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ABSTRACT 

Spatial decision support systems have made extensive progress on taking advantage of 

geographic information science and systems (GIS) for the synthesis of geospatial data and analysis, 

domain-specific knowledge and models, and advanced computing technologies. However, a major 

challenge revolving around the synthesis remains to systematically quantify uncertainties of 

complex data, models, and computation. For example, the state of the art of supply chain 

optimization does not adequately address uncertainty in the context of spatial decision support. 

This challenge is caused in part by the computational intensity of uncertainty quantification and 

propagation through optimization models. 

This research aims to establish a novel cyberGIS framework for resolving the computational 

intensity to incorporate uncertainty quantification into spatial decision support. Specifically, the 

cyberGIS framework seamlessly integrates uncertainty quantification and supply chain 

optimization modeling into a CyberGIS Gateway application that represents a cutting-edge online 

cyberGIS environment for users to perform interactive spatial decision-making enabled by 

advanced cyberinfrastructure. Furthermore, an innovative method combining Bayesian 

hierarchical modeling with stochastic programming is proposed to explicitly account for 

spatiotemporal uncertainties in supply chain optimization. The cyberGIS framework and related 

method are evaluated based on a case study of the biomass-to-bioenergy supply chain optimization 

at the county level in the United States to resolve the synthesis challenge in multiple spatial 

decision support scenarios.  

Keywords: spatial decision support, cyberGIS, uncertainty and sensitivity analysis, supply 

chain optimization, spatiotemporal data analysis  

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504730
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504730
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CHAPTER 1  

INTRODUCTION AND BACKGROUND 

1.1 MOTIVATION 

Spatial decision-making is often influenced by complex geographic contexts, and has made 

extensive progress on leveraging geographic information science and systems (GIS) through the 

synthesis of geospatial data and analysis, domain-specific knowledge and models, and advanced 

information and computing technologies (Densham 1991; Jankowski et al. 1997; Leung 2012). 

During the synthesis, uncertainties from data, models, and computation are inevitably introduced. 

There is an increasing need for taking into account uncertainty in spatial decision support. Yet, 

most spatial decision support tools and systems are developed without paying much attention to 

data uncertainty (Fisher 1999; Shi et al. 2003; Shi 2009) and their propagation through spatial 

models (Heuvelink et al. 1989; Aerts et al. 2003). A major focus of this thesis research is therefore 

to establish innovative spatial decision-support capabilities for identifying, quantifying, and 

representing such uncertainty. 

Various sources of uncertainty exist in spatial data, models, and their interactions during spatial 

decision-making processes (Ascough et al. 2008; Uusitalo et al. 2015). Given the limited 

knowledge of future outcomes, spatial decision making often requires data from predictive models 

(e.g., statistical models, simulation models) to be integrated with decision models. However, such 

data (e.g., weather, agricultural yields, movement of people) representing complex and dynamic 

spatiotemporal process are subject to uncertainty, which often require statistical analysis such as 

hierarchical models to quantify. Uncertainty also exists in the formulation of spatial decision 

models. Many spatial decision-making problems are formulated as optimization models and solved 

by either exact or heuristics methods. For example, spatial optimization models have been 
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established to support decision making in land use allocation (Ligmann‐Zielinska et al. 2008), 

emergency response (Church and Cova 2000), facility location and supply chain management 

(Melo et al. 2009; Lin et al. 2013). Some of the models are developed with consideration of 

stochastic features while others are purely deterministic. As uncertainties are involved in spatial 

optimization, deterministic models should be replaced by more effective approaches such as 

stochastic programming (Birge 2011) and robust optimization (Ben-Tal et al. 2009) to better 

represent the problems. Furthermore, when a various source of data uncertainty are interacting 

with spatial decision support models, uncertainty will propagate and eventually complicate the 

decision making process. 

Developing a spatial decision support system with uncertainty quantification brings new 

requirements in data analytics, model development, and computation. As one of the major 

challenges, uncertainty quantification for complex spatial models often requires computationally 

intensive model simulations such as uncertainty and sensitivity analyses (Saltelli et al. 1999; 

Lilburne and Tarantola 2009). Moreover, when model-driven approaches such as stochastic 

programming based spatial optimization are developed to handle data uncertainty in spatial 

decision support, the spatiotemporal perspective of the uncertainty is not well addressed. Thus, 

spatiotemporal data analytics need to be involved as a major part of spatial decision support. 

CyberGIS, defined as GIS based on advanced computing and cyberinfrastructure (Wang 2010; 

Wang 2013), provides a desirable framework to address the new requirements in spatial decision 

support systems by seamlessly integrating a highly interactive online GIS user environment, 

friendly cyberinfrastructure access, and data and computing intensive spatiotemporal analytic 

methods. Therefore, cyberGIS becomes a fundamental basis for this study to build on.  
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1.2 RESEARCH QUESTIONS 

The primary objective of this PhD thesis research is to develop an uncertainty-aware spatial 

decision support framework for supply chain optimization. The cyberGIS framework and related 

method are evaluated based on a case study of biomass-to-bioenergy supply chain optimization at 

the county level in the US to resolve the synthesis challenge in multiple spatial decision support 

scenarios. In addition, spatiotemporal analysis of agricultural yield will be discussed and integrated 

into an existing biomass-to-bioenergy supply chain optimization problem. Through the 

development of this thesis, I hope to address the following research questions: 

1. How does cyberGIS enable complex spatial decision making in the application of supply 

chain optimization, particularly in the case of biomass feedstock provision? 

2. How does cyberGIS-enabled decision support systems make uncertainty and sensitivity 

analysis computationally efficient on large scale supply chain optimization problem and 

enable new discoveries? 

3. How to develop an innovative method to optimize supply chain by accounting for 

spatiotemporal explicit uncertainties? 

To better address the above research questions, this research is designed to achieve the following 

research objectives: 

1. Design and develop a cyberGIS-enabled spatial decision support system – CyberGIS-

BioScope – to facilitate strategic planning on large-scale biomass-to-bioenergy supply 

chain at county level in the US with multiple spatial decision support scenarios; 

2. Investigate methodologies in uncertainty and sensitivity analysis, and leverage the 

developed cyberGIS-enabled spatial decision support system to efficiently understand the 
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propagation of uncertainty from model inputs to outputs and the corresponding sensitivity 

estimation; 

3. Develop a Bayesian statistical model to quantify spatiotemporal uncertainty in the supply 

side and integrate the results with a stochastic programming based supply chain 

optimization problem. 

 

 

Figure 1.1: The integration diagram of this study 

This research will establish a novel cyberGIS framework for resolving supply chain optimization 

with uncertainty quantification. The new architectural design of the proposed cyberGIS framework 

will provide guidelines for a new generation of spatial decision support systems which integrate 

capabilities of manipulating spatial data, enhancing result visualization and sharing, quantification 

of uncertainties and their propagations, as well as making complex decision models and advanced 
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computing resources easily accessible for decision makers. Furthermore, the theoretic contribution 

of considering spatiotemporal data uncertainty in stochastic programming will shed light on supply 

chain optimization problems that involve uncertainty, which moves beyond conventional 

simulation approach to uncertainty propagation. Although case studies are illustrated using 

examples in crop yield analysis and biomass-to-bioenergy supply chain management, the 

methodological framework is expected to have far-reaching effects beyond the domain of case 

studies. 

 

1.3 BACKGROUND 

1.3.1 Spatial Decision Problems and Models 

Spatial decision making can be roughly defined as a specific type of decision making in which 

the decision implies the selection among several potential actions or alternatives that are associated 

with the geographic context, i.e., locations in space (Chakhar and Mousseau 2003). From 

individuals to organizations, people make spatial decisions such as routing vehicles, selecting a 

neighborhood to live in, choosing land development strategy, locating facilities and allocating 

resources, and managing infrastructure. Spatial decision problems are of great interest to 

researchers from diverse disciplines (e.g., agriculture engineers, economists, planners, ecologists, 

politicians, etc.) and different paradigms and modeling approaches have been established in each 

domain to solve real-world problems. 

A large number of real-world spatial decision problems are abstract and structured as models 

using statistical methods, mathematical models, heuristic procedures, algorithms, and so on. 

Depending on the quantity and the type of available information, these problems can be classified 

into deterministic problems, stochastic problems and fuzzy problems (Pipkin 1991; Munda 2012; 
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Malczewski 1999), which are based on perfect, probabilistic and imprecise information 

respectively. As various spatial decision models are under active development, representing spatial 

decision problems and models to analysts and decision makers is not an easy process. It requires a 

user-friendly and flexible environment to be developed based on the integration of cartographic 

visualization tools, spatial query tools, collaborative decision making capabilities, as well as 

analytical models. This single user-centric environment is often known as spatial decision support 

system. 

 

1.3.2 Spatial Decision Support Systems and CyberGIS 

Compared with traditional decision support systems, spatial decision support systems (SDSS) 

set new requirements for accessing, querying and displaying various types of geographic data over 

multiple scales, and engaging users with interactive visual analytics (Chakhar and Mousseau 2003). 

Geographic information system (GIS), with its ability to create, manipulate, analyze, store and 

display various types of geographic information, has been widely incorporated into spatial 

decision-making since computer-based mapping technologies became powerful decision-making 

tools (Longley et al. 2005; Gewin, 2004). Taking advantage of spatial data management 

functionalities in GIS, spatial decision support systems (SDSSs) integrate various spatial decision 

support models, databases and assessment tools under a graphical user interface to support 

decision-makers with management actions (Matthies et al. 2007). Most existing SDSSs are 

primarily designed and developed based on single desktop or server mode, which limits the 

capabilities of handling massive and various geographic data, solving computationally intensive 

decision support models, and allowing collaborative decision making. 
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CyberGIS, denoted as cyberinfrastructure-based GIS, has emerged as a new generation of GIS 

harnessing advanced cyberinfrastructure resources, i.e., heterogeneous parallel and distributed 

computational resources, for solving computationally intensive and collaborative geospatial 

problems (Wang and Liu 2009; Wang 2010; Wang et al. 2013). Cyberinfrastructure is capable of 

providing huge computational powers, but it has not been developed to be used by researchers to 

solve their domain-specific problems in an easy manner. CyberGIS bridges this gap by connecting 

cyberinfrastructure to GIS and related spatial analysis and modeling (Wang and Liu 2009). 

Leveraging the capabilities of cyberGIS, the first part of this research will present a technological 

framework of implementing a cyberGIS-enabled SDSS where spatial data, service, visualization 

and computing resources are integrated to provide decision-makers with interactive and responsive 

decision-making experience. Challenges in handling spatial data and tools interoperability, 

computational complexity and user interactivity during the cyberGIS integration process will be 

discussed with technical details. 

 

1.3.3 Spatial Optimization and Supply Chain Modeling 

Spatial optimization has long been an important subdomain in the discipline of geography 

(Church 2001; Xiao 2009; Church and Murray 2009; Tong and Murray 2012). In the fields of 

transportation, location modeling, medical geography, land use planning, political geography and 

others, spatial optimization has been widely studied by researchers from within and outside the 

GIScience domains. Compared with general optimization problems in operations research, spatial 

optimization relies on optimization techniques to structure and solve problems where spatial 

context is crucial (Tong and Murray 2012). Supply chain optimization is among the categories of 

spatial optimization problems, with the goal to ensure the optimal operation of product 
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manufacturing and distribution by minimizing operating costs or maximizing production profits 

(Shapiro 2006). In supply chain optimization modeling, many decision variables and constraints 

are represented with spatial context (e.g., the location of facilities, transportation road network). 

Supply chain modeling has been widely applied to solve different kinds of business. 

In this study, I would like to focus on two major challenges in the current and future development 

of supply chain modeling. The first one is the demand for web-based supply chain management 

systems that integrate diverse types of data, computationally intensive decision models, and 

collaborative problem-solving capabilities in a user-friendly environment. Another major 

challenge in uncertainty handling in supply chain modeling, which will be discussed in Section 

1.2.5. 

 

1.3.4 Uncertainty in Spatial Decision Making 

Uncertainty is a complex term with many definitions and interpretations across knowledge 

domains and application contexts (Gahegan and Ehlers 2000). In a simple way, uncertainty is the 

lack of exact knowledge, regardless of what is the cause of this deficiency (Refsgaard et al. 2007). 

In literature, the term uncertainty is often ambiguously defined compared to related terms such as 

data quality, reliability, precision, accuracy, and error. Researchers tried to distinguish error from 

uncertainty based on whether the perfect information is known or not (Hunter and Goodchild 

1993). However, in most cases, uncertainty is used as an umbrella term to describe all the related 

concepts (Zhang and Goodchild 2002). In many cases of spatial decision making, the involvement 

of uncertainty is desired. Without the consideration of uncertainty, the reliability of any decision 

becomes problematic (Matthies et al. 2007). Before modeling uncertainty, identifying the sources 
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of uncertainty is a prerequisite. In this study, the sources of uncertainty in spatial decision making 

are defined from two major perspectives – data and models. 

Firstly, uncertainties exist in both spatial and non-spatial data. Data with measurement error is 

one example. Data processing, e.g., aggregation or interpolation or any algorithms introduced, will 

introduce uncertainty as well (Kwan 2016). Also, the way people perceive things might cause the 

data to be uncertain as well, for example, data related to experts’ opinions. Furthermore, some 

decision models may require input data collected based on predictions, such as weather in next 

couple weeks, house price in the coming five years, or crop yield for the next growing season. 

Since our knowledge of future involves uncertainty, such data derived from predictive models are 

also subject to uncertainty. 

Data uncertainty is often expressed in the form of probability distribution that indicates how 

likely each of the possible outcomes is (Uusitalo et al. 2015). When considering data uncertainty 

with deterministic spatial analysis and decision models, considerable research efforts have been 

made on the quantification of uncertainty propagation using uncertainty and sensitivity analyses. 

Examples of application domains include flood forecasting (Crosetto and Tarantola 2001), 

groundwater contaminant modeling (Lilburne and Tarantola 2009), land suitability evaluation 

(Ligmann-Zielinska and Jankowski 2014), and hazardous waste disposal planning (Gómez‐

Delgado and Tarantola 2006). In these literature, uncertainty and sensitivity analyses are employed 

as an integrated approach where uncertainty analysis aims at understanding the variability of 

outcomes given model input uncertainty, while sensitivity analysis focuses on quantifying the 

impact of each input that are responsible for this variability. However, few previous pieces of 

research have incorporated the uncertainty and sensitivity analyses into an SDSS. In this study, the 

integration part is one of the major contributions. Specifically, the integrated system takes 
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advantage of advanced cyberinfrastructure to solve the major computational issue (i.e., large 

number of Monte Carlo simulations) encountered in the uncertainty and sensitivity analyses, which 

could be critical for modeling uncertainty propagation in complex spatial decision models. 

Secondly, uncertainties exist in decision models since models are always abstractions of the 

natural system. Often times, it is difficult to have perfect knowledge about the complete processes 

of the model and its parameters. Uncertainty in model parameters can be accounted for in a similar 

way as data uncertainty using probabilistic representations, while uncertainty about the model 

structure is complicated and it requires stochastic models to be developed instead of deterministic 

ones (Chatfield 2006). Developing stochastic supply chain optimization models will be discussed 

with details in the next subsection. 

 

1.3.5 Supply Chain Optimization under Uncertainty 

Uncertainty and sensitivity analyses is an effective approach to quantifying uncertainty 

propagation and derive sensitivity of each uncertainty sources with respect to the results. However, 

in supply chain optimization, uncertainty and sensitivity analyses do not provide direct solutions 

for decision-maker. Instead, distributions of decision variables and outcomes are presented with 

the sensitivity of each uncertain factors quantified. To derive optimal solution in the presence of 

uncertainty, stochastic models, e.g., stochastic programming (Santoso et al. 2005), robust 

optimization (Pishvaee et al. 2011) or multi-objective optimization with risk function (Azaron et 

al. 2008), are commonly used to tackle supply chain optimization problems. These models are 

designed with capabilities of capturing uncertainty information in the model construction instead 

of treating the model as a black box in uncertainty propagation and sensitivity analysis. 
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In stochastic programming models, decisions are considered at multiple stages. As an example 

of a two-stage stochastic programming problem, decision maker takes some actions in the first 

stage, after which uncertain factors start affecting the outcome of the first-stage decision. A 

recourse decision can then be made in the second stage that compensates for any bad effects that 

might have been experienced as a result of the first-stage decision (Birge and Louveaux 2011). In 

supply chain optimization, previous studies (Barbarosoǧlu and Arda 2004; Santoso et al. 2005; 

Sodhi and Tang 2009; Marufuzzaman et al. 2014) have developed variations of two-stage 

stochastic programming models, in which facility locations are considered as long-term decisions 

that need to be fixed at the first stage, and supply chain logistics are considered as recourse 

decisions that can be adjusted to cope with uncertain situation. 

Although a considerable number of stochastic models have been developed in literature to 

account for uncertainty, models that explicitly account for uncertainty in spatiotemporal data are 

limited. Spatiotemporal data collected from the agricultural process or ecological phenomenon are 

subject to uncertainty and they need to be modeled along with the underlying spatiotemporal 

process affected by many environmental variables. Such complexities often require statistical 

analysis such as hierarchical models (both Bayesian and non-Bayesian) to quantify (Cressie et al. 

2009). Therefore, the last piece of this study is trying to develop an effective approach to 

incorporating statistical analysis of spatiotemporal data into stochastic supply chain optimization 

models.  

 

1.4 ORGANIZATION 

This dissertation consists of three papers addressing how cyberGIS facilitates decision support 

and enables new discoveries in the case study of biomass supply chain optimization with the 
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consideration of uncertainty. First, a cyberGIS-enabled spatial decision support system is designed 

and developed to provide interactive and collaborative decision support in biomass provision at 

the county level in the United States (Chapter 2). Second, through harnessing the computational 

power of cyberGIS, uncertainty and sensitivity analysis are conducted on the supply chain of a 

potential bioenergy crop, Miscanthus, in Illinois to efficiently understand how different sources of 

uncertainty impact on optimal supply chain decisions (Chapter 3).  Third, to consider 

spatiotemporal explicit uncertainty in the supply side, a Bayesian statistical model is developed 

and the results of the spatiotemporal analysis are integrated with a stochastic programming method 

to optimize corn stover supply chain in four Corn Belt states, i.e. Illinois, Iowa, Missouri, and 

Indiana, in the Midwestern US (Chapter 4). Finally, major findings and contributions of this 

research are discussed (Chapter 5). 

Chapter 2 titled “A CyberGIS-enabled Spatial Decision Support System for Biomass Supply 

Chain Optimization” demonstrates an interactive and collaborative system for supply chain 

optimization by addressing challenges exist in 1) the limited interoperability between bioenergy 

models and geographic information systems (GIS); 2) interactive scenario construction, evaluation 

and sharing; and 3) complex optimization problem solving that requires advanced 

cyberinfrastructure resources to support interactive decision making. The developed system, 

CyberGIS-BioScope, takes advantage of cyberGIS capabilities to process and analyze spatial data 

and enhance visualization and sharing of optimization results. The integrated environment makes 

the complex optimization model and advanced cyberinfrastructure resources easily accessible for 

agricultural scientists and decision makers, and thus accelerates their scientific discovery and 

decision-making processes.  
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Chapter 3 titled “A CyberGIS Approach to Uncertainty and Sensitivity Analysis In Biomass 

Supply Chain Optimization” describes a cyberGIS approach to optimize biomass supply chains 

under uncertainties. This approach has been implemented as a decision support system through 

integration of data management, mathematical modeling, uncertainty and sensitivity analysis, 

scenario analysis, and result representation and visualization. An optimization modeling analysis 

of 7,000 scenarios using Monte Carlo methods has been conducted to quantify the uncertainty and 

sensitivity impact of various input factors on ethanol production costs and optimal biomass supply 

chain configurations in Illinois, United States. Leveraging high performance computing power 

through cutting-edge cyberGIS software, what-if scenario analysis has been evaluated to make 

decisions in case of unexpected events occurring in the supply chain operations. 

Chapter 4 titled “Biomass Supply Chain Optimization with Uncertain Biomass Availability” 

presents an innovative approach that captures spatiotemporal data uncertainty in a spatial supply 

chain optimization problem. Based on a Bayesian hierarchical model that accounts for spatial and 

temporal random effects in the coefficients when conducting regression analysis, this novel 

approach captures spatiotemporal explicit uncertainty associated within the crop yield estimation 

and leverage such information to construct different supply availability scenarios when 

formulating the stochastic programming optimization. The proposed method is applied to a 

biomass supply chain problem that aims to optimize supply chain infrastructure configurations, 

biomass feedstock provision and logistics operations using corn stover as the bioenergy crop. 

Variation in corn yield, farmer participation rate, and collectable corn stover rate are considered 

as key uncertain factors for biomass feedstock supply. 

Chapter 5 concludes the dissertation by synthesizing the major findings of this research and 

potential directions for future research opportunities. 
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CHAPTER 2  

A CYBERGIS-ENABLED SPATIAL DECISION 

SUPPORT SYSTEM FOR BIOMASS SUPPLY 

CHAIN OPTIMIZATION1 

This chapter describes the development of a cyberGIS-enabled spatial decision support system 

for optimizing biomass feedstock provision. The developed system, CyberGIS-BioScope, aims to 

facilitate complex problem solving in biomass supply chain through an interactive and 

collaborative decision-making fashion. CyberGIS-BioScope takes advantage of cyberGIS 

capabilities to process and analyze spatial data and enhance visualization and sharing of 

optimization results. Meanwhile, the integrated environment makes the complex optimization 

model and advanced cyberinfrastructure resources easily accessible for agricultural scientists and 

decision makers, and thus accelerates their scientific discovery and decision-making processes. 

This implementation example could be served as a protocol for further integration development of 

cyberinfrastructure, operations research, and geospatial analysis and modeling. 

