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Abstract

This dissertation is devoted to statistical inference based on characteristic functions. For some popular

stochastic processes (e.g., Lévy processes, Lévy driven Ornstein−Uhlenbeck processes), the transition density

may not be available. However, the (conditional) characteristic function is sometimes known. We study

various statistical inference methods for fitting those processes with implicit characteristic functions.

In the first part, an efficient sampling method based on Bayesian empirical likelihood is developed.

The method involves pseudo-marginal Markov chain Monte Carlo with temperature and is shown to be

effective for Lévy processes. In the second part and third part, we study maximum likelihood methods

and empirical characteristic function estimation based on characteristic functions. We find the analyticity

of the characteristic function can make efficient implementations of both methods possible, guaranteeing

asymptotic properties as well. We also find, for certain models, very large samples might be needed to

accurately identify the true parameters. Numerical results show the appealingness of some infinite activity

models. In the last part, this dissertation includes my another project, which is about truth discovery in

data mining. A dynamic model is developed to discover the truth between information sources across time.

Experiments on real-world applications demonstrate its advantages over previous approaches.
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2.5.1 Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 A multivariate version of Black-Scholes-Merton Model . . . . . . . . . . . . . . . . . . 17
2.5.3 Kou’s jump-diffusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.4 Variance Gamma model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Chapter 3 Maximum likelihood inference for Lévy process based models in finance . . . 28
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Chapter 1

Introduction

In this dissertation, we study statistical inference based on characteristic functions for intractable likelihood

problem. For some popular stochastic processes (e.g., Lévy processes, Lévy driven Ornstein−Uhlenbeck

processes), the transition density may not be available. However, the (conditional) characteristic function

is sometimes known. We study various statistical inference methods for fitting those processes with implicit

characteristic functions.

In Chapter 2, we mainly focus on Bayesian empirical likelihood inference based on characteristic functions.

We construct a maximum empirical posterior estimator with asymptotic properties. We utilize pseudo-

marginal Markov chain Monte Carlo with temperature method to make efficient implementation of Bayesian

empirical likelihood inference possible. The numerical study confirms the effectiveness of our maximum

empirical posterior estimator.

In Chapter 3 and Chapter 4, we study maximum likelihood methods and empirical characteristic function

estimation methods based on characteristic functions for Lévy processes that are commonly used in finance.

In both chapters, we utilize the analyticity of the characteristic functions of such Lévy processes.

For maximum likelihood methods, the transition probability densities can be computed very fast and

accurately. This makes efficient implementations of maximum likelihood inference possible. We provide

regularity conditions that guarantee consistency, asymptotic normality and efficiency of maximum likelihood

estimation and validity of likelihood ratio tests. Our approach extends to Ornstein-Uhlenbeck or Lévy

based processes with explicit and analytic conditional characteristic functions. Simulation studies show the

effectiveness of our method. While parameter estimation is relatively easier for some Lévy processes, very

large samples might be needed for others. This is illustrated by some popular Lévy models, including the

CGMY model, where the log-likelihood surface is saddle-shaped with relatively flat areas. Finally, fitting of

equity returns shows the appealingness of some infinite activity Lévy models.

For empirical characteristic function (ECF) estimation methods, the analyticity of the characteristic

functions is also helpful to provide an efficient approximation of the estimation target function. Specifically,

empirical characteristic function estimation is a generalized moment match method to match the empirical

1



characteristic function with the model’s characteristic function. To match them, the usual method is to min-

imize an integration of the distance between empirical characteristic function and the model’s characteristic

function, which is computationally intensive. We utilize the analyticity of the characteristic functions (for

certain stochastic processes) to show that the integration involved in ECF estimation can be computed very

fast and accurately. We also provide regularity conditions to show the estimates based on our implemen-

tation have consistency and asymptotic normality properties. The simulation study shows the effectiveness

and efficiency of our methods.

This dissertation also includes my another project in Chapter 5, which is a joint project with Shi Zhi,

Zheyi Zhu, Qi Li, Zhaoran Wang and Jiawei Han. I am the equally contributed first author with Shi

Zhi. We build a state space model for evolving truth discovery. Truth discovery is an important topic

in data mining. Untrustworthy information is ubiquitous in big data, which gives rise to the challenge

of truth discovery. The goal of truth discovery is to distill the most credible information from noisy but

redundant sources. Despite recent progress, the time-varying structure of truth discovery problems remains

less explored, e.g., the latent truth may evolve over time and have a temporal correlation. In this project, we

propose a general framework named EvolvT to explicitly model the dynamics of truth evolution. At the core

of such a framework is an adaptation of hidden Markov model to characterize the trustworthiness of different

sources. Based on Kalman filtering and smoothing techniques, we establish an expectation-maximization

(EM) algorithm with strong theoretical guarantees. In comparison with existing approaches, our framework

captures source dependency between information sources across time, and furthermore, automatically allows

for missing data. Experiments on real-world applications demonstrate its advantages over the state-of-the-art

truth discovery approaches.

In Chapter 6, we discuss the potential extension of our proposed estimation methods to more general

Markov processes.
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Chapter 2

An MCMC approach for empirical
likelihood inference based on
characteristic functions

2.1 Introduction

Common statistical procedures such as maximum likelihood can provide efficient estimates under mild reg-

ularity conditions if the likelihood function is available. However, a number of difficult problems might arise

for certain models of which the likelihood is not tractable. In this chapter, we mainly focus on the case

that characteristic functions have analytic forms rather than density functions. One potential application

is Lévy processes because their characteristic functions are more likely to be available than densities due to

Lévy-Khintchine representation.

Statistical inference based on characteristic functions includes several methods. The first method is

empirical characteristic function (ECF) estimation investigated by Paulson et al. (1975); Feuerverger and

Mureika (1977); Feuerverger and McDunnough (1981a). The basic idea of this method is to match the

characteristic function implied by the model and the empirical characteristic function obtained from data.

A review can be found from Yu (2004). A Markov chain Monte Carlo approach developed by Chernozhukov

and Hong (2003) is utilized for ECF estimation with application to fit stock prices by Lévy processes in

Grynkiv (2010). We propose an approximation method to conduct ECF estimation efficiently in Chapter 4.

Another choice to do statistical inference based on characteristic function is to obtain densities by Fourier

inversion transform. We will discuss it in Chapter 3.

In this work, we focus on the statistical inference method based on empirical likelihood. Kunitomo and

Owada (2006) and Chan et al. (2009) construct maximum empirical likelihood estimator (MELE) based on

characteristic functions. The basic idea is to find optimal parameters which maximize the empirical likelihood

constructed based on characteristic functions. Empirical likelihood, proposed by Owen (1988), sometimes

can be regarded as an alternative to parametric likelihood especially when model’s density function is not

available (DiCiccio et al. (1989)). Moreover, Qin and Lawless (1994) show that maximum empirical likelihood

estimates (MELE) are asymptotically normally distributed under certain conditions.

When it comes to the implementations of empirical likelihood inference, generally, there are two common
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ways to incorporate characteristic functions into empirical likelihood. Kunitomo and Owada (2006) chooses

a finite number of grid points u1, u2, . . . , um, and use estimation equations based on characteristic functions

φ(ui) = E(exp(iuiX)) with i = 1, 2, . . . ,m, to construct empirical likelihood, so as to obtain MELE. However,

efficiency cannot be reached based on finite points {ui}. To determine how dense and how many grids points

{ui}mi=1 are enough to get valid estimates is still an unanswered question.

The alternative approach is to construct an empirical likelihood L(θ|u) based on characteristic function

φ(u) = E(exp(iuX)) conditionally on a fixed u. Then, construct integrated log-empirical likelihood T (θ) =∫
log(L(θ|u))dG(u), where G(u) represents the distribution of u. This method can be regarded as the

continuous version of empirical likelihood based on characteristic function, and the MELE with a judiciously

chosen G(u) can reach full maximum likelihood efficiency (See Chan et al. (2009)). But this method comes

with a big computing burden. To be specific, we have three computing issues. Firstly, the function inside

the integral T (θ) includes empirical likelihood L(θ|u), which requires one optimization procedure. Secondly,

T (θ) =
∫

log(L(θ|u))dG(u) is an integral of log(L(θ|u)), which requires a rigorous integration procedure.

Thirdly, to obtain MELE, we need to find the values of our parameters to maximize T (θ), avoiding several

local maximums. All of them are computationally extensive. Especially, the second issue and third issue are

more challenging because there are already many works (for example, Owen (1990) and Wu (2004)) about

the first issue to improve the efficiency of calculating empirical likelihood.

In this chapter, we mainly focus on the sampling based optimization technique and propose a pseudo-

marginal Markov chain Monte Carlo (MCMC) based simulated annealing algorithm (which is called inte-

grated empirical likelihood sampler) to deal with the second and the third issue. We resolve the second issue

by setting a different target function as integrated empirical likelihood T (θ) =
∫

(L(θ|u))dG(u) and sample

the parameter θ from it via pseudo-marginal MCMC. During this procedure, we can sample from T (θ) with-

out evaluating the integral form T (θ). What’s more, estimates based on new integrated empirical likelihood

here still keep common asymptotic properties (i.e. asymptotic normality). To resolve the third issue, we use

the idea in the simulated annealing which sample from T (θ)1/tn with a sequence of decreasing temperatures

tn. Under certain regularity condition, it can be shown that samples from T (θ)1/tn will converge to the

global maximum of our target T (θ) when tn → 0.

