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ABSTRACT

Expert operators of real world robots, especially constructions robots, develop expertise from years
of training and experience. In the absence of such experts, these robots are operated by novice
operators, and this adversely affects the productivity. On the other hand, safety concerns and
the nature of the operating environment limits the possibility of automating these robots. This
thesis proposes a solution by considering a problem setting in which the robot learns a policy
from experts to train novice human operators. Formally, this is posed as the problem of learning
instructional policy from demonstration, given as πI : s → i , that maps the state (s) of the robot
to an instruction (i ) for a human operator. Existing methods learn policy from demonstration,
however such policies do not relate to the human operator’s action space and hence cannot be
used to generate instructions for novice operators. We introduce action primitives that address
this challenge of mapping continuous state action trajectories to human parse-able and executable
instructions.

Construction tasks are complex as they consist of several subtasks with stochastic transitions.
For such tasks, existing approaches learn policy for component subtask and then rely either on
predefined decompositions or heuristics to generate policy for the entire task. To overcome this
limitation, and to generate instructions for an entire construction task, this thesis proposes learning
of a structured probabilistic model for instructional policy. This model utilizes hierarchy of Markov
chains that incrementally captures the number of subtasks as well as their transitions. Switching
between the subtasks is inferred using a likelihood rate based inference approach proposed in
this thesis. Instructional policy model is tested based on a controlled group study involving 113
participants, who learn to perform the truck loading task on a hydraulic actuated scaled excavator
robot.

Further this thesis investigates shared control design for construction robots. Existing work has
established that shared control can improve cycle times in nominal conditions. However, these
methods can be too slow to relinquish control in off-nominal cases, when the operator needs to de-
viate from the nominally optimal trajectory due to unforeseen obstacles or other uncertainties. With
an objective to incorporate such capability, this thesis proposes a new shared control technique that
utilizes the operator’s intent to quickly relinquish control in off-nominal conditions. Theoretical
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results with performance guarantees and improved obstacle reaction time are presented. Proposed
design has been experimentally validated on Zermelo’s navigation problem. The last part of the
thesis introduces kernel observer for learning and inference of large-scale stochastic phenomena
with both spatial and temporal (spatiotemporal) evolution. This work considers the problem of
estimating the latent state of a spatiotemporally evolving continuous function using very few sen-
sor measurements. The model consists of a dynamical systems prior over temporal evolution of
weights of a kernel model. Theoretical results provide sufficient conditions on the number and
spatial location of sensors required to guarantee state recovery. A lower bound on the minimum
number of sensors required to robustly infer the hidden states is also derived. Finally, theoret-
ical results for randomly selecting sensing or sampling locations based on the predictive kernel
observer model are presented. Our approach outperforms state-of-the-art kernel based machine
learning methods in numerical experiments on real world datasets.
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CHAPTER 1

INTRODUCTION

Many real world operations, such as those involving farming and construction robots, are safety
critical and are characterized by uncertain and dynamically changing environment. For example,
an excavator loading a truck in Figure 1.1, has to operate at different elevations, dig and scoop
dynamically changing profiles of soil while ensuring safety of construction workers. Such char-
acteristics makes the presence of human operators necessary and therefore robots such as heavy
construction and farming equipments; examples include excavators, tractors, backhoes, etc have
not been automated, though there exists substantial research [1–3]. However, the human oper-
ators of these robots require years of training and operation to develop high levels of skills and
expertise [4]. Moreover, in case of increasing attrition or scarce number of expert operators, the
robots are operated by inexperienced or entirely novice operators, causing an adverse impact on
productivity. Thus, overcoming the relative skill-gap between expert and novice operators, without
consuming the time of expert operators in training others, presents an important challenge. This
paper conceives a solution to this problem by investigating a policy that allows the robot to teach
or guide novice operators. Further, we develop a policy model that learns such a policy for an
entire complex task. This is crucial to instruct an operator in doing and learning a complex task
comprised of several subtasks.

1.1 Learning Instructional Policy Model for Construction Tasks

We investigate development of construction robots that can assist human operators by guiding them
in doing a task as a solution to speed up the learning process of novice operators. Specifically,
we want the robot to learn from expert operators, and generate instructions to assist and train
novice operators. To date, Learning from Demonstration (LfD) has been widely studied in the
context of robot learning a policy to do a task from teacher demonstrations (surveyed in [5]). In
the context of present problem, we need to learn a policy that maps a robot’s current state to an
instruction for a human operator, we define this as the process of learning instructional policy from

demonstration. We propose that a robot teaching a human operator needs to do much more than
learning to execute the demonstrated task, such as, (i) It has to simplify and decompose the task into
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Figure 1.1: An excavator robot and its human operator performing a truck loading task in a safety
critical and dynamically changing environment. Our goal is to enable construction robots to learn
instructional policy from skilled human operators, and use that policy to guide and train novice
human operators in completing complex tasks.

human understandable task-primitives and communicate back the essential instruction (sequence
of actions); (ii) These instructions must be in the same action-space that the human operates in, for
example, in the excavator control problem, they must be in the joystick motion space; (iii) Finally
the instructions must be delivered in a manner that adapts to the human operator’s current task-
state. Traditional learning from demonstration methods [6–9], have not considered the problem in
which the robot instructs another (novice) human operator and hence do not addresses the above
mentioned requirements of this new setting.

Our first contribution is the introduction of action primitives that enables mapping of continu-
ous state-action trajectories to instructions in human operator’s action space. As opposed to the
widely studied concept of motion primitives, definition of action primitives (in section 3.2.1) is
directly applicable for automatic segmentation of demonstration trajectories into simpler reusable
primitives. This segmentation procedure does not require sampling based inference and is hence
very efficient and scalable to larger datasets comprising of tens of thousands of state-action pairs.
Second, we propose and demonstrate a single policy model representation for a complex task com-
prising of several subtasks. Existing methods typically learn individual policies for each subtasks,
and rely on heuristics or pre-defined sequencing of subtasks to replay the task. Proposed policy
representation models sequencing of subtasks along with the transitions between low level prim-
itives within a subtask. This is accomplished using a hierarchy of Markov chains that uniquely
associates low level primitives with the objects being manipulated in a task. Third, we created and
tested two visual interfaces to communicate instructional policy to the human operator. Finally,
we present exhaustive evaluation of the proposed instructional policy model through experiments
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Figure 1.2: Excavator robot training a human operator to perform a construction task using Instruc-
tional Policy model (enlarged in Figure 3.3) learned from expert demonstrations. Instructional
policy, πI : s → i , maps robot’s state (s) to an instruction (i ). The instruction i is communi-
cated through the visual interface to the human operator who then commands an action here joint
velocity.

involving 113 novice operators comparing performance between those assisted by the robot and
those who learn to perform truck loading task based on observing other experts. Our approach is
an attempt to investigate an architecture for a robot to train or assist their operators. Figure 1.2, is
an example of such an architecture in which the excavator robot utilizes the feedback of its current
state, and the instructional policy model, to generate instructions for the human operator.

1.1.1 Significance with respect to Relevant Literature

Existing LfD techniques can be broadly classified as those based on ideas from reinforcement
learning ( [10]) and direct policy approximation ( [7]). Their objective is to infer a control policy
that maps the robots state into actions, whereas in this thesis we develop a policy approximation
approach that maps the robot’s state to instructions for a human operator. Can the existing policy
representations, such as linear, neural nets, dynamic motor primitives (DMPs), etc, generate in-
structions? These representations typically output actions in terms of desired trajectory and would
require a series of transformations (see Figure 1.3) to generate instructions in the actuator space
(human operator’s action space). If the instructions are in trajectory space, the operator would be
required to figure out suitable joystick actuations, rather than focusing on learning the task. In
translating instructions to the actuator space, most critical part is to breakdown a skill in trajectory
space to a sequence of discrete joystick commands. These positions should then be given as in-
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structions at an operator friendly rate rather than continuous update of control inputs typically used
by the robots. Hence, in our approach we pursue skill (or segment) identification in the actuator
space, such skills can be communicated directly as operator friendly instructions.

Figure 1.3: Transformation required for using existing LfD methods to generate instructional pol-
icy in human operator’s action space i.e. the joystick space. Moreover, the policy is updated
continuously at rate f in traditional setting, whereas an update rate h that updates instruction in an
operator friendly manner is developed.

Further, our objective is to develop a single policy model representation that generates instruc-
tions for complex task comprising of several subtasks. Most of the existing research in policy
learning ( [9]) addresses the problem in which a robot learns a monolithic policy from a demon-
stration of a simple task that has a well-defined beginning and end. Recent approaches to learn
complex tasks such as robot soccer goal scorer ( [11]), playing table tennis ( [12]), table leg as-
sembly ( [13]), and others, either utilize a predefined or hand-coded decomposition of a task into
subtasks or resort to heuristics. [12] utilized a pre-defined sequence of skills, and used DMPs to
represent the policy for each individual skill. [11] had utilized a hand-coded controller for transi-
tions between subtasks for robot soccer goal scorer task while using infinite mixture of Gaussian
process experts (IMoGPE) to model policies within each subtask and incrementally discovering
each subtask. [13] had demonstrated success in learning table leg assembly from unstructured
demonstration, utilizing a heuristic approach of finite state representation to sequence skills, where
each skill (or segment) is modeled as a dynamic motor primitive. For these tasks, transition be-
tween skills occurs with respect to the task objects. For example, in table leg assembly, robot
transitions from the reaching skill to grabbing of the leg after it positions its end-effector over the
leg. Similarly, for robot soccer and table tennis, skill transitions occur with respect to the task
objects being manipulated. We exploit this insight to learn subgoals in the trajectory space with
respect to the task objects. Further, we let the sequence of skills (or segments) associated with such
a subgoal to represent a subtask. And transition between these subgoals to represent the execution
of a complex task.

Based on these insights and representations, we propose a structured policy representation to
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learn a complex real world task as a probabilistic model, that captures transition among the low
level primitives (skill or segments) associated with the higher level task context (subgoals). Such a
policy parameterization model can generate policy for an entire task, enabling robots to perform or
to instruct a complex real world task. We utilize a hierarchy of Markov chains to construct such a
policy model. We utilize Dirichlet process means based clustering approach to discover subgoals.
Transition among these subgoals is used as the higher level task context which is associated to the
transition among the action primitives at the lower level. Though the construction of this model is
inspired by the goal of generating instructional policy, with few modifications, the policy model is
also demonstrated to perform autonomous task execution.

Another key aspect is the interface to communicate instructions to the human operator. This
plays a key role in learning speed, and skill retention of novice operators. In our study, we utilize
insights from operant conditioning (subjects conscious behavioral responses to an environment)
and visual reinforcement. Videos are known to be effective at teaching tasks and problem solving
strategies in both children and adults [14, 15]. With regards to interactive experiences, simple
visual interfaces help reduce stimulant load during learning [16]. Additionally, the use of limited
guidance or feedback, especially in the early training of novices, can also increase learning [17].
Based on this prior research, we propose and evaluate two different hypotheses for visual interfaces
in training novices. Learning of the instructional policy model and the experimental results are
presented in chapter 3.

1.2 Spatiotemporal Monitoring

Modeling of large-scale stochastic phenomena with both spatial and temporal (spatiotemporal)
evolution is a fundamental problem in the applied sciences. Common examples include modeling
ocean heat content and acidification in oceanography [18], future seismicity [19], land use change
in urbanization [20], and extreme weather events [21], among others. While modeling spatiotem-
poral phenomena has traditionally been the province of the field of geostatistics, it has in recent
years gained more attention in the machine learning community [22]. The data-driven models de-
veloped through machine learning techniques provide a way to capture complex spatiotemporal
phenomena that are not easily modeled by first-principles alone, such as stochastic partial differ-
ential equations.

In the machine learning community, kernel methods represent a class of extremely well-studied
and powerful methods for inference in spatial domains; in these techniques, correlations between
the input variables are encoded through a covariance kernel, and the model is formed through a
linear weighted combination of the kernels [23,24]. In recent years, kernel methods have been ap-
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plied to spatiotemporal modeling with varying degrees of success [22,23]. Many recent techniques
in spatiotemporal modeling have focused on nonstationary covariance kernel design and associated
hyperparameter learning algorithms [25–27]. These methods, which focus on the careful design of
covariance kernels, have been proposed as an alternative to the naive approach of simply including
time as an additional input variable in the kernel [28]. The careful design/optimization of covari-
ance kernel avoids an explosion in the number of parameters (kernels utilized) of the model which
would be inevitable in a model that simply adds time as an additional input variable, and has been
shown to better account for spatiotemporal couplings. However, there are two key challenges with
existing kernel based approaches: The first is ensuring the scalability of the model to large scale
phenomena, which manifests due to the fact that the problem of optimizing the covariance kernel
(known as hyperparameter optimization in the ML community) is not convex in general, leading to
methods that are difficult to implement especially in online settings, susceptible to getting stuck at
local minima, and highly computationally demanding for large datasets. The second key challenge
is in using existing kernel-based machine learning models for analysis and synthesis of observers
and controllers for the large scale spatiotemporal phenomena. While the first challenge can be
addressed with increasing computational power for large datasets, addressing the latter (and vastly
more fundamental) challenge is particularly important in the design of reliable engineering sys-
tems, such as distributed sensor/actuator networks intended for monitoring physical phenomena,
autonomous soft-robots, or other physical systems with distributed sensing and actuation.

In this work, an alternative perspective of solving the spatiotemporal monitoring problem that
brings together kernel-based modeling, systems theory, and Bayesian filtering is developed. We
define the monitoring problem as follows: Given an approximate predictive model of the spatiotem-

poral phenomena learned using historic data, estimate the current latent state of the phenomena

in the presence of uncertainty using as few sensors as possible. In particular, we argue that when
it comes to predictive inference over spatiotemporal phenomena, a Kalman-filter type approach of
predicting and correcting with feedback from a set of minimal sensors is a robust way of dealing
with real-world uncertainties and inherent modeling errors. In the context of this specific problem,
our main contributions are two-fold: first, we demonstrate that spatiotemporal functional evolu-
tion can be modeled using stationary kernels with a linear dynamical systems layer on their mixing
weights. In particular, in contrast with existing work, this approach does not necessarily require
the design of complex spatiotemporal kernels, and can accommodate positive-definite kernels on
any domain on which it is possible to define them, which includes non-Euclidean domains such
as Riemannian manifolds, strings, graphs and images [29]. Second, we show that such a model
can be utilized to determine sensing locations that guarantee that the hidden states of functional
evolution can be estimated using a Bayesian state-estimator (Kalman filter) with very few mea-
surements. We provide sufficient conditions on the number and location of sensor measurements
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required and prove non-conservative lower bounds on the minimum number of sampling locations
by developing fundamental results on observability of kernel based models. The validity of the
presented model and sensing techniques is corroborated using synthetic and large real datasets.

The fundamental idea of building observers and controllers introduced in this thesis is gener-
alizable beyond the particular application of spatiotemporal monitoring. Indeed, the significance
of the contributions of this work are in fusing machine learning theory with systems theory to
provide a pathway to address major challenges in spatiotemporal monitoring and control. The
problem of state estimation of a temporally evolving finite-dimensional state-space system has
been extensively studied in the dynamical systems and feedback-control community [30]. Here,
fundamental results in observability/controllability provide sufficient conditions on the structure
of the state transition and measurement matrix such that the latent state can be estimated in the
presence of measurement and process noise. Such filters can be naively extended to the functional
domain (e.g. [31]), but have not typically been studied in context of the spatiotemporal monitoring
problem studied here.

The marriage of systems theory with machine learning pursued in this paper is exciting because
it can provide a formal way of answering fundamental questions about complex systems, such as:
What is the least number of sensors required to observe a distributed system? Where to place
sensors/actuators to guarantee observability/controllability of the system? And how does random
sensor placement affect observability/controllability? We expect that follow on work will exploit
the framework presented in this paper of utilizing linear models in feature spaces of machine learn-
ing models to enable practical and analyzable data-driven engineering systems. To facilitate the
development of the theory, we have focused our work on the problem of monitoring spatiotemporal
phenomena. However, the idea can be generalized to any distributed cyber-physical system that is
changing with space and time.

We also addressed another very important challenge: given a predictive model of the spatiotem-
poral phenomena, can we randomly select sampling locations to estimate the current latent state
of the phenomena? We present theoretical results that explain rigorously the interesting discovery
in this work i.e. increasing the number of randomly placed sensors guarantee observability with
probability that approaches one exponentially in section 6.2. Formulation of the kernel observer
model, theoretical and experimental results are presented in chapter 6.
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1.3 Mathematical Preliminaries

1.3.1 Gaussian Process Regression

A common approach in machine learning to model spatial dynamics is to use the nonparametric
Bayesian framework known as Gaussian Processes [23]. Being a non-parametric model, the model
structure need not be specified a priori but is instead determined from data. Typically, Gaussian
Process Regression (GPR) is used to learn input-output mapping function f from the training
data set D of n observations, D = {(xi, yi)|i = 1, . . . , n}, where x denotes the input vector of
dimension D, and y is the scalar output (or target); the column vector inputs for all n cases are
aggregated in the D×n, matrix X . Once the mapping function f is known for the set of inputs X ,
it can then be used to make predictions for all possible set of test values X∗ through the derivation
of the posterior function f(X∗).

By definition, a Gaussian process describes distribution over functions and is completely speci-
fied by its mean function m(x) and covariance function k(x, x′) of a real process f(x) as

m(x) = E[f(x)],

k(x, x′) = E[(f(x)−m(x))(f(x)−m(x′))]

which can be denoted as
f(x) ∼ GP(m(x), k(x, x′)).

In our case the random variables represent the value of the function f(x) at location x. Often,
Gaussian processes are defined over time, i.e. the index set of the random variables is time. This
is not the case in our use of GPs; here the index set X is the set of possible inputs, which could be
more general, e.g. RD. In present work, we use squared exponential covariance function defined
as,

cov(f(x), f(x′)) = k(x, x′) = exp(−‖x− x
′‖2

2σ
)

To derive f(X∗) using GPR given the dataset D, we begin by defining a zero mean prior over the
functions as

f ∼ N (0, K(X,X))

where K(X,X) is a covariance matrix, with entries k(xi, xj) for i, j = 1, . . . , n. Next, we
incorporate measurement noise in the output as y = f(x) + ε, assuming additive independent
identically distributed Gaussian noise εwith variance σ2

n , hence the prior on the noisy observations
now becomes f ∼ N (0, K(X,X) +σ2

nI). The joint distribution of the measured target values and
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the function values at the test locations according to the prior is[
y

f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

])

where f∗ , f(X∗). The posterior conditioned on the observations gives the key predictive equa-
tions for Gaussian process regression as

f∗|X, y,X∗ ∼ N (f̄∗, cov(f̄∗)) (1.1)

f̄∗ = K(X∗, X)[K(X,X) + σ2
nI]−1y (1.2)

cov(f̄∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗) (1.3)

where f̄∗ is the mean prediction at locations X∗ and cov(f̄∗) is the predictive uncertainty.
For Spatiotemporal applications, we use GPR to model spatial dynamics. Equation (1.2), can be

written as

f̄∗ =
M∑
i=1

K(X∗, xi)wi (1.4)

where wi is the ith component of vector w ∈ RM given as

w = [K(X,X) + σ2
nI]−1y (1.5)

We argue that a linear dynamical systems prior over the evolution of GP weights w, can be used to
monitor temporal evolution of a process. Hence learning the GP weights at each instant of time and
then its temporal evolution is a key approach in modeling processes evolving in space and time.
Preliminary work using this key idea is elaborated in section 6.

1.3.2 Time Series Analysis

Hidden Markov models (HMMs) are generative Bayesian models that have long been used to make
inferences about time series data. Time-series data, such as robot task demonstrations, present
unique challenges for analysis, since observations are temporally correlated. Clearly, time-series
data are not independent and identically distributed (nor are they exchangeable), but weaker as-
sumptions can often be made about the data to make inference tractable. Define a sequence to be a
first-order Markov chain if:

p(xn|x1, x2, . . . , xn−1) = p(xn|xn−1) (1.6)
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Hidden Markov Model

z1

x1

z2

x2 x3 xN

. . .

. . .

z3 zN

Figure 1.4: Hidden Markov Model, with latent variable z and conditionally independent observa-
tions x

In other words, given the previous observation xn−1, an observation xn is conditionally indepen-
dent of all other previous observations. To capture longer-range interactions, this concept can be
extended to higher orders, such that an observation is dependent on the previous M observations:

p(xn|x1, x2, . . . , xn−1) = p(xn|xn−1, . . . , xn−M) (1.7)

One way to tractably model time-series data is through the use of a state space model, in which
each observation xi has a corresponding latent variable or hidden state zi associated with it. The
latent variables z1, . . . , zn form a Markov chain and emit the observations x1, . . . , xn based on
conditional distributions of the form p(x|z). Figure 1.4 shows the graphical representation of a
state space model. When the latent variables z in a state space model are discrete, we obtain the
standard Hidden Markov Model (HMM). The standard HMM is defined by the number of states
K that the latent variables can take on, a K × K transition probability matrix π (with rows πk)
that describes the probabilities p(zi|zi−1), and a parameterized distribution F (·) that describes the
conditional probabilities p(xi|zi). The generative model for an HMM can be written as:

zi ∼ πzi−1

xi ∼ F (θzi)

where θzi is a parameter vector associated with state zi, and “∼” can be read as “drawn from” or
“distributed as”. In other words, the HMM can describe time series data with a mixture model in
which the latent mixture component indices have a temporal relationship as a first-order Markov
chain. One drawback of the standard HMM is that the observation xi is conditionally independent
of any other observation xj , given the generating hidden state zi. This independence assumption
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is clearly not well founded for much time-series data, such as robot demonstrations, in which the
observations, as well as the hidden states, have temporal dependencies. The autoregressive HMM
(AR-HMM) addresses this by adding links between successive observations, forming a Markov
chain, as shown in Figure 1.5. This can also be extended to a Mth order AR-HMM, as shown in
Figure 1.6.

z1

x1

z2

x2 x3 xN

. . .

. . .

z3 zN

Figure 1.5: A first-order autoregressive HMM. Additional links can be added to make an M th-
order autoregressive HMM.

z1

x1

z2

x2 x3 xN

. . .

. . .

z3 zN

Figure 1.6: This example shows a second-order AR-HMM. Additional links can be added to make
an M th-order autoregressive HMM.

AR-HMMs face a problem in cases where the observations are not discrete - a simple transition
matrix cannot be used to describe the probabilities p(xi|zi, xi−1, . . . , xi−M). For example, demon-
stration data is often comprised of continuously valued state action pairs representing robot joint
poses and actuations. In this case the conditional probability density function over xi must be able
to be written in terms of a continuous function of its predecessors. For example, a linear dynamical
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system governing the conditional distribution can be used, such that:

p(xi|zi, xi−1, . . . , xi−M) =
M∑
j=1

Aj,zixi−j + ei(zi) (1.8)

These fundamentals are used in our policy model to learn complex real world task from demon-
strations.

Time series data available from demonstrations can be modeled using HMM, for e.g. [32] mod-
els the time series data from table assembly demonstration using HMM, in their case the latent
variable of the HMM represents different skills (object manipulation, reaching a point in space
etc.) with the corresponding joint positions and velocities representing the observations generated
by these latent variables. These HMMs are limited by the fact that the number of latent modes
need to be specified a priori. A principled way to overcome this limitation is to use a Bayesian
non-parametric prior such as Beta Process (BP), or Hierarchical Dirichlet Process (HDP).

Beta Process Autoregressive Hidden Markov Model (BP-AR-HMM) used by Niekum et.al. [32,
33], uses a Beta Process prior over the HMM such that each time series can exhibit a subset of
the total number of discovered modes (latent skills) and switch between them in a unique manner.
Moreover, Bayesian nonparametric prior allows the segmentation to be performed without the need
for prior knowledge about the number or structure of skills involved in a task.

1.3.3 Preliminaries on Rational Canonical Structure and Jordan Decomposition

We take a geometric approach towards the choice of sampling locations for spatiotemporally evolv-
ing systems. This involves a major result in linear algebra related to rational canonical structure
and Jordan canonical decomposition of a linear operator A [34]. Let V be a linear space over R,
with dim(V) = M , then A : V → V has a characteristic polynomial π(λ) such that π(A) = 0 by
the Cayley-Hamilton theorem. The minimal polynomial (MP) of A is the monic polynomial α(λ)

of least degree (denoted by deg(·)) such that α(A) = 0. The MP is unique and divides π(λ), so
that deg(α) ≤ M . The MP of a vector v ∈ V (relative to A) is the unique monic polynomial ξv
of least degree such that ξv(A)v = 0. If deg(α) = M , then A is said to be cyclic and there exists
c ∈ V , such that the vectors {c, Ac, . . . , An−1c} form a basis for V; in the dual sense this is same
as saying that the pair (cT , AT ) is observable.

If deg(α) < M and if MP of c ∈ V relative to A is α(λ), then the vectors {c, Ac, . . . , AM−1c}
span an M -dimensional A-cyclic subspace VS with cyclic generator c. The subspace VS decom-
poses V relative to A. The rational canonical structure theorem shows that A can be successively
decomposed into subspaces Vi ⊂ V(i ∈ {1, . . . , `}) with properties: V = V1 ⊕ ...⊕Vl, AVi ⊂ Vi,
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and A|Vi, (i ∈ {1, . . . , `}) is cyclic. The integer ` is unique and is called the cyclic index of A.
One of our main results is to show that the cyclic index is a lower bound on the number of mea-
surements required to reconstruct w(t). A key relevant result in linear algebra is that any matrix
A ∈ RM×M is similar to a unique block diagonal matrix Λ (i.e. ∃P ∈ RM×M invertible such that
A = PΛP−1) whose diagonal blocks are matrices of the form

Λk(λi, λ
∗
i ) :=


M I2 · · · 0
...

... . . . I2

0 0 · · · M

 . (1.9)

where (λi, λ
∗
i ) is a complex conjugate eigenvalue of A, and M =

[
µ1 µ2

−µ2 µ1

]
and I2 =

[
1 0

0 1

]
.

Real eigenvalues λi correspond to the case M = λi and I2 = 1. Thus the complete real Jordan
form of A will be the appropriate diagonal array of these blocks. If all the eigenvalues λi are
nonzero and real, we say the matrix has a full-rank Jordan decomposition.

1.3.4 Dirichlet Distribution for Transition Matrix (π)

For a K state Markov chain with uncertain transition matrix π, a well-known Bayesian approach
[35], is to assume a prior Dirichlet distribution on each row πm (πm = [πm,1, . . . , πm,K ]) of the tran-
sition matrix π, and recursively update this distribution with observations. The Dirichlet density at
any time τ defined over the simplex formed by the elements of the row πm and hyper-parameters
α(τ) = [α1, . . . , αK ] (with each αi > 1) is given by

fD(πm|α(τ)) =
1

B(α(τ))

K∏
i=1

παi−1
m,i ,

∑
i

πm,i = 1 (1.10)

where B(α(τ)) =
∏K
i=1 Γ(αi)

Γ(α0)
is a normalizing factor, where α0 =

∑
i αi. Dirichlet distribution

being conjugate to multinomial facilitates posterior update of πm based on the observed transitions.
Moreover, the hyperparameters αi can be interpreted as “counts”, or times that a particular state
transition was observed, this allows easy update to the distribution based on new observations. The
mean and the variance of the Dirichlet distribution defined in (1.10) can be calculated as

π̄m,i = αi/α0

Σii =
αi(α0 − αi)
α2

0(α0 + 1)
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These are the mean and the variance of the ith element of πm, and is computed ∀i and for all rows
of π.

