dependent on 

the decay factor, a result that is common to both normal flow and backwater models. This closure requires 

slope to increase as the channel approaches an incipient juvenile state.  

Manipulation of Eq. (47) at the delta periphery (where depth is an assumed, known value) leads to the 

result S = f (γ,Hbf). Here Fr2 can be calculated through Eq. (46) as a function only of Sf. Finally, channel 

width can be computed through Eq. (42), such that Qw = εQw,tot via Eq. (19). Altogether, this yields the 

result that ε affects only channel width. Therefore, the condition ε < γ could possibly relate to a scenario 

with both declining width and declining depth. The relationship between ε and γ should be evaluated in 

future work. 

The Kim et al. (2009a) model has been augmented here to include a variable Shields number model and 

to account for underdeveloped juvenile channels at the delta periphery. Results in Figure 3-11 suggest that 

predictions for the delta progradation rate and the expansion of delta area not significantly affected by the 

closure for bankfull Shields number. Channel width is narrower with models that use constant Shields 

number with fully mature channels, and are wider when juvenile channels are added. The variable Shields 

number models show similar trends, i.e. nearly spatially invariant width with fully-mature channels and 

basinward width increase when accounting for juvenile channels, but the pattern of variation is not as 

strong in comparison to constant Shields number models. Channel width is under-predicted in all model 

runs. Shaw et al. (2013) discuss the incisional regime of channels in WLD. The measured basement 

elevation (Figure 3-6) and channel elevation (Figure 3-4) show a rapid streamwise change in depth, which 

occurs simultaneously with a rapid streamwise change in width (Figure 3-5). The normal flow model 

framework cannot account for the physics associated with this condition. These results suggest that the 

additional features of variable Shields number and juvenile channels do not improve normal flow models, 

because 1) the present models adequately predict progradation, and the predicted delta geometry well-

represents reality, and 2) the added features are insufficient to capture the physics that control channel 

width selection, at least considering the pre-delta substrate effects at Wax Lake Delta. 

Performance of backwater models 

Model runs that use a backwater hydraulics framework create a wide array of model predictions. The 

modelled delta extent in 2015 varied from 10 km to 13.5 km, while delta area in 2015 range from 80 km2 

to 140 km2. The base models predict these quantities as well as the full model, which includes all the 
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added features including juvenile channels, bedrock incision and variable bankfull Shields number. None 

of the models are capable of predicting the rapid transitions in channel width observed at Wax Lake 

Delta, but the full model is able to improve on predictions for the increase in channel area over time. 

Basement dynamics at Wax Lake Delta play a major role in setting the morphodynamics, as noted by 

Shaw et al. (2013). Channel elevation is modelled well when both basement interactions and juvenile 

channels are included. The model framework allows for basinward propagation of channel maturation. As 

the channels mature, they are capable of eroding into the delta substrate, which causes a basinward 

incisional wave as a direct result of channel maturation. Wagner et al. (2017) have shown that the 

basinward edge of WLD shows the most aggradation in recent years. This results in an overall flattening 

of the delta topset slope, and ostensibly further confinement of the delta channel. The mechanism 

discussed here could cause further downstream incision into the pre-delta substrate in the future.  

Predictions of channel width are not sufficiently accurate when compared to data; some aspect of the 

physics is thus not properly accounted for with the set of models described here. The model runs that 

most closely resemble the spatial width variation are unable to erode the basement material and select a 

self-formed width. Both the constant and the variable Shields number closures relate to general trends in 

rivers with much scatter in the data used to determine them. Li et al. (2015) model the Fly River with their 

slope-dependent closure, but only after adjustment by referencing a parameter to an upstream scale. A 

similar procedure may be necessary to generate the proper width predictions at WLD. 

Temporal evolution of γ does not dramatically change results when included into the full model, but the 

implementation merits further study in a more advanced form. The framework presented here accounts 

for dynamic channel development such that channel maturation process can be modulated by the relative 

timescales of sediment emplacement on the channel banks versus channel extension through delta 

progradation. As the delta expands and the progradation rate decreases, we should expect more mature 

channels to develop at the delta periphery. This compares with results of Muto et al. (2016) that relate the 

progradation rate of deltas to the basin characteristics. 

Recommendations for future modelling 

Our results show how inclusion of a range of model features, including variable bankfull Shields number, 

juvenile channels, bedrock incision and backwater affects predictions of delta morphodynamics. The 

results indicate that progradation rate and delta area are well computed with simple normal flow closures. 

Predicting channel depth requires the inclusion of both juvenile channels and bedrock morphodynamics. 

Edmonds et al. (2011) describe a paradigm for topset-dominated deltas to characterize stratigraphic 

changes. The authors note that when basins are shallow, channel networks often incise into pre-delta 

material. In such cases, the alluvial-bedrock framework presented here would be a necessary component 
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to properly estimate channel elevations. A downstream shoaling pattern has been noted by many 

researchers, e.g. Shaw et al. (2016a). The juvenile channel framework allows for shoaling along with 

simultaneous channel widening. The inability of the model to predict total channel depth may be due to 

site-specific considerations such as basement dynamics. Perhaps this shortcoming could be overcome by 

including an explicit channel network. This topic should be investigated in the future. 

Conclusions 

A 1D self-formed channel river delta model was developed to build upon past models by including 

several new features, including: a distributed Exner equation that accounts for channel, floodplain and 

average delta elevations simultaneously; a slope-dependent variable bankfull channel Shields number 

model, framework for incision into pre-delta substrate, and a framework to account for leaky, physically 

under-developed juvenile channels at the delta periphery. Forty model runs, including 8 with uniform 

normal flow hydraulics, and 32 with steady, shallow water equation hydraulics are carried out to model 

the evolution of Wax Lake Delta in Louisiana, USA. The model runs each correspond to a different 

combination of model features. Differences in model results are analyzed to determine the necessary 

model features to predict typical delta morphologies such as delta progradation rate, delta areal growth 

rate, channel width, and channel depth. Normal flow hydraulic models seemed to predict progradation 

rate and delta areal growth well regardless of the bankfull Shields number closure; however, adding 

juvenile channels does slightly decrease the growth rates. Models that use the steady shallow water 

hydraulics have wider variance in all predicted quantities. Channel elevation dynamics were predicted 

well when basement incision and juvenile channels were included in the model run, but no models were 

able to accurately predict channel width. Juvenile channels are modelled through a linear decay factor of 

the bankfull Shields number closure, which relates to a mature river architecture. Leaky channels are 

accounted for with a similar linear decay factor; both parameters are estimated with field data at Wax 

Lake Delta. This implementation is tested first assuming self-similarity, such that the initial values for 

each factor are constant, but stretch with progradation of the delta topset. An alternative method involves 

temporal and spatial evolution of these decay parameters subject to the growth rate of the delta 
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Notation List 

αEH = Coefficient in Engelund-Hansen equation [-] 

αCz = Coefficient in Cz equation (Li et al. 2015) [-] 

β = Coefficient in 
*

bf  equation (Czapiga et al. 2018) [-] 

γ = Juvenile channel decay function [-] 

ε = Proportion of flow retained in the channel [-] 

ν = Kinematic viscosity [m2s-1] 

Ω = Proportion of mud deposited per unit sand [-] 

σ = Global subsidence rate [mm/yr] 

   = Sea-level rise [mm/yr] 

bf   = Bankfull bed shear stress [Pa] 

*

bf   = Bankfull Shields Number [-] 

*

, bf mature = Mature value of Bankfull Shields Number [-] 

ηc = Channel elevation [m] 

ηf = Channel elevation [m] 

ηbase = Basement elevation [m] 

   = Average delta elevation [m] 

Bbf = Bankfull width [m] 

Bf = Floodplain width [m] 

Btotal  = Total Width [m] 

Cz = Dimensionless Bankfull Chezy Roughness coefficient [-] 

D50 = Median grainsize [m] 

D* = Dimensionless grainsize [-] 
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g = Gravitational acceleration [m3s-1] 

kτ = Rate coefficient for spatial decay in γ 

kQ = Rate coefficient for spatial decay in ε 

pc = Areal cover factor on the bed [-] 

Hbf = Bankfull depth [m] 

If  = Intermittency Factor [-] 

Lac = Representative Dune Height [m] 

m = Slope exponent in 
*

bf  equation (Czapiga et al. 2018) [-] 

n = Dimensionless grainsize exponent in 
*

bf  equation (Czapiga et al. 2018) [-] 

nCz = Exponent in Cz equation (Li et al. 2015) [-] 

r = radial extent from the delta apex [m] 

R = Submerged specific gravity [-] 

S = Average bed slope [-] 

ss = Radial extent of the delta apex [m] 

ss   = Shoreline shock-condition 

sb = Radial extent of the foreset-bottomset transition [m] 

bs   = Shoreline shock-condition 

Qw = Bankfull water discharge [m3s-1] 

Qw,tot = Total Bankfull water discharge [m3s-1] 

Qt = Bankfull sediment discharge [m3s-1] 

Qt.c = Capacity bankfull sediment discharge [m3s-1] 
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CHAPTER 4 : A TWO-PARAMETER MODEL FOR SEDIMENT TRAPPING 