All in all, in this chapter, we construct a new continuous version of empirical likelihood inference and prove

the asymptotic properties of our estimates based on this new version. Noticing that, one of the regularity

conditions for asymptotic properties is not easy to verify. We provide a simple equivalent condition to it,

which is easy to understand and test. Based on our integrated empirical likelihood, pseudo-marginal MCMC

based samplers are proposed to obtain the parameter estimates.
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We organize this chapter as follows. In Chapter 2.2, we construct our Bayesian empirical likelihood and

maximum empirical posterior estimates (MEPE). In Chapter 2.3, we present several asymptotic properties

of our MEPE and Bayesian empirical likelihood. We also discuss regularity conditions and provide two

equivalent regularity conditions. In Chapter 2.4, we propose integrated empirical likelihood sampler to

estimate MEPE. In Chapter 2.5 and Chapter 2.6, simulation and case studies are performed to demonstrate

its effectiveness. Chapter 2.7 is the conclusion of this study. All proofs are in the Appendices.

2.2 Bayesian empirical likelihood based on characteristic

functions

In this section, we construct Bayesian empirical likelihood based on characteristic functions. Suppose we

have n i.i.d. random variables X = {X1, . . . , Xn} from d variate distribution F with characteristic function

Φ(u; θ0) for u ∈ Rd where θ0 is the p dimensional true parameter. The real part and imaginary part of

the characteristic function are φR(u; θ0) = <(E(eiu
TXi)) and φIm(u; θ0) = =(E(eiu

TXi)). Assume θ is a

p dimensional parameter associated with F within compact parameter space Θ ⊂ Rp. Suppose that the

information of parameter θ can be summarized in the form of infinite moment conditions g(u,Xi; θ) based

on characteristic functions φ(u; θ), such that E{g(u,Xi, θ0)} = 0. g(u,Xi, θ) is defined as

g(u,Xi; θ) := (cos(uTXi)− φR(u; θ), sin(uTXi)− φI(u, θ))T ,

and θ0 is uniquely determined above.

Similar to Chan et al. (2009); Chen et al. (2013), the profile empirical likelihood proposed in Qin and

Lawless (1994) with given u is:

Ln(u; θ) = max{
n∏
j=1

wj | wj ≥ 0,

n∑
j=1

wj = 1,

n∑
j=1

wj cos(uTXj) = φR(u; θ),

n∑
j=1

wj sin(uTXj) = φI(u; θ)}.

(2.1)

By solving it using Lagrange multiplier , we have the profile likelihood Ln(u; θ) =
∏n
i=1 wi(u; θ) and

wi(u; θ) = 1
n(1+λn(u;θ)T g(u,Xi;θ))

. λn(u; θ) is the Lagrange multiplier satisfies

n∑
i=1

g(u,Xi; θ)

1 + λn(u; θ)T g(u,Xi; θ)
= 0, (2.2)
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given u ∈ Rd. Then, the integrated empirical likelihood Tn(θ) is defined as

Tn(θ) =

∫
S

Ln(u; θ)dG(u), (2.3)

and G(u) is either a given discrete distribution or a smooth distribution function of u with support on

compact set S ⊂ Rd satisfying regularity conditions in Chapter 2.3.

With a prior specification p0(θ) on the parameter θ, we have the posterior density

p(θ|X) ∝ p0(θ)Tn(θ). (2.4)

We call p(θ|X) the posterior distribution based on integrated empirical likelihood approach. Then, we

define maximum empirical posterior estimator (MEPE) θ̂ as

θ̂ = arg max
θ
p(θ|X). (2.5)

In this chapter, we mainly investigate both inference and computing of our proposed posterior distribu-

tion in Equation (2.4). We construct asymptotic properties of posterior density and MEPE. We also propose

a pseudo-marginal MCMC algorithm to estimate the MEPE.

Remark 1. We add a prior distribution in our setting of Equation 2.4. Prior information is important to

identify parameters, which is also indicated in Johannes and Polson (2003). In our model setting, Bayesian

setting will lead to Bayesian empirical likelihood. Lazar (2003) discusses the validity of this procedure

first. Grendár and Judge (2009) investigates the asymptotic equivalence of Bayesian maximum posteriori

estimator and empirical likelihood. Also, Bayesian empirical likelihood with Monte Carlo has been applied

to several areas such as population genetics (Mengersen et al. (2013)), quantile regression (Yang and He

(2012)). Thus, it might be reasonable to consider priors in our work. When priors are flat, it is obvious to

see that Bayesian point estimation will be consistent to the point estimation under Frequentest framework.

2.3 Asymptotic properties of the posterior

We write down several regularity conditions below.

A.1 E{g(u,Xi; θ0)gT (u,Xi; θ0)} is positive definite for u ∈ S with arbitrary fixed i within {1, 2, 3, . . . , n}.

A.2 ∂
∂θg(u, x; θ) is continuous with θ in Ω0, the neighborhood of θ0 for u ∈ S and x ∈ Rd.
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A.3 supθ∈Ω0
|| ∂∂θg(u, x; θ)|| ≤ H(u, x), where H(u, x) is a function satisfying

∫
S

∫
Rd
H(u, x)dF (x)dG(u) <

∞.

A.4
∫
S

(E( ∂∂θg(u, x; θ0))T (E{g(u,Xi; θ0)gT (u,Xi; θ0)})−1(E( ∂∂θg(u, x; θ0))))dG(u) is positive definite.

A.5 ∂2

∂θ∂θT
g(u, x; θ) is continuous in θ for θ ∈ Ω0, t ∈ S, x ∈ Rd.

A.6 supθ ∈ Ω0|| ∂2

∂θ∂θT
g(u, x; θ)|| ≤ H(u, x), where H(u, x) is given in A.3.

A.7 Log-prior log{p0(θ)} has bounded first derivative in Ω0, which is the neighborhood of θ0.

A.8 Let J(θ̂n) = − ∂2

∂θθT
log T (θ)|θ=θ̂nand assume it is positive definite.

2.3.1 Asymptotic properties of our defined MEPE

The following theorems in Chapter 2.3.1 shows the asymptotic normality of MEPE estimates.

Theorem 1 (Consistency). Under regularity conditions A.1-A.4 and A.7, our posterior p(θ|X) attains its

maximum θ̂n in a n−
1
3 neighborhood of θ0, ||θ̂ − θ0|| ≤ n−

1
3 , almost surely satisfying

 Q1n(u; θ̂n, λn(u; θ̂n)) = 0∫
S
{p0(θ̂n)Ln(u; θ̂n)Q2n(u; θ̂n, λn(u; θ̂n))− 1

n
∂p0(θ̂n)
∂θ Ln(u; θ̂n)}dG(u) = 0,

(2.6)

where  Q1n(u; θ, λ) = 1
n

∑n
i=1

1
1+λT g(u,Xi;θ)

g(u,Xi; θ)

Q2n(u; θ, λ) = 1
n

∑n
i=1

1
1+λT g(u,Xi;θ)

∂g(u,Xi;θ)
∂θ λ.

(2.7)

As for the asymptotic normality property, we will obtain the exactly same asymptotic covariance matrix

as the one in Chan et al. (2009) with the similarly proof.

Theorem 2 (Asymptotic normality). Under regularity conditions A.1-A.7, for θ̂n given in Theorem 1, when

n→∞
√
n{θ̂n − θ0} = −{

∫
S

s21(u)s−1
11 (u)s12(u)dG(u)}−1

× {
∫
S

s21(u)s−1
11 (u)

√
nQ1n(u; θ00)dG(u)}+ op(1)

d→ N(0,Σ),

(2.8)
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where

s11(u) =− E{g(u,X1; θ0)gT (u,X1; θ0)},

s12(u) =sT21 = E{ ∂
∂θ
g(u,X1; θ0)},

Σ ={
∫
S

s21(u)s−1
11 (u)s12(u)dG(u)}−1{

∫
S

∫
S

s21(u1)s−1
11 (u1)E{g(u1, X1; θ0)gT (u2, X1; θ0)}s−1

11 (u2)

× s12(u2)dG(u1)dG(u2)} × {
∫
S

s21(u)s−1
11 (u)s12(u)dG(u)}−1.

To reach asymptotic efficiency of MEPE, we define the G(u) in (2.3) as same as the one mentioned in

Section 2.1 of Chan et al. (2009) due to the same form of asymptotic covariance matrix in Theorem 2. For the

testing, since our estimator has the same rate of convergence as the MELE proposed in Chan et al. (2009),

our estimates MEPE can be employed in the empirical likelihood test in Chan et al. (2009). Specifically, it

is stated in Corollary 2.1.

