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ABSTRACT

This thesis presents a set of tools and methodologies that perform fast stochastic
characterization and simulation of uncertainties in electromagnetic and circuit sys-
tems. Background information on polynomial chaos and fast stochastic numerical
techniques is reviewed, and discussion is offered on comparison of different approaches
to stochastic simulations. The formulation for Stochastic LIM, a Stochastic Galerkin
Method-based time-domain circuit solver, is presented, and some simulation results
are shown comparing the new solver to Monte Carlo techniques using a commercial
circuit solver. The simulator is then used to simulate several transmission line prob-
lems, including single- and multi-conductor, crosstalk, and coupled-line on a printed
circuit board substrate with fiber-weave effect. Stochastic Collocation technique is
discussed as a method to characterize multi-level electromagnetic-circuit simulations.
A method to use Monte Carlo integration to evaluate interpolation residual is pre-
sented. The effectiveness of the proposed method is demonstrated with a high-order
problem of electromagnetic waves causing interference on a printed circuit board
inside a vehicle with apertures. The effectiveness of the multi-level analysis method-
ology is demonstrated using eye diagram opening as cost function. Additionally, a
wavelet-based Stochastic Collocation technique is introduced to solve circuit prob-
lems with resonant behavior. Finally, we discuss the overall work presented in this
thesis and discuss several future research directions to extend the results presented
here.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Over the past decade, electronic computing systems have permeated every aspect of
people’s lives. Smartphones and tablets are found in almost every household. Even
the most basic smartphone contains computational power which exceeds the comput-
ing systems that put a man on the moon. Traditional banking and commerce also
rely heavily on large, high-performance, secure, and robust centralized computing
systems. Society is demanding that personal computing products be made smaller
and more powerful, and that server and data center systems be made to handle high
bandwidth and provide reliable computing performance. High-speed and compact
computing systems have revolutionized the way education, health care, transporta-
tion, and national security services are delivered around the world.
From the engineer’s perspective, computing systems are becoming increasingly

large and complex in structure, and the demand for speed and bandwidth perfor-
mance continues to rise. Higher-speed systems are especially sensitive to the effects
of uncertainties, since small changes in physical or material parameters can have sig-
nificant impact on the electrical performance of the system. Thus, it is increasingly
important that the uncertainties in such systems be characterized using tools that
can perform the task in a reasonable amount of time.
In the past several years, fast stochastic numerical techniques have been investi-

gated heavily in the electronics packaging and electromagnetic compatibility commu-
nities for their abilities to solve problems involving uncertainties more efficiently than
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Monte Carlo techniques [1, 2, 3, 4, 5, 6, 7, 8, 9]. The outputs from these uncertainty
quantifications have been used to optimize designs [10, 11] and study problems with
inherent uncertainties whose probability profiles have not been captured in the past
[9].
The contribution of the work reported in this thesis is a more general and sys-

tematic way of simulating problems involving both electromagnetic extraction and
circuit simulation. To this end, several stochastic computation approaches are in-
vestigated. A general-purpose stochastic circuit solver is presented to solve circuits
with stochastic elements. And sampling-based approaches are used to perform un-
certainty quantification using existing and mature electromagnetic solvers that are
complicated to modify. Applying these techniques together enables simulation of
multi-level systems involving uncertainties with reasonable computational resources.

1.2 Outline

This thesis begins with a review of current literature on fast stochastic numerical
techniques in Chapter 2, both from a technique point of view in the applied mathe-
matics field, and from an application point of view in the applied electromagnetics
field. The formulation for several approaches to stochastic modeling and simulation
is presented. The current challenges that these techniques currently face are also
discussed.
The formulation for a transient circuit solver capable of solving stochastic circuit

problems is presented in Chapter 3. The technique is based on finite-difference ap-
proximation of Kirchhoff’s voltage and current laws in time domain. The application
of two stochastic numerical techniques, both sampling and non-sampling, as they ap-
ply to this circuit solver, is discussed. An example illustrating the capabilities of the
simulator is presented.
In Chapter 4, the stochastic circuit solver is used to solve transmission line prob-

lems involving uncertainty. The uncertainties in the problems manifest in the forms
of randomness in the transmission line parameters, as well as randomness in the
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physical construction of the lines. Methods for modeling these sources of uncertain-
ties, as well as the simulation results are shown. A hybrid method of sampling and
non-sampling method to perform modeling and simulation steps separately for more
efficiency are presented.
Chapter 5 focuses on the application of sampling non-intrusive Stochastic Colloca-

tion method as it applies to multi-level electromagnetics and circuit simulations, and
methods to increase the efficiency of random space sampling for cost functions that
are resonant. A benefit of sampling techniques is that they allow problems involving
complicated solvers to be used, and can be incorporated with well-developed commer-
cial and proprietary solvers. However, often-times large problems lead to high-order
solutions which may exhibit resonant or other non-smooth behavior in the random
domain. The existence of such artifacts can make sampling techniques inaccurate
and slow. Some techniques to address these challenges are discussed in this chapter.
An example of a multi-level high-order simulation is presented to demonstrate the
need for further technique improvements to address these types of problems. Another
example is presented that uses adaptive wavelet interpolation to study a resonant
RLC circuit.
Finally, a discussion of the work presented in this thesis, as well as future research

directions based on the results, are provided in Chapter 6.
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CHAPTER 2

BACKGROUND

2.1 Polynomial Chaos

Most of the modern fast stochastic numerical techniques are based on the concept
of polynomial chaos expansion, first introduced by Norbert Wiener [12] in 1938 to
expand Gaussian stochastic processes using Hermite polynomials Ψk.

X(ω) =
∞∑
k=0

xkΨk(ξ(ω)) (2.1)

Orthogonal polynomials such as Hermite polynomials form a complete set of basis
to approximate functionals in L2 space. They satisfy the orthogonality condition:

〈Ψi,Ψj〉 =
〈
Ψ2
i

〉
δij (2.2)

where δij is the Kronecker delta function:

δij =

0 if i 6= j

1 if i = j
(2.3)

The usefulness of using Hermite polynomials to represent Gaussian random vari-
ables comes from the definition of the inner product:

〈f(ξ), g(ξ)〉 =

∫
Ω

f(ξ)g(ξ)W (ξ) dξ (2.4)

where the weighting function W (ξ) resembles the probability distribution function

4



Table 2.1: Hermite polynomials ψk for expansion of 4 random dimensions with
order p = 2. [13]

k p ψk 〈ψ2
k〉

0 0 1 1

1 1 ξ1 1

2 1 ξ2 1

3 1 ξ3 1

4 1 ξ4 1

5 2 ξ2
1 − 1 2

6 2 ξ1ξ2 1

7 2 ξ1ξ3 1

8 2 ξ1ξ4 1

9 2 ξ2
2 − 1 2

10 2 ξ2ξ3 1

11 2 ξ2ξ4 1

12 2 ξ2
3 − 1 2

13 2 ξ3ξ4 1

14 2 ξ2
4 − 1 2

of a normalized Gaussian random variable with mean 0 and unit variance:

W (ξ) =
1√

(2π)n
exp(−1

2
ξTξ) (2.5)

Table 2.1 shows Hermite polynomials for 4 random dimensions with expansion
order p = 2, which is used in the examples in Chapters 3 and 4.
It is worth noting here that the random vector ξ can be multi-dimensional. The

Gaussian distribution is assumed to be independent and identically distributed. The
form of (2.4) allows the probabilistic moments of the random variables to be calcu-
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lated directly from the expansion coefficients. Furthermore, it is shown in [14, 15, 16]
that the expansion (2.1) converges almost exponentially fast, when the correct basis
is chosen for the type of distribution and the function is sufficiently smooth in the
random domain. In practice, this is significant since any practical computer code
implementation of the expansion (2.1) will need to be truncated to a finite number
of terms.
To this end, a more generalized formulation for Polynomial Chaos to deal with

probability distributions other than Gaussian needs to be developed. Xiu and Kar-
niadakis proposed in [14] to use the Askey-scheme to find different orthogonal poly-
nomials for some common probability distributions. For instance, the Legendre
polynomials can be used to expand uniformly distributed random variables, and
Laguerre polynomials for gamma distributions such as exponential distribution and
χ2−distributions. The so-called generalized Polynomial Chaos (gPC) is central to
several of the techniques discussed and implemented in this document.
In packaging electrical analysis applications, uniform random variables are useful

for modeling quantities that are completely random by nature. Typically, there is
not a target value for such parameters, and the value within a pre-defined range is
equally acceptable. This can include parameters which the designer has no control
over, but for which the range is well characterized. For instance, the relative position
of PCB traces with respect to fiber-weave bundles on the substrate can be effectively
modeled in as a uniformly distributed random variable.
Uniformly distributed random variables are best expanded using Legendre poly-

nomials, listed in Table 2.2. The inner product of Legendre polynomials is defined
as:

〈f(ξ), φk(ξ)〉 =

∫ 1

−1

f(x)φk(ξ) dξ =

∫ ∞
−∞

f(x)φk(ξ)W (ξ) dξ (2.6)

where the weighting function

W (ξ) =

1
2

ξ ∈ [−1, 1]

0 otherwise
(2.7)
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Table 2.2: Legendre polynomials φk for expansion of 1 random dimension with
order p = 5.

k φk(ξ) 〈φ2
k〉

0 1 2

1 ξ 2
3

2 1
2
(3ξ2 − 1) 2

5

3 1
2
(5ξ3 − 3ξ) 2

7

4 1
8
(35ξ4 − 30ξ2 + 3) 2

9

5 1
8
(63ξ5 − 70ξ3 + 15ξ) 2

11

is the PDF of a standard uniformly distributed random variable ξ ∼ U(−1, 1). Any
uniform random variable with distribution C(ξ) ∼ U(a, b) can be normalized to a
standard uniform random variable:

C(ξ) =
1

2
(a+ b) +

1

2
(a− b)ξ (2.8)

Legendre polynomials are orthogonal with respect to the inner product and weight-
ing function defined in (2.6) and (2.7):

〈φk(ξ), φl(ξ)〉 =

∫ ∞
−∞

φk(ξ)φl(ξ)W (ξ) dξ =
2

2k + 1
δkl (2.9)

2.2 Non-Sampling Approaches

An approach to leveraging gPC expansion for solving problems with stochastic inputs
is via Galerkin projection. The Stochastic Galerkin Method (SGM) is considered an
intrusive, or non-sampling technique. This means that the gPC expansion needs to
be taken into consideration when developing code for solving the underlying physical
problem, and hence existing codes cannot be used directly with this technique. The
technique was proposed by Ghanem and Spanos [13].
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To begin, every random variable is approximated using a truncated gPC expansion:

u(x, t, ω) =
P∑
k=0

uk(x, t)Ψk(ξ(ω)) (2.10)

For a differential system L(·)

∂

∂t
u(x, t, ω) = L(u) (2.11)

with corresponding boundary conditions and initial conditions, the problem is solved
numerically by taking the inner product of both sides of the equation with testing
functions, in this case using the same polynomials as the gPC basis functions:

〈
∂

∂t

P∑
k=0

uk(x, t)Ψk(ω),Ψk(ω)

〉
=

〈
L(

P∑
k=0

uk(x, t)Ψk(ω)),Ψk(ω)

〉
(2.12)

applied for all |k| ≤ P . Using the corresponding gPC basis functions Ψk, the inner
products are essentially calculating expectations in the random domain, thus remov-
ing any ω dependency in the problem. The problem becomes a matrix system that
can be numerically solved using a computer.
The solution obtained is the gPC expansion coefficients uk(x, t), which can then

be used to calculate the statistics of the response, or re-form the stochastic solution
by substituting in (2.10).

The size of the system for a given random dimension d is

(
P + d

P

)
, and the

parameters are coupled so the system matrix is dense. We see that the size of the
problem grows unfavorable with respect to both the dimensionality of random space,
and the chosen order of gPC truncation. However, the stochastic solution is obtained
by solving only one matrix equation, and with the correct gPC basis function, the
solution is optimally accurate for the computational complexity.
SGM has been utilized in the electrical packaging community to model chip and

board-level multi-conductor transmission lines [8], through-silicon vias (TSVs)[2],
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and solve circuits [17, 18], and has also been used in the electromagnetics commu-
nity [19] to solve some specific problems. However, due to the intrusive nature of the
technique, new solver code needs to be developed and hence most of the aforemen-
tioned studies have implemented application-specific code for solving the respective
problems.