EFFICIENCY IN JUVENILE RIVER DELTAS 

Abstract 

River deltas consist of a network of channels that move water and sediment from an upstream river 

channel and deposit into a basin. Bifurcation, which causes declining water discharge and bed shear stress 

in channels towards the basin, and sediment transport dynamics suggest a non-linear decrease in sediment 

transport capacity. Here these concepts are combined to develop a simple quantitative measure of the 

sediment trapping efficiency of a delta topset that depends only on a) a characteristic length scale taken as 

the distance to first bifurcation, and b) two rate coefficients governing the spatial rate of channel 

bifurcation and spatial rate of channel maturation, i.e. juvenile vs. mature channel structure. The former 

parameter can be estimated from aerial imagery, and the latter is estimated using volumetric changes in 

the prodelta and delta topset at Wax Lake Delta, Louisiana, USA, segmented into two periods over 26 

years. The model reasonably estimates spatial variation of normalized width and depth parameters, 

indicating that basic morphodynamics are sufficiently captured. This formulation is autogenic and does 

not require changes to hydrology, sediment supply, or basin conditions to drive evolving delta topset 

processes. A generalized version of the model is discussed showing combinations of the two-parameters 

that cause topset deposition or delta progradation. A cyclical paradigm is described, based on limited data 

at Wax Lake Delta, which suggests juvenile deltas may require alternating phases of high capture 

efficiency followed by low capture efficiency. Our model suggests this feature is modulated by maturity 

of delta channels at the periphery. 
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Introduction 

River deltas lie at the boundary between fluvial and basin environments and form as discharge from the 

upstream river expands, causing sediment deposition. However, of 6,050 active river mouths with widths 

exceeding 30 meters worldwide, only 25% develop deltaic landforms (Baumgardner, 2016). Deltas are 

self-constructed via deposition of sediments carried by the upstream river, and sometimes shaped or 

reworked by winds, tides, or human activity. If an insufficient quantity of sediment is delivered to the 

basin, a delta may never develop; similarly, existing deltas may drown or deconstruct via basin forces or 

allogenic changes such as base level rise. We seek to identify the conditions required to trap enough 

sediment to retain a deltaic landform considering autogenic conditions, i.e. with no changes to the water 

discharge, sediment discharge, or basin fluctuations related to either sea level rise or fall. 

Past experiments (Muto et al. 2016, Pilourais, 2016, Kim et al. 2009b) and numerical results (Kim et al. 

2009a, Kim et al. 2009b) describe autogenic delta growth rates over time. Kim et al. (2009a) numerically 

model deltaic growth as a single lumped channel, sans network, that sweeps across the delta topset. This 

type of model carries the assumptions that 100% of bed material load is captured in the delta or prodelta, 

and washload is passively deposited at a specified rate. Under autogenic conditions, nearly all sediment 

leaving the upstream river boundary exits for progradation. The delta channel tends to a quasi-equilibrium 

slope with uniform normal flow, so the only sediment trapped in the delta relates to aggradation required 

to maintain this equilibrium slope as the delta progrades into the basin. Kim et al. (2009b) develop a 

similar model, but assume the delta apex propagates forward as the delta topset expands; the authors 

compare experiment and model results assuming different slopes of the pre-delta basement surface. Muto 

et al. (2016) perform experiments with constant base level as well as falling base level to reach a graded 

state. The experiments without sea level rise require the delta to prograde out to a steeper basin slope, 

which the authors compare to a continental shelf edge delta. The rapid offshore increase in 

accommodation space in the experiments results in stagnated delta progradation, and generates a graded 

topset that delivers nearly all input sediments to the deep basin. Piliouras et al. (2017) add vegetation to 

enhance channel stabilization and sediment trapping efficiency. The authors found that including a low-

discharge inter-flood condition allowed for more persistent channels capable of transporting sediment to 

the shoreline, leading to a condition where progradation and topset aggradation are both significant. 

Nardin and Edwards (2014) show the type and density of vegetation differently affects sand or mud 

deposition. They found that sand trapping is inefficient when tall or dense vegetation lines the channel 

banks, limiting transport into the island areas, and mud trapping is inefficient if no vegetation exists to 

increase flow roughness on submerged islands. Similarly, Hiatt and Passalacqua (2017) show that 
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hydraulic roughness of subaqueous banks adjacent to a channel, which can be controlled by vegetation 

density, affect the flow patterns, which has direct impact on sedimentation processes. 

The examples presented herein are autogenic river dominated deltas with no or negligible forces from 

winds, tides, or storms. Some of these experiments are either avulsion dominated or channel migration 

dominated, processes that deposit sediment locally then shift across the delta topset over time. These 

mechanisms result in spatially non-uniform deposition on short timescales, but equal spatial deposition 

rates over longer timescales. Several other models include dynamic channel networks that distribute 

sediment across the topset, or at least across a sub-lobe of the topset, e.g. Liang et al. 2015. We simplify 

our scope further to focus on the effect of channel network distribution of sediments in a river-dominated 

delta. This scope is narrow, but applicable to juvenile deltas in sheltered basins not subject to sea level 

rise, an idealized condition that is convenient for studying engineered land building via river diversion, 

e.g. West Bay diversion (Kolker et al., 2012).  

Analogue to engineering land diversions 

Laboratory experiments and field-scale experiments at juvenile deltas can provide appropriate platforms 

for the design of engineered water and sediment diversions meant to construct new land. Cubits Gap, in 

the Mississippi Delta, is a deltaic deposit that has been a growing since 1862, when a channel was dug 

through the current Mississippi River bank to form a faster path of transit to the Gulf of Mexico 

(Campbell, 1988). Wax Lake Delta extends from a flood relief channel dug in 1941 to limit flooding in 

Morgan City, LA (Wellner et al. 2005). More recently, several field scale experiments have been planned 

to divert water and sediment at various points in the lower Mississippi River. Of particular interest is the 

West Bay diversion, which emanates from a narrow cut into the upper portion of a Mississippi River 

levee just upstream of the head of passes. Kolker et al. (2012) note that most deposition occurs at the 

basinward end of the Bay, and estimates that ~70% of sediment is retained. Yuill et al. (2016) show an 

initial erosional phase proximal to the channel cut, followed by a transition to a more depositional regime 

throughout. Nittrouer et al. (2011) determined that 40% of sand flux from the Mississippi River is 

transported and completely deposited within the Bonnet Carré Spillway despite that face that the spillway 

pulled flow from the top of the water column. Paola et al. (2011) suggest that the area of the delta plain 

depends on the volumetric sediment input, basin characteristics, and a specified sediment trapping 

efficiency. We seek to understand the sediment transport dynamics in these growing juvenile deltas as a 

means to evaluate sediment trapping efficiencies, which can be applied to temporal development of 

engineering water and sediment diversions. 

Here we consider the sediment transport characteristics of a delta with bifurcating channels. Although we 

apply the normal flow condition everywhere, the presence of bifurcating channels, which become ever 
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more poorly defined (ever more juvenile) downstream leads in most cases to a downstream decline in 

sediment transport capacity. This allows us to characterize the tendency for sediment retention in the delta 

relative to delivery to the shoreline. The model does not include sediment morphodynamics, but could 

easily be extended to do so. 

The crux of our argument relates to three basic conditions inherent to river deltas and sediment transport 

dynamics. Together, they are as follows. 

1) As channels bifurcate throughout deltas, the input discharge is split across many channels.  

2) As discharge in each channel declines, dimensionless bed shear stress declines. 

3) As dimensionless shear stress declines, sediment transport declines even faster. 

The first statement is verified through simple mass balance along with assumption that the delta network 

is fed solely from a single river channel. Tejedor et al. (2017) use channel width as a proxy for channel 

water and sediment discharge to suggest that delta networks organize themselves so that a given water or 

sediment particle has equal probability of reaching the delta/basin boundary via each of the network 

distributaries. However, the partitioning of water and sediment is not necessarily equal, as shown by e.g. 

Wang et al. (1995). The model presented here is focused on the effective sediment transport to the delta 

periphery, rather than the specifics of channel bifurcation. We assume water and sediment is split evenly 

as a means to ensure similar deposition rates across the topset. This assumption can be relaxed in future 

implementations. The second condition is not immediately obvious, but past bathymetric studies in deltas 

have shown systematic shallowing down delta, e.g. Shaw et al. [2013], Shaw et al. [2014]. The bed shear 

stress τb in a channel can be estimated as in eq. (1), where ρ is density of water, assumed to be 1000 

[kg/m3], g is gravitational acceleration, H is channel depth, and S is slope. Bed slope in a delta can be 

adverse, coincident with decreasing channel depth basinward, so the slope here is friction slope Sf, which 

quantifies the driving force. The dimensionless bed shear stress, or Shields’ stress τ* is shown in eq. (2), 

where R is submerged specific gravity, assumed to be 1.65 for quartz, and D50 is median bed material 

grain size. 

b fgHS   (1) 

*

50

fHS

RD
   (2) 

If D50 is constant in the delta, then Shields stress changes are driven solely by the depth-slope product. 

The final of the three conditions be demonstrated using a variety of sediment transport equations, which 

hold the general form for the Einstein number 
*

tq  as in eq. (3). 
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t cq C     (3) 

where  

*

50 50

 t
t

q
q

RgD D
 

and qt denotes the volume bed material transport rate per unit width. 