Corollary 2.1. Suppose we want to test a model with a characteristic function φ(u; θ) and we have hypothe-

ses:

H0 : φ(u) ∈ {φ(u; θ) : ∃θ ∈ Ω},

against

Ha : φ(u) /∈ {φ(u; θ) : ∀θ ∈ Ω},

where Ω ⊂ Rp is a given set. Then, we have test statistics:

T (θ̂) =

∫
S

log(Ln(u; θ̂))dG(u),

where θ̂ is the MEPE defined in Equation (2.5). Under regularity conditions A.1-A.7, as n→∞, we have

|T (θ̂ − {−W2 +WT
1 {

∫ a

−a
s21(u)s−1

11 (u)s12(u)dG(u)}−1W1})| = op(1),

where

W1 =

∫ ∞
−∞
{
∫ a

−a
s21(u)s−1

11 (u)(cos(ux), sin(ux))T dG(u)}dBn(F (x)),

W2 =

∫ ∞
−∞

∫ ∞
−∞
{
∫ a

−a
(cos(ux), sin(ux))s−1

11 (u)(cos(uy), sin(uy))T dG(u)}dBn(F (x))dBn(F (y)),

and {Bn(y) : 0 ≤ y ≤ 1} is a sequence of Brownian bridges.

Considering the limit distribution of test statistics T (θ̂) in Corollary 2.1 is complicated, following the
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suggestions in Chan et al. (2009), we also recommend performing parametric bootstrap to approximate the

limit distribution of this test statistics.

2.3.2 Bayesian properties of posterior based on empirical likelihood

In this section, we discuss the asymptotic normality of Bayesian posterior based on empirical likelihood.

Lazar (2003) discusses the possibility to use empirical likelihood in Bayesian inference. Inspired by the

Theorem 1 in Lazar (2003), we have Bayesian asymptotically normality theorem below.

Theorem 3 (Posterior local normality). θ̂n is MEPE given in Theorem 1, under regularity conditions

A.1-A.8, for {θ : ||θ − θ0|| = O(n−
1
2 )}, the posterior distribution of θ (in (2.4)) has the density

p(θ|X) ∝ exp{−1

2
(θ − θ̂n)TJ(θ̂n)(θ − θ̂n) + op(1), }

and if J(θ̂n) is positive definite,

J(θ̂n)
1
2 (θ − θ̂n)

d→ N(0, I),

where θ̂n is MEPE and

J(θ̂n) = − ∂2

∂θθT
log p(θ|X)|θ=θ̂n .

The approximated normality stated in Theorem 3 makes MCMC techniques possible to draw samples

around MEPE from our posterior p(θ|X). However, this theorem (Theorem 3) only holds in a neighborhood

of true parameter θ0. That is, the posterior may not be approximated normally distributed over the whole

parameter space Θ. One possibility is that the distribution implied by the sample you draw from posterior

might be skewed. Then, the sample mean might not be a good estimator of our MEPE. In addition, more

than one local maxima of p(θ|X) might appear in the place not around the true parameters. This problem

might be even serious when the sample size is not big enough. Thus, we decide to borrow tempering idea

from simulated annealing algorithm to obtain the estimates of MEPE accurately rather than sampling from

our posterior p(θ|X) directly. This algorithm will be introduced in Chapter 2.4.

2.3.3 Discussion of regularity conditions

The regularity conditions in section 2.3 are standard compared with Qin and Lawless (1994) and Chan

et al. (2009) except A.4. To be more specific, we find that the rank of ∂
∂θg(u, x; θ0) is p (the dimension of

parameter space). The rank of (E{g(u,Xi; θ0)gT (u,Xi; θ0)}) is 2 (dimension of g(u,Xi, θ0) including one
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real part and one imaginary part). Then, from linear algebra, the rank of

E(
∂

∂θ
g(u, x; θ0))T (E{g(u,Xi; θ0)gT (u,Xi; θ0)})−1(E(

∂

∂θ
g(u, x; θ0))) (2.9)

is 2 which could be less than p. Thus, (2.9) is not positive definite when p > 2. But interestingly, after

integration,

∫
S

(E(
∂

∂θ
g(u, x; θ0))T (E{g(u,Xi; θ0)gT (u,Xi; θ0)})−1(E(

∂

∂θ
g(u, x; θ0))))dG(u)

could be positive definite (this is our regularity condition A.4). In this section, we discuss this phenomenon

and investigate the equivalent condition to A.4. Hopefully, our provided regularity conditions alternative

to A.4 in Theorem 4 and Theorem 5 can help us easily to check regularity condition A.4 considering the

integral form in A.4 is usually complicated.

Here, we discuss G(u) in the smooth distribution case or discrete distribution case separately.

� When G(u) is a smooth distribution:

When G(u) is a smooth distribution, obviously we can conclude that the support of G(u) contains open sets.

Then, we have the following theorem:

Theorem 4. If the support of distribution G(u), S, contains open sets, there exists an open set I ⊂ S so

that ∫
I

(E(
∂

∂θ
g(u, x; θ0))T (E{g(u,Xi; θ0)gT (u,Xi; θ0)})−1(E(

∂

∂θ
g(u, x; θ0))))dG(u) (2.10)

is positive definite if and only if there is no non-zero constant β (not a function of u) satisfying

E( ∂∂θg(u, x; θ0))T (E{g(u,Xi; θ0)gT (u,Xi; θ0)})−1(E( ∂∂θg(u, x; θ0)))β = 0 for ∀u ∈ I .

Because the open set I is the subset of S, whenever (2.10) is positive definite, A.4 will hold. Then, we

have the following corollary:

Corollary 4.1. If there exists an open set I so that there is no non-zero constant β(not a function of u)

satisfying

E(
∂

∂θ
g(u, x; θ0))T (E{g(u,Xi; θ0)gT (u,Xi; θ0)})−1(E(

∂

∂θ
g(u, x; θ0)))β = 0

for ∀u ∈ I, then A.4 holds.

� When G(u) is a discrete distribution:
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When G(u) is a discrete distribution, obviously we can conclude that the support of G(u) contains countable

points. Then, we have the following theorem:

Theorem 5. If the support of distribution G(u), S, is a set of countable points, then, there exists G(u) to

make regularity condition A.4 hold, which is equivalent to the condition that there is no non-zero constant β

(not a function of u) so that

E(
∂

∂θ
g(u, x; θ0))T (E{g(u,Xi; θ0)gT (u,Xi; θ0)})−1(E(

∂

∂θ
g(u, x; θ0)))G(u)β = 0

for ∀u ∈ S. Moreover, based on equivalent regularity condition, we have a fixed way to construct or check

the support of G(u) with n + 1 −m point masses (See lemma 24.2 for the way of the support construction

by setting A(t) to be (2.9)). G(u) with point masses less than n+ 1−m might be possible depending on the

structure of matrix (2.9).

Remark 2. Theorem 4 and Theorem 5 provide us a way to check regularity condition A.4 without integral.

To check that there is no non-zero constant β(not a function of u) so that

E( ∂∂θg(u, x; θ0))T (E{g(u,Xi; θ0)gT (u,Xi; θ0)})−1(E( ∂∂θg(u, x; θ0)))β = 0 for ∀u ∈ S, we can assume β exists

and check the coefficients of all different terms in it including u are zero or not. This is relatively easy

compared with checking A.4.

2.4 Sampling from posterior distribution

In this section, we mainly introduce the algorithm to obtain MEPE in (2.5). Specifically, we have empirical

posterior

p(θ|X) =

∫
S

Ln(u; θ)p0(θ)dG(u), (2.11)

which is defined in (2.3) and (2.4). MEPE is the θ̂ maximizing empirical posterior p(θ|X). This indicates a

nonlinear optimization is required. In addition, p(θ|X) might be multi-modal. An optimization algorithm

avoiding samples getting trapped in local maxima is required. Moreover, p(θ|X) is an integration without

analytic form. Maximizing it directly will introduce a huge computational burden. Computation of standard

error of MEPE requiring numerical derivatives of p(θ|X) will further aggravate computation difficulties.

Instead of performing integral approximation technique before optimization, we use Markov chain Monte

Carlo based sampling idea to estimate MEPE, which alleviates the issues mentioned above.

In this section, we propose a so called integrated empirical likelihood sampler based on pseudo-marginal

MCMC and simulated annealing. Simulated annealing is a sampling based optimization algorithm. Its key
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feature is to generate samples from the targets with different temperature so as to allow samples escape local

optima in hopes of finding a global optimum. Specially, our posterior with temperature t is

pt(θ|X) = p(θ|X)
1
t = (

∫
S

Ln(u; θ)p0(θ)dG(u))
1
t . (2.12)

Under the regularity conditions from Hwang (1980), it can be showed that the sequence of distributions

pt(θ|X) concentrates upon the MEPE when t → 0. Furthermore, simulated annealing generates Markov

Chain through MCMC technique following the distribution pt(θ|X) with different temperature t. With

detailed control of this generation procedure, the generated Markov chain will converge to the MEPE. In

our case, pt(θ|X) is a continuous function of θ. There are several papers presenting convergence properties

and correspondent regularity conditions of simulated annealing global optimization for continuous functions

including Locatelli (2000) and Yang (2000). Algorithm 1 is the simulated annealing algorithm to obtain

MEPE. With fixed temperature, the acceptance rate h(θ, ϑ) is from Metropolis hastings algorithm.

Initialize θ0 = (θ0
1, θ

0
2, . . . , θ

0
k) and temperature t0;

Set iteration j = 0.;
while Stopping criterion not satisfied do

Sample a random parameter vector ϑj+1 from transition kernel q(θ → ϑ);
Sample v from uniform distribution U(0,1);
Calculate acceptance rate h(ϑj+1, θj) = min{1, ptj (ϑj+1|X)/ptj (θ

j |X)}, where tj is the
temperature at iteration j. pt(θ|X) is defined in (2.12);

if v ≤ h(ϑj+1, θj) then
Set θj+1 = ϑj+1

else
Set θj+1 = θj ;

end
set j=j+1;

end

Algorithm 1: Simulated annealing

Simulated annealing algorithm listed above might help us to obtain the global maximum of p(θ|X).