This chapter cannot be completed without successful teamwork. The team members are Hao Hu, 

Tao Lin, Yan Liu, Luis Rodríguez, and Shaowen Wang. Mr. Hu led the overall research design, 

development of the system, and manuscript writing. Dr. Lin contributed to the original source code 

of the BioScope model that serves as the foundation for biomass supply chain optimization. Mr. 

Liu led the service integration and assisted the draft revision. Drs. Lin, Rodríguez, and Wang 

                                                 
1  Reprint, with permission, from Hu et al., 2015, “CyberGIS‐BioScope: a cyberinfrastructure‐based spatial 

decision‐making environment for biomass‐to‐biofuel supply chain optimization”, Concurrency and Computation: 

Practice and Experience 27 (16), 4437-4450 
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participated in the overall research design and results discussions, and led the draft revision. The 

content of this chapter has been published in a journal paper (Hu et al., 2015). 

Abstract. Biomass, e.g. energy crops, forests and agricultural residues, has emerged as a 

renewable energy option to alleviate the consumption of limited fossil fuel resources and the 

consequent environmental issues. Designing an effective and efficient biomass-to-biofuel supply 

chain involves sophisticated decision-making processes, often requiring collaborative work on 

data integration, model specification, scenario analysis, and coordinated implementation and 

management. To establish an integrated system for such work, challenges exist in 1) the limited 

interoperability between bioenergy models and geographic information systems (GIS); 2) 

interactive scenario construction, evaluation and sharing; and 3) complex optimization problem 

solving that requires advanced cyberinfrastructure resources to support interactive decision 

making. To resolve these challenges, this paper describes CyberGIS-BioScope: an interactive and 

collaborative cyberGIS-based spatial decision-making environment for biomass-to-biofuel supply 

chain optimization. CyberGIS-BioScope takes advantage of cyberGIS capabilities to process and 

analyze spatial data and enhance visualization and sharing of optimization results. Meanwhile, 

the integrated environment makes the complex optimization model and advanced 

cyberinfrastructure resources easily accessible for agricultural scientists and decision makers, 

and thus accelerates their scientific discovery and decision-making processes.  

Keywords. CyberGIS; biomass supply chain; spatial decision making; web-based gateway 

environment 
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2.1 INTRODUCTION  

Biofuel has gained attention given its potential contribution to energy independence and rural 

economic development. Increased demand for biofuel, however, requires a new system 

infrastructure design for a biomass-to-biofuel supply chain. To ensure efficient and effective 

biofuel production, considerable research efforts have been made on biomass-to-biofuel supply 

chain optimization to identify best solutions for biomass feedstock provision, infrastructure 

investment, and logistics operation (Marvin et al., 2012; Nagel, 2000; Brechbill et al., 2011; Huang 

et al., 2010; You and Wang, 2011; Kim et al., 2011; Lin et al., 2013).  

To support decision-making on problems such as the biomass supply chain, decision support 

systems (DSS) are developed to integrate various models, databases and assessment tools under a 

graphical user interface. When integrating functionalities with geographic information systems, 

DSSs become spatial decision support systems (SDSSs) (Matthies et al., 2007). SDSSs have been 

established to facilitate biomass resource management (Zambelli et al., 2012) and multi-criteria 

infrastructure planning (Perimenis et al., 2011). However, most existing decision support 

applications for biofuel development have not been well integrated with supply chain optimization 

modeling because of the following major challenges:  

Data interoperability. Geospatial and engineering data are distributed from various sources. 

Agricultural data collected from spatial data services may not be ready for directly feeding into 

decision-making models until proper preprocessing steps are taken. Meanwhile, output data from 

models need to be standardized for visualization and sharing. Therefore, interoperability between 

agricultural engineering data and spatial visualization and analytic tools becomes crucial to enable 

the evaluation and sharing of biomass-to-biofuel supply chain results.    
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Computation complexity. Biomass-to-biofuel supply chain design is often formulated as an 

optimization problem that desires to be solved efficiently in the context of responsive decision 

support. Most existing biomass supply chain decision systems are single machine based without 

dedicated computing resources to either reduce the single job execution time or support large 

number of concurrent job submissions.  

User Interactivity. A user-centered decision-making environment requires not only a rich user 

interface with complex formatting through multimedia, but also a high level of interaction that 

enhances user involvement. To our knowledge, none of the previous studies has developed a highly 

interactive web-based user environment for biomass-to-biofuel supply chain decision-making that 

supports step-by-step scenario construction and what-if scenarios analyses in a geodesign (Steinitz, 

2012) fashion. 

Leveraging advanced cyberinfrastructure (CI), cyberGIS (Wang, 2010; Wang et al., 2013) 

provides a desirable framework to tackle the aforementioned challenges by synergistically 

integrating a highly interactive online GIS user environment, seamless cyberinfrastructure access, 

and data and computing intensive spatial analysis methods through three major modalities: 

CyberGIS Gateway, GISolve middleware, and CyberGIS Toolkit. Based on the cyberGIS 

framework, a science gateway application CyberGIS- BioScope is developed on top of BioScope 

model (Lin et al., 2013) to provide the benefit of scalable and interactive spatial decision support 

for biomass supply chain optimization in this study. 

Advanced CI resources are needed for meeting the following computational requirements in 

spatial decision-making: 

• The computation of an individual model is time consuming, requiring great computing 

power. BioScope optimization is a mixed integer linear programming (MILP) problem that 
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is known to be computationally intractable, namely, it cannot be solved in polynomial time 

based on the existing algorithms;  

• Uncertainty analysis centered on the BioScope model may generate a large number (e.g., 

hundreds or even thousands) of individual model runs , each requiring invocation of a series 

of spatial data services and computations of the BioScope optimization model; and 

• Spatial decision-making is often an interactive process between decision makers and model 

computation, requiring responsive computation and presentation of model results (e.g., in 

minutes instead of hours or days). 

The goal of CyberGIS-BioScope application development is to establish a cyberGIS-

empowered spatial decision-making environment via geodesign that provides the following major 

capabilities: 

• An interactive and collaborative web environment that combines the specification and 

integration of geospatial and engineering data sources, parameters, and models to facilitate 

flexible and easy-to-use construction of scenario analysis by a group of cross-disciplinary 

decision-makers;  

• A diverse set of result visualization representations including map layers, result tables and 

charts for a comprehensive understanding of biomass supply chain optimization output;  

• A seamless computation management framework that can leverage advanced CI resources 

for intensive computation generated by community use, batch scenario studies, and 

sophisticated analyses such as uncertainty and sensitivity analyses that often involve 

Monte-Carlo simulation of hundreds or even thousands of individual model runs; and  
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• A computational intensity profile that serves as a guideline in cyberinfrastructure resource 

allocation in order to request appropriate amount of computing power and maximize 

resource utility for solving the biomass-to-biofuel supply chain optimization problem.  

 

Figure 2.1. A Three-stage biomass supply chain for biofuel production.  

     

2.2 BACKGROUND 

BioScope (Lin et al., 2013), as one of the state-of-art biomass supply chain optimization models, 

illustrates a typical three-stage biomass supply chain with two logistics phases involved (Figure 

2.1). In the first logistics phase, raw biomass feedstock are supplied from distributed farms to 

centralized storage and preprocessing (CSP) facilities after harvesting. As an intermediate stage of 

the supply chain, CSP facilities are designed to reduce transportation cost through preprocessing 

raw biomass to provide ground biomass with tapping. Subsequently in the second logistics phase, 

preprocessed biomass is delivered to biorefineries where biomass is converted into biofuel 

products. The BioScope model aims to optimize the location and amount of biomass supply, the 

location and capacity of storage and biorefinery facilities, and transportation flow between each 

stage with the consideration of constraints in supply availability, capital and operational cost, 

conversion technologies, and biofuel demand. The BioScope model is formulated as a mixed 

integer linear programming (MILP) problem with a linear objective function and a list of linear 

constraints in which integer and contiguous decision variables need to be solved. Specifically, the 
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objective function is a linear combination of biomass purchase costs, transportation related costs, 

CSP site related costs, and biorefinery related costs. Decisions such as biomass capacity for a 

facility or transportation flows (e.g., amount of biomass delivered from farm i to facility j) are 

modeled as continuous variables while facility location decisions (e.g., should facility at site j be 

constructed) are restricted to be integers. Details of the Bioscope model formulation can be found 

in Lin et al. (2013). 

Given the advantages in spatial data handling and visualization, GIS has been integrated in the 

development of spatial decision support system in bioenergy research. For example, Voivontas et 

al. (1998) developed a GIS-based decision support system to estimate the power production 

potential of agricultural residues. Freppaz et al. (2004) and Frambo et al. (2009) integrated GIS 

with mathematical programming methods to investigate forest biomass exploitation for energy 

production. However, GIS mostly behaves as an external tool in spatial data aggregation, road 

network distance measurement and spatial data visualization in bioenergy researches (Marvin et 

al., 2012; Lin et al., 2013; Wang et al., 2013). Many developed decision support softwares integrate 

decision models with map-based interface based on desktop-based ArcGIS software (ESRI), which 

limits the accessibility for collaborative use (Frombo et al., 2009; Tibaa et al., 2010). Furthermore, 

computational performance becomes a requirement when the underlying decision model is 

complex to solve. A majority of existing biomass supply chain optimization problems are 

formulated as mathematical programming models such as MILP. Since MILP problem is 

computationally intractable (i.e. NP-hard), computational efficiency becomes a bottleneck when 

the problem structure is complex. As yet, few efforts have considered leveraging advanced 

cyberinfrastructure to solve biomass supply chain optimization problems. CyberGIS provides an 
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alternative by not only bringing GIS functionalities for spatial data handling and visualization, but 

also providing access to advanced cyberinfrastructure with scalable computation resources. 

MILP problems are commonly solved using linear programming techniques (Williams, 2009) 

(e.g., branch-and-bound and branch-and-cut to tighten the linear programming relaxation) where 

the original MILP problem (root) is relaxed to sub-MILP problems (search nodes) based on 

selected branching variables recursively until an integer solution (leaf) is found. The fact that each 

search node can be solved independently provides potential opportunity for implementing 

parallelism of solving MILP problem on multiple cores or machines. CPLEX and Gurobi are two 

leading commercial optimization solvers and they both provide free license for academic use. The 

latter one is selected as the optimization solver in the CyberGIS-BioScope application. With the 

latest release of Gurobi 6.0, parallel problem solving is supported in a distributed framework where 

multiple machines work together to solve a single MILP problem. 

 

2.3 APPLICATION DEVELOPMENT 

The development of CyberGIS-BioScope application follows a streamlined CyberGIS gateway 

application development framework and integration process. This framework includes common 

software engineering practice for builds and tests, cyberinfrastructure-based portability tests across 

a variety of operating systems and software libraries, scalability tests, gateway application 

development, registration and deployment, application service publishing and CyberGIS Gateway 

integration (Wang et al., 2013; Liu et al., 2015). The unique requirements in CyberGIS-BioScope 

leads to the development of a rich-client based spatial data visualization module and a job 

scheduler-based computation workflow tool for complex scenario analysis. The architecture of 
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CyberGIS-BioScope has three tiers: CyberGIS Gateway, cyberGIS services, and the 

cyberinfrastructure-based computation (Figure 2.2). 

 

Figure 2.2. CyberGIS-BioScope Application Architecture. 

2.3.1. User Environment 

The user interface of CyberGIS-BioScope was developed based on HTML5 technologies, i.e., 

Sencha ExtJS (http://sencha.com), a JavaScript web platform development framework, and 

OpenLayers (http://openlayers.org), an open source JavaScript library for map data displaying and 

handling in web browser. The user environment development adopts the client-side model-view-

control (MVC) model, which greatly improves the user interaction capabilities within the web 

browser. The user environment interacts with standard web services (e.g., REST and Open 
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Geospatial Consortium (OGC) Web Mapping Service (WMS), Web Feature Service (WFS), and 

Web Coverage Service (WCS)) on the backend using Hypertext Transfer Protocol (HTTP) and 

asynchronous JavaScript and XML (AJAX). The user environment consists of two major 

components: 1) the BioScope scenario construction, and 2) visualization of optimal biomass-to-

biofuel supply chain solutions. 

To construct a scenario analysis, a user needs to go through four major steps to identify input 

data and specify model parameters: 1) select candidate biomass supply counties; 2) select 

candidate centralized storage and preprocessing (CSP) facilities; 3) select candidate biorefinery 

facilities; and 4) specify other non-spatial parameters such as cropland usage rate (i.e., percentage 

of cropland converted to growing bioenergy crops) and unit transportation cost. The user interface 

presents both spatial and data view of model inputs. The first three steps require a set of map-based 

spatial feature selection actions, including map panning, zooming, box selection, individual spatial 

object selection/deselection. Geospatial and engineering data attributes associated with selected 

spatial objects are then loaded dynamically by sending spatial queries to a published WFS that has 

biomass- related attribute data (e.g., bioenergy crop yield, procurement cost, cropland area at 

county level). An attribute table (left panel in Figure 2.3a) displays these attributes information of 

the selected region. Non-spatial data inputs in step 4 are fetched from an ExtJS form. Once all the 

required data and parameters are provided, a new scenario analysis job is created and submitted 

using GISolve Open Service API. Serving as the middleware between cyberGIS user environment 

and cyberinfrastructure-based resources and services, GISolve Open Service APIs are used to 

provide a streamlined integration process for application registration and configuration, code 

invocation and scheduling, as well as data transfer and visualization. Details on using the GISolve 
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Open Service APIs as a streamlined service integration to cyberinfrastructure can be found in 

Wang et al. (2013). 

Currently, CyberGIS-BioScope has incorporated county-level data of Miscanthus yield (Miguez 

et al., 2012), cropland area (http://quickstats.nass.usda.gov), and Miscanthus production costs 

across the contiguous U.S., including 48 states that are composed of 3,109 counties, where users 

can select from to perform Miscanthus supply chain case studies. Moreover, users may 

alternatively provide their own data through editing the attribute table for the selected region of 

interest. Road network data from OpenStreetMap (http://openstreetmap.org) are integrated to 

measure transportation distance and enable the visualization of supply chain logistics. 

Top-left panel in Figure 2.3b shows a list of jobs and information including the job name, created 

time and job status. User can switch among finished jobs to compare different biomass-to-biofuel 

supply chain scenarios. For a specific scenario, the map panel shows five result data layers: the 

optimal locations of biorefinery facilities (red icons), the optimal locations of CSP facilities (green 

icons), biomass transportation flows from supply counties to CSP (red path), biomass 

transportation flows from CSP to biorefinery (blue path), and biomass supply counties (counties 

with the same color share one CSP facility). Breakdowns of biofuel production cost, capacity of 

biofuel facilities and transportation flow information are presented to users as a dynamic pie chart 

and data tables (Figure 2.3b). 

In biomass-to-biofuel supply chain decision-making, some input variables are uncertain and 

subject to change given spatial and temporal variations. Changes in biomass yield, procurement 

price, market demand, transportation cost, and processing technology could significantly impact 

the overall production cost and spatial configuration of biomass supply and processing networks, 

which further complicates the assessment of decisions. Often user has to perform comparisons to 

http://openstreetmap.org/
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understand how the optimal supply chain pattern changes accordingly. For instance, by increasing 

the unit transportation cost to a foreseeable price predicted by the market, the model tends to select 

more CSP facilities close to the biomass supply sites in order to balance the cost spent in 

transportation. It then becomes interesting to learn the location of additional CSP facilities and 

how the biomass logistics changes subsequently. To intuitively visualize such analyses performed 

by users, a multiple map panel feature (Figure 3b) is developed through displaying two map panels 

that are synchronized in spatial scales and layer settings but loading results from two different 

scenarios. 
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Figure 2.3. CyberGIS-BioScope GUIs: (a) Input data identification. Candidate counties 

are highlighted in light blue and attribute information is displayed in the left panel; (b) 

Biomass-to-biofuel supply chain result visualization; (c) Interface for two scenarios 

comparison analysis. 
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Different from conventional server-side WMS-based map layer rendering, the visualization of 

BioScope output requires various formats of result presentation, including map layers, location 

attributes, charts and diagrams to facilitate a comprehensive evaluation of one or multiple supply 

chain solutions. Retrieving these output attributes dynamically using the conventional WFS or 

WCS would introduce frequent client-server communications and uncertain delays. Furthermore, 

WMS gridizes a data layer as map image tiles for rendering and results in lower image quality than 

directly drawing output spatial objects using HTML5. In order to improve user experience, 

BioScope output data is stored in JSON and XML format and sent directly to the browser to present 

map layers, result tables, text content, and charts. 

As a result, the developed CyberGIS-BioScope user environment is equivalently powerful as 

conventional desktop graphical user interface (GUI) in terms of user interaction capabilities, 

attributing to the rich-client web interface technologies adopted in CyberGIS Gateway. 

 

2.3.2. Open Service Integration Framework 

The BioScope model solving requires an integration of a series of geospatial data and processing 

services and cyberinfrastructure services. Input data to BioScope model are either fetched from or 

dynamically computed by distributed geospatial data and mapping service instances. Standard web 

services, i.e., HTTP, REST, and OGC web services, are established to allow an interoperable 

integration of input data generation and output data hosting, as well as visualization. These services 

are hosted in a private cloud at the CyberGIS Center at the University of Illinois and can be 

dynamically allocated on demand based on the user requests. 

Specifically, the following web services are established to support an interoperable coupling of 

BioScope input and output data access and processing: 
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Routing service. Open Source Routing Machine (OSRM) (Luxen and Vetter, 2011), an open 

source high-performance routing engine, is deployed to find the shortest path and its geometry 

information for a given pair of coordinates by using OpenStreetMap road network data. It utilizes 

OpenMP to improve the performance for route calculation. 

Geospatial and engineering data and mapping service. County-level crop yield, biomass 

procurement cost, and cropland area data for the continental U.S. are compiled and stored on a 

data server as vector datasets. GeoServer (http://geoserver.org), an open source mapping server, is 

deployed to present these datasets as OGC WMS and WFS. When a user selects certain spatial 

scale for a case scenario, these data are rendered as WMS data layers. Attribute information 

associated with the layers can be retrieved using separate AJAX calls as WFS requests. Data can 

also be downloaded using various geospatial vector file formats. This service has been deployed 

in the visualization virtual machine farm at the CyberGIS Center. It is noteworthy that although 

many biomass supply chain studies incorporated GIS technologies to enable map-based 

visualizations (Lin et al., 2013; Frombo et al., 2009; Noon and Daly, 1996), no similar efforts have 

been made to automate the process as presented in this study. 

 

2.3.2.1. Cyberinfrastructure-based Computation.  

The CyberGIS-BioScope software consists of several data and computing components and has 

been deployed on Trestles (http://trestles.sdsc.edu, retired) from XSEDE with high performance 

and high throughput computing capabilities. The computation workflow of BioScope is shown in 

Figure 2.4. Major spatial and non-spatial data required by the BioScope model are illustrated with 

their connection to different computing processes. Farm-level sampling tool, transportation 

http://trestles.sdsc.edu/
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distance matrix generation, BioScope model solving, and statistical analysis of optimization results 

are identified as four major computing components: 

Farm-level sampling. The BioScope model provides strategic decision support on the biomass 

supply chain configuration at county level, where a large number of distributed farms are 

aggregated into a single point for representing each county. For example, there are more than one 

thousand farms in Champaign County, Illinois in 2012. The data aggregation procedure results in 

the loss of locational information of farms and possible bias when calculating the transportation 

distance. Thus, an additional step in farm-level sampling is considered to generate location data of 

farms given the auxiliary farm-level information (i.e., farm numbers and cropland data layer from 

USDA National Agricultural Statistics Service, http://quickstats.nass.usda.gov/) within each 

county. Considering the uncertainty of biomass feedstock provision locations at farmland scale, 

random points that represent possible farm locations are sampled within the agricultural land. The 

farm-level sampling tool provides spatial support at finer scale for measuring the transportation 

distance between farms and biomass processing facilities. It is only required when conducting 

uncertainty analysis. 

http://quickstats.nass.usda.gov/


30 

 

 

Figure 2.4. Computation workflow of CyerGIS-BioScope using Miscanthus as an 

application. 

 

Generating distance matrix. The CyberGIS-BioScope measures the real road network distance 

when estimating the transportation cost. Based on the candidate supply sites, CSPs and 
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biorefineries locations defined by the user, a transportation distance matrix is dynamically 

generated through sending requests to the locally deployed OSRM routing service. Meantime, the 

route geometry information are retrieved from the request and saved to construct transportation 

layers when optimal logistics operation results are available. 

Optimization problem solving. The solver for BioScope model is a commercial optimization 

software Gurobi, which has built-in parallelism to solve MILP problem. A typical model 

application for Illinois case study has a total of 12,961 constraint equations and 22,956 decision 

variables, including 816 binary variables. A typical biomass-to-biofuel supply chain scenario 

within Illinois that satisfies the requirement of 240 million gallons biofuel production takes 176 

seconds using Gurobi solver (with optimality gap=0.01%) on an Intel(R) Core(TM) i7-4770 CPU 

@ 3.40GHz desktop machine. However, tuning the parameters (e.g., cropland usage rate or 

bioethanol demand) will increase the job execution time up to 2,527 seconds. 