1.3.5 Mean-Variance Estimator

To update πm one has to calculate the mean and variance at each time step. However, the Mean-
Variance estimator developed by [36] allows recursive update for the mean and variance, in a form
of predict and update step, written jointly (for brevity) as

π̄m,i(τ + 1) = π̄m,i(τ) + Σii(τ)
δi,i′ − π̄m,i(τ)

π̄m,i(τ)(1− π̄m,i(τ))
(1.11)

Σ−1
ii (τ + 1) = γ(τ + 1)Σ−1

ii (τ) +
1

π̄m,i(τ)(1− π̄m,i(τ))
(1.12)

where γ(τ + 1) =
π̄m,i(τ)(1−π̄m,i(τ))

π̄m,i(τ+1)(1−π̄m,i(τ+1))
, and δi,i′ = 1, if i = i′ and is zero otherwise, refer [36] for

proof and details. This estimator plays a key role in the evaluation of likelihood rate of a TPM.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Automation and Challenges in Construction Robotics

One of the earliest attempts at automating excavator was LUCIE by Seward et.al [37], a fully au-
tonomous excavator. Their work used laser sensors to scan its surroundings and learn about its
environment, but was not able to see objects completely above or below the sensors. Subsequently,
automation of the excavation process has been studied with respect to trajectory planning, explicit
modeling, and reactive strategies. However, LUCIE and other such attempts at autonomous exca-
vator development [1–3,38,39] have suffered from limitations in perception, situational awareness,
and safety. Other efforts [40,41] have focused on the optimization aspect for different tasks such as
scooping and trenching. For example, Kim et.al. [40] developed technique for minimizing the req-
uisite torque and time for excavator operation utilizing analytic gradient based motion optimization
algorithms. Seo et.al. [41] developed a task planner to ensure that the planning is more reactive
to real time changes. Different kinds of controllers and sensors have also been used to provide
feedback for estimation of control parameters and tracking motions to get the optimal paths for ex-
cavation ( [42–45]). Saeedi et.al. [43] developed Fuzzy logic based path tracking controller, while
Jun et.al. [45] used fuzzy logic controllers to capture parameter uncertainties, external disturbance,
and nonlinearity. However, most of these approaches encountered problems due to the limitations
such as sensor range, field of view of the cameras, and the lack of human feedback.

On the other hand, construction industry has long been affected by high rate of workplace in-
juries and fatalities. More recently, safety has become an important concern for the construction
industry, which recorded highest number of occupational fatalities according to the Census of Fatal
Occupational Injuries (CFOI) report ( [46]). Owing to the limitations discussed earlier, combined
with, the safety critical nature of construction task, aforementioned research efforts into automat-
ing construction equipments have not seen the daylight. In addition to the safety concerns, shortage
of skilled operators has been another significant concern in recent times due to the rapid increase in
infrastructure projects. Job portals have numerous openings for construction equipment operators,
a recent search on Jora Australia for “urgent excavator operator jobs”, alone had 900+ openings.
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All such recent trends motivate our development of assistive autonomy in which the construction
co-robots can assist in speeding up the training of novice operators. In the future, such an ap-
proach can also leverage the prior developments in automating construction equipments to share
control with the operators to boost productivity when the operator follows the robot predicted
trajectory [47], and relinquish control in off-nominal situations [48].

We discuss prior work in learning from demonstration and inverse reinforcement learning and
point out the key ideas that we leverage in learning instructional policy model.

2.2 Robot Learning from Demonstration

Research in Learning from Demonstration (LfD) has focused on enabling robots to learn a policy
for task execution from demonstrations provided by the human teacher. Considerable research
efforts have been made in this field followed by some review and survey articles. First review
of direct policy approximation methods from a computational point of view was by Schaal et.al.
[7], it covered statistical and mathematical approaches that were used to tackle imitation learning
problem. Billard et.al. [49] provides an overview of robot programming by demonstration with
focus on incremental learning approaches that allow the robot to adapt the learned skill to different
situations. A comprehensive survey of robot LfD, covering possible choices in terms of how
teacher demonstrations are obtained, and various techniques for policy derivation, is given in Argall
et.al. [5]. A more detailed survey into policy search techniques was given by Deisenroth et.al. [9].
While a detailed survey of reinforcement learning based approaches in robotics appeared in Kober
et.al. [50]. In this thesis, we introduce and tackle a problem setting that requires the robot to
learn from a human teacher a policy, that can be used to instruct or assist other operators. We
leverage insights from the existing LfD literature in the development of our policy approximation
approach that learns the instructional policy (πI) to map the robot’s state to an instruction for
a human operator. The survey paper by Argall et.al. [8] provides a baseline for categorization of
research work in LfD, with respect to the means of gathering demonstrations and policy derivation.
There are different ways of gathering demonstrations based on various techniques for executing
and recording demonstrations. We restrict to the case where teacher operates the robot platform
(who is a learner) and the robot’s sensors record the execution. There are cases where robot has to
mimic the teacher motion and then record its sensor data.

Most of the existing research in LfD addresses the problem in which a robot learns a monolithic
policy from a demonstration of a simple task that has a well-defined beginning and end, for example
learning baseball [51], tennis swings [52], ball-in-the-cup [53], inverted helicopter hovering [54]
etc. These approaches enable the learning of a single policy from data. While many approaches
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enable the learning of a single policy from data, some approaches perform automatic segmentation
of the demonstrations into simpler reusable primitives, followed by learning of policy for each
primitive [11, 32, 55–57]. Such an approach is argued to allow recognition of repeated skills and
its generalization to new settings. After segmentation into simpler task primitives, each segment
is modeled using a policy representation such as, linear policies, radial basis function networks,
neural network, Gaussian process or dynamic motor primitives ( [52]).

Jenkins and Mataric introduced Spatio-Temporal Isomap in order to find the underlying low-
dimensional manifolds within a set of demonstrated data [58]. This work extends the dimen-
sionality reduction technique Isomap to include temporal information and allows the discovery of
repeated motion primitives. However, segmentation is performed with a heuristic and the motion
primitives cannot be improved through techniques like RL. Dixon and Khosla [59] demonstrate
that generalizable motions can be parameterized as linear dynamical systems. This algorithm also
uses heuristic segmentation and cannot recognize repeated instances of skills. Gienger et al. [60]
segment skills based on co-movement between the demonstrator’s hand and objects in the world
and automatically find appropriate task-space abstractions for each skill. Their method can gen-
eralize skills by identifying task frames of reference, but cannot describe skills like gestures or
actions in which the relevant object does not move with the hand.

More recent work has focused on using principled statistical techniques to perform automatic
segmentation of demonstrations into simpler reusable primitives [11,33,55,56]. Such an approach
is argued to allow recognition of repeated skills and its generalization to new settings. Incremen-
tal learning of subtasks by Grollman and Jenkins [11] uses a Chinese Restaurant Process (CRP)
prior over subtask, allowing the possibility of assigning each new data point to an unseen subtask.
Constructing skill trees approach by Konidaris et.al. [55] uses an online changepoint detection
method to segment trajectories from multiple demonstrations and then merges the resulting chains
of segments into a skill tree. But their approach cannot recognize repeated segments to assist
with segmentation. Niekum et.al. [33] use the Beta Process Autoregressive Hidden Markov Model
(BP-AR-HMM) developed in Fox et.al. [61] to perform auto-segmentation of time series data from
multiple demonstrations. Recent work by Figueroa and Billard [62] focuses on transform invari-
ant learning of sub-tasks (referred to as action phases) from unstructured demonstrations. Their
approach allows discovery of similar action phases that are performed in different geometrical
transformations with respect to each other. In these methods, the segments or task primitives are
defined in trajectory space, with no bounds on the number of possible segments. Moreover, these
segments do not directly relate to the actuator space in which the human operates. Therefore in
this paper, we first define segments as action primitives in actuator space, this definition is then
utilized to perform segmentation of an unstructured demonstration. Moreover, our procedure does
not rely on computationally inefficient Gibbs sampling for learning model parameters.
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Aforementioned algorithms attempt to directly learn the policy; next we discuss reward based
IRL techniques for LfD. We leverage key concepts from these two school of thoughts in our algo-
rithm for learning instructional policy model.

2.2.1 Bayesian Nonparametric Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) is an LfD technique concerned with finding hidden reward
function of a human demonstrator from the demonstrated state and action samples [63], [64]. Re-
cently, an approach to solve IRL by automatically decomposing the reward function into a series
of subgoals, which were viewed as local reward functions, was proposed [65]. We utilize the no-
tion of executing subgoals in a particular sequence to perform a task as a key component of our
instruction policy model. This is based on research that deals with human expertise in complex
environment [66], [67]. According to these findings, humans often form implicit decompositions
of higher level tasks into several subgoals, so that the execution of each subgoal brings the task
closer to completion.

In IRL [64] a Markov Decision Process (MDP) without the reward function R(s) i.e. MDP\R
is considered. A demonstration set O consists of state action pairs, O = {(s1, a1), . . . , (sN , aN)},
where each pair Oi = (si, ai) indicates that the action ai was performed from the state si. Multiple
set of demonstrations are used as an input to the IRL algorithm to estimate the reward function
R̂(s), such that the corresponding optimal policy π∗ matches the observations. The IRL problem
is ill-posed, since defining reward as, R̂(s) = c ∀s ∈ S, would make any set of state-action pairs
trivially optimal. Moreover, it is possible to encounter dissimilar actions from a particular state
si. This ambiguity was resolved by restricting the reward function to be of certain form [68–70].
Later [71] developed a standard Bayesian inference procedure to learn reward function.

The IRL methods cited above attempt to explain the entire observations set O with a single,
complex reward function, resulting in a large computational burden when the space of candidate
reward functions is large. To overcome this limitation, Michini et. al. [65] developed Bayesian
non-parametric IRL (BNIRL) that partitions the demonstration set O and explains each partition
with a simple reward function or a “subgoal” Rg(s), which consists of a positive reward at a single
coordinate g in the state (or feature) space (zero elsewhere). Moreover, the candidate subgoal g is
constrained to those states that were observed in demonstration. Thus the set of candidate reward
functions scales with the size of demonstration set O (as opposed to an infinite set defined over the
entire state space in other IRL methods). A Dirichlet process prior (Chinese Restaurant process
(CRP) construction) is assumed over the unknown number of partitions that consists of observed
state-action pairs Oi ≡ (si, ai). Partition assignment for each observation Oi is denoted by variable
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zi, and let z be the set containing all zi’s. Posterior over the partition assignment is given by

P (zi|z−i,O) ∝ P (zi|z−i)︸ ︷︷ ︸
CRP

P (Oi|Rzi)︸ ︷︷ ︸
likelihood

(2.1)

where the first term denotes standard CRP prior with z−i = z\zi being the set of all assignment
variables except zi. The second term evaluates the likelihood of the action ai from state si given
the subgoal reward function Rzi corresponding to partition (or subgoal) identified by zi. This
likelihood term is evaluated using exponential rationality model [71]:

P (Oi|Rzi) = P (ai|si, zi) ∝ eαQ
∗(si,ai,Rzi ) (2.2)

where the parameter α represents the degree of confidence in the demonstrator’s ability to maxi-
mize reward. The evaluation of optimal action value function Q∗ requires substantial computation
and becomes infeasible for large state spaces. Hence, the author developed an approximation based
on action comparison for the action likelihood (2.2), as follows

P (Oi|Rzi) = P (ai|si, zi) ∝ eα||ai−aCL||2 (2.3)

where aCL is the action given by some closed-loop controller attempting to go from state si to
subgoal gzi . Note that zi is a partition assignment variable for state si, if zi = k, then gk is the
coordinate of kth subgoal. This approximation to BNIRL [72], enables successful application of
IRL to real-world learning scenario characterized by large state space such as quad-rotor domain.
Another Bayesian non-parametric reward segmentation approach by [73], models skills as reward
function instead of subgoal states, but relies on value iteration to determine likelihood. In this
thesis, we propose and demonstrate a further simplified and computationally tractable BNIRL
approach that performs clustering of states as opposed to state-action pairs, utilizing the Dirichlet
process means approach that is discussed next.

2.2.2 Dirichlet Process Means for mixture model

Dirichlet process (DP) is a well known prior for the parameters of a Gaussian mixture model
when the number of mixture components are not known a-priori. Recently Kulis and Jordan [74]
have shown that the Gibbs sampling algorithm for the Dirichlet process mixture approaches a hard
clustering algorithm when the covariances of the Gaussian variables tend to zero. This results in a
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k-means-like clustering objective given by

min
∑k

c=1

∑
x∈lc ||x− µc||

2 + λk

where µc = 1
|lc|
∑

x∈lc x

where k is the number of clusters, µc is the mean for cluster c, and lc is the set of data points x
that belongs to the cluster c. This objective function is similar to that of k-means but includes a
penalty λ for the number of clusters. DP-means algorithm behaves similarly to that of k-means
with the exception that a new cluster is formed whenever a point is farther than λ away from every
existing cluster centroid. To select λ, a simple farthest-first heuristic was found to be effective in
all experiments, refer [74] for more details. We utilize this approach to cluster actuator velocities
as well as the states observed in the demonstration set by assuming Gaussian distribution over their
euclidean norm.

2.3 Modeling of Spatiotemporal Processes

Modeling of large-scale stochastic phenomena with both spatial and temporal evolution has been
widely studied in Statistics and machine learning community. The data-driven models developed
through machine learning techniques provide a way to model complex spatiotemporal phenomena
that are not easily modeled by first-principles alone. Of the many techniques studied, kernel based
techniques have seen increasing popularity [22, 75]. In these techniques, correlation between spa-
tiotemporal variables is modeled through a covariance kernel, and the model is formed through a
linear, weighted combination of the kernels. Also known as Kernel regression, the idea is to obtain
estimates of the continuous dependent variable from a limited set of data points by convolving
the data points’ locations with the kernel function, approximately speaking, the kernel function
specifies how to ”blur” the influence of the data points so that their values can be used to predict
the value for nearby locations. These techniques in spatiotemporal modeling focus on covariance
kernel design and associated hyperparameter learning algorithms [25–27]. Next we elaborate the
research in Geo-statistical as well as Machine learning community.

2.3.1 Non-stationary Kernel Methods

There is a large body of literature on spatiotemporal modeling with kernel-based methods [22,76].
A naive approach is to utilize both spatial and temporal variables as inputs to the kernel [77,
78]. However, this technique leads to an ever-growing kernel dictionary, which is computationally
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taxing. Furthermore, constraining the dictionary size or utilizing a moving window will occlude
the learning of long-term patterns. Periodic or nonstationary covariance functions and nonlinear
transformations have been proposed to address this issue [23, 26]. Work focusing on nonseparable
and nonstationary covariance kernels seeks to design kernels optimized for environment-specific
dynamics, and to tune their hyperparameters in local regions of the input space. Seminal work
in [79] proposes a process convolution approach for space-time modeling. This model captures
nonstationary structure by allowing the convolution kernel to vary across the input space. A class of
non-stationary covariance functions for Gaussian process (GP) regression (spatial modeling) was
first introduced by [80]. They show that the covariance for Gaussian kernels takes the following
form

cov{Z(si), Z(sj)} = k(si, sj) = σ2|Σi|
1
4 |Σj|

1
4 |(Σi + Σj)/2|−

1
2 exp(−Qij) (2.4)

with the quadratic form

Qij = (si − sj)T ((Σi + Σj)/2)−1(si − sj), (2.5)

where Σi, is the hyperparameter matrix of the Gaussian kernel at si. The evolution of the these
matrices in space produces non-stationary covariance. However, model’s hyperparameters are
inferred using MCMC integration, its application has been limited to smaller datasets. To overcome
this limitation, [27] proposes to use the mean estimates of a second isotropic GP (defined over latent
length scales) to parameterize the nonstationary covariances. Finally, [25] considers non-isotropic
variation across different dimension of input space for the second GP as opposed to isotropic
variation by [27]. In this design they defined a generic non-stationary non-separable covariance
function as

cov{Z(si, ti), Z(si, tj)} = |Σi|
1
4 |Σj|

1
4 |(Σi + Σj)/2|−

1
2 exp(−

√
Qs
ijQ

t
ij) (2.6)

where Qs
ij can be defined in accordance to equation (2.5). The hyperparameters of these spa-

tiotemporal covariance kernel and the weights are learned by solving an optimization problem, or
through Bayesian inference techniques.The benefit of careful design of covariance kernels is that
they can account for intricate spatiotemporal couplings. However, the key challenge with this ap-
proach is in ensuring the scalability of the model to large scale phenomena and manifests due to
the fact that the hyperparameter optimization problem is not convex. Moreover the selection of an
appropriate nonstationary covariance function for the task at hand is a nontrivial design decision
(as noted in [81]).
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2.3.2 Geostatistical Approach

On the other hand, Geostatistical approach to modeling spatio-temporal data rely on selection of
appropriate space-time covariance functions. Selection of covariance function is based on the
assumptions of stationarity, separability and full symmetry. Typically observations are modeled as
Gaussian random function

Z(s, t), (s, t) ∈ Rd × R (2.7)

which is indexed in space by s ∈ Rd and in time by t ∈ R. As per the definitions given in [82], the
random field Z is said to have separable covariance if there exist purely spatial and purely temporal
covariance functions covS and covT , respectively, such that

cov{Z(s1, t1), Z(s2, t2)} = covS(s1, s2) · covT (t1, t2) (2.8)

for all space-time coordinates (s1, t1) and (s2, t2) in Rd × R. The condition of full symmetry
implies separability and is fulfilled if

cov{Z(s1, t1), Z(s2, t2)} = cov{Z(s1, t2), Z(s2, t1)} (2.9)

for all space-time coordinates (s1, t1) and (s2, t2) in Rd × R. Stationarity can be spatial, if
cov{Z(s1, t1), Z(s2, t2)} depends on the observation sites s1 and s2 only through the spatial sepa-
ration vector, s1− s2. Temporally stationary covariance implies cov{Z(s1, t1), Z(s2, t2)} depends
on the observation times t1 and t2 only through the temporal lag, t1 − t2. Covariance function de-
sign usually involves checking for the conditions of stationarity, separability and symmetry of the
observations to select an appropriate positive definite covariance function. Gneiting et. al. [82],
claim through their experiments, that a complex and physically realistic correlation and covari-
ance models results in improved predictive performance. Their approach utilizes particular type
of stationary or symmetric covariance function based on their analysis of the data set at hand (e.g.
evaluating correlation among different measurement locations). However such an approach is lim-
ited by the availability of physical insights as well as the comprehensive data analysis which guides
the design. Most importantly, they are not robust to previously unobserved evolution.

2.3.3 Sensor Placement

The problem of placing a small number of sensors with the goal of making accurate global predic-
tions about a spatial field with temporal variation, has received attention in past few years. A well
known approach for near-optimal sensor placement was developed by [83]. Their work assumes
a Gaussian process model over sensor data obtained from a given spatial phenomena, specifically
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they utilize complex non-stationary covariance function of [84]. Given a GP model, sensor place-
ment is obtained by optimizing mutual information between the set of sensor locations A and the
rest of the space V\A. This problem is shown to be NP-complete and hence [83] proposed a greedy
algorithm that selects sensors in sequence such that a chosen sensor y provides maximum increase
in mutual information given by

δy = MI(A ∪ y)−MI(A) =
σ2
y − ΣyAΣ−1

AAΣAy

σ2
y − ΣyĀΣ−1

ĀĀΣĀy
(2.10)

where Ā = V\A, ΣyA denotes k(y,A) for abbreviation. Thus a sensor y∗ ← arg maxy∈V\a δy

is selected. Mutual information is shown to be a submodular function, this property is then used
to show that the greedy algorithm results in near optimal (approximately 63% of optimal) sensor
placement. However, this approach does not account for temporal evolution of the spatial phe-
nomenon while selecting the sensors, and thus nothing can be concluded about the optimality of
sensor placement in that regime. Moreover, their approach seems limited to cases where one can
design and select appropriate non-stationary covariance function as the reported results show poor
performance for stationary covariance function. To overcome this problem, we approach sensor
placement through a holistic spatiotemporal model that derives the placement using the model
dynamics.

Bayesian optimization approach proposed by [85], first defines an objective function that mea-
sures the efficacy of a particular sensor layout, and builds a corresponding Gaussian process for
the observed function values. The GP is then used to make predictions for possible sets of sensor
layouts and selects the set that minimizes the objective function value. The approach suffers from
explore exploit dilemma, and also requires selection of appropriate covariance function for the GP.
Their approach does not cater to the question of what number of sensors should be selected in
order to achieve optimal accuracy in prediction.

Joshi and Boyd [86], describe a heuristic based on convex optimization, for approximately solv-
ing the problem of choosing a set of k sensor measurements, from a set of m possible or potential
sensor measurements, that minimizes the error in estimating some parameters. Thus the literature
surveyed assumes selection of k sensors from a set of m potential sensor locations. The question
whether these k sensors ensure optimal prediction is not answered. As per our knowledge, this
question has never been addressed in the literature. Our aim is to provide a non-conservative lower
bound on the minimum number of sensors required to ensure optimal prediction using the avail-
able observation data. Further we propose to develop methods for sensor selection with theoretical
guarantees for making predictions.
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CHAPTER 3

CONSTRUCTION ROBOTS: LEARNING
INSTRUCTIONAL POLICY MODEL

3.1 Problem Formulation

We consider a problem in which a robot learns to train human operators of construction equipment
to perform a task. Typically, in a learning from demonstration setting, a robot utilizes policy
search methods ( [9]) to learn a policy π : s → a, mapping its current state s, to an action a. In
contrast, the present problem has three key aspects, first the robot should map its current state to an
instruction for a human operator, second the robot should learn a generative model of policy to train
humans in performing an entire task, and third is the interface between the robot and the human to
communicate the instructions. We define the first aspect of this problem as learning instructional
policy, πI : s → i , that maps the state s, to an instruction i , based on the state-action pairs
observed in a demonstration trajectory O = {(si, ai)}Ni=1, and the locations of all the M number
of manipulated objects, given by mj , j ∈ {1, . . . ,M} in the robot’s base frame. As a solution,
we introduce action primitives to enable the mapping of continuous state action trajectories to
an instruction i in the human operator’s action space. Further it is desired that the valid domain
ΩO ⊂ Ω, (Ω being the set of all possible states) for the function πI is much larger than the set of
states in O.

For the second aspect, we seek a holistic policy representation for a complex task composed
of several subtasks. We propose to learn a generative policy model of an entire task that will se-
quentially generate policy πI to train humans on a task in a cyclic manner. Section 3.2 elaborates
these two aspects and the learning process of the instructional policy model which is demonstrated
on an excavator robot in the experiment sections 3.4.1- 3.4.2. For the third aspect, we hypothe-
size two fundamental instruction interface for robots to train humans in section 3.3, these are: (i)
visually depicting the instructional policy; (ii) generating positive reinforcement for desired ac-
tions. These hypotheses are evaluated through exhaustive experiments on a 1/14th scale hydraulic
actuated excavator model in sections 3.4.3-3.4.4.
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3.2 Learning Instructional Policy Model from Demonstration

Our objective is to learn a holistic policy representation of a complex task comprised of several
subtasks, with each subtask being a sequence of primitive segments (or skills). While doing so
our main goal is to learn instructional policy that maps the robot’s state to instructions in human
operator’s action space. Thus, the goal of the proposed instructional policy model is to achieve a
single policy representation for complex tasks, and to generate instructions to train human opera-
tors. This is accomplished by using action primitives to decompose a task into human executable
actions or segments and then use a structured probabilistic approach to model their sequence.
Overview of the learning process is given in Figure 3.1. In the first step, trajectories are segmented
into constituent action primitive segments. Generated segments are input to the subgoal learning
algorithm. Finally, subgoals and action primitive segments are utilized in the construction of in-
structional policy model. We discuss the three key elements of this model, the action primitives,
the segmentation of demonstration trajectories and the subgoal learning in the following three sub-
sections 3.2.1-3.2.3, followed by a subsection 3.2.4 on the construction of the instructional policy
model.

Expert
Task

Demos

Action
Primitive

Segmentation
(sec 3.2.2)

Subgoal
Learning

(sec
3.2.3)

Instructional
Policy Model

(sec 3.2.4)

Trajectories Segments
Subgoals

&
Segments

Figure 3.1: Robot learns instructional policy model from expert demonstrations.

(a) Joystick Controls

Left/up Right/down

n = 3

n = 5

n = 7

1 2 3

1 2 3 4 5

1 2 3 4 5 6 7

(b) Discretization

Figure 3.2: Action Space Decomposition: (a) Joystick lever movements for an excavator: Human
operator’s action space, (b) Levels of Discretization of joystick movements denoted by n.

3.2.1 Action Primitives

For a human to execute the instructional policy πI : s → i , the instruction i has to be defined
in the human operator’s action space. An example of human operator’s action space is shown in
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Figure 3.2a, where an instruction would indicate the direction and the extent of joystick deflection.
Human operator can act based on such an instruction i to generate desired movements for the
robot. We define action primitives as a key to relate sampled joint velocities (i.e. the action ai’s)
to an equivalent instruction in the operator’s action space. Note that by sampled joint velocities we
imply the velocities measured at fixed intervals of time during a demonstration.

Sampled joint velocities are directly related to the joystick position. Rather a finite interval of
joint velocities is a result of a particular joystick position. We propose to segment continuously
sampled joint velocities on the basis of significant change in joystick positions. The resulting seg-
ments are defined as action primitive segments. Most simple level of change in joystick control is
the three categories: i) move to the left, ii) hold neutral position, and iii) move to the right, denoted
by n = 3 in Figure 3.2b. Without loss of generality, these joystick positions produce equivalent
states, such as: i) counterclockwise rotation, ii) no movement (or non-zero noisy perturbation), and
iii) clockwise rotation. Thus, for a robot with one revolute joint, sampled joint velocities can be
segmented into segments identified by three different action primitives denoted as r ∈ {1, 2, 3}.

Further levels of change in joystick positions (i.e. n > 3) is obtained by dividing i) and iii)
into more bands as depicted by n = 5, 7, in Figure 3.2b. These levels split rotation speeds in
both directions into two or more bands, and is an indicator of higher level of precision used in
an operation. Note, that these bands need not be uniform as shown, rather they might differ in
their spans. For two or more joints, an action primitive r is a vector and we let rj denote its jth

joint’s component. For a given n, each component, rj ∈ {1, . . . , n}. For a robot with four revolute
joints denoted as m = 4, choosing- n = 5 for all joints, r = [3, 1, 3, 3] is an example of action
primitive that is a result of joystick position in the band given by r2 = 1 for the second joint,
and in the neutral band r1, r3, r4 = 3 (see Figure 3.2b) for other joints. In the next section, we
learn each joystick band as a Gaussian distribution over sampled velocities. Thus, each component
of an action primitive represents a Gaussian distribution, i.e. rj = i, has an associated Gaussian
distributionN (µji, σ

2
ji), with mean µji, and variance σ2

ji, for each joint j, and each i ∈ {1, . . . , n}.
An instruction, i , is a result of samples from each component which is then mapped to joystick
position. Mathematically, an action primitive, r, defines the distribution over joystick movement
instruction for a human operator, given by the variable- rj for each joint j.