2.3 Sampling Approaches

Unlike intrusive approaches such as SGM, sampling approaches work with existing
solvers for the problems being studied. Hence this class of techniques is called non-
intrusive, and the stochastic computation is uncoupled from the system solver.
The classic sampling approach is Monte Carlo (MC), where a set of random inputs

is generated based on some random distribution, then the solution is repeatedly ob-
tained using deterministic solvers. All the outputs are collected and used to calculate
statistics.

1. Choose a sample size N . Generate N i.i.d. random variables {Xi(ωj)}dj=1 for
i = 1, ..., N . Here d is the dimension of the random input vector.

2. For each i, solve deterministic problem to obtain output {Yi(ωj)}d
′

j=1 where d′

is the dimension of the output vector.

3. Calculate statistics from the set of all {Yi(ωj)}d
′

j=1 for i = 1, ..., N .

The convergence rate for Monte Carlo is asymptotically 1√
N
, which means the number

of runs necessary can increase dramatically if higher accuracy is desired. However,
Monte Carlo sampling converges independent of the input dimensionality d. This
could make Monte Carlo a viable method for cases where the number of independent
random inputs is large.
In comparison, Stochastic Collocation (SC) is a sampling method that is more

structured and hence may be more efficient for problems of manageable dimension-
ality. To perform SC, rather than sampling the random space over a set of random
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samples, the deterministic simulation is instead performed over a set of collocation
nodes Θd = {xi}Mi=1 defined over a finite region of the random space. An interpola-
tion is then constructed over the space defined by this set of nodes to construct an
interpolation of the response of interest:

I(u)(x) =
M∑
i=1

f(xi)Li(xi) (2.13)

where the Li are Lagrange polynomials for interpolation. The statistics of the re-
sponse are then constructed via integration over the interpolation, either through
Monte Carlo sampling of the interpolation I(u)(x) or quadrature rule defined over
the random space.
Any potential speed-up from SC vs. MC comes from the choice of collocation

points and construction of the interpolation. The most straightforward is to use
tensor product of node sets generated by one-dimensional rule. Linearly transform
a random dimension into standardized support [−1, 1], then a one-dimensional node
set is:

Θi
1 = (xi1, ..., x

i
mi

) ⊂ [−1, 1] (2.14)

Such a node set can be defined uniformly spaced, or using some polynomial interpo-
lation scheme such as Clenshaw-Curtis. Then, for the entire d−dimensional space,
the interpolation can be constructed:

I(u)(x) =

mi1∑
k1=1

· · ·
mid∑
kd=1

f(xi1k1
, ..., xidkd) · (a

i1
k1
⊗ · · · ⊗ aidkd) (2.15)

which requires that a system of mi1 × · · · × mid of collocation nodes needs to be
evaluated. Assuming that there are N number of nodes in each dimension, then
the total number of deterministic simulations needed is M = Nd. This is unfavor-
able for problems with even moderate dimensionality, especially if the function is so
complicated that more points are needed in each dimension to resolve the features.
A more efficient interpolation scheme for moderate-dimensional problems is the
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Figure 2.1: Sparse grid vs. full tensor-product grid for d = 2 case and k = 5. The
one-dimensional rules of both grids are equivalent, but the sparse grid has 145
nodes whereas the full tensor product grid requires 1089 nodes. [20]

Smolyak sparse grid. Instead of requiring all the nodes in the tensor product grid, a
more efficient method is used to choose the nodes. The interpolation of some level k
requires a set of sparse nodes:

Θd =
⋃

q−d+1≤|i|≤q

(
Θi1

1 × · · · ×Θid
1

)
(2.16)

where q = d + k and the total number of deterministic nodes that needs to be
evaluated is proportional to 2k

k!
dk for fixed k and d � 1. k is known as the “level”

of interpolation. A comparison of tensor product grid vs. sparse grid using the
same one-dimensional rule is shown in Figure 2.1. These figures are generated using
Clenshaw-Curtis rule in 1D, which corresponds to roots of the Chebyshev polynomial.
In practice, a uniform rule or Gaussian rule can also be used.
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2.4 Dimensionality Reduction

Both the intrusive and non-intrusive approaches presented in the sections above suffer
from the “curse of dimensionality”. The size of the problem grows superlinearly with
respect to the dimensionality of random space for both approaches. Interestingly,
Monte Carlo sampling does not suffer from this problem, and is actually the preferred
method for problems with very high dimensionality (d > 15).
Hence, the value of these fast stochastic computation techniques can only be re-

alized if the dimensionality of the random space is manageable. Fortunately, this is
often the case. Even when the number of random parameters in a problem is high,
the underlying source of uncertainty is often attributed to a small set of random
parameters. For instance, uncertainties in the dielectric properties of substrates can
lead to uncertainties in several transmission line parameters, but the underlying ran-
dom space has only dimensionality one. Any process variations in manufacturing a
package or board are likely to result from either over or under-exposure of the raw
substrate to the etching process. Therefore in the case of multiple transmission lines,
although there are uncertainties associated with the width and height of each line,
these parameters are expected to be strongly correlated since all the lines are etched
on the same substrate during the same process. In this case, the underlying random
space is still low.
Mathematically, the fact that many random parameters result from variations in

a single process implies that the correlation of all random parameters should be
leveraged to minimize the dimensionality of the underlying random space. This has
been achieved through the use of Principal Component Analysis (PCA) [4, 5], which
projects the random spaces into orthogonal subspaces, and removes the dimensions
that have the least effect on the overall system. Other approaches [21, 22, 23] such
as HDMR have also been considered. The dimensionality can be reduced through
these mathematical techniques, or through knowledge of the underlying physical
phenomena that lead to the uncertainties.
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Figure 2.2: Nesting structure of d = 2 Smolyak sparse grids. Levels k = {4, 5, 6}
are shown.

2.5 Adaptive Mesh Refinement

Stochastic Collocation can also be accelerated through adaptive mesh refinement of
the sparse grid [24, 25]. An advantage of the Smolyak sparse grid is that the nodes
exhibit level-wise nested behavior, as shown in Figure 2.2. Hence each subsequent
level of interpolation uses nodes from the previous level. This allows for multiple
mechanics of mesh refinement, so that for a given accuracy level, the smallest level
of interpolation and hence the least number of deterministic simulations are needed.
If a method to evaluate the quality of interpolation can be implemented, then the
mesh can be refined adaptively in this fashion.
Refinement can be achieved in three ways:

1. Level refinement - increasing the level k of interpolation [26]. The hierarchi-
cal structure of sparse grid construction allows additional interpolation nodes
to be added to the grid, which are used along with existing nodes to create
more accurate interpolation of the cost function. This type of refinement is
demonstrated in Figure 2.2.

2. Anisotropic refinement - increasing the number of nodes along dimensions
with the highest sensitivity to the output of interest. This would achieve a
result similar to that of dimensionality reduction [27] in the sense that more
computational resource is dedicated to inputs with the highest impact on the
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Figure 2.3: Example of an anisotropically refined sparse grid.

output. An example of a sparse grid anisotropically refined is shown in Figure
2.3.

3. Local mesh refinement - adding nodes where the function is non-smooth to
increase the precision of interpolation in that region, without needing to add
additional points over the entire random domain [28]. This method requires
an iterative scheme to determine which nodes need further refinement. The
interpolation for local refinement can be performed using local polynomials or
wavelets. An example of a locally refined sparse grid is shown in Figure 2.4.

In Chapter 5 of this thesis, a local refinement scheme using wavelet basis for
interpolation is considered to perform SC on a problem with resonance in the output
function.
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Figure 2.4: Example of a locally refined sparse grid.
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CHAPTER 3

STOCHASTIC LIM

3.1 Introduction

In recent years, fast stochastic computational methods have been steadily gaining
interest in the packaging community for enabling electrical modeling and simulation
with uncertainties [8, 29, 5, 30, 10]. Modern stochastic numerical techniques include
non-intrusive methods such as Monte Carlo (MC) sampling [31] and Stochastic Col-
location (SC) [20, 15, 16], which work with existing PDE solvers; intrusive methods
such as Stochastic Galerkin Method (SGM) [16, 13] require the underlying PDE
solver to be re-formulated to include expansion of random variables. Though more
cumbersome to implement, SGM is optimally accurate with finite terms of expansion
since the residue is always orthogonal to the space spanned by the polynomial basis
[16].
SGM has been utilized for performing stochastic circuit simulations [17, 32], in-

cluding transmission lines [8] and nonlinear devices [30, 17]. This chapter presents a
transient solver for stochastic circuits based on the Latency Insertion Method (LIM)
[33, 34] using time-domain finite-difference scheme. The finite-difference time do-
main (FDTD) method for computational electromagnetics, on which LIM is based,
has been shown to be effective for propagating uncertainty [35, 36]. Due to its simple
formulation and linear computational complexity with respect to size of state space,
LIM is an ideal application for SGM.
The function of Stochastic LIM is to provide a transient simulator for circuits with

random variables as parameters. The simulator takes a circuit netlist as its input,
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where some of the parameter values in the deck are random variables, and performs
fast probabilistic calculations using stochastic numerical techniques. The output of
the simulator is the probability distribution function (PDF) of voltage or current
at a specified node or branch on the circuit. Compared with typical deterministic
circuit solvers, where the time-domain solution is the exact solution to the set of
differential equations governing the given circuit, stochastic circuit solvers such as
Stochastic LIM calculate the statistics of the response as it evolves over time.
Traditionally, statistical simulation of circuits is performed using Monte Carlo

sampling of outputs from deterministic circuit solvers. In such procedures, the prob-
ability distributions of random parameters of interest are first defined. A random
generator is then used to generate N samples based on the prescribed distribution.
Let X = {Xi}Ni=1 denote the set of random samples, where Xi are independent
identically distributed random vectors generated by the random generator. Then, a
circuit netlist is constructed for each Xi and simulated, with the output denoted by
Y = {Yi}Ni=1 where each Yi corresponds to the output from input Xi from either LIM
or another solver.
The statistics of the response are then computed from the complete set of outputs.

For instance, the sampled mean can be calculated as

E[Y ] ≈ 1

N

N∑
i=1

Yi (3.1)

and the sampled variance can be calculated as

Var[Y ] = σ2 ≈ 1

N − 1

N∑
i=1

(Yi − E[Y ])2 (3.2)

For both cases, the calculated value is merely an estimate of the actual statistical
moments for any finite N . In fact, the sampled mean is itself a Gaussian random
variable with distribution N (E[X], σ

2

N
). Therefore, the standard error of the sampled

mean is σx̄ = σ√
N
. This implies that the accuracy of the estimated mean converges

at a rate of 1√
N

for Monte Carlo sampling. To gain accuracy, an increasingly large
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sample size must be simulated, which is undesirable or intractable in most circum-
stances.
This chapter first presents the formulation for Stochastic LIM using Polynomial

Chaos (PC) expansion and SGM. The formulation is then verified by comparing sim-
ulation results of a random resistor network against MC sampling using deterministic
LIM. Due to the time-domain nature of LIM, the method works well with arbitrary
excitations, including sources that are non-smooth in time.

3.2 Deterministic LIM

LIM is a finite-difference time-domain circuit solver that is similar to the FDTD
method for electromagnetics [33]. The circuit to be simulated is defined in terms
of nodes and branches. The topologies for nodes and branches are shown in Figure
3.1. At each node, there must be a finite capacitance to ground, and each branch
must contain a finite inductance in series to ensure that there is latency in the
circuit and the time-domain simulation can be performed subject to a conditionally
stable criterion [37]. This requirement is naturally satisfied for transmission line-
type simulation, where the latencies resulting from capacitance and inductance are
inherent to the structure.
At each node, the semi-implicit Kirchhoff’s current law is:

Ci

(
V
n+ 1

2
i − V n− 1

2
i

∆t

)
+
Gi

2

(
V
n+ 1

2
i + V

n− 1
2

i

)
−Hn

i = −
Mi∑
j=1

Inij (3.3)

where the superscript n± 1
2
is the time index for voltages, and the subscript i is the

nodal index. The subscripts ij represent branch current that connects the nodes i
and j. There are a total of Mi branches connected to node i. Similar to the electric
and magnetic fields in FDTD, the time indexes of voltages and currents are offset by
a half time step, hence the ±1

2
term in time index for voltage values.
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Figure 3.1: Node and branch topology for Latency Insertion Method.