However, it leaves us a computation problem. That is, the acceptance rate h(θ, ϑ) in algorithm 1 has an

integration form which is hard to calculate.

One way to solve this problem is to change our target from p(θ|X) to

pt(θ, u) = p0(θ)

1/t∏
i=1

L(θ|ui)g(ui), (2.13)

where t is the temperature and 1/t is assumed to be an integer. g(u) is the density function of u corresponding

to its CDF G(u). This idea is called State Augmentation for Marginal Estimation (SAME) from Doucet
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et al. (2002) and this idea also appears in Jacquier et al. (2007).

We can find that the marginal distribution of (2.13) is pt(θ|X) in (2.12). Then, simulating θ following

pt(θ|X) is equivalent to simulating θ and u separately from pt(θ, u) by Gibbs sampling and getting rid of

generated u. Similar to simulated annealing idea, by carefully designing sampling procedure and temperature

t updating, simulated θ is supposed to coverage to the MEPE. Extension of 1/t to any real number in SAME

is from Johansen et al. (2008).

SAME idea can avoid us calculating integral required by simulated annealing. However, we need to

sample extra u from pt(u|θ) via Gibbs sampling. Furthermore, with different u, we expect empirical likelihood

L(θ|u) is different because different u implies different moment conditions inside (2.1). Therefore, a strong

correlation between u and θ with respect to SAME idea target pt(θ, u) might exist and sampling efficiency

from pt(θ, u) via Gibbs sampling might be a problem. Considering that we actually don’t need to estimate

u in our case, we adopt another sampling idea which is called pseudo-marginal MCMC to resolve the

computation problem left by simulated annealing.

Pseudo marginal MCMC is first used by Beaumont (2003) and established formally by Andrieu and

Roberts (2009). It can sample θ from intractable target function whenever unbiased estimates of the target

function are available. One MCMC without likelihood algorithm proposed by Marjoram et al. (2003) can

be regarded as a typical example of this algorithm. In our case, we replace acceptance rate from Metropolis

hastings by the one based on pseudo-marginal MCMC to avoid the integral form of acceptance rate h(θ, ϑ) in

simulated annealing algorithm 1. Specifically, we list our pseudo-marginal MCMC with simulated annealing

sampler in Algorithm 2 to show its advantage over standard simulated annealing algorithm 1. We name our

pseudo-marginal MCMC with simulated annealing sampler in Algorithm 2 as integrated empirical likelihood

sampler.
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Initialize θ(0) = (θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
k );

// Initialize unbiased estimates of pt0(θ(0)|X) in the following steps

for integer r in set {1, . . . , 1/t0} do

Sample u
(r)
1 , . . . , u

(r)
n0 following i.i.d. G(u) Obtain rth unbiased estimates of p(θ(0)|X) in (2.11):

p̂(r)(θ(0)|X) = 1
n0

∑n0

w=1 Ln(θ(0);u
(r)
w )

end

Calculate unbiased estimates of pt0(θ|X) defined in (2.12): p̂t0(θ(0)|X) =
∏1/t0
r=1 p̂

(r)(θ(0)|X);

Initialize temperature pattern t0, t1, . . . , ti, . . ., and for each i, 1
ti

is a integer.;

Set iteration j = 0;

while Stopping criterion not satisfied do

Sample a random parameter vector ϑ(j+1) from transition kernel q(θ → ϑ);

// Obtain unbiased estimates of ptj (ϑ
(j+1)|X) in the following steps

for integer r in set {1, 2, . . . , 1/tj} do

Sample u
(r)
1 , . . . , u

(r)
nj following i.i.d. G(u) Obtain rth unbiased estimates of p(ϑ(j+1)|X) in

(2.11): p̂(r)(ϑ(j+1)|X) = 1
nj

∑nj
w=1 Ln(ϑ(j+1);u

(r)
w );

end

Calculate unbiased estimates of ptj (ϑ
(j+1)|X): p̂tj (ϑ

(j+1)|X) =
∏1/tj
r=1 p̂

(r)(ϑ(j+1)|X) ;

Sample v from uniform distribution U(0,1);

Calculate acceptance rate // based on pseudo-marginal MCMC

hp(ϑ
(j+1), θ(j)) = min{1, p̂tj (ϑ(j+1)|X)/p̂tj (θ

(j)|X)}, where tj is the temperature at iteration j.;

if v ≤ h(ϑ(j+1), θ(j)) then

Set θ(j+1) = ϑ(j+1);

Set p̂tj+1(θ(j+1)|X) = p̂tj (ϑ
(j+1)|X);

else

Set θj+1 = θj ;

Set p̂tj+1
(θ(j+1)|X) = p̂tj (θ

j |X);

end

set j=j+1;

end

Algorithm 2: Pseudo marginal MCMC with Simulated annealing

The key difference between pseudo-marginal MCMC with simulated annealing (Algorithm 2) and simu-

lated annealing (Algorithm 1) is the acceptance rate. The acceptance rate in Algorithm 2 is hp(ϑ
(j+1), θ(j))
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of which the numerator and denominator are unbiased estimates of their counterparts in Algorithm 1. If we

let temperature pattern {ti} be a fixed value t. Algorithm 1 is the Metropolis hastings, while, algorithm 2

is the pseudo-marginal MCMC. Both of them can generate Markov chains in such a way that, as more and

more sample values are produced, the distribution of values more closely approximates the desired distribu-

tion pt(θ|X). But, the pseudo-marginal MCMC provides us easy-to-calculate acceptance rate hp(ϑ
(j+1), θ(j))

when the desired distribution pt(θ|X) is not tractable.

Generally, it is normal to design a pattern of temperature {ti}∞i=1 decreasing to zero when performing

simulated annealing. In our case, we keep temperature decreasing gently and gradually like the downward

stairs. Then, use the normality check in introduced Johansen et al. (2008) to check the convergence of the

Markov chain with this temperature. When the Markov chain generated from our Algorithm 2 converges,

we stop decreasing the temperature and use the average of the sample with respect to the last temperature

to estimate the parameter.

2.5 Simulation study

In this section, we apply integrated empirical likelihood sampler to some typical Lévy processes in Finance.

The main motivation of using Lévy processes in finance is from the goodness of fit of asset return. The

return distributions generally have skewness and heavy tails than the normal distribution, which is noted by

Fama (1965). Based on flexible designs, Lévy processes can capture the skewness and heavy tails property

of financial asset returns. Suppose St represents the price of financial securities at time t, it is common to

assume that logarithm of price, Yt = logSt, follows Lévy processes.

2.5.1 Lévy processes

An Rd−valued stochastic process {Yt} is said to be a Lévy process if it is continuous in probability and has

independent and stationary increments. Independent increments mean that increments Ys− Yt and Yu− Yv

are independent where [t, s] and [v, u] are intervals without overlap. Stationary increments mean that the

distribution of Yt − Ys is the same as Yt−s. Thus, if we observe data based on several discrete points with

same time interval δ, say {δ, 2δ, . . . , (n+ 1)δ} in time span [0, T ], our data will be {Yδ, Y2δ, . . . , Ynδ}. Then,

the increments {Xt = Y(t+1)δ − Ytδ}nt=1 will be i.i.d.. Moreover, the characteristic function of {Xt}nt=1 is

available.

The existence of expression of characteristic function for Lévy increments {Xt}nt=1 is due to Lévy-

Khintchine formula. Based on this formula, simple analytic expressions of characteristic functions are avail-
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able for a wide range of Lévy processes. It is stated that the characteristic function of a Lévy increment Xt

can be expressed as

φ(u) ≡ E{exp(iu′Xt)} = exp{δ[iµu− 1

2
u′Σu+

∫
Rd

(exp(iu′x)− 1− iu′xI{|x|≤1}J(dx))]}, (2.14)

where (µ,Σ, J) is the triplet of the Lévy processes including the drift µ ∈ Rd, the volatility matrix of its

diffusion component Σ which is a symmetric non-negative definite d×d matrix and the Lévy measure J(dx)

on Rd with J({0}) = 0 and
∫
Rd

min(|x|2, 1)J(dx) <∞.

Lévy triplet (µ,Σ, J) can determine the Lévy process Xt due to Lévy-Khintchine formula. The Lévy

measure J(dx) describes the expected number of jumps with jump size x in a time interval of length 1. If

J = 0, this Lévy process is just Brownian motion with drift µ and volatility matrix Σ without jumps. There

are two types of Lévy processes, finite activity processes and infinite activity Lévy process. If
∫
Rd
J(dx) <∞,

it means that there are only finitely many jumps in any given finite interval. We call them finite activity

Lévy processes. It also can be proved that every jump process with finite activity is a compound Poisson

type process. Thus, Lévy processes with finite activities are also called jump-diffusion process of which the

jump component is of compound Poisson type with Poisson arrival intensity λ =
∫
Rd
J(dx) and jump size

distribution λ−1J . Typical jump-diffusion models in finance include Merton’s jump-diffusion model (Merton

(1976)) in which the jump size follows normal distribution and Kou’s double exponential jump-diffusion

model(Kou (2002)), which allows asymmetric jump size following double exponential distributions.