Statistical analysis tool. When multiple scenarios are constructed to consider model input 

parameters uncertainty, statistical analysis is required to quantify the impact of uncertain 

parameter(s) on the BioScope model results. The statistical analysis tool aims to provide statistical 

bounds on objective values (e.g., optimized annual biomass-ethanol cost) and decision variables 

(e.g., number of biomass processing facilities), and spatial configuration of biomass supply chain 

(e.g., the likelihood of each biomass processing facilities being selected). The invocation of 

statistical analysis in a BioScope model run is optional and only required when uncertainty analysis 

is specified. 
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2.3.2.2. Workflow Tool for Uncertainty Analysis 

The execution of uncertainty analysis is implemented as a light-weight computation workflow 

by leveraging the job dependency features of job schedulers such as SLURM 

(http://slurm.schedmd.com)  and PBS (http://openpbs.org) (i.e., sbatch (with option -d) and qsub 

(with option -W depend), respectively). For example, using sbatch, job B can be dependent on job 

A under three conditions: afterok, afternotok, and afterany: job B is executed after job A is finished 

with success, failure, or either, respectively. afterok is used to execute BioScope models because 

the previous step in transportation network generation must be successfully executed. The last step 

of uncertainty analysis can tolerate failures to a degree because the following step in statistical 

analysis does not require all the results from the sampled optimal solutions. afterany is used to 

represent the job dependency for this step. The generated job submission script, when executed, 

automatically substitutes job identifiers returned by job scheduler on the dependency list of 

subsequent jobs. This tool has been tested on a local cluster with six nodes (48 cores) at the 

CyberGIS Center. 

 

2.3.3. Gateway Integration 

The CyberGIS-BioScope application has been deployed in the production CyberGIS Gateway 

(http://gateway.cybergis.org) for community evaluation. At the Second International Conference 

of CyberGIS and Geodesign (August 18-21, 2014, Redlands, CA), CyberGIS-BioScope was 

demonstrated as a geodesign use case and received positive feedback from geographic information 

science community. As one of the CyberGIS Gateway applications, CyberGIS-BioScope takes 

advantage of the streamlined integrating process within the cyberGIS framework. On the UI side, 

an open mashup library framework has been implemented to support the development of user 

http://slurm.schedmd.com/
http://openpbs.org/
http://gateway.cybergis.org/
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interface components that can be customized for cyberGIS use. These components (e.g., job 

management panel, map visualization panel) can be shared across different cyberGIS applications, 

which significantly facilitate the implementation of the CyberGIS-BioScope application. The 

streamlined CyberGIS Gateway application development framework significantly simplifies the 

integration process. However, building a spatial decision-making system requires highly 

interactive user interface components to be developed within CyberGIS Gateway. Improving the 

productivity of developers is an evolving effort of the CyberGIS Gateway development 

environment. 

The CyberGIS-BioScope application introduced two major requirements to the CyberGIS 

Gateway application development: 1) a tight coupling of external web services and computing 

workflow, and 2) the development of new visualization components based on raw geospatial 

output, instead of pre-rendered tiled data layers. A set of geospatial web services, such as the 

transportation routing service (i.e., OSRM), has been established as gateway web services and can 

be invoked within the computation workflow at runtime. New visualization components have been 

developed to load XML and JSON output of BioScope model to enrich the visualization of data 

layers on map and other visualization components (e.g., charts and tables) using a single data 

source. Compared to result visualization in other CyberGIS Gateway applications, CyberGIS-

BioScope’s direct result rendering using JSON greatly improved the rendering quality. This 

capability is being ported to a generic module in CyberGIS Gateway to provide a unified map 

creation and sharing framework to support other cyberGIS analysis results. 
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2.4 COMPUTATIONAL PERFORMANCE 

In the gateway application integration, the scalability and computational performance testing is 

an important step to establish a computational intensity profile for GISolve middleware. This 

profile serves as a guideline for cyberinfrastructure resource allocation in order to request 

appropriate amount of computing power and maximize resource utility. As a spatial decision-

making environment, CyberGIS-BioScope needs to return computation results in a specified time 

limit based on the responsiveness requirements from decision makers. The whole processing time 

of a CyberGIS-BioScope analysis can be decomposed into data preparation, the BioScope model 

execution, results processing and visualization, and the communication between each data and 

services. As the most time-consuming part, the BioScope model execution time largely depends 

on both the number of allocated processors and model parameters values specified in gateway user 

environment. Parameter values determine the solution space landscape and the computational 

efforts needed to search the solution space. Therefore, establishing the relationship between the 

model parameters and the number of processors for the aforementioned computational intensity 

profile is necessary for scheduling model computation in different decision-making scenarios. For 

example, the user environment components of CyberGIS-BioScope can provide a reasonable value 

range for each parameter under consideration based on the profile so as to make sure results can 

be returned within a specified time limit for a real-time decision-making process. 
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Figure 2.5. Performance profiles when fixed bioethanol demand (300 million gallons) and 

cropland usage rate (3%) are selected at various problem sizes. The three numbers in the 

legend represent number of candidate supply sites, candidate CSPs, and candidate 

biorefineries respectively. 

 
The execution time of an MILP problem is often difficult to estimate theoretically because an 

MILP solver often combines a variety of combinatorial optimization strategies simultaneously in 

a single problem solving process and each strategy exhibits different computational intensity 
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(Williams, 2009). Although some general indicators, such as number of constraints and variables, 

are used to measure the difficulty of the MILP problem, the execution time of an MILP instance 

is heavily dependent on the problem structure. Therefore, the computational performance of the 

BioScope model is estimated using performance profiling. Our goal is to measure the weak scaling 

performance of the BioScope model and the underlying parallel MILP solver (i.e., Gurobi) in 

leveraging multiple compute nodes to solve more complex problem instances. Since 

randomization is used by the parallel MILP solver in building solution search trees and can greatly 

vary the total amount of numerical work to be done, speedup is not a straightforward performance 

measure (Liu et al., 2014). We thus measured the execution time of each experiment run to capture 

the relationship between the number of compute nodes used (each node uses all of the processor 

cores on it) and the amount of numerical work indicated by the selected model parameters. 

Our performance profiling experiment considered two parameter sets: biomass (i.e., bioethanol 

demand and cropland usage rate) and spatial. In spatial parameters, we define the spatial problem 

size as a vector of parameters including candidate biomass supply sites, CSP facilities and 

biorefinery facilities. These parameters directly determine the number of constraints and variables 

in the formulated MILP problem. Accordingly, two types of performance profiling experiments 

are considered: 1) type I experiment: spatial scenarios with fixed bioethanol demand and cropland 

usage rate but changing problem size, and 2) type II experiment: biomass scenarios with fixed 

problem size but varying bioethanol demand and cropland usage rate. Type I experiment represents 

decision-making scenarios considering different locations to satisfy a fixed bioethanol production 

requirement. Type II experiment scenarios are often applied in sensitivity analysis of bioethanol 

demand and cropland usage rate considering a specified spatial context, e.g., a state. In general, 

model complexity increases with higher bioethanol demand or a larger spatial problem size, but 
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decreases with a higher cropland usage rate. For each experiment, up to 32 compute nodes (1,024 

processor cores) on the Trestles supercomputer at San Diego Supercomputer Center were used. 

The execution time of all the runs ranged from 63 seconds to 28.7 minutes. 

In type I experiment, the spatial parameters are determined by Table I. Starting from a base case 

scenario that only considers candidate supply sites and facility locations in Illinois (102 counties), 

six additional scenarios are included with extra candidates in Missouri (114 counties and one 

independent city) and Iowa (99 counties) for the selection of three spatial parameters: supply sites, 

CSPs and biorefineries. Tuning the spatial parameters in the seven scenarios directly change the 

MILP problem size as indicated in Table I. Results (Figure 2.5) show that when using a specified 

number of compute nodes, increasing the value of any of the three spatial parameters led to longer 

execution time of the model run. When more compute nodes were used, the model execution time 

was reduced attributing to the benefit of using parallel search strategies in the MILP solver. 

However, there is a limited improvement for model execution time after allocating more than 16 

or 32 compute nodes. To explain this phenomenon, we broke down the time for all the model runs 

and found that the time spent on inter-node communication becomes a bottleneck when more 

compute nodes are allocated. As the number of compute nodes increased from 4 to 32, the 

percentage of time spent on communication and synchronization increased from 28.4% to 55.3%. 

As a result, the performance improvement becomes less significant when the compute nodes used 

is larger than 32. 
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Table 2.1 Problem size indicators for each scenario in Type I experiment 

 Different Spatial Parameters MILP Problem Size Indicators 

 Supply sites CPSs Biorefineries # of 

constraints 

# of 

variables 

# of 

binary 

variables 

Base case 

scenario 

IL(102) IL(102) IL(102) 12,961 22,956 816 

Varying 

supply sites 

IL-MO(217) IL(102) IL(102) 24,806 34,686 816 

IL-MO-IA(316) IL(102) IL(102) 35,003 44,784 816 

Varying 

CSPs 

IL(102) IL-MO(217) IL(102) 26,186 47,681 1,276 

IL(102) IL-MO-IA(316) IL(102) 37,571 68,966 1,672 

Varying 

biorefineries 

IL(102) IL(102) IL-MO(217) 14,226 35,836 1,276 

IL(102) IL(102) IL-MO-IA(316) 15,315 46,924 1,672 

 

 

Figure 2.6. Performance profiles with six bioethanol demand and cropland usage rate 

settings at fixed problem size (316 candidate supply sites, 217 candidate CSPs and 102 

candidate biorefineries). 
 

In type II experiment, six typical combinations of bioethanol demand and cropland usage rate 

values are selected by taking two bioethanol production demand values at 240 and 300 million 

gallons, and three cropland usage rate at 3%, 4%, and 5%. Results (Figure 2.6) show that scenarios 
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with less cropland usage rate (e.g., 3%) took longer to compute and increasing the number of nodes 

can significantly reduce the execution time. Under the same cropland usage rate, larger bioethanol 

demands tend to introduce larger computing cost. The execution time of those scenarios decreased 

as more nodes were added. On the other hand, scenarios with higher cropland usage rate (greater 

than 3%) and lower bioethanol demand (less than 300 million gallons) do not show significant 

computational performance improvement when more compute nodes are added (Figure 2.6). This 

can be explained by the underlying parallelism implemented by Gurobi. The distributed MILP in 

Gurobi consists of two phases: concurrent phase and distributed phase. In the concurrent phase, 

different strategies (e.g., randomized search) are sent to each compute node to build search trees 

until the problem is solved or enough search nodes are generated. A winner that has made the most 

progress is selected for the distributed phase in which the search continues by dividing the partially 

explored MILP search tree of the winner to available compute nodes to solve in parallel. The 

concurrent phase involves multiple strategies and the randomization of the run of each strategy, 

which is less scalable to the number of compute nodes. The distributed phase is more scalable by 

simply dispatching search nodes to compute nodes. Higher cropland usage rate and lower 

bioethanol demand often lead to less complex MILP instances. For these instances, the concurrent 

phase can produce near- optimal or even the optimal solution. The distributed phase, thus, did not 

contribute much to the model execution. 

In summary, the two experiments drew useful guidelines for allocating computing resources to 

the biomass and spatial parameter sets, respectively. Type I experiment clearly showed the 

relationship between the computational intensity and spatial parameters of the BioScope model. 

Type II experiment showed that the combination of bioethanol demand and cropland usage rate 

are two important indicators for resource allocation when considering biomass parameters in the 
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model. Different value ranges for these two parameters may lead to different resource allocation 

strategies: instances with less cropland usage rate may benefit more from parallel computing; while 

higher cropland usage rate and lower bioethanol demand may not need many compute nodes. More 

work is undergoing to gain additional insights of the parallelization strategies of the MILP solver 

and how to reduce the communication overhead when a large number of compute nodes are used. 

We are integrating our findings obtained from type I results into GISolve and CyberGIS Gateway 

for guided resource allocation and parameter selection. 

 

2.5 CONCLUSION AND FUTURE WORK     

BioScope, a supply chain optimization model, is integrated in the CyberGIS Gateway as a 

science gateway application. The application follows a geodesign approach for spatial decision-

making, environment design, and a service integration approach provided by the GISolve 

middleware services. It provides a highly interactive user environment for community users and 

supports the optimization of biomass supply chain and the evaluation of uncertainty through a 

lightweight computational workflow implementation. The development of computation workflow 

for uncertainty analysis leverages the job dependency feature of existing job schedulers on 

cyberinfrastructure resources and s ignificantly simplifies the execution and management of 

cyberGIS analytics. The proposed CyberGIS-BioScope can be served as a guideline for future 

development of discipline-specific problem-solving environments that requires spatial data access 

and sharing, intensive computation and modeling, and interactive decision-making. 

The target user groups of the CyberGIS-BioScope application include decision makers, like 

design engineers, investors, and policy makers, and educators. The CyberGIS-BioScope 

application provides a comprehensive support at all stages from model development, scenarios 
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analysis,and evaluation to the final decision-making. Benefiting from the transparent access to data, 

models,and advanced cyberinfrastructure, community users could speed up their scientific 

discovery and knowledge-sharing process in the collaborative biomass-to-biofuel supply chain 

research. 

BioScope is being extended to incorporate multiple cross-domain models to enable further 

understanding of the factors that influence the supply chain systems, including weather models 

(e.g., Weather Research Forecasting model, http://wrf-model.org) and multiple crop simulation 

models (e.g., BioCro, Miguez et al., 2012).Thus, CyberGIS-BioScope will be extended to 

accommodate more sophisticated model computation and spatial decision-making components. 

The data access, integration and processing, and the complexity of job dependencies will be 

introduced by linking multiple models from cross-domain.We are exploring existing workflow 

tools such as Apache Airavata (http://airavata.apache.org) and Kepler (http://kepler-project.org) 

to better scale the workflow execution to multiple cyberinfrastructure resources. 

  

http://wrf-model.org/
http://airavata.apache.org/
http://hepler-project.org/
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CHAPTER 3 

A CYBERGIS APPROACH TO UNCERTAINTY 

AND SENSITIVITY ANALYSIS IN BIOMASS 

SUPPLY CHAIN OPTIMIZATION 

 

This chapter extends CyberGIS-BioScope, a cyberGIS-enabled decision support system 

developed in Chapter 2, to enable the optimization of biomass feedstock provision under 

uncertainties. Particularly, a cyberGIS approach is proposed with the integration of data 

management, mathematical modeling, uncertainty and sensitivity analysis, what-if scenario 

analysis, and result representation and visualization. Leveraging high-performance computing 

capabilities provisioned by advanced cyberinfrastructure, the proposed cyberGIS approach enables 

Monte Carlo based uncertainty and sensitivity analysis for optimization modeling by resolving 

significant computational intensity. This approach generalizes and streamlines data management, 

computation, and visualization components, so it is expected to work on biomass supply chain 

optimization applications customized by different model and data inputs.  

This chapter cannot be realized without successful teamwork. The team members include Hao 

Hu, Tao Lin, Shaowen Wang and Luis Rodríguez. Mr. Hu and Dr. Lin together led the overall 

research design, result discussion, and manuscript writing. The primary tasks conducted by Mr. 

Hu include 1) studied and synthesized existing methods in uncertainty and sensitivity analysis; 2) 

integrated the module of interactive scenario analysis, uncertainty and sensitivity analysis into the 

CyberGIS-BioScope system; and 3) led the data collecting, processing, visual analytics and drove 

the development of conclusions. Dr. Lin contributed significantly to the manuscript writing and 
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revision. Drs.Rodríguez and Wang participated in the overall research design, results discussions, 

and the draft revision. The content of this chapter has been published in a journal paper (Hu et al., 

2017). 

 

Abstract. Decision making in biomass supply chain management is subject to uncertainties in 

a number of factors such as biomass yield, procurement prices, market demands, transportation 

costs, and processing technologies. To better understand such uncertainties requires statistical 

analysis and data-intensive computing enabled by cyberGIS (aka geographic information science 

and systems based on advanced cyberinfrastructure and e-science). Therefore, we have developed 

a cyberGIS approach to optimize biomass supply chains under uncertainties. Our approach 1) 

designs optimal biomass supply chains from regional to national scale with flexible spatial 

selection of study areas; 2) performs uncertainty and sensitivity analysis to quantify how various 

sources of uncertainty in the biomass supply chain contribute to the variation of optimal results; 

and 3) provides users with online geodesign features. This approach has been implemented as a 

decision support system through integration of data management, mathematical modeling, 

uncertainty and sensitivity analysis, scenario analysis, and result representation and visualization. 

An optimization modeling analysis of 7,000 scenarios using Monte Carlo methods has been 

conducted to quantify the uncertainty and sensitivity impact of various input factors on ethanol 

production costs and optimal biomass supply chain configurations in Illinois, United States. The 

results from uncertainty analysis showed that the minimal ethanol production costs range from 

$2.30 to $3.43 gal-1, considering uncertainties from biomass supply, transportation, and 

processing. The results of sensitivity analysis demonstrated that biomass-ethanol conversion rate 

was the most influential factor to ethanol production costs while the optimal biomass supply chain 
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infrastructure was sensitive to changes in biomass yield, raw biomass transportation cost, and 

logistics loss rate.  Leveraging high performance computing power through cutting-edge cyberGIS 

software, what-if scenario analysis has been evaluated to make decisions in case of unexpected 

events occurring in the supply chain operations. 

Keywords. Biomass supply chain; CyberGIS; Spatial decision support system; Geodesign; Optimization; 

Uncertainty and sensitivity analysis 

 

3.1 INTRODUCTION 

Spatial decision making often applies geographic information science and systems (GIS) to 

integrate spatial data and various models to evaluate policy and decision options at different 

geospatial scales. It has become important to many domains including agriculture, climate, land 

use, and transportation. As the value and sustainability of renewable energy have been widely 

recognized, spatial decisions associated with the development of renewable fuels has received 

increasing attention in recent years. Biofuels can help reduce greenhouse gas emissions, improve 

energy security, and spur rural economies (Tilman et al., 2009). In additional to the well-

established biofuel production from corn and sugarcane, recent studies focus on cellulosic biofuel 

development, produced from non-food biomass sources such as agricultural and woody residuals, 

to enhance food and energy security (Balat and Balat, 2009; Srirangan et al., 2012). How to achieve 

efficient and effective designs of the biomass-to-bioenergy supply chain is critical for large-scale 

cellulosic biofuel production (Hess et al., 2007; Lin et al, 2013; Sharma et al., 2013). 

Biomass supply chains consist of multiple stages, from biomass production, harvesting, 

preprocessing, conversion, and distribution to the eventual end use of biofuels. This study focuses 

on upstream biomass supply chains, which typically includes biomass suppliers, storage and pre-
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processing sites, biorefinery, and transportation (Lin et al, 2013; Vlachos et al., 2008; Becher and 

Kaltschmitt 2013; Yadav 2016). Key decisions within biomass supply chains include biomass 

provision plans, storage and transportation strategies, and the number, location, and capacity of 

facilities for biomass processing and conversion. A number of mathematical programming models 

have been developed to optimize biomass supply chain configurations with case studies in different 

countries including the United States (Lin et al, 2013; Marvin et al., 2012; You et al., 2012; Zhang 

et al., 2013; Lin et al., 2014), Spain (Panichelli and Gnansounou, 2008), Germany (Nagel, 2000), 

Greece (Rentizelas et al., 2009), Finland (Höhn et al., 2014), and Brazil (Jonker et al., 2016), while 

most optimization models are deterministic, without considering uncertainties in system inputs. 

Uncertainty, however, is inevitable for the development of biomass supply chains, given the 

nature of bioenergy production and technological improvement. Changes in biomass availability 

and yield, market demand, transportation costs, and processing technology would significantly 

affect overall system configurations. Decision makers are interested in learning how uncertainties 

in these factors contribute to the design of biomass supply chains, and where to make a change 

among those factors to improve optimal biomass supply chain decisions, especially with the 

capability of data-driven analytics. Previous studies (Lin et al, 2013; Marvin et al., 2012; Parker 

et al., 2010) have employed sensitivity analysis to understand the impact of specific input variables 

on the optimal biomass supply chain. However, this sensitivity analysis approach is limited in 

situations where various sources of uncertainty need to be addressed together, and their 

propagation to decisions have to be understood systematically. 

Uncertainty and sensitivity analysis techniques are often used to understand how decision 

outcomes respond to changes in inputs (Lilburne and Tarantola, 2009). Uncertainty analysis aims 

at understanding the variability of outcomes given model input uncertainty, while sensitivity 
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analysis focuses on quantifying the impact of each input that is responsible for this variability. 

Local sensitivity analysis serves to quantify the rate of output change relative to the change of each 

individual input parameter. Considering potential effects from simultaneous variations of multiple 

inputs, global sensitivity analysis identifies the most important input parameters and quantifies the 

contributions of various parameter subsets to the variation of the overall decision outcome. 

Methods for uncertainty and sensitivity analysis require a large number of model evaluations. As 

a result, enough information is collected to support distribution function analysis of model 

outcomes. In the meantime, computational efficiency and feasibility pose a major bottleneck, 

especially for optimization modeling approaches that are already computationally intensive.  

Oftentimes, the optimization of biomass supply chains should be considered as dynamic 

management decisions in response to uncertain situations occurring in the future. For example, an 

established biomass supply chain is subject to uncertainties such as shortages in biomass supply, 

changes in transportation costs, economic competition, and increases in bioethanol demand. 

Decision makers need to understand how these changes affect the operation of biomass supply. 

Therefore, interactive and exploratory decision support is necessary and desirable. 

Due to the spatial nature of biomass distribution, logistics, and facility location decisions, 

previous work has demonstrated integration of GIS with domain-specific models for studying 

biomass potential (Voivontas et al., 2001; Fiorese and Guariso, 2010), logistics and production 

costs (Panichelli and Gnansounou, 2008; Höhn et al., 2014; Graham et al., 2000), and supply chain 

management (Lin et al, 2013; Zhang et al., 2013; Frombo et al., 2009]. By taking advantage of 

spatial data management, processing, analysis, and visualization capabilities provided by GIS, 

biomass supply chain optimization support could become accessible by decision makers. 

Sensitivity and what-if analysis are generally required in complex decision problems. With the 
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support of enabling technologies in Geodesign (Steinitz, 2012), GIS-based decision support 

systems allow users to engage in what-if scenarios to quickly and easily determine the impacts of 

different problem settings. However, conventional GIS approaches to decision support for biomass 

supply chains are limited to small-scale problems due to lack of computational scalability and 

collaboration support for decision making. 