The semi-implicit LIM form of Kirchhoff’s voltage law at each branch is:

V
n+ 1

2
i − V n+ 1

2
j = Lij

(
In+1
ij − Inij

∆t

)
+
Rij

2

(
In+1
ij + Inij

)
− En+ 1

2
ij (3.4)

3.3 Stochastic Galerkin Method Approach

3.3.1 Polynomial Chaos Expansion

We first expand the circuit elements and voltage/current values using Generalized
Polynomial Chaos (gPC) basis:

Vi(ω) =
P∑
k=0

Vi,k ψk(ξ(ω)) (3.5)
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Iij(ω) =
P∑
k=0

Iij,k ψk(ξ(ω)) (3.6)

Gi(ω) =
P∑
k=0

Gi,k ψk(ξ(ω)) (3.7)

Ci(ω) =
P∑
k=0

Ci,k ψk(ξ(ω)) (3.8)

Rij(ω) =
P∑
k=0

Rij,k ψk(ξ(ω)) (3.9)

Lij(ω) =
P∑
k=0

Lij,k ψk(ξ(ω)) (3.10)

where Vi(ω), Gi(ω), Ci(ω) are the random nodal voltage, conductance, and capaci-
tance values at node i, and Iij(ω), Rij(ω), and Lij(ω) are the random branch current,
resistance, and inductance values at branch ij, respectively. ω ∈ Ω is an event in
probability space of dimension d, ξ(ω) = [ξ1(ω), ξ2(ω), · · · , ξd(ω)]T is the vector of
i.i.d random variables, and ψk(·) are the generalized Polynomial Chaos (gPC) basis
functions, satisfying the orthogonality condition:

〈ψk, ψl〉 =
〈
ψ2
k

〉
δkl (3.11)

It is helpful to standardized the random variables ξi when performing gPC expan-
sion. This is due to the fact that the weighting functions associated with Hermite
and Legendre polynomials are the probability density functions of standardized Gaus-
sian and uniform random variables, respectively. The dimensionality d of the random
space is the number of independent random parameters that affect the outcome.
Some choices of PC basis used in the expansion are Hermite polynomials and

Legendre polynomials, the properties of which are discussed in Section 2.1.
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3.3.2 Node Algorithm

We start with (3.3). By moving the n− 1
2
terms to the right-hand side, and inserting

the expansions in (3.5), (3.6), (3.7) and (3.8), we obtain:

P∑
k=0

P∑
l=0

[(
Ci,k
∆t

+
Gi,k

2

)
V
n+ 1

2
i,l

]
ψk(ξ)ψl(ξ)

=
P∑
k=0

P∑
l=0

[(
Ci,k
∆t
− Gi,k

2

)
V
n− 1

2
i,l

]
ψk(ξ)ψl(ξ)

+
P∑
k=0

(
Hn
i,k −

Mi∑
j=1

Inij,k

)
ψk(ξ) (3.12)

The system of equations describes the relationships between gPC expansion co-
efficients of circuit elements, voltage and current values. To solve these equations
numerically, we perform Galerkin projection by taking the inner product on both
sides with the respective gPC polynomials used in the expansion, which results in:

P∑
k=0

P∑
l=0

[(
Ci,k
∆t

+
Gi,k

2

)
V
n+ 1

2
i,l

]
〈ψk(ξ), ψl(ξ), ψm(ξ)〉

=
P∑
k=0

P∑
l=0

[(
Ci,k
∆t
− Gi,k

2

)
V
n− 1

2
i,l

]
〈ψk(ξ), ψl(ξ), ψm(ξ)〉

+

(
Hn
i,m −

Mi∑
j=1

Inij,m

)〈
ψ2
m(ξ)

〉
, m = 0, 1, ..., P (3.13)

The triple inner product in the above equation is the integral:

〈ψk(ξ), ψl(ξ), ψm(ξ)〉 =

∫
Rd
ψk(ξ)ψl(ξ)ψm(ξ)W (ξ) dξ (3.14)

which can be evaluated analytically or using a multi-dimensional quadrature rule. It
should be noted that these triple inner products are problem-independent, and only
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need to be solved once for all problems with a given number of random dimensions
and expansion order. Hence, these values do not need to be calculated during each
simulation.
Putting (3.13) into matrix form, we find the explicit nodal voltage update equation

for Vn+ 1
2

i to the left-hand side:

V
n+ 1

2
i =

(
Ci

∆t
+

Gi

2

)−1

×

[(
Ci

∆t
− Gi

2

)
V
n− 1

2
i + Hn

i −
Mi∑
j=1

Inij

]
(3.15)

V
n+ 1

2
i =

[
V
n+ 1

2
i,0 , V

n+ 1
2

i,1 , · · · , V n+ 1
2

i,P

]T
(3.16)

Inij =
[
Inij,0, I

n
ij,1, · · · , Inij,P

]T (3.17)

Sk =



〈ψk,ψ0,ψ0〉
〈ψ2

0〉
〈ψk,ψ0,ψ1〉
〈ψ2

0〉
· · · 〈ψk,ψ0,ψP 〉

〈ψ2
0〉

〈ψk,ψ1,ψ0〉
〈ψ2

1〉
. . . ...

... . . . ...
〈ψk,ψP ,ψ0〉
〈ψ2

P 〉
〈ψk,ψP ,ψ1〉
〈ψ2

P 〉
· · · 〈ψk,ψP ,ψP 〉

〈ψ2
P 〉

 (3.18)

Ci =
P∑
k=0

Ci,kSk, Gi =
P∑
k=0

Gi,kSk (3.19)

Here the expansion matrix Sk encapsulates all the triple inner products calculated
a-priori, and can be easily used to calculate Ci and Gi matrices for all problems
from the gPC expansion coefficients of Ci(ξ) and Gi(ξ). We will discuss how these
expansion coefficients can be obtained in Section 4.1.

3.3.3 Branch Algorithm

We start with (3.4). By moving the n terms to the right-hand side and substituting
in gPC expansion from (3.5), (3.6), (3.9) and (3.10), we obtain:
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P∑
k=0

P∑
l=0

[(
Lij,k
∆t

+
Rij,k

2

)
In+1
ij,l

]
ψk(ξ)ψl(ξ)

=
P∑
k=0

P∑
l=0

[(
Lij,k
∆t
− Rij,k

2

)
Inij,l

]
ψk(ξ)ψl(ξ)

+
P∑
k=0

(
E
n+ 1

2
ij,k + V

n+ 1
2

i,k − V n+ 1
2

j,k

)
ψk(ξ) (3.20)

Performing the Galerkin procedure by taking the inner product of both sides with
the same gPC basis polynomial, we get a set of algebraic equations:

P∑
k=0

P∑
l=0

[(
Lij,k
∆t

+
Rij,k

2

)
In+1
ij,l

]
〈ψk(ξ), ψl(ξ), ψm(ξ)〉

=
P∑
k=0

P∑
l=0

[(
Lij,k
∆t
− Rij,k

2

)
Inij,l

]
〈ψk(ξ), ψl(ξ), ψm(ξ)〉

+
(
E
n+ 1

2
ij,k + V

n+ 1
2

i,k − V n+ 1
2

j,k

) 〈
ψ2
m(ξ)

〉
, m = 0, 1, ..., P (3.21)

Once again, the pre-calculated Galerkin expansion matrices Sk from (3.18) can be
used to obtain the expanded matrices for L and R, resulting in an explicit update
equation for In+1

ij in matrix form:

In+1
ij =

(
Lij
∆t

+
Rij

2

)−1

×
[(

Lij
∆t
− Rij

2

)
Inij + E

n+ 1
2

ij + V
n+ 1

2
i −V

n+ 1
2

j

]
(3.22)

Rij =
P∑
k=0

Rij,kSk, Lij =
P∑
k=0

Lij,kSk (3.23)
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3.3.4 Simulation Procedure

To simulate a circuit with uncertainties using Stochastic LIM, use the following
procedure:

1. Obtain gPC expansion coefficients for G,C,H at each node, and R,L,E at
each branch. If the variable is deterministic, then the 1st expansion is the
deterministic value, and all other expansion coefficients are 0. A procedure to
obtain the expansion coefficients is presented in Section 4.1.

2. For each R,L,G,C, calculate Galerkin expanded matrices using (3.19) and
(3.23).

3. For each time step n:

(a) For each node, update voltage at time step n+ 1
2
using (3.15).

(b) For each branch, update branch current at time step n+ 1 using (3.22).

4. Post-process results to obtain response statistics.

The results from Stochastic LIM simulation are the gPC expansion coefficients of
nodal voltages and branch currents at all time steps. The statistics of these responses
can be obtained from post-processing of the coefficients:

E[V n
i ] = V n

i,0, σ(V n
i ) =

√√√√ P∑
k=1

V n
i,k 〈ψ2

k〉 (3.24)

The total amount of data that needs to be stored and post-processed is P times
the number of time steps, where P is the terms in the gPC expansion. As we can see
from examples in Section 3.3.5, this number is small for problems with manageable
random dimensions. This means that Stochastic LIM generates a more compact data
set and minimizes post-processing necessary to gather statistics when compared with
Monte Carlo, where N times the number of time steps of data need to be stored,
and typically N � P .
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3.3.5 Numerical Example: Resistor Network

We test the Stochastic LIM formulation by simulating a purely resistive network.
The circuit is shown in Figure 3.2a, and we choose the four resistors to ground to be
independent Gaussian random variables. In order to perform simulation with LIM,
small fictitious capacitance and inductance values need to be inserted at every node
and branch, respectively. The augmented network is shown in Figure 3.2b. The
values for all the circuit elements are listed in Figure 3.2. To increase accuracy, the
capacitance and inductance values can be scaled by a factor of s, but the time step
size ∆t will also need to be scaled in order to satisfy the CFL stability condition,
resulting in longer simulation time. The network is excited by a trapezoidal current
source at node 1 with time delay td = 1ns, rise/fall time trf = 1ns, pulse width
tw = 20ns, and amplitude Imax = 1A. For s = 1 , the mean and standard deviation
of transient voltages at nodes 1 and 4 are shown in Figure 3.3. It can be seen that
results from Stochastic LIM are almost identical to results using Monte Carlo with
sample size N = 10000, while requiring only one simulation of the augmented system
with (P + 1) times more state variables. By choosing a small scaling factor s = 0.1,
the circuit becomes almost purely resistive. As shown in Figure 3.4, good correlation
is still observed between Stochastic LIM and MC when the waveform is non-smooth.

3.4 Stochastic Collocation Approach

Stochastic Collocation is a non-intrusive sampling technique, and thus the implemen-
tation of Stochastic LIM with SC more closely resembles Monte Carlo than SGM.
In this case, the regular deterministic formulation of LIM will suffice. An external
sparse grid interpolation routine [26, 38, 39, 40] is used to generate a set of colloca-
tion nodes. An efficient node set in N−dimensional space can be generated using
the Smolyak algorithm.
Let us denote the set of sparse nodes by ΘM . For each node Zi ∈ ΘM , the vector

Zi contains an instantiation in the random space, and thus represents the input of a
deterministic simulation. Let Yi,t = ft(Zi) where ft(·) is the result from LIM at time
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(b) Resistive circuit with inserted latencies for simulation
with LIM.