Here 
*

c  is the critical Shields number for incipient motion, and nt is an exponent typically larger than one 

(Garcia, 2008). The nonlinearity in this relation indicated that it is plausible that a unit relative decrease in 

discharge, e.g. 10% decrease, may result in a larger relative decrease in the sediment transport rate. A 

negative divergence of sediment transport rate implies deposition, and persistent deposition implies 

sediment trapping. 

We define a model framework to quantify the sediment trapping efficiency in a delta resulting from 

decline in sediment transport capacity according to the nonlinearity inherent in eq (2). These results can 

be summarized through the trapping ratio ψ, which is the ratio of the total sediment load exiting the delta 

against the supply rate. If ψ is small, the delta channels cannot convey much of the supplied sediment to 

the shoreline, thus forcing sediment retention on the topset; as ψ approaches unity the delta approximates 

a graded state where the transport exiting the delta and driving progradation equals the supply rate. 

Finally, when ψ exceeds one, the topset is mined and the delta progrades faster than during the graded 

state. 

The condition   1 can capture tendencies toward purely autogenic evolution (but not the evolution 

itself. The condition  > 1 necessarily implies allogenic forcing, which complicates the framework. Even 

though allogenic forces are not considered here, when  > 1, our model predicts that the main channel 

bifurcates into several channels that each have similar capacity to transport sediment, resulting in a net 

downstream increase in cumulative sediment flux. The condition where the topset is mined, causing faster 

progradation, can be related to a reduction in sediment supply or base level fall, such that the channels 

erode sediments from the topset with insufficient replenishment from the input flux. 

Methodology 

Model Assumptions 

We assume a model domain consisting of a radially symmetric fan delta with channel and inter-channel 

areas, the planform of which is described in Figure 4-1. Here r denotes the radial distance r from delta 

apex, θ denotes the planform topset angle and B denotes the width of any given channel in the network. 
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The channel network structure is implicit, i.e. the details of individual migrating or avulsing channels are 

not modeled, and while the number of channels λ depends on r, it is invariant in θ. The delta is 

axisymmetric, such that all channels at common radial lengths from the delta apex are identical. Channel 

properties include median grain size D50, width B, depth H, slope S, discharge Q, and bed material load 

sediment transport rate Qt. While the model does not compute morphodynamic change, the framework 

includes inter-channel areas where sediment deposition can occur by over-spilling. 

 

Figure 4-1: The model domain is drawn with an arbitrary network. The topset is defined by the radial 

distance from the delta apex, r, and topset angle θ. The arc length at any location is defined by rθ, and 

this width is composed of channel B and inter-channel areas φB. A constant flux of water and sediment 

discharge enter the delta as noted by Qw and Qt, respectively.  

The model includes several equations to govern flow, sediment transport, spatial bifurcation rate, bankfull 

Shields number, and physical aspects of the domain. Each variable in the system is normalized by its 

respective input value, denoted as the “upstream” value with subscript u as shown for the generic variable 

x in eq. (4).  

ux xx  (4) 

Here x  denotes the dimensionless version of the dimensioned variable x. For example, the physical 

domain variables for the radial distance from the delta apex r and delta topset angle θ (Figure 1), are 

normalized as ur rr  and 
u  , respectively. Upstream values for width Bu, depth Hu, slope Su, 
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discharge Qu, and sediment transport rate Qt,u relate to conditions in the feed channel. The model delta 

emanates from a single channel, so the upstream channel number λu equals one there. Thus, the number of 

channels  is equal to its normalized value  . The upstream delta angle θu is a prescribed value relative 

to the initial basin space.  

Model Framework 

We begin with an assumption for uniform normal flow via the Chezy equation as shown in eq. (5), along 

with the normalized form in eq. (6). 

3/2 1/2Q CzBH S  (5) 

3/2 1/2Q BH S  (6) 

In deriving eq. (6) from eq, (5), it is assumed that the Chezy coefficient Cz is constant in time and space, 

which implies that Cz = Czu. Discharge in eqs. (7) and (8) relates to discharge in each channel, which is 

equal to the inflow discharge divided by the number of channels. This means that no flow is specifically 

allocated to the inter-channel areas. This is not the case for the Wax Lake Delta; Hiatt and Passalacqua 

[2015] and Shaw et al. [2016a] illustrate the presence of inter-channel flow Instead of modeling this 

feature explicitly, we account for the net effect of flow lost from the channels via the modification to a 

variable Shields number equation. 

1

uQ Q  (7) 

1Q   (8) 

Rivers show scaling laws suggesting that channel width scales with bankfull discharge to approximately 

the ½ power (Leopold and Maddock, 1957). Edmonds and Slingerland (2007) compare hydraulic 

geometry from 11 deltas that show good agreement with the hydraulic geometry equations measured from 

deltas by Mikhailov [1970] and Andren [1994]. These equations use exponents equal to 0.5 and 0.39, 

respectively, suggesting that the assumption that channel width scales with discharge to ½ power is 

acceptable for delta channels. Channel width B is thus parameterized in eqs. (9) and (10). 

1/2

0B C Q  (9) 

1/2 1/2B Q    (10) 

The bankfull Shields stress given in eq. (2) is normalized into eq. (11).  

* HS   (11) 

Li et al. [2015,2016], Trampush et al. [2014] and Czapiga et al. [2018] relate the bankfull Shields number 

to a dimensionless grainsize and bed slope from bankfull river channels. This equation can be useful in 
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numerical modelling of river morphodynamics when channels have well-constructed banks and 

floodplains. Delta channels develop from an incipient state with unconfined flow due to the construction 

of subaqueous channel banks adjacent to the channel bed. Delta channels adjacent to the distal end, i.e. 

near the receiving basin, are in this juvenile state, as discussed in Chapter 2, but can approach a mature 

river structure in older up-delta channels. In this model, it is assumed that channels at the distal end of the 

delta are in a juvenile, or incompletely formed state. We assume that the Shields number relation of 

Czapiga et al. [2018] describing mature channels can be modified to include a power-law decay factor 

relating to the spatial (down-delta) transition from a mature channel structure in the upstream portion of 

the delta to juvenile, non-confined channels basinward as in eqs. (12), (13), and (14). The exponent m = 

0.365, per Czapiga et al. [2018]. 

*

*

m n

bf S D   (12) 

k
r  

  (13) 

* k m

bf r S 
  (14) 

The parameter  satisfying the condition 0 <   1 specifies the degree of juvenility of the channel, such 

that  = 1 corresponds to a fully developed channel, and  < 1 described an incompletely developed 

channel. In eq. (13), we choose k > 0, so that channels become increasingly more juvenile downstream. 

Other parameters in the above equations are β = 182 and n = - 0.87, but these scale out upon non-

dimensionalization according to Eq. (4). 

Sediment transport is modeled with the Engelund-Hansen equation and sediment size is restricted to sand, 

i.e. 0.065 mm  D50 ≤ 2 mm. Again, the Chezy roughness coefficient scales out of the equation, as it is 

constant in space. Where Qt = the total volume sand transport rate in a given channel, 

2 * 5/2

50 500.05t bfQ Cz B RgD D  (15) 

 
5/2

k

tQ B r HS
  (16) 

The delta network is assumed to be constructed through a series of bifurcations, and we assume this 

follows eq. (17), where α is a scaling coefficient that is not a function of r. This equation integrates to eq. 

(18), which is in turn normalized in eq. (19) so that the dimensionless channel number is a power-law 

function of dimensionless radial length and parameter α. 

d

dr r

 
  (17) 
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1C r   (18) 

r   (19) 

The preceding methodology relates to in-channel characteristics for hydraulics and sediment transport 

mechanisms. We construct inter-channel areas through assumptions for the transverse depositional length 

scale from a channel. This implies builds a delta islands adjacent to channels. We assume that these 

implicit islands linearly scale to adjacent channel width as a first-order assumption. That is, 

 2 1

r

B








 (20) 

r

B


   (21) 

where the island width on either side of a channel is B.  

The normalized governing equations can be manipulated to solve for morphodynamic variables. All 

variables can be recast in terms the normalized radial length r ; the normalized channel number   is 

already defined in this form as in eq. (19). Normalized discharge and width are both functions of channel 

number alone and are easily manipulated to the forms of eqs. (22) and (23). 

Q r   (22) 

/2B r   (23) 

The normalized flow equation, eq. (5), and normalized bankfull Shields number eqs. (11) and (14) can be 

combined with eqs. (22) and (23) to obtain equations for H and S , i.e. eqs. (24) and (25), respectively. 

The normalized delta topset angle is solved by combining eqs. (19), (21), and (23), resulting in eq. (26). 

/2 1r   (26) 

Finally, the normalized sediment transport rate per channel 
tQ is redefined by combining eqs. (16), (23), 

(24), and (25), as in eq. (27) below. We use a simplifying assumption of no active sediment transport 

outside the channels; these areas, which we refer to as islands, are implicit deposition zones. Shaw et al. 

(2013) show that the Wax Lake Delta channel are incised into antecedent consolidated shelf mud, while 

islands have significant deposition. We explicitly treat neither feature here, an instead consider the 

sediment transport efficiency of the bifurcating delta itself. The cumulative sediment transport at any 

 1

3 2

k m

mH r
  

  
(24) 

3

3 2

k

mS r
 

  
(25) 
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radial distance along the delta Qt,total in the delta is the product of sediment transport rate and number of 

channels, as in eq. (28). 