CyberGIS is based on advanced cyberinfrastructure for achieving computational scalability and 

collaborative problem solving, and has emerged as a new-generation GIS in the era of big data 

(Wang, 2010; Wang et al., 2013; Wang et al., 2015; Wang, 1017). Leveraging high-performance 

computing power provisioned by advanced cyberinfrastructure, cyberGIS can provide user-

friendly online capabilities for spatial decision support (Hu et al., 2015). Through seamless 

integration of cyberGIS and optimization modeling, a CyberGIS-BioScope application has been 

developed to enable online decision support for deterministic biomass supply chain optimization 

based on scalable computing capabilities (Lin et al., 2015). As decision makers are increasingly 

interested to understand uncertainties, capabilities for uncertainty quantification and sensitivity 

measurement need to be integrated into decision support tools. 

The objectives of this study are to: 1) quantify the impact of uncertainty and sensitivity on 

biomass supply chains using Monte Carlo methods; 2) develop a novel cyberGIS approach to 

enable computing-intensive uncertainty and sensitivity analysis; and 3) establish interactive and 

user-friendly geodesign capabilities for decision makers to conduct biomass supply chain 

optimization under uncertainties. The proposed cyberGIS approach is implemented by providing 

decision support for county-level biomass supply chain optimization problems with a specific 

consideration of Miscanthus as the cellulosic biomass feedstock. The results of uncertainty and 

sensitivity analysis are discussed based on related case studies in the State of Illinois. 
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3.2 METHODS 

3.2.1 Uncertain Factors in Biomass Supply Chain Optimization 

A typical biomass provision system may include three stages: farms, centralized storage and 

preprocessing sites (CSPs), and biorefineries. The BioScope model was developed to optimize 

strategic planning decisions to support effective biomass feedstock provision for large-scale 

ethanol production (Lin et al., 2013). The model is a mixed integer linear programming (MILP) 

model that minimizes annual ethanol production costs.  Annual ethanol production costs (Z) 

consist of four components: biomass purchase costs (CB), transportation related costs (CT), CSP 

site related costs (CS), and biorefinery related costs (CE) (Eq. (3.1)), 

 
ESTB CCCCZMinimize   (3.1) 

The BioScope model requires inputs from biomass yield, cropland usage rate, transportation 

distances, transportation costs, that consist of distance variable transportation cost and fixed 

transportation cost for loading and unloading, logistics related losses due to handling, biomass-

ethanol conversion rate, and facility related costs. The detailed description of the objective function 

and constraints of the BioScope model are not provided in this study, but can be found in (Lin et 

al., 2013). By considering constraints from biomass supply, transportation, to biofuel production, 

the BioScope model aims to minimize annual ethanol production costs by optimizing the following 

decision variables: 

• The number, capacity, and location of supply sites 

• The number, capacity, and location of CSPs 

• The number, capacity, and location of biorefineries 

• Amount of raw biomass transported from supply sites to CSPs for preprocessing  
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• Amount of preprocessed biomass transported from CSPs to biorefinery for biofuel 

conversion  

The key uncertain factors associated within a typical three-stage biomass supply chain include 

biomass yield and supply, transportation costs, logistics related losses due to handling, and 

improvement of conversion efficiency (Figure 3.1).  Given the variations of weather and farmers’ 

participation, it is expected that biomass yield and cropland usage rate will vary. Transportation 

costs are largely dependent on the gasoline price that has changed significantly in the recent years. 

Biomass-ethanol conversion technologies are under active development, where the conversion rate 

varies with technology and should be expected to vary again with scale-up production. The 

variations of these uncertain factors would cause changes in the optimal design of the biomass 

provision system and associated production costs.  

 

Figure 3.1. Uncertainties involved in a three-stage biomass supply chain analysis. 

 

3.2.2 Monte Carlo based Uncertainty and Sensitivity Analysis 

Monte Carlo based methodologies have been widely used to perform uncertainty and sensitivity 

analysis when a model is too complex to be estimated analytically (Crosetto et al., 2000). Multiple 

model evaluations are simulated with randomly selected model inputs, and uncertainty and 
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sensitivity analysis can be further performed based on these evaluations. By sampling from a full 

range of possible inputs, contribution to the variation of outputs are evaluated using global 

sensitivity indices, including for example Sobol’s indices and related variants (Sobol, 1990; Sobol, 

2001; Saltelli, 2002; Saltelli et al., 2010), Fourier Amplitude Sensitivity Test (FAST) indices 

(Cukier et al., 1978), and extended FAST (Saltelli et al., 1999). A complete Monte Carlo based 

methodology, including sensitivity analysis consists of the following steps: 

1) Select a model and identify key input parameters for analysis; 

2) Use a sampling approach to generate scenarios from the selected inputs based on the given 

range and distribution; 

3) Run the model based on the input scenarios generated in Step 2; 

4) Perform uncertainty and sensitivity analysis using all the results of model output in Step 3. 

How to sample effectively from high dimensional parameter spaces to represent the entire study 

space is critical when considering uncertainties from multiple parameters simultaneously. A quasi-

random sequence was applied in this study because it was designed to generate samples as 

uniformly as possible over high dimensional spaces and it has been proved to outperform random 

numbers when using Monte Carlo based approaches for sampling the estimation of high 

dimensional integrals (Saltelli et al., 2010; Sobol and Kucherenko, 2005).  

The distribution of model output can be summarized statistically for uncertainty analysis. 

Variance-based decomposition was applied to conduct sensitivity analysis by quantifying the 

proportion of the output variance contributed by each input. Considering the model, 

 ),...,,,( 321 kXXXXfY   
(3.2) 
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where 𝑋𝑖  are independent inputs, and 𝑌  are scalar response variables. Variance-based 

decomposition can estimate how uncertainty in 𝑌 can be apportioned to different sources of inputs 

𝑋𝑖, 

  
  


i ji i ji lj

kijlij

i
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where 𝑉𝑖 is the proportion of output variance contributed by the ith model input (not be confused 

with the variance of input 𝑋𝑖) and it represents the sensitivity of 𝑌 to 𝑋𝑖, 𝑉𝑖𝑗 is the second order 

term showing the proportion of the output variance contributed by the interaction between the ith 

and jth inputs (similarly, not the covariance of input 𝑋𝑖  and 𝑋𝑗 ) , 𝑉𝑖𝑗𝑙  and 𝑉1…𝑘  have similar 

interpretations but with higher order of interactions, k is the total number of model inputs. The 

first-order (Eq. (3.4)) and total-effect sensitivity index (Eq. (3.5)) are often estimated in variance-

based sensitivity analysis. 
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where 𝑉−𝑖 is the proportion of the output variance contributed by all other model inputs and their 

interactions except 𝑋𝑖. The First-order index (S𝑖) measures the effect of varying 𝑋𝑖 alone, while 

the total-effect index (S𝑇𝑖) includes the effect of varying 𝑋𝑖 alone and with other input variables of 

any high order interactions.  

There are a number of methods to estimate S𝑖 and S𝑇𝑖 in literature (Sobol, 1990; Sobol, 2001; 

Saltelli et al., 2010; Jansen, 1999; Homma and Saltelli, 1996). Among all the variants, the first-

order sensitivity index in Saltelli et al. (2010) was selected in this study given that there is no clear 

conclusion drawn from literature that any first-order sensitivity index outperformed the others. 
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Jansen’s total effect (Jansen, 1999), on the other hand, requires the fewest model runs to be 

estimated but achieves competitive approximations compared with other estimators (Saltelli et al., 

2010), and therefore was selected in this study. Saltelli’s first-order and Jansen’s total-effect 

sensitivity index are denoted as 𝑆𝑖 and 𝑆𝑇𝑖 in this study (Eq. (3.6) and Eq. (3.7)).  
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(3.7) 

where A and B are matrices formed by two independent samples of model inputs, with each row 

indicating the sample index and each column representing the input variables. 𝑨𝑩
(𝑖)

 represents the 

derived matrix where column i is selected from matrix B and replaces the corresponding column 

in A.   (𝑩)j denotes j-th row of matrix B and 𝐟(𝑩)j can be evaluated to determine 𝑌 at row j as in 

Eq. (2). In this study, parameters in matrix A and B are generated based on Monte Carlo sampling 

methods with a quasi-random sequence. More details about matrices construction are provided in 

Appendix A.  According to Eq. (3.6) and (3.7), the model needs to be evaluated using all 

parameters in A, B and 𝑨𝑩
(𝑖)

, but 𝑩𝑨
(𝑖)

. Given k input parameters under analysis, 𝑨𝑩
(𝑖)

 need to be 

evaluated 𝑁 × 𝑘 times. As a result, the total number of model evaluation is 𝑁 × (𝑘 + 2), which 

includes 2N evaluations for A and B. As a common practice, the convergence of results requires 

the independent sampling size 𝑁 to be sufficiently large, for example 500 or higher as suggested 

by (Saltelli et al., 2010). 

The set of 𝑁 × (𝑘 + 2) scenarios only generates one first-order sensitivity index and one total-

effect sensitivity index. Therefore, the estimated sensitivity indices may vary from different 

sampling sets since the sampling procedure itself is stochastic. As it would be too costly to repeat 

the simulation of multiple sets of 𝑁 × (𝑘 + 2) scenarios, a better strategy adopted in this study is 
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to assess confidence intervals using bootstrapping with a resampling method (Efron and Tibshirani, 

1993). Specifically, 𝑁 samples used for the model simulation were resampled 100 times with 

replacement, and then form 100 extra sets of 𝑁 × (𝑘 + 2) scenarios. Since scenarios in 100 extra 

sets are all resampled, it is not necessary to conduct extra scenario simulation. In this way, 

distributions for 𝑆𝑖 and 𝑆𝑇𝑖, are obtained and the 95% confidence intervals are constructed with no 

extra computational cost. 

Cellulosic-based biomass supply chain systems undergo changes given the variations of natural 

and economic factors and the development of novel conversion technologies. To represent the 

uncertainties in a typical three-stage biomass supply chain (Figure 1), five key parameters were 

selected for this study. These includes biomass yield rate, cropland usage rate, raw biomass 

transportation cost, logistics loss rate, and biomass-ethanol conversion rate. Raw biomass 

transportation cost is referred to as the distance variable cost for transporting raw biomass. It is 

affected by bale density of raw biomass feedstocks. The description for each parameter is provided 

in Table 3.1.  

Based on historical data and the literature review, we identified the variation ranges of each 

parameter to better cover the uncertainty space for the biomass supply chain study (Table 3.1). 

Since no prior probability distribution information is available, a uniform distribution was assumed 

within the parameter space. By drawing 1,000 independent samples from the assumed parameter 

spaces of the five inputs, we ran the Monte Carlo process based on quasi-random sequence to 

generate 7,000 (i.e. 1,000×(5+2)) model scenarios for quantification of how various sources of 

uncertainty contribute to the optimal design of biomass supply chain. 
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Table 3.1 – The ranges of possible values of input parameters used in uncertainty 

analysis. 

Variable Description Lower Baseline Upper 

Yield rate* 
A coefficient term applied to adjust biomass 

yields predicted by MISCANMOD model in 

(Jain et al., 2010) 
0.75 (-25%) 1 

1.25 

(+25%) 

Cropland usage rate 
The percentage of land that can be potentially 

converted to grow bioenergy crop 
3% (-40%) 5% 

7% 

(+40%) 

Raw biomass 

transportation cost ** 

Variable costs that increase linearly with 

distance for transporting raw biomass (in 

$ Mg-1 km-1) 
0.12 (-20%) 0.15 

0.18 

(+20%) 

Logistics loss rate 
A coefficient term applied to storage and 

logistics loss related to handling 
3% (-40%) 5% 

7% 

(+40%) 

Conversion rate 

(gal/Mg)***  
The efficiency of biomass to bioethanol 

conversion 
66 (-15%) 78 

90 

(+15%) 

* The base case of county-level Miscanthus yield rate in Illinois is based on MISCANMOD model (Jain et al., 2010) 

** The range of raw biomass transportation cost is based on (Lin et al., 2013)  

***The range for biomass-ethanol conversion rate is based on (Humbird et al., 2011) and (Wyman, 2007) 
 

3.2.3. CyberGIS-BioScope Decision Support System 

CyberGIS-BioScope decision support system was developed to provide user-friendly BioScope 

and geospatial analytical capabilities while achieving scalable optimization problem solving and 

collaborative decision support (Lin et al., 2015). The architecture of the CyberGIS-BioScope 

system includes three major components: cyberinfrastructure, cyberGIS tools and services, and a 

web-based user interface (Hu et al., 2015). CyberGIS-BioScope exploits high-performance 

cyberinfrastructure resources to enable complex optimization model solving and computationally 

intensive simulations for uncertainty and sensitivity analysis through modular and open-service 

architecture (Figure 3.2).  This study has a particular focus on creating new services for uncertainty 

and sensitivity analysis. For example, a quasi-random sampling service was established to generate 

Monte Carlo based scenario configurations. Services for visual analytics were developed to 
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support the evaluation of uncertainty analysis results. Our system provides user-friendly interfaces 

that are capable of group decision support, scenario design, spatial query, and map-based 

visualization (Figure 3.3). A typical workflow for uncertainty and sensitivity analysis in 

CyberGIS-BioScope consists of the following steps: 

1. In the Scenario Design component, users specify the range and distribution of the uncertain 

model parameters from the user interface; 

2. Based on the information from Step 1, the quasi-random sampling service in the 

Uncertainty and Sensitivity Analysis Tool component is called to generate large number of 

Monte Carlo based scenario configurations; 

3. The Biomass Supply Chain Model and Solver component takes the scenario configurations 

and constructs batch jobs that are ready for submitting to the backend cyberinfrastructure; 

4. The Computation Management triggers the batch job submission and ensures as many as 

jobs are running in parallel given the high throughput capability of the backend; 

5. Model results are sent back to the Uncertainty and Sensitivity Analysis Tool component to 

perform uncertainty and sensitivity measurements once all the jobs are completed; 

6. The results of uncertainty and sensitivity analysis are presented as tables, charts as well as 

map visualizations on the user interface. 
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Figure 3.2 Architecture of CyberGIS-BioScope decision support system. 
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Figure 3.3 CyberGIS-BioScope user interface. 

 

3.3 DATA AND CASE STUDY 

To illustrate the application of the CyberGIS-BioScope decision support system, we performed 

a case study in the State of Illinois considering Miscanthus as the cellulosic biomass feedstock for 

county-level supply chain decision making. The CyberGIS-BioScope system manages county-

level Miscanthus yield (Jain et al., 2010), cost, and cropland area (USDA, the Census of 

Agriculture) as base case information. Each county was assumed to have at most one CSP site and 

one biorefinery facility, which were expected to be located at the county seat. Biomass was 

assumed to move by road transportation. The shortest distance between each pair of counties was 

calculated using the Open Source Routing Machine (OSRM) (Luxen and Vetter, 2011). For all 

scenario analyses, annual ethanol production demand is fixed at 160,000,000 gal, which is 

approximately the capacity of a large biorefinery. 
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The case study consists of two parts. For the first part (Section 3.4), we focused on uncertainty 

and sensitivity analysis of the biomass supply chain given various sources of uncertain parameters. 

By considering the whole variation range of uncertain parameters, we would like to see all the 

possibilities of optimal biomass supply chain configurations as well as the level of influence 

caused by these of uncertain parameters. In the second part (Section 3.5), we demonstrated three 

what-if scenario analyses to show interactive and exploratory decision support capabilities enabled 

by cyberGIS, in case of unexpected events occurring in the supply chain operations. The results of 

case study were further discussed in Section 3.6 with an emphasis on how the proposed cyberGIS 

approach could be used for biomass supply chain decision making in real applications. 

 

3.4 UNCERTAINTY AND SENSITIVITY ANALYSIS 

3.4.1 Base Case Analysis 

A base case was implemented with baseline values of Miscanthus yield rate, cropland usage, 

raw biomass transportation cost, logistic loss rate and biofuel conversion rate listed in Table 1. The 

results of base case show that the optimal ethanol production costs is $2.713 gal-1. Biorefinery 

related costs account for 49% of total costs, followed by biomass procurement cost (31%), CSP 

related cost (13%), and transportation cost (7%).  

 

3.4.2 Uncertainty Analysis 

According to the results of uncertainty analysis, the optimal ethanol production costs range from 

$2.30 to $3.43 gal-1 (Figure 3.4), with mean value $2.77 gal-1 and standard deviation $0.25 gal-1 

(Table 3.2). In addition to the variation on ethanol production costs, the optimized biomass supply 

chain configurations also vary with different scenarios. The number of supply counties varies from 
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7 to 38 counties, whereas the number of CSP facilities varies from 1 to 11. All the scenarios choose 

to build one centralized biorefinery to achieve maximum economies of scale. The changes of 

biomass yield and cropland usage rate would affect the amount of biomass supply from each 

county. Given a fixed biomass demand, the variance of county-level biomass availability changes 

the required biomass sourcing area, which would further affect biomass transportation distances 

and costs. The increased raw biomass transportation cost and logistics losses will increase the 

minimal ethanol production costs, as a result of increased overall transportation costs and biomass 

amount to be processed. 

 

Figure 3.4. Histogram of key optimized biomass supply chain decision variables of 7,000 

scenarios: (a) optimized ethanol production cost, ranging from $2.30 to $3.43 gal-1; (b) 

number of supply counties, most scenarios select 13-16 counties; (c) number of CSP sites, 

nearly 30% scenarios select one CSP facility; and (d) number of biorefinery sites, all 

scenarios select one site. 
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The optimal supply chain configurations for the base case includes one biorefinery located in 

Jefferson County and three CSPs located in Washington, Jefferson, and Hamilton County, 

respectively (Figure 3.5: Left). Among 7,000 possible scenarios, southern Illinois counties should 

be selected to build a biomass supply chain system (Figure 3.5). Jefferson County has the highest 

possibility, above 60%, to be selected for CSP and biorefinery facilities. The variations of optimal 

CSP facilities are higher than biorefinery facilities, suggested by a wider range of locations 

potentially selected (Figure 3.5: Right). Twenty supply counties were selected to be biomass 

suppliers among these scenarios. The most likely biomass supply counties are always located 

surrounding to these highly possible CSP counties, attributing to their competitive advantages on 

transportation distances. 

 

Table 3.2 The statistical summary of 7,000 scenario analyses 

 
Ethanol Production 

Costs ($ gal-1) 

Number of 

Suppliers 

Number of 

CSPs 

Number of 

Biorefineries 

Mean 2.7674 17.7 2.9 1 

Standard Deviation 0.2488 6.1 2.0 0 
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Figure 3.5. Biomass supply chain decisions in Illinois. Left: base case. Right: summary of 

7,000 scenarios. On the right map, the bar charts represent the probability of optimized 

locations selected for biomass supply counties (red bar), CSP facilities (green bar), and 

biorefinery (blue bar). 
 

To better understand the variation of biomass supply chain configurations, each input parameter 

listed in Table 3.1 was divided into sub-ranges and plotted against decision variables including the 

number of supply counties and the number of CSP facilities. As indicated by Fig. 3.6a, the number 

of supply counties shows a consistent variation pattern with changes of cropland usage rate. The 

associated box plots shows a narrowing of range and lower median value with increased cropland 

usage rate.  The number of supply counties is similarly affected by the change of biomass yield 

rate and conversion rate (Fig. 3.6b, e), but not by the change of logistics loss rate and raw biomass 

transportation cost (Fig. 3.6c, d). It is reasonable to draw the conclusion that high cropland usage 

rate, high biomass yield, and efficient conversion technology are more likely to reduce the number 

of supply counties. This conclusion makes sense since cropland usage rate and biomass yield rate 

are both related to the mount of biomass supply. When their values increase, sufficient biomass 
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supply can be secured and thus fewer biomass supply counties are required. Similarly, when 

biomass-ethanol conversion is more efficient, less biomass supply is required to meet the same 

bioethanol production demand. 

Raw biomass transportation cost and logistics loss rate have direct impacts on the numbers of 

CSP facilities, where the interquartile range and median value have a consistent variation pattern. 

The increased raw biomass transportation cost and logistics loss rate would increase the overall 

cost of moving biomass from supply counties to CSP facilities (Fig. 3.7c, d). The optimal supply 

chain configurations would suggest building more CSP facilities near biomass supply counties to 

reduce the logistics loss and transportation costs. Figs. 3.7c and 3.7d show an increasing trend of 

variation of the number of CSP facilities, which indicates that the number of CSP facilities is more 

stable when logistics loss rate or raw biomass transportation cost is low. The changes of cropland 

usage rate, biomass yield rate, and biomass-ethanol conversion rate do not impose direct impacts 

on the number of CSP facilities given the fact that their mean values are not significantly changed 

(Fig. 3.7a, b, e). However, increasing these three inputs could highly affect the biomass sourcing 

area and subsequently increase the average transportation distance. This indicates that CSP 

facilities are more severely affected by the transportation cost than transportation distance.  
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Figure 3.6. Boxplots of the probability distribution of the number of supply counties as 

related to (a) cropland usage rate, (b) biomass yield rate, (c) logistics loss rate, (d) raw 

biomass transportation cost, and (e) biomass-ethanol conversion rate. Boxes extend from 

25th to 75th percentile, middle horizontal line within the box indicates the median projection, 

and whiskers are at maximum 1.5 interquartile range. 
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Figure 3.7. Boxplots of the probability distribution of the number of CSP facilities as 

related to (a) cropland usage rate, (b) biomass yield rate, (c) logistics loss rate, (d) raw 

biomass transportation cost, and (e) biomass-ethanol conversion rate. Boxes extend from 

25th to 75th percentile, middle horizontal line within the box indicates the median projection, 

and whiskers are at maximum 1.5 interquartile range. 
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3.4.3 Local Sensitivity Analysis 

Considering the CSP and biorefinery to be located at Jefferson County, which is the highest 

possible location of the 7,000 scenarios, local sensitivity analysis has been conducted to quantify 

the changes of each individual input parameter on the optimal ethanol production costs when 

others are kept at the same constant level. The results show that the changes of the biomass-ethanol 

conversion rate have the most significant impact on ethanol production costs, where a 15% 

increase of the conversion rate would reduce production costs by 18% (Figure 3.8). The increased 

conversion rate by technology improvement would reduce the demand of biomass feedstock, 

which results in a decrease in both biomass procurement and transportation costs. Increased 

cropland usage rate and biomass yield would also reduce ethanol production costs. Both increased 

cropland usage rate and yield directly increase biomass availability in each supply county, which 

reduces the required biomass sourcing area and associated biomass transportation costs. Both 

increased transportation cost and logistics losses would result in higher production costs, where 

the changes of transportation cost impose higher impact and the changes of logistics loss rate only 

showed a slight impact.  