Figure 3.2: Circuit diagram of resistor network used in example. The element
values are: R12 = 14.53Ω, R13 = 4.53Ω, R14 = 5.3Ω, R23 = 25.3Ω, R24 =
47.3Ω, L12 = 32.4nH, L13 = 22nH, L14 = 32.2nH, L23 = 32.2nH, L24 = 43.2nH, C1 =
10pF, C2 = 20pF, C3 = 20pF, C4 = 0.2pF. The resistors to ground are Gaussian
random variables: R1(ω) = (50 + 5ξ1)Ω, R2(ω) = (10 + 1ξ2)MΩ, R3(ω) =
(10 + 1ξ3)MΩ, R4(ω) = (50 + 5ξ4)Ω.
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Figure 3.3: Stochastic LIM vs. Monte Carlo results for example shown in Figure
3.2 with scaling factor s = 1. The mean and standard deviation show excellent
agreement.
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Figure 3.4: Stochastic LIM vs. Monte Carlo results for example shown in Figure
3.2 with scaling factor s = 0.1. With low latencies, the circuit is almost entirely
resistive.
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t ∈ T, the set of discrete time steps. The solution at each node of the sparse grid is
used to construct a Lagrange interpolant:

f̃t(Z) =
M∑
i=1

Yi,tLi(Z) (3.25)

Li(Zj) = δij (3.26)

The interpolant f̃t(·) is an estimate of the actual response ft(·), but it is much faster
to evaluate than the underlying solver. Therefore, we perform Monte Carlo using
the interpolant f̃t, and calculate the statistics as we did in (3.1) and (3.2).
It should be noted that this procedure must be repeated for every element of the

set T. In other words, the interpolation and calculation of statistics take place at
each time step of the simulation. Since each node corresponds to a deterministic
LIM simulation, the stability criterion can be calculated using ∆t ≤

√
LC for each

simulation. For ease of implementation, it is good to use the same ∆t and hence the
same set T for all simulations.
A workflow for the Stochastic Collocation approach to LIM is shown in Figure 3.5.

3.5 Stability Conditions

The stability of the algorithm is conditional on the size of the time step chosen.
Generally, the most conservative approach is to let ∆t ≤

√
LC where L and C are

the smallest inductance and capacitance in the circuit, respectively. However, when
running Stochastic LIM with SGM, the simulation may become unstable even if this
criterion is met. This occurs when the variance of one of the random variables is set
very high. The more rigorous derivation of the stability condition for block LIM [34]
can be derived using the amplification matrix A, defined as:

A =

[
A11 A12

A21 A22

]
=

[
P+P− −P+M

Q+M
TP+P− Q+Q− −Q+M

TP+M

]
(3.27)
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Figure 3.5: Workflow for Stochastic Collocation approach to random simulations
with LIM.
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where [
vn+ 1

2

in+1

]
= A

[
vn−

1
2

in

]

P+ =

(
C

∆t
+

G

2

)−1

(3.28)

P− =

(
C

∆t
− G

2

)
(3.29)

Q+ =

(
L

∆t
+

R

2

)−1

(3.30)

Q− =

(
L

∆t
− R

2

)
(3.31)

Here we take R,L,G,C to be the matrices defined in (3.7), (3.8), (3.9) and (3.10),
and we can let M be the identity matrix of dimension P in this case. The time step
∆t must be chosen such that the spectral radius of the amplification matrix A is less
than 1. The amplification matrix A and its eigenvalues will depend on the step size,
and it generally will increase with larger ∆t, hence a sufficiently small ∆t must be
chosen to ensure stability of the simulation. Stability is not the only consideration
when choosing time step size. Depending on the rate of change of the signal, the
time step also should be chosen such that the signal can be properly resolved and
sampled.

3.6 Conclusions

Stochastic LIM is demonstrated to be a fast and accurate method for simulating
circuits with uncertainties. The formulation presented in this chapter demonstrates
that SGM can be implemented easily, effectively, and efficiently with finite differ-
ence schemes such as LIM. Like many other stochastic numerical techniques, SGM
suffers from the curse of dimensionality, as the terms of polynomial expansion will in-
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crease exponentially with the dimensionality of random space. The Stochastic LIM
formulation presented here incorporates four random dimensions, and can enable
simulations of many practical signal integrity applications such as lossy transmission
lines and IC PVT variations. Dimensionality reduction techniques such as Principle
Component Analysis (PCA) [5] can also be incorporated with Stochastic LIM to
solve higher dimensional problems. This chapter demonstrates that Stochastic LIM
can also be implemented using SC together with the deterministic formulation. In
the next chapter, we present simulation results using the methodologies presented to
study single- and multi-conductor transmission lines.
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CHAPTER 4

SIMULATION OF TRANSMISSION LINES
WITH UNCERTAINTIES

4.1 Sampling-based EM Extraction

The inputs to the stochastic transmission line (TL) simulation are the physical pa-
rameters with uncertainties that are present in the transmission line. The probability
distributions of these parameters need to be defined. In this application, the random
parameters are generally either Gaussian or uniformly distributed. Uncertainties
in these physical TL parameters will manifest in uncertainties of the TL electrical
parameters RLGC. However, the RLGC parameters will not exhibit any regular
Gaussian or uniform distribution. Rather, the electrical parameters will be corre-
lated with each other, and will be dependent on the physical parameters of the line.
To characterize the uncertainties of electrical parameters, we must utilize EM field
solvers for parameter extraction.
Since many effective commercial and proprietary EM solvers already exist, we will

utilize an efficient sampling-based method to construct the stochastic TL model for
simulation. The objective of modeling is to extract the gPC expansion coefficients
of electrical parameters from geometric parameters with uncertainties. The gPC
coefficients can be calculated with polynomial projection:

Ci,k =
〈Ci(ω), ψk(ξ)〉
〈ψ2

k(ξ)〉
=

1

〈ψ2
k(ξ)〉

∫
Rd
Ci(ξ)ψk(ξ)W (ξ) dξ (4.1)

This integral needs to be evaluated for each expansion order k and each parameter
R,L,G,C etc. Recall that the random parameter ξ characterizes randomness in
geometry, hence a closed-form expression for Ci(ξ) is usually not available. Therefore,
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some sort of discrete sampling method needs to be used to evaluate the integral to
calculate the coefficients.
Since ξ is usually multi-dimensional, sparse grid quadrature rules are useful for

defining the sampling points where the parameters can be evaluated deterministically
using commercially-available solvers, and to calculate the gPC expansion coefficients
from the samples. Let Θ = {ξi}

Md,l

i=1 be the set of nodes defined by the sparse grid
quadrature rule, then the gPC expansion coefficient can be approximated as:

Ck ≈
1

〈ψ2
k(ξ)〉

Md,l∑
i=1

C(ξi)ψ(ξi)W (ξi)w(ξi) (4.2)

Here w(ξi) is the weight associated with each quadrature point. Hence, we only
need to perform deterministic EM extractions to calculate the circuit parameter
values at the set of pre-defined points Θ to obtain the gPC inputs for Stochastic LIM.
Using Smolyak sparse grid quadrature, the number of points needed is approximately:

Md,l ≈
2ldl

l!
, for d� 1 (4.3)

whereMd,l = |Θd,l| corresponds to the number of quadrature nodes for random space
with dimension d and sparse grid level l.
The quadrature in (4.2) evaluates a definite integral with finite limits, hence it

requires that the random space be defined over a finite domain. This is straight-
forward for random variables with uniform distributions, since these random variables
can only take values within a finite region. When calculating expansion coefficients
for Gaussian random variables, two complications arise:

1. Gaussian random variables can theoretically take value over the entire real
number space. Hence, it is necessary to truncate the random space to a rea-
sonable limit (µ ± 5σ) where it is highly unlikely for the random variables to
have value outside of this truncated domain.

2. The Gaussian PDF W (ξ) is difficult to integrate accurately with most quadra-
ture rules. A large number of quadrature points are needed, which significantly
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increases the computational cost of EM simulations. However, the extracted
EM parameters R(ξ), L(ξ), G(ξ), C(ξ) are usually smooth functions in the ran-
dom space, and can be integrated accurately with very few points. Therefore,
we propose a two-level multigrid approach to calculating expansion coefficients
for Gaussian random variables below.

First, we construct a sparse grid interpolation for the extracted parameter:

C̃(ξ) =

ML
d,l′∑
i=1

Ψp
i (ξi)C(ξi) (4.4)

where ΨP
i (ξ) are Lagrange basis functions of order p used to interpolate the pa-

rameter in random space. ML
d,l′ is the number of nodes needed to construct the

interpolation, and corresponds to the number of deterministic EM simulations nec-
essary to interpolate the transmission line parameters. The superscript L denotes
that the interpolation nodes are lower in resolution than the quadrature points, i.e.
l′ � l. Then, we evaluate the projection integral using a much more dense sparse
grid, so the weighting function W (ξ) can be integrated accurately:

Ck ≈
1

〈ψ2
k(ξ)〉

MH
d,l∑

i=1

C̃(ξi)ψ(ξi)W (ξi)w(ξi) (4.5)

Here we substitute in the interpolation C̃(ξ) in the integrand, which is very fast
to evaluate when compared to full deterministic simulations. MH

d,l is the number of
points needed to construct the high-resolution quadrature.
It is worth noting that the integral (4.1) does not necessarily have to be evaluated

with a deterministic quadrature rule. In fact, the coefficients can also be recovered
from Monte Carlo integration. This means that if the probability distributions of
the random parameters are not known, but a large sample size is available, the gPC
coefficients can be calculated from repeated measurements of the samples without
knowing the closed-form PDF of random parameters. This will also allow stochastic
models to be constructed from hardware measurements.
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Figure 4.1: Lumped single-line transmission line circuit in π−topology.

4.2 Lumped Transmission Line Model

Stochastic LIM has been used in [41] and [42] to simulate single transmission lines
with random p.u.l. R,L,G,C parameters using the π−topology shown in Figure
4.1. However, modifications to the original LIM procedure are needed to simulate
coupled transmission lines, since mutual inductance between branches and mutual
capacitance between nodes need to be accounted for. In [43], a fictitious inductance
is inserted in series with mutual capacitance to introduce latency and allow for stable
simulation. However, this technique introduces some inaccuracies into the circuit.
Thus, we use the technique introduced in [44] to incorporate mutual reactances for
coupled transmission line models.
The coupled transmission line is modeled as a π−model, as shown in Figure 4.2.

Each end of the line segment is considered a coupled supernode. The coupled nodal
capacitance is written in Maxwellian matrix form

C̄ =

[
[C11] [C12]

[C21] [C22]

]
=

[
[Cs + Cm] [−Cm]

[−Cm] [Cs + Cm]

]
(4.6)

and coupled branch inductance for a superbranch is:

L̄ =

[
[Ls] [Lm]

[Lm] [Ls]

]
(4.7)

Here the self and mutual capacitance and inductance matrices come from the gPC
expansion in (3.19) and (3.23). A supernode should contain all nodes that have
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Figure 4.2: Lumped π−model for coupled transmission line.

mutual capacitances with each other, and a superbranch should contain all branches
that have mutual inductances with each other. This approach could slow down LIM
for problems where an arbitrarily large number of nodes and branches share mutual
reactances, but in the case of multi-conductor transmission lines, the computational
complexity still scales linearly with respect to the size of the circuit.
To keep track of node connectivity and direction of current flow in the π−topology,

we can take advantage of connectivity matrix M of size Nn × Nb, where Nn is the
number of supernodes and Nb is the number of superbranches. In this topology,
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Mi∑
j=1

Inij = [MIn]T(·,i) (4.9)

In =


In12,0,a In12,1,a · · · In12,P,a In12,0,b In12,1,b · · · In12,P,b

In23,0,a In23,1,a · · · In23,P,a In23,0,b In23,1,b · · · In23,P,b
...

... · · · ...
...

... · · · ...
InNbNn,0,a InNbNn,1,a · · · InNbNn,P,a InNbNn,0,b InNbNn,1,b · · · InNbNn,P,b


(4.10)

V
n+ 1

2
i −V

n+ 1
2

j =
[
MTVn+ 1

2

]T
(·,i)

(4.11)

Vn+ 1
2 =


V
n+ 1

2
1,0,a V

n+ 1
2

1,1,a · · · V
n+ 1

2
1,P,a V

n+ 1
2

1,0,b V
n+ 1

2
1,1,b · · · V

n+ 1
2

1,P,b

V
n+ 1

2
2,0,a V

n+ 1
2

2,1,a · · · V
n+ 1

2
2,P,a V

n+ 1
2

2,0,b V
n+ 1

2
2,1,b · · · V

n+ 1
2

2,P,b
...

... · · · ...
...

... · · · ...
V
n+ 1

2
Nn,0,a

V
n+ 1

2
Nn,1,a

· · · V
n+ 1

2
Nn,P,a

V
n+ 1

2
Nn,0,b

V
n+ 1

2
Nn,1,b

· · · V
n+ 1

2
Nn,P,b

 (4.12)

Nn = Nb + 1, and the connectivity matrix is:

M =



1 0 0 · · · 0

−1 1
. . . . . . ...

0 −1
. . . . . . ...