3.2.2 Action Primitive based Segmentation

In this section, we utilize the definition of action primitives to segment demonstration trajectories
into a sequence of action primitive segments. To identify the action primitives, we first cluster
the sampled velocities for each joint into n clusters and obtain n−Gaussian distributions from
cluster members. Note, the number of clusters n is not known a-priori. Let vτ ∈ Rm×1 denote
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the sampled velocity at time τ , with vjτ the velocity of joint j, and vj· be the set of all sampled
velocities {vj1, vj2, . . . , vjT} of the joint j, sampled at time instants τ = 1, 2, . . . , T . We utilize
DP-means algorithm (see section 2.2.2) to cluster velocities in the set vj·. To obtain the penalty
parameter λ for the algorithm, we input an approximate number of desired clusters, k = n′. DP-
means algorithm then generates n clusters for rj . The value of n governs different levels of speed
required to do a task. In our experiments, we set the initial guess n′ (for n) based on the different
levels of speed (or joystick control) used by an expert, determined visually from the speed plots.

An example of DP-means clustering for the four joints of the excavator robot is shown in Figure
3.7. From the cluster members generated by DP-means, we obtain the mean µji and the variance
σ2
ji, for each cluster i ∈ {1, . . . , n}, and for each joint j ∈ {1, . . . ,m}. An example of action

primitive for m = 4, and n = 5 for each joint, is r = [2, 3, 3, 3]. Such an action primitive r, over a
finite interval of time implies that all the observed joint velocities can be modeled under the normal
distribution N (µ12, σ

2
12) for joint 1, N (µ23, σ

2
23) for joint 2 and so on.

Next, we describe how classification of sampled joint velocities into action primitives generates
the segmentation of demonstration trajectories. Each segment will then be an action primitive that
spans over finite instants of time. At any time instant τ , we define the probability for each element
of the action primitive rjτ as,

p(rjτ = i|vjτ ) = N (vjτ |µji, σ2
ji) (3.1)

These probabilities can be normalized to obtain,
∑n

i=1 p(rjτ = i|vτj) = 1. We then assign rjτ
to the neutral band if that probability exceeds a threshold otherwise it is assigned to a band with
highest probability, mathematically,

rjτ =

(n+ 1)/2 p(rjτ = rdb) > η

` ` = arg maxi p(rjτ = i|vτj)
(3.2)

where η is perturbation threshold to isolate noisy perturbation around neutral position denoted as
rdb. This procedure is repeated for each joint j to obtain the action primitive rτ at each time instant
τ . A key advantage of this procedure is in isolating inherent noise in demonstrations caused by
numerous sources, such as unintended joystick motion, inertial movement of the actuator, noise
in the measurement sensor, etc. For example, in Figure 3.7d the noisy perturbation band isolates
movement of the bucket that takes place under load and not due to intended actuation by the
operator.

Continuous repetition of an action primitive rk, starting at an instant τ1 and repeating over an
interval of finite time instants, say nk, i.e. the set of instants {τ1, τ2, . . . , τnk}, is defined as an
action primitive segment Ak. Thus, the process of classifying sampled velocities (i.e. the ac-
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tions a) into action primitives generates action primitive segments, each comprising of a unique
action primitive observed continuously over finite interval of time. An example segmentation (dis-
cussed later in section 3.4.1) is shown in Figure 3.8a, where each colored segment is an action
primitive segment. Each action primitive segment Ak has an associated end-effector pose sk at
its beginning, and is hence defined by the pair Ak ≡ (sk, rk). Thus, using segmentation proce-
dure, we decompose the entire demonstration trajectory into a set of action primitive segments,
OR = {(s1, r1), (s2, r2), . . . , (sN , rN)}, where N is the total number of segments observed in a
demonstration. Let n1, n2, . . . , nN be the corresponding number of sampling instants over which
each action primitive is observed and n′ = min{n1, n2, . . . , nN}, then

∑N
i=1 ni
N
≥ n′. Note,

∑N
i=1 ni

are the total number of state-action pairs, this implies that learning policy over state-action primi-
tive pairs results in a reduction of data size by a factor of at least n′.

In general, our approach will ensure at least an order of magnitude reduction in data size for
applications in which action primitives lasting less than t seconds are noisy perturbations and the
sampling rate is at least 10/t. For example, a sampling rate of at least 10Hz with a shortest
valid action primitive lasting for a second, would imply n′ ≥ 10, i.e. an order of magnitude
reduction. Learning policy using state-action primitive pairs can certainly improve the scalability
of an approach by at least an order of magnitude. Thus, the definition of action primitive serves the
dual purpose of discretizing continuous demonstration trajectory into finitely many action primitive
segments and of a generative distribution for instructions in the human operator’s action space. For
latter, it is assumed that a map between actuator velocity and joystick position is known. Usually
such a map is not linear, and might as well depend upon other variables. In such cases, nonlinear
regression such as Gaussian processes can be utilized to learn the mapping.

Each action primitive segment Ak is defined by the robot’s state at the start sk and the action
primitive rk. All such states sk ∈ OR, are key states of robot’s pose at which the human teacher
takes significantly different joystick action, and are hence utilized to learn subgoals in the next
subsection. Thus, the concept of action primitives enables efficient segmentation, which then
serves as a means to learn subgoals and ultimately a holistic policy representation. The set OR is
used as an input to learn subgoals.

3.2.3 Learning Subgoals

Research in behavioral psychology [66, 67] have shown that the expert operators are good at de-
composing a given ill-defined task into a series of actionable subgoals. Such decomposition is
implicit within the human mind, and humans are not always able to clearly explain how they ar-
rived at the decomposition. Nevertheless, an expert utilizes such decomposition to train others.
The key idea that we leverage here is to decompose complex tasks into subgoals. We propose
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Dirichlet process means based inverse reinforcement learning (DPMIRL) formulation: a reward
based partitioning of task space into subgoals. This decomposes a complex tasks into subgoals
such that the series of instructions could be used to navigate an operator through those subgoals.
We define subgoals as the goal points in the robots trajectory space that are traversed in a sequence
to accomplish a task.

BNIRL (Section 2.2.1) utilizes a Dirichlet process prior over state-action pairs observed in
demonstration. We propose DPMIRL, a novel algorithm that utilizes Dirichlet process means
method for clustering states observed in action-primitive segments, to partition the state-action
pairs. For clustering, euclidean distance metric (|| · ||2) is defined for the states observed in action-
primitive segments using appropriate coordinate frame of reference. Typically in an IRL problem,
entire state space is modeled as an MDP, whereas in the present setup, set of states is reduced to
the finite number of action-primitive segments obtained using action primitive based segmenta-
tion of demonstration trajectories. This step significantly reduces the computational burden, and
facilitates the analysis of high dimensional continuous state action spaces feasible. In contrast,
the BNIRL approach deals with the curse of dimensionality by using action comparison (equation
(2.3)) for the likelihood term in equation (2.1). Next we show that how action comparison can
generalize to pose-error comparison which further reduces computational requirements.

In action comparison the likelihood of an action ai w.r.t to a subgoal gzi is computed as P (ai|si, zi) ∝
eα||ai−aCL||2 . Due to this step the evaluation of computationally intensive optimal action value func-
tion Q∗ is not required. As proposed in [72], aCL is the action of a closed-loop controller that
attempts to go from state si to subgoal gzi . A simple controller that would generate an action aCL
to reduce the pose error between the subgoal gzi and the present state si is aCL ∝ (gzi − si). We
argue that a demonstrator is also invariably reducing the pose error between the state si and the
subgoals, thus the action ai in the demonstration is also proportional to the pose error. Hence given
a particular subgoal gzi , even ai ∝ (gzi−si). Applying these arguments to equation (2.3) we obtain

P (ai|si, zi) ∝ eα||κ(gzi−si)−λ(gzi−si)||2 (3.3)

∝ eα
′||(gzi−si)||2 (3.4)

where we let κ and λ to be scalar proportionality constants, and thus the original action comparison
reduces to pose error comparison between the state si and the subgoals. This result is very intuitive
in the sense that any state-action pair (si, ai) (or action primitive segement (si, ri) for the case
of DPMIRL) will be partitioned or assigned to the closest subgoal. Each subgoal is a mean of
member states, thus any action primitive ri from a state si, is likely to either attain the assigned
subgoal or recede away towards the next. Though counter-intuitive, this property proves useful
in generating instructions to navigate sequence of subgoals. Action primitive segments in the set
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OR are partitioned using euclidean distance metric on state locations i.e. ||si||2 for a state si. This
is performed using DP-means algorithm discussed in section 2.2.2, that results in action primitive
segments classified into clusters {c1, . . . , cl} where the number of clusters l is not known a-priori.
Each cluster cj consists of member segments {(si, ri) ∈ cj : zi = j}. We define the subgoal as a
multivariate Gaussian Xj ∼ N (µj ,Σj) in n-dimensional space (formed by end-effector position
and mechanism) whose parameters mean vector µj , and covariance matrix Σj are obtained from
the member states of cluster cj .

Algorithm 1 Subgoal Learning
Input: Set of action primitive segments OR, M objects of interest centered at mj

- Assign each state si ∈ OR to Sk s.t. k = arg minj ||si −mj||2, here k ∈ {1, . . . ,M}
- Run DP-means for states in each Sk to obtain M set of clusters, where any set k is given as
Ck = {ck1 , . . . , ckl}
- Set of subgoals X = ∅, p = |X| = 0
for each set of cluster Ck, k ∈ {1, . . . ,M} do

for each cluster i in Ck, i ∈ {1, . . . , kl} do
- Compute mean µki and variance Σki from the member states s ∈ cki
- Add Xp ∼ N (µki ,Σki) to set X , increment p,

end for
end for
Output: Set of subgoals X .

To ensure that the policy model of a given task, is generalizable to any novel configuration we
learn subgoals w.r.t each known object in the task. To do so, the euclidean norm is computed w.r.t
the coordinate frames centered on each of the object in the task. Let M be the number of objects
andmj be the center of the jth object’s coordinate frame w.r.t the base frame of the robot. We group
the states observed in the set OR into M disjoint sets {S1, . . . , SM}, where a state si is assigned to
Sk if k = arg minj ||si−mj||2, note k ∈ {1, . . . ,M}. We run DP-means separately for each set Sk,
to obtain subgoals as described in Algorithm 1. For each identified subgoal Xi we assign member
action primitive segments to the set Si. Defining subgoals as a multivariate Gaussian allows us to
evaluate the likelihood of any state s in space w.r.t to each subgoal, to determine the most likely
subgoal, followed by the selection of a sequence of action primitives that generates instructions to
reach the next subgoal, this is discussed in next subsection.

3.2.4 Instructional Policy Model

With the goal of constructing instructional policy model for a complex task as subgoal transitions
(or subtask execution) resulting from a series of instructions (or skills in LfD setting) emitted by
the action primitives, we used a hierarchy of Markov chains also known as a dynamical Bayesian
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Figure 3.3: Policy model as a hierarchy of Markov chains to associate the high level task context
defined by the subgoals, with the low level action primitives. Action primitives are sampled to
obtain actuator velocities. Actuator velocities can either be mapped to joystick position to generate
an instruction for a human operator or used as a policy for task replay.

network shown in Figure 3.3. The transition between subgoals is modeled by the topmost Markov
chain. In this construction, we utilize a fact that each subgoal Xi has an associated set Si of state-
action primitive pairs, and there exists a Markov chain of latent modes {Zi

1, . . . , Z
i
Ti
}, where each

mode is an action primitive at time instants τ = 1, . . . , Ti, that generates instructions resulting
in a translation to the next subgoal Xj . Hence the Markov chain under each subgoal Xi models
the transition among the action primitives associated with that subgoal. These transition models
for action primitives are obtained from the segmentation of demonstration data and counting the
transitions between the action primitive segments. The final layer of the model is actuator velocity
variable yiτ that is conditional on the action primitive Zi

τ , and is modeled by Gaussian distributions
over the sampled actuator velocities contained in an action primitive segment as discussed in the
action primitives section 3.2.2.

At any given time instant τ , an instruction is inferred based on the robot’s sate (sτ ) and the
previous action primitive as follows. Given the computed most likely subgoal Xi for the current
state sτ and the previous action primitive Zi

τ−1 = rk−1, instructional policy model is a generative
model (Figure 3.3) to get the next action primitive Zi

τ = rk and to sample actuator velocity to
generate instruction (i.e. to generate πI) as follows:

P (Xi+1|Xi) ∼ Π (3.5)

P (Zi
τ |Zi

τ−1, Xi) ∼ π(Xi|Xi+1) (3.6)

P (yiτ |Zi
τ ) ∼ F (θZiτ ) (3.7)

and the parameters for this model are the transition distribution Π for subgoals, the subgoal specific
transition model π(Xi|Xi+1) for the action primitives associated with the subgoalXi to achieve the
next subgoal Xi+1, and the parameter vector θZiτ that models conditional distribution of actuator
velocities given the action primitive. Actuator velocity sampled in equation (3.7) is mapped to
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the joystick position to obtain an instruction i , that is communicated to the human operator. In
this article, we assume a hard-coded map between actuator velocities and joystick position to be
known. Otherwise, a non-linear mapping function that accounts for complex relationship between
actuator velocities and joystick positions especially during multiple actuations should be learned
using a neural network, or a Gaussian process or other valid approaches. Note, at every transition
to a new subgoal Xi, initial distribution π0(Xi) over action primitives is used to select the first
action primitive associated with Xi. At any instant, likelihood of the robot’s current state s is
evaluated w.r.t each subgoal Xi using P (s|N (µi,Σi)). Thus, an instruction is generated unless
this likelihood evaluates to zero (or< ε, a very small number as it can never be exactly zero) for all
the subgoals. Mathematically, the valid domain, ΩO is given by the set of those states s ∈ Ω, that
satisfy, minXi P (s|Xi ∼ N (µi,Σi)) > ε, with ε = 10−10. Clearly, the valid domain ΩO for πI is
much larger than the set of states in O, as desired. Next section discusses two different interfaces
used by the robot for communicating instructions generated by πI to humans.

(a) GUI Bars: Complete Instruction (b) GUI Circles: Positive Reinforcement

Figure 3.4: Visual interfaces for instructing humans, (a) Instruction depicted in terms of direction
and extent of joystick motion, with thin black line indicating actual joystick position, (b) Color of
the circle w.r.t a joystick changes from red to green if the predicted instruction is executed by the
operator.

3.3 Instruction Interface

We evaluate two key and fundamentally different hypotheses to communicate instructions gen-
erated by the instructional policy model. Since our study is designed to look at the construction
operators who normally work under noisy conditions, we chose to focus on visual interfaces. More-
over, research ( [14,15]) have shown that videos are effective at teaching tasks and problem solving
strategies in both children and adults. Interfaces were designed to look at operant conditioning and
visual reinforcement in the robot-human interaction, but, more importantly, to determine which
version of the visual feedback would result in retention of information and learned skills. Our first
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Figure 3.5: Experimental platform: 1/14th scaled excavator robot has four links Turret, Boom,
Arm and Bucket. Turret is actuated by an electric motor (not seen in the figure). Other links are
hydraulically actuated by piston-cylinder mechanism. Base reference frame of the robot is fixed to
the lower frame and centered at the revolute joint between the lower frame and the turret, with one
of its axis along the axis of turret rotation. End-effector pose se is given by the (x, y, z) position
of the end-effector joint w.r.t the base reference frame together with the bucket angle.

Figure 3.6: Experimental set-up consisting of motion capture system, scaled excavator model, and
display panel for visual interface.
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hypothesis is to visually reproduce instruction policy in human operators’ action space as in Fig-
ure 3.4a. This interface depicts action primitive by showing desired joystick movement direction
and magnitude using red colored bars with appropriate length. Thin black line corresponds to the
actuation by the operator, which when matched, turns the red colored bar to green. Second hypoth-
esis is based on several considerations. First, with regards to interactive experiences, [16] shows
that simple visual interfaces help reduce stimulant load during learning, suggesting that a basic
interface would promote better retention of acquired skills. Second, given the nature of uncer-
tainty and human presence around construction equipments, the interface should demand minimal
attention to ensure better situational awareness of the operator. Therefore, the second interface
(Figure 3.4b) only generates positive reinforcement for desired actuation by change in color, from
red to green, to reinforce desired skills while demanding minimal operator attention. We chose
the easily-recognizable green and red colors to indicate correct (green) and incorrect (red). These
colors come with subtle cultural associations of good and bad ( [87, 88]) which helps to create the
emotional associations needed to maintain them as reinforcement tools needed for this hypothesis.

3.4 Experiments

Experiments were performed on a 1/14th scaled 345D Wedico excavator model, a 4 d.o.f hydraulic
robotic arm manipulator, controlled by a radio transmitter (see Figure 3.5 for the robot’s descrip-
tion). Figure 3.6 shows the human operator performing truck loading task with the excavator robot.
The robot communicates instruction to a operator using the visual interfaces shown in Figure 3.4.
The Wedico excavator lacked joint-angle encoders and internal proprioception, hence the experi-
ments were performed within a motion capture facility to provide real-time measurements to the
algorithm. End-effector position w.r.t the base frame and its mechanism that is the bucket angle
gives 4-D end-effector pose vector se. To demonstrate our approach we selected the truck loading
task which is a standard task performed using an excavator. A truck loading cycle begins with the
bucket positioned over the sand pile and involves scooping of the sand, positioning of the bucket
over the truck, dumping the sand into the truck, and coming back to the initial position, while
avoiding spillage and damage to the truck. We obtained six set of demonstrations for the truck
loading task from an expert operator. Each demonstration involved filling the truck with sand, for
which joint positions q, and state vector se, sampled at 25Hz were recorded and joint velocities v
were computed through differentiation of joint positions q.
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3.4.1 Action Primitive based Segmentation

To learn the instructional policy model we first decompose continuous state-action trajectories from
expert demonstrations into state-action primitive segments. To obtain action primitives we first
cluster actuator velocities using DP-means algorithm according to the process described in section
3.2.2. Figure 3.7 plots actuator velocities for each joint, and the clusters of these velocities obtained
using DP-means on the y-axis. This divides actuators velocities (and hence joystick movement)
into n-bands, n = [5, 5, 5, 3] for the four joints, turret, boom, arm, and bucket respectively, was
obtained.

(a) Joint-1 Turret, n = 5 (b) Joint-2 Boom, n = 5

(c) Joint-3 Arm, n = 5 (d) Joint-4 Bucket, n = 3

Figure 3.7: Joint velocities sampled from a truck loading task demonstration using the excavator
robot is plotted versus sampling instants on x−axis. Clustering output of the joint velocities using
DP-means algorithm is shown on the y−axis. An initial guess of the discretization level, n′ =
[6, 5, 6, 4], was used. Bucket velocity is very noisy due to the movement under load. It is important
to isolate such noise in joint movement in the process of skill identification.
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Table 3.1: List of action primitive classes. r1 corresponds to the turret joint, r2 to boom, r3 to arm,
and r4 to bucket. This list is not exhaustive, but sufficient to infer actuator movement for any other
action primitive class that is not listed.

Action Primitive Actuator
Class [r1, r2, r3, r4] Movement

[3, 3, 3, 2] No motion or noisy perturbations
[1, 3, 3, 2] Turret rotates anti-clockwise

at high speed
[2, 3, 3, 2] Turret rotates anti-clockwise

at low speed
[5, 3, 3, 2] Turret rotates clockwise

at high speed
[3, 1, 3, 2] Boom raise at high speed
[3, 5, 3, 2] Boom lower at high speed
[3, 3, 1, 2] Arm Inwards at high speed
[3, 3, 5, 2] Arm outwards at high speed
[3, 3, 3, 1] Bucket scoop
[3, 3, 3, 3] Bucket dump

Next, we classify each sampled actuator velocity into an action primitive class according to the
process described in section 3.2.2. For the excavator robot, each action primitive class is given
as r = [r1, r2, r3, r4], where r1 corresponds to the turret joint, r2 to boom, r3 to arm, and r4 to
bucket. Each component rj takes a value i ∈ {1, . . . , nj} and represent a Gaussian distribution
N (µji, σ

2
ji), whose parameters were obtained from cluster members. Some action primitive classes

for the excavator are defined in Table 3.1. Segmentation of three demonstration trajectories into
action primitive segments is shown in Figure 3.8, and a similar segmentation in end-effector’s pose
w.r.t the robot’s base frame is shown in Figure 3.10a. To isolate noisy perturbations, threshold η
was set to 10−3. In Figure 3.8a, action primitive labels at each time step are indicated by unique
colors, with grid lines marking their start point except for the action primitive r = rdb, representing
noisy perturbation or no movement which is shown in dark blue. Action primitives for first 122

samples represent no movement that is, r1 = · · · = r122 = rdb, thus forming an action primitive
segment (s1, rdb). Rest of the action primitive segments for this demonstration are given in Table
3.2. Action primitive segmentation has reduced around 700 state-action pairs to only 12 state-
action primitive pairs (excluding rdb). This is over 1.5 orders of magnitude reduction in data size
for action primitive based policy learning. Such reduction in data size can certainly improve the
scalability of policy search methods to high dimensional problems with continuous state action
spaces. For learning instructional policy, proposed segmentation is certainly scalable to huge data-
sets comprising of tens of thousands of state-action pairs in demonstration data.

36



Table 3.2: Detailed breakdown of action primitive segmentation for the first demonstration tra-
jectory of truck loading cycle. Only the first occurrence of noisy perturbation action primitive
rdb = [3, 3, 3, 2] is shown, others are omitted. All missing indices belong to rdb. Index refers to the
sampling instants.

Action Primitive Start End Segment Actuator
Class [r1, r2, r3, r4] Index Index Length Movement
[3, 3, 3, 2](= rdb) 1 122 122 Neutral/Noisy perturbation

[3, 5, 1, 2] 123 148 26 Boom, Arm (Cycle Begins)
[3, 3, 1, 2] 149 169 22 Arm
[3, 3, 3, 1] 190 272 83 Bucket scoop
[3, 1, 5, 2] 302 327 26 Boom, Arm
[1, 1, 5, 2] 328 368 41 Turret, Boom, Arm
[1, 3, 3, 2] 374 393 20 Turret
[3, 3, 5, 2] 414 440 27 Arm
[3, 5, 3, 2] 443 463 21 Boom
[3, 3, 3, 3] 473 553 81 Bucket Dump
[5, 3, 3, 2] 583 636 54 Turret (cycle ends)
[3, 5, 1, 2] 679 721 43 Boom, Arm

Computation time required to perform segmentation using action primitives and BP-HMM [13]
is in Table 3.3, computed using i7-6700K CPU @4GHz and 24 GB RAM machine. For latter, com-
bined Metropolis-Hastings and Gibbs sampler were executed 10 times for 1000 iterations, selecting
segmentation with the highest log likelihood w.r.t the feature settings. Computation time required
by BP-HMM scaled geometrically with data size, in comparison, action primitive based segmenta-
tion scales almost linearly. Number of skills discovered by BP-HMM increases proportionally with
data (see Table 3.3), but the number of action primitives discovered remained fairly constant. Fig-
ure 3.9 compares the segmentation obtained by these two methods, clearly both identify repetitive
segments across the two cycles. It seems that the classification of noisy perturbation into different
skills (depicted by solid red grid lines), caused BP-HMM to discover increasing number of skills.
Moreover, several segments identified by the BP-HMM do not correspond to a monolithic action
in human operator’s action space, rather they span across multiple actions taken by the expert, for
example the BP-HMM segment around the sampling instant τ = 400, encompasses three action
primitives. Thus to map a BP-HMM segment to an instruction for a human operator, it would be
required to further break down those segments into component action primitives. Due to this lim-
itation of relating segments with the human operator’s action space, segmentation obtained from
BP-HMM or any other statistical method cannot be applied to generate instructional policy.
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Table 3.3: Comparison of the presented action primitive based segmentation with BP-HMM ( [13])
in terms of the computation time (in seconds) and the number of action primitives versus number
of BP-HMM skills, for 2, 4, and 6, demonstration trajectories taken together.

No. of Time Series 2 4 6
Data size N (4-D data) 6690 14033 23341
Action Primitive (sec) 21 41 68

BP-HMM (sec) 1639 6690 14752
# Action Primitives 14 17 18

# Segments (BP-HMM) 27 56 79

3.4.2 Learning Instructional Policy Model

To learn the instructional policy model we first learn the subgoals based on the segmentation out-
put. For each demonstration j, we obtain the set of state-action primitive pairs, ORj = {(s1, r1),

(s2, r2), . . . , (sNj , rNj)}, whereNj is the total number of action primitive segments. And the union
of all the six sets OR =

⋃6
j=1 ORj , obtained from segmentation of six demonstration trajectories,

is used as an input to Dirichlet process means inverse reinforcement learning (DPMIRL) algorithm
to decompose the task space into finite subgoals. There are two (M = 2) objects in this task,
the truck and the pile. Coordinate frames centered at these objects are used to first group and
then cluster each state si ∈ OR using algorithm 1, to obtain subgoals as multivarite Gaussian in
n̂ = 4−D space. For presentation clarity we first consider a single expert demonstration and obtain
the set OR1 . Total five subgoals were discovered using OR1 as an input to the algorithm 1, three
w.r.t the pile and two w.r.t the truck, whose mean location in three dimension is shown in Figure
3.11a. Figure also shows each state sk associated with the action primitive segment Ak as unfilled
circles. Subgoals obtained using original BNIRL approach by [65], are shown in Figure 3.11b.
Clearly, the decomposition generated by the latter approach associates action primitive segments
over the pile to the subgoal over the truck and vice-versa. Whereas the clustering approach using
DP-means generates member action primitive segments that can lead to the execution of associated
subgoal, hence it is better suited for generating instruction policy. Note that the clusters for sub-
goals 2 and 3 are co-located but are actually far apart in the fourth dimension of bucket angle, same
holds for subgoals 4 and 5. Subgoals generated using OR as an input to algorithm 1 is shown in
Figure 3.11c, an additional subgoal is discovered w.r.t the dirt pile. This is attributed to the change
is scooping position as the sand pile got exhausted in some demonstrations. Thus, the proposed
policy model allows incorporation of additional demonstrations, though not incrementally but by
relearning parameters over the entire data set.

Finally, we learn the parameters of instructional policy model given by equations (3.5)-(3.7).
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We learn the parameters based on the action primitive segments, the subgoals and the data from
the six demonstration trajectories. Each element Πij of the transition distribution matrix Π for
subgoals, models the probability of transitioning to the subgoal Xj given the current subgoal Xi.
To obtain Πij , we divide the total number of transitions from the subgoal Xi to Xj by the total
number of transitions from the subgoal Xi. Similar counting process is followed to the learn the
parameters of the transition model π(Xi|Xi+1) and the initial distribution π0(Xi), from the action
primitives associated with the transition from subgoal Xi to Xi+1. Parameter vector θZiτ w.r.t
an action primitive is known from the k-means clustering process used in action primitive based
segmentation. The resulting model is generalizable to any novel configuration of objects in the task
as the subgoals are identified w.r.t the task objects whose location is known to the robot during task
execution. Computation time for the entire learning process, from processing six demonstration
trajectories to learning instructional policy model was 85 secs. Thus, learning policy model from
more and more demonstrations is feasible and computationally inexpensive.