 

Figure 3.8 Local sensitivity analysis of the biomass supply chain optimization 
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3.4.4 Global Sensitivity Analysis 

The results of local sensitivity analysis only quantify the effect of individual uncertain factor by 

changing one at a time, without considering the integrated effect when multiple factors change 

simultaneously. Hence, we further conducted global sensitivity analysis of these factors with 

regard to their entire parameter distributions. First-order and total effect sensitivity indices are 

calculated for yield rate, cropland usage rate, raw biomass transportation cost, logistics loss rate 

and conversion rate (Table 3.3 and Table 3.4), based on Eq 3.6 and Eq 3.7. The empirical 

confidence intervals (CI) were estimated using bootstrap approach. One hundred bootstrap replicas 

of the sample have been collected at a given parameter sample size (N=1,000), and 95% CI of 

these estimates were reported.  

 

Table 3.3 First-order effect global sensitivity index with bootstrap confidence intervals 

Parameter 

Ethanol production cost Number of CSPs Number of supply counties 

  Rank Si 
Si with 

95% CI 
 Rank Si 

Si with 

95% CI 
Rank Si 

Si with 

95% CI 

Yield rate 4 0.008 
-0.04-

0.088 
4 0.004 

-0.118-

0.107 
2 0.351 

0.159-

0.542 

Cropland 

usage rate 
2 0.027 

0.003-

0.125 
5 0.000 

-0.125-

0.138 
1 0.444 

0.206-

0.657 

Raw biomass 

transportation 

cost 

3 0.013 
-0.021-

0.197 
1 0.285 

0.077-

0.456 
4 0.097 

-0.034-

0.206 

Logistics loss 

rate 
5 0.006 

-0.043-

0.083 
2 0.140 

0.007-

0.300 
5 0.034 

-0.04-

0.119 

Conversion 

rate 
1 0.863 

0.837-

0.958 
3 0.053 

-0.101-

0.173 
3 0.258 

0.104-

0.440 
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Table 3.4 Total effect global sensitivity index with bootstrap confidence intervals 

Parameter Ethanol production cost Number of CSPs Number of supply counties 

Rank STi STi with 

95% CI 

Rank STi STi with 

95% CI 

Rank STi STi with 

95% CI 

Yield rate 
4 0.070 0.007-

0.180 

4 0.532 0.483-

0.591 

2 0.422 0.374-

0.464 

Cropland 

usage rate 

2 0.096 0.023-

0.230 

5 0.504 0.440-

0.565 

1 0.502 0.432-

0.545 

Raw biomass 

transportation 

cost 

3 0.085 0.010-

0.195 

1 0.829 0.753-

0.913 

4 0.124 0.432-

0.545 

Logistics loss 

rate 

5 0.061 0.005-

0.087 

3 0.544 0.477-

0.601 

5 0.093 0.076-

0.107 

Conversion 

rate 

1 0.946 0.733-

0.985 

2 0.585 0.509-

0.645 

3 0.326 0.291-

0.359 

 

The results show that biomass-ethanol conversion rate is the dominating input for ethanol 

production costs, which agrees with the local sensitivity analysis. The conversion rate, however, 

does not impose a significant impact on the selection of biomass supply counties and CSP facilities. 

Raw biomass transportation cost and the cropland usage rate are the two most important factors to 

the selection of CSPs and supply counties, respectively. Logistics loss rate would not affect much 

on production costs and the selection of biomass supply counties, but it has an influential impact 

on the selection of CSP facilities. To better illustrate the rank and magnitude of the first-order and 

total-effect sensitivity indices, two grid color plots are provided (Figure 3.9).  
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Figure 3.9 The results of global sensitivity analysis, first-order sensitivity indices (a) and 

total-effects sensitivity indices (b), of five input factors (Yield Rate, Cropland Usage Rate, 

Raw biomass transportation cost, Logistic Loss Rate and Conversion Rate) with respect to the 

biomass supply chain optimization objective – Minimized Ethanol Production Costs and two 

decision variables – Number of CSP Facilities and Number of Supply Counties. 

 

By comparing the difference between first-order and total-effect indices, the interaction among 

inputs is found to be more obvious for the number of CSPs and number of supply counties. The 

impact of raw biomass transportation cost on facility location selection was increased from 0.285 

of its first-order sensitivity index to 0.829 of its total-effect sensitivity index. This indicates that 

raw biomass transportation cost itself accounts for 28.5% of the variation of number of CSPs in 

the optimization model; but it accounts for 82.9% of the variation by considering the changes along 

with other inputs.  

 

3.5 WHAT-IF SCENARIO ANALYSIS 

The CyberGIS-BioScope decision support system is enabled by geodesign features to support 

analysis that is capable of responding to changes in the system. Given an established biomass 

supply chain in Illinois from the base case (Figure 3.5: Left), we performed what-if scenario 

analysis to help decision makers to evaluate decisions in case unexpected events occur in future 
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supply chain operations. Scenarios were evaluated by considering changes in biomass yield, raw 

biomass transportation cost, and biofuel demand. 

 

3.5.1 Changes in Biomass Yield 

In the management of biomass supply chains, insufficient biomass supply often occurs as the 

results of unexpected weather and pest disease. We assumed that the biomass yield in southern 

Illinois region is reduced by 15% due to weather or other factors. If we directly rerun the 

optimization model with the current available supply counties and biomass processing sites, no 

solution could be found due to the insufficient biomass supply to meet the demand. Thus, we 

allowed other candidate counties for biomass supply while maintaining the same demand. The 

results show that two counties (Effingham and Union) are selected as additional biomass suppliers 

(Figure 3.10). This change increases biomass transportation and procurement costs, because of a 

larger biomass sourcing area, and results in a $0.01 gal-1 increase in ethanol production costs (Table 

3.5). 
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Figure 3.10 Biomass supply chain decisions in Illinois. Left: 15% decrease of biomass 

availability in southern Illinois. Right: base case. 

 

3.5.2 Changes in Raw Biomass Transportation Cost 

The change of raw biomass transportation cost could also change the optimal biomass supply 

chain configurations, especially considering the change of transportation cost for delivering raw 

biomass to CSP facilities. The solutions usually rely on how the optimization balances the trade-

off between preprocessing biomass locally through building additional nearby CSP facilities or 

delivering them to a remote CSP facility with high raw biomass transportation cost. To evaluate 

this scenario, we assumed that the raw biomass transportation cost is increased by 20% compared 

to the base case. We regenerated the solutions in two cases: 1) with and 2) without building 

additional CSP facilities. The scenario without building additional CSPs generated the same 

pattern (Figure 3.11: Right) as that from the base case, but with an increase in the transportation 

cost from $0.35 gal-1 to $0.396 gal-1 (Table 5). The scenario with considering additional CSP 
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facilities generated a slightly different pattern by recommending a new CSP facility in Clinton 

County (Figure 3.11: Left). Although this decision leads to an increase of CSP cost from $0.184 

gal-1 to $0.191 gal-1, the transportation cost only increase from $0.35 gal-1 to $0.388 gal-1, resulting 

in a more cost-efficient solution compared to the case without considering additional CSPs (Table 

5). 

 

Figure 3.11. Biomass supply chain decisions in Illinois. Left: raw biomass transportation 

cost increases by 20% with considering new CSP facilities. Right: raw biomass 

transportation cost increases by 20% without considering new CSPs.   

 

3.5.3 Changes in Biofuel Demand 

As required by the renewable fuel standard, the demand for cellulosic biofuel will be increasing 

in the future. To demonstrate a representative case study, we assumed that annual ethanol demand 

increases from 160,000,000 gal in the base case to 200,000,000 gal. Meanwhile, considering 

potential government policies to incentivize more growth of bioenergy crops, we increased the 

cropland usage rate up to 6%. Similar to the previous case study, we designed two scenarios to 
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determine the location of supplemental biomass supply counties 1) with, and 2) without building 

additional CSP facilities. 

Figure 3.12 shows the two decision results suggested by the cyberGIS system respectively. Both 

cases suggest adding supplemental biomass supplier only in Union County. Additional CSP 

facility in Clinton is selected when additional CSPs are considered. By further examining the 

ethanol production costs, we found that the case considering additional CSP facilities ($2.672 gal-

1) is more cost-efficient compared to the case without considering additional CSP facilities ($2.674 

gal-1) (Table 3.5). Meanwhile, the total ethanol production costs (in both cases) are less than that 

of the base case ($2.713 gal-1), indicating that the ethanol production costs can be reduced with the 

increase in ethanol demand.  

 

 

Figure 3.12 Biomass supply chain decisions in Illinois. Left: ethanol demand increases to 

200,000,000 gal/y, cropland usage rate increases to 6%, but no additional CSP facilities are 

considered. Right: ethanol demand increases to 200,000,000 gal/y, cropland usage rate 

increases to 6%, with additional CSP facilities considered. 
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Table 3.5 Miscanthus supply chain cost summary in different scenarios (unit in $/gal) 

Scenarios 
Procurement 

Cost 

Transportation 

Cost 
CSP Cost 

Biorefinery 

Cost 
Total Cost 

Base case 0.847 0.35 0.184 1.331 2.713 

Reduced biomass yield 0.848 0.371 0.184 1.331 2.723 

Increased raw biomass 

transportation cost 
0.847 0.396 0.184 1.331 2.758 

Increased raw biomass 

transportation cost, 

allowing additional CSPs 

0.847 0.388 0.191 1.331 2.757 

Increased demand 0.846 0.358 0.182 1.288 2.674 

Increased demand, 

allowing additional CSPs 
0.846 0.354 0.184 1.288 2.672 

 

3.6 DISCUSSION 

We started with the argument that uncertainty is associated with biomass supply chain 

optimization models, and that applying uncertainty and sensitivity analysis, based on Monte Carlo 

methods, leads to a better understanding of how and at what level various sources of uncertainty 

would impact on optimal ethanol production costs and supply chain configurations. The 

implementation of uncertainty and sensitivity analysis is powered by cyberGIS capabilities so that 

complex biomass supply chain models, computationally intensive uncertainty analysis, and 

visualization of model results are presented as an integrated spatial decision support system to 

decision makers. The results of uncertainty analysis are presented as distributions of model outputs, 

such as ethanol production costs and supply chain configurations, including the number of supply 

counties, storage facilities, or biorefineries (Section 3.4.2). Propagation of uncertainty can be 

quantified by basic measures of the resulting distributions such as range, shape, skew, and standard 

deviation. 
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The implementation of what-if scenario analysis aims to evaluate uncertainty from a different 

perspective. The results of what-if scenario analysis are more focused on individual decisions that 

compared to the base case. We considered three scenarios in which biomass yield, transportation 

cost, and biofuel demand are subject to change after the initial configurations of a biomass supply 

chain is implemented. In application, depending on the interest of decision makers, more scenarios 

can be included in what-if scenario analysis to explore the impact on cost-effective biomass supply 

chains. 

Ultimately, our approach aims to provide decision support on where to make a change in a 

biomass supply chain given the presence of uncertainty in system inputs. For decision makers, two 

factors need to be considered when prioritizing where to make a change. First, we need to quantify 

how much influence the uncertain input has on the result. Second, we need to consider the ability 

to make a change in any given situation. Ideally we have the ability to make a change and the 

change will be influential. In some cases, we actually only have varying degrees of one or the other. 

For example, the results of global and local sensitivity analysis in our case study indicated that the 

most influential factor to ethanol production costs is biomass-ethanol conversion rate, followed by 

cropland usage rate, raw biomass transportation cost, biomass yield rate and logistics loss rate with 

the least (Table 3.3 and Table 3.4). By only considering the influence, most investments should go 

to technological inventions, which improve the biomass-ethanol conversion rate. However, 

improving the efficiency of biomass-ethanol conversion might be a long-term process. Therefore, 

investments on increasing the biomass yield, exploring more cropland for bioenergy crops, or 

reducing the logistics loss rate might be better strategies in the short term. 



75 

 

To further understand the impact of potential investments, the results of uncertainty and 

sensitivity analysis are extended to conduct a risk analysis on the optimal ethanol production costs. 

Three investment strategies are assumed to reduce ethanol production costs: 

• Strategy 1: Improve the range of biomass-ethanol conversion rate from 66-90 Gal/Mg to 

78-90 Gal/Mg. 

• Strategy 2: Reduce the range of logistic loss rate from 3%-7% to 3%-4%. 

• Strategy 3: Improve the range of biomass yield rate from 0.75-1.25 to 1.2-1.25 and the 

range of cropland usage rate from 3%-7% to 6%-7%. 

Strategy 1 represents the plan to invest on improving the biomass-ethanol conversion rate. 

Investment in reducing the logistics loss rate, which is the least influential parameter reported by 

sensitivity analysis, is considered in Strategy 2. In Strategy 3, we assumed investments are spent 

on improving biomass yield and cropland usage rate. There is a huge potential in genetics and 

breeding to improve the yield of bioenergy crops, especially for Miscanthus which has not been 

studied extensively. Meanwhile, potential incentives from government policies may increase 

cropland usage rate so that more agricultural land can be converted for growing bioenergy crops. 

We selected these three strategies because they are representative to show the impact of different 

investment strategies on the distribution of optimal ethanol production costs. 

For the purpose of comparison, we used density curves to examine the distributions of ethanol 

production costs (Figure 3.13). The red density curve indicates the original distribution of ethanol 

production costs, which is directly converted from the histogram in Figure 2.4a. By comparison, 

it is obvious that higher biomass-ethanol conversion rate (green) will significantly reduce the mean 

and variance of ethanol production costs. If the ability to improve the conversion rate is limited, 

increasing the cropland usage rate and the biomass yield rate (purple) appears to be a better 
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investment strategy than reducing the logistics loss rate (blue) given their similar variance but 

smaller mean value in the former. Oftentimes, the ability to make a change is known to decision 

makers. The information they need to reduce the risk is whether the change will be influential and 

the robustness of the influence. In application, even if you could create conditions favoring a 

certain strategy, it may not be that influential to your final outcome—and therefore may not be a 

good strategy. 

 

Figure 3.13 –Distribution of optimized bioethanol production cost. Dashed line 

represents the mean of each distribution. 

 

3.7 CONCLUSION AND FUTURE WORK 

In the biomass supply chain design and operational planning, model-based approaches are 

sometimes unreliable when most of the data are fraught with uncertainties. Uncertainty and 

sensitivity analysis techniques offer an accessible treatment via the quantification of uncertainty 

propagations and sensitivity measurement. This paper describes a cyberGIS-enabled decision 

support system that provides innovative analytical and computational capabilities for optimizing 

biomass supply chains under uncertainties. The system serves as a new integrated approach to data 

management, mathematical modeling, uncertainty and sensitivity analysis, what-if scenario 

analysis, and result representation and visualization for the biomass supply chain optimization. 

Leveraging high-performance computing capabilities provisioned by advanced cyberinfrastructure, 
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this cyberGIS approach enables Monte Carlo based uncertainty and sensitivity analysis for 

optimization modeling by resolving significant computational intensity. Furthermore, the 

approach supports dynamic management decisions through what-if scenario analysis responding 

to uncertain situations in supply chain operations. 

In the case study of optimizing Miscanthus supply chain in Illinois, United States, a Monte Carlo 

based optimization modeling analysis with 7,000 scenarios has been conducted to quantify the 

uncertainty and sensitivity impact of various input factors on ethanol production costs and optimal 

biomass supply chain configurations. The results from uncertainty analysis showed that the 

minimal ethanol production costs range from $2.30 to $3.43 gal-1. The mean production costs are 

$2.77 gal-1 with a standard deviation of $0.25 gal-1. The sensitivity analysis showed that biomass-

ethanol conversion rate is the most influential factor to ethanol production costs as expected, which 

indicates that the development of conversion technology is critical in reducing cellulosic ethanol 

production costs. The results also showed that the optimal biomass supply chain infrastructure is 

sensitive to changes in biomass yield, transportation cost, and logistics loss rate.  For the same 

system demand, higher county-level biomass availability would require fewer supply sites, 

whereas higher transportation cost and logistics loss rate would result in more centralized storage 

and preprocessing facilities. 

The proposed cyberGIS approach bridges the gaps between research, development, and 

implementation of biomass supply chain optimization under uncertainties. This approach 

generalizes and streamlines data management, computation, and visualization components, so it is 

expected to work on biomass supply chain optimization applications customized by different 

model and data inputs. Future work will seek to further understand the complexity and 

sustainability of biomass-biofuel supply systems. Multi-objective optimization with economic, 
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environmental, and social measurements is desirable to be incorporated into the decision support 

system. Another opportunity is to combine models that are at finer scale of biomass supply chain 

management and implement operational level decision making. We plan to incorporate optimal 

control of such processes as harvest scheduling, inventory planning, and transportation 

management into the current cyberGIS-based decision support system. 
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CHAPTER 4 

BIOMASS SUPPLY CHAIN OPTIMIZATION WITH 

UNCERTAIN BIOMASS AVAILABILITY 

This chapter first describes a Bayesian Hierarchical Model (BHM) to quantify the biomass 

supply uncertainty caused by weather dynamics and then proposes a stochastic programming 

model to account for such uncertainty in the optimization of biomass feedstock provision. 

Compared to alternative statistical models that address the relationship between biomass yield and 

weather, the BHM model captures the variation of biomass yields that can be explained by weather 

change with the consideration of spatiotemporal non-stationarity. The results of biomass yield 

analysis are then used for scenario constructions in a stochastic programming model to provide 

decision support for strategic level biomass supply chain development considering the 

uncertainties of biomass supply. 

This chapter cannot be completed without successful team support from Drs. Tao Lin, Bo Li, 

and Shaowen Wang. Mr. Hu led the overall research design, methodology development, case study 

analysis, and manuscript writing. Dr. Lin participated in the overall research design and provided 

insightful suggestions for optimization modeling part. Dr. Li contributed particularly to the 

statistical modeling of Bayesian Hierarchical methods. Dr. Wang participated in the overall 

research design and results discussions, and led the draft revision. The content of this chapter is 

based on a manuscript submitted to The Annals of the American Association of Geographers, with 

the expansion of integration with stochastic optimization method, updated case study design and 

result discussions.  

Abstract. Spatial optimization is an interdisciplinary field that integrates spatial data analysis 

and modeling, operation research, and domain specific knowledge to enable geospatial problem 
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solving and decision-making. In the real world, spatial optimization is subject to uncertainty given 

the nature of spatiotemporal data and associated modeling approaches. Stochastic programming 

(SP) is a widely adopted approach to account for uncertain factors in optimization modeling. 

However, spatiotemporal characteristics of uncertainty are not well understood while developing 

SP approaches. 

In this study, we present an integrated approach that captures spatiotemporal data uncertainty 

in a supply chain optimization problem. Based on hierarchical Bayesian modeling that accounts 

for varying spatial and temporal relationships between outcomes and covariates, this novel 

approach captures spatiotemporally explicit uncertainty associated within the data as opposed to 

the more traditional approach without considering spatial and/or temporal relationships when 

constructing discrete scenarios analysis in SP. 

We focus on a bioenergy supply chain problem to optimize supply chain infrastructure 

configurations, biomass feedstock (cornstover) provision and logistics operations. Corn yield, 

largely impacted by weather dynamics, are considered as a major source of uncertainty in the 

optimization of biomass supply chain.  

 

4.1 INTRODUCTION 

Biomass supply chains are complex systems that consist of four major subsystems: production, 

processing and manufacturing, distribution, and utilization (Awudu and Zhang, 2012). Biomass 

production subsystem is spatially and temporally explicit and is sensitive to changes in climate 

and weather patterns. Fluctuations in agricultural productivity impose significant challenges on 

the design and operations of integrated biomass supply chain systems. As a result, a key challenge 
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for biomass supply chain modeling is to incorporate uncertainties of agricultural production across 

space and time to support planning and management decisions.  

As a major uncertainty of biomass supply chain, biomass yield varies annually as a result of 

weather dynamics for both agricultural residuals and perennial energy crops. The temporal changes 

of biomass yield would significantly affect the optimal supply chain configurations, especially 

considering a life cycle of biorefinery facility with more than 10 years. Therefore, understanding 

the effects of weather variability on biomass yields is central to design robust biomass supply chain 

management strategies (Lobell and Burke 2010; Olesen et al. 2011).  

Two main modeling approaches have been extensively studied to quantitatively understand the 

relationship between biomass yields and weather dynamics, namely process-based models and 

statistical models. Process-based models are also referred to as biomass/crop simulation models. 

In addition to weather variables, this type of models, for example, DSSAT (Jones et al. 2003), 

often require various input data such as cultivar, soil conditions, and farm management that are 

unavailable or expensive to obtain for biomass yield studies at large geographic scales. 

Alternatively, statistical models have been developed and tested to quantify the relationship 

between biomass yields and weather (Schlenker and Roberts 2009; Lobell and Burke 2010; Bornn 

and Zidek 2012; Ray et al. 2015; McGrath et al. 2015). However, two major issues are often 

discussed in existing regression methods for biomass yield estimations. First, the impact of weather 

on biomass yields might follow a spatially non-stationary process, i.e., regression coefficients do 

not necessarily remain fixed from location to location, especially when a study area covers a 

variety of spatially heterogeneous landscapes, soil properties or agronomic practices (Sharma et 

al. 2011; Cai et al. 2014). Second, the error terms are spatially correlated, which violates the 

assumption of independent and normally distributed residuals in linear regression models. This 
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spatial dependence of residuals may indicate that the model developed is inadequate to fully 

explain the data, thus may result in poor model fitting and less accurate predictions (Hoeting 2009; 

Jiang et al. 2009; Bornn and Zidek 2012). 