... . . . . . . 1 0

... 0
. . . −1 1

0 0 0 0 −1


(4.8)

where Mi,i = 1 and Mi+1,i = −1, ∀i ∈ {1, 2, ..., Nb}. The current and voltage
summation terms in (3.15) and (3.22) can be simplified using equations (4.9)-(4.12),
where the subscript (·, i) denotes the i−th column of the matrix, and the subscript a
and b in the gPC coefficients denote voltage and currents associated with conductors
a and b, respectively. During post-processing to calculate statistics, the values on
each conductor should be calculated separately using (3.24).
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Figure 4.3: Cross-section of the single microstrip line model. The random
parameters in this model are dielectric constant εr, substrate thickness h, and line
width W , each with an independent Gaussian distribution.

4.3 Numerical Examples

4.3.1 Single Microstrip Line with Geometric Uncertainties

The first example is a single microstrip line of length L = 50 cm where the geometry
and substrate property are random. As shown in Figure 4.3, the width of the traceW ,
the thickness of the dielectric substrate h, and the dielectric constant of the substrate
εr are independent Gaussian random variables. The variation in εr and thickness h
can result from inaccuracies in material construction, and εr can vary as a result
of inaccurate fiber-resin ratio or the fiber-weave effect, which will be investigated in
a later example. The width can have variability from the design value depending
on the etching process. For instance, longer than desired exposure time to etchant
would cause the line to be narrower than designed, and vice versa.
The random parameters for this example are summarized in Table 4.1. A stochas-

tic model for the transmission line is constructed using sparse grid sampling, with 3
random dimensions and interpolation level l′ = 4, which corresponds to 177 deter-
ministic simulations with EM extractor. The line is driven with a trapezoidal pulse
voltage source shown in Figure 4.4 with source impedance 50 Ω, and is terminated
with a load impedance of 50 Ω. The voltage at the input (Vin) and output (Vout) of
the line are measured, as demonstrated in Figure 4.5.
The results from Stochastic LIM are compared to a Monte Carlo (MC) simulation
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Table 4.1: Random parameters for single microstrip line with geometric
uncertainties.

Parameter Distribution

W N (0.1, 0.01) mm

h N (0.2, 0.02) mm

εr N (4.4,0.44)

Vin (V)

1V

0

Timetd tr tr
pw

Figure 4.4: The excitation function Vin. For this simulation, td = 1 ns, tr = 500 ps,
pw = 20 ns.
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Vin
50Ω 

50Ω 

Figure 4.5: Simulation setup for single-line pulse excitation simulation over
microstrip line.

using a commercial circuit solver. To perform the MC simulation, 1000 samples of
the input parameters (W,h, εr) are generated according to their probability distribu-
tion, a model is generated using EM extractor for each sample, and a deterministic
circuit simulation is performed for each model. All 1000 time series results are saved
and post-processed to obtain the statistics. In Figure 4.6, 21 of the deterministic
results are plotted along with the statistical results generated from Stochastic LIM.
We can see that the Stochastic LIM results, represented by the shaded area, encap-
sulate all the deterministic results. For a closer look at the accuracy of Stochastic
LIM, we compare the standard deviation of the probed voltages as calculated by
Stochastic LIM vs. MC in Figure 4.7, and we can see that the statistics generated
by both methods compare very well. The total simulation times of both methods
are summarized in Section 4.4.

4.3.2 Coupled Microstrip Line with Geometric Uncertainties

We simulate a coupled microstrip of length L = 50 cm on a homogeneous PCB sub-
strate to demonstrate that Stochastic LIM can simulate multi-conductor transmission
lines and characterize the uncertainties in crosstalk measurements. The cross-section
is shown in Figure 4.8, and the random parameters are the edge-to-edge spacing s,
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Figure 4.6: Voltages at near-end and far-end of single-line microstrip with
geometric and material uncertainties. Shaded region represents the mean response
±3σ as calculated by Stochastic LIM. The solid lines represent 21 deterministic
simulations using Ansys Nexxim simulator.
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Figure 4.7: Standard deviation σ of near- and far-end voltage on single-line
microstrip with geometric uncertainties as calculated by Monte Carlo N = 2000
and Stochastic LIM.
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Figure 4.8: Cross-section of coupled microstrip line. The random parameters in this
model are substrate dielectric constant εr, substrate thickness h, and edge-to-edge
spacing s, each with an independent Gaussian distribution.

Table 4.2: Random parameters for coupled microstrip line with geometric
uncertainties.

Parameter Distribution

s N (0.1, 0.003) mm

h N (0.2, 0.005) mm

εr N (4.4,0.1)

the thickness of dielectric substrate h, and the dielectric constant εr. The probability
distributions of the parameters are summarized in Table 4.2. The simulation circuit
is shown in Figure 4.9. The aggressor line is connected to a pulse voltage source
with source impedance 50 Ω, driving the trapezoidal source shown in Figure 4.4, and
terminated with 50 Ω. The victim line is terminated on both ends with 50 Ω loads.
The near-end crosstalk (NEXT) and far-end crosstalk (FEXT) are measured at the
two ends of the victim line. This example also has 3 random dimensions and we
use a sparse grid with interpolation level l′ = 4, resulting in 177 deterministic EM
extractor simulations needed to obtain the stochastic model.
The results are compared to MC simulation of 1000 samples performed using a

commercially available deterministic solver. In Figures 4.10 we can see the statistics
calculated by Stochastic LIM as the shaded area, along with results from 21 deter-
ministic simulations. In Figure 4.11, the standard deviations of NEXT in time as
calculated by Stochastic LIM and MC are compared and show very good agreement.
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Figure 4.9: Simulation setup for crosstalk simulation over coupled microstrip line.

Figures 4.12 and 4.13 show the same data for FEXT.

4.3.3 Coupled Microstrip Line with Fiber-Weave Effect

High-speed links are ubiquitous in computer system design. Most of the modern
high-speed links utilize differential signaling, which relies on the voltage difference
between two signal conductors to transmit waveforms. For high-speed links that
include printed circuit board (PCB) traces as part of the channel, the differential
signal is prone to degradation from the fiber-weave effect, which results from the
inhomogeneous electrical properties of glass fiber and epoxy resin substrates that are
typically used for PCBs. In [9], it was shown that the extent of signal degradation
resulting from fiber-weave effect is dependent on the relative position of the etched
traces with respect to the glass fiber bundles in the substrate. Since this relative
position cannot be controlled during etching, its exact value is uncertain and hence
the effects are best modeled using stochastic techniques. In this chapter, we use
the Stochastic LIM technique introduced in [45] to study the fiber-weave effect.
A method of using existing commercial EM solvers to obtain the necessary input
parameters for Stochastic LIM is also shown.
We simulate a segment of transmission line with fiber-weave effect. The differen-

tial microstrip line is 50 cm long, with copper thickness of 0.015 mm and substrate
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Figure 4.10: Near-end crosstalk (NEXT) results of coupled transmission line
simulation. Shaded region represents the mean response ±3σ as calculated by
Stochastic LIM. The solid lines represent 21 deterministic simulations using Ansys
Nexxim simulator.
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Figure 4.11: Standard deviation σ of NEXT as calculated by Monte Carlo
N = 2000 and Stochastic LIM.
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Figure 4.12: Far-end crosstalk results of coupled transmission line simulation.
Shaded region represents the mean response ±3σ as calculated by Stochastic LIM.
The solid lines represent 21 deterministic simulations using Ansys Nexxim
simulator.
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Figure 4.13: Standard deviation σ of FEXT as calculated by Monte Carlo
N = 2000 and Stochastic LIM.
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Offset 

Figure 4.14: Cross-section of coupled microstrip line with fiber bundles.

thickness of 0.2 mm. The pair of microstrips has width of 0.1 mm and edge-to-edge
spacing of 0.1 mm. The fiber bundles in the substrate are represented by oval cylin-
ders with dielectric constant. The relative position of the microstrip pair with respect
to the fiber bundles is represented by a uniformly distributed random variable “offset”
as shown in Figure 4.14, taking the distribution offset ∼ U(−0.175mm, 0.175mm).
This variable is uniformly distributed since the positions of the fiber bundles are not
calibrated during fabrication, and it is equally likely to take on any value within the
range. As shown in Figure 4.15, the transmission line pair is driven with a differential
clock signal with Vlow = −1.2V and Vhigh = 1.2V, at a rate of 2Gbps and rise/fall
time of 200 ps. The far-ends of both lines are terminated with 50 Ω resistors. The
driver impedance is 100 Ω.
The near-end and far-end differential voltages are shown in Figure 4.16. The

solid lines represent deterministic simulations performed with ANSYS Nexxim circuit
simulator, while the shaded area represents the mean ±2σ of the statistics calculated
from Stochastic LIM. As can be seen, the results from Stochastic LIM encapsulate
the results from deterministic simulations very well.
Since this problem has only one random dimension, we expand it using Legendre

polynomial and a sparse grid of dimension 1 and level l′ = 4, resulting in only 21
deterministic solutions with the EM extractor needed to construct the stochastic
model.
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Figure 4.15: Differential signal simulation setup. The signals Vp and Vn are
complementary clock signals operating at 2 Gbps, with tr = tf = 200 ps.

4.4 Benchmark and Conclusions

4.4.1 Computational Efficiency

The computational times of the three examples presented in this chapter are summa-
rized in Tables 4.3 and 4.4. The speed-up of the Stochastic LIM workflow is a result
of two advancements. First, the number of expensive EM extractor runs is minimized
by utilizing sparse grid quadrature techniques to recover the gPC expansion coeffi-
cients of transmission line parameters. In Monte Carlo analysis, a deterministic EM
simulation is required for each randomly drawn sample of input parameters, which is
very expensive. It should be noted that both the proposed EM modeling technique
and Monte Carlo utilize existing deterministic solvers and operate on input points
that are defined a-priori. Thus the solution of each instance can be easily accelerated
with parallel computing in both methods.
The second source of speed-up is the SGM formulation of LIM. By solving the

transient simulation using the proposed technique, only a single simulation of an ex-
panded state-space system is necessary. For MC, or any sampling-based methodology
for that matter, multiple instances of transient circuit simulation will be necessary.
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Figure 4.16: Differential voltage measured at the input and output of the coupled
transmission line. The shaded areas represent mean voltage ±2σ as calculated by
Stochastic LIM. The black lines represent deterministic solutions calculated using
ANSYS Nexxim.
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Table 4.3: Computational time comparison of Stochastic LIM implemented in
MATLAB vs. Monte Carlo N = 1000 with Ansys Nexxim using W-element model.
Parallel computing is used for Monte Carlo and EM simulations.

Example # of EM
Simulations

Run Time
(sec)

MC
N = 1000
Run Time

(sec)

Speed-up

Single-line 177 1195 4710 3.9

Coupled-line 177 1732 5522 3.2

Fiber-weave 21 189 6792 35.9

Table 4.4: Computational time comparison of Stochastic LIM compiled using C++
vs. Monte Carlo N = 1000 simulation with Ansys Nexxim lumped circuit model.
Parallel computing over 3 cores is used for Monte Carlo and EM simulations.

Example EM
Extraction

(sec)

Transient
Simulation

(sec)

Post-
Processing

(sec)

Total (sec) Speed-up

Coupled-
line

(SLIM)

402 107 10 519 48.02505

Coupled-
line
(MC)

3990 14000 6935 24925

Fiber-
weave
(SLIM)

49 41 10 100 292.02

Fiber-
weave
(MC)

5011 14000 10191 29202
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Although the computational time of the sampling techniques can be mitigated by
utilizing parallel computing resources, the amounts of data generated for transient
simulations are typically massive. Furthermore, extensive post-processing will be
necessary to parse through all the deterministic circuit simulation results to gather
the statistics in time domain. With Stochastic LIM, only the gPC expansion coef-
ficients of quantities of interest are outputted, which can quickly be translated into
statistical quantities of interest without the need to process large amounts of data.
The performance benchmarks presented here are performed on a Dell Precision

T5600 workstation with 6-core Intel Xeon E5-2630 CPU at 2.3 GHz clock speed,
and 32 GB of memory. Parallel simulations are utilized in EM extraction and circuit
simulation whenever possible. The Stochastic LIM simulation is implemented in
MATLAB.
For the last two examples, Stochastic LIM was converted from MATLAB native to

C++ compiled, which offered significant speed-up of run-time. This is demonstrated
in Table 4.4.