Visualization of the learned instructional policy model: Refer figure 3.11a for subgoals and
figure 3.5 for the robot’s description. Truck loading cycle begins with the bucket in dump po-
sition (bucket cylinder retracted) and the entire excavator arm located above the sand pile. This
position corresponds to subgoal no.4’s initiating action primitive of lowering the boom given by
r = [3, 5, 3, 2], followed by action primitives comprised of arm and bucket motion until the bucket
scoops the sand, at this instant the robot enters the subgoal no.5. This subgoal involves raising of
the boom and turning towards the truck, this gives way to subgoal no.1. Turning further to align
with the truck results in subgoal no.2. In subgoal no.2, sequence of action primitives positions the
bucket over the truck to execute dump action. Upon dumping subgoal no.3 becomes active and
involves a single action primitive of turning towards the sand pile. Once over the pile subgoal no.4
becomes likely and the cycle continues. Subgoals related to scoop and dump subtasks are depicted
as 3-d Gaussian ellipsoid in Figure 3.11d. Clearly, the subgoal w.r.t the sand is geometrically larger
and allows for scooping at different locations, whereas the subgoal w.r.t the truck is smaller and
corresponds to precise dump location. Thus, our definition of subgoals is useful in capturing the
nature of manipulation utilized by the expert w.r.t each task object.

3.4.3 Testing Instructional Policy Model

Excavator robot utilizes the instructional policy model, learned from expert demonstrations, to train
its novice operators. This process depicted in the Figure 1.2, was tested using the experimental set
up shown in the Figure 3.6. Real time execution of a task with the robot generating instructions for
the human operator follows the cycle shown in Figure 3.12. At any instant, the robot identifies the
current action primitive based on a window of last ten sampled joint velocities. An action primitive
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is detected, if each sample in the window belongs to a particular action primitive class, otherwise
the stationary action primitive rdb is assumed. Robot queries instruction from the instructional
policy model after consecutive detection of an action primitive r (other than rdb) followed by
rdb. Based on the action primitive r and the current state se, an instruction i is generated. This
instruction is communicated to the operator. This process ensures that the operator executes a
joystick control before a change in the visual instruction, thus maintaining a suitable update rate
for instructional policy, recall Figure 1.3.

An instruction is communicated to the human operator through the visual interface, using the two
different instruction hypotheses or GUIs (Figure 3.4). In case of GUI Bars, predicted instruction
is depicted visually. For GUI Circles, the red color changes to green if the operator executes the
predicted instruction. In the absence of a benchmark for the present problem, performance of a
set of novice human operators without any visual instructions was recorded. These novices were
allowed to learn by observing an expert operator perform truck loading task and becoming familiar
with the joystick controls before they performed the task.

A total of 113 participants (novice operators) had volunteered under IRB guidelines and were
comprised of active students, faculty, or visitors in the psychology and engineering departments.
Upon arrival to the laboratory, each participant was randomly assigned to one of the three groups:
Group with no GUI, group using the GUI circles (Figure 3.4b), and group using the GUI with
speed bars (figure 3.4a). Participants were asked to complete a minimum of three truck loading
cycles with the instruction interface available to those belonging to the last two groups. We will
refer to the truck loading cycles performed in the these trials as cycle-1 (C1), cycle-2 (C2) and so
on. To evaluate the instructional policy model, performance of the three groups is compared in
terms of cycle completion time and erroneous action primitives per cycle. Detection of an action
primitive that do not conform with the current joystick movement instruction is counted as an
erroneous action primitive. Note that, since an action primitive is detected based on a window of
sampled joint velocity, any noisy perturbation or inertial movement of joints is not counted as an
error. The results are summarized in Figures 3.13-3.14. Figures 3.13a, and 3.13b, plots the cycle
completion time and the cycle errors respectively, for the first three cycles. The bars group that
used the instructional policy, shows a consistent improvement in doing the task as the median,
and the spread, of their cycle completion time as well as errors, decrease over the three cycles.
For the participants without instructions, non-significant improvement in the performance was
observed. The circles group better their cycle completion time, though their errors do not reduce
significantly. To reaffirm this observation, paried t-tests for cycle time and cycle errors between
the first and the third cycle were performed within each group, using α = 0.05. For cycle time,
GUI bars (µ̂ = 8.94, σ̂ = 12), and GUI circles (µ̂ = 10.51, σ̂ = 11.2) group showed significant
differences (p < 0.001) in comparison to no GUI group (µ̂ = 3.81, σ̂ = 19.19). Corresponding
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Table 3.4: Comparing novice operator performance statistics for the three groups, No GUI, GUI
circles, and GUI bars, using paired sample t−tests between cycles for cycle time (first three rows)
and cycle errors (last three rows). C1-C3 implies between cycle 1, and cycle 3, R1-R3 implies
between retest cycle 1 and retest cycle 3.

Paired GUI Circles GUI Bars No GUI
t−test (t(n− 1), p) (t(n− 1), p) (t(n− 1), p)

Cycle Time
C1-C3 0.82(27), 0.420 3.06(25), 0.010 1.13(26), 0.270
C3-R1 0.68(27), 0.500 0.59(25), 0.560 1.13(26), 0.270
R1-R3 4.53(28), 0.001 1.76(25), 0.090 2.60(28), 0.020

Cycle Errors
C1-C3 1.46(31), 0.154 1.31(30), 0.070 0.84(37), 0.410
C3-R1 1.27(19), 0.220 -0.58(26), 0.570 0.98(34), 0.330
R1-R3 2.29(19), 0.033 2.71(26), 0.012 1.98(34), 0.055

t−statistics and p−values are reported in Table 3.4 for the cycle time as well as for cycle errors.
These results indicate that using instructional policy, statistically significant improvement in the
performance of the novice operators was observed.

Another observation from the box-plots in Figure 3.13b, is a number of outliers for the groups
using instruction interface. These are some of the apparent cases in which the instructional policy
failed to generate instructions as the state of the robot deviates from the domain of πI , i.e s /∈ ΩO.
Counting even a single failure to generate an instruction during a cycle as failure, overall πI failed
in 23.3% of truck loading cycles. One way to negotiate such failures would be to instruct the op-
erator to drive the robot back to the previous subgoal position. Finally, we report the performance
averaged over cycles as most of the participants performed around five truck loading cycles as box-
plots in Figure 3.14. These plots show that the novice operators assisted by the instructional policy
perform far better than the operators learning on the basis of observation or positive feedback.

3.4.4 Testing Instruction Hypotheses for Retention

Retention is an important aspect of training novice operators. To test retention among the three
groups, participants were asked to return one to three days later (based on availability) to perform
additional cycles (called retests) without the help of any instruction interface. Note, not all partici-
pants reported back for the test. Cycles performed in retests are referred to as retest-1 (R1), retest-2
(R2), etc. Paired sample t−tests were conducted within each group to compare the performance
between the cycles - C3 and R1, and, R1 and R3. The goal of this test was to determine if there is
a significant change in cycle time and cycle errors between each of these cycles, to infer retention
among the novice operators.
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Paired t−test for cycle times (Table 3.4) suggested that for all groups there were no significant
differences between cycle times for C3-R1. However, between R1 and R3, GUI circles (µ̂ =

18.62, σ̂ = 22.16) group and no GUI (µ̂ = 10.76, σ̂ = 22.29) group showed significant differences
(p < .001 and p = .015 respectively). This suggests that both the groups, GUI circles and no
GUI, demonstrated significant changes in cycle time, and hence efficient performance during the
retest. An ANOVA was used to compare within groups the cycle time results of R3 and one-sample
t−test to compare it with the expert time (24.9s). The ANOVA showed that the difference in R3
times between groups was significant F (2, 81) = 6.41 (p < .01) suggesting that the GUI circles
group demonstrated significant change from R1 to R3 in comparison to other groups. Moreover,
they came closest to the expert’s cycle time as seen in Figure 3.15 that shows the average cycle
times for each group. This Figure summarizes and compares cycle time performance results over
the cycles C1, C3, R1 and R3. Overall, the groups assisted by the robot learn to perform better and
come closer to the performance of an expert in comparison to the group learning from observation
and experience whose performance improves but only at a slow rate.

Paired t−test results for the cycle errors shown in Table 3.4 suggests that, although significant
improvement in errors did not occur during testing cycles C1 and C3 (except for GUI bars), the
data suggests that latent learning may have occurred as the errors decrease significantly during
retest. This behavior was observed for GUI circles and GUI bars groups, which suggests that
the instructional policy model improved the performance of participants over unguided novices.
Overall, the results of this experiment demonstrated that the simple user guidance system that
utilized green and red circles was more effective towards retention.

3.5 Policy Parameterization for Robot Learning

In previous sections, policy model representation was utilized to parametrize instructional policy
for a complex construction task. This parameterization approach is a probabilistic framework that
also holds the potential for learning and executing complex tasks in pure LfD setting. In this sec-
tion, we present the application of the proposed policy representation for autonomous execution of
truck loading task. In the presented framework, sequencing of low level skills (or action primitives)
is associated with the high level task context, with transitions at each level modeled using Markov
chains. We believe that the utilization such hierarchy of Markov chains, based on the robot and the
task at hand, provides additional modeling power and flexibility for policy parameterization which
is lacking in the existing literature.

Such parameterization coupled with existing policy search approach, where the later comprises
of different means for policy exploration, policy evaluation and policy update ( [9]), holds the key
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for robot learning a single policy for complex real world tasks. The presented approach can be
modified for a robot to learn a usual policy, π : s → a based on the type of task. For a task
that involves different acceleration profiles for a single motion such as playing tennis, baseball or
beating drums, one straightforward modification is to model the policy for each action primitive
segment using a dynamic motor primitive, while retaining the benefits of the hierarchical structure
of the policy model. Presented policy parameterization can be directly used for executing goal
based tasks such as the truck loading task presented in this paper, pick and place, assembly of parts,
etc. To utilize the policy model in these types of task, it is not sufficient to identify the current
subgoal rather the location of the initiating and the terminating states for each action primitive
segment is required. Trained motor primitives can then be utilized to generate the policy between
the current state and the terminating state as in [89]. For truck loading task, each segment being an
action primitive, it suffices to command actuator velocities sampled from equation (3.7) to generate
a policy that mimics an action primitive segment between the current and the terminating state.

The initiating and terminating states for each subgoal Xi can be obtained from the associated set
Si of state-action primitive pairs. We collect the states of all initiating action primitives in the set
Si, and learn a multivariate Gaussian (as we did for the subgoals) to represent the initiating set Ii
for the subgoal Xi. Similar initiating set Ii+1 for the next subgoal Xi+1, acts as the terminating set
for Xi, i.e., Ti = Ii+1. A chain of action primitives is used to generate policy starting from a state
in Ii to a state in Ti. Switch between the intermediate action primitives was decided on the basis
of error between the mean states of the initiating and terminating sets. This is plausible for robots
with one-to-one correspondence between the degree-of-freedom and the actuators. Otherwise, the
time duration for intermediate action primitives can be modeled using semi-Markov models.

3.5.1 Autonomous Task Replay in Novel Configurations

We test the policy model for autonomous execution of truck loading task using the modifications
outlined in the previous section. These experiments were performed to demonstrate policy model’s
performance in pure LfD setting, otherwise the truck loading task requires human presence for the
perception of dynamically changing sand surface. Two different configurations for the demon-
stration of truck loading task were used as shown in the Figure 3.16. Policy model parameters
were obtained following the procedures detailed in sections 3.2.2-3.2, in addition the initiating and
terminating sets w.r.t each subgoal were also identified. Subgoals identified are shown in Figure
3.17. Algorithm identifies distinct subgoals w.r.t the truck and the sand pile to learn different set of
action primitives for different configurations, for example the set of action primitives required to
reach a truck subgoal to the right of pile will be different from those required to reach a subgoal on
the left. During execution, arg max operator is used to make inference using equations (3.5)-(3.6),
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to choose the next subgoal and a corresponding action primitive. Policy model was tested for four
different test configurations shown in Figure 3.16. The robot was able to generalize for the first
three configurations and successfully performed the task. For the last case, it could not manage to
raise its arm to clear the truck height, as the truck was placed very close to the sand in comparison
to the demonstration cases. Using policy update strategies ( [9]), the robot can learn to generalize
in such situation as well as improve its performance. To compare the timing performance for a
truck loading cycle, we also tested the policy model for a configuration quite similar to that of
the expert. Two comparison cases shown in Figure 3.18, suggests that the policy model closely
mimics the expert’s performance, finishing the task four seconds earlier in the second case, due to
quick and precise dumping over truck, and absence of humanly pauses. Thus, the proposed pol-
icy model successfully replayed the truck loading task in different configurations achieving better
performance in some cases.
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(a) Demonstration 1
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(b) Demonstration 2
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(c) Demonstration 3

Figure 3.8: Segmentation of three demonstration trajectories of truck loading task, along with the
joint positions. Though each demonstration had five cycles, we show either one or two cycles for
clarity. Position of each joint qj is sampled 25 times per second. x−axis denotes sampling instants.
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Figure 3.9: Segmentation using action primitives (top) and BP-HMM (bottom) for two cycles of
truck loading task, along with the joint positions. Black grid lines depict the start of action primi-
tives (except for the noisy perturbation rdb), similarly red grid lines indicate the start of BP-HMM
segments. Solid red grids indicate BP-HMM segments corresponding to noisy perturbations.

(a) Action primitive segmentation. Each color
represents a unique action primitive segment.

(b) Subgoal based segmentation. Each subgoal
comprises of one or more action primitive
segments.

Figure 3.10: Segmentation in end-effector’s pose (x, y, z) w.r.t the base frame of the robot for a
single expert demonstration consisting of five truck loading cycle.
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(c) DPMIRL (For six demonstration sets)
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(d) Scoop subgoal over pile and dump subgoal over
truck

Figure 3.11: Learning subgoals: Task space depicts robot’s base, pile and truck location. (a)-(b)
For a single demonstration set both algorithms discovered five subgoals shown as filled circles.
State sk of each action primitive segment Ak is depicted as unfilled circle. (c) Subgoals obtained
using modified BNIRL for all six demonstration trajectories. (d) 3-d Gaussian ellipsoids with one
standard deviation from the mean for scoop and dump subgoal.

47



Co-robot

Excavator Backhoe Loader

Instructional
Policy

Interface
Task Con-
figuration

OperatorJoystick
Input

Visual
Input

Feedback Instruction

Query

Figure 3.12: Learning instructional policy from expert demonstration can enable construction
robots to generate instruction for human operators based on the current task space configuration in
real time. Goal is to reduce skill-gap between experts and novice operators and to ensure efficient
task execution.
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(b) Cycle errors over first three cycles.

Figure 3.13: Participant performance in terms of cycle time and cycle errors for the three different
groups.
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(a) Average cycle time performance.
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(b) Average cycle error performance.

Figure 3.14: Average cycle time and cycle errors for the three different groups.
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Figure 3.15: Average cycle time with 95% confidence interval error bars for C1, C2, R1, and R3.
Means of the bars plots are connected to visualize and compare the rate of improvement between
the cycles. Average cycle time of the expert operator is marked by the dashed line.

Figure 3.16: First two images are task demonstration configurations, followed by four novel test
configurations.
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Figure 3.17: Distinct subgoals for different relative configurations of task objects. Note there are
different subgoals w.r.t pile for approach from left/right truck position.

49



0 10 20 30 40 50
Time (sec)

-2

-1.5

-1

-0.5

0

0.5

Tu
rre

t A
ng

le 
(q 1 in

 ra
dia

ns
)

Autonomous Expert

0 10 20 30 40 50
Time (sec)

-2

-1.5

-1

-0.5

0

0.5
Tu

rre
t A

ng
le 

(q 1 in
 ra

dia
ns

)
Autonomous Expert

Figure 3.18: Two comparison cases between autonomous operation and expert demonstration for
two cycles of truck loading operation. For clarity only turret angular position is shown.
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CHAPTER 4

CONSTRUCTION ROBOTS: INFER SWITCHING
BETWEEN TASKS

For real world implementation of instructional policy model it is required to infer when an operator
switches between different tasks. Construction activities are composed of several different tasks,
for example a truck loading activity also involves intermediate digging, leveling and piling tasks
along with the cycles of truck loading task. Our goal is to learn policy models for each task, and to
infer switching between different construction tasks. To solve this problem we propose to utilize
non-stationary Markov chain as a model of the overall task while inferring non-stationarity or
switches between subtasks using a first order system to model the likelihood of each subtask. Most
of the existing attempts to learn such complex tasks are either heuristic based or fail to capture the
subtasks. We propose to investigate a Layered Non-stationary Markov Model (LNMM) that would
learn a complete task model from demonstration. It will comprise of hidden Markov model at lower
level to represent transition among the action primitives for any given subtask, while the Markov
chain at higher level would capture the transitions between the subtasks. The hierarchical Markov
model would basically capture the non-stationarity in the Markov chain at the lower level. In the
following section, this is formulated as switching between the finite set of transition probability
matrices, where each matrix is a represents a task.

4.1 Problem Formulation

For a Markovian observation sequence {z1, . . . , zT}, where each zt is discrete, such that zt ∈
{1, . . . , K}, a typical modeling approach is to learn the conditional distribution p(zt|zt−1) mod-
eled using a K × K matrix known as the Transition probability model (matrix) π, where πi,j =

p(zt = j|zt−1 = i) is the probability of going from state i to state j. We consider the case where
non-stationarity in Markov models is induced by time variant transition function p(zt|zt−1), that
switches between a finite set of transition probability matrices given by Πs = {π1, . . . , πKπ}.
Thus for any non-stationary Markov sequence there exists a latent sequence of transition models
as shown in (4.1), such that each πk ∈ Πs, defined as Recurrent Transition Probability Models.
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Figure 4.1: (a) Number of modes in base layer (thin lines) is K = 2, with two elements in Πs =
{π1, π2}, and the elements of top layer transition matrix Π (thick lines), (b) Base layer is a Hidden
Markov model with K modes and respective Gaussian emissions, and a top layer that models
Markovian dynamics among the set (Πs) of Kπ transition probability matrices (TPMs).

z11, z12, . . . , z1τ1︸ ︷︷ ︸
π1

, . . . , zk1, . . . , zkτk︸ ︷︷ ︸
πk

, . . . , zn1, . . . , zT︸ ︷︷ ︸
πn

(4.1)

Our goal is to estimate the transition probability matrices in the set Πs where Kπ is not known
a-priori. This translates to unknown number of tasks in a given construction activity. We assume
that K i.e., the number of states observed is known. This corresponds to the total number of
action primitives observed in a demonstration, which is known from segmentation (see section
3.2.2). Developments in this chapter are also applicable to class of Markov models, such as HMMs,
SLDS, MJS and MDPs. We learn the set Πs of TPMs over the latent mode sequence (i.e. the hidden
markov chain) for HMMs, and over the Markov chains that governs SLDS or MJS. For these cases
the state of the Markov chain is only partially observed as oppose to perfect state observations
in the case of Markov chains and MDPs. For presentational clarity, an observation sequence is
represented by {x1, . . . , xT}, and the corresponding latent Markov sequence by {z1, . . . , zT}. And
for the observation model p(xτ |zτ ) ∼ F (θzτ ), the parameter vector θzτ can be representative of
Gaussian or multinomial emissions, a linear dynamical system or a non-linear transitional function.

4.2 Layered Non-stationary Markov Model (LNMM)

We propose that the switching between the transition matrices in the set Πs can be modeled by
layering a Markov chain that models the transition function p(πτ |πτ−1), where each TPM πτ ∈
{π1, . . . , πKπ}, with the correspondingKπ×Kπ transition matrix Π. We call this model as Layered
Non-stationary Markov Model. A simple example of a Markov chain with two modes is shown
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in the Figure 4.1a, in this example the transition matrix π switches among {π1, π2}. In brief,
the hierarchical Markovian dynamics captures the discrete time non-stationarity in the lower level
Markov Model. Similar example for the case of Hidden Markov Model is shown in Figure 4.1b,
withKπ possible transition matrices in the top layer. We assume the number of modesK in the base
layer to be known whereas Kπ is considered unknown. To learn the parameters of the proposed
LNMM model for a non-stationary Markov sequence we need to estimate the number of transition
probability matrices and their switching dynamics. To obtain such an estimate we propose the
concept of likelihood rate elaborated in subsection 4.2.2, before that we look at LNMM as the
generative model of a non-stationary Markov sequence.

4.2.1 Generative Model

Our aim is to learn the parameters of the following generative model of layered Hidden Markov
sequence (Figure 4.1b) with non-stationarity induced by recurrent transition models in Πs,

πτ ∼ Ππτ−1 (4.2)

zτ+1 ∼ πτzτ (4.3)

xτ+1 ∼ F (θzτ+1) (4.4)

At any time τ , the next latent mode zτ+1 is drawn from the transition distribution πτ conditioned
upon the current latent mode zτ , where the transition distribution πτ is itself drawn from the hier-
archical transition distribution matrix Π given πτ−1. We define Πi,j = p(πτ = j|πτ−1 = i), where
πτ ∈ Πs at any t, and {π1, . . . , πKπ} are the elements of set Πs. Finally the observation xτ+1 is
generated by the distribution F (θzτ+1) where θzτ+1 is a parameter vector associated with state zτ+1.
For Markov chains (Figure 4.1a) or MDPs we do not have the equation (4.4).

4.2.2 Likelihood Rate (∆L) of a TPM

To estimate multiple TPMs from a non-stationary sequence given in (4.1), an important question
that needs to be answered is that: Is it possible to identify the observations z1τ1

, . . . , zkτk , or the
time points τ1, . . . , τk, in a sequence, at which there is a switch in the TPM? This is a hard question
to answer, since we need to identify a change in TPM given only the transitions between the
observations. To answer this question we first assume that the set of possible TPMs that generate
data, i.e. the set Πs is known (assumption made for exposition sake only). Given the set Πs, our
aim is to evaluate the likelihood of a transition zτ → zτ+1 with respect to each transition matrix
πk ∈ Πs.
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To evaluate the likelihood of a transition zτ → zτ+1 with respect to each transition matrix
πk ∈ Πs, we utilize the mean variance estimator developed by [36], that updates a transition
matrix (π)mv after every observed transition as elaborated in section 1.3.5. We propose that the
likelihood of a transition (zτ → zτ+1) with respect to each transition matrix in the set Πs, can then
be evaluated in terms of the likelihood of the updated (π)mv with respect to each πk. We define
the likelihood of a recursively updated transition matrix (π)mv with respect to a known transition
probability matrix πk as

L((π)mv|πk) =
K∏
m=1

[
1

B(αm)

K∏
i=1

(πm,i)
πkm,i−1
mv

]
(4.5)

where (πm,i)mv denotes the ith element of mth row of (π)mv, same holds true for πkm,i, α
m is a

vector consisting of elements of the row πkm, such that B(αm) =
∏K
i=1 Γ(πkm,i)

Γ(αm0 )
, and αm0 =

∑
i π

k
m,i =

1, henceforth we abbreviate L((π)mv|πk) as Lk. We demonstrate the utility of this likelihood
estimation using a simple example. Suppose we have three sequences O1, O2 and O3, with the
maximum likelihood estimates of transition matrices being π1, π2 and π3. These matrices are the
elements of the set Πs. We consider a sequence O = {O3, O2, O1, . . . , O3, O2, O1}, for which we
recursively estimate transition matrix (π)mv using mean variance estimator of section 1.3.5. And
at each step we evaluate the likelihood of this matrix w.r.t the matrices in the set Πs using equation
(4.5). This results in an interesting plot of likelihood values shown in the Figure 4.2. It is observed
that there is sharp change in the likelihood behavior of the recursively updated transition matrix
(π)mv whenever there is a switch in TPM, for example the likelihood of π3 keeps increasing in
comparison to that of π1 and π2 for the sequenceO3, but at the start of sequenceO2 the likelihood of
π2 starts increasing and that of π1 and π3 are on a decrease, and the behavior continues. However,
note that for the sequence O2 and O3, the absolute values of the likelihood L2 and L3 is lower
than the likelihood L1, hence the distinguishing feature for πk is the slope or the rate of likelihood
∆L((π)mv|πk) (or in short ∆Lk). We estimate likelihood rate as ∆Lτ+1

k = Lτ+1
k − Lτk. Another

notable aspect from Figure 4.2 is that the likelihood estimate does not increase monotonically,
this is attributed to the fact that a single transition may be likely with respect to more than one
transition matrix, however it is observed that over finite number of transitions the likelihood of the
generating transition model keeps increasing. Thus a possible answer to the question that we had

posed earlier is that by observing the likelihood rate ∆Lk of the recursively updated transition

matrix (π)mv w.r.t. each matrix k in the set Πs, one can identify the observations or the points in

a sequence at which there is a switch in the TPM. Another interesting observation in Figure 4.2 is
that the likelihood of all the TPMs is converging over time, this shows that the recursively updated
transition matrix (π)mv converges to an estimate that is equally likely w.r.t the existing TPMs. This
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Figure 4.2: Likelihood of transition matrix (π)mv w.r.t πk’s ∈ Πs for k ∈ {1, 2, 3}. Black solid
lines represent switch between sequences in the order {O3, O2, O1}.

is a major limitation of the existing estimation techniques for transition matrix, in the presence of
non-stationarity, they converge to a single most likely estimate or to the current matrix estimate
rather than learning each of them individually.

Next we investigate theoretically whether likelihood rate can be used to distinguish between
transition probability models. We show that for a transition from state zτ−1(= m) to zτ(= i),
the likelihood rate ∆Lk > 0 for all those transition matrices πk, whose corresponding transition
probability is higher as compared to transitions to other state zt 6= i.

Proposition 1. Given (π)mv updated recursively using equations (1.11)-(1.12), and a transition

from state zτ−1(= m) to zτ(= i) of a Markov sequence, the likelihood rate ∆Lτk > 0 for all those

transition matrices πk that satisfy πkm,i > πkm,j ∀j ∈ {1, . . . , K}\i.

Proof. Given that the transition is from zτ−1 = m, we are interested in the mth row of the matrix
(π)mv, let it be given as

[
xom1 xom2 . . . xomK

]
. After transition to zτ(= i), elements of this row

are updated to say
[
xnm1 xnm2 . . . xnmK

]
using equations (1.11)-(1.12). Clearly, the value of

ith element of this row increments i.e. xnmi > xomi as δi,i′ = 1, whereas all others decrease i.e.
xnmj < xomj ∀j 6= i. Let Ln((π)mv|πk) denote the likelihood of the recursively updated transition
matrix (π)mv w.r.t a arbitrary but known transition matrix πk at instant t, while at instant t − 1 let
it be Lo((π)mv|πk). Then the likelihood rate is given as ∆Lτk = Ln((π)mv|πk)−Lo((π)mv|πk). Let
the elements of the mth row of transition matrix πk be

[
p1 p2 . . . pK

]
, i.e. πkm,i = pi. Given

that pi > pj ∀j ∈ {1, . . . , K}\i, we need to show that ∆Lτk > 0. Note that since pi > pj ∀j and
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∑
i pi = 1, it is straightforward to deduce that pi > 1

K
. Next using equation (4.5) we get,

∆Lτk =
C

B(αm)

[ K∏
j=1

(xnmj)
pj−1 −

K∏
j=1

(xomj)
pj−1

]
(4.6)

where constant C contains terms from rest of the rows that remained unchanged. Expanding the
terms we get

∆Lτk = C ′
[
(xnm1)p1−1 ∗ · · · ∗ (xnmK)pK−1

− (xom1)p1−1 ∗ · · · ∗ (xomK)pK−1
]

(4.7)

We know that xnmi > xomi, and we consider the worst possible case where rest of the elements are
equal i.e., xnm1 = xnm2 = · · · = xnmi−1 = xnmi+1 = · · · = xnmK = xn, and equal to xo for terms at
instant τ − 1 thus we get,

∆Lτk = C ′
[
(xnmi)

pi−1 ∗ (xn)
∑
l6=i(pl−1)

− (xomi)
pi−1 ∗ (xo)

∑
l 6=i(pl−1)

]
(4.8)

Note
∑

l 6=i(pl−1) = 1−pi− (K−1) = −pi− (K−2) < 0 as K ≥ 2. Now for ∆Lτk > 0 implies

[
(xnmi)

pi−1 ∗ (xn)−pi−K
′ − (xomi)

pi−1 ∗ (xo)−pi−K
′]
> 0

where K ′ = K + 2, further rearranging terms and then taking log we get,

(1− pi) log

(
xomi
xnmi

)
< (pi +K ′) log

(
xn

xo

)
(4.9)

as xomi
xnmi

< 1, the product (1 − pi) log
(xomi
xnmi

)
< 0, whereas (pi + K ′) log

(
xn

xo

)
> 0 as xn

xo
> 1. Thus

the equation (4.9) holds true and hence ∆Lτk > 0.