45

2 5 3 2

k m
k

m

tQ r




  
   

   
(27) 

45

2 5 3 2

,

 
  

  

k m
k

m

t total tQ Q r






  (28) 

The trapping efficiency ratio ψ based on channel transport capacity is mathematically defined as in eq. 

(29); the upstream value of 
,t totalQ  equals one, so ψ is obtained from eq. (28), evaluated at the 

dimensionless distance to shoreline 
maxr . When ψ = 1, all input sediment is retained in the delta; when ψ 

= 0, all input sediment is exported from the delta; and when ψ < 0, the output sediment flux is greater than 

input, signifying sediment removal from the topset. A negative value of ψ can be explained in terms of 

allogenic changes such as increase in inflow water discharge, decrease in input sediment flux, or decrease 

in basin water surface elevation, none of which is explicitly captured in this model framework. The only 

autogenic process available to mine sediments from the delta topset relates to channel maturity, such that 

the channels at the delta periphery are rendered more capable of moving sediment. However, this alone is 

not capable of causing a net erosional condition, whereby more sediment leaves the delta than enters. 

max

max

,

,

,

1 1   
t total r

t total
r

t total feed

Q
Q

Q
  (29) 

Evaluating ru, α, and kτ 

We evaluate the exponent m in eq. (28) from Czapiga et al. (2018); their value is 0.365. The final model 

equations leave three as-yet unspecified parameters; the upstream length scale ru, the power-law rate 

coefficient of channel bifurcation α, and the power-law rate coefficient for decay in the bankfull Shields 

number kτ accounting for increasingly more juvenile channels downstream. Unlike the other upstream 

values related to feed channel characteristics, the upstream length ru is ambiguous. A delta network is 

commonly related to a more simplistic fractal tree configuration, where an input “trunk” length is split 

into two bifurcates with lengths relative to the upstream channel; this methodology is systematically 

repeated to create a dendritic distribution network. We assume a similar structural similarity by defining 

ru as the distance from delta apex to the first bifurcation. This first-order assumption implies that this 

length scale is representative of the overall delta scale. However, our model framework does not force a 

systematic spatial bifurcation rate such in a fractal network, but rather scales a bifurcation rate to the rate 

coefficient α in eq. (19). This parameter and the upstream length scale ru are easily extracted from aerial 
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imagery. The number of channels at the delta periphery and the radial length of the delta rmax divided by ru 

are entered into eq. (19); as shown in eq. (30); after manipulation, α is computed via eq. (31). 

maxmax
maxrr

r     (30) 

 
 

max

max

log

log

r

r


   (31) 

Here we determine  from field data. We could, on the other hand, evaluate it from model results, e.g. 

using the jet model of Edmonds and Slingerland (2007) and Canestrelli and Slingerland (2014). As this 

model is being compared to a real world example where α can be measured directly, we obtain it from 

planform images.  

Finally, the decay rate for Shields number related to increasingly juvenile channels downstream depends 

on the rate coefficient kτ. This value has not previously been directly measured in the field. In Chapter 3 it 

is shown that bankfull Shields number closures for mature river channels can be modified with such a 

decay factor to match the morphodynamics of Wax Lake Delta. We do not offer a closure for this 

variable, but rather back-calculate it using volumetric changes in the field. This merits a mechanistic 

explanation, which should be pursued in the future. 
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Application to Wax Lake Delta 

 

Figure 4-2: Approximate subaerial extent of Wax Lake Delta (image shown is an annual average image 

from 2015). Delta topset area, extent, and the number of channels are estimated visually from annually 

averaged images in years 1989, 1998, and 2015. Given the measured normalized length scale, α is 

computed via eq. (31). 

We use Wax Lake Delta (WLD), a delta dominated by juvenile channels in coastal Louisiana, USA, as a 

test site for model application. Bathymetry and satellite imagery are available for WLD over the last 20 

years. The United States Army Corps of Engineers (USACE) collected subaerial and subaqueous data 

from the delta in 1989 and 1998. A stitched Digital Elevation Model (DEM) of airborne LiDAR and 

subaqueous bathymetry was also collected in 2015 (Shaw et al. 2016b). In Chapter 3, we generalize the 

data by characterizing channel or inter-channel areas and determining the mean and median of 

morphodynamic values at discrete radial distance from the delta apex. Data so obtained include channel 
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width, channel depth, channel elevation, inter-channel elevation, and number of channels. The subaerial 

extent of the delta is estimated from annual raw LANDSAT images from years 1989, 1998, and 2015 ( 

Figure 4-2); each image is composed of the cloud-adjusted median annual average per pixel (Bryk et al. 

2014).  

 

Figure 4-3: Schematic explaining the methodology for defining the volumetric changes associated with 

delta topset deposition and progradation. The pre-delta substrate elevation was assumed to be spatially 

constant for simplicity. 

Volumetric changes to the delta topset and volume of delta progradation were computed between 1989-

1998 and 1998-2015; a schematic of the methodology is outlined in Figure 4-3. Volumetric change in the 

topset between times t1 and t2, i.e. 1989 to 1998 or 1998 to 2015, is estimated via the product of the 

average topset elevation topset  (eq. (32)) and the topset area (eq. (33)). The USACE surveys do not 

sufficiently measure bathymetry in the prodelta, so we assume the pre-delta elevation of the basin is -2 m 

Mean Lower Low Water Elevation (MLLW) via Shaw et al. (2013). The progradation volume is 

estimated as the product of change in delta area from t1 to t2 and the difference between average elevation 

of this area and the pre-delta surface, as in eq. (34). Sediment porosity is assumed to be constant in time 

and space, such that it cancels from any computation. The measured sediment trapping efficiency ψmeasured 

is computed from the ratio of progradation volume divided by the volumetric change in the delta topset. 

The parameter kτ cannot be calculated directly, so it must be estimated by matching ψ between the model 

and measured values in WLD.  

2 1, ,    topset topset t topset t  (32) 

  topset topset topsetV A  (33) 

  
2 1 2, , , sin    foreset topset t topset t foreset t baV A A  (34) 
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Results and Discussion 

Results for Wax Lake Delta 

The length from delta apex to first bifurcation ru is approximately 0.8 km, as labeled in  

Figure 4-2. The rate coefficient of channel growth α is estimated from images in 1989, 1998, and 2015 via 

eq. (31). These values range from 0.89 to 0.9; here we use the mean value of 0.9. Volumetric changes 

between two periods: 1989-1998 and 1998-2015 are estimated from bathymetric survey measurements. 

The measured sediment transport efficiency is inferred from volumetric changes; the computed values are 

shown in Table 4-1. As α and ψmeasured are known values, kτ is computed in terms of the model input value 

required to predict ψmeasured. This parameter was found to take the value kτ = 0.096 from 1989-1998 and 

the value kτ = 0.128 from 1998-2015. 

Table 4-1: Volumetric change in Wax Lake Delta in two periods. 

Years 

Volumetric change (km2) Measured 

Sediment Trapping 

Efficiency ψmeasured 

Measured juvenile 

channel decay 

coefficient kτ 

Aggradation/

Degradation Progradation Total 

1989 to 1998 -7.12 22.01 14.89 -0.48 0.096 

1998 to 2015 7.04 5.61 12.65 0.56 0.128 

The volumetric change in the WLD shows dramatically different trends between the two periods tested. 

The first period, from 1989-1998, shows a decrease in average elevation of the topset area defined by 

subaerial delta extent in 1989. This relates to apparent erosion of the channels as discussed in Shaw et al. 

(2013) and Shaw et al. (2014); this extra sediment, plus assumed bypass of the feed sediment flux through 

the delta created rapid delta progradation. The following period brought net aggradation to the topset, 

while still advancing the subaerial delta front. Wagner et al. (2017) corroborate this trend and find most of 

the inter-channel deposition from 2009 to 2013 occur near the delta periphery. Our delta model is 

configured to match the number of channels and cumulative sediment flux at the delta periphery; the 

variation in normalized channel depth, width, and slope are predicted by the model equations (24), (23), 

and (25) . We compare the model output for these morphodynamic variables to measured data from WLD 

[Czapiga and Parker, 2018]. Figure 4-4 shows model results for both periods. Modelled H  fits the WLD 

data well. Model results for B represent an under-prediction, but the trend for mild decrease downstream 

is similar. WLD has a very wide section downstream from the apex, which means the model is not be able 

to fit the data for width for any set of parameters.  
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Figure 4-4: Model results for B (left) and H (right) along with generalized results of Wax Lake Delta 

from 1989, 1998, and 2015. The extent of the model domain relates to the measured average radial extent 

of the subaerial delta in 1998 and 2015. The 2015 data could be extended seaward because additional 

subaqueous measurements were available. Model results corresponding to each period have equivalent

B , as this parameter only depends on α, which is constant. There are only modest changes for H .  