4.4.2 Data Storage Efficiency

An attractive feature of performing transient analysis using intrusive solver is that
only the gPC expansion coefficients need to be stored and post-processed. Any non-
intrusive sampling techniques, including MC and SC, require that entire time series
corresponding to each sample be stored for post-processing. This can lead to very
large data storage requirements. For instance, in the coupled line example problem
shown, the transient solutions for all N = 1000 runs are stored for t ∈ [0, 40]ns in
∆t = 1ps steps, and the total storage is 632 MB. The large amount of data also
increased the time needed for post-processing to obtain statistics, which was 6935
seconds. The results from Stochastic LIM for the same problem only needed to have
the 15 gPC expansion coefficients stored in time. This leads to a file of only 2.5
MB and post-processing took less than 10 seconds. The comparison of data storage
requirement for Stochastic LIM and Monte Carlo is shown in Table 4.5.
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Table 4.5: Data storage and post-processing requirements for coupled line and
fiber-weave examples. Monte Carlo results correspond to N = 1000 runs using
Ansys Nexxim.

Example Data Size
(SLIM)

Post-
Processing

Time (SLIM)

Data Size
(MC)

Post-
Processing

Time (SLIM)

Coupled-line 2.5 MB 10 sec 632 MB 6935 sec

Fiber-weave 1.3 MB 10 sec 827 MB 10191 sec

4.4.3 Conclusions

In this chapter, a complete modeling-to-simulation methodology based on Stochas-
tic LIM for transmission lines with uncertainties is presented. The efficiency and
accuracy of the proposed methodology are compared with currently commercially
available software for simulating several configurations of microstrip transmission
lines with uncertainties in geometric parameters and material uncertainties. The
method utilizes existing EM solvers to obtain a stochastic model for the transmis-
sion lines, and uses a very efficient time-domain simulator to obtain time-domain
voltage and current solutions. We demonstrated that the transmitted signal, near-
and far-end crosstalk, and effects of fiber-weave effect can be obtained from this
technique. It is demonstrated that the proposed technique can have orders of mag-
nitude improvement in run time and data storage requirements over Monte Carlo
simulation using SPICE. The intrusive algorithm proposed in the preceding chapter
is an appropriate method to solve well-defined and easily-reformulated cases such as
transmission lines. However, sometimes the system under study is very complicated
and may involve multiple levels of physical and circuit solutions. For certain parts of
the problem, efficient and powerful tools already exist, and thus reformulation using
SGM may not be the optimal approach. In the next chapter, some problems of this
sort are studied using non-intrusive Stochastic Collocation techniques.
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CHAPTER 5

STOCHASTIC SIMULATION OF
MULTI-LEVEL AND RESONANT SYSTEMS

5.1 Non-intrusive Stochastic Collocation Approach

In recent years, various fast stochastic numerical techniques [46] have been utilized
to solve various electromagnetic [5, 21] and circuit [45, 3, 22, 1, 8, 23, 7] problems
where uncertainties in the input parameters require that the output parameters be
characterized in the probability domain. Stochastic numerical techniques can be
classified into intrusive and non-intrusive types. Intrusive methods require that the
governing equations be re-derived and code be re-implemented to leverage the expan-
sion of random variables using orthogonal basis functions. These methods have been
widely used [45, 1, 8] for problems where the underlying code is relatively simple to
implement, and are very effective as shown in Chapters 3 and 4.
The non-intrusive methods use existing numerical solvers to obtain solutions to

deterministic instantiation of the stochastic problem, and calculate the probability
information based on the deterministic sample solutions. The most widely utilized
non-intrusive method is Monte Carlo (MC) sampling, where the statistical moments
are calculated from samples of input parameters drawn from random space, based
on their respective probability distributions. Stochastic Collocation (SC) is an often-
used sampling technique [20] that converges faster than MC, although this advantage
may be lost when the dimensionality of the random space is high (d > 10). SC first
constructs an interpolation to estimate the output parameters in random space,
then calculates the statistical moments and density functions via MC sampling of
the interpolation. The speed-up comes from the fact that the interpolation is much
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faster to evaluate compared to the actual output. The procedure for SC is discussed
in Section 2.3.
In this chapter, we demonstrate that the non-intrusive Stochastic Collocation ap-

proach is appropriate for problems where effective but complicated solvers already
exist. The problem being considered does not need to be limited to a single problem
scale. In Sections 5.2 through 5.4, we study a multi-level and multi-scale problem to
demonstrate that uncertainties at the macroscopic electromagnetic level can manifest
in randomness at the smaller circuit scale.
In Section 5.5, we study a problem exhibiting resonant behavior in random space.

Such problems are traditionally challenging to solve using SC since the cost function
interpolation can be expensive to construct. We demonstrate that using adaptive
sampling with wavelet basis, we are able to accelerate the solution of resonant prob-
lems using the SC method.

5.1.1 Black-box Modeling of Large Systems

An advantage of non-intrusive methods is that complicated solvers can be utilized
in sampling techniques. Usually, the outputs f(~x) are the solutions of the under-
lying differential equations governing the problem. But when sampling techniques
are used, the outputs are not limited to be solutions to a single numerical solver.
This is useful for large, multi-scale and multi-level problems, where various different
simulators are used to solve portions of the problem, and the intermediate results are
transferred between solvers without involvement from SC. Only the final output from
the last step of the process is needed to construct the interpolation. The complicated
simulation process and tools can be encapsulated in a “black box”, where the nodes
Θd,k go in, and the results f(Θd,k) come out.

5.1.2 Sparse Grid Interpolation

To perform fast SC, sparse grids generated using the Smolyak algorithm [40] are
often used to minimize the number of collocation nodes where the response needs to
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be evaluated, while maintaining an optimal interpolation accuracy. To allow for local
mesh refinement in the random space, a piece-wise basis function is used to construct
the interpolation. Compared with interpolation schemes that use global polynomial
basis functions which span the entire random domain, local basis functions more
accurately interpolate non-smooth functions with locally sharp behavior. The output
of a system f(~x) is approximated as:

f̃(~x) =
M∑
i=1

ψpi (~x)f(~xi) (5.1)

where ψpi (~x) are Lagrange basis functions of order p used to interpolate the response
in random space. Hence, for a given interpolation, f̃(~xi) = f(~xi) at all collocation
nodes Θd,k = {~xi}Mi=1. Elsewhere in the random domain, the function is approximated
and thus will have a residual associated with interpolation error. Under the Smolyak
scheme, the cardinality |Θd,k| = Md,k is determined by the dimensionality d of the
random space, as well as the level of interpolation k. For high-dimensional problems,
the number of collocation nodes can be approximated:

Md,k ≈
2kdk

k!
, for d� 1 (5.2)

We note that this number does not grow favorably w.r.t. k, especially for cases where
d is high. For example, the numbers of nodes for problems of dimensions d = {2, 6}
and various levels are listed in Table 5.1. Hence, SC can be highly effective for
problems with low and moderate random dimensions, but the payoff decreases if the
dimensionality grows too high.

5.2 Multi-level EM and Circuit Simulation

In this section, we consider using non-intrusive SC to model system-level electromag-
netic interference (EMI) in a multi-level system. Such problems can be multi-scale in
the sense that effects from EMI on a macroscopic scale can affect performance of cir-
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Table 5.1: Number of sparse grid nodes for d = {2, 6} and k = {1, . . . , 7}.

k d = 2 d = 6

Md,k Md,k −Md,k−1 Md,k Md,k −Md,k−1

1 5 13
2 13 8 85 72
3 29 16 389 304
4 65 36 1457 1068
5 145 80 4865 3408
6 321 176 15121 10256
7 705 384 44689 29568

cuitry on a microscopic, or circuit board, scale. This type of analysis faces challenges
stemming from excessive complexity due to the multi-scale nature of the problem.
Since the geometric scales can differ by orders of magnitude, the EM field interac-
tions between components with vastly different feature sizes are expensive to account
for. Typical EM field solvers will need to create meshes at sizes where the small-
est features can be resolved, but such meshes cause the solution of the macroscopic
scale problem to be intractable. In addition to challenges with numerical solution of
such problems, we wish to account for variability in the problem on each scale, and
to study the effect of variabilities on macroscopic scales on the performance of the
smaller-scale sub-systems.
To address these challenges, we propose a hybrid EM/circuit modeling methodol-

ogy [47] to enable solution of problems containing multiple electrical size scales. The
flow is shown in Figure 5.1.
An example of a multi-level EM and circuit problem we consider is shown in Figure

5.2. In this case, the vehicle is both physically and electrically large, with feature
sizes on the order of a wavelength. The vehicle is subject to external EMI radiation,
which is random. The radiation is coupled to the inside of the vehicle through the
windows, or apertures, resulting in a stochastic noise field inside. This noise field is
then coupled onto circuitry inside the vehicle, designated as the RF Box in the figure.
The circuitry on the box operates at much higher frequency scale when compared
to the EMI wave; however, its size is small when compared to the vehicle and the
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Figure 5.1: Workflow of multi-level and multi-scale EM/circuit stochastic
simulation using SC.

wavelength of the EMI field. Nevertheless, the field coupled through the apertures
manifests as noise voltages for the circuit on the board, and thus the output of the
circuit is also stochastic. Furthermore, the geometry of the inside of the vehicle
introduces additional reflections of the incident EMI field; thus, the solution of this
problem contains many intermediate variables and is very expensive to obtain even
in the deterministic case.
We analyze the problem by simulating the macroscopic problem in a commercial

EM field solver, which outputs the EM field everywhere in the problem domain.
Leveraging the fact that RF Box is electrically small compared to the scale of the
EMI, we translate the calculated field on the surface of the RF Box into an equivalent
noise voltage source. Then, we perform a circuit simulation of the circuitry inside
the RF Box, superpositioning the noise voltage into the circuit, which allows us to
obtain the results.
Leveraging black-box modeling and non-intrusive SC, we treat the entire problem

as a single function. That is to say, the multi-level simulation takes EMI fields,
including its randomness, as inputs, and obtains some circuit performance metric
as outputs. In our case, we operate a high-speed signaling link on the circuit, and
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Figure 5.2: Vehicle with RF box situated inside at a fixed location. The height of
the front aperture t1 ∼ U(0.2, 0.6) (m) and the width of the rear aperture
w2 ∼ U(0.2, 1.0) (m) are random variables.
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wish to study the effect of system-level EMI on the eye diagram opening of the link.
Intermediate results include the stochastic noise voltage sources that we use in the
circuit simulation, which must also be characterized. Numerical details and solutions
are shown in Section 5.4.

5.3 Monte Carlo Evaluation of Interpolation Residual

The accuracy of SC is dependent on construction of an accurate interpolation of
the outputs. For multi-level systems, the outputs are often high-order and non-
smooth in the random domain. Thus it is necessary to calculate the error residual of
the interpolation in order to evaluate the quality of interpolation. To decrease the
residual, more nodes need to be added during construction. Globally, this can be
done by increasing the level of interpolation, similar to h−refinement of the mesh,
until a desired residual is achieved [21, 28, 48, 49]. Another approach is to locally
increase the number of nodes in regions where the outputs are non-smooth, such as
near resonance points, so that the additional nodes are optimally placed to capture
the sharp variations in outputs. Both approaches require a method to calculate the
residual of a given interpolation. This is often done by adding additional nodes
via h−refinement, then comparing the interpolated outputs at these nodes with
the actual calculated values. The disadvantage of this approach is that the nodes
corresponding to a higher level of interpolation must be evaluated, which can be
expensive, especially when dimensionality is high. A different approach, proposed in
Section 5.3, is to estimate the residual by performing a small set of MC samples in the
random space, then compare the values at these points with the interpolated values
at various levels. This approach will eliminate the need to perform any additional
deterministic simulations.
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5.3.1 Residual Calculation

For a given interpolation f̃k(~x) of level k, the residual can be calculated as:

rk =
∥∥∥f̃k(~x)− f(~x)

∥∥∥
2

=

∫
D

∣∣∣f̃k(~x)− f(~x)
∣∣∣ 2d~x (5.3)

The integral is evaluated using quadrature rule defined over sparse grid of level
k+1. The cost of evaluating the residual at each level is an additional Md,k+1−Md,k

number of runs, which grows unfavorably w.r.t. k and d. Here we choose to calculate
the L2 norm in (5.3), although other norms such as L∞ would also suffice. The norm
can be defined over the entire random domain D in case of global mesh refinement,
or can be defined over a subdomain D̄ ⊂ D to evaluate locally adaptive refinement.
For adaptive refinement, an iterative scheme is used where k is continually in-

creased until a certain criterion rk < ε is met. The threshold ε is defined by the user
and is usually determined ad hoc. Although the residual is calculated exactly, the
process for picking ε exactly is less clearly defined. Hence, we propose that there is
little need to calculate rk exactly, and an estimation via MC integration can be used
instead:

r̃k = V
1

N

N∑
i=1

∣∣∣f̃k(~xi)− f(~xi)
∣∣∣2 (5.4)

V =

∫
D

1 d~x (5.5)

where ΘMC = {~xi}Ni=1 is a set of N MC input points generated based on uniform
distribution over the random domain. The advantage of this estimation is that
{f(~xi)}Ni=1 only needs to be calculated once, and the evaluation of {fk(~xi)}Ni=1 is
fast since it is interpolated. Furthermore, the convergence of MC is independent
of the dimensionality of random space, making this method especially suitable for
problems of high d. In fact, the error is proportional to V σN√

N
, where σN is the

sampled standard deviation of f(·) over the domain. This means that the method is
less accurate for functions that are highly variant in the random space. On the other
hand, the error of the sparse grid is proportional to M−k(logM)(k+2)(d−1)+1, which
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grows unfavorably w.r.t. d.