Clearly from proposition 1, likelihood rate estimate from a single transition cannot decisively
indicate the generating transition matrix πk. Thus, we need to observe finite number of transitions
(Nj) from each mode j ∈ {1, . . . , K}, that would eventually narrow down ∆Lk > 0 to a single
πk. But how many different πk’s are possible if the number of modes is K? Secondly what should
be the value for Nj? Though infinitely many πk’s are possible, as each πkm,i ∈ R while satisfying∑

i π
k
m,i = 1, we are rescued by the proposition 1 condition πkm,i > πkm,j ∀j ∈ {1, . . . , K}\i, which

if applied to all the rows m ∈ {1, . . . , K} implies that effectively we need to distinguish between
KK transition matrices only, because for each row m there are K possible locations of i such that
πkm,i > πkm,j. And thus we need to estimate likelihood rate for at least one transition (Nj = 1 ∀j)

56



from each of the K modes.

4.2.3 Estimation using Likelihood Rate

This section delineates the process to estimate the set Πs from observed data sequence. For the case
of hidden Markov models determination of the switches between the TPMs in the set Πs becomes
the part of getting expected sufficient statistics i.e. the E step of the Baum-Welch algorithm, and the
M step remains unchanged. Hence the estimation proceeds similar to the EM algorithm, however
the E step now requires determination of πτ for every time step τ . We first discuss the process of
learning the generating distribution πτ (∀τ) given the latent mode sequence zτ , and then lay down
the modified Baum-Welch algorithm for non-stationary hidden Markov model.

Estimating the set Πs

We describe an estimation process that incrementally adds transition probability models to learn the
set Πs. We define a uniform transition probability matrix πu having uniform Dirichlet distribution
over the elements of each row parameterized by theK (recall zτ ∈ {1, . . . , K}) dimensional vector
α such that α(i) = 1 ∀i. For any transition zτ−1 → zτ , all the existing πk ∈ Πs and a uniform
transition probability matrix πu are considered as priors for generating that transition. These priors
are evaluated based on their likelihood rate ∆L and the posterior update is performed for the prior
πk or πu with highest ∆L. Before we get into the details some definitions are in line. We define
an index set I that stores the index k for every time step τ , such that πτ = πk, hence the set I
represents the generating distribution πτ (∀τ). Our aim is to learn the index set I together with
the elements of the set Πs. We had noted earlier that we need to observe ∆L for finite number
of transitions (Nj) from each mode j before we evaluate our priors πk ∈ Πs, henceforth this is
referred to as the update condition.

We begin with a single prior πu in Πs, which is updated after the update condition is satisfied,
and a second prior πu is added to the set Πs so that the cardinality of Πs denoted by Kπ becomes
2. Thereafter, the posterior update is made for the prior πk that has the maximum ∆Lk (we denote
that index k by I). This update utilizes the transition counts between subsequent updates stored
in the form of a matrix M ∈ NK×K . But if k = Kπ i.e. the current transitions are more likely
w.r.t the uniform prior πu then along with the posterior update, we also increment Kπ by one and
another πu is appended as the last element of Πs. In either case, the time steps in between the
updates are assigned the corresponding value of I and are stored in I. This learning process is
summarized in algorithm 2. Nj’s can take values in the range 1 to K to best fit the data. We
do not suggest Nj > K as this would limit the capability of the learning process to capture fast
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switching between TPMs. The value set for Nj (∀j) is denoted by nπ and is a tunable parameter
in the learning process. Mathematically the update condition is represented by Nj = nπ ∀j with
nπ ≥ 1.

Learning the Hierarchical transition matrix Π: The index set I obtained from Algorithm
2 represents hierarchical latent mode sequence for the transition distributions. Hence Π can then
be obtained from I by using classical maximum likelihood estimate or by using the Bayesian
approach discussed in section 1.3.5.

Algorithm 2 Estimating TPMs in LNMM
Input: Latent mode sequence (z1, . . . , zT ), Πs = {π1 (= πu)},Kπ = 1.
Initialize (π)mv = πu, I = ∅, τp = 1, Nj = 0 ∀j.
for τ = 2 to T do

Update (π)mv based on zτ−1 → zτ using equations (1.11)-(1.12)
Evaluate Lτk and its rate ∆Lτk for each πk ∈ Πs.
if Nj = nπ ∀j then

if |Πs| = 1 then
Update π1 usingM, augment Πs = {π1, π2 (= πu)},Kπ = 2.

else
I = arg maxk

∑τ
j=τp

∆Ljk,
if I = Kπ then

Update πI usingM, set (π)mv = πI .
Kπ ← Kπ + 1, augment Πs = {π1, . . . , πKπ (= πu)}

else
Update πI usingM, set (π)mv = πI .

end if
end if
I(τp : τ) = I, τp ← τ ,M← ∅, ∆Lk ← 0 ∀k,Nj ← 0 ∀j.

end if
end for
Output: Πs, I.

Modified Baum-Welch for Layered HMM

To elaborate the modified Baum-Welch algorithm for layered hidden Markov model we develop
upon the details of classical EM algorithm given in section 17.5.2 of [90]. We begin with an initial
guess on the parameters θold that comprises of distribution parameters corresponding to each latent
mode, initial distribution on latent states π0(j) = p(z1 = j) and Πs = {πu} i.e. πτ = πu ∀τ .
Every iteration of E step is then composed of two steps; one regular step followed by algorithm
2 as a second step that determines the set Πs. In the first step, we compute smoothed marginals,
γτ (j) = p(zτ = j|x1:T ) by running the forwards-backwards algorithm with equations modified
to accommodate different transition matrix πτ at a time step τ as follows (shown in matrix-vector
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Algorithm 3 Inference in LNMM
Input: Latent mode sequence {z1, . . . , zT}, Πs.
Initialize (π)mv = πu, I = ∅, τp = 1, Nj = 0 ∀j.
for τ = 2 to T do

Update (π)mv based on zτ−1 → zτ using equations (1.11)-(1.12)
Evaluate Lτk and its rate ∆Lτk for each πk ∈ Πs.
if Nj = nπ ∀j then
I = arg maxk

∑τ
j=τp

∆Ljk,
I(τp : τ) = I, τp ← τ,Nj ← 0 ∀j,∆Lk ← 0 ∀k

end if
end for
Output: I

form)

ατ ∝ ψτ ◦ ((πτ )Tατ−1) (4.10)

βτ−1 = (πτ )T (ψτ ◦ βτ ) (4.11)

γτ ∝ ατ ◦ βτ (4.12)

where ψτ (j) = p(xτ |zτ = j) is the local evidence at time τ, ατ (j) = p(zτ = j|x1:t) is filtered
marginal initialized as α1 = normalize(ψ1 ◦ π0), and βτ (j) = p(xt+1:T |zτ = j), with base case
βT (j) = 1 ∀j. Replacing πτ by a single matrix π results in original equations of [90]. In the
second step, we run algorithm 2, for which the latent mode sequence is determined by assigning
each observation (xτ ) to its most likely mode, i.e. zτ (j) = arg maxi γτ (i). The M step remains
same and updates the distribution parameters θzτ for each latent mode zτ ∈ {1, . . . , K}. For
second iteration onward, θold comprises of the set Πs and the index set I (from Algorithm 2) along
with the updated distribution parameters. Iterations are performed until parameter convergence or
up to the maximum limit set for number of iterations.

4.2.4 Inference using LNMM

Given a observation sequence and the set of TPMs in Πs, goal is to infer the generative transition
probability matrix πτ ∈ Πs ∀τ . Thus inference involves determination of the set I. For hidden
Markov sequence i.e. in case of HMM/SLDS/MJS, if the data is not fully observed, an initial guess
of the latent mode sequence is generated by assigning each observation to its most likely mode.
Set I is inferred based on this initial guess. Ultimate inference of the latent mode sequence is ob-
tained by using modified forward-backwards equations (4.10)-(4.12) and the set I. The inference
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procedure to obtain I is given in Algorithm 3.

4.2.5 Existence of non-stationarity in Markov models

So far we have discussed the estimation process for multiple transition probability matrices in
order to learn an expressive model for non-stationary Markov chains. But the question remains,
how do we check whether the observed Markov sequence is really non-stationary? Answer to this
question is hidden within the estimation process described in the previous section. Algorithm 2
identifies the existence of more than one transition model by evaluating and comparing the like-
lihood rate of the uniform transition matrix πu with the transition model existing in the set Πs.
Based on this observation, we describe two step process to conclude existence of non-stationarity
in a observed Markov sequence. First use a method of choice to learn the parameters of transition
probability matrix (say π1) and associated distribution parameter θzτ over observations in case of
HMM/SLDS/MJS. Second, infer likelihood rate for π1 and πu using the inference procedure de-
scribed in section 4.2.4. If the likelihood rate for πu increases while that of π1 decreases over a
number of observations (number given by the update condition in Algorithm 2) then it should be
concluded that the Markov sequence under study is non-stationary. We demonstrate this check in
the case of bee dance dataset in the results section.

4.3 Experiments on Synthetic Data-set

We first demonstrate and validate the estimation approach for a non-stationary Markov sequence
utilizing Algorithm 2. We consider four randomly generated transition probability matrices πk

(k ∈ {1, 2, 3, 4}) for a random variable X that switches between three modes i.e. K = 3. A
non-stationary Markov sequence of observations generated using these TPMs is shown in Figure
4.3a, along with the switching between the TPMs. We input this sequence to Algorithm 1, that
infers switch between the TPMs as shown in Figure 4.3b. Our method successfully identified four
generating transition models and almost perfectly captures the transitions happening among these
models. Hamming distance error calculated by greedily mapping the indices of the estimated state
sequence to those maximizing overlap with the true sequence (as defined by [91]) was 0.046. Fig-
ure 4.3b also plots the likelihood rate of recursively updated (π)mv w.r.t. each TPM πk. Clearly the
absolute increase in the likelihood rate (

∑τ
j=τp

∆Ljk summed between updates) of the transition
model that generates a particular sequence is higher than that of the other models. Most impor-
tantly, the Algorithm initiates a new uniform transition model πu as soon as the change in transition
model is detected (dashed magenta line). The slight delay in detection is on account of meeting
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the update condition. Likelihood rate for the last model π5 never increases and is never updated,
thus the Algorithm accurately detects four switching TPMs.

Parameter nπ was tuned to minimize the hamming distance error and was set equal to 2. Thus
we need to validate whether this approach would generate similar performance for different real-
izations of randomly generated transition matrices without tuning nπ. We performed 100 experi-
ments with matrices and sequences generated randomly. Average hamming distance in this case
was 0.116 with a standard deviation of 0.057. Thus our approach performs very well in detecting
and learning multiple TPMs existing in non-stationary Markov sequence.
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Figure 4.3: (a) Nonstationary Markov chain generated by switching TPMs, (b) Estimated and the
actual switching between the TPMs, along with the likelihood of recursively updated (π)mv w.r.t.
each TPM πk. Notice the rise in the likelihood of a transition matrix corresponding to its sequence.

4.3.1 Synthetic Dataset

We evaluate the performance of the proposed layered non-stationary hidden Markov model (LNHMM)
using synthetic data generated from a 5 state HMM with 2d Gaussian emissions, Figure 4.4a is an
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Table 4.1: Computation time for estimation using Baum-Welch (BW), MCMC, sticky HDP-HMM
(sHDP) and LNHMM, computed on i7-6500K CPU @2.5GHz and 16 GB RAM machine.

METHOD BW MCMC SHDP LNHMM
TIME (SEC) 43.1 196 394.6 63.2

example showing the latent mode sequence (in black) laid over the true state sequence. The purpose
is to quantify the benefits of using likelihood rate to estimate all the existing transition matrices
that are generating the data as compared to the existing methods that learn a single transition ma-
trix. As such this data was generated using three characteristically different transition probability
matrices. One of the TPM had high probability of self transition, another had a high probabil-
ity of leaving the current state and the last one was generated randomly. We use the estimation
method described in section 4.2.3, to learn the model parameters as well as the set of transition
matrices Πs existing in the time series data of Figure 4.4a; the Algorithm identified three TPMs
and the switching between them, this is overlaid on the latent mode sequence in Figure 4.4b. To
compare we also learn the model using existing methods; standard Baum Welch Algorithm, Monte
carlo Marko chain (MCMC [92]) and Bayesian non-parametric sticky-HMM approach [91]. We
tested the models obtained using these methods by performing inference over a set of 100 different
time-series data generated by the same 5 state HMM but with random switch between the three
underlying TPMs. For MCMC we took 5000 draws after a burn-in of 1000 draws and chose the
best from last 500. For sticky-HDPHMM we ran 10 chains of 1000 Gibbs iterations using blocked
sampler and picked the best solution. Inference for LNHMM was performed as detailed in section
4.2.4. Performance was evaluated in terms of predictive likelihood of data and percentage error
in Viterbi assignments. Results plotted in Figures 4.4c-4.4d, show that LNHMM has far higher
predictive likelihood as compared to other methods and does very well in Viterbi assignments.
And most significantly, the computational requirement for LNMM is closer to Baum-Welch (see
Table 4.1). These experiments clearly suggest that the likelihood rate based estimation of multiple
transition matrices achieves accurate inference for non-stationary Markov sequences. Further, the
layered Markov model is an expressive model for non-stationarity induced by recurrent transition
models and is computationally efficient.

4.4 Experiments on Honey Bee Dance data-set

We test the LNMM on a set of six honey bee dance sequences, this dataset has previously been used
to demonstrate different switching linear dynamical systems (SLDS) approach developed by [93]
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Figure 4.4: (a) Latent mode sequence (black) and true state sequence for a five state HMM (2d
Gaussian emissions), (b) Enlarged view of latent mode sequence overlaid with switches between
transition matrices obtained using Algorithm 2, (c) Predictive likelihood over 100 timeseries data
generated by random switching between the TPMs present in (b), (d) Viterbi assignment errors.

and [94]. Primary aim in this experiment is to segment the dance sequence into three distinct
dance modes and compare performance with the known ground truth labels. The data consists
of measurements yt = [cos(θt) sin(θt) xt yt], where (xt, yt) is the 2-D coordinates of the bee’s
body and θt its head angle. At the outset we tested whether the bee dance sequence exhibit non-
stationarity using the procedure described in section 4.2.5. We check whether it suffices to model
the bee dance dataset using the dynamic parameters and transition model inferred by the approach
given in [93]. Test results shown in Figure 4.5 indicates that the likelihood rate for uniform model
πu increases in comparison to π1 for the sequences 4 and 6, hence Algorithm 3 infers πu as the
transition model. This exercise indicates that the bee dance sequences can indeed be better modeled
using non-stationary Markov model.

In testing our approach for each of the bee dance sequence, we used matrix-normal inverse-

Wishart prior to learn the dynamic parameters (θzτ ) of linear dynamical system for each dance
mode (zτ ∈ {1, 2, 3}) similar to [93]. Our results in terms of median label accuracy for the six
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Figure 4.5: Likelihood rate for models π1 (∆L1) and πu (∆L2), obtained using Algorithm 3, along
with the inferred switch in TPMs.
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Figure 4.6: (a)-(c) Estimated mode sequences using LNMM overlaid on ground truth for sequences
1, 2, and 3.

dance sequences along with the number of identified transition models is shown in Table 4.2.
The table also reports the performance of Hierarchical Dirichlet process HMM (HDP-HMM) [93]
using unsupervised and partially supervised Gibbs sampling, and that of the supervised “parame-
terized segmental SLDS” (PS-SLDS) and SLDS procedures [94]. Inference using LNMM for the
sequences 1 to 3 is almost two times better than the unsupervised approach; see Figure 4.6 for
inferred mode sequences. LNMM though unsupervised performed almost equivalent to the super-
vised approach of SLDS and PS-SLDS which employs ground truth labels for all but one sequence
to perform inference. Thus likelihood rate and the resulting LNMM model is a key approach for
estimation and learning for non-stationary Markov sequences observed in real world datasets.
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Table 4.2: Median label accuracy for the six bee dance sequences of LNMM compared with HDP-
HMM unsupervised (UN), HDP-HMM partially supervised (PS), and Data Driven-MCMC based
SLDS and PS-SLDS.

SEQUENCE 1 2 3 4 5 6
LNMM 83.6 94.1 84.6 91.5 93.5 90.1
(TPMS) (4) (4) (3) (2) (3) (2)
HDP- 46.5 44.1 45.6 83.2 93.2 88.7
HMM UN
HDP- 65.9 88.5 79.2 86.9 92.3 89.1
HMM PS
SLDS 74.0 86.1 81.3 93.4 90.2 90.4
PS-SLDS 75.9 92.4 83.1 93.4 90.4 91.0

4.5 Experiments on Constructions Tasks

Our goal is to infer switch between different construction tasks during an entire construction activ-
ity. For this purpose we first learn transition model over action primitives for each task. This gives
us the set Πs that comprises of transition model for each construction task. We then demonstrate
how the likelihood rate based inference can be used to infer switching between the tasks that occur
in a single continuous demonstration of a construction activity. Finally, we also attempt to learn
the number of different tasks that were present in a construction activity and simultaneously learn
their transition models.

Experiments were performed on a 1/14th scaled 345D Wedico excavator model, a 4 d.o.f hy-
draulic robotic arm manipulator, controlled by a radio transmitter (see Figure 3.5 for the robot’s
description). Refer section 3.4 for more details on the experimental platform and the set up. We
collected a demonstration consisting of three different tasks constituting a truck loading activity.
These tasks included leveling, truck loading and piling operations. A plot of unsegmented demon-
stration trajectories in the end-effector pose w.r.t the robot’s base frame is shown in Figure 4.7a.
From the trajectories, it is apparent that there were two cycles of truck loading operation and signif-
icant manipulations w.r.t the sand pile. Manipulation w.r.t sand consisted of piling operation, which
was executed before truck loading, and leveling operation executed post truck loading cycles.

4.5.1 Likelihood rate based Inference of Construction Tasks

We first decompose continuous state-action trajectories from expert demonstrations into state-
action primitive segments. This is done using the segmentation procedure detailed in section 3.4.1,
resulting action primitive segments are depicted by unique colors in Figure 4.7b. Total to 13 action
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(a) Unsegmented demonstration trajectories (b) Action primitive based segmentation

Figure 4.7: Segmentation in end-effector’s pose (x, y, z) w.r.t the base frame of the robot for a
truck loading activity comprising of piling and leveling of sand operations.

primitives were discovered. The sequence of action primitives is used to learn a transition model
using the procedure described in section 1.3.4. We learn separate transition models for each of the
three tasks, piling, truck loading, and leveling, denote by the set Πs = {π1, π2, π3}, respectively.
Each transition model has the dimension, πi ∈ R13×13,∀i. The dimension of transition models in
this problem is quite high in comparison to the models used in the experiments of previous two
sections, and is thus a challenging problem. The known transition models are utilized to evaluate
the likelihood as in the equation (4.5) w.r.t a recursively updated transition matrix (π)mv (that is
updated as described in section 1.3.5).
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Figure 4.8: Likelihood rate based inference of switching between construction tasks. Plot of
task represents switching between three different tasks indexed as 3−leveling, 2−truck loading,
1−piling. (a) Plots the likelihood of transition models w.r.t the mean variance estimate (π)mv.
Clearly likelihood rate decisively determines the switch between the transition models. (b) In-
ferred transition model is overlaid with original switching.

Resulting likelihood values are plotted in Figure 4.8a. Figure also shows the construction task
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that is switching between the three tasks. Clearly, the rate of change of likelihood, i.e. the like-
lihood rate decisively indicates the change in transition models. Figure 4.8b shows all possible
switches between the three construction tasks and their inference. Overall, there were 16 switch
between tasks, and an error of 1.13 action primitives was noted per switch between the tasks.
Additionally, a minimum of three action primitives need to be observed in order to estimate the
likelihood rate. This implies a minimum of 4 action primitives are required before the robot can
figure out a switch in the task.
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CHAPTER 5

SHARED CONTROL

5.1 Introduction

In many engineering applications where the operations are repetitive and within well-controlled
surroundings, robots equipped with various sensing devices and control algorithms have replaced
the need for human operators. However, there are many real-world applications where human
presence is still crucial for guaranteeing safety and robustness. Examples include agricultural or
construction tasks requiring co-robots such as excavators, tractors, backhoes, etc.; piloting of vehi-
cle systems; and monitoring of safety-critical industrial processes. Although much work has been
done to automate construction co-robots and provide a level of autonomy based on sensing their
surroundings [2, 37], these have not come to fruition due to the level of uncertainty and dynami-
cally changing environment due to the presence of off-nominal situations. Thus it seems that the
presence of human operators will remain critical to these and many other real-world applications
in the foreseeable future because of two key reasons: Firstly, the sensing and perception abilities
of humans have been difficult to replicate in machines; and Secondly the higher level contextual
knowledge of the world that humans possess has not yet been successfully imbibed in machines.
As a result, even when autopilots have been around for over a generation in aviation, the presence
of human pilot in the cockpit is still crucial in dealing with off-nominal situations.

In applications where humans and machines have to control a dynamical system together, the
key question of interest is what should be the level of autonomy that is appropriate to ensure
high task performance without compromising safety. This problem has been widely studied in
the ergonomics and human-machine interaction literature [95]. The general consensus seems to
indicate that while autonomy may be better suited to improve performance at the implementation
level of task, ignoring human inputs can lead to costly mistakes when unforeseen things happen.
Based on this insight, the most naive implementation of shared machine and human control system
would involve a physical switch that determines whether the system is in human or autonomous
control. However, this technique suffers from the drawback that the system does not benefit from
the humans’ perceptive abilities when in autonomous mode, and is otherwise hindered by humans’
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potential lack of skill.
An alternative to the switched approach is to design shared control systems so that the total

control input provided to the system is some combination of human and machine input [96]. Such
a shared control design has been successfully applied to semi-autonomous wheelchair navigation
problem [97–99]. In particular [97] proposes a mechanism that weights human and autonomous
agent based on their local efficiency in terms of directiveness, safety and smoothness. In these
applications, shared control plays a role of assistive technology. The design of shared control
for real world co-robots remains a scarcely explored area of research. In a recent work, Enes
and Wayne [100] pose an interesting and elegant navigation problem that captures the essen-
tial attributes of shard control problems typically suitable for mixed human-machine autonomy
approach. Their setup is based around the Zermelo’s navigation problem, that is the task for a
human-machine team to navigate a ship to a desired location in the presence of varying currents.
The blended shared controller proposed by Enes and Waynes adapts a shared control coefficient
α so that if the operator brings the ship close to the optimal trajectory, then autonomous control
takes over. Existing work by Enes and Wayne and others has repeatedly shown that the blended
shared control approach guarantees improved performance in nominal conditions. However, the
performance of these methods in off-nominal conditions has not been reported.

The key question that we seek to address in this paper is that whether a state-dependent shared
control approach, similar to that proposed by Enes et al., will be successful in off-nominal task con-
ditions. To emulate off-nominal conditions, we consider the case of suddenly appearing obstacle in
the path of the ship in context of the Zermelo’s navigation problem. In this case, our results show
that the blended shared control approach will lead to suboptimal performance if the operational
environment deviates from nominal. In particular, we show that when the suddenly appearing ob-
stacle pops up, the blended control approach suffers, because it is too slow in yielding control back
to the operator. To address this issue, we propose a new shared control technique that actively uti-
lizes inferred operator intent. In this technique, intent of the operator is defined mathematically and
is utilized to determine the shared control coefficient. In essence, our approach blends autonomous
shared control with the operator’s inputs if the operator’s calculated intent indicates their intention
to move towards the optimal trajectory, and quickly concedes control to the human operator when
the operator makes a deliberate effort to move away from the optimal trajectory. Our theoretical
results demonstrate that the Intent Aware Shared Control (IASC) approach proposed here leads to
at least as good performance as blended shared control while providing larger obstacle reaction
times. Experiments with human operators corroborate these findings, demonstrating a much lower
number of obstacle collision incidences with IASC.

An alternate shared control approach [101], deals with control transfer to autonomous agent
under off-nominal situations which are not perceived by human operators, an entirely opposite
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Figure 5.1: Zermelo’s Navigation with Obstacle, with a typical Off-Nominal situation due to the
presence of an obstacle not known a-priori to the autonomous agent.

viewpoint of the shared control problem than that discussed in this work. The rest of the paper
is organized as follows, Section II presents background information and formulates the blended
shared control problem. Section III provides the intent aware shared control formulation, while
Section IV presents theoretical and simulation based results, before describing results with human
subjects on Zermelo’s navigation problem with a pop-up obstacle. The paper is concluded in
Section V.

5.2 Blended Shared Control for Zermelo’s Navigation

5.2.1 Zermelo’s Navigation Problem

Zermelo’s navigation problem is a classic optimal control problem, where the objective is to navi-
gate a ship to the origin in the presence of linearly varying current as shown in the figure 5.1. The
original objective of the problem as described in [102] is to minimize the transit time to the origin,
for which the closed form solution is shown to exist. In its original form, this problem was used
as a case study by [100] to investigate into shared control of a ship, where the control is combined
from an human operator and an autonomous agent. In this paper, a slight modification described
later in this section is used to further investigate shared control that captures the intention of the
operator.

In Zermelo’s problem, a ship (modeled as a particle) travels at a constant speed V relative to the
water. The only control available to an operator is the ship’s heading θ. The equations of motion
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are given by

ẋ = V cosθ + u(y)

ẏ = V sinθ (5.1)

where θ is the ship’s heading measured from the x-axis, (x, y) are its coordinates, and u = V y/h is
the velocity of the current, with constant h that determines its intensity along the y-axis. In this pa-
per we modify the Zermelo’s Navigation problem to include an obstacle that appears dynamically
during a simulation. Their existence is not known to the autonomous controller, and hence the
operator control plays an important role in navigating the ship safely past the obstacle and finally
to the origin.