As is clear in eq (23), B is invariant to kτ, so model results do not vary between the two periods. There is, 

however, a very slight deviation in modelled H between these periods. The spatial trends for these 

variables do not vary temporally at Wax Lake Delta, suggesting that α, parameterizing the channel 

bifurcation rate, is the most influential parameter to understand channel depth and width in a delta. The 

normal flow closure used in this model is not physically accurate at the periphery, and the model predicts 

increased slope downdelta for most conditions. Measured bed slope at WLD (e.g. Chapter 2) shows the 

opposite trend. It is difficult to assess small scale slope changes in the delta topset, so a comparison for 

this term is not provided here. The rate coefficient for juvenile channels kτ has minimal impact on H ,  S  

is sensitive to its variation, and the per-channel and cumulative sediment flux rates are extremely sensitive 

to it (Figure 4-5).  
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Figure 4-5: Sample output from the model for several morphodynamic variables when α = 0.5 and kτ = 

0.1. 

Results of the model are compared to volumetric changes in the topset, but variation in input sediment is 

not directly accounted for. The model assumes a constant feed rate of water and sediment. In the period 

between 1989 and 1998, the topset elevation decreased, forcing the model to assume a value for kτ that 

relates to over-mature channels with cumulative capacity to transport more sediment than the input rate. 

However, a rock weir was constructed upstream of WLD during this period (Reuss, 2004; pg. 342). This 

feature may have affected the delta development by cutting off much of the sediment supply. Relationship 

between α, kτ, and receiving basin geometry 

Muto et al. (2016) discuss the relationship between equilibrium delta slope and the receiving basin 

geometry. Edmonds et al. (2011) separate deltas by the ratio of topset/channel depth to the basin depth 

and describe physical differences between the two paradigms. When the receiving basin is deep, delta 

progradation is slowed or arrested and a quasi-equilibrium slope can be constructed in the topset. It might 

be intuitive to think of α and kτ as topset-controlled parameters, but they are intrinsically tied to 

accommodation space of the basin geometry similarly to the result of Muto et al. Delta channels at a fixed 

position evolve over time as sediment is deposited on channel banks, increasing the transport capacity. 

When the delta is prograding, new channels are also formed at the delta periphery. If the delta were to 
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stop prograding, the channels could develop without extending and the system would approach a graded 

state. The spatial bifurcation rate is not governed by accommodation space alone. The results at WLD 

also vary from model results for sediment retention trends in time. The measured α did not change 

significantly from 1989 to 2015, so a possible explanation for deviation from idealized models and real 

WLD results may involve a cyclical variation for the ratio kτ/α. This could be characterized as a “slinky” 

effect, with periodic variation between high sediment retention, topset steepening and maturation of distal 

channels,   followed by increased sediment export from the delta due to channel maturity at the periphery, 

causing rapid growth of many highly juvenile channels. Similar observations have been noted at WLD by 

Wagner et al. (2017) suggesting that the WLD topset slope is decreasing as the basinward half of WLD 

aggrades. Floodplain aggradation next to the juvenile channels could imply channel maturation through 

better channel confinement, which would allow more sediment to exit the delta and contribute to 

progradation. 

Generic model results 

The model uses r , α, and the juvenile channel rate coefficient kτ to predict the sediment trapping 

efficiency ψ. By definition, 1r   and both α and kτ must be non-negative. When α = 0, the delta has a 

single channel that never bifurcates; the uniform normal flow closure forces channel properties including 

width, depth, slope, discharge, and sediment flux to remain constant in space. When kτ = 0, all the 

channels are fully mature, even at the delta periphery. Considering the likely case of α > 0 (bifurcating 

channels), the number of channels  increases and B , Q , and H all decrease downdelta, regardless of 

the value of  kτ. The normalized delta angle   is constant in space when α = 2 (resembling a pie-shaped 

delta), concave inward when α < 2, and convex outward when α > 2, as shown in Figure 4-6. 

 

Other morphodynamic terms such as S ,
tQ , ,t totalQ depend on the ratio of α to kτ. Each of these variables 

decreases downdelta for the following conditions: S decreases when kτ > (1/3)α, 
tQ  decreases when 
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selected values of α and kτ is included as Figure 4-5. 
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Figure 4-6: Example of delta area shape depending on the rate coefficient for channel growth α. When 

α=2, the delta takes a pie-shaped domain as drawn in Figure 4-1, but values less than 2 develop a 

concave inward domain and α > 2 generates a convex delta shape. 

 

We consider a sample parameter envelope to show the dependence of sediment trapping efficiency α and 

kτ. When α = 0, the delta has a single channel that never bifurcates, and when kτ = 0 all the channels are 

fully mature, even at the delta periphery. Although it is not clear what the maximum value of α should be, 

it should have a physical limit that can be inferred by studying the range of values for many real-world 

deltas. The trends detailed above suggest the ratio of kτ/α may be used in place of just kτ, and it is intuitive 

that the spatial rate of channel bifurcation should be correlated to the development of juvenile channels. 

We measured α in the Mossy Delta, another juvenile delta in Saskatchewan, Canada, and found a value of 

0.75. Based on data for WLD and Mossy Delta, we suggest an upper limit for α of 1, which equates to an 

additional channel forming every ru distance from the delta apex. Recalling the general equation results, 

the condition for topset sediment retention is satisfied when kτ/α = 0.111, if m = 0. 365, so we suggest kτ/α 

= 1/2 should be sufficiently large to give the full range of model results for ψ. Therefore, we assume α 

ranges within (0,1) and kτ/α ranges within (0, 0.5).  

 

A general form of model results over this range of values is shown in Figure 4-7, with the specific results 

from WLD noted as well. This figure only shows the range of ψ for a specific normalized length scale 

max 11r , which represents the median of length scales at WLD for 1989-1998 and 1998-2015 

conditions; this allows a general comparison as to how these two data points sit within the parameter 

space of Figure 4-7. 

Comparison to geometric models 

Recent numerical and physical models examine delta evolution through topset adjustment and 

progradation via a geometrically defined closure. The Kim et al. (2009a) model uses a framework similar 

to this manuscript, without including bifurcation and a channel network. Their normal flow closure 

enforces a condition such that once the delta topset aggrades to an equilibrium slope, nearly all the input 
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flux is transported to the delta edge. Even when the delta is at this equilibrium slope, delta progradation 

will force sedimentation to maintain it; therefore a delta can never be completely at grade unless 

progradation is arrested. The relatively short topset transition time predicted by Kim et al. (2009a) relates 

to the fact that it satisfied on the range 0 < ψ < 1, Once a near-equilibrium slope is achieved, ψ becomes 

slightly above zero, increasing with progradation. Muto et al. (2016) develop a geometrical explanation 

for deltas at grade, a similar condition prevails for the Kim et al. (2009a) result as well. The Muto et al. 

experiments under purely autogenic conditions, a near-grade delta forms with no sea level rise after 

advancing to a continental shelf, and then experiences rapid change when the delta reaches the deep basin. 

Similarly to the scenario suggested herein, this result of Muto et al. (2016) also mirrors a condition where 

ψ is slightly above zero. These results generally follow the intuitive idea that deltas evolve through cycles 

of sediment retention and sediment expulsion regimes defined, by topset steepening (retention) and delta 

progradation (expulsion) respectively. 

 

Figure 4-7: The sediment trapping efficiency ψ as a function of  and the ratio k/ for normalized length 

max 11r  from the delta apex. This length scale is the average of subaerial normalized delta extent 

between the two tested periods at Wax Lake Delta. Results are shown over a selected range of α and kτ/α 

values that represent conditions that range from pure retention and pure export of all the feed sediment. 

The sediment trapping efficiency ψ thus ranges from -1 to 1. This includes conditions where; all feed 

sediment is deposited in the topset (ψ=1); sediment is trapped in the topset and exported to the prodelta 

(0<ψ<1); all feed sediment is exported (ψ=1; identified by the dashed line in plot); and the topset is 

eroded and all feed sediment is exported to the prodelta (ψ<0). 
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Assumption of axisymmetric distribution and fully channelized flow 

The model requires many assumptions to simplify the physics to a few important variables. The 

framework does not configure complexity in natural delta networks that includes e.g. unequal water and 

sediment distributions between channels of a given bifurcation order or redundant path connections. The 

model output rather represents an overall estimate for channel characteristics throughout the delta. 

Furthermore, a key question in regard to the model relates to cumulative sediment transport to the delta 

periphery. In our model, sediment is distributed evenly across the delta/basin boundary, which agrees 

with findings of Tejedor (2017) that suggest real delta networks evolve such that all areas in the delta 

have equal probability to receive water and sediment flux. A delta dominated by avulsion, a factor that is 

not included here, would likely show different characteristics from our model.  

The model framework additionally enforces the condition that flow is confined to the channels. Hiatt and 

Passalacqua (2015) show this is far from reality at Wax Lake Delta, yet we capture the resulting down-

delta decline in sediment transport via the decay rate of bankfull Shields number. As noted above, our 

model indirectly accounts for lost flow, so a direct accounting may not be necessary.  

Implications of scaling parameters to an upstream value 

The model framework enforces that all variables are scaled relative to the upstream value. As previously 

mentioned, this is only acceptable for a river dominated delta system where the forces at the delta 

periphery are negligible. Model results are independent of the input variables, but the feed channel must 

be in equilibrium and the actual sediment transport rate must be equal to capacity, i.e. nothing limits 

sediment supply or transport such as bedrock. As all variables are scaled by the upstream quantity, the 

derivation of the upstream length scale ru requires significant accuracy. The model is scale invariant 

within the constraints of its application. Therefore, the results indicate general trends in sediment 

transport dynamics within a distribution network dominated by a fluvial input. 