For infinite activity Lévy processes,
∫
Rd
J(dx) is infinite. It means that there are infinite many jumps

in any given finite time intervals. Compared with diffusion jump models, pure jump Lévy processes with

infinite activity might have better representations of stock price dynamics (Geman (2002)). Typical financial

models with infinite activities include the generalized hyperbolic model (Barndorff-Nielsen (1977)) and its

subclasses, CGMY model (Carr et al. (2002)) and its subclasses.

In this section, we will implement our integrated empirical likelihood sampler to do parameter estimation

for several financial models based on Lévy processes with explicit expression of characteristic functions

including multivariate version of Black-Shores model, Kou’s jump-diffusion model(Kou (2002)), Variance

Gamma model(Madan and Seneta (1990)).
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2.5.2 A multivariate version of Black-Scholes-Merton Model

We start from a simple example, a multivariate version of Black-Scholes-Merton Model (Black and Scholes

(1973); Merton (1973)). Under the setting of this model, the log-equity return is

Xt ≡ log
S(t+1)δ

Stδ
= µδ + σ

√
δεt, (2.15)

where δ is the fixed time interval for observed prices St ∈ Rd; µ ∈ Rd is the drift term; Σ = σσT is the

d × d diffusion matrix in annualized scale. The Lévy triplet of this process is (µ,Σ, J(dx) = 0) and its

characteristic function is

φ(u) = exp{δ(iuTµ− 1

2
uTΣu)}. (2.16)

Algorithm setting

For this case, we simply set the support of G(u) is the region where the real part of empirical characteristic

function (ECF) value based on our simulated sample between 0.1 and 1 (See Fig 2.1f). The reason for

choosing 0.1 to be the lower bound is that ECF real value is noisy in the area far away from original zero

point. This effects are even more dramatic when sample size is small. This noisy area gives us barely useful

information. Thus, we set a lower-bound to obtain useful information of ECF. The distribution of G(u) is set

to be uniform distribution. For the integrated empirical likelihood sampler, we run 10000 draws with 2000

burn in draws. We set the temperature pattern T0 = 1, T9999 = 0.01. When i < 5000, Ti = T
(bi/100c)/50
9999 .

When i ≥ 5000, Ti = T9999. The number of particles for unbiased estimates on ith iteration is Ni = N0d 1
Ti
e.

N0 is 2 here. The proposal we use for µ and Σ is normal inverse Wishart distribution. Supposing we don’t

have any useful information of parameters, we set the prior p(θ) to be flat for all parameters in a certain

large range.

Performance

We demonstrate the validity of our algorithm for the two-dimensional version of Black-Shores-Merton model.

We simulate 1000 weekly returns based on the annualized drift, µ = (µ1, µ2) = (0.2, 0.15), annualized

diagonal elements of diffusive matrix Σ, σ2
1 = 0.04, σ2

2 = 0.0225 and annualized off diagonal elements of

diffusive matrix to make correlation between two assets ρ is 50%. Our around 20% annualized return with

around 0.2 volatility is quite typical in stock market. Also, Chan et al. (2009) use similar parameters. For

the 50% correlations of assets, this is also quite standard (See Jacquier et al. (2007)).

Fig 2.1 shows the trace plot of our sampler to identify our MEPE. We also plot the true value and MLE

17



in the graph. We can see that if we use last several samples mean in our trace plot to estimate MEPE, our

estimated MEPE will have quite comparable accuracy with MLE. Also, we can find that the trace plot for

the elements in diffusive matrix Σ has better performance compared with drift term and it converges much

quicker. The possible reason for this is that the standard error of our estimated µ is larger than Σ based on

MEPE. This is also consistent to the result in Chan et al. (2009).
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(a) µ1 trace plot (b) µ2 trace plot

(c) σ1 trace plot (d) σ2 trace plot

(e) ρ trace plot (f) Real part of ECF value

Figure 2.1: Empirical characteristic function information and the trace plot of multivariate version of Black-
Scholes-Merton model where µ1 = 0.2, µ2 = 0.15, σ2

1 = 0.04, σ2
2 = 0.0225, ρ = 0.5.
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2.5.3 Kou’s jump-diffusion model

Let’s consider a finite activity Lévy process, Kou’s jump-diffusion model (Kou (2002)). In this model, we

assume the logarithm of the equity return

Xt ≡ log
S(t+1)δ

Stδ
= µδ + σ

√
δεt +

Nt∑
i=1

Zi, (2.17)

where δ is the fixed time interval for observed prices St ∈ R. µ ∈ R is the drift term and σ is the volatility

in annualized scale. These setting is similar to the Black-Shores-Merton model. In addition to drift term

and diffusion term, we also assume jumps arrive according to a Poisson process Nt with intensity λ. The

jump sizes {Zi} follow i.i.d. asymmetric double exponential distribution with density

fZ(z) = pη1 exp(−η1z)1{z≥0} + (1− p)η2 exp(η2z)1{z<0}. (2.18)

That is, the positive jumps probability is p, mean positive jump size is 1
η1

and mean netative jump size is

1
η2

. The Lévy triplet of this process is (µ, σ2, J(dz) = λfZ(z)dz) and its characteristic function is

φ(u) = exp{δ[iµu− 1

2
σ2u2 − λ(1− pη1

η1 − iu
− (1− p)η2

η2 + iu
)]}. (2.19)

Algorithm setting

In this case, we set the support of G(u) to be positive ECF real part area like the setting in Black-Shores-

Merton model. It is easy to show that the real jump part of the characteristic function exp{δλ(1− pη1
η1−iu −

(1−p)η2
η2+iu )} normally decays to zero much more quickly than the drift and diffusion part exp[δ(iµu− 1

2σ
2u2)]

when u → ∞. To capture more information about jump parameters, we put more weights around zero

by setting G(u) to be a triangular distribution. For other settings, they are same as Black-Shores-Merton

model’s.

Performance

The annualized parameter set we use is that δ = 1
52 , µ = 0.2, σ = 0.2, λ = 10, p = 0.4, η1 = 5, η2 = 2.5.

That is, we assume that there are about 10% weekly returns jump with average negative jump size 40%

and average positive jump size 20% per year. This is reasonable for U.S. stocks with high volatility. To

simulate the sample path of Kou’s jump-diffusion model, we use the simulation method of jump-diffusion

models indicated in Glasserman (2003). The simulated data are 1000 weekly returns.
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Fig 2.2 shows the trace plot of our sampler to identify our MEPE. We also plot the true value in the

graph. At first, when temperature is low, trace plot search some areas which even very far away from the

initial value. Then, with the temperature rising, trace plot converges to the value around true value. The

trace plot demonstrates the validity of algorithm for the Kou’s jump-diffusion model.
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(a) µ trace plot (b) σ trace plot

(c) λ trace plot (d) p trace plot

(e) ηu trace plot (f) ηd trace plot

Figure 2.2: Trace plot of Kou’s jump-diffusion model where µ = 0.2, σ2 = 0.04, λ = 10, p = 0.4, ηu =
5, ηd = 2.5.
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2.5.4 Variance Gamma model

Now, we move to an asset pricing model with infinite activity process, variance Gamma (VG) model. It is

proposed by Madan and Seneta (1987) for stock market data. It is also a degenerate case of CGMY process

(Carr et al. (2002)) with the Lévy triplet (γ, 0, J(dx)), where

γ = C(MG)−1(G(exp(−M)− 1)−M(exp(−G)− 1))

J(dx) = (C exp(−Mx)|x|−11{x>0} + C expGx|x|−11{x<0})dx.

if we define the drift (µ) adjusted log-equity return as Xt − µδ ≡ log
S(t+1)δ

Stδ
− µδ,its characteristic function

of VG process is given by

φ(u) = (
GM

GM + (M −G)iu+ u2
)Cδ, (2.20)

where δ is the fix time interval for observed prices St ∈ R. Parameter G and M control the sign of skewness.

If G = M , the density of log-equity return is symmetric with mean 0. The skewness will be negative when

G < M indicating roughly larger negative jumps of returns happen more frequently compared with positive

jumps. Similarly, G > M indicates more frequently larger positive jumps. Parameter C mainly controls the

kurtosis of log-equity return distribution.

It is not difficult to show that Lévy measure J(dx) of VG process has infinite mass. Thus, it is an

infinite activity process with infinitely many jumps in any finite intervals. There are several alternative

representations of the VG processes. To better understand VG process, we recommend several references:

Madan and Seneta (1990); Madan and Milne (1991); Madan et al. (1998).

Algorithm setting

Analyzing the characteristic function of VG process, one thing we need to mention is that absolute value

of φ(u), |φ(u)|, decays to zero with polynomial rate which is too slow for us to define the support region of

G(u) to include most of the positive area of |φ(u)|. To make it simple, we set the support of G(u) to be the

region including all largely and relatively different slop of |φ(u)| to catch pattern of characteristic function.

The distribution of G(u) is set to be uniform distribution over the support. For other settings, they are

same as the previous two’s.
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Performance

We demonstrate the validity of our algorithm for VG model. We simulate 1000 weekly returns based on the

annualized parameter, C = 1, G = 10 and M = 5. This is reasonable for relatively highly volatile equities

in the United States.