5.2.2 Blended Shared Control

Enes and Wayne [100] had formulated Blended shared control law, that combines operator’s com-
mand (u0) with the optimal command calculated by the robot agent (ũ). The final control input x
is given by

x = u0 + δ (5.2)

where δ is a command perturbation term, which is calculated by shared controller depending on
the machine model and/or optimization of cost function internal to the robot. In their formulation,
with an objective of decreasing the time required to complete a given task, they considered the
perturbation term to be a linear function of the error between the operator input u0 and the robot
agent’s input (ũ) i.e. δ = −α∆u, where ∆u = u0 − ũ, replacing δ in (5.2) we have,

x = u0 − α∆u (5.3)

where α ∈ [0, 1] is the blended shared control parameter, which is the major subject of design in
this paper. Clearly, for α = 0 the system is under manual control (i.e. x = u0) and when α = 1

the system is fully autonomous (i.e. x = ũ).

5.2.3 Zermelo’s Navigation using Blended Shared Control

In the application of blended shared control to Zermelo’s navigation, ship’s heading θ results from
the combination of the operator’s input u0 and the autonomous agent’s input ũ. The operator’s
input u0 at the joystick materializes into the operator commanded heading θ0 = θi + ψ

∫
u0dt,

where θi is the present ship heading and ψ is a constant parameter for ship response. Blended
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shared control law proposed in [100] is a function of the error ∆ in commanded heading given by,

∆ = θ0 − θ̃ (5.4)

where θ̃ is the optimal heading for the current ship location (x, y). And the parameter α was
defined as,

α = max(0, 1− d/d0).max(0, 1− (∆/∆0)2) (5.5)

this function allows manual operation if the ship is greater than distance d0 away from the goal
or if the operator commanded heading deviates from the optimal by value greater than ∆0. This
blended shared control relinquishes control authority to the operator only in the presence of large
“errors” between the operator input and the autonomous agent’s input. Note that at any given point
the heading of the ship is given by θ = ψ

∫
xdt, with x obtained using (5.3).

5.3 Intent Aware Shared Control

5.3.1 Introduction

Human operators have unique capability of quickly perceiving the state of their surrounding to
make safety critical decisions in dynamically changing environment. The objective of the pro-
posed Intent Aware Shared Control (IASC), is to utilize this perceptive capability of human op-
erators while retaining the benefits of improved performance offered by shared control. Blended
shared control law reviewed in section 5.2.2 does well in utilizing the effectiveness of the au-
tonomous agent and hence in minimizing the time required to complete the Zermelo’s navigation
task. However the purpose of the shared control can truly be realized, if the control law design
combines the utility of a human operator with the effectiveness of the autonomous agent. This is
critical in ensuring safe execution of task at hand.

We present our formulation for a single input system. Extension to multi-input system is non-
trivial and will be pursued as future work. Evaluation of single input system is expected to provide
significant insight into the design of such blended shared control for different multi-input systems.
We assume that a human operator provides rational control input (u0) to the system, with an objec-
tive of performing stated task. So there are two important aspects of the human control input that
are available to design a shared control law. First is the error between the optimal input (θ̃) (deter-
mined by the autonomous or robotic agent) and the heading desired by the operator (θ0), second is
the rate (γ̇) at which the human operator’s input differ from that of the optimal. Mathematically,
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former is given by the equation (5.4), and we define latter as

γ̇ =
d

dt
(|θ0 − θ̃|) =

d

dt
(|∆|) (5.6)

The key idea is that the intent of the operator can be captured by the rate γ̇, and hence we chose
to call it as the human intent. Investigation of equation (5.6) shows that there are following three
facets to human intention,

• γ̇ > 0 implies that the human intends to differ from the optimal input θ̃,

• γ̇ < 0, implies that the human is in agreement with the optimal input θ̃ and intends to follow
the same,

• γ̇ = 0, implies that the human is in passive agreement with the optimal input θ̃.

First two facets are self explanatory, the third one implies that the human considers that the control
inputs being generated by the autonomous agent are optimal for the intended task and hence does
not bother to provide his/her input or in other words remains passive. Further clarity would result
as we discuss the mathematical model of shared control based on the human intent γ̇, in section
5.3.2.

Another shortcoming of the blended shared control is that the operator completely loses control
authority to autonomous agent in the case α = 1 (see equation 5.3). This situation can certainly
occur as is apparent from equation (5.5) for the Zermelo’s navigation problem. However, it is easy
to avoid this situation by employing a simple fix of limiting the maximum attainable value for α to
α0 < 1. In this paper, we perform experiments using a fixed α0, and leave the investigation of the
effects of variation of α0 to future work.

5.3.2 Mathematical Model

We consider a system,

ẋ = f(x, x)

x = g(u0, ũ, α) (5.7)

where the control input u is the function of operator input u0 and the autonomous controller input
ũ (also referred to as optimal input) and the blended shared control parameter α. In the previous
blended shared control formulation [103], α is a function ξ of the error between the commanded
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state x that results from independent application of u0 and ũ,

α = ξ(∆) (5.8)

An example of ∆ and the function ξ are equations (5.4) and (5.5) respectively. In contrast, in the
presented formulation we define α as

α = ξ(γ̇) (5.9)

where γ̇ is a measure of human intent given by equation (5.6). Mathematically, intent is the rate of
change in the absolute deviation between the states commanded by the operator input and the au-
tonomous agent’s input. Next we propose an appropriate function for ξ(γ̇), based on the question
that, how should the shared control react to the human intent γ̇? Logic dictates that shared con-
trol should certainly decrease the impact of autonomous control (dictated by ũ) when the human
intends to differ from the optimal trajectory i.e. γ̇ > 0 and vice-versa. Building on this reasoning,
we propose the following design for the shared control parameter,

ξ(γ̇) =


α0(1− e−t/τ ) γ̇ < 0

α0e
−t/τ γ̇ > 0

αprev γ̇ = 0

(5.10)

In our design, when the human remains passive γ̇ = 0, we continue with the previous value of
α denoted as αprev. In the other two cases, the effectiveness of the autonomous agent is decreased
or increased based on the human intent. Time t is counted starting from zero whenever the intent
switches between these cases, and the constant τ determines the response characteristics. The final
form of control input for IASC is

x = u0 − ξ(γ̇)(u0 − ũ) (5.11)

In the theoretical results section 5.4, we discuss this controller’s performance with that of Blended
shared control law given as

x = u0 − ξ(∆)(u0 − ũ) (5.12)

5.4 Theoretical Results

First we analyze the performance of BSC and IASC controllers, in terms of their capability to
relinquish control authority to human operator in the presence of an adhoc obstacle in Zermelo’s
navigation. Mathematically, control is relinquished by an autonomous agent if the function ξ(·)→
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0. We assume that the operator takes a maximal evasive action in the event of unforeseen obstacle
by driving u0 to its maximum value of ū0.

Proposition 2. Given the system defined by (5.1), with the function g for the BSC and IASC con-

trollers given by the equations (5.12) and (5.11) respectively. If t1 and t2 is the time taken by

BSC and IASC controller respectively to achieve ξ(·) = εα0 (ε → 0) under the maximal operator

control input u0 = ū0 (< ∆0) and τ < 1
ln(1/ε)

, then t1 > t2.

Proof. For both the controllers specified in the proposition, we consider that they remain active
irrespective of the ship’s distance d from the origin and that the maximum attainable value for α is
α0, thus from the equation (5.5) for BSC we have

ξ(∆) = α0max(0, 1− (∆/∆0)2) (5.13)

From equation (5.12), for ξ(∆) = εα0, ∆ should satisfy 1 − (∆/∆0)2 = ε, which implies
(∆/∆0)2 = 1 − ε ≈ 1. Hence using equation (5.4), we obtain ∆ = ∆0 = θ0 − θ̃, this im-
plies θ0 = θ̃ + ∆0. Given that t1 is the time taken by the ship to rotate to θ0 given the rate ū0, we
have ū0t1 = θ0 = θ̃ + ∆0,

t1 =
(θ̃ + ∆0)

ū0

> 1 +
θ̃

ū0

> 1

Now consider the case of IASC, since the operator is performing an evasive maneuver, his intent
γ̇ > 0, hence for ξ(γ̇) = εα0, we have α0e

−t2/τ = εα0, which implies that

t2 = τ ln(1/ε) < 1, given τ <
1

ln(1/ε)

Hence t2 < t1.

Our next proposition shows that the IASC will never be strictly worse than the manual control
in terms of minimum time required to complete a task and would perform better as compared to
the BSC. We assume that the human operator always provides a rational control input of the form
u0 = ũ + η such that the magnitude of η decreases monotonically with time, until the goal is
reached. Here, the rationality of an operator is characterized by the fact that the operator drives his
input u0 towards the optimal ũ.

Proposition 3. Given a starting location x0, and governing equation (5.1), and the existence

of time-optimal path for x = ũ starting at x0. Let TMC , TBSC , TIA be the time required for

manual control, BSC and IASC respectively, to reach the goal. If the operator input is governed by

u0 = ũ+ η s.t. η̇ < 0 ∀t, then TIA < TMC and TIA < TBSC .
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Figure 5.2: Phase plot for control effectiveness (i.e. α > 0 ) in the error-intent (∆ − γ̇) plane,
plotted for any location (x, y) in Zermelo’s Navigation problem. |γ̇| < I0. Region I is common to
both the controllers. A controller reactive to off-nominal situation should cover larger area in the
left half plane. IASC occupies region larger than that of BSC in the left half plane (see proof of
proposition 5).

Proof. For BSC or IASC, given u0 = ũ+ η, and using equation (5.12) we have that,

x = ũ+ (1− ξ(·))η

since ξ(·) < 1, the shared control law always drive the control input x closer to the optimal ũ, in
comparison to the manual control where u0 = ũ + η, hence TBSC < TMC . Also, η = u0 − ũ,
which implies that the intent γ̇ = η̇ < 0, and hence ξ(γ̇) > 0, and hence TIA < TMC .

There exists two exhaustive cases based on the error between the ship’s heading θ and the opti-
mal heading θ̃, given by ∆ > ∆0 and ∆ ≤ ∆0. For the first case ξ(∆) = 0, whereas ξ(γ̇) > 0 for
both cases. If θ > θ̃ + ∆, BSC begins with ξ(∆) = 0, hence IASC would drive x faster to ũ as
compared to BSC, resulting in TIA < TBSC .

However, for θ ≤ θ̃ + ∆, consider the phase plot between ∆ and the γ̇ shown in the figure 5.2.
The region for which BSC is effective is shown in blue, and the green depicts the region where
IASC is effective. Region I is common to both. Since γ̇ < 0, we are interested only in the left half
of the phase plot. Clearly in the left half, the area covered by the IASC is greater than that of BSC
if |∆0| ≤ π, which is always true. Hence qualitatively TIA ≤ TBSC .

5.5 Zermelo’s Navigation with Obstacles

Simulations were performed on Zermelo’s navigation problem with obstacle. An example scenario
is shown in the figure 5.1, where the objective is to navigate the ship to the origin (shown in red) by
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controlling the heading angle θ. Figure 5.1 also shows the optimal heading angle θ̃, as computed by
the autonomous agent without the knowledge of the Obstacle. We performed a base simulation to
understand and compare the performance of BSC and IASC. For this simulation we considered an
obstacle as shown in the figure 5.3. Using only manual control of the ship, we first obtained a start
position that results in obstacle avoidance; corresponding position and the trajectory is shown. Next
moving backwards from this position, we simulated BSC and IASC assuming maximal evasive
maneuver from the operator i.e. u0 = ū0. Figure 5.3 shows the resulting collision and successful
obstacle evasive trajectories for both the controllers.

To gain further understanding, we investigated the performance of the two controllers w.r.t the
successful trajectories in figure 5.3. This is depicted in figure 5.4, which shows the optimal heading
θ̃, operator’s heading θ0 (in absence of shared control) and the ship’s actual heading θ with time;
with the variation in the shared control parameter α or ξ(·) shown in a separate subplot. BSC
control responds poorly to the evasive operator input, this is because the function ξ(γ̇) decays very
slowly causing the ship to follow the optimal heading rather than the operator intended heading
(figure 5.4a). In contrast for IASC, ship responds quickly to operator’s intent. First the control
authority is ceded to the operator when he moves away from the optimal heading, later the ship
follows the optimal heading as soon as the operator intends to do so (figure 5.4b).

Another way to assess the safety of the shared control techniques is through computation of their
respective reachable sets [104]. Given the nonlinear nature of both the system dynamics and the
control evolution, we utilized simulations to determine the reachable sets of both the controllers
from a given start position from which the application of operator’s maximal evasive maneuver
resulted in obstacle collision. Results from these simulations is summarized in the form of zone of

no-return in figure 5.5. The zone of no-return characterizes the region in which the system defi-
nitely fails, if the control authority is not transferred from the autonomous controller to the human
operator in off-nominal situations. Figure 5.5 shows that the zone of no return is considerably
smaller for IASC as compared to that of BSC. These results suggest that operators utilizing IASC
should be more successful in avoiding obstacles, something that is later corroborated through hu-
man experiments. The key reason for smaller zone of no-return for IASC is because ξ(γ̇) decays
to zero much faster than ξ(∆), as seen in Proposition 4.

5.5.1 Experimental Results

We designed experiments to evaluate the proposed IASC in comparison to the BSC. In a typical
experiment an operator starts navigating the ship towards the origin from one of the three locations:
(0,−60), (40, 40), and (0,−60), though similar locations, these had different location for the ob-
stacle (see Table 5.1). The operator is given assistance in the form of optimal heading direction

77



-70 -60 -50 -40 -30 -20 -10 0 10
-20

-10

0

10

20

30

Manual
BSC
BSC Collision
IASC
IASC Collision

Figure 5.3: Trajectory for different control types

Time (x 0.1 sec)
0 50 100 150

H
ea

di
ng

 A
ng

le

-4

-2

0

2

Optimal
Operator
Heading

Time (x 0.1 sec)
0 50 100 150

A
lp

ha

0

0.2

0.4

0.6

Shared Coefficient (,)

(a) Blended Shared Control

Time (x 0.1 sec)
0 50 100 150

H
ea

di
ng

 A
ng

le

-4

-2

0

2

Optimal
Operator
Heading

Time (x 0.1 sec)
0 50 100 150

A
lp

ha

0

0.2

0.4

0.6 Shared Coefficient (,)

(b) Intent Aware Shared Control

Figure 5.4: Shared Control Performance while negotiating an obstacle in Zermelo’s Navigation.

given by the green arrow shown in the figure 5.1, this assistance is however removed in the case of
manual operation. While performing this task, a square obstacle of side 10 pops up at a distance
of dob = 25 from the current location. This distance was chosen based on the zone of no return
(figure 5.5), in order to provide sufficient time for an operator to take evasive action and avoid col-
lision with the obstacle. The participants were instructed beforehand to ignore the optimal heading
suggestion in the presence of an obstacle.

Prior to the experiment, a participant is allowed four practice runs starting from various locations
in the field. During the practice runs, the optimal heading suggestion is active, giving the operator
a sense of how an expert would navigate the currents. Currents were dictated by the constants
h = 4 and V = 2. Obstacles were not introduced during the practice runs. After the completion
of practice runs, a participant starts performing the actual experiment. An experiment consists of
nine runs of navigation, which is a combination of three types of control for each of the three start
location (or scenarios). Each run terminates in either of the following three cases,

• The participant navigates within d = 3 of the origin.
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• The ship collides with the obstacle,

• The ship exceeds a distance of d = 150 from the origin.

During an experiment, the sequence in which a scenario is presented or the controller type that is
active, is random and hence not known to the operator.

Total of nine participants with Engineering background volunteered for the experiment, sum-
mary of the results in the form of box-plot that compares the task completion time for different
control types is shown in the figure 5.6. Box-plots clearly show that the overall performance of
IASC is far better than the blended shared control. For the first and the third location performance
of IASC is comparable in mean (red lines) with others, but outperforms them for the second. This
can probably be attributed to the time delay in operator response induced by directional ambigu-
ity, since the second obstacle is approached from right to left whereas the other two obstacles are
approached in opposite direction. However the IASC control remains robust to this time delay in
operator’s response and performs well. These results also verifies and supports the claim made in
the proposition 5. The number of obstacle collisions observed during the trials given in Table 5.1
show that the proposed design of IASC is very responsive to off-nominal situations, resulting in
fewer obstacle collision in comparison to the BSC architecture.
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origin, for Manual Control (MC), Blended shared control (BSC) and Intent Aware Blended shared
control.

Table 5.1: Obstacle Collision: Design of IASC controller is responsive to off-nomial situations

Location Obstacle Manual BSC IASC
(x, y) (x, y) Control

(0,−60) (−45, 8) 1 10 2

(40, 40) (25,−8) 0 4 3

(0,−60) (−75, 3) 0 7 1
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CHAPTER 6

SPATIOTEMPORAL PROCESSES: KERNEL
OBSERVER

6.1 Kernel Observers

This section formulates the problem, introduces kernel observers, and develops the main theoretical
and algorithmic results. Section 6.2 presents a result on the expected number of randomly placed
sensors required to monitor a spatiotemporal process in the context of our model. Section 6.3
demonstrates the efficacy of the algorithms on several challenging and large real-world datasets.

6.1.1 Problem Formulation

We focus on predictive inference of a time-varying stochastic process, whose mean f evolves tem-
porally as fτ+1 ∼ F(fτ , ητ ), where F is a distribution varying with time τ and exogenous inputs
η. Our approach builds on the fact that in several cases, temporal evolution can be hierarchically
separated from spatial functional evolution. A classical and quite general example of this is the ab-

stract evolution equation (AEO), which can be defined as the evolution of a function u embedded
in a Banach space B: u̇(t) = Lu(t), subject to u(0) = u0, and L : B → B determines spatiotem-
poral transitions of u ∈ B [105]. This model of spatiotemporal evolution is very general (AEOs,
for example, model many PDEs), but working in Banach spaces can be computationally taxing.
A simple way to make the approach computationally realizable is to place restrictions on B: in
particular, we restrict the sequence fτ to lie in a reproducing kernel Hilbert space (RKHS), the
theory of which provides powerful tools for generating flexible classes of functions with relative
ease [23]. In a kernel-based model, k : Ω×Ω→ R is a positive-definite Mercer kernel on a domain
Ω that models the covariance between any two points in the input space, and implies the existence
of a smooth map ψ : Ω → H, where H is an RKHS with the property k(x, y) = 〈ψ(x), ψ(y)〉H.
The key insight behind the proposed model is that spatiotemporal evolution in the input domain
corresponds to temporal evolution of the mixing weights of a kernel model alone in the func-
tional domain. Therefore, fτ can be modeled by tracing the evolution of its mean embedded in a
RKHS using switched ordinary differential equations (ODE) when the evolution is continuous, or
switched difference equations when it is discrete (Figure 6.1a). The advantage of this approach is

81



(a) Hilbert Space Evolution

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) 1-shaded (Def. 1)

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) 2-shaded (Eq. (6.7))

Figure 6.1: (a) Two types of Hilbert space evolutions. Left: discrete switches in RKHS H; Right:
smooth evolution inH, (b)-(c) Shaded observation matrices for dictionary of atoms.
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Figure 6.2: One-dimensional function evolution over a fixed transition matrix A, initial condition
w0 and centers C, but with different kernels k(x, y). Each y-vector at a given value of x represents
the output of the function, which evolves from left to right. As seen, changing the kernel creates
quite different dynamic behaviors.

that it allows us to utilize powerful ideas from systems theory for deriving necessary and sufficient
conditions for spatiotemporal monitoring.

In this paper, we restrict our attention to the class of functional evolutions F defined by linear
Markovian transitions in an RKHS. While extension to the nonlinear case is possible (and non-
trivial), it is not pursued in this paper to help ease the exposition of the key ideas. The class of
linear transitions in RKHS is rich enough to approximately model many real-world datasets, as
suggested by our experiments.

Let y ∈ RN be the measurements of the function available from N sensors, A : H → H be a
linear transition operator in the RKHS H, and K : H → RN be a linear measurement operator.
The model for the functional evolution and measurement studied in this paper is:

fτ+1 = Afτ + ητ , yτ = Kτfτ + ζτ , (6.1)

where ητ is a zero-mean stochastic process in H, and ζτ is a Wiener process in RN . Classical
treatments of kernel methods emphasize that for most kernels, the feature map ψ is unknown,
and possibly infinite-dimensional; this forces practioners to work in the dual space of H, whose
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dimensionality is the number of samples in the dataset being modeled. This conventional wisdom
precludes the use of kernel methods for most tasks involving modern datasets, which may have
millions and sometimes billions of samples [106]. An alternative is to work with a feature map
ψ̂(x) := [ ψ̂1(x) ··· ψ̂M (x) ]T to an approximate feature space Ĥ, with the property that for every
element f ∈ H, ∃f̂ ∈ Ĥ and an ε > 0 s.t. ‖f − f̂‖ < ε for an appropriate function norm. A few
such approximations are listed below.

Dictionary of atoms Let Ω be compact. Given points C = {c1, . . . , cM}, ci ∈ Ω, we have a
dictionary of atoms FC = {ψ(c1), · · · , ψ(cM)}, ψ(ci) ∈ H, the span of which is a strict subspace
Ĥ of the RKHSH generated by the kernel. Here,

ψ̂i(x) := 〈ψ(x), ψ(ci)〉H = k(x, ci). (6.2)

Low-rank approximations Let Ω be compact, let C = {c1, . . . , cM}, ci ∈ Ω, and let K ∈
RM×M , Kij := k(ci, cj) be the Gram matrix computed from C. This matrix can be diagonalized
to compute approximations (λ̂i, φ̂i(x)) of the eigenvalues and eigenfunctions (λi, φi(x)) of the
kernel [107]. These spectral quantities can then be used to compute ψ̂i(x) :=

√
λ̂iφ̂i(x).

Random Fourier features Let Ω ⊂ Rn be compact, and let k(x, y) = e−‖x−y‖
2/2σ2 be the

Gaussian RBF kernel. Then random Fourier features approximate the kernel feature map as ψ̂ω :

Ω→ Ĥ, where ω is a sample from the Fourier transform of k(x, y), with the property that k(x, y) =

Eω[〈ψ̂ω(x), ψ̂ω(y)〉Ĥ] [106]. In this case, if V ∈ RM/2×n is a random matrix representing the
sample ω, then ψ̂i(x) := [ 1√

M
sin([V x]i),

1√
M

cos([V x]i) ]. Similar approximations exist for other radially
symmetric kernels, as well as dot-product kernels.

In the approximate space case, we replace the transition operator A : H → H in (6.1) by
Â : Ĥ → Ĥ. This approximate regime, which combines the flexibility of a truly nonparametric
approach with computational realizability, still allows for the representation of rich phenomena, as
will be seen in the sequel, and in Figure 6.2. The finite-dimensional evolution equations approxi-

83



mating (6.1) in dual form are

wτ+1 = Âwτ + ητ , yτ = Kwτ + ζτ , (6.3)

where we have matrices Â ∈ RM×M , K ∈ RN×M , the vectors wτ ∈ RM , and where we have
slightly abused notation to let yτ , ητ and ζτ denote their Ĥ counterparts. Here K is the matrix
whose rows are of the formK(i) = Ψ̂(xi) = [ ψ̂1(xi) ψ̂2(xi) ··· ψ̂M (xi) ]. In systems-theoretic language,
each row of K corresponds to a measurement at a particular location, and the matrix itself acts as
a measurement operator.

The equations (6.1) suggest an immediate extension to functional control problems. Pick another

basis forH as ψ̃(x) :=
[
ψ̃1(x) · · · ψ̃`′(x)

]T
, where the functions ψ̃j(x) are used to approximate

the RKHSH generated by the kernel. We denote the span of these functions as H̃. In the dictionary
of atoms case, an example would be another set of atomsFD =

[
ψ(d1) · · · ψ(d`′)

]
, ψ(dj) ∈ H,

dj ∈ Ω, with H̃ being a strict subspace of the RKHS H generated by the kernel. The functional
evolution equation is then as follows:

fτ+1 = Afτ + Bδτ + ητ , yτ = Kτfτ + ζτ , (6.4)

where the control functions δτ evolve in H̃, and B : H̃ → Ĥ. To derive the finite-dimensional
equivalent of B, we have to work out the structure of the matrix B: since Ĥ is not, in general,
isomorphic to H̃, this imposes strict restrictions on B. We can derive B using least squares using
the inner product of H. An instructive example is where both Ĥ and H̃ are generated by dictio-
naries of atoms; recall that in this case, FC =

[
ψ(c1) · · · ψ(cM)

]
is the basis for Ĥ, and let

δ =
∑`′

j=1 ẃjψ(dj). Then the projection of δ onto Ĥ can be derived as
〈δ, ψ(c1)〉H

...
〈δ, ψ(cM)〉H

 =


〈ψ(d1), ψ(c1)〉H · · · 〈ψ(d`′), ψ(c1)〉H

... . . . ...
〈ψ(d1), ψ(cM)〉H · · · 〈ψ(d`′), ψ(cM)〉H


︸ ︷︷ ︸

KCD


ẃ1

...
ẃ`′

 .

Note that in the dictionary of atoms case, the entries of KCD can be computed in closed form
as KCDij := k(di, cj), using the reproducing property. This derivation shows that the operator B
is simply KCD ∈ RM×`′ , the kernel matrix between the data C generating the atoms FC of Ĥ and
the data D generating the atoms FD of H̃. Relation between the operators B and B, is outlined in
the commutative diagram in Figure 6.3c.
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Thus, the finite-dimensional evolution equations equivalent to (6.4) are

wτ = Âwτ +KCDẃτ , yτ = Kτwτ . (6.5)

We define the generalized observability matrix [108] as OΥ =
[
KÂτ1
···

KÂτL

]
where Υ = {τ1, . . . , τL}

are the set of instances τi when we apply the operator K. A linear system is said to be observable

if OΥ has full column rank (i.e. RankOΥ = M ) for Υ = {0, 1, . . . ,M − 1} [108]. Observability
guarantees two critical facts: firstly, it guarantees that the state w0 can be recovered exactly from a

finite series of measurements {yτ1 , yτ2 , . . . , yτL}; in particular, defining yΥ =
[
yTτ1 , y

T
τ2
, · · · , yτTL

]T
,

we have that yΥ = OΥw0. Secondly, it guarantees that a feedback based observer can be designed
such that the estimate of wτ , denoted by ŵτ , converges exponentially fast to wτ in the limit of
samples. Note that all our theoretical results assume Â is available: while we perform system
identification in the experiments (Section 6.3.3), it is not the focus of the paper.

We are now in a position to formally state the spatiotemporal modeling, control, and inference
problems being considered: given a spatiotemporally evolving system modeled using (6.3), choose
a set ofN sensing locations such that even withN �M , the functional evolution of the spatiotem-
poral model can be estimated (which corresponds to monitoring), can be predicted robustly (which
corresponds to Bayesian filtering), and which can be controlled (which corresponds to functional

control). Our approach to solve the monitoring and prediction problem relies on the design of the
measurement operator K so that the pair (K, Â) is observable: any Bayesian state estimator (e.g.
a Kalman filter) utilizing this pair is denoted as a kernel observer 1. In the controls case, given
a spatiotemporally evolving system modeled using (6.5), we need to choose a set of N sensing
locations and `′ control locations, such that even with N � M, `′ � M , the functional evolution
of the spatiotemporal model can be controlled; in this case, we must design both a measurement
operator K and a control operator KCD such that the pair (KCD, Â) is controllable: a controls
system utilizing this pair and the measurement operator K is denoted as a kernel controller.