Implications for land building via engineered diversions 

The presented model simplifies a system of complex processes that govern sediment transport and 

deposition in a young river delta. The model is able to reasonably reproduce morphodynamic quantities 

for spatial variation in channel width and channel depth when kτ is scaled from volumetric changes at 

Wax Lake Delta. These positive results help identify the necessary variables to simplify a complex system 

of processes that govern land growth in young deltas, as well as the relative importance of those variables. 

The result that the model is strongly sensitive to variation in kτ is an important outcome and, and provides 

a challenge for future applications. Measurements of the spatial change in Shields’ stress are presently 

insufficient to allow direct evaluation of kτ, but our result highlights the importance of collecting such 

data in the future. Additionally, measurements at WLD suggest a natural cyclical prototype, i.e topset 
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retention followed by expulsion, to mimic in future engineering diversion applications. Our model 

requires two parameters, i.e. rate parameter for transition to juvenile channels k and spatial bifurcation 

coefficient ; the latter was found to be nearly constant over the tested period. Therefore, the pattern of 

sediment retention of the delta can be exclusively linked to the degree of channel maturity. A basinward 

decline in bed shear stress, as illustrated in Figure 4-8, relates to a progressive lack of channel 

confinement downstream (Hiatt and Passalacqua, 2015 and Hiatt and Passalacqua, 2017). 

 

Figure 4-8: Effect of variation of kτ on dimensionless bed shear stress   HS  in space. Values are 

plotted for α = 0.9 as per Wax Lake Delta measurements. There is a significant change in predictions for 

  between the cases kτ = 0.09 and kτ = 0.18; these conditions result in sediment trapping efficiencies at 

r =11 of ψ = -0.81 and ψ = 0.93, respectively. The area bounded by these two curves therefore 

represents the range of realistic conditions. 

A long-term engineering plan may include alterations of the channels at the delta periphery so as to 

selectively increase or decrease inter-channel flow, thus modulating the effectiveness of channels to 

export sediments to the adjacent prodelta. The results of this paper motivate future numerical and 

experimental modeling to assess the degree of downstream decrease of shear stress and sediment transport 

in the channels caused by loss of water discharge to the inter-channel zones. 
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Conclusions 

A modeling framework is derived that relates sediment trapping efficiency in deltas to a combination of 

channel bifurcation, declining bed shear stress, and the non-linear relationship between bed shear stress 

and sediment transport rate. The governing equations are simplified to relate a normalized channel length 

scale to two input parameters: the power-law rate coefficient of channel growth, and the power-law rate 

coefficient of channel maturity describing spatial transition from juvenile channels to mature channels 

within the delta topset. These two parameters characterize the delta topset, but covary and are tied to 

receiving basin depth, as deeper basins slow delta progradation and allow more time for channels to 

develop. Despite the simplistic framework, the model is capable of matching morphodynamic parameters 

for channel depth and channel width evolution at Wax Lake Delta. The trends at Wax Lake Delta suggest 

a plausible cyclical relationship between delta aggradation and progradation. The two paradigms are 

highlighted by the presence or absence of juvenile channels at the delta periphery. When juvenile 

channels are dominant at the distal end, sediment is trapped within the delta topset. Upon channel 

maturation, the delta is able to export sediment to the prodelta. Model results are compared to numerical 

and experimental geometrically-defined models that can produce the same range of sediment trapping 

efficiency ratios, but only in the transition from their initial state to an equilibrium state. The model was 

evaluated within a sample parameter space allowing inference of the ratio of inflow sediment trapped 

within the delta at a relative distance from the delta apex. The parameter kτ characterizing the spatial rate 

of transition toward juvenile channels requires more investigation, as the measurements to extract its 

value are not currently available. A more precise functional relation for this parameter would allow for 

direct modelling of sediment trapping efficiency. Our model can be applied to understand and potentially 

engineer manmade deltas created by diversions of water and sediment. The key parameters relate to the 

ability of channels at the delta periphery to export sediment. Engineers may use in sight from this type of 

model to develop procedures that mimic the hypothesized slinky effect between periods of progradation 

and periods of aggradation. 
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Notation List 

Bbf = Bankfull Width [m] 

Cz = Chezy Roughness Coefficient [-] 

D50 = Median grain size [m] 

D* = van Rijn’s dimensionless grain size [-]  

g  = Gravitational acceleration, 9.81 [ms-2] 

Hbf = Bankfull depth [m]  

kτ  = Rate of decay in  τ*
bf  , γ 

r = Radial length [m] 

R  = Submerged specific gravity, 1.65 [-] 

S  = Reach-averaged bed slope [-] 

Sf = Friction Slope [-] 

Qw = Bankfull Discharge [m3s-1] 

Qt = Bankfull Sediment Flux in a given channel [m3s-1] 

Qt,total = Bankfull Sediment Flux summed over all channels [m3s-1] 

ν  = Kinematic viscosity, 1e-6 [m2s-1] 

ρ  = Density of water, 1000 [kg/m3] 

τb  = Bed shear stress [Pa] 

τ*
bf  = Bankfull Shields number, [-] 
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α = Rate Coefficient of channel bifurcation [-] 

γ = Decay factor in     for juvenile channels [-] 

λ = Number of channels [-] 

λQt = Cumulative Sediment Flux in the delta [m3s-1] 

φ = Factor for levee width adjacent to channels [-] 

θ = Angle of delta topset [rad] 

ψ = Sediment Transport Efficiency Ratio [-] 
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CHAPTER 5 : CONCLUSIONS 

A multiple linear regression of bankfull channel depth, reach-averaged bed slope, and median bed 

material grainsize is carried out to improve a predictive closure for the bankfull Shields number. We use 

major axis regression, a symmetric scheme that assumes error in the dependent variable and the 

independent variables, to reduce bias. Past researchers have paired a closure for the bankfull Shields 

number with equations for water and sediment conservation to model evolution of channel bed elevation 

with self-formed channel width. With our new closure, we develop two numerical models of fluvially-

dominant river deltas.  

A morphodynamic river delta model with a single, lumped channel is developed beyond efforts of past 

researchers. The improved bankfull Shields Number closure is used to model self-formed channel width. 

A modified, distributed Exner equation is adopted to simultaneously model channel and floodplain 

elevations. This allows the delta to develop incisional channels within a net-depositional delta. A below-

capacity sediment transport framework is borrowed from bedrock river modelling literature and a rate-law 

incision equation is included for erosion into a pre-delta cohesive sediment basement layer. Our closure 

for bankfull Shields number relates to mature river channels, so we include a linear function that accounts 

for juvenile, underdeveloped channels at the delta periphery.  

Hindcast modelling of Wax Lake Delta was carried out by including various combinations of model 

features to identify those necessary to replicate historic morphodynamic changes. Past models have 

accurately predicted evolution of delta area and progradation rate and our results show these new features 

do not offer improvement in prediction of these features. However, the key finding of this model is 

significant improvement in predictions for width and depth. In particular, inclusion of basement dynamics 

is vital for predictions of channel depth and accounting for juvenile channels is necessary to model 

spatially varying width in Wax Lake Delta, Louisiana, USA. The framework shows promise for 

application to deltas in low-slope basins with a cohesive pre-delta surface. 

An analytical delta model is developed to understand trends of sediment trapping efficiency in a 

bifurcating delta. The equations are assembled such that all variables are normalized by their upstream 

quantities, and morphodynamic variables, such as channel width or depth, are evaluated with only two 

rate coefficient parameters. These parameters represent the rate of channel bifurcation and the spatial rate 

of juvenile channel development. Within this framework, we see that discharge, depth, and width always 

decrease basinward and the number of channels always increases basinward. Other key variables are 

conditional to the relationship between the two parameters.  
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Of particular interest is the spatial variation in cumulative sediment transport rate amongst all channels. 

Sediment trapping efficiency is defined by the ratio of cumulative sediment transport capacity at the delta 

periphery against the upstream transport rate. Therefore, if transport capacity reduces along the delta, this 

implies deposition within the delta. A field comparison to Wax Lake Delta uses measured volumetric 

changes in two periods; a first period includes topset incision and rapid progradation followed by a period 

of topset aggradation and moderate progradation. We back calculate the juvenile channel decay rate by 

forcing the model to predict measured volumetric changes in Wax Lake Delta. Modelled channel width 

and depth reasonably match the trends at Wax Lake Delta during the tested periods, which suggests the 

model captures the basic physics of the system with only two parameters. 

The model is solved in a parameter space to investigate the effect of both parameters on the trapping 

efficiency of the delta. The decay rate related to juvenile channels cannot be measured presently, so future 

work is necessary to estimate this term. The model can be useful for informing predictive capability of 

delta channels to export sediment; this is particularly important for engineered diversions to mitigate land 

loss in coastal areas. 
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APPENDIX A: CHAPTER 2 

The analysis in the main body of the paper involves implementing linear regression in logarithmic space 

for the variables Hbf, S, D50. A commonly used basic assumption is independence between the 

‘independent’ variables. If we are regressing Y = f (X1, X2), then it can be problematic for regression if X1 

and X2 are highly correlated, as both variables would then contribute to the same variance in the response 

variable Y. In order to study this, we here include interaction terms that are the products of the two 

independent variables in any given regression. Now, returning to the variables regressed in the main body 

of the paper, we can develop two new models with these interaction variables. These are given as in Eqs. 