Fig 2.3 shows the trace plot of our sampler to identify MEPE. We also plot the true value of the

parameters. We can find that after about 4000 draws, our trace plots of C, G and M are stable around the

true values. In the very first draws, it can search a large area which is far away from true values and initial

values. All in all, with temperature increasing, our sampler can give us more and more accurate estimates

of parameters.

(a) C trace plot (b) G trace plot

(c) M trace plot

Figure 2.3: Trace plot of VG model where C = 1, G = 10, M = 5.
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Black-Shores-Merton Kou VG

Mean µδ (µ+ λp
ηu
− λ(1−p)

ηd
)δ (µ+ C( 1

M −
1
G ))δ

Variance σ2δ (σ2 + 2(λpη2u
+ λ(1−p)

η2d
))δ C( 1

M2 + 1
G2 )δ

Skewness 0
6( λp
η3u
−λ(1−p)

η3
d

)

(σ2+2 λp
η2u

+
λ(1−p)
η2
d

)1.5
√
δ

2( 1
M3− 1

G3 )

( 1
M2 + 1

G2 )1.5
√
Cδ

Table 2.1: Moments for selected models

2.6 Case Study

In this section, we use real data to fit Black-Scholes-Merton model, Kou’s jump-diffusion model and Variance

Gamma model to check the validity of our algorithm. The data we use is weekly log-returns of the S&P500

index from January 2, 1987 to December 28, 2007. It includes 1058 returns in total. The data is plotted in

Figure 2.4. The mean of weekly log-returns is 0.0017. The volatility of it is 0.0219. The weekly log-returns

have negative skewness -0.5647, which implies negative jumps are generally bigger than positive jumps.

The setting of algorithm for each model is same as the one in the simulation study. We choose the mean

value of last 1500 generated sample to be our parameter estimates which are reported in Table 2.2.

For Black-Shores-Merton model, the estimates of the drift µ is 0.0938. This indicates an estimated mean of log

returns µ̂δ = 0.0938/52 = 0.0018 which is similar to the sample mean of log-returns, 0.0017. The estimates

of the σ is 0.1568. Then, the estimated volatility is σ̂
√
δ = 0.1568/

√
52 = 0.0217, which perfectly match

the sample volatility 0.0219. Unfortunately, Black-Shores-Merton model cannot capture higher moments.

For example, the kurtosis implied by this model is always zero, while, the log-return data has a negative

kurtosis. Fortunately, the following two models, Kou’s jump-diffusion model and Variance Gamma model,

have capabilities to match higher moments.

Compared with Black-Shores-Merton model, Kou’s jump-diffusion models introduce positive jumps and

negative jumps in log-return processes. Our log-return processes have estimated drift µ̂ = 0.15 and volatility

σ̂ = 0.0930. The estimated jump intensity parameter in the process λ̂ = 9.0485, which indicates that there

are more or less 10 jumps occurring per year. The probability of negative jumps when a jump appears is

1− p̂ = 1− 0.4318 = 0.5682, which is bigger than half. The jump size of positive jumps follows exponential

distribution with mean 1/ηu = 0.0269; the negative jumps,1/ηd = 0.0331. Jumps in the process can capture

the volatility induced by large movements so that our estimated volatility in the Kou’s jump-diffusion model

is smaller than the one in Black-Shores-Merton model. Moreover, indicated by estimated p, ηu and ηd,

negative jumps are more frequent and bigger in general compared with positive jumps. Thus, our estimated
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drift is bigger than the correspondent one in Black-Shores-Merton model to compensate the impact of

negative jumps. According to Table 2.1, the estimated mean and volatility in Kou’s jump-diffusion model

are 0.0016 and 0.0222, which match the sample mean (0.0017) and volatility (0.0219) of log-returns very

well. The estimated skewness via Table 2.1 is negative (−1.1592), which is consistent to the negative sample

skewness (−0.5647).

For Variance Gamma model, because we don’t include drift term µ in VG characteristic function (2.5.4)

in Chapter 2.5.4, we estimate C, G, M through mean-adjusted log-return data. Then, the corresponding

characteristic function will be φ(u)/φ(−i) where φ(u) is in Equation (2.20) and i is the imaginary unit. The

use of mean adjusted data to estimate pure jump processes parameters also appears in Carr et al. (2002).

The estimated volatility of log-returns is 0.0233 (through Table 2.1), which can match the sample volatility

of log-returns. Moreover, estimated skewness is -0.4011, which indicates a negative skewness. This is also

consistent to our sample skewness of log-returns.

Figure 2.4: The weekly log-return of S&P500 index from January 2, 1987 to December 28, 2007.

2.7 Concluding Remarks

In this chapter, we propose MEPE estimator based on characteristic functions. Our MEPE inherits asymp-

totic properties of MELE from Chan et al. (2009). Moreover, by using our integrated empirical likelihood

sampler, we can obtain MEPE accurately in a relatively efficient way without approximation, which adopted

to obtain MELE in Chan et al. (2009). We also propose an easy-to-verify equivalent regularity conditions

for A.4 because verifying the positive-definiteness for a integral form directly is generally difficult. There

are some futures works could be done. For example, in fact, our integrated empirical likelihood sampler is

designed for our integral target (posterior in (2.4)), which is based on pseudo-marginal MCMC with sim-

ulated annealing. It should work for other statistical inferences with the target of integral form such as

continuous version of ECF estimation (See the review of it in Yu (2004)). Also, with very low temperature,
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Table 2.2: Estimates of parameters for the S&P500 index

(a) Black-Scholes-Merton model

µ σ
EL 0.0938 0.1568

(b) Kou’s jump-diffusion model

µ σ λ p ηu ηd
EL 0.1500 0.0930 9.0485 0.4318 37.1441 30.2522

(c) Variance Gamma model

C G M
EL 4.7770 17.8791 18.9350

the computational burden will increase dramatically. This is also a common problem for simulated annealing

based algorithm. So, to further increase the efficiency of this algorithm could be interesting as well especially

for some models needing very low temperatures.
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Chapter 3

Maximum likelihood inference for
Lévy process based models in finance

3.1 Introduction

Lévy processes are popular in quantitative finance since they fit financial data with skewness and fat tails

better while staying computationally tractable. See Tankov (2003) for discussions of Lévy process models

in finance.

Suppose Y = {Yt, t = 0, δ, 2δ, . . .} is a sequence of an evenly sampled financial variable, e.g., the log price

of a certain asset. If we assume that Y is a Lévy process, then {Xk = Ykδ − Y(k−1)δ, k ≥ 1} is an i.i.d.

sequence due to the fact that Lévy processes have independent and stationary increments. The distribution

of Xi is usually complex or not available explicitly. But its characteristic function φ(u) = E(exp(iuXk))

often has an explicit form due to the Lévy-Khintchine formula (refer to Tankov (2003)). In some other cases,

we don’t have i.i.d. data, and assume that {Yt} is sampled from a Lévy driven Markov process:

dYt = µ(t, Yt)dt+ σ(t, Yt)dLt

for some Lévy process {Lt, t ≥ 0}. Again, the transition density of such a process may not be available.

However, the conditional characteristic function of Xk = Ykδ, φk(x, u) = E(exp(iuXk+1)|Xk = x), is

sometimes known.

Given the model and data, our primary missions are parameter estimation and empirical assessment of

the model. Testing of trading strategies as in Avellaneda and Lee (2010) and volatility forecasting as in Kim

et al. (2008) can be done only when one has a appropriately fitted model.

Various statistical inference methods are available for fitting processes with explicit characteristic func-

tions. One class of moment based methods are the empirical characteristic function (ECF) methods, first pro-

posed by A.Feuerverger and R.A.Mureika (1977). The case of independent data was studied by Feuerverger

and McDunnough (1981a). K.J.Singleton (2001) studied the case of dependent data. Under some mild regu-

larity conditions, ECF estimators are consistent. However, they are usually not efficient. Refer to Yu (2004)
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for a review of the ECF method. Another class of non-parametric methods are the empirical likelihood

methods, first proposed by Owen (1988). Kunitomo and Owada (2006),Chan et al. (2009) and Chen et al.

(2013) have studied the empirical likelihood methods for fitting Lévy processes with explicit characteristic

functions and more general Lévy driven processes with explicit conditional characteristic functions.

Compared to the above methods, the maximum likelihood estimation (MLE) has several advantages.

First, under certain regularity conditions, maximum likelihood estimators are asymptotically efficient. Sec-

ond, various hypothesis testing and model selection techniques are based on the maximum likelihood method.

Last but not the least, the MLE can be accomplished efficiently using Fourier methods when the charac-

teristic functions are available and analytic in the complex plane. The maximum likelihood method has

been used in various quantitative finance works. For example, when fitting Kou’s jump-diffusion model,

Ramezani and Zeng (2007) truncates the infinite series representation of the transition density to obtain

approximated maximum likelihood estimates. However, in many Lévy process models, the densities do not

admit explicit expressions. K.J.Singleton (2001) implements the maximum likelihood method using the

Gauss-Legendre quadrature for inverse Fourier transform. However, when the characteristic functions are

analytic, the simplest trapezoidal rule is highly accurate with exponentially decaying errors.

In this Chapter, we utilize the analyticity of the characteristic function and obtain highly accurate values

of the density using the trapezoidal rule for the inverse Fourier transform. We focus on likelihood inference

for Lévy process models used in quantitative finance as well as one-dimensional Lévy driven processes with

explicit conditional characteristic functions. Our theoretical framework establishes asymptotic properties of

the proposed approximated maximum likelihood estimation (AMLE) and AMLE based hypothesis testing.