One of the major reasons for spatially non-stationary processes can be explained by the fact that 

relationships between the outcomes and covariates are intrinsically different across space 

(Fortheringham et al. 1998). For example, the impact of precipitation on biomass yield is perhaps 

much stronger for rain-fed regions compared to irrigated regions. Similarly, surface characteristics 

that are varying over space such as soil moisture could respond to precipitation differently even 

with the same weather conditions, which may result in different effects on biomass yield. 

Therefore, the stationary coefficients (i.e. intercept and slopes) of the classical multiple linear 

regression models present a challenge in describing the relationships between biomass yields and 

weather factors on large spatial scales.  

Three major approaches for modeling spatially non-stationary processes are commonly used in 

past studies: geographically weighted regression (GWR) model (Brunsdon et al. 1996; 

Fotheringham et al. 1998; Brunsdon et al. 2001; Fotheringham et al. 2002), Bayesian spatially-

varying coefficients (SVC) model (Gelfand et al. 2003; Banerjee et al. 2014), and Moran’s 

eigenvector-based spatial regression approach which is often referred to as eigenvector spatial 

filtering (ESF: Griffith, 2008; Murakami et al. 2017). GWR, SVC and ESF are all capable of 

estimating spatially varying associations between outcomes and covariates but their 

implementations are different. In GWR, the estimated coefficient surface varies from location to 

location with smoothness determined by a kernel function and bandwidth. In SVC, the overall 

mean of coefficients is estimated first and then local deviations from the mean are estimated by 

applying a spatial random effect such as conditional autoregressive (CAR) models (Waller et al. 
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2007). Because prior information such as the model for spatial random effects can be included in 

the model, SVC models fit nicely into the Bayesian hierarchical spatial modeling framework. In 

terms of handling the spatial dependency or similarity between neighbors inherent in data, GWR 

attempts to capture most similarity using spatially varying coefficients and then simply assume 

errors to be independent (Fotheringham et al. 2002), whereas SVC directly models the 

autocorrelation by decomposing the residuals into structured random effects and white noise 

(Waller et al. 2007). Therefore, both GWR and SVC mitigate the issue of spatial autocorrelation 

without introducing common spatial regression techniques such as spatial lag and error models 

(Anselin 2013), though the degree of mitigation is limited since that these two methods are initially 

developed for different purposes (Basile et al. 2014). Unlike GWR and SVC, the ESF-based 

approach allows for controlling the number of parameters (i.e., model complexity) through 

variable selection. However, both Helbich and Griffith (2016) and Murakami et al. (2017) 

demonstrated the instability of the ESF-based approach where it can suffer just as basic GWR does 

with respect to limitations of multicollinearity between the local parameter estimates and the 

assumption of same degree of spatial smoothness. Therefore, ESF-based methods and derived 

methods with temporal dimension are not further discussed in the context of this thesis.  

 For both GWR and SVC models, a new problem arises when spatiotemporal data (also referred 

to as panel data in literature) are used – the local relationship between outcomes and covariates 

may not be time-invariant (Gelfand et al. 2003; Choi et al. 2012). When applying to regression 

modeling of crop yields, it means that the associations between crop yields and weather may be 

subject to change over space and time. Therefore, there is a need for appropriate space-time 

statistical models to be developed (An et al. 2015). 
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Research efforts on modeling the spatially or spatiotemporally varying association between crop 

yields and weather factors have been pursued with GWR models. Sharma et al. (2011) employed 

the GWR model to account for the impact of the spatial non-stationarity relationship between crop 

yields and precipitation for ninety-three counties in Nebraska. Their results showed that the 

performance of GWR in estimating yield for both corn and soybean under irrigated and rain-fed 

conditions was significantly better than the performance of ordinary least square (OLS) models. 

Cai et al. (2014) expanded the idea of GWR to geographically weighted panel regression (GWPR) 

to study crop yield response to weather variations for 958 US counties. According to their results, 

precipitation effects are sensitive to the existence of irrigation systems. Although the spatial non-

stationary relationship between crop yields and weather are considered in their GWPR model, they 

assumed that this relationship remains fixed over time, which may need further investigation. 

Many biofuels supply chain optimization studies have been conducted to minimize production 

costs or maximize profits using deterministic modeling (Rentizelas et al., 2009; Huang et al., 2010; 

You and Wang, 2011; Lin et al., 2013; 2014). Considering the changes of biomass supply, demand, 

and fuel prices, uncertainty and sensitivity analyses have been conducted using deterministic 

optimization models to quantify the impact of input parameters on optimal bioenergy supply chain 

(Kim et al., 2011; Hu et al., 2017). Recently, several stochastic optimization models have been 

developed to quantify the impact of uncertainties on optimal design and operations of biomass 

supply chain (Dal-Mas et al., 2011; Chen and Fan; 2012; Awudu and Zhang, 2012; Tong et al., 

2013). Most studies aim for single year optimization, assuming the constant or average input 

parameters such as biomass supply and biofuel demands. Annual changes of biomass supply in a 

long-term production life cycle of biorefinery operation have not been well studied and this would 

affect strategic planning decisions such as optimal facility capacity and location. The long-term 



85 

 

historical pattern of biomass yield with spatial specific information is critical to quantify spatial 

and temporal changes in biomass supplies. 

This study aims to develop a two-stage stochastic optimization model to provide decision 

support for strategic level biomass supply chain development considering the uncertainties of 

biomass supply in a long planning period. Particularly, a novel spatiotemporally varying 

coefficients (STVC) model is proposed to account for non-stationary responses of biomass yields 

to weather variables for the purpose of constructing scenarios in the stochastic programming model 

formulation. The STVC model examines the spatiotemporal varying relationship between corn 

yields and weather using county-level data in the Midwestern US for the period of 1981 to 2015.  

The rest of the chapter is organized as follows. First, we introduce methodological foundations for 

relevant models, including the proposed STVC model and the development of the two-stage 

stochastic programming model in details. Next, we combine two models to study the variability of 

corn yields in response to weather covariates and quantify the impact of uncertainties of biomass 

supply on optimal biomass supply chain configurations. The results of the model comparison are 

discussed accordingly. Finally, we conclude by summarizing our research findings and future 

work. 

 

4.2 METHODLOGY 

4.2.1 Geographical and Temporal Weighted Regression (GTWR) Model  

Starting from the basic ordinary least squares (OLS) regression model for spatial data, the 

dependent variable is modeled as a linear function of a set of independent variables plus errors, 
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)()()( s

T

ssy  βx , (4.1) 

where 
)(sy  represents the outcome observed at location s,  )(sx is a set of p covariates including a 

column of 1’s for the intercept, β is a 1p vector of coefficients which can be estimated by OLS 

method, and 
)(s  is white noise error. In the OLS model, the residuals are assumed to be 

independent and normally distributed, and represent vertical distances between the actual values 

of the dependent variable and their mean values. The estimates for the coefficients are chosen to 

minimize the sum of squared residuals (SSR). However, when OLS is applied to spatial data, the 

residuals are often correlated rather than being independent, thus more advanced methods are 

required to deal with the autocorrelation in the residuals. 

When spatial data are temporally referenced, we have spatiotemporal data to be considered in 

regression analysis. Another term – panel data – is often used to describe such data in econometrics. 

Regression models developed for panel data are referred to as panel regression models. Compared 

to OLS, a panel regression model is capable of capturing the uniqueness of spatial effects.  For 

example, a basic panel regression that incorporates spatial heterogeneity can be represented as: 

),()(),(),( tss

T

tsts αy  βx ,    (4.2) 

where 
),( tsy  represents the dependent variable at location s in time t, ),( tsx is a set of covariates 

specific to location and time, 
)(sα  is a site-specific term for controlling time-invariant spatial 

heterogeneity. There are two distinct approaches to modeling this site-specific term (Hsiao 2014). 

One is to treat 
)(sα  as a fixed but unknown parameter to estimate. In this case, equation    (4.2) is 

known as a fixed effects model. Another approach is to treat 
)(sα as drawn from an unknown 

population and thus random variables. In this case, equation    (4.2) is known as a random effects 

model.  
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Although a spatial term is introduced in the panel regression model such as in Equation    (4.2) 

to capture spatial heterogeneity, the constant coefficient vector β  indicates a stationary relationship 

between the independent and dependent variables from location to location. However, for some 

applications this stationary assumption may not be appropriate. The idea of geographically 

weighted regression (GWR) is to deal with the situations where the impact of covariates on the 

outcome varies over spatial locations (Fotheringham et al. 1998; Brunsdon et al. 2001; 

Fotheringham et al. 2002). Compared to OLS and panel regression, GWR allows for spatially 

varying coefficients as in the following equation: 

)()()()( ss

T

ssy  βx  (4.3) 

where 
)(sβ is now a 1p vector of coefficients at location s, and it can be estimated by:  

YWXXWXβ )(])([ˆ 1

)( ss TT

s

  (4.4) 

where Y is the 1n vector of dependent variable values; X is an pn matrix of covariates in the 

form of 
TT

n

TT ],...,;[ )()1()1( xxx ; and )(sW is an nn  diagonal weight matrix. )(sW  can be either a 

discrete weight matrix where each entry is set to be one if its corresponding region is near location 

s and zero otherwise, or a continuous weight matrix based on a distance-decay function which 

places more weight on observations that are closer to location s.  

When dealing with data that are both spatially and temporally referenced, GWR can be further 

expanded to geographical and temporal weighted regression (GTWR). The major difference lies 

in the definition of weight matrix which should capture both spatial and temporal effects from 

observations nearby in either space or time (Huang et al. 2010; Wu et al. 2014; Fotheringham et 

al. 2015). With spatial and temporal non-stationary effects combined, the new coefficients at 

location s and time t can be estimated by: 
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1

( , )
ˆ [ ( , ) ] ( , )T T

s t s t s tβ X W X X W Y  (4.5) 

where 1 1( , ) ( , ,..., )ns t diag   W  is the and n is the number of observations. Here the diagonal 

elements are space-time distance decay function and therefore, defining and measuring the so-

called closeness in a space–time coordinate system is a key problem in the GTWR model. 

 

4.2.2 Bayesian Spatiotemporally Varying Coefficients (STVC) Model  

Similar as the GWR model defined in Equation (4.3), Gelfand et al. (2003) developed a spatially 

varying coefficient model as follows: 

)()()()()( ss

T

s

T

ssy  βxβx  (4.6) 

where  
)(sβ  is a second-order stationary mean zero Gaussian process independent of the white noise 

error process. Note that if we combineβ  and 
)(sβ , then Equation (4.6) will be exactly the same as 

Equation (4.3) for the GWR model. However, the formulation in (4.6) allows decomposing the 

total effects of covariates into an overall mean effect at global level, denoted by β , and a local 

deviation at location s to the overall mean effect, denoted by 
)(sβ . A popular choice for modeling 

the spatial random process 
)(sβ  (Waller et al. 2007; Ozaki et al. 2008; Dong et al. 2016) is an 

intrinsic conditional autoregressive (ICAR) model. ICAR models have been widely used for the 

data that are aggregated over an area, because they allow the statistical inference at a particular 

region to borrow strength from adjacent and nearby regions. Specifically, the model for 
)(sβ

governed by ICAR is given as: 

 ),
1

(~|

2

)()()(

s

si

s

sisi
mm

N s


   ,     i = 1,2,…., p (4.7) 
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where )(si  is the ith element in 
)(sβ , s is the set of neighbors of region s, sm is the cardinality of 

the set  s or the number of neighbors,  and 
2

s
 controls the magnitude of spatial variation.  A 

constraint of 0
)(


s
si is usually applied to ensure the identifiability of the parameters. This 

structure is essentially a multivariate Gaussian distribution with a particular covariance matrix. 

The SVC is typically constructed in a Bayesian hierarchical modeling (BHM) framework with 

Equations (4.6) and (4.7) constituting the first and the second level of the BHM. Given priors for 

all the unknown parameters in (4.6) and (4.7) the hierarchy is closed. Then Markov chain Monte 

Carlo (MCMC) algorithms are used to perform parameter estimation and draw statistical inference. 

Bayesian formulations of ICAR were discussed with details by Besag et al. (1991) and Besag and 

Kooperburg (1995). A nice feature of the BHM is that we can easily estimate the uncertainty along 

with the point estimates.  

We extend the SVC model in Gelfand et al. (2003) for spatiotemporal data. The innovation of 

this extension is to allow the spatially varying coefficient to change over time. Accordingly, our 

model is expressed as: 

),(),(),(),(),( tsts

T

ts

T

tstsy  βxβx  (4.8) 

where each element in 
),( tsβ is further decomposed as: 

)()(),( tsts αββ   (4.9) 

where 
)(sβ  represents the spatial random effects that can take the form defined in Equation (4.7), 

and 
)(tα represents the temporal random effects that can be modelled by a random walk or an 

autoregressive process. For example, elements in term 
)(tα  can be defined as the random walk 

process: 
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)()1()( tititi    ,    i = 1,2,3,…., p (4.10) 

where 
)(ti is white noise, and 0)0( i . The explanation behind a random walk process is that the 

current value of the random variable is determined by the past value plus an independent error 

term. As pointed out by Gelfand et al. (2003), Equation (4.9) is not the only way to decompose the 

spatiotemporally varying coefficients. More sophisticated forms of nested spatiotemporal 

relationships could be specified. In this study, we will focus on the process defined in Equation 

(4.9) where the spatial non-stationarity is captured by the ICAR model defined in Equation (4.7) 

and the temporal non-stationarity is captured by the random walk defined in Equation (4.10).  

4.2.3 Two-stage Stochastic Biomass Supply Chain Optimization Model 

The two-stage stochastic programming biomass supply chain optimization model is developed 

based on the BioScope model proposed by Lin et al. in (2013) by considering biomass supply 

variations. The stochastic BioScope model is to minimize the expected overall costs of an 

integrated biomass supply chain system over the entire planning period considering different 

biomass supply scenarios. The decisions that are optimized by the model include: 1) optimal 

numbers, locations, and capacities of centralized storage and preprocessing (CSP) and biorefinery 

facilities; 2) optimal purchase amount of biomass supply from each supplier each year; 3) optimal 

biomass transportation flow patterns each year. 

The stochastic BioScope model is a mixed integer linear programming (MILP) model that 

was developed and solved using the Gurobi (http://www.gurobi.com/) optimizer. A list of set 

names, decision variables, and parameters used in the model is provided in “Nomenclature” in 

Appendix B. In the stochastic BioScope model, all the decisions related to long-term supply chain 

configurations are considered the first-stage decision variables that cannot be changed throughout 

the planning period for any scenario. They include the numbers, locations, and capacities of CSP 

http://www.gurobi.com/


91 

 

and biorefinery facilities. Biomass yield varies each year, and changes in biomass yield would 

affect biomass availability and procurement costs. Given the changes in biomass availability and 

costs, biomass procurement and associated transportation patterns are the second-stage decision 

variables. They can vary among different years in different scenarios. 

For this stochastic optimization model, the overall expected biomass-ethanol production costs 

(𝑍) are comprised of four costs: biomass purchase costs (𝐶𝐵
𝑠), transportation related costs (𝐶𝑀

𝑠 ), 

CSP related costs (𝐶𝑆 ), and biorefinery related costs (𝐶𝐸 ) (Eq. 4.11). CSP and biorefinery related 

costs are related to first-level decision variables that would not be changed in different scenarios, 

while biomass purchase and transportation costs are related to second-level decision variables that 

would change in different scenarios with its expected probability density (𝜌𝑠).  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 =  ∑𝜌𝑠 × (𝐶𝐵
𝑠 + 𝐶𝑀

𝑠

𝑠

) + 𝐶𝑆 + 𝐶𝐸  (4.11) 

Biomass supply  

Biomass purchase costs (𝐶𝐵
𝑠 ) are changing in different scenarios based on the variation of 

biomass availability (Lin et al., 2017 manuscript). They are a function of the optimal biomass flow 

pattern (𝑓𝑖,𝑗,𝑠) from supply sites to CSP sites and the county-level biomass production costs at the 

supply site (𝑐𝑖,𝑠) (Eq. 4.12). The total amount of biomass output from a biomass supply site should 

not exceed its biomass availability in scenario 𝑠 (Eq. 4.13). County-level biomass production costs 

(𝑐𝑖,𝑠) and biomass availability (𝑏𝑖,𝑠) are two inputs related to biomass yield in scenario 𝑠. It is 

important to optimize the supply site selection as well as the quantity of biomass to purchase from 

each site.  

𝐶𝐵
𝑠 = ∑∑𝑐𝑖,𝑠 × 𝑓𝑖,𝑗,𝑠

𝑗𝑖

 (4.12) 
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∑𝑓𝑖,𝑗,𝑠

𝑗

≤ 𝑏𝑖,𝑠 (4.13) 

Biomass transportation  

Biomass transportation costs (𝐶𝑀
𝑠 ) are composed of variable (𝐶𝑀𝑣

𝑠 ) and fixed transportation costs 

(𝐶𝑀𝑓

𝑠 ) in scenario 𝑠 (Eq. 4.14). The decision variables related to total biomass purchase costs are 

the amount of biomass flow from supply sites to CSP sites (𝑓𝑖,𝑗,𝑠) and the amount of preprocessed 

biomass flow from CSP sites to biorefineries (𝑓𝑗,𝑘,𝑠) in scenario 𝑠. Variable transportation costs 

are a function of the unit variable transportation cost ( 𝑡𝑣1, 𝑡𝑣2 ), amount of biomass being 

transported ( 𝑓𝑖,𝑗,𝑠 ,  𝑓𝑗,𝑘,𝑠 ), and the transportation distance ( 𝑑𝑖,𝑗 , 𝑑𝑗,𝑘 ) (Eq. 4.15).  Fixed 

transportation costs that include loading and unloading costs depend on the unit fixed 

transportation cost(𝑡𝑓1, 𝑡𝑓2) and the amount of biomass being transported (𝑓𝑖,𝑗,𝑠, 𝑓𝑗,𝑘,𝑠) (Eq. 4.16). 

The shortest distances between the facilities within the system (𝑑𝑖,𝑗, 𝑑𝑗,𝑘) are inputs calculated via 

OSRM (Luxen and Vetter, 2011) using the OpenStreetMap road network.   

𝐶𝑀
𝑠 = 𝐶𝑀𝑣

𝑠 + 𝐶𝑀𝑓

𝑠  (4.14) 

𝐶𝑀𝑣

𝑠 = ∑∑(𝑡𝑣1 × 𝑓𝑖,𝑗,𝑠

𝑗𝑖

× 𝑑𝑖,𝑗) + ∑∑(𝑡𝑣2 × 𝑓𝑗,𝑘,𝑠

𝑘𝑗

× 𝑑𝑗,𝑘) (4.15) 

𝐶𝑀𝑓

𝑠 = ∑∑(𝑡𝑓1 × 𝑓𝑖,𝑗,𝑠

𝑗𝑖

) + ∑∑𝑡𝑓2 × 𝑓𝑗,𝑘,𝑠

𝑘𝑗

 (4.16) 

Centralized storage and preprocessing (CSP) 

The costs related to CSP facilities (𝐶𝑆 ) are composed of annual operating costs (𝐶𝑆𝑜
) and annual 

capital related costs (𝐶𝑆𝑐
) (Eq. 4.17). In this study, it is assumed that CSP facilities with different 

capacities incur the same unit operating costs (𝑠𝑜𝑝). Therefore, annual operating costs are linearly 

dependent on the demand of biomass for CSP facilities (Eq. 4.18).  
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Annual capital costs are linearly dependent on the capital investment costs where a factor 𝛼 

(13.7%) is used to represent its relationship. To improve the accuracy, the model adopts a 

piecewise linear approximation to estimate the capital investment costs for three different levels 

of facility capacity. Therefore, annual capital related costs are linearly dependent on the sum of 

fixed (𝑠𝑣
𝑙 ) and variable (𝑠𝑓

𝑙 ) capital related costs at every level of capacity at each potential location 

(Eq. 4.19). The binary decision variable 𝑜𝑠
𝑗,𝑙

 controls the capacity level l of the CSP facility located 

in county 𝑗, and the variable 𝑝𝑗,𝑙 represents the specific capacity of the CSP in county 𝑗 at the 

capacity level 𝑙. The detailed piecewise linear approximation equations were provided in Lin et al. 

(2013). 

𝐶𝑆 = 𝐶𝑆𝑜
+ 𝐶𝑆𝑐

 (4.17) 

𝐶𝑆𝑜
= 𝑠𝑜𝑝 × ∑∑𝑝𝑗,𝑙

𝑙𝑗

 (4.18) 

𝐶𝑆𝑐
= 𝛼 × (∑∑𝑠𝑣

𝑙 × 𝑝𝑗,𝑙 + 𝑠𝑓
𝑙 × 𝑜𝑠

𝑗,𝑙

𝑙𝑗

) (4.19) 

Considering the mass balance, the CSP capacity in county 𝑗 should be equal to the total 

amount of biomass transported to county 𝑗 from all supply sites in scenario 𝑠 (Eq. 4.20). The model 

also considers the biomass loss at the CSP stage that would affect the biomass outlet from CSP to 

biorefinery (𝑓𝑗,𝑘,𝑠) (Eq. 4.21). Biomass loss rate (𝛽) is an input parameter decided by users. 