(A.1) and (A.2) below, which correspond to Eqs. (12) and (7), respectively, in the main text. For the sake 

of comparison, Eq. (A.2) is algebraically adjusted to solve for log(Hbf) according to Eq. (A.3). The 

coefficients δ0 – δ3 in Eq. (A3) are then manipulated to the simpler form of Eq. (A.4) where Φ0 = - δ0/ δ1, 

Φ1 = 1/ δ1, Φ2 = - δ2/ δ1, and Φ3 = - δ3/δ1. 

0 1 2 50 3 50log log log logbfH S D SD        (A.1) 

0 1 2 50 3 50log log log logbf bfS H D H D        (A.2) 

0 32
50 50

1 1 1 1

1
log log log logbf bfH S D H D

 

   
      (A.3) 

0 1 2 50 3 50log log log logbf bfH S D H D        (A.4) 

Tables A-1 and A-2 show regression results for Eq. (A.1) for Hbf = f(S, D50) regressions, and Eq. (A.4) for 

S = f(Hbf, D50) regressions. Each table shows regression results with ordinary least squares (OLS) and 

major axis (MA) regressions. The columns denoted “basic form” relate to models in the main body of the 

paper, and other columns include interaction terms via Eqs. (A.1) and (A.4). The tables differ through 

treatment of the variables; Table A-1 uses mean-centering and Table A-2 uses z-scores, where variables 

are normalized by the standard deviation of the variable in question after mean-centering. Eqs. (A.5) and 

(A.6) show how any arbitrary variable X is standardized via mean-centering or z-scores, where Xavg is the 

average of variable X and σX is the standard deviation of X.  

mc avgX X X   (A.5) 

avg

z score

X

X X
X





  (A.6) 
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Both standardization methods reduce multicollinearity in results, but using z-scores additionally converts 

variables so as to use a relative variance. Variance is now relative to the number of standard deviations 

from the mean rather than a length scale relative to the variable itself. After regression, the coefficients 

are translated to represent the original variable values (rather than standardized forms). 

Regardless of the data set, Table A.1, which uses a mean-centering treatment of variables as in (A.5), 

shows similar behavior when comparing the results of the basic forms to regressions with interaction 

variables. The interaction variables in the OLS regressions are small, but can be of the same order of 

magnitude as χ2 in (A.1) or Φ2 in (A.4). While regression values for Φ0, Φ1, and Φ2 are consistent in MA 

regressions, the magnitude of χ3 in both data sets is sufficiently large to be of concern. 

Table A.2 uses z-score treatment of the variables as in (A.6). For OLS regressions, analysis with 

interaction variables show identical results when compared to the basic forms of the model relations given 

in the main text. The MA basic form regression with standardized z-score variables is somewhat different 

to the MA basic form model with mean-centered variables (Table A.1, column 6), but gives results 

similar to the basic forms when interaction terms are included. The magnitudes of the interaction terms in 

Table A.2 are not as large as those found when variables are mean-centered. The result with MA 

regression when variables are standardized with the z-score method more closely mimics the initial 

regression result found by Trampush et al. (2014). Since variance is scaled by standard deviation and S 

has a much larger standard deviation that Hbf, the regression gives a result closer to the geometric mean of 

the OLS regressions. The MA regression with mean-centered variable treatment tends toward the OLS 

regression with the form Hbf = f(S,D50), i.e. Eq. (12) in Chapter 2.  
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Table A-1: Regression coefficients including interaction terms; variables have been mean-

centered before regression. 

Regression 

type 
OLS, Hbf = f(S,D50) OLS, S = f(Hbf,D50)† MA 

 Coefficient 
Basic 

form 
with SD50 

Basic 

form 
with HD50 

Basic 

form 

with 

SD50 

with 

HD50 

Φ0, χ0 -1.203 -1.056 -1.899 -2.158 -1.381 -1.229 -1.055 

Φ1, χ1 -0.530 -0.484 -0.918 -0.849 -0.635 -0.583 -0.494 

Φ2, χ2 0.073 0.086 0.241 0.224 0.124 0.130 0.099 

χ3 (SD50) - 0.110 - -  - 0.097  - 

Φ3 (HbfD50)  - - - -0.101 - - -0.296 

† Regressed as S =f(Hbf,D50) and re-arranged to solve for Hbf 

 

Table A-2: Regression coefficients including interaction terms; variables have been 

standardized with z-scores before regression. 

Regression 

type 
OLS, Hbf = f(S,D50) OLS, S = f(Hbf,D50)† MA 

Coefficient 
Basic 

form 
with SD50 

Basic 

form 
with HD50 

Basic 

form 

with 

SD50 

with 

HD50 

Φ0, χ0 -1.203 -1.0555 -1.8986 -1.7495 -1.5911 -1.4501 -1.2867 

Φ1, χ1 -0.5295 -0.4843 -0.9183 -2.4591 -0.7845 -0.7322 -0.6363 

Φ2, χ2 0.0727 0.0864 0.2411 0.3815 0.2171 0.218 0.1726 

χ3 (SD50) - 0.0831 -  - - 0.0366  - 

Φ3 (HbfD50)  - - - -0.0459 - -  -0.0606 
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APPENDIX B: CHAPTER 3 

Shoreline migration (topset-foreset) (backwater version) 

We apply a modification of the shock condition from Kim et al. (2009b) to treat shoreline migration. That 

model assumes an advancing sediment source and an accommodation space with 180-degree angle, i.e. a 

half circle delta planform. The models presented herein assume a fixed delta apex and a user-specified 

delta topset angle.  

There are slight differences between the implementation of the shock condition between normal flow and 

backwater flow models. The normal flow models assume a single delta elevation that is fixed to the water 

surface at the last delta node and the foreset emanates from this point. The foreset in backwater models 

extends from the average delta elevation  to the delta basement; is necessarily lower than the water 

surface elevation by definition. 

The elevation of the delta foreset and material derivative for normal flow models are:  

      ,fs c a s s bS r s s r s  

  
  

  

  

s s

fs c c
s a s

s s

s S s
t t r

 

Since the delta elevation at the foreset is tied to the water surface, the temporal derivative of delta 

elevation at the topset-foreset transition is equal to the rate of sea level rise. 

 


 
  

 
s

c
s a s

s

s S s
t r

 

Similarly, the same equations for the backwater models are: 

      ,fs a s s bS r s s r s  

    
  

  
s s

fs
s a s

s s

s S s
t t r

 

We begin with the Exner equation in polar coordinates: 

 
  


 

       
      

    

, ,1
1 fs f t r t

p

I rq rq

t r r r
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where p denotes sediment porosity,  denotes a basement subsidence rate, and qt,r and qt, denote volume 

sediment transport rates per unit width in the r and  directions. If sediment transport is limited to the 

radial direction, this can be simplified to: 

 
 

 
    

   
  

,1
1 fs f t r

p

I rq

t r r
 

Integrating from ss to sb, i.e. over the foreset, gives: 

 
 

 


  

 

 
   

    
0 0

0 0

/2 /2
,

/2 /2
(1 ) r 1

ˆ

b b

s s

s s
fs t r

p fs s

q
drd I drd

t r
 

where θ0 is the delta topset angle. As Kim et al. (2009) show, the right hand side can be simplified 

assuming the sediment flux is radially symmetric and no bed material load passes the foreset-bottomset 

break.  

   








   

 
0

0
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1 1

ˆ
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q
I drd I Q
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Integrating the Exner equation over r and simplifying the right hand side gives: 

   





 




   

 
0

0

/2
2 2

/2
(1 ) 1

s

fs
p b s f t s

s s d I Q
t

 

Considering a radial fan delta advancing onto a flat basement plane with constant slope Sb aligned with 

the angle θ = 0, the location where the delta intersects the bed will vary depending on the angle. Kim et al. 

(2009) show this distance is, upon modification for a stationary delta apex given as: 

 


   
    
    

1
,

1 cos s
fs base osb

b s

a a

S
s s

S S
 

Here, base,o  is the basement elevation beneath the delta apex. Some backwater models presented here 

include bedrock incision that may erode channels below base,o . This term is taken to be unaffected by 

channel incision, and therefore has elevation that only changes due to subsidence: 

     , , ,0 ,0base o base sb b bt S s t  
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The initial basement elevation at the delta foreset-bottomset transition 
bbase,s , 0  and basement slope Sb are 

specified by the user. 

As detailed in the appendix to Kim et al. (2009b), this equation can be integrated to:  

 

 

  



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where  is defined by the parameter: 
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Therefore, the dimensioned shoreline migration rate ss  in normal flow models is specified by the 

relation: 

 

 
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Finally, rearranged for ss  : 
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Forms expressed moving boundary radial coordinate r̂  and time t̂   

After some work, the following relations are obtained. 
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Shoreline migration (foreset-bottomset) 
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Estimation of the leaky channel coefficient kQw 

The approach presented herein includes two provisions for underdeveloped juvenile channels; these 

account for a decrease in the bankfull Shields stress and for flow lost from the channels to the inter-

channel area. Concerning the latter, we extract data collected by Hiatt and Passalacqua (2015) across two 

channels in Wax Lake Delta. The channels Gadwall Pass and Main Pass run along the Western boundary 

and Eastern Boundary of Main Island, respectively. As shown in Figure A.1, both channels exist beyond 

the approximate boundary for typical flood inundation as estimated through inundation lengths during 

flood events (Gelensye et al. 2015).  