We present regularity conditions based on characteristic functions. We present efficient implementation of

the AMLE. To examine the effectiveness of our estimation procedure, we perform simulation studies and

empirical studies. Simulation studies show that very large samples may be needed to accurately identify

the true parameters for some popular models, such as the CGMY model. Further analysis shows that

the log-likelihood surface is saddle-shaped with relatively flat areas, which is causing the difficulties. On

the other hand, the parameters of commonly used jump-diffusion models, including Merton and Kou’s

models, are relatively easier to identify. We also fit empirical equity return data with some popular Lévy

models. Numerical results show the appealingness of some infinite activity models, such as the normal

inverse Gaussian model.

This Chapter is organized as follows. In Chapter 3.2, we present our AMLE with asymptotic properties

and the corresponding regularity conditions. Likelihood based hypothesis testing and model selection are

also presented here. In Chapter 3.3, we present some commonly used Lévy models. In Chapter 3.4, we
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provide details of the numerical implementation, perform simulation studies as well as empirical studies

using real world financial data. Chapter 3.4.4 summarizes the conclusion. All proofs are in Appendices.

3.2 Maximum likelihood inference

In this section, we mainly focus on approximated likelihood based on inverting characteristic function tech-

nique. We assume that X = {X1, . . . XN} follows i.i.d distribution F with implicit characteristic function

φ(u; θ0) for u ∈ R. θ0 is the true parameter vector. θ = (θ1, · · · , θp) is the vector of unknown param-

eters associated with distribution F within parameter space Θ ⊂ Rp . Considering that a Lévy process

has independent and stationary increments and the form of its characteristic function is available due to

Lévy-Khintchine formula, the assumption of data can be applied to Lévy processes directly. Later, we will

extent i.i.d case to non-i.i.d case in Chapter 3.2.3.

3.2.1 Parameter estimation

Suppose we have the characteristic function associated with distribution function F (x; θ):

φ(u; θ) =

∫ ∞
−∞

exp(iux)F (dx; θ).

If φ(u; θ) is absolutely integrable,i.e.,
∫∞
−∞ |φ(u; θ)|du ≤ ∞, through Fourier inversion theorem, there exists

a bounded and uniformly continuous probability density function f(x; θ) corresponding to F (x; θ):

f(x; θ) =
1

2π

∫ ∞
−∞

exp(−iux)φ(u; θ)du. (3.1)

The approximated density with fixed M ∈ Z+ ,h ∈ R+ and a ∈ R is defined below

fM,h,a(x; θ) =
1

2π

M∑
m=−M

e−ix(mh+ia)φ(mh+ ia; θ)h. (3.2)

This form is the inverse Fourier transform integral approximated by trapezoidal summation. h mainly

controls the error between the integral and summation approximation (discretization error) and Mh controls

the error due to the truncation in the summation approximation. If a = 0, the integral in (3.1) is along the

real line. By the Cauchy integral theorem, this integration can be shifted to a horizontal line x+ ia, x ∈ R

for a in a certain region to perform trapezoidal rule on this horizontal line. A good review about trapezoidal

rule and Fourier transform is Abate and Whitt (1992).
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If we denote the likelihood function as L(θ;x) = f(x; θ), the log-likelihood function is

l(θ;X) :=
1

N

N∑
j=1

log(f(Xj , θ)) =
1

N

N∑
j=1

log(
1

2π

∫
R

e−iXjyφ(y)dy)

and likelihood function will be L(θ;X) = exp(l(θ;X)).

Correspondingly, the approximated-log-likelihood is defined as

lM,h,a(θ;X) := <(
1

N

N∑
j=1

log(fM,h,a(Xj , θ))) = <(
1

N

N∑
j=1

log(
1

2π

M∑
m=−M

e−iXj(mh+ia)φ(mh+ ia)h)), (3.3)

where <(·) represents the real part of any given complex number.

The approximated maximum likelihood estimator (AMLE) θ̂M,h,a
N is defined as

θ̂M,h,a
N = arg max

θ∈Θ
lM,h,a(θ;X).

Before describing the asymptotic properties about AMLE, we need the following definition and regularity

conditions.

A.1 For any θ ∈ Θ, the characteristic function φ(u; θ) is analytic in D(d−,d+) where D(d−,d+) = {z ∈ C :

=(z) ∈ (d−, d+)}, −∞ < d− < 0 < d+ <∞ and d−, d+ do not depend on θ. <(z) is the real part and

=(z) is the imaginary part of z.

A.2 For any given θ ∈ Θ,
∫ d+

d− |φ(x+ iy; θ)|dy → 0 when x→ ±∞.

||φ||± := limε→0+

∫
R
|φ(x+ i(d±)∓ ε; θ)|dx < +∞ uniformly on θ ∈ Θ.

A.3 The parameter in Equation (3.2), a, is a given real value and a ∈ (d−, d+).

A.4 |φ(x + ia; θ) ≤ k|x|n exp(−c|x|ν), x ∈ R with a ∈ (d−, d+) for some κ > 0, ν > 0, c > 0, n ∈ R or

κ > 0, ν > 0, c = 0, n < −1. Here,κ, ν, c and n are not related to the parameter θ ∈ Θ and they may or

may not depend on a.

A.5 Mh ≥ (n/cν)1/ν1c>0,n>0 for n, c, ν defined above.

Remark 3. Regularity condition A.1 requires the analyticity of the characteristic function φ(u; θ) in D given

θ. For regularity condition A.2, noticing that the analyticity band D is an open set, we can arbitrarily choose

d+ and d− inside analyticity band D. Then, the characteristic function φ(u; θ) is analytic in {z ∈ C : =(z) ∈

[d−, d+]} and ||φ||± :=
∫
R
|φ(x + i(d±); θ)|dx. Regularity condition A.3 implies that our manipulation are

restricted to the analyticity band of φ(u; θ). Regularity A.4 guarantee that the characteristic function has
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exponential or binomial tails which grantees its absolute integrability. Then, distribution density function

defined in (3.1) exists. Moreover, the smoothness of density can be determined by the tail behavior of the

characteristic functions. Specifically, if ν > 0, the characteristic function has exponentially-decaying tails

and its distribution density function has derivatives of all orders. If c = 0, n < −1, the characteristic

function has binomially-decaying tails and its distribution density function has derivatives of orders up to

b−nc. Last but not least, if we can choose proper d− and d+ to make A.4 hold without dependency on

a ∈ (d−, d+), it is easy to prove that A.2 will hold. In fact, this is the case for a lot of Lev́y processes.

Class A regularity conditions are used to control the difference between approximated-log-likelihood

lM,h,a(θ;x) and real likelihood function l(θ;x) uniformly on θ ∈ Θ. Specifically, we have the following

theorem.

Theorem 6. Under regularity conditions of class A, we define the error of approximation of probability

density function as

EFh,M (φ, a)(x) = f(x; θ)− fM,h,a(x; θ) =
1

2π

∫
R

e−ixyφ(y; θ)dy − 1

2π

M∑
m=−M

e−ix(mh+ia)φ(mh+ ia; θ)h.

Then, we have the bound of error

|EFh,M (φ, a)(x)| ≤ e−2π(a−d−)/h

2π(1− e−2π(a−d)/h)
exd− ||φ||− +

e−2π(d+−a)/h

2π(1− e−2π(d+−a)/h)
exd+ ||φ||+ + TMh (3.4)

where TMh = keax

|n+1|π (Mh)n+1 if c = 0, n < −1, and TMh = keax

πνc(n+1)/ν Γ(n+1
ν , c(Mh)ν) if c > 0. Incomplete

Gamma function Γ(s, b) =
∫∞
b
e−tts−1dt. Moreover, let Mh → ∞ and h → 0, then, the bound of error

EFh,M (φ, a)(x) will decay to zero uniformly on θ ∈ Θ. That is, with any given x, fM,h,a(x; θ) converges to

f(x; θ) uniformly for θ ∈ Θ when Mh→∞ and h→ 0.

Based on the Theorem 6, we have following asymptotic property between MLE and AMLE.

Theorem 7. Suppose θ̂N is the unique MLE defined as arg maxθ l(θ,X) with large enough N . We assume

parameter space Θ is compact and likelihood function is continuous at θ. Fixing large enough sample size

N , under A class regularity conditions

θ̂M,h,a
N

p→ θ̂N , (3.5)

when h→ 0 and Mh→∞ with fixed a.

Remark 4. In fact, the continuity can be generalized to be upper-continuous. The uniqueness of MLE θ̂N

combined with compact parameter space and continuity can be replaced by a more general condition: θ̂N is
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a well-separated point of the maximum (See the remark of Lemma 24.3 in Appendices).

Theorem 8. Suppose θ̂N is the unique MLE defined as arg maxθ l(θ,X) with large enough N . We introduce

B class of regularity conditions in appendix B.1.1, to guarantee the asymptotic property of MLE. Under A

class of regularity condition and B class of regularity conditions , there exists M(N) and h(N) with respect

to N and for AMLE θ̂M,h,a
N , θ̂

M(N),h(N),a
N

p→ θ0 with fixed a when N →∞. Furthermore,

√
N(θ̂

M(N),h(N),a
N − θ0)

d→ N(0, I−1(θ0)),

where I(θ0) is the fisher information matrix.