5.4 Numerical Example: RF Box in Vehicle

5.4.1 Full-wave Electromagnetic Simulation and Equivalent Noise
Voltage Source Calculation

We consider the problem of evaluating the electromagnetic interference (EMI) from
a θ−polarized plane wave with f = 320MHz incident upon a vehicle with apertures.
The wave couples into the cavity of the vehicle via the apertures, and causes EMI
on a RF box containing circuits placed in a fixed location within the vehicle. The
vehicle is modeled using a PEC box with dimensions 2×1.5×1 (m3), hovering 0.2m
above an infinite ground plane. The incident wave ( ~Einc, ~Hinc) approaches the vehicle
at an angle of (φ, θ) = (120◦, 70◦), with electric field magnitude 1 V

m . The sizes of the
apertures constitute the random inputs of the problem, as illustrated in Figure 5.2.
The EM problem is solved using a full-wave finite element boundary integral (FEBI)
solver [50].
The fields on the RF box are used to calculate equivalent noise voltage sources on

a transmission line. A circuit source solver is developed to provide the EMI noise
sources. To obtain the EMI noise sources at ends of wire, we develop a comprehensive
EM formulation. The solution procedure can be summarized as follows:

1. Coupling of external fields to modal fields in RF box.

2. Conversion of modal fields to the “impressed” fields of the microstrip lines.

3. Calculation of open-ended voltages on ends of wires.

The voltages at the nodes on ends of the microstrip represent the desired EMI noise
sources, the magnitude of which will serve as an output function of interest f(~x) for
this example.
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Figure 5.3: Interpolation f̃(~x) = |Vnoise1| for (a) k = 3 and (b) k = 7. The points
shown are interpolation nodes.
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Figure 5.4: Residual calculated at sparse grid nodes and Monte Carlo points for
k = 3 and k = 6.

5.4.2 Interpolation Residuals

The simulation of the problems requires using a commercial EM solver, as well as
a proprietary EMI noise extraction method outlined in Section 5.4.1. The entire
process is encapsulated in a black-box. As can be seen, the system is complicated and
we expect the solution to be high-order. We choose the magnitude of the equivalent
complex voltage noise source as the output of interest. The response surface for
f̃(~x) = |Vnoise1| is shown in Figure 5.3 for k = {3, 7}.
As can be seen, the function is non-smooth in the quadrant 0.2 ≤ t1 ≤ 0.4, 0.6 ≤

w2 ≤ 1.0. The residuals calculated using (5.3) and (5.4) are shown in Figure 5.4 for
k = {3, 6}. The convergence of L2 norm of residual is shown in Figure 5.5.
As we can see from Figure 5.5, the estimation of residual r̃k converges asymp-

totically, similar to rk. It is also interesting to note that r̃k for the N = 100 and
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Figure 5.5: Convergence of L2 norm of residual over the random space.
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N = 1000 cases are quite close. This suggests that a small set of MC is enough to
evaluate the quality of interpolation. An ad hoc convergence criterion ε needs to be
defined for r̃k based on experience and engineering judgment. In Figure 5.5, r̃k is
provided for k = 7 since the available data is sufficient to calculate this value. In
order to calculate r7, 832 additional deterministic simulations need to be performed.
This demonstrates the advantage of the proposed method in that it allows the resid-
ual to be evaluated without further grid refinement. In addition, if N = 100 is used
to estimate r̃k, then we can see from Table 5.1 that the proposed technique becomes
computationally advantageous at k = 5 for d = 2 and at k = 2 for d = 6. The
method should also be applicable to p−refinement of the basis functions, and will be
investigated in the future.

5.4.3 Stochastic Eye Diagram Characterization of Circuit in RF Box

To evaluate the effect of external RF interference on digital circuitry inside the
vehicle, we perform eye diagram simulation of a high-speed signaling link on printed
circuit board, situated inside the RF box.
The channel is constituted of a 10cm segment of microstrip transmission line. The

excitation is a digital signal operating at 5 Gbps with bit time of 200 ps. The rise and
fall times are both 50 ps. The source has 50Ω impedance and is connected in parallel
with a 1 pF capacitor that models the pin capacitance. The receiver is modeled as
a 50Ω load in parallel with a 1 pF capacitance also. The signal voltage is probed at
the input of the load, as shown in Figure 5.6.
The noise from external EM field is modeled as two AC voltage noise sources,

connected in series on both sides of the transmission line. The magnitude and phase
of the voltage are stochastic and vary with the random variables in the system. The
randomness in this example results from the size of the aperture on the vehicle, which
is modeled during the EM modeling phase.
The transient simulation is performed for 500 ns, which represents approximately

2500 digital bits of data. The data stream is pseudo-random bit sequence (PRBS).
By overlapping the voltage plot of each bit at the output, we can construct an eye
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Figure 5.6: Circuit for simulating eye diagram of 5 Gbps signal with RF
interference.

Figure 5.7: Eye diagram of the voltage seen at receiver input. The measured eye
width is shown at upper right corner of the plot.

diagram, which is shown in Figure 5.7.
The eye width is used as the cost function to measure the performance of the

signaling link with noise. Thus, a response surface of the eye width in random
space is constructed using Smolyak sparse grid with d = 2 dimension and k = 7

interpolation levels. A total of 705 deterministic simulations is needed to construct
this response surface. As can be seen in Figure 5.8, the response surface shows that
the eye width experiences a sharp drop in random space near where the width of
aperture 2 is about a wavelength wide. This same phenomenon can be seen in the
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Figure 5.8: Response surface of eye width in random space.

response surface of the noise voltage magnitude in Figure 5.9, where it can be seen
that the noise voltage increases at the same location in random space. What we
observe here makes sense as a higher noise magnitude corresponds to a smaller eye
opening, and thus lower performance of the signaling link.
As can be seen from this example, there is non-smooth behavior of the response

surface for our cost function in localized regions of the random space. This highlights
the need for further research in adaptive sparse grid refinement, which will allow us
to add collocation nodes near the highly sensitive regions without needing to refine
the grid over the entire random space.
The probability density function (PDF) of the eye width can be generated by

performing Monte Carlo integration over the response surface. A comparison of
the Stochastic Collocation results and Monte Carlo results is shown in Figure 5.10.
Failure of the signaling link will correspond to cases where the eye width is smaller
than a threshold, thus the accuracy of the left-most tail of the PDF is the most
important aspect of our stochastic modeling. As the results show, we model the tail
quite accurately.
We also observe that in regions of the random space where noise signal is strongest,

a clear closing of the eye opening can be seen as a localized and sharp drop in eye
width. This is consistent with what is expected.
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(a) V1 (left)

(b) V2 (right)

Figure 5.9: Response surface of noise voltage source 1 and noise voltage source 2.
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Figure 5.10: PDF of eye width calculated using SC and MC.

5.5 Adaptive Stochastic Collocation Using Wavelet Basis

In the previous section, the problem under consideration shows sharp localized be-
havior in the cost functions. Rather than using uniform interpolation rules to capture
this locally sharp behavior, adaptive schemes can be used to add interpolation nodes
where the function is least smooth. In general, the behavior of practical electromag-
netic and circuit systems often depends strongly on variations in physical parame-
ters. Uncertainties in internal components due to manufacturing imperfections such
as device and interconnect sizes create a need for the statistical characterization of
system outputs. Non-intrusive stochastic numerical techniques sample solutions from
deterministic simulation software to calculate desired statistical information. These
are the methods of choice in most engineering problems; re-implementation of ex-
isting deterministic simulation software to produce solutions using random variable
expansions, i.e. using intrusive methods, is often impractical and computationally
expensive.
Non-intrusive sampling methods compute deterministic solutions for a set of in-

put points in the random parameter space. Monte Carlo (MC) sampling methods
are the most commonly used and straightforward methods for computing statistical
moments. A large set of deterministic solutions is computed using inputs sampled
from the PDFs of random parameters. While MC scales well with number of random
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parameters, convergence is slow as great many deterministic solutions are required.
Alternatively, a behavioral interpolation model of the system response in the ran-

dom space can be created, e.g. using a global polynomial expansion. These methods
use a “sparse grid” of sampling points that allows for faster-than-MC convergence,
assuming the system behaves smoothly in the random space. Many common electri-
cal systems exhibit irregularities and steep gradients and require adaptive techniques
such as multi-element methods [21], multi-resolution approximations [51], and hier-
archcial sparse grids [52, 24]. These methods dynamically increase sampling density
in irregular regions.
Scaling these methods to high-dimensional problems with many random parame-

ters is difficult; tensor product decompositions lead to dense systems, and sampling
grid sizes cannot be truly minimized without rigorous refinement criteria. The adap-
tive wavelet stochastic collocation method (AWSCM) proposed in [53] attempts to
overcome these problems using a sparse hierarchical grid structure and wavelet basis
functions whose expansion coefficients can be used as rigorous refinement criteria.
Because of this, wavelet approximations potentially require minimal deterministic
solutions to meet error criteria.

5.5.1 Hierarchical Sparse Grids and Adaptive Refinement

The method in this chapter uses the hierarchical sparse grids described in [24] as
a sparse sampling strategy. Denoting points in the N -parameter random space as
x ∈ RN , an M -point approximation f̃ (x) for the system response f(x) can be
constructed as:

f̃ (x) =
M∑
j=1

wjψj(xj) (5.6)

This is a linear combination of basis functions ψj evaluated at the grid points xj.
Points are grouped into integer scaling levels in a recursive hierarchical structure.
Except for the uppermost points on level 0, each point in this structure stems from
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parent points on the level above. An adaptive refinement strategy can be devised to
select parent points to spawn nearby child nodes; points on deeper levels are more
closely spaced and are able to resolve more detailed features.
A level l approximation f̃l can be refined to l+ 1 using K new grid points xk and

(5.7); associated weights wk are computed from associated deterministic solutions
f (xk) so that the linear system in (5.6) is satisfied.

f̃l+1 (x) = f̃l (x) +
K∑
k=1

wkψk (xk) (5.7)

5.5.2 Second-Generation Wavelets

Second-generation biorthogonal wavelets are an effective choice for the basis func-
tions ψj as they allow for a multiresolution approximation that fits the hierarchical,
nonuniform grid structure necessary for adaptive sampling. In an update step, new
weights wk can be directly computed as:

wk = fl+1(xk)− f̃l (xk) (5.8)

Additionally, since wavelets form a Riesz basis, coefficient magnitudes |wj| strongly
indicate the contributions of their associated basis terms to the interpolation; large
magnitudes indicate the presence of local features and a need for refinement. Stan-
dard finite element bases, such as linear hierarchical piecewise polynomials, are not
Riesz bases, and are shown to require potentially more grid points to achieve the
same level of accuracy when using a coefficient-driven adaptive refinement strategy
in [53]. Other Riesz bases, such as Fourier complex exponentials, tend to be globally
supported and unsuitable for characterizing local behavior.
First-generation orthogonal wavelets form a multiresolution approximation local

in both the frequency and spatial domains by means of scaled and shifted compact
wavelet basis functions. Second-generation wavelets generalize this concept to arbi-
trary domains with irregularly spaced data, such as in the sparse grid framework.
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The lifting scheme is used to derive basis functions in the random parameter domain
on different resolution levels. Interpolating wavelets are used for the numerical exam-
ple, and are lifted out of the piecewise linear hierarchical basis through subdivision
following the procedures in [53, 54].