 

Figure B-1: Figure modified from Hiatt and Passalacqua (2015). An approximation of the typical 

flooding length scale rflood from results of Gelensye et al (2015) can be estimated from the distance to the 

shoreline during floods. The lettered cross sections represent locations where discharge was measured in 

Gadwall Pass and Main Pass. 

Measurements by Hiatt and Passalacqua (2015) were not done at flood discharge, but these represent the 

only such measurements available at this time, so they can act as a baseline representation of how much 

flow is leaving the delta. Discharge along each channel was measured twice during various times of a 

tidal cycle. We generalize data from all the discharge measurements of both channels and normalize the 

discharge relative to the value just downstream of the bifurcation. This allows an estimate of the fraction 

of flow incoming at the apex that remains in the channel of εmeasured, as defined in the main text. Figure 
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A.2 shows that approximately 60% of the flow at an island apex remains in the channel at the downstream 

end of the island. Shaw et al. (2016a) suggest 40% based on mass conservation.  

 

Figure B-2: Measurements by Hiatt and Passalacqua (2015) are collected and generalized to 

approximate the spatial change in ε from island apex to the periphery of the sub-aerial delta (as shown in 

Figure A.1). Here  denotes the fraction of incoming flow at the upstream end of an island that remains 

farther downstream along the island. 

The parameter kQ, as in Eq. (23) in Chapter 3, is chosen so as to yield ε = 0.6 at the delta periphery As 

shown below. 

  
wQk ln(ε) = -ln 0.6   

Estimation of bankfull Shields decay coefficient kτ 

The decay rate of bankfull Shields stress γ is estimated from field bathymetry data according to several 

assumptions. Following Eq. (22) in Chapter 3, we can rearrange to solve for γ.  







m

n

HS

RD D

1

*

  

We can assume grain size is constant throughout Wax Lake Delta as in Kim et al. (2009a). Additionally, 

since they are naturally low-slope environments, the delta slope cannot vary significantly. We therefore, 
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make a simplifying assumption that slope is spatially constant. Under these assumptions, γ only varies 

spatially with depth, so we can estimate γmeasured as: 

 

 
 

bf

measured

bf flood

H r

H r
  

We use mean channel elevations in discrete bins from the generalized 2015 DEM dataset to define this 

value per the eq. above. The results suggest that γ at the delta periphery is approximately equal to 0.6.  

 

Figure B-3: Estimated values for γmeasured from 2015 DEM of Wax Lake Delta. These values assume 

grainsize and slope are constant over the domain of measurement. A fitted line corresponds to Eq. (22) in 

Chapter 3 and is used within the numerical model. 

The rate coefficient kτ can therefore be defined as: 

   k ln 0.6   
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Proportion of water and sediment discharge in Wax Lake Delta 

Kim et al. 2009 suggest two sediment transport rates that relate to either 30% or 45% of the total flow 

distributed from the Atchafalaya River. A total sediment budget for the Atchafalaya River was conducted 

by Horowitz et al. (2001) and adopted by Kim et al. (2009a). The authors assume that sediment and water 

flux partitioning are equivalent; so 30% of water flux should relate to 30% of the annual sediment budget. 

Data were collected from Wax Lake Outlet and Atchafalaya river gages (both downstream of their point 

of bifurcation). There are no other major tributaries or distributaries to this channel, so we assume that the 

summation of the two gages represents the total water flux in the upstream Atchafalaya and therefore the 

proportion of flow can be directly calculated from the instantaneous measurements of these flows. We 

consider data collected on the same day from 1972 to 2015, which accounts for all the data availability. 

Figure A.4 below outlines the trends in flow partitioning between the two distributaries. From the starting 

date, Wax Lake Delta appeared to take approximately 30% of the total flow; this value started to rise, and 

a rock weir was installed in 1987 and maintained until 1995, which brought values down over this period 

(Reuss, 2004; pg. 342). Following removal, Wax Lake Delta has steadily pulled more water to the latest 

measurement, suggests a 55/45 split in favor of the Atchafalaya Delta as shown in Figure A.4. In the 

future, we can explore a parameterization that models an increasing water discharge and sediment 

transport rate into the delta, with a 7-year removal of sediment supply (Roberts et al., 1997). For now, 

given the high variability of sediment transport rates in general, modelling with a constant supply rate of 

water and sediment is sufficient. The results presented in this chapter show that the development of the 

delta is strongly dependent on the sediment feed rate, but it is unclear whether the trends in this figure will 

affect morphodynamics. 
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Figure B-4: Proportion of total flow travelling through Atchafalaya Delta and Wax lake Delta from 1972 

to present day. The red lines represent a period where a rock weir was emplaced upstream of Wax Lake 

Outlet, which reduced water discharge. After removal, Wax Lake Delta continues to pull a larger portion 

of water. Data Collected from USGS Calumet gage for Wax Lake Outlet and Lower Atchafalaya River 

gage at Morgan City, LA. 
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Estimated delta angle 

The arc length of the entire delta was estimated at discrete radial lengths from the delta apex. Given the 

arc length and radial distance, one can compute the effective angle for each arc.  

 

Figure B-5: The extent of the channel network and delta area of WLD in 2015. Channels are estimated 

from the 2015 DEM and the delta area is approximated by the extent of delta channels. 

A single angle value that minimizes the total error across the whole delta is computed as 86 degrees. This 

value most closely resembles the areal extent of the delta assuming a constant-angle fan-delta within the 

model. Figure A.6 below shows the relationship between radial length, measured arc length, and effective 

topset angle. Arc length decreases at the distal end because of uneven sediment distribution at the 

periphery. 
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Figure B-6: Estimated topset angle at discrete measurements of distance from the delta apex. We use a 

topset angle of 86 degrees in the model, as it best represents the total topset area of the current topset at 

Wax Lake Delta. 
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Effect of Delta Asymmetry on decreasing total channel width 

Measured width in Figure 3-5 shows an increase in width followed by the consistent decrease near the 

delta periphery. Figure A.7, below, shows a slight decrease in average channel width basinward, but this 

trend is less severe than total channel width measurements. Measured arc length in Figure A.6 suggests 

asymmetric delta growth at the delta periphery. Therefore, while individual channels have similar width 

throughout the delta, asymmetric topset growth leads to fewer channels, which causes rapid decrease in 

total channel width at the delta periphery. As our model does not account for asymmetric channel growth, 

this trend should not be compared to our model results. 

 

Figure B-7: Average channel width along the delta topset in four measurement years. Beyond the wide 

section, channel width persistently decreases basinward at an approximate rate of 100 m narrower per 

every 3-5 km. 
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Limitations of the models 

The framework used herein carries limitations related to simultaneous changes in width and depth. In past 

self-formed channel models, the change in width is mostly passive. Channel width is only carried into the 

sediment transport rate equation, while Exner is computed via the total delta topset width. The version 

presented herein is subject to some oscillations related to the equation setup. Here this is discussed within 

a single timestep.  

Assuming some set of initial conditions, the backwater equation concurrently predicts depth, subject to a 

fixed downstream elevation; width is also defined relative to the modelled depth, slope and the sediment 

transport rate, as a function of channel width, is also defined. The Exner equation is computed with 

representative width and elevation that define the entire delta topset. Changes to channel and floodplain 

elevations are partitioned relative to the ratio of channel width to topset width. The source of the 

oscillations lies in this step. The closure for bankfull Shields number implies an equilibrium channel 

structure, so using it within a time-marching model would be similar to jumping to a steady-state solution 

instantaneously while solving the temporal evolution toward equilibrium for the other variables. 

Therefore, changes in channel depth equate to long-term changes in channel width, but are applied 

immediately in the model. The width change then affects how sediment is distributed between the channel 

and floodplain. This might make the channel deeper, for example, and in the next timestep, a new width is 

computed that causes a different sign for c

t



  . This can cause a feedback loop where channel 

elevation and channel width oscillate until an equilibrium is reached, after which the model seems to 

advance smoothly. 

The model generally works with the input conditions employed Wax Lake Delta, but within the same 

model, the constant Shields number equation set, when applied with distributed Exner Equation, is 

unstable, regardless of time or spatial step. Altering the Czapiga et al. (2018) closure slightly can also 

result in the same effect version presented here seems to have some oscillation early, when the initial 

conditions are far from equilibrium, but it is quickly damped and the delta marches forward.  

Several approaches have been tried to remedy this issue including: updating width after the Exner 

equation, only updating width every N time steps, limiting channel width change to a maximum 

magnitude, and scaling channel width change so the mean magnitude of change equals some prescribed 

value. 

Changing the location where width is updated within a single time step has no long-term effects on model 

outcome; it only delays effects by a single timestep. Updating width every N timesteps causes massive 
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change every N timesteps. The last two methods are functional, but they seem to lock the initial 

conditions in place, which precludes the model’s ability to find an equilibrium. 

A more advanced version of this model relaxes the assumption of passive floodplain width, i.e. channel 

width is modeled and the remaining space is allocated to floodplain width. In some cases this version can 

generate oscillations, but not usually. 

 