6.1.2 Main Results

In this section, we prove results concerning the observability of spatiotemporally varying functions
modeled by the functional evolution and measurement equations (6.3) formulated in Section 6.1.1.
In particular, observability of the system states implies that we can recover the current state of the
spatiotemporally varying function using a small number of sampling locations N , which allows us
to 1) track the function, and 2) predict its evolution forward in time. We work with the approxi-

1In the case where no measurements are taken, for the sake of consistency, we denote the state estimator as an
autonomous kernel observer, despite this being somewhat of an oxymoron.
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mation Ĥ ≈ H: given M basis functions, this implies that the dual space of Ĥ is RM . Proposition
4 shows that if Â has a full-rank Jordan decomposition, the observation matrix K meeting a con-
dition called shadedness (Definition 1) is sufficient for the system to be observable. Proposition
5 provides a lower bound on the number of sampling locations required for observability which
holds for any Â. Proposition 6 constructively shows the existence of an abstract measurement
map K̃ achieving this lower bound. Since the measurement map does not have the structure of
a kernel matrix, a slightly weaker sufficient condition for the observability of any Â is in Theo-
rem 1. Finally, since both K and KCD are kernel matrices generated from a shared kernel, these
observability results translate directly into controllability results.

Definition 1. (Shaded Observation Matrix) Given k : Ω × Ω → R positive-definite on a domain

Ω, let {ψ̂1(x), . . . , ψ̂M(x)} be the set of bases generating an approximate feature map ψ̂ : Ω →
Ĥ, and let X = {x1, . . . , xN}, xi ∈ Ω. Let K ∈ RN×M be the observation matrix, where

Kij := ψ̂j(xi). For each row K(i) := [ ψ̂1(xi) ··· ψ̂M (xi) ], define the set I(i) := {ι(i)1 , ι
(i)
2 , . . . , ι

(i)
Mi
}

to be the indices in the observation matrix row i which are nonzero. Then if
⋃
i∈{1,...,N} I(i) =

{1, 2, . . . ,M}, we denote K as a shaded observation matrix (see Figure 6.1).

This definition seems quite abstract, so the following remark considers a more concrete example.

Remark 1. let ψ̂ be generated by the dictionary given by C = {c1, . . . , cM}, ci ∈ Ω. Note that since

ψ̂j(xi) = 〈ψ(xi), ψ(cj)〉H = k(xi, cj), K is the kernel matrix between X and C. For the kernel

matrix to be shaded thus implies that there does not exist an atom ψ(cj) such that the projections

〈ψ(xi), ψ(cj)〉H vanish for all xi, 1 ≤ i ≤ N . Intuitively, the shadedness property requires that the

sensor locations xi are privy to information propagating from every cj . As an example, note that,

in principle, for the Gaussian kernel, a single row generates a shaded kernel matrix2.

Proposition 4. Given k : Ω×Ω→ R positive-definite on a domain Ω, let {ψ̂1(x), . . . , ψ̂M(x)} be

the set of bases generating an approximate feature map ψ̂ : Ω → Ĥ, and let X = {x1, . . . , xN},
xi ∈ Ω. Consider the discrete linear system on Ĥ given by the evolution and measurement equa-

tions (6.3). Suppose that a full-rank Jordan decomposition of Â ∈ RM×M of the form Â = PΛP−1

exists, where Λ = [ Λ1 ··· ΛO ], and there are no repeated eigenvalues. Then, given a set of time in-

stances Υ = {τ1, τ2, . . . , τL}, and a set of sampling locations X = {x1, . . . , xN}, the system (6.3)

is observable if the observation matrix Kij is shaded according to Definition 1, Υ has distinct

values, and |Υ| ≥M .

Proof. To begin, consider a system where Â = Λ, with Jordan blocks {Λ1,Λ2, . . . ,ΛO} along the

2However, in this case, the matrix can have many entries that are extremely close to zero, and will probably be very
ill-conditioned.
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diagonal. Then Âτi = diag(
[
Λτi

1 Λτi
2 · · · Λτi

O

]
). We have that

OΥ =

KÂ
τ1

· · ·
KÂτL .


︸ ︷︷ ︸
OΥ∈RNL×M

We need to prove that the column rank of OΥ is M , which is not immediately obvious since
typically N � M . To prove the statement, we will show that computing the rank of OΥ is
equivalent to the rank computation of the product of two simple matrices. In what follows, we use
the notation 0RI×J to denote an I × J matrix of all zeros.

In the first step, we write the above matrix as the product of two matrices. Then it can be shown
that OΥ is the product of two block matrices

OΥ =


K · · · 0RN×M
... . . . ...

0RN×M · · · K


︸ ︷︷ ︸

K̂∈RNL×ML



Λτ1
1 · · · 0
... . . . ...
0 · · · Λτ1

O
... . . . ...

ΛτL
1 · · · 0
... . . . ...
0 · · · ΛτL

O


︸ ︷︷ ︸

Â∈RML×M

.

We need to simplify K̂ even further. Recall that a matrix’s rank is preserved under a product
with an invertible matrix. Design a matrix of elementary row operations U ∈ RN×N such that
K̆ := UK is a matrix with at least one row vector of nonzeros; this can be achieved by having an
elementary matrix that adds rows together. By the shadedness assumption, such a matrix exists.
We can write this operation as

UK =


K̆11 K̆12 · · · K̆1M

K̆21 K̆22 · · · K̆2M

...
... . . . ...

K̆N1 K̆N2 · · · K̆NM .


Without loss of generality, and abusing notation slightly, let this multiplication lead to one nonzero
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row, with the rest of the elements of the matrix being zero, as

UK =


k11 k12 · · · k1M

0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 .

Since elementary matrices are full-rank, we then have that rank(UK) = rank(K).
To analyze the rank of OΥ, we apply these elementary matrices to every K ∈ K̂. To do so,

consider the block-diagonal matrix U ∈ RNL×NL with U ∈ RN×N along the diagonal, and zeros
everywhere else, i.e.

U :=


U 0RN×N · · · 0RN×N

0RN×N U · · · 0RN×N
...

... . . . ...
0RN×N 0RN×N · · · U

 . (6.6)

It can be shown that U is full-rank, i.e. has rank NL. Going back to the observability matrix, we
have that

UOΥ = UK̂Â

=


UK 0RN×M · · · 0RN×M

0RN×M UK · · · 0RN×M
...

... . . . ...
0RN×M 0RN×M · · · UK


︸ ︷︷ ︸

UK̂∈RNL×ML

Â︸︷︷︸
∈RML×M

,

since 0RN×N0RN×M = 0RN×M . Due to the fact that rank(UOΥ) = rank(OΥ), we can therefore
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perform our rank analysis on the simpler matrix rank(UOΥ). Note that

UKÂτj =


k11 k12 · · · k1M

0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 Âτj

=


k11λ

τj
1

(
τj
1

)
λ
τj−1
1 + k12λ

τj
1 · · · k1Mλ

τj
O

0 0 · · · 0
...

... . . . 0

0 0 · · · 0

 .

Therefore, following some more elementary row operations encoded by V ∈ RML×ML, we have
that

V UOΥ =



k11λ
τ1
1 · · · k1Mλ

τ1
O

k11λ
τ2
1 · · · k1Mλ

τ2
O

... . . . 0

k11λ
τL
1 · · · k1Mλ

τL
O

0RM(L−1)×1 · · · 0RM(L−1)×1


=

[
Φ

0RM(L−1)×M

]
.

If the individual entries k1i are nonzero, and the Jordan block diagonals have nonzero eigenvalues,
the columns of Φ become linearly independent. Therefore, if L ≥ M , the column rank of OΥ is
M , which results in an observable system.

To extend this proof to matrices Â = PΛP−1, note that

OΥ =

KÂ
τ1

· · ·
KÂτL



=

KPΛτ1P−1

· · ·
KPΛτLP−1.


= K̂PΛtP−1,

where P ∈ RML×ML, Λt ∈ RML×ML, and P−1 ∈ RML×ML are the block diagonal matrices
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associated with the system. Since P is an invertible matrix, the conclusions about the column rank
drawn before still hold, and the system is observable.

When the eigenvalues of the system matrix are repeated, it is not enough for K to be shaded. In
the next proposition, we take a geometric approach and utilize the rational canonical form of Â to
obtain a lower bound on the number of sampling locations required. Let r be the number of unique
eigenvalues of Â, and let γλi denote the geometric multiplicity of eigenvalue λi. Then the cyclic

index of Â is defined as ` = max1≤i≤r γλi [34] (see section 1.3.3 for details).

Proposition 5. Suppose that the conditions in Proposition 4 hold, with the relaxation that the

Jordan blocks [ Λ1 ··· ΛO ] may have repeated eigenvalues (i.e. ∃Λi and Λj s.t. λi = λj). Then there

exist kernels k(x, y) such that the lower bound ` on the number of sampling locations N is given

by the cyclic index of Â. In other words, the system in (6.3) is observable if N ≥ `.

Proof. By Contrapositive. We will show that if the number of sampling locations are N = `− 1

(i.e. N < `), then the system is not observable. Pick the Gaussian kernel in the dictionary of atoms
framework, with sampling locations xi ∈ X and centers cj ∈ C, with the additional property that
xi 6= xj∀i, j ∈ {1, . . . , N}, i 6= j. In this case, K has ` − 1 nonzero, linearly independent rows,
and can be written as

K =


k11 k12 · · · k1M

...
... · · · ...

k(`−1)1 k(`−1)2 · · · k(`−1)M

 .
Since the cyclic index is `, this implies that at least one eigenvalue, say λ, has ` Jordan blocks.
Define indices j1, j2, . . . , j` ∈ {1, 2, . . . ,M} as the columns corresponding to the leading entries
of the ` Jordan blocks corresponding to λ. WLOG, let j1 = 1. Using ideas similar to the last proof,
we can write the observability matrix as

OΥ :=



k11λ
τ1 · · · k1j`λ

τ1 · · ·
... . . . ... . . .

k11λ
τL k1j`λ

τL · · ·
... . . . ... . . .

k(`−1)1λ
τ1 · · · k(`−1)j`λ

τ1 · · ·
... . . . ... . . .

k(`−1)1λ
τL · · · k(`−1)j`λ

τL · · ·


.
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Define λ :=
[
λτ1 λτ2 · · ·λτL

]T
. Then the above matrix becomes

OΥ :=


k11λ · · · k1j2λ · · · k1j`λ · · ·

... . . . ... . . . ... . . .

k(`−1)1λ · · · k(`−1)j2λ · · · k(`−1)j`λ · · ·

 .
We need to show that one of the columns above can be written in terms of the others. This is
equivalent to solving the linear system

k1j1

k2j1
...

k(`−1)j1

 =


k1j2 · · · k1j`

k2j2 · · · k2j`
... . . . ...

k(`−1)j2 · · · k(`−1)j`




c1

c2

...
c(`−1)

 .

Since the kernel matrix on the RHS is generated from the Gaussian kernel, from [109], it’s known
that every principal minor of a Gaussian kernel matrix is invertible, which implies that OΥ cannot
be observable.

Section 6.1.3 gives a concrete example to build intuition regarding this lower bound. We now
show how to construct a matrix K̃ corresponding to the lower bound `.

Proposition 6. Given the conditions stated in Proposition 5, it is possible to construct a measure-

ment map K̃ ∈ R`×M for the system given by (6.3), such that the pair (K̃, Â) is observable.

Proof. The construction of the measurement map K̃ is based on the rational canonical structure of
ÂT , which decomposes V into ÂT -cyclic direct summands such that V = V1 ⊕ · · · ⊕ V`, where `
is the cyclic index of Â as defined in Proposition 5. Let ξv be the minimal polynomial (m.p.) of
v (relative to ÂT ): it is then the unique monic polynomial of least degree such that ξv(ÂT )v = 0.
Let α1(λ) be the m.p. of ÂT|V1

: then deg(α1(λ)) < M . By the rational canonical structure theorem
[34], there exists a vector v̂1, such that ξv1(λ) = α1(λ). Similarly there exists a vector v̂2, such
that ξv2(λ) = α2(λ), where α2(λ), is the minimal polynomial of ÂT|V2

and so on. Thus we can
obtain ` such vectors that form the measurement map K̃ = [v̂1, v̂2, · · · , v̂`]T . Construction of
these vectors v̂i, can be simplified by first performing the Jordan decomposition as ÂT = PΛP−1.
Then the vectors ṽi, i ∈ ` for Λ, can be constructed such that the entries corresponding to the
leading entries of Jordan blocks of Λ|Vi are nonzero. Such a construction ensures that the m.p. of
vector ṽi w.r.t Λ|Vi , is also the corresponding m.p. of Λ|Vi . Hence the required map is given by
K̃ = [ṽ1, ṽ2, . . . , ṽ`]

TP−1.
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Algorithm 4 Measurement Map K̃

Input: Â ∈ RM×M
Compute Rational canonical form, such that C = Q−1ÂTQ. Set C0 := C, and M0 := M .
for i = 1 to ` do

Obtain MP αi(λ) of Ci−1. This returns associated indices J (i) ⊂ {1, 2, . . . ,Mi−1}.
Construct vector vi ∈ RM such that ξvi(λ) = αi(λ) .
Use indices {1, 2, . . . ,Mi−1} \ J (i) to select matrix Ci. Set Mi := |{1, 2, . . . ,Mi−1} \ J (i)|

end for
Compute K̊ = [vT1 , v

T
2 , ..., v

T
` ]T

Output: K̃ = K̊Q−1

The construction provided in the proof of Proposition 6 is utilized in Algorithm 4, which uses
the rational canonical structure of Â to generate a series of vectors vi ∈ RM , whose iterations
{v1, . . . , Â

m1−1v1, . . . , v`, . . . , Â
m`−1v`} generate a basis for RM . Unfortunately, the measurement

map K̃, being an abstract construction unrelated to the kernel, does not directly select X . We will
show how to use the measurement map to guide a search for X in Remark 2. For now, we state a
sufficient condition for observability of a general system.

Theorem 1. Suppose that the conditions in Proposition 4 hold, with the relaxation that the Jordan

blocks
[
Λ1 · · · ΛO

]
may have repeated eigenvalues. Let ` be the cyclic index of Â. Define

K = [K(1)T ··· K(`)T ]T (6.7)

as the `-shaded matrix which consists of ` shaded matrices with the property that any subset of `

columns in the matrix are linearly independent from each other. Then system (6.3) is observable if

Υ has distinct values, and |Υ| ≥M .

Proof. A cyclic index of ` for this system implies that there exists an eigenvalue λ that’s repeated
` times. We prove the theorem for repeated eigenvalues of dimension 1: the same statement can
be proven for repeated eigenvalues for Jordan blocks using the ideas in the proof of Proposition 4.
WLOG, let K have ` fully shaded, linearly independent rows, and, assume that the column indices

corresponding to this eigenvalue are {1, 2, . . . , `}. Define λi :=
[
λτ1i λτ2i · · ·λτLi

]T
. Then

OΥ :=


k11λ1 k12λ2 · · · k1MλM

...
... . . . ...

k`1λ1 k`2λ2 · · · k`MλM

 .
Let λ1 = λ2 = · · ·λ` := λ. Focusing on these first ` columns of this matrix, this implies that we
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Algorithm 5 Sampling locations set X
Input: Â = C, lower bound `
Decompose C to generate invariant subspacesHCj , j ∈ {1, 2, . . . , `} (see section 1.3.3)
for j = 1 to ` do

Obtain centers C(j) w.r.t subspaceHCj ,

Generate samples x(j)i to create a kernel matrix K(j) that is shaded only with respect to centers C(j)
end for
Output: Sampling locations set X = {x(1), x(2) · · · , x(l)}.

need to find constants c1, c2, . . . , c`−1 such that
k11

...
k`1

 = c1


k12

...
k`2

+ · · ·+ c`−1


k1`

...
k``

 .
However, these columns are linearly independent by assumption, and thus no such constants exist,
implying that OΥ is observable.

While Theorem 1 is a quite general result, the condition that any ` columns of K be linearly
independent is a very stringent condition. One scenario where this condition can be met with
minimal measurements is in the case when the feature map ψ̂(x) is generated by a dictionary of
atoms with the Gaussian RBF kernel evaluated at sampling locations {x1, . . . , xN} according to
(6.2), where xi ∈ Ω ⊂ Rd, and xi are sampled from a non-degenerate probability distribution on
Ω such as the uniform distribution. For a semi-deterministic approach, when the dynamics matrix
Â is block-diagonal, we can utilize a simple heuristic:

Remark 2. Let Ω be compact, C = {c1, . . . , cM}, ci ∈ Ω, and let the approximate feature map

be defined by (6.2). Consider the system (6.3) with Â = Λ, and let Υ = {0, 1, . . . ,M − 1}.
Then the measurement map K̃’s values lie in {0, 1}; in particular, each row K̃(j), j ∈ {1, . . . , `},
corresponds to a subspace HCj , generated by a subset of centers C(j) ⊂ C. Generate samples x(j)

i

to create a kernel matrix K(j) that is shaded only with respect to centers C(j). Once this is done,

move on to the next subspace HCj+1. When all ` rows of K̃ are accounted for, construct the matrix

K as in (6.7). Then the resulting system (K, Â) is observable.

This heuristic is formalized in Algorithm 5. Note that in practice, the matrix Â needs to be
inferred from measurements of the process fτ . If no assumptions are placed on Â, it’s clear that at
leastM sensors are required for the system identification phase. Future work will study the precise
conditions under which system identification is possible with less than M sensors.
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Figure 6.4: Overall description of how the kernel observer fits in the sensing framework. Physical
locations are mapped to data locations, over which historical data is collected as a time series.
Functional inference is performed over Ĥ to solve for Â. The measurement operator K is then
computed (see Figure 6.5), leading to sensor placement.

Compute cyclic index:
` = 2

ψ(c3)

ψ(c2)

ψ(c1)

Compute meas. map:
K̃ = [v1,v2]TP−1

1

2

Sensor loc. selection:
x1, x2 ∈Ω ⇒ K

Compute cyclic index:
` = 2

ψ(c3)

ψ(c2)

ψ(c1)

1
2

3

Random sampling:
x1,x2,x3 ∈Ω⇒ K

Figure 6.5: Diagram demonstrating sensor placement using the measurement map or random sam-
pling approaches. The circles represent data locations associated to bases (e.g. cj ⇔ ψ(cj)) and
the squares represent sensor locations (e.g. xi ⇔ ψ(xi)) . The cyclic index (` = 2) indicates how
many possible couplings of bases exist, which can be represented as a choice of

(
M
`

)
hyperplanes

in Ω. If the measurement map is computed (left), the correct couplings are chosen (green vs. blue),
and a smaller number of sensors (2) can be placed. Alternatively, random sampling (right) is more
computationally efficient, but generally requires more sensors (3).

6.1.3 Discussion of Theoretical Results

The systems-theoretic approach taken in this paper reveals something rather surprising: functions
with complex dynamics (with a small cyclic index) can be recovered with less sensor placements
than functions with simpler dynamics. Although seemingly counterintuitive, it becomes clear that
this is because complex dynamics, which are characterized by a lower geometric multiplicity of
the eigenvalues, ensure that the orbit Θ := {Âwτ}τ∈Υ traverses a greater portion of RM ≡ Ĥ and
thus that fewer sensors can recover more geometric information. On the other hand, in ‘simpler’
functional evolution, Θ evolves along strict subspaces of RM , and so more independent sensors
are required to infer the same amount of information.

In the case described in Remark 2, we have a set of centers C = {c1, . . . , cM}, which generate
the bases FC = {ψ(c1), · · · , ψ(cM)}. Let the cyclic index be `: this implies that there exist ` sub-
sets Ψ(i) of FC with at least one element ψ(cj) each, leading to

(
M
`

)
possible choices: Figure 6.5

represents these choices as hyperplanes separating the subsets. The measurement map described
in Alg. 4 induces this decomposition of bases FC = {Ψ(1), . . . ,Ψ(`)} in polynomial time. Further,
each subset Ψ(i) is directly associated to a subset of centers C(i) ⊂ C, which allows us to pick tar-
geted sensor locations xi ∈ Ω. In particular, for radially symmetric kernels such as the Gaussian,
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the centroid of the convex hull of C(i) is sufficient for generating a sensor placement. The mea-
surement map is a significant theoretical insight into sensor placement for dynamically changing
environments, because it directly takes into account the dynamics of the process. Of course, in
practice, this may be too expensive for approximate feature spaces with M very large, so one can
use random sampling to generate the sensor locations instead, at the cost of N being larger than `.
The advantage here though is that since random sampling is computationally inexpensive, different
choices of sensor placements can be generated and evaluated relatively quickly.

Another point to note is that since the collection of bases {ψ̂i(x)}Mi=1 determines the richness of
the function space Ĥ ≈ H we operate in, it determines the fidelity of the model approximation to
the true time-varying function. As a consequence, observability of the system in Ĥ refers to the
best possible approximation in Ĥ. The greater the number of bases, the higher the dimensionality,
which results in greater model fidelity, but which may require a much greater number of measure-
ments for state recovery. This is where the lower bounds presented in the paper are particularly
useful, because they show that for functional evolutions corresponding to certain Â, the number of

sensor placements are essentially independent of the dimensionality M , but depend rather on the
cyclic index of Â.

6.2 Random Sensor Placement

We now elaborate on how the challenging problem of sensor placement can be tackled through
random selection. This process of random selection is a product of the kernel observer model
described in the section 6.1. We present the theoretical background required to prove Theorem
2, which states the expected number of randomly placed sensors required to monitor a given spa-
tiotemporal process, and Theorem 3, which determines the probability with which optimal sensor
placement is ensured given that, N number of sensors have been placed.

As discussed earlier, we work with an approximate feature space Ĥ, with the corresponding
transition operator Â : Ĥ → Ĥ, representing finite-dimensional functional evolution. To achieve
observability for the pair (Â,K), row vectors of the corresponding observability matrix,O, should
form the basis for the RM -dimensional space Ĥ. According to the rational canonical structure
Theorem [34], Â can successively decompose the dual space RM into subspaces, Vi ⊂ V , i ∈
{1, . . . , `}, with properties, i) V = V1 ⊕ ... ⊕ V`, ii) ÂVi ⊂ Vi, and iii) Â|Vi, i ∈ {1, . . . , `},
are cyclic. The integer ` is unique and is called the cyclic index of Â. Each of these properties
contribute towards the theorem on the number of random samples required to achieve observability.
The first property shows that the space RM can be decomposed into ` independent subspaces. The
second property shows that the vector vi ∈ Vi stays in Vi even when operated upon by Â. Thus, to
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generate bases for RM , one needs at least ` vectors, say, v1, . . . , v`, with respect to each subspace
V1, . . . ,V`. This holds due to the third property, but requires that the vectors v1, . . . , v`, are the
cyclic generators of their corresponding subspaces. Our analysis is based on whether a randomly
selected sensor can generate a cyclic generator. To examine this, recall that a row vector K(i)

generated by a randomly selected sensor location xi takes the form,

K(i) =
[
k(xi, c1), . . . , k(xi, cM)

]
. (6.8)

Here, for radial kernels for example, the entries corresponding to the centers closer to xi tend to be
non-zero, whereas the others tend to be zero. The rows K(i) from random sensor placement must
be able to generate a basis for a subspace Vi, and thus must be cyclic generators. We will derive
the expected number of random sensor placements sufficient for observability for the case where
Â = Λ and then attempt to generalize the result for any Â. Note Λ is a block diagonal Jordan
form. In this case, the cyclic generator for each subspace Vi, is a vector vi with non-zero entries
corresponding to the leading entry of the Jordan blocks of Vi. An example of a subspace, and its
cyclic generator is,

V1 =


1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 2

 , v1 =


0

0

s

s′

 ,

where s, s′ are non-zero.
Overall, our construction is as follows: for each subspace Vi, let CVi ⊂ C be the centers corre-

sponding to those leading entry of Jordan blocks: then the minimum number of random samples
required to generate the bases for Vi is equal to the number of Jordan blocks comprising Vi. Al-
together, the minimum number of random samples required to generate a basis for RM is equal to
the total number of Jordan blocks in Â. Let ς be the total number of Jordan blocks in Â, then

ς =
∑

λ∈σ(Â)

γλ (6.9)

where σ(Â) represents the spectrum of Â, whose elements are the eigenvalues of Â, and γλ is the
geometric multiplicity corresponding to the eigenvalue λ, which is also equal to the total number
of Jordan blocks corresponding to the eigenvalue λ. Define a set of centers Cς with elements
{c1, c2, . . . , cς}, to be the centers corresponding to the leading entries of the Jordan blocks. For
sensor location x ∈ Ω, and ε > 0, let k(x, cj) > ε, denote the region Ωj ⊂ Ω, such that the kernel
evaluation with respect to center cj is greater than ε, that is Ωj ≡ {x ∈ Ω : k(x, cj) > ε}. We
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define pε as

pε = min
cj∈Cς

ν(k(x, cj) > ε)

ν(Ω)
, (6.10)

where ν is a measure in the real analysis sense. Hence, pε corresponds to a lower bound on the
probability that a random sample lies within the ε−shaded region of a particular center cj . With
all of this in place, we can prove the following theorem.

Theorem 2. Given the spatiotemporal function f(x, τ) with x ∈ Ω ⊆ RD, τ ∈ Z+ its kernel

observer model (6.3), and a tolerance parameter ε > 0, the expected number of randomly placed

sensor locations required to achieve observability for the pair (K, Â) is ς/pε where ς is the sum-

mation over geometric multiplicities of each λ ∈ σ(Â) given by Equation (6.9).

Proof. For each random sample, the probability that it lies within the ε−shaded region of a partic-
ular center cj ∈ Cς is at least pε. The series of random samples can be considered as Bernoulli trials
in which pε is the probability of a successful outcome. Note this is assuming worst case scenario
that the intersection between any two ε-shaded region of centers belonging to the set Cς is empty.
Observability for the pair (K, Â) is achieved after ς successful outcomes are obtained because each
success ensures a row vector with non-zero entry corresponding to the leading entry of the Jordan
block.

Let X1, X2, . . . , XN be i.i.d. random variables whose common distribution is the Bernoulli
distribution with parameter pε. The random variable X = X1 +X2 + · · ·+XN denotes the number
of success after N random samples. Since each Xi has the Bernoulli distribution, X will have
binomial distribution,

P (X = h) =

(
N

h

)
phε (1− pε)N−h,

in which h is the number of success. The expectation of the binomial distribution, that is the
expected number of success is Npε, and thus the expected number of trials required will be N =

ς/pε.

Theorem 3. Given the spatiotemporal function f(x, τ) with x ∈ Ω ⊆ RD, τ ∈ Z+, its kernel

observer model (6.3), a tolerance parameter ε > 0, summation over geometric multiplicities of

each λ ∈ σ(Â) denoted by ς as in Equation (6.9), and a constant δ ∈ (0, 1], the probability that

pair (K, Â) is unobservable after the selection of N random sensors is at most e
−1
2

(Npε−2ς), where

pε is given by Equation (6.10) and N ≥ ς/pε.