∑𝑓𝑖,𝑗,𝑠

𝑖

= ∑𝑝𝑗,𝑙

𝑙

 
(4.20) 

∑𝑓𝑗,𝑘,𝑠

𝑘

≤ ∑𝑝𝑗,𝑙

𝑙

× (1 − 𝛽) 
(4.21) 

Biorefinery  
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Similar to CSP facilities, the costs related to biorefineries (𝐶𝐸 ) are composed of annual 

biorefinery operating costs (𝐶𝐸𝑜
) and annual biorefinery capital costs (𝐶𝐸𝑐

) (Eq. 4.22). In this study, 

it is assumed that the unit operating costs for a biorefinery (𝑒𝑜𝑝) are constant for any capacity. 

Therefore, annual operating costs are linearly dependent on the demand of processed biomass for 

ethanol production at biorefineries (𝑄), which is an input parameter decided by users (Eq. 4.23). 

Annual biorefinery capital costs have a linear relationship (𝛼 = 13.7% in the current study) with 

biorefinery capital investment costs, which are the sum of fixed and variable capital related costs 

at every level of capacity at each potential location (Eq. 4.24). The binary variable 𝑜𝑒
𝑘,𝑙

 indicates 

whether there exists a biorefinery at capacity level 𝑙 located in county 𝑘, and the variable 𝑞𝑘,𝑙 

represents the biorefinery with the capacity at level 𝑙 located in county 𝑘. Similar to CSP facilities, 

a piecewise linear approximation method for biorefinery capacity and capacity level identification 

was implemented. Regarding mass balance, the amount of all the preprocessed biomass flow into 

the biorefinery located in county 𝑘 from all CSPs in scenario 𝑠 should be equal to the biorefinery 

facility capacity (Eq. 4.25). The total capacity of all biorefineries should meet the given demand 

of processed biomass for ethanol production (Eq. 4.26). 

𝐶𝐸 = 𝐶𝐸𝑜
+ 𝐶𝐸𝑐

 (4.22) 

𝐶𝐸𝑜
= 𝑒𝑜𝑝 × 𝑄 (4.23) 

𝐶𝐸𝑐
= 𝛼 × (∑∑𝑒𝑣

𝑙 × 𝑞𝑘,𝑙 + 𝑒𝑓
𝑙 × 𝑜𝑒

𝑘,𝑙

𝑙𝑗

) (4.24) 

∑𝑓𝑗,𝑘,𝑠

𝑗

= ∑𝑞𝑘,𝑙

𝑙

 
(4.25) 
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∑∑𝑞𝑘,𝑙

𝑙𝑘

= 𝑄 (4.26) 

4.3 CASE STUDY 

Two spatial and temporal varying coeeficient models GTWR and Bayesian STVC are employed 

to study the variability of corn yields in response to weather covariates including temperature and 

precipitation at the county scale in six Corn Belt states in the Midwestern United States. Based on 

the historical corn yield and weather information, the impacts of temperature and precipitation on 

the variation of corn yield over space and time are comprehensively investigated. The goal is to 

understand whether such impacts follow any spatially as well as temporally non-stationary process. 

After studying the relationship between weather and corn yield, different weather scenarios are 

simulated to capture the variability of corn yield. Along with two other main uncertain factors on 

the supply side which include farmer participation rate and corn stover collectable rate, 36 biomass 

supply scenarios are constructed in the two-stage stochastic programming based optimization. 

4.3.1 Data and Variables 

Our experiments focus on 606 counties in the Corn Belt states of Illinois, Indiana, Iowa, Kansas, 

Missouri, and Nebraska. County-average corn yield data for the period of 1981 to 2015 are 

collected from U.S. Department of Agriculture’s National Agricultural Statistics Service (2017).  

The 35-year average corn yields range from 53.4 to 158.8 bushels per acre for each county (Figure 

4.1).  When aggregated at the state level, all six states show increasing trends of corn yield over 

the past 35 years except for a significant hit by severe drought in year 2012 (Figure 4.2). The 

increasing trends of corn yields can be explained by improved genetics and better management 

practices. From the available data, about 6.14% of the yield information are missing for multiple 
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reasons like, no corn is planted for the county (e.g. St. Louis City), or surveys are not conducted 

in multiple years for some counties. To address this issue, we replace the missing data with the 

mean yield value of adjacent counties for estimation. 

 

Figure 4.1 Study area and county average corn yield from 1981-2015. 
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Figure 4.2 Corn yield trends at state level from 1981-2015. 

 

Weather data are derived from PRISM Climate Group (2004). We acquire this data from the 

Applied Climate Information System API (2017). In particular, maximum daily temperature and 

minimum daily temperature, and daily precipitation information are used. Instead of using both 

maximum and minimum temperature information as covariates, we calculate the indicator of 

growing degree days (GDD), which often serves as a simple single-dimensional summary for 

describing crops’ exposure to heat. GDD is calculated by taking an average of the daily minimum 

and maximum and subtracting a base temperature value: 

BASE
MINMAX T

TT
GDD 




2
 (4.27) 

There are different methods for calculating GDD. In this study, the most commonly used method 

in calculating GDD for corn is employed (McMaster and Wilhelm 1997). Constraints on maximum 

and minimum temperatures are applied for the purpose of eliminating the effect of low or high 
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temperatures that prevent or retard the growth of corn. More specifically, before entering 

temperature data into Eq. (4.27), MAXT and MINT are set equal to BASET if less than BASET , and set 

equal to UTT when greater than UTT . BASET  and UTT  are set equal to 10 °C and 50 °C respectively.  

Since the PRSIM weather data are served as continous surfaces (spatial raster layers) with 4km 

x 4km resolution, zonal statistics are used by overlapping the data with county boundaries to 

estimate the average values of GDD and precipitation at the county scale. GDD and precipitation 

data are aggregated over the major growing season from 1981 to 2015. The spatial variation of 

average GDD and precipitation over the observed time period are presented in Figure 4.3 and 

Figure 4.4. The growing season is considered from the start of May to the end of August, which is 

the typical growing period for corn.  

 

Figure 4.3 Accumulated GDD (°C) from May to August averaged by year from 1981-

2015. 



99 

 

 

Figure 4.4 Accumulated precipitation (mm) from May to August averaged by year from 

1981-2015. 

4.3.2 Model Specification and Parameter Estimation 

In the specification for Bayesian STVC mode, by combining Equation (4.7)-(4.10), the 

relationship between corn yields and weather variables including GDD and precipitation (PCPN) 

are represented as follows: 

tsts

PCPN

tsts

GDD

ts

Intercept

s

ts

PCPN

ts

GDDIntercept

ts

PCPNGDD

PCPNGDDYield

,,,,,

,,,

                






 (4.28) 

where s is the index for county, t is the index for year,  
Intercept , 

GDD , and  
PCPN  control the 

overall mean process of coefficients at the global level, among which Intercept

s represents the 

county-specific intercept to account for time-invariant spatial heterogeneity, and 
ts,  is the white 

noise. Here we detrend corn yields and weather variables (Figure 4.5) before running the regression 
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analysis as suggested by Ray et al. (2015). This process removes the fixed trend of linear effects 

caused by government policies and technological improvements, so we focus on the variation of 

corn yields explained by weather changes. To consider temporal variation in the spatially non-

stationary process,
GDD

ts, and 
PCPN

ts, are defined as spatiotemporally varying coefficients for GDD 

and precipitation, and they can be further decomposed as: 

GDD

t

GDD

s

GDD

ts  ,   (4.29) 

PCPN

t

PCPN

s

PCPN

ts  ,  (4.30) 

where GDD

s and PCPN

s represent the time-invariant spatial random effects and GDD

t and PCPN

t  

represent the location-invariant temporal random effects. All county-specific terms, GDD

s , PCPN

s

and Intercept

s , are considered to follow the ICAR prior defined in Equation (4.7). The temporal 

changes of GDD and precipitation process are modelled as random walk processes as follows: 

GDD

t

GDD

t

GDD

t   1  (4.31) 

PCPN

t

PCPN

t

PCPN

t   1  (4.32) 

where GDD

t and PCPN

t are white noise terms. By choosing the random walk process, we assume 

that the local coefficient for GDD or precipitation within a specific year is composed of its 

coefficient from last year plus a random error.  
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Figure 4.5 Corn yields and weather variables before and after the detrending. 

 

For the purpose of comparison of our analyses, we run the following three alternative models 

against the data: the OLS model in Equation (4.1), the panel regression model in Equation    (4.2), 

and the GTWR model in Equation (4.5). As suggested by Lobell and Burke (2010), the panel 

regression model includes a fixed spatial effects term to capture time-invariant heterogeneity, such 
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as soil quality. In the GTWR model configuration, a spatiotemporal kernel function is applied 

which consists of mixed spatial and time-decay bandwidths with optimal bandwidth selected by 

cross validation method as mentioned in Huang et al. (2010).  

Following the estimation of SVC, we use a Bayesian method to estimate our STVC model. The 

likelihood of the crop yields in Equation (4.28) is expressed as: 


s t

PCPN

t

GDD

t

PCPN

s

GDD

s

Intercept

s

PCPNGDDIntercept

tststs PCPNGDDYieldNf ),,,,,,,,,,|()|( 2

,,, Yield  
(4.33) 

where   is a set of all the hyper-parameters included in the model. The prior specification for our 

model is as follows. 
GDD

s

Intercept

s  ,  and 
PCPN

s  have ICAR prior. 
GDD

t  and 
PCPN

t  follow the 

random walk process. A vague normal )10,0( 6N is used for
Intercept , 

GDD , 
PCPN . A vague inverse 

gamma, )01.0,1(IG , is set as the prior distribution for all white noise parameters.  

Given the complexity of posterior distributions in hierarchical models, both Gibbs sampler and 

Metropolis Hasting algorithms are used in Markov chain Monte Carlo (MCMC) to generate 

posterior samples (Gilks et al. 1995). MCMC sampling methods provide a general approach to 

fiting complex hierarchical models in a Bayesian framework (Cressie and Wikle 2015). MCMC 

generates values of model parameters from a set of Markov chains after a number of steps until 

they converge. The converged values are then used as a sample from the posterior distirtion to 

enable Monte Carlo estimation of the joint, marginal, and conditional posterior distributions 

desired for inference. In our study, two chains are initialized and posterior distributions for each 

model parameters were estimated after 10,000 iterations with the first 2,000 iterations discarded 

as the burn-in period.  

While parameters of the STVC model are estimated, the posterior mean of corn yield can also 

be derived to quantitatively represent the predicted corn yield when new weather data are available. 
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Through this approach, the uncertainty of corn yield can be represented by simulating different 

weather scenarios.  

4.3.3 Scenarios Construction in Stochastic Programming 

Figure 4.6 Candidate corn stover supply region (four states in Illinois, Indiana, Iowa and 

Missouri). 

 

In the stochastic optimization of the biomass (corn stover) supply chain, four states in Illinois, 

Indiana, Iowa and Missouri are considered as candidate biomass supply counties (Figure 4.6). 

Three major sources of uncertainty which impact on the corn stover availability are considered in 

this study – corn yield, corn stover collectable rate, and farmer participation rate. Corn yield is 

mainly affected by weather dynamics during the growing season. Nine weather scenarios are 

simulated through varying growing degree days (GDD) and precipitation by one standard 

deviation (±12.9 for GDD, ±32.5 for precipitation) from their distribution in historical data over 

the past 35 years (Figure 4.7). The posterior means of corn yield are generated based on the STVC 

model. 
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The corn stover collectable rate represents the amount of residuals (i.e. stalks, leaves, and cobs) 

that are collected after corn harvesting, and it is related to residue management practice. Two 

collectable corn stover rates are selected to represent lower residue management (0.3) and higher 

residue management (0.5). The farmer participation rate indicates the percentage of farmers who 

are willing to sell the collected corn stover for biofuel production purpose. Two farmer 

participation rates are selected to represent lower farmer interest (24%) and higher farmer interest 

(36%). The probability distribution of farmer participate rate and residual management are based 

on the survey results from Iowa (Tyndall et al., 2011). In total, nine weather scenarios, two levels 

of residue management and three levels of farmer interest levels are incorporated to present the 36 

scenarios of biomass supply scenarios (Table 4.1). 
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Figure 4.7 Corn yield under nine weather scenarios with varying growing degree days 

(GDD) and precipitation (PCPN) at one standard deviation 
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Table 4.1 Biomass provision scenarios with its probabilities 

Scenarios 
Weather 

scenarios 

Farmer 

participate rate 

Collectable 

corn stover rate 
Probability 

S1 

No Change 

(30%) 

0.24 (80%) 
0.3 (70%) 16.8% 

S2 0.5 (30%) 7.2% 

S3 
0.36 (20%) 

0.3 (70%) 4.2% 

S4 0.5 (30%) 1.8% 

S5 
+12.9% GDD 

(10%) 

 

0.24 (80%) 
0.3 (70%) 5.6% 

S6 0.5 (30%) 2.4% 

S7 
0.36 (20%) 

0.3 (70%) 1.4% 

S8 0.5 (30%) 0.6% 

S9 

+32.5% 

PCPN (10%) 

0.24 (80%) 
0.3 (70%) 5.6% 

S10 0.5 (30%) 2.4% 

S11 
0.36 (20%) 

0.3 (70%) 1.4% 

S12 0.5 (30%) 0.6% 

S13 
-12.9% GDD 

(10%) 

 

0.24 (80%) 
0.3 (70%) 5.6% 

S14 0.5 (30%) 2.4% 

S15 
0.36 (20%) 

0.3 (70%) 1.4% 

S16 0.5 (30%) 0.6% 

S17 

-32.5% PCPN 

(10%) 

0.24 (80%) 
0.3 (70%) 5.6% 

S18 0.5 (30%) 2.4% 

S19 
0.36 (20%) 

0.3 (70%) 1.4% 

S20 0.5 (30%) 0.6% 

S21 
-12.9% GDD 

-32.5% PCPN 

(5%) 

0.24 (80%) 
0.3 (70%) 2.8% 

S22 0.5 (30%) 1.2% 

S23 
0.36 (20%) 

0.3 (70%) 0.7% 

S24 0.5 (30%) 0.3% 

S25 
+12.9% GDD 

-32.5% PCPN 

(10%) 

0.24 (80%) 
0.3 (70%) 5.6% 

S26 0.5 (30%) 2.4% 

S27 
0.36 (20%) 

0.3 (70%) 1.4% 

S28 0.5 (30%) 0.6% 

S29 
-12.9% GDD 

+32.5% 

PCPN (10%) 

0.24 (80%) 
0.3 (70%) 5.6% 

S30 0.5 (30%) 2.4% 

S31 
0.36 (20%) 

0.3 (70%) 1.4% 

S32 0.5 (30%) 0.6% 

S33 
+12.9% GDD 

+32.5% 

PCPN (5%) 

0.24 (80%) 
0.3 (70%) 2.8% 

S34 0.5 (30%) 1.2% 

S35 
0.36 (20%) 

0.3 (70%) 0.7% 

S36 0.5 (30%) 0.3% 

 

The biofuel demand for all scenarios considered was constant at 378.5 million Liters per year, 

or 100 million gallons per year. Annual demand for corn stover at biorefinery gate was estimated 

at 1.25 million Mg, assuming an ethanol conversion rate from corn stover at 302.5 Liters per Mg. 
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4.4 RESULTS AND DISCUSSIONS 

4.4.1 Relationships between Weather and Crop Yields 

Parameters estimated from all the models considered in this study are summarized in Table 4.2. 

The slope coefficient for GDD and precipitation can be interpreted as changes of corn yield 

(bushel/acre) per unit of accumulated GDD change (°C), or per unit of accumulated precipitation 

change (mm) over the growing season for a specific county. The results from the OLS model show 

that corn yields are negatively associated with temperature but have a slightly positive relationship 

to precipitation although the coefficient for precipitation is not significant at 0.05 level. Although 

residuals of OLS model are normally distributed, strong positive spatial autocorrelation is detected 

by Moran’s I index with an average value around 0.471 and all p-values less than 0.05 over 35 

years (Table 4.2).  

Compared to OLS, the spatial panel regression model shows a more significant relationship 

between precipitation and crop yields with a positive coefficient around 0.017. With the expense 

of additional parameters of spatially varying intercepts in its mean structure, the spatial panel 

model accounts for 54% of crop yield variation, compared to only 20.7% for OLS. Additionally, 

residuals in the spatial panel regression model are less correlated than those in OLS, giving a 

significant decrease of Moran’s I (Table 4.2). 
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Non-stationary coefficients are computed by the two competitive models GTWR and STVC 

respectively, and the GTWR estimates are generally more variable as shown in Table 4.2, except 

for the lower bound slope for precipitation coefficient. For modeling fitting performance, GTWR 

and STVC models further improve the adjusted R-squared value to 71.5% and 74.9% with the 

consideration of spatiotemporally varying association between crop yields and weather factors 

respectively. Mean values of GDD and precipitation coefficients follow the same trend as those 

estimated by OLS and spatial panel regression models, although slopes in STVC are smoother 

compared to those in GTWR. Since both GTWR and STVC achieve quite similar coefficient 

estimations, but STVC has more flexibility on configuring spatial and temporal priors, the 

following discussion is more focused on the STVC results and the coefficients are applied to 

combined with the subsequent stochastic programming model. 

The spatial non-stationarity of coefficients estimated by the STVC model is first examined by 

averaging out their change over time. The impact of GDD and precipitation are complementary to 

each other in the fact that regions with higher GDD coefficient values are more likely to have 

lower precipitation effects, and vice versa (Figure 4.8). Overall, we observe that temperature, 

reflected by GDD, tends to have negative effects on corn yields in warmer regions and positive 

effects in cooler regions. By comparing the precipitation coefficient surface with the map of 

irrigated corn harvested acres percentage (Figure 4.9), it is found that some heavily irrigated land 

tends to have insignificant or even negatively significant precipitation effects, such as in Nebraska 

and Kansas. This finding agrees with what has been previously discovered in GWR methods 

(Sharma et al. 2011; Cai et. al 2014) that crop yields could be less related to precipitation in regions 

with better irrigation systems.  
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Figure 4.8 STVC estimated coefficients for the intercept, GDD, and precipitation 

averaged from 1981-2015. 

 

The standard deviation of the posterior distribution of coefficients in STVC is provided in Figure 

4.8 as well to visually examine the uncertainty. Edge effects are obviously detected because of the 

sudden cut off at boundaries. To show the significance of local coefficients, we mark those 
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counties in which coefficients are not significantly different from zero on the map (Figure 4.8 We 

use the range of 2.5%-97.5% quantile of the posterior distribution to check if zero is included. If 

yes, those counties are considered as not significantly different from zero. Temporally varying 

coefficients are also included in testing the significance of parameters in STVC, which generates 

35 parameter surfaces to represent the significance of parameters in different years. For the 

convenience of visualization, we mark counties with a crosshatch pattern if their coefficients are 

not significant for more than 21 years. Overall, significant spatially varying coefficients are 

captured by STVC.  

 

 

Figure 4.9 Percentage of harvested acres for irrigated corn based on averaged data for 

the year 1997, 2002, 2007, and 2012 from USDA National Agricultural Statistics Service. 

 

The STVC model accounts for the temporal variation of coefficients by introducing a random 

walk process to allow spatially varying coefficients to change over time. As shown in Figure 4.10, 
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changes in GDD and precipitation coefficients are estimated based on random walk priors. Similar 

to what has been presented spatially, the change of coefficients for GDD and precipitation are 

negatively correlated. We further investigate into the potential reasons for the temporal variation 

of coefficients. For example, in the year 1988 the coefficient of precipitation increases by nearly 

0.12. Given that the mean value is only 0.012 (Table 4.), this increase is dramatic. By comparing 

to the average GDD and precipitation (Figure 4.11), it is found that the average precipitation in 

1988 is the lowest among the years we included. That means the marginal increase of corn yield 

is significant in conditions with insufficient rains. With the same motivation, we examined the 

year with the lowest GDD coefficient, which is 2012. Correspondingly, the accumulated GDD in 

that year is the highest, which means high temperatures will accelerate the rate of decreasing in 

corn yields. There is one thing that could not be explained well based on the current results. In the 

year 2011, the model estimated a high precipitation coefficient and a low GDD coefficient, 

however, the accumulated precipitation and GDD, especially the precipitation value, are not 

obviously deviated from their mean values. We suspect that this variation might be caused by non-

weather related factors. The ability to estimate temporally varying coefficients is a significant 

contribution of the model we developed, and this could further lead to the study of the non-linear 

response of crop yields to weather variations. 
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Figure 4.10 Temporal variations on coefficients for GDD and precipitation. 

 

Figure 4.11 Average GDD and precipitation in the study area from 1981 to 2015. 

 



114 

 

In addition to using the adjusted-R values to compare model fitting performance, we plot the 

fitted corn yield values against their true values for the following six counties, namely, Coles in 

Illinois, Franklin in Kansas, Brown in Kansas, Knox in Nebraska, Rooks in Kansas, and Barry in 

Missouri (Figure 4.12). These counties are selected because they have the worst fitting 

performances in terms of deviation from true values reported by the OLS model. According to the 

figure, STVC performs better than the other models in general. It captures some low yield values 

that the other models failed to fit well (e.g., Franklin-Kansas in 2012, Rooks-Kansas in 1993), 

while high deviations (e.g., Brown-Kansas in 2012) were also observed sometimes. 
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Figure 4.12 Comparison of model fitting performance in selected counties. 
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4.4.2 Stochastic Optimization Results 

Considering all possible scenarios together, the stochastic optimization model results showed 

that the expected minimal biomass-ethanol production costs are $0.763 per Liter under the optimal 

supply chain configuration (Table 4.3). Biorefinery related costs account for almost half of the 

cost with $0.372 per Liter, and followed by biomass provision costs, transportation, and CSP 

related costs.  CSP costs and biorefinery related costs are constant for all scenarios because they 

are only subject to change in second-stage decisions (facility location and numbers) and the 

demand of bioethanol. Considering the dynamics of 36 scenarios, the stochastic optimization 

model chose to build two CSP facilities located in DeWitt County and Logan County in Illinois 

and one biorefinery facility located in DeWitt County Illinois, as the optimal supply chain 

configuration (Figure 4.13). The optimal facility locations are first-stage decisions in stochastic 

modeling, which is constant for all scenarios. Given the uncertainty in biomass availability, up to 

45 supply counties can be selected in 36 scenarios as second-stage decisions. 