5.5.3 Adaptive Refinement Strategy

Generally, a priori knowledge of system behavior is necessary to tailor an optimal
sampling strategy. However, a quasi-optimal sampling scheme can often be devised
using coefficient magnitudes |wj| and the refinable grid structure described. The
strategy in the numerical example is based on the family direction selective strategy
described in [52, 24, 55]. Accounting for natural grid structure and stability consid-
erations, only the points surrounding those with high |wj| are selected for refinement.
An initial grid should be chosen to be as sparse as possible, yet dense enough to

trigger refinement near important dynamics to ensure approximation convergence.
Additionally, the choice of coefficient threshold affects convergence rate as well as
stability. This threshold is chosen ad hoc but is dynamically increased to limit the
refinement points added in any single refinement step, with the goal of enforcing
stability and improving convergence rate. As illustrated in Figure 5.11, refinement
continues until an approximate maximum allowable grid size is reached, depending
on available computational resources.

5.6 Numerical Example: RLC Resonator Circuit

The adaptive wavelet refinement scheme is tested using a resonant RLC circuit ex-
ample from [21]. The circuit shown in Figure 5.12 is selected for its sharp voltage
characteristics. It consists of a lossless transmission line (TL) terminated by an RLC
circuit and is excited by a sinusoidal voltage source at f = 486.28 MHz. The real
and imaginary components of the voltage across the capacitor, Re {Vc} and Im {Vc},
are chosen as observable outputs. As shown in Figure 5.13, Vc varies rapidly as pa-
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Figure 5.11: Flowchart of the Adaptive Wavelet Stochastic Collocation Method,
with feedback adaptive refinement.

Figure 5.12: Lossless transmission line terminated by an RLC circuit, showing
parameters used in 2D interpolation.
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rameters approach resonant values. The TL has wave speed v = 1.99 × 108 m/s,
characteristic impedance Z0, and length l. It is terminated by a resistor with value
R = 2Ω in series with an inductor and capacitor, parameterized by L and C. Using
ΓL =

R+jωL+ 1
jωC
−Z0

R+jωL+ 1
jωC

+Z0
, the analytical phasor solution for Vc is given by:

Vc =

(
(1 + ΓL)

ej
2πf
v
l + ΓLe

−j 2πf
v
l

)( 1
jωC

R + jωL+ 1
jωC

)
(5.9)

We will look at two scenarios. In the first case Z0 and l are fixed, and L and C are
random. Then we will look at the second case where all four variables are random.
In both cases, there is sharp resonance in the response surface of Vc in the random
space.

5.6.1 Interpolation with Two Random Parameters

TL characteristic impedance and length are first fixed at Z0 = 50Ω and l = 0.4 m,
and L and C are uniformly distributed between [5, 15] nH and [10, 20] pF. Figure 5.13
visually shows the wavelet approximation of Vc as well as the grid used to approximate
Re {Vc}, which demonstrates adaptive refinement in non-smooth regions.

5.6.2 Interpolation with Four Random Parameters

Approximation convergence rate is evaluated for the parameters in Section 5.5.1 as
well as the case when l and Z0 are also uniformly distributed between [0.3, 0.5] m
and [40, 60] Ω. Average residual is used as an error metric and can be estimated on
a parameter space D with volume VD using a quadrature rule:

ρ̄ =
1

VD

∫
D

∣∣∣f(x)− f̃(x)
∣∣∣2 dx (5.10)

Approximations using linear piecewise polynomials with the same hierarchical grid-
ding and refinement strategy and a non-adaptive classical sparse grid with a global
Clenshaw-Curtis interpolation rule are used for comparison. Figure 5.14 shows aver-

77



Figure 5.13: Approximated Re {Vc} and Im {Vc} using approx. 1000 points and
adaptive grid used to approximate Re {Vc} with 967 points.
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Figure 5.14: Residual (log scale) vs. grid size for wavelet, linear piecewise
polynomials, and non-adaptive global grids for two and four random parameters.

age residuals for increasing grid size. The adaptive grids are initialized with around
200 points, and ρ̄ is plotted at each refinement step. The global grid is not refined,
but created with increasing grid densities. AWSCM shows superior convergence rate
and dimension scaling, outperforming the other two methods. The global grid is
competitive for two parameters but struggles with four, demonstrating the need for
adaptive sampling in high-dimensional problems.
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5.7 Conclusions

In this chapter, a non-intrusive SC approach is demonstrated to be effective at solv-
ing stochastic problems of multi-level and multi-scale systems. This system-level
approach to stochastic modeling and simulation allows existing tools, both commer-
cial and proprietary, to be used in the uncertainty quantification process. There are
challenges to using an SC approach for solving problems exhibiting resonant behavior
in the random domain, and a method was proposed to address this challenge. The
results suggest that using adaptive wavelet basis to perform SC can alleviate some
of the computational inefficiencies with constructing a resonant response surface.
Overall, non-intrusive techniques such as SC are very powerful since they enable the
solution of stochastic problems for all classes of problems where deterministic solvers
already exist. In practice, this utility allows complex systems to be solved without
the need to reformulate the system equations. Hence, such an approach can have
broad appeal to industry and EDA tool developers.
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CHAPTER 6

DISCUSSION AND FUTURE RESEARCH

6.1 Discussion

To simulate large and high-order systems with uncertainties, it is important to choose
the appropriate numerical approach for each situation. Numerically complex tasks
such as full-wave electromagnetic simulations and parameter extractions are best
performed using a sampling technique. Accelerated sampling techniques such as SC
are appropriate when the dimensionality of random space is manageable. Techniques
such as adaptive refinement can help achieve desired simulation accuracy without
sacrificing computation time.
On the other hand, numerically simpler tasks such as circuit and transmission line

simulation with LIM are implemented most efficiently using non-sampling techniques,
due to their accuracy. The curse of dimensionality still exists in this case, and the
same benefits from dimensionality reduction still apply..
Overall, however, it is important that different techniques can be used for separate

parts of the overall simulation. Currently, simulations for signal and power integrity
involve using multiple tools in several steps to obtain the measure of interest. The
EM extraction can be done using SC, and the relevant equivalent circuit parameters
can be extracted. In this case, the extracted parameters will be expansion coefficients
for gPC expansion of the circuit parameters. Then, a fast stochastic simulator such as
Stochastic LIM can be used to obtain the time-domain results quickly and efficiency.
These techniques combined allow us to study multi-level and resonant problems

where uncertainties permeate the system. The simulation of these systems are expen-
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sive even when performed deterministically, making traditional statistical simulations
intractable. Fast techniques such as those presented in this document allow the effect
of uncertainties to be quantified in these cases.

6.2 Future Research

The results presented in this thesis represent significant progress in applying stochas-
tic numerical and uncertainty quantification techniques to study EM and circuit
problems. Nevertheless, they also suggest several future research directions that can
bring further advancements to the state of the art.

6.2.1 Stochastic High-Speed Link Simulator

Although transient simulations are traditionally used to evaluate performance of
electrical interconnects, many modern high-speed serial links are evaluated using in-
formation metrics such as bit error rate (BER). In such serial links, the typical BER
is on the order of 10−13. In other words, a large number of bits must be simulated
before a data error occurs. Given the corresponding length of transient simulation
needed to simulate this amount of data, approaches like Stochastic LIM simply can-
not solve problems of this scale. Rather, statistical methods are typically used to
construct the so-called statistical eye diagrams, which estimate the BER by convo-
lution of the bit response of the link with probability mass functions of the data.
Current methods account for deterministic jitter that results from channel degrada-
tion, as well as random jitter which comes from process and thermal uncertainties
in the driver and receivers. However, a stochastic model of the channel is not in-
cluded in currently available tools. A high-speed link simulator compatible with
stochastic channel models will be very useful for evaluating the performance of links
in extreme environments. For instance, in aerospace applications, the printed circuit
board containing the channel for high-speed USB links experiences rapid and signif-
icant changes in the amount of moisture absorbed by the substrate. The dielectric
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property of the board will vary due to the moisture content, and thus the electrical
model of the channel is inherently stochastic. An efficient method can be developed
to expediently evaluate situations such as this.

6.2.2 Stochastic Macromodels

Instead of equivalent lumped circuit models, many interconnect components are mod-
eled using transfer functions. This is desirable because the models for more com-
plicated structures such as vias and connectors exhibit strong frequency-dependent
behavior. In fact, transmission lines such as those studied in this thesis are of-
ten modeled as network parameters in order to account for the dispersive property
of dielectric substrate and frequency-dependent loss effects such as skin effect and
proximity effect. The limitation of such models is that they are very specific to the
structure being modeled. For instance, a set of network parameters needs to be
generated for a specific length of transmission line, and separate models need to be
generated for via model with different center-to-center spacing. The generation of
these models utilizes 3D EM field solvers and is rather expensive. It is desirable to
create compact and parameterized transfer functions that can represent the behavior
of such interconnects. With parameterized macromodels, analysis of uncertainty in
such structures can be performed using sampling techniques, without the need to
generate full 3D models for each instantiation. Methods need to be developed to
parameterize transfer functions, to reduce the order and size of these macromodels,
and to construct the relationship between input parameters and model parameters in
an automated fashion, so that even complicated structures exhibiting uncertainties
can be simulated. Furthermore, methods need to be developed to incorporate the
stochastic macromodels in tools like Stochastic LIM and the stochastic high-speed
link simulator proposed above, so these models can be used to obtain the desirable
outputs.
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6.2.3 Stochastic FDTD for Transient EM Field Analysis

The Stochastic LIM presented in this thesis is an improvement over regular LIM,
which is a circuit simulator that uses many of the same numerical techniques as the
popular finite-difference time-domain (FDTD) technique for EM field solution. Hence
it should be possible to follow steps similar to those demonstrated in this thesis to
construct an intrusive formulation of the FDTD field update equations, thus making a
transient EM field solver capable of solving fields when the properties of materials and
medium are uncertain. This will be very useful for simulating microwave dosimetry
problems, since human tissue varies by each individual, and a stochastic simulation
can provide information that leads to designs which are robustly safe but not overly
conservative and which do not sacrifice functionality for lower cost.

6.2.4 Sequential Function Approximation for Big Data Analysis

The SC method as presented in this thesis utilizes pre-defined nodes where the func-
tion must be evaluated in order to construct an interpolation. In practice, it would
be desirable to construct an interpolation or an approximation of the cost function
using previously available data. This is the big data approach to modeling distinct
classes of problems. For example, microstrips are ubiquitous in industry and many
models have been constructed for these structures. It would be good to take col-
lections of past models and their corresponding inputs, and use them to construct
an approximation of the model in terms of one or several parameters. For SC, data
must be provided for specific nodes in the parameter space. But recently developed
techniques have shown that sequential functional approximation can construct ap-
proximations using past data, even if they are clustered in the input parameter space.
Although as an interpolation, these techniques are not as efficient as sparse grid for
SC, they do have utility since all previously available data can be used to improve
the quality of the interpolated model. For modeling structures that are commonly
used across the industry and for which many models and outputs exist, the big data
approach can achieve the objects of sparse grid without needing to run any addi-
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tional simulations at all. In addition, sequential function approximation has been
shown to be efficient for problems with high-dimensional input (d > 100). It will be
interesting to apply these techniques to problems in the EM and circuit simulation
area.

6.2.5 Experimental Verification of Stochastic Simulation Results

The vast majority of the results presented in this thesis are verified using prior
techniques such as MC. Although the results correlate well, no correlation with lab
hardware measurement is performed. There are many unique challenges that must
be overcome in order to perform uncertainty quantification measurements in hard-
ware. The foremost concern is cost, since a large sample size of hardware must be
fabricated and each one must be characterized. The proper identification of input
parameter values and consistency of output measurements are also challenging, since
the measured output will unavoidably contain noise. Finally, much thought can be
given to applying fast uncertainty quantification methods used in simulations for this
thesis to measurements, so the statistics can be measured with many fewer samples.
Experimental results can also be used with sequential function approximation to
calibrate and refine stochastic models.
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