Proof. The random variable X from the proof of Theorem 1 has a binomial distribution, which
enables the application of a Chernoff-type bound on its tail probabilities. A well known result
on multiplicative Chernoff bound [110] is directly applied to establish this Theorem. If X is
binomially distributed, δ ∈ (0, 1], and µ = E[X], then P [X ≤ (1 − δ)µ] ≤ exp(−µδ2/2), in
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which we let δ = 1− ς
Npε

. The expression in the exponent can be simplified to−1
2
Npε + ς − ς2

2Npε
,

using µ = Npε. Note that e
−ς2

2Npε ≤ 1. This implies that,

exp(−µδ2/2) = e−
1
2

(Npε−2ς).e
−ς2

2Npε ≤ e−
1
2

(Npε−2ς)

Note, (1− δ)µ = ς , hence we obtain that P [X ≤ ς] ≤ e−
1
2

(Npε−2ς).

For the case when Â 6= Λ, a change of basis can be used to obtain Λ = P−1ÂP , where P is
the projection map. There are two challenges in performing the above analysis for Λ so obtained:
first, the leading entries of Jordan blocks do not directly correspond to the centers {c1, . . . , cM}
which was the case for Â = Λ. Second, although we can obtain the transformation of the row
vector (Equation (6.8)) using the projection map P , we can no longer arrive at the definition of the
probability pε as in Equation (6.10). The existence of the similarity transform hints that the results
in Theorems 2-3 should hold for any Â, but the mathematical tools utilized in the paper seem to
be insufficient to prove them. However, we present some empirical evidence for these claims for
when Â 6= Λ in Section 6.3.1.

6.3 Experimental Results

6.3.1 Sampling Locations for Synthetic Data Sets

The goal of this experiment is to investigate the dependency of the observability of system (6.3)
on the shaded observation matrix and the lower bound presented in Proposition 5. The domain
is fixed on the interval Ω = [0, 2π]. First, we pick sets of points C(ι) = {c1, . . . , cMι}, cj ∈ Ω,
M = 50, and construct a dynamics matrix A = Λ ∈ RM×M , with cyclic index 5. We pick the
RBF kernel k(x, y) = e−‖x−y‖

2/2σ2 , σ = 0.02. Generating samples X = {x1, . . . , xN}, xi ∈ Ω

randomly, we compute the `-shaded property and observability for this system. Figure 6.6a shows
how shadedness is a necessary condition for observability, validating Proposition 4: the slight gap
between shadedness and observability here can be explained due to numerical issues in computing
the rank of OΥ.

Next, we consider a system with a cyclic index ` = 18 to verify random sensor placement
results. We constructed the measurement operator K using the heuristic in Remark 2 (Algorithm
5), and random sensor selection to generate the sampling locations X . These results are presented
in Figure 6.6b. The plot for random sampling which has been averaged over 100 runs, resembles
a c.d.f function of an exponential distribution F (X = x) = 1 − exp(−λx). This verifies the
claim made in Theorem 3, as the probability of becoming unobservable decays exponentially with
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Algorithm 6 Kernel Observer (Transition Learning)
Input: Kernel k, basis centers C, final time step T .
while τ ≤ T do

1) Sample data {yiτ}Mi=1 from fτ .
2) Estimate ŵτ via standard kernel inference procedure.
3) Store weights ŵτ in matrixW ∈ RM×T .

end while
To infer Â, define matrix Φ =WTW . Then:
for i = 1 to M do

At step i, solve system

Â(i) =
(

(Φ + λI)
−1

(WTW(i))
)T

, (6.11)

where Â(i), andW(i) are the ith columns of Â andW(i) respectively.
end for
Compute the covariance matrix B̂C of the observed weightsW .
Output: estimated transition matrix Â, predictive covariance matrix B̂C .

Algorithm 7 Kernel Observer (Monitoring and Prediction)

Input: Kernel k, basis centers C, estimated system matrix Â, estimated covariance matrix B̂C .
Compute Observation Matrix: Compute the cyclic index ` of Â, and compute K.
Initialize Observer: Use Â, B̂C , and K to initialize a state-observer (e.g. Kalman filter (KF)) on Ĥ.
while measurements available do

1) Sample data {yiτ}Ni=1 from fτ .
2) Propagate KF estimate ŵτ forward to time τ + 1, correct using measurement feedback with {yiτ+1}Ni=1.
3) Output predicted function f̂τ+1 of KF.

end while

the number of sensor placed. Also, fitting an exponential distribution we found that the mean λ−1

comes close to the ratio ς/p, which is the expected number of randomly placed sensors required for
observability as per Theorem 2. Note that observability is not achieved if the number of samples
N < ` verifying the result in Proposition 5.

6.3.2 Comparison With Nonstationary Kernel Methods on Real-World Data

We use three real-world datasets to evaluate and compare the kernel observer with the two different
lines of approach for non-stationary kernels discussed in Section 2.2. For the Process Convolution
with Local Smoothing Kernel (PCLSK) and Latent Extension of Input Space (LEIS) approaches,
we compare with NOSTILL-GP [25] and [111] respectively, on the Intel Berkeley, Irish Wind and
Ozone data-sets.

Model inference for the kernel observer involved three steps: 1) picking the Gaussian RBF
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kernel k(x, y) = e−‖x−y‖
2/2σ2 , a search for the ideal σ is performed for a sparse Gaussian Process

model (with a fixed basis vector set C selected using the method in [112]. For the data set discussed
in this section, the number of basis vectors were equal to the number of sensing locations in the
training set, with the domain for input set defined over R2; 2) having obtained σ, Gaussian process
inference is used to generate weight vectors for each time-step in the training set, resulting in the
sequence wτ , τ ∈ {1, . . . , T}; 3) matrix least-squares is applied to this sequence to infer Â. This
process is described in Algorithm 6. For prediction in the autonomous setup, Â is used to propagate
the state wτ forward to make predictions with no feedback, and in the observer setup, a Kalman
filter (see Algorithm 7) with N determined using Proposition 5, and locations picked randomly, is
used to propagate wτ forward to make predictions. We also compare with a baseline GP (denoted
by ‘original GP’), which is the sparse GP model trained using all of the available data.

Our first dataset, the Intel Berkeley research lab temperature data, consists of 50 wireless temper-
ature sensors in indoor laboratory region spanning 40.5 meters in length and 31 meters in width3.
Training data consists of temperature data on March 6th 2004 at intervals of 20 minutes (beginning
00:20 hrs) which totals to 72 timesteps. Testing is performed over another 72 timesteps beginning
12:20 hrs of the same day. Out of 50 locations, we uniformly selected 25 locations each for training
and testing purposes. Results of the prediction error are shown in box-plot form in Figure 6.7a and
as a time-series in Figure 6.7b, note that ‘Auto’ refers to autonomous set up. Here, the cyclic index
of Â was determined to be 2, so N was set to 2 for the kernel observer with feedback. Note that
here, even the autonomous kernel observer outperforms PCLSK and LEIS overall, and the kernel
observer with feedback with N = 2 significantly outperforms all other methods, which is why we
did not include results with N > 2.

The second dataset is the Irish wind dataset, consisting of daily average wind speed data col-
lected from year 1961 to 1978 at 12 meteorological stations in the Republic of Ireland4. The
prediction error is in box-plot form in Figure 6.8a and as a time-series in Figure 6.8b. Again, the
cyclic index of Â was determined to be 2. In this case, the autonomous kernel observer’s perfor-
mance is comparable to PCLSK and LEIS, while the kernel observer with feedback with N = 2

again outperforms all other methods.
Finally, the Ozone dataset measures ozone concentration (in parts per billion) measured at 60

stations by the United States Environmental Protection Agency [113] across USA. Due to missing
measurements, we only selected data from year 1997 to 2013 for training and evaluation. For each
station, we averaged ozone concentration over a period of three months, resulting in four quarters
per year. Out of 60 sensor locations, we uniformly selected 30 for training and the remaining
locations for testing purposes. The prediction error results are presented in box-plot form in Figure

3http://db.csail.mit.edu/labdata/labdata.html
4http://lib.stat.cmu.edu/datasets/wind.desc
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6.9a and as a time-series in Figure 6.9b. Here, the cyclic index of Â was determined to be 1. In
this case, the performance of autonomous kernel observer is comparable to PCLSK and LEIS, with
kernel observer with feedback with N = 1 performing the best. Table 6.1 reports the total training
and prediction times associated with PCLSK, LEIS, and the kernel observer. We observed that, 1)
the kernel observer is an order of magnitude faster than the competing methods, and 2) even for
small sets, competing methods did not scale well.

Table 6.1: Total training and prediction times for Figs. 6.7 and 6.9

Intel Irish Ozone
Berkeley Wind

Data Size 25-72 12-36 30-68
(bases-timesteps)
Kernel Observer 2.1 sec 0.1 sec 1.61 sec

PCLSK 121.4 sec 7.0 sec 91.90 sec
LEIS 43.8 sec 2.8 sec 37.41 sec
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Figure 6.6: Kernel observability results

6.3.3 Prediction of Global Ocean Surface Temperature

We analyzed the feasibility of our approach on a very large dataset from the National Oceano-
graphic Data Center: the 4 km AVHRR Pathfinder project, which is a satellite monitoring global
ocean surface temperature. Figures 6.10a and 6.10b show an example of the raw data from the
satellite and GP estimate (using 400,000 training points) respectively, for a specific date (01/02/2012)
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Figure 6.7: Comparison of kernel observer to PCLSK and LEIS methods on Intel Berkeley dataset.
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Figure 6.8: Comparison of kernel observer to PCLSK and LEIS methods on Intel Berkeley dataset.

for day temperatures. This dataset is challenging, with measurements at over 37 million possible
coordinates, but with only around 3-4 million measurements available per day, leading to a lot
of missing data. The goal was to learn the day and night temperature models on data from the
year 2011, and then to monitor thereafter for 2012. Success in monitoring would demonstrate two
things: 1) the modeling process can capture spatiotemporal trends that generalize across years, and
2) the observer framework allows us to infer the state using a number of measurements that are an
order of magnitude fewer than available. Note that due to the size of the dataset and the high com-
putational requirements of the nonstationary kernel methods, a comparison with them was not pur-
sued. To build the autonomous kernel observer and general kernel observer models, we followed
the same procedure outlined in Section 6.3.2, but with C = {c1, . . . , cM}, cj ∈ R2, |C| = 300.
The Kalman filter for the general kernel observer model used N ∈ {250, 500, 1000} at random
locations to track the system state given a random initial condition w0. As a fair baseline, the ob-
servers are compared to training a sparse GP model (labeled ‘original’) on approximately 400, 000
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Figure 6.9: Comparison of kernel observer to PCLSK and LEIS methods on Intel Berkeley dataset.

measurements per day. Figures 6.11a and 6.11b compare the autonomous and feedback approach
with 1, 000 samples to the baseline GP; here, it can be seen that the autonomous does well in the
beginning, but then incurs an unacceptable amount of error when the time series goes into 2012,
i.e. where the model has not seen any training data, whereas FKO does well throughout. Figures
6.11c and 6.11d show a comparison of the RMS error of estimated values from the real data. This
figure shows the trend of the observer getting better and better state estimates as a function of the
number of sensing locations N 5. Time required for kernel observer is much lesser than retraining
the model every time step, see figure 6.11e.

Weather Anomaly in 2012: We further investigated the poor performance of autonomous ker-
nel observer in the year 2012 as observed in Figures 6.11a and 6.11b. Clearly, the error in predic-
tion blows up at the start of May in the year 2012. Indicating that the autonomous model trained
using the data of the year 2011 does well in capturing the annual weather dynamics up to the month
of May 2012. We turned our attention towards the weather in May 2012, as changes in ocean tem-
peratures are directly related to the weather. Surprisingly, severe weather onset was reported on
the east coast of United States in May 2012, and this anomaly continued over the period of May to
June 2012. Thus, the apparent poor performance of autonomous kernel observer can actually be a
useful indicator in detecting the anomalous behavior, as was the case with the ocean temperature
in May 2012 which had deviated from the nominal weather dynamics observed in the year 2011 in
which no severe weather anomalies were reported. We took a step ahead and identified the loca-
tions at which the prediction error was two standard deviations above the mean error. These error
locations are plotted in Figure 6.12. Error locations during 6-7th May correlate with the severe
weather onset and that of 28-29th May were along the track of storm Beryl.

5Note that we checked the performance of training a GP with only 1, 000 samples as a control, but the average
error was about 10 Kelvins, i.e. much worse than FKO.
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Figure 6.10: Pathfinder satellite temperature values, 01/02/2012. Blue values indicate missing
data.

6.3.4 Control of a linear PDE

We then employed kernel controllers for controlling an approximation to the scalar diffusion equa-
tion ut = buxx on the domain Ω = [0, 1], with b = 0.25. The solution to this equation is infinite-
dimensional, so we chose a kernel k(x, y) = e−(‖x−y‖2/2σ2), and a set of atoms FC = {c1, . . . , cM},
ci ∈ Ω, with M = 25 generating HC , the space approximating H, and another set of atoms
FD = {ψ(d1), . . . , ψ(d`′)}, dj ∈ Ω, `′ = 13, generating the control space H̃. The number of, and
the location of the observations was chosen to be the same as that of the actuation locations dj .
First, tests (not reported here) were conducted to ensure that the solution to the diffusion equation
is well approximated in HC . Matrix least-squares was used to infer Â. Figure 6.13a shows an ex-
ample of an initial function finit evolving according to the PDE. A reference function fref ∈ HC was
chosen to drive finit to fref under the action of the PDE. Finally, Algorithm 8 was used to control
the PDE, driving finit to fref; Figure 6.13b shows the absolute value of the error between fk and fref

as a function of time.
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Figure 6.11: Performance of the kernel observer over AVVHR satellite 2012 data with different
numbers of observation locations.
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(a) 6th May (b) 7th May (c) 28th May (d) 29th May

Figure 6.12: Locations of weather anomaly obtained based on the error between the acutual tem-
perature and the prediction of autonomous kernel observer. Landmass is shown in white and the
ocean is in green. Locations marked have error greater than two standard deviations above the
mean error.

Algorithm 8 Kernel Controller

Input: Kernel k, basis points C, estimated system matrix Â, estimated covariance matrix B̂C , and function fref to
drive initial function to.
Initialize Observer: (see Algorithm 7).
Initialize Controller: Use Jordan decomposition of Â to obtain no. of control locations D, compute kernel matrix
KCD ∈ R`′×M between D and C, and initialize controller (e.g. LQR) utilizing (Â, B̂C).
while measurements available do

1) Sample data {yik}Ni=1 from f(x, τ).
2) Utilize observer to estimate ŵτ+1.
3) Use ŵτ+1 and fref as input to controller to get feedback.

end while
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Figure 6.13: Demonstration of the control of a linear diffusion equation.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This thesis has developed enabling algorithms for learning, inference, and control for two chal-
lenging problem settings: i) Construction robots, and ii) Complex spatiotemporal processes. As a
solution, this thesis has presented several contributions, these are elaborated as follows.

In Chapter 3, learning of instructional policy model from expert task demonstration has been
presented. This policy model enables robots to generate instructions for assisting, and training
novice operators in the execution of complex construction tasks. We have introduced action primi-
tives that addresses the problem of mapping observed continuous state action trajectories to human
parse-able instructions. Contributions in this chapter included:

• Efficient and meaningful segmentation of demonstration trajectories using action primitives.
Existing state of the art methods rely on sampling based inference and are hence inefficient.
The generated segments are meaningful as they directly translate to human operator’s action
space, which is not the case for any of the existing methods.

• Learning policy from state-action primitive pairs (s, r), instead of state-action pairs (s, a)
improves scalability. We have shown that the number of (s, r) pairs are at least an order of
magnitude less than the number of (s, a) pairs.

• Structured probabilistic policy model approach for learning policy for complex construction
tasks that are comprised of several subtasks. Whereas the existing methods rely on heuristics
or hand-coded approach to model transition between subtasks.

• Exhaustive experiments to test instructional policy involving 113 human participants as
novice operators were conducted. Our experiments demonstrate statistically significant im-
provement in the learning rate and retention of skills by the novice operators.

In Chapter 4, we proposed a likelihood rate based estimation technique to capture non-stationarity
in Markov sequences to allow accurate state inference. This approach is further utilized to infer
switch between different construction tasks. Contributions of this method are:

• Proposed Layered Non-stationary Markov Model (LNMM), as a generative model for non-
stationary Markov chains.
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• Likelihood rate approach estimates multiple transition models that are generating the obser-
vations. This allows quick inference of the current transition model in comparison to the
existing methods that slowly converge to the current model.

• Experiments on synthetic and honey bee dance data-set show that the inference using LNMM
is two times more accurate than the existing unsupervised learning methods while being
computationally efficient.

• Our experiments demonstrate that the likelihood rate based estimation successfully infers
switch between different construction tasks.

In Chapter 5, a continuous shared control design has been proposed that retains the benefits of
shared control while ensuring safety in off-nomial situations. Contributions of this chapter are:

• Proposed intent aware shared control that takes into account the operator’s intent and quickly
relinquishes control to the operator in off-nominal conditions.

• Human experiments on the Zermelo’s navigation problem with pop-up obstacles demon-
strated significantly better performance in terms of safety and efficiency over existing blended
shared control technique.

In Chapter 6, Kernel Observer, a systems theoretic approach for modeling and inference of
spatiotemporally varying processes has been presented. Contributions of this chapter included:

• Modeled spatiotemporal functional evolution using stationary kernels with a linear dynami-
cal systems layer on their mixing weights.

• Harnessed kernel observer model to determine sensing locations with the guarantee that
the hidden states of functional evolution can be estimated using a Bayesian state-estimator
(Kalman filter) with very few measurements.

• Sufficient conditions on the number and location of required sensor measurements. Non-
conservative lower bounds on the minimum number of sensing locations were derived.

• Theoretical results on random sensor placement that establish i) the expected number of
randomly placed sensors required to monitor a given spatiotemporal process, and ii) the
probability with which optimal sensor placement is ensured given the number of randomly
placed sensors.
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7.1 Future Work

In continuation of the contributions made in this thesis, there are several extensions which could
serve as future work. These include, i) Utilization of the structure of the proposed policy model to
learn policy for real world construction tasks, ii) Learning policy from multiple experts, iii) Policy
improvement through reward feedback, and iv) Shared control for an excavator.

7.1.1 Policy Model for Real World Construction Tasks

Work done in this thesis provides a baseline for further development in the policy model to realize
its utilization for a real world construction task. The proposed approach of designing policy model
as a dynamical Bayesian network provides the flexibility to restructure the policy model to capture
the dependence between additional variables and actuator velocities.

For a real world task it is crucial to account for robot’s interaction with different types of ma-
terial. Since the dynamics of excavation might differ based on the material being removed. For
example, excavation can encounter hard rocks, loose gravels, sand, soft sedimentary deposits or
wet soil, with different set of task dynamics in each case. Interactions w.r.t different types of mate-
rials can be captured through the forces acting on the end-effector as well as by recording pressures
in the hydraulic actuators. Designing a suitable Bayesian network is required to capture the de-
pendence of these additional variables onto the actuator velocities, ultimately to learn a policy for
such real world construction scenarios.

Further, the subgoal learning aspect of the policy model provides an additional flexibility to
capture different types of manipulations performed using an excavator. In this thesis, all subgoals
were modeled using a multivariate Gaussian distribution which captured the nature of manipulation
w.r.t the sand and w.r.t the truck. However, to capture the digging operation it would be required to
utilize a distribution that outputs higher depths for digging as the operation proceeds, skewed Beta
distribution could be a solution. Similarly, different distribution can be utilized to capture different
manipulations w.r.t the manipulated task objects. The proposed probabilistic structure of the policy
model has enormous potential to incorporate additional variables and learn a suitable policy model
required for real world construction tasks.

7.1.2 Learning from Multiple Experts

While much of the thesis has focused on learning policy model from a single demonstrator, a
framework can be developed to identify multiple demonstrators from a set of observed trajectories,
and then selectively learn policy from an optimal demonstrator. In this scenario, it is likely that in-
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dividual demonstrators will perform the same overall tasks but do so in potentially different ways.
The policy learning framework would then need the ability to not only learn the overall tasks, but
differentiate between demonstrators within those tasks. This could be accomplished by evaluat-
ing divergence between the distributions learned from different demonstration trajectories. For
each demonstration trajectory we obtain distributions for action primitives as well as the subgoals.
Thus, KL divergence or any other information-theoretic divergence measure can then be utilized to
evaluate the number of different demonstrators. The learned measure would also provide insight
into the commonalities and differences between different demonstrators solving the same task.

7.1.3 Policy Update

Beyond the work of learning policy models for each task, policy search can be applied to further
improve a robot’s performance through practice. This process involves updating policy model pa-
rameters based on the reward feedback obtained from task execution. For example, in case of truck
loading reward can be formulated as a function of cycle time, and quantity of sand moved. Based
on this reward function, policy parameters can be updated using policy gradient or expectation
maximization techniques. These techniques work on the principle of policy search through pa-
rameter perturbation, followed by reward evaluation and policy update. With regards to parameter
perturbation, the policy model developed has the advantage of guided search around the action
primitive and subgoal parameters defined by the corresponding Gaussian distribution parameters.

7.1.4 Shared Control for Excavator Robot

Another key benefit of the policy model is to utilize its prediction to share control with the oper-
ator. Benefits of shared control are well established, and our work on intent aware shared control
incorporates safety in shared control design. Another follow up work is to implement intent aware
shared control on an actual excavator.

As discussed earlier, continuous shared control explores a form of arbitration between user input
(uo) and automatic controller prediction (ũ), to obtain control input u as

u = (1− α)uo + αũ

where α = 0 results in full manual control and α = 1 in fully autonomous control. Beginning
from preset values for α, the literature has recently focused on using linear policy blending i.e. the
value of α varying linearly between 0 and 1. Till date, literature has mostly been concerned with
providing assistance or taking over control i.e. α → 1. These includes cases: i) where robot’s
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Figure 7.1: An example optimal trajectory in cylindrical coordinate system, with an unforeseen
obstacle along the trajectory.

prediction and user’s input are in agreement, ii) Task being difficult for humans to execute, iii)
When user inputs are violating constraints or can potentially harm the system. However, the case
when human operator should take over the control from the automatic controller has not received
much attention. Such an action is required if the autonomous control input becomes undesirable
due to the presence of unforeseen situations such as an obstacle, we define this earlier as off-
nominal situations.

The intent aware shared control (IASC) proposed in section 5.3 ensures that the control is relin-
quished to the operator (α → 0) in off-nominal situations. This design quantifies human intent to
derive the value of α, and uses exponential function to switch between the two extremes. In this
thesis, IASC was implemented on a single control input Zermelo’s navigation problem. Results
in section 5.5.1 demonstrated that this design performed as good as the existing methods while
achieving the objective of relinquishing control in off-nominal situations.

The end goal of IASC design is to ensure safety while implementing shared control for real
world robots such as an excavator. Benefits of shared control for an excavator robot has been
demonstrated through simulations by Enes and Book [103] and recently through experiments by
Mitch et al. [114]. Reduction in cycle time is the main advantage, but we claim reduction in
operator fatigue as another advantage for long hours of operation. However, these shared control
designs do not guarantee safety in off-nominal situations as was evident in the case of Zermelo’s
navigation. Thus, we propose to develop IASC design for excavator robot a constrained multi-input
system, to gain the benefits of shared control while ensuring safety. Next, we outline a formulation
that will be tested on the scaled excavator robot.

As a first step for IASC, we will quantify operator’s intent for motion along a trajectory. Con-
sider a trajectory in cylindrical coordinate system augmented with a dimension that defines bucket
motion as shown in Figure 7.1. In this representation, to a large extent, there is one to one relation
between each actuator and a d.o.f: arm controls radius (r), boom controls the height (h), turret ro-
tation control the angle (θ), and bucket actuator controls the bucket motion (b). Let q̃ be the desired
optimal end-effector postion along the trajectory, and qo be the one commanded by the operator,
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then the intent (γ̇) can be evaluated as

γ̇ = max
i

d

dt
(|qoi − q̃i|) (7.1)

with the arbitration α evaluated as

α =


α0(1− e−t/τ ) γ̇ < −η

α0e
−t/τ γ̇ > η

αprev |γ̇| < η

(7.2)

where α0 is the max value, αprev stands for the current value of α. Thus, if the operator devi-
ates from the optimal trajectory along any dimension such that γ̇ > η, then the control will be
relinquished to the operator. Finally, the control input incorporating the constraint of maximum
hydraulic flow Q will be

u = uo − α(uo − ũ) (7.3)

subject to
∑n

i=1Aiui ≤ Q (7.4)

where u, uo, ũ ∈ Rn, with n being the number of actuators, and Ai is the area of piston head or rod
end of the hydraulic piston cylinder actuator.
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linear dimension reduction. In Proceedings of the twenty-first international conference on
Machine learning, page 56. ACM, 2004.

[59] Kevin R Dixon and Pradeep K Khosla. Trajectory representation using sequenced linear
dynamical systems. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on, volume 4, pages 3925–3930. IEEE, 2004.

[60] Michael Gienger, Manuel Mühlig, and Jochen J Steil. Imitating object movement skills with
robotsa task-level approach exploiting generalization and invariance. In Intelligent Robots
and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 1262–1269. IEEE,
2010.

[61] Emily B Fox, Erik B Sudderth, Michael I Jordan, and Alan S Willsky. Joint modeling of
multiple related time series via the beta process. arXiv preprint arXiv:1111.4226, 2011.

[62] Nadia Figueroa and Aude Billard. Learning complex manipulation tasks from heteroge-
neous and unstructured demonstrations. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), Vancouver, BC, Canada, 2017.

[63] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In AAAI, pages 1433–1438, 2008.

[64] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learn-
ing. In Proceedings of the twenty-first international conference on Machine learning, page 1.
ACM, 2004.

[65] Bernard Michini, Thomas J Walsh, Ali-Akbar Agha-Mohammadi, and Jonathan P How.
Bayesian nonparametric reward learning from demonstration. IEEE Transactions on
Robotics, 31(2):369–386, 2015.

[66] T. J. Nokes, C. D. Schunn, and Michelene T. H. Chi. Problem solving and human expertise.
In Penelope Peterson, Eva Baker, and Barry McGaw, editors, International Encyclopedia of
Education, volume 5, pages 265–272. Elsevier, Oxford, 5 edition, 2010.

117
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[70] Gergely Neu and Csaba Szepesvári. Apprenticeship learning using inverse reinforcement
learning and gradient methods. arXiv preprint arXiv:1206.5264, 2012.

[71] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. Urbana,
51(61801):1–4, 2007.

[72] Bernard Michini, Mark Cutler, and Jonathan P How. Scalable reward learning from demon-
stration. In Robotics and Automation (ICRA), 2013 IEEE International Conference on,
pages 303–308. IEEE, 2013.

[73] Pravesh Ranchod, Benjamin Rosman, and George Konidaris. Nonparametric bayesian re-
ward segmentation for skill discovery using inverse reinforcement learning. In Intelligent
Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on, pages 471–477.
IEEE, 2015.

[74] Brian Kulis and Michael I Jordan. Revisiting k-means: New algorithms via bayesian non-
parametrics. In Proceedings of the 29th International Conference on Machine Learning
(ICML-12), pages 513–520, 2012.

[75] Christopher K Wikle. A kernel-based spectral approach for spatio-temporal dynamic mod-
els. In Proceedings of the 1st Spanish Workshop on Spatio-Temporal Modelling of Environ-
mental Processes (METMA), pages 167–180, 2001.

[76] Christopher K Wikle. A kernel-based spectral model for non-gaussian spatio-temporal pro-
cesses. Statistical Modelling, 2(4):299–314, 2002.
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