The minimal unit biomass-ethanol production costs of each scenario change from $0.727 to 

$0.812 per Liter. The biomass provision costs and transportation costs are the major contributions, 

which vary from $0.220 to $0.239 per Liter and from $0.088 to $0.154 per Liter, respectively. 

These cost changes are the results of changing biomass availability in each scenario. Spatially, the 

number of selected supply counties and transportation patterns changes by different scenarios, as 

a result of changing annual biomass availability. For example, Figure 4.14 compares two extreme 

scenarios with least and most corn stover availability respectively. Scenario 25 has the lowest corn 

stover availability with worst weather scenario for corn yield, lower farmer participation rate and 

lower collectable corn stover rate, while Scenario 32 has the highest corn stover availability with 

best weather scenario for high corn yield, higher farmer participation rate and higher collectable 

corn stover rate. Higher biomass availability reduces the number of selected biomass supply 
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counties. Accordingly, the number of required supply counties in Scenario 32 (10) is almost one-

fifth of the number required by Scenario 25 (45).  

 

Table 4.3 Stochastic optimization results for 36 scenarios of biomass supply. S25 has the 

highest unit bioethanol production cost while S32 has the unit bioethanol production cost 

All the numbers related to cost are in terms of $ per Liter. 
Scenarios Unit 

production 

cost 

Provision 

cost 

CSP 

cost 

Biorefinery 

cost 

Transportation 

cost 

1 0.797 0.239 0.047 0.372 0.139 

2 0.748 0.22 0.047 0.372 0.109 

3 0.771 0.238 0.047 0.372 0.114 

4 0.733 0.22 0.047 0.372 0.094 

5 0.808 0.239 0.047 0.372 0.15 

6 0.757 0.221 0.047 0.372 0.117 

7 0.78 0.238 0.047 0.372 0.123 

8 0.739 0.22 0.047 0.372 0.1 

9 0.789 0.238 0.047 0.372 0.132 

10 0.744 0.22 0.047 0.372 0.105 

11 0.765 0.237 0.047 0.372 0.109 

12 0.73 0.22 0.047 0.372 0.091 

13 0.786 0.238 0.047 0.372 0.129 

14 0.743 0.22 0.047 0.372 0.104 

15 0.763 0.237 0.047 0.372 0.107 

16 0.729 0.22 0.047 0.372 0.09 

17 0.8 0.239 0.047 0.372 0.142 

18 0.75 0.22 0.047 0.372 0.111 

19 0.774 0.238 0.047 0.372 0.117 

20 0.735 0.22 0.047 0.372 0.096 

21 0.804 0.239 0.047 0.372 0.146 

22 0.753 0.22 0.047 0.372 0.114 

23 0.777 0.238 0.047 0.372 0.12 

24 0.737 0.22 0.047 0.372 0.098 

25 0.812 0.239 0.047 0.372 0.154 

26 0.76 0.221 0.047 0.372 0.12 

27 0.783 0.238 0.047 0.372 0.126 

28 0.741 0.22 0.047 0.372 0.102 

29 0.783 0.238 0.047 0.372 0.126 

30 0.741 0.22 0.047 0.372 0.102 

31 0.762 0.237 0.047 0.372 0.106 

32 0.727 0.22 0.047 0.372 0.088 

33 0.792 0.238 0.047 0.372 0.135 

34 0.746 0.22 0.047 0.372 0.107 

35 0.767 0.237 0.047 0.372 0.111 

36 0.731 0.22 0.047 0.372 0.092 

Overall 0.763 0.230 0.047 0.372 0.115 
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Figure 4.13 Results of stochastic programming. Red star represents the selected location 

for biorefinery (DeWitt, Illinois); Green circles represent the selected locations for CSP 

(DeWiit, Illinois and Logan, Illinois); Pink regions represent selected supply counties in all 

36 scenarios 
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Figure 4.14 Results of stochastic programming scenarios for highest unit bioethanol 

production cost (Scenario 25) and lowest unit bioethanol production cost (Scenario 32) 
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4.5 CONCLUSIONS 

In this study, we developed a novel Bayesian hierarchical model, namely spatiotemporally 

varying coefficient (STVC) model, to investigate the non-stationary relationship between weather 

and corn yields in the Midwestern US counties for the period of 1981 to 2015. The model treats 

regression effects as spatially and temporally correlated processes within a Bayesian framework 

to enable statistical inference on the regression associations. The results showed spatial 

heterogeneous effects of Growing Degree Days (GDD) and precipitation on crop yields, and 

meanwhile revealed the change of effects over time.  

Compared to alternative models including OLS, spatial panel regression, the STVC model 

significantly improves the variation of corn yields that can be explained by weather change with 

the consideration of spatiotemporal non-stationarity. The STVC model achieves similar estimation 

as that from GTWR but with the identification of the spatial scale of each relationship through its 

specification of geostatistical priors. More specifically, changes in GDD and precipitation account 

for 74.9% of the variation in corn yields, with negatively correlated effects over space and time. 

The marginal increase of corn yields is significant in conditions with insufficient rains, while high 

temperatures accelerate the decreasing rate of corn yields. Based on the variability of corn yield 

captured by the STVC model, a two-stage stochastic programming model is developed with the 

consideration of biomass supply uncertainty to optimize biomass supply chain infrastructure 

configurations, biomass feedstock (corn stover) provision, and logistics operations 

From a methodological standpoint, it is important that the STVC model accommodates non-

stationarity of regression coefficients in both spatial and temporal dimensions. The model by 

design directly captures non-stationary processes in coefficients instead of allowing them to be 

reflected through the error terms, thus mitigates the issue of spatial autocorrelation in residuals. 
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The innovation of integrating with stochastic optimization model is to leverage the uncertainty 

information captured by the STVC model to construct more realistic scenarios in stochastic 

programming.    

From an application perspective, the contribution of our study helps better understand the 

relationship between corn yields and weather factors. While previous studies have been conducted 

to examine the spatial heterogeneity of the relationship, this study incorporates the temporal 

variation of the relationship. By revealing this variation, further exploitation of the data can be 

carried out with more confirmatory analyses. For example, given the fact that the influence of 

weather on crop yields is not constant over space and time, further analysis can be conducted to 

examine the potential factors, e.g. weather and non-weather related, that contribute to the variation. 

The stochastic optimization of biomass supply chain is demonstrated as an example of how the 

relationship between corn yields and weather factors can be further leveraged to inform decisions. 

One limitation of this work on the statistical modeling part is that we did not fully explore other 

possible temporal structures or more complicated spatiotemporal nested structures. This is because 

our focus is placed on incorporating temporal variation to spatially varying coefficient models 

instead of comparing different spatiotemporal models. However, the latter is still of great interest 

as future work. One possible extension is to model the temporal variation of weather coefficients 

as a spatial heterogeneous process. Also, it is interesting to compare different temporal processes, 

e.g. autoregressive process versus random walk, to better understand temporal structures.  

There are opportunities to enhance the current stochastic programming model to represent more 

real-world scenarios. For example, our ongoing work expands the current model into a multi-

period stochastic supply chain optimization model. In this model, the biomass supply chain is 

planned for a multi-year period (e.g., 10 years) with each year having a fixed increase of bioethanol 
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production demand. It is also interesting to address the sources of uncertainty from bioethanol 

production demand perspective. However, when different sources of uncertainty are combined to 

represent biomass supply and bioethanol demand scenarios, the size of the stochastic optimization 

problem will be extremely large and thus novel computational approaches to generating optimal 

solutions need to be developed. Such approaches will likely contribute to the advancement of 

cyberGIS and HPC-based spatial optimization. 
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CHAPTER 5  

CONCLUDING DISCUSSION 

In this thesis, three interrelated studies are presented from complementary perspectives to 

advance cyberGIS-enabled spatial decision support system informed by uncertainty quantification 

with applications to biomass-to-biofuel supply chain optimizations. The study (Chapter 2) 

proposes a cyberGIS-enabled spatial decision support system with a focus on the system 

architecture and interoperability of data and services tuned for supporting decisions in biomass 

supply chain optimizations. The system, CyberGIS-BioScope, follows a geodesign approach to 

spatial decision-making, user environment design, and a service integration approach enabled by 

the GISolve middleware services. It provides a highly interactive user environment for users and 

supports the optimization of biomass supply chain and the evaluation of uncertainty through a 

scalable computational workflow implementation. Benefiting from the transparent access to data, 

models, and advanced cyberinfrastructure, decision makers can speed up their scientific discovery 

and knowledge-sharing processes in related collaborative biomass-to-biofuel supply chain 

research. 

Based on the cyberGIS-enabled spatial decision support system for biomass supply chain 

optimizations proposed in the first study, the second study (Chapter 3) further extends the system 

with analytical capabilities for performing uncertainty and sensitivity analysis. In the biomass 

supply chain design and operational planning, model-based approaches are sometimes unreliable 

when most of the data are fraught with uncertainties. Uncertainty and sensitivity analysis 

techniques offer an accessible treatment via the quantification of uncertainty propagations and 

sensitivity measurement. The system described in Chapter 3 serves as a new integrated approach 

to data management, mathematical modeling, uncertainty and sensitivity analysis, what-if scenario 
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analysis, and result representation and visualization for the biomass supply chain optimization. 

Leveraging high-performance computing capabilities provisioned by advanced cyberinfrastructure, 

this cyberGIS approach enables Monte Carlo based uncertainty and sensitivity analysis for 

optimization modeling by resolving significant computational intensity. Furthermore, the 

approach supports dynamic management decisions through what-if scenario analysis responding 

to uncertain situations in supply chain operations.  

A major contribution of the paper described in Chapter 3 is that it bridges the gaps between 

research, development, and implementation of biomass supply chain optimization under 

uncertainties. This approach generalizes and streamlines data management, computation, and 

visualization components, so it is expected to work on biomass supply chain optimization 

applications customized by different model and data inputs. From the case study of optimizing 

Miscanthus supply chain in Illinois, United States, the system is effective to capture a range of 

optimal bioethanol production cost with different sources of uncertainty considered and meanwhile 

identify the rank of most influential factors to optimal bioethanol production cost, which are 

valuable information for investment strategies in bioenergy production industry. 

The third study (Chapter 4) described in this thesis focuses on a novel statistical modeling 

approach for uncertainty quantification on the biomass supply side. In the meantime, a two-stage 

stochastic programming model is developed based on the results of uncertainty analysis to support 

biomass supply chain optimizations under supply uncertainty in the application of biomass (corn 

stover) supply chain optimization in six Corn Belts states in the US. The proposed statistical model, 

namely spatiotemporally varying coefficient (STVC) model, correlates the corn yield with weather 

information and significantly improves the variation of corn yields that can be explained by 

weather change with the consideration of spatiotemporal non-stationarity. Compared to a similar 
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method named geographical and temporal weighted regression (GTWR) in literature, STVC 

provides more flexibility on defining the structure of spatial and temporal random effects and 

results in less spatially autocorrelated residuals. It is important that the STVC model 

accommodates non-stationarity of regression coefficients in both spatial and temporal dimensions 

to better understand the relationship between corn yields and weather factors. This understanding 

provides a better way to represent spatiotemporal uncertainty of biomass supply in the context of 

biomass supply chain optimizations. As opposed to the more traditional approach which applies a 

global probability distribution to the quantity of biomass supply to generate discrete scenarios in 

stochastic programming models, this study exploits weather information to generate different 

scenarios of biomass supply with the assumption that weather information can be represented with 

certain probability distributions. The stochastic optimization of biomass supply chains is 

demonstrated as an example of how the relationship between corn yields and weather factors can 

be further leveraged to inform decisions in the bioenergy industry. 

Broadly speaking, the contributions of this thesis are rooted in both technological and 

methodological advances. From the technological point of view, this thesis argues that traditional 

spatial decision support systems (SDSSs) (Densham 1991; Matthies et al. 2007), which are 

primarily designed and developed based on single desktop or server mode, are limited in terms of 

handling massive and various geographic data, solving computationally intensive decision support 

models, and allowing collaborative decision making. Therefore, a new SDSS framework powered 

by cyberGIS (Wang 2010; Wang et al. 2013; Wang 2017) is proposed in this thesis featuring a 

highly interactive online GIS user environment, seamless cyberinfrastructure access, and data and 

computing intensive spatial analysis methods in the context of agricultural and energy 

sustainability. A major benefit brought by the power of cyberGIS is to include uncertainty 



126 

 

quantification as part of the decision support system. Estimating uncertainty associated with 

decisions is often computationally intensive but important to decision makers, especially in 

complex decision support models. Through demonstrating a cyberGIS-powered SDSS namely 

CyberGIS-BioScope, this thesis reveals how the cyberGIS framework facilitates interactive 

decision support and computationally intensive uncertainty and sensitivity analysis on complex 

biomass supply chain optimization problems. 

On the methodological side, this thesis examines two different approaches for uncertainty 

quantification. The first approach focuses on uncertainty propagation and global sensitivity 

analysis with the goal of understanding the variability of outcomes given model input uncertainty 

and quantifying the impact of each input that is responsible for this variability. This approach is 

often applied in cases when a decision model is available but input data are subject to uncertainty. 

In Chapter 3, this approach is applied to perform uncertainty and sensitivity analysis to quantify 

how various sources of uncertainty in the biomass supply chain contribute to the variation of 

optimal infrastructure configurations and bioethanol production cost. While the first approach 

emphasizes on how the uncertainty of data propagates through models, the second approach is 

more data-driven with a specific consideration of spatiotemporal features. The second approach 

aims to model the uncertainty of observed data by relating it to explanatory variables. More 

importantly, the relationship modeled in this approach could vary over space and time. In Chapter 

4, a novel Bayesian hierarchical model is developed based on this approach to study the 

relationship between crop yields and weather dynamics. Both two uncertainty quantification 

approaches are demonstrated in the context of agriculture and energy sustainability case studies to 

help inform better decision support. 



127 

 

Future work will seek to further enhance the functionality as well as the performance of the 

cyberGIS-enabled spatial decision support systems (SDSS). On the technical side, more work 

could be done to improve the data interoperability and service integration. For example, the current 

system could be extended with capabilities to directly fetch data (biomass yield, weather) from 

online services such as USDA National Agricultural Statistics Service 

(https://www.nass.usda.gov/), or incorporate multiple cross-domain models to enable further 

understanding of the factors that influence the supply chain systems, including weather models 

(e.g., Weather Research Forecasting model, http://wrf-model.org) and multiple crop simulation 

models (e.g., BioCro, Miguez et al., 2012).  

On the application side, future work could be done to further understand the complexity and 

sustainability of biomass-biofuel supply systems. In addition to cost-benefit analysis, multi-

objective optimization with economic, environmental, and social measurements is desirable to be 

incorporated into the decision support system. Energy consumption, water footprint, and 

greenhouse gas (GHG) emissions are the three key environmental indicators representing the 

biomass–biofuels supply chain, from biomass production to transportation to biofuel conversion. 

It will be interesting to include environmental analysis as part of the decision model toward 

sustainable biofuel development. Another opportunity is to combine models that are at a finer scale 

of biomass supply chain management and implement operational level decision making. For 

example, optimal control of such processes as harvest scheduling, inventory planning, and 

transportation management can be incorporated into the current cyberGIS-based decision support 

system. 

  

https://www.nass.usda.gov/)
http://wrf-model.org/
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APPENDIX A 

Construction of matrices A, B and 𝑨𝑩
(𝒊)

, and 𝑩𝑨
(𝒊)

from Sobol 

Quasi-random Sequence 

A and B (Fig. A.1 top two) are matrices formed by two independent samples of model inputs. 

Both matrices are in size 𝑁 × 𝑘, where N is number of simulation for each matrix and k is the 

number of input parameters. Construction of A and B are based on Monte Carlo sampling methods 

with a quasi-random sequence. The reason for using quasi-random sequences such as Sobol 

sequence instead of crude Monte Carlo sampling is that it has faster rate of convergence in the 

estimation of multi-dimensional integrals [36]. An example of Sobol quasi-random sequence with 

N=8 and k=8 from a 0 to 1 uniform distribution is shown in Table A.1. 

Table A.1 First eight points in an eight-dimensional Sobol quasi-random sequence 

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 

0.7500 0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 0.2500 

0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 0.2500 0.7500 

0.3750 0.3750 0.6250 0.1250 0.8750 0.8750 0.1250 0.6250 

0.8750 0.8750 0.1250 0.6250 0.3750 0.3750 0.6250 0.1250 

0.6250 0.1250 0.3750 0.3750 0.1250 0.6250 0.8750 0.8750 

0.1250 0.6250 0.8750 0.8750 0.6250 0.1250 0.3750 0.3750 

0.1875 0.3125 0.3125 0.6875 0.5625 0.1875 0.0625 0.9375 

 

Based on Sobol’s sequences, matrices A and B of size (N, k) can be generated from a quasi-

random sequence of size (N, 2k) with A from the left half and B from the right part. Then matrix 
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𝑨𝑩
(𝑖)

 is defined as all columns of 𝑨, except the ith column taken from 𝑩, and matrix 𝑩𝑨
(𝑖)

 formed 

by the ith column of A and all the remaining columns of from 𝑩 (Fig. A.1).  

𝑨 =

[
 
 
 
 𝑥𝑎1

(1)
⋯ 𝑥𝑎1

(𝑖)
⋯ 𝑥𝑎1

(𝑘)

𝑥𝑎2
(1)

⋯ 𝑥𝑎2
(𝑖)

⋯ 𝑥𝑎2
(𝑘)

⋮ ⋯ ⋮ ⋯ ⋮

𝑥𝑎𝑁
(1)

⋯ 𝑥𝑎𝑁
(𝑖)

⋯ 𝑥𝑎𝑁
(𝑘)

]
 
 
 
 

   𝑩 =

[
 
 
 
 𝑥𝑏1

(1)
⋯ 𝑥𝑏1

(𝑖)
⋯ 𝑥𝑏1

(𝑘)

𝑥𝑏2
(1)

⋯ 𝑥𝑏2
(𝑖)

⋯ 𝑥𝑏2
(𝑘)

⋮ ⋯ ⋮ ⋯ ⋮

𝑥𝑏𝑁
(1)

⋯ 𝑥𝑏𝑁
(𝑖)

⋯ 𝑥𝑏𝑁
(𝑘)

]
 
 
 
 

 

𝑨𝑩
(𝒊)

=
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(1)
⋯ 𝑥𝑏1
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⋯ 𝑥𝑎1
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 𝑩𝑨
(𝒊)
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⋮ ⋯ ⋮ ⋯ ⋮
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Fig. A.1 – Generating matrices 𝑨𝑩
(𝒊)

 and 𝑩𝑨
(𝒊)

 from A and B [20] 
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APPENDIX B  

Nomenclature for Stochastic BioScope Model 

Table B.1 A list of decision variables 

Symbol Type Description 

𝐶𝐵
𝑠 Non-negative continuous 

variable 

Biomass procurement costs of scenario s 

𝐶𝑀
𝑠  Non-negative continuous 

variable 

Biomass transportation costs of scenario s 

𝐶𝑆  Non-negative continuous 

variable 

CSP related costs  

𝐶𝐸  Non-negative continuous 

variable 

Biorefinery related costs  

𝑓𝑖,𝑗,𝑠 Non-negative continuous 

variable 

Amount of biomass flow from supply to CSP 

of scenario s 

𝑓𝑗,𝑘,𝑠 Non-negative continuous 

variable 

Amount of biomass flow from CSP to 

biorefinery of scenario s 

𝑝𝑗 Non-negative continuous 

variable 

The total centralized storage and 

preprocessing (CSP) facility capacity in 

county j 

𝑜𝑠
𝑗
 Binary variable Indicates whether there is a CSP facility 

located in county 𝑗 
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Table B.1 (cont.). 

𝑝𝑗,𝑙 Non-negative continuous 

variable 

The CSP facility capacity in county 𝑗 at level 

𝑙 

𝑜𝑠
𝑗,𝑙

 Binary variable Indicates whether there is a CSP facility 

located in county 𝑗 at level 𝑙 

𝑞𝑘 Non-negative continuous 

variable 

The total biorefinery capacity in county 𝑘 

𝑜𝑠
𝑘 Binary variable Indicates whether there is a biorefinery 

facility located in county 𝑘 

𝑞𝑘,𝑙 Non-negative continuous 

variable 

The biorefinery capacity in county 𝑘 at level 𝑙 

𝑜𝑒
𝑘,𝑙

 Binary variable Indicate whether there is a biorefinery facility 

located in county 𝑘 at level 𝑙 

 

 

Table B.2 A list of model input data and parameters 

Symbol Description 

𝜌𝑠 Probability density of scenario s 

𝑏𝑖,𝑠 County-level biomass availability of scenario s  

𝑐𝑖,𝑠 County-level biomass purchase cost of scenario s 

𝑄 Total biomass required for processing 
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Table B.2 (cont.). 

𝑑𝑖,𝑗 Distance between biomass supply sites and centralized storage 

and preprocessing (CSP) sites 

𝑑𝑗,𝑘 Distance between CSP sites and biorefinery sites 

𝑠𝑜𝑝 Unit operating costs for CSP 

𝑠𝑣
𝑙  Variable capital costs for CSP at different levels 

𝑠𝑓
𝑙  Fixed capital costs for CSP at different levels 

𝛼 Annualized cost factor 

𝛽 Biomass loss rate at CSP 

𝑒𝑜𝑝 Unit operating costs for a biorefinery 

𝑒𝑣
𝑙  Variable capital costs for a biorefinery at different levels 

𝑒𝑓
𝑙  Fixed capital costs for a biorefinery at different levels 

 

  