Remark 5. The first 4 regularity conditions in B class is responsible for consistency of MLE , while, the last

6 regularity conditions in B class is specific for the asymptotic normality and asymptotic efficiency of MLE.

Combined with A class regularity conditions, AMLE θ̂M,h,a
N will be consistent and asymptotic efficient.

Remark 6. In theorem 8, we assume that the uniqueness of MLE θ̂N with large enough N . In fact, we only

need to guarantee the unique maximum of the likelihood function in the neighborhood of true parameter

θ0 considering the consistency of MLE θ̂N (Lemme 24.7). To show this uniqueness property, we can use

Corollary 1 provided by Little et al. (2010). That is, if rank[(∂
2L(θ0;X)
∂θi∂θj

)pi,j=1] = p, there will be at most one

maximum in the neighborhood of true parameter.

All in all, under certain regularity conditions, consistency, asymptotic normality and asymptotic efficiency

can be reached by the AMLE by maximizing approximated-log-likelihood lM,h,a(θ;X).

3.2.2 Likelihood ratio test and model selection

Other than parameter estimation, another important part within MLE framework is likelihood ratio test

(LRT). It is a standard method for hypothesis testing. Under mild regularity conditions, test statistics has

an asymptotic χ2 distribution (Wilks (1938)).

In this subsection, we give a nested likelihood ratio test based on our approximated likelihood by inverting

characteristic functions.

Suppose the hypotheses are

H0 : g1(θ) = 0, . . . , gq(θ) = 0, 1 ≤ q < p.

against

Ha : ∃k, gk(θ) 6= 0, 1 ≤ k ≤ q.
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Theorem 9. Let {X} be i.i.d data. Assume that we can treat H0 as θ1 = θ0
1, ·, θr = θ0

r via reparametrization.

When H0 holds, under A and B classes of regularity conditions applied to both parameter space Θ and its

subspace Θ0 of parameter vector (θr+1, . . . , θp), there exists M0(N), h0(N),M1(N) and h1(N) with respect

to N so that

−2 log Λ
d→ χ2

k

where

Λ =
L
M0(N),h0(N),a
0 (θ̂

M0(N),h0(N),a
N ;X)

L
M1(N),h1(N),a
1 (θ̂

M1(N),h1(N),a
N ;X)

with fixed a. θ̂
M0(N),h0(N),a
N ∈ Θ0 is the AMLE of the approximated likelihood L

M0(N),h0(N),a
0 (θ;X) under

H0. θ̂
M1(N),h1(N),a
N ∈ Θ1 is the AMLE of the approximated likelihood L

M1(N),h1(N),a
1 (θ;X) in parameter

space Θ. The dimension of parameter space is p for Θ and (p− q) for Θ0. χ2
k is a Chi-squared distribution

with degree freedom k.

When we perform likelihood ratio test, we need to be careful with the regularity condition B.5, which θ0

should lies in the interior of compact parameter space Θ. In several cases, this regularity condition is not

satisfied. For example, if we want to compare Black-Shores-Merton model with Jump diffusion model, we

might need to test jump intensity λ = 0. However, 0 is the boundary of the parameter space of λ. In this case,

test statistics will not asymptotically χ2 distributed. For another example, if we want to check diffusion term

is necessary or not in an infinite activity Lévy process, we need to test volatility term σ = 0. However, 0 is

also the boundary of the parameter space of σ. In this case, the asymptotic distribution of our test statistics

is also not χ2 distributed. Theoretical result of likelihood ratio tests on non-regular condition can be found

in Self and Liang (1987) following previous work Chernoff (1954); Feder (1968); Moran (1971); Chant (1974).

Sinha et al. (2007); Kopylev and Sinha (2011) derive the asymptotic distributions based on some special

cases. A explicit review of this topic can refer toKopylev (2012). Generally speaking, asymptotic distribution

of test statistics could be mixture of χ2 distribution or even more complicated distributions. Instead of

deriving explicit asymptotic distribution of test statistics, bootstrapping approaches are also suggested by

many authors. For example, Chan et al. (2009) compare different financial models by performing empirical

likelihood test utilizing parametric bootstrapping.

For more non-nest likelihood ratio based test for model comparison like Vuong’s test (Vuong (1989)),

information based model selection technique, Akaike information criterion (AIC), Bayesian information

criterion (Schwarz (1978)), approximated likelihood could also be performed. For example, the approximated
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AIC and approximated BIC are in the form below.

AICM,h = −2 logLM,h,a(θ̂M,h,a
N ;X) + 2p

BICM,h = −2 logLM,h,a(θ̂M,h,a
N ;X) + p log(N)

where N is the sample size and p is the dimension of parameter space Θ. Generally with fine setting of

M and h, AICM,h and BICM,h can be as close as AIC and BIC as we desire. As penalty based model

selection methods discouraging over-fitting, a smaller value of them will indicate a preference of the model.

3.2.3 Extension to Markov processes

Now, we consider the case that data X = {X0, X1, X2, . . . , XN} are not i.i.d but rather discrete trajectory

observations of Markov processes with stationary transition measures

F (ξ, A; θ0) = P (xj+1 ∈ A|xj = ξ; θ0), (3.6)

where θ0 is the true parameter vector. Suppose the characteristic function associated with F (ξ, A; θ) is

available for any given ξ ∈ X ⊂ R:

φ(u, ξ; θ) =

∫ ∞
−∞

exp(iux)F (ξ, dx; θ),

where X is the space of the value of {Xi}. Similarly to the I.I.D case, when φ(u, ξ; θ) is absolutely integral

with every ξ ∈ X , we have bounded and uniformly continuous transition density given ξ:

f(x|ξ; θ) =
1

2π

∫ ∞
−∞

exp(−iux)φ(u, ξ; θ)du. (3.7)

The approximated transition density with fixed M ∈ Z+ ,h ∈ R+ and a ∈ R is

fM,h,a(x|ξ; θ) =
1

2π

M∑
m=−M

e−ix(mh+ia)φ(mh+ ia, ξ; θ)h. (3.8)

If we define the likelihood function L(θ;Xj , Xj−1) = f(Xj |Xj−1; θ) and the log-likelihood function of X =

{X0, . . . , XN} is

l(θ;X) :=
1

N
(

N∑
j=1

log(f(Xj |Xj−1; θ))) =
1

N
(

N∑
j=1

log(
1

2π

∫
R

e−iXjyφ(y,Xj−1; θ)dy)).
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Correspondingly, the approximated-log-likelihood is defined as

lM,h,a(θ;X) :=<(
1

N
(

N∑
j=1

log(fM,h,a(Xj |Xj−1, θ))))

=<(
1

N
(

N∑
j=1

log(
1

2π

M∑
m=−M

e−iXj(mh+ia)φ(mh+ ia,Xj−1; θ)h))).

(3.9)

Definitely, the AMLE θ̂M,h,a
N in this case is

θ̂M,h,a
N = arg max

θ∈Θ
lM,h,a(θ;X)

Remark 7. We don’t add the initial distribution of X0 because the asymptotic property can be still obtained

without it. In practice, initial distribution might have a undeniable effect especially in small sample size. In

that case, we can incorporate the initial distribution in our likelihood.

Similar to the case of Lévy processes, the following regularity conditions and Theorem 10 which can

control the difference between approximated-log-livelihood and real likelihood uniformly on θ ∈ Θ.

C.1 For any θ ∈ Θ and ξ ∈ X , the characteristic functionφ(u, ξ; θ) is analytic in D(d−,d+) where D(d−,d+) =

{z ∈ C : =(z) ∈ (d−, d+)}, −∞ < d− < 0 < d+ <∞ and d−, d+ might depend on ξ; but not θ. <(z) is

the real part and =(z) is the imaginary part of z.

C.2 Given ξ ∈ X , for any θ ∈ Θ,
∫ d+

d− |φ(x+ iy, ξ; θ)|dy → 0 when x→ ±∞

||φ||± := limε→0+

∫
R
|φ(x+ i(d± ∓ ε), ξ; θ)|dx < +∞ uniformly on θ ∈ Θ.

C.3 The parameter in Equation (3.8), a, is a real value and a ∈ (d−, d+)

C.4 For any ξ ∈ X , |φ(x+ ia, ξ; θ) ≤ k|x|n exp(−c|x|ν), x ∈ R with a ∈ (d−, d+) for some κ > 0, ν > 0, c >

0, n ∈ R or κ > 0, ν > 0, c = 0, n < −1. κ, ν, c and n might depends on ξ and a, but not related to the

parameter θ ∈ Θ.

C.5 Mh ≥ (n/cν)1/ν1c>0,n>0 for n, c, ν defined above.

Theorem 10. Given ξ ∈ X , if the error of approximation of transition density function

EFh,M (φ, ξ, a)(x) =
1

2π

∫
R

e−ixyφ(y, ξ; θ)dy − 1

2π

M∑
m=−M

e−ix(mh+ia)φ(mh+ ia, ξ; θ)h,
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under class C of regularity condition, we have the bound of error

|EFh,M (φ, a)(x)| ≤ e−2π(a−d−)/h

2π(1− e−2π(a−d)/h)
exd− ||φ||− +

e−2π(d+−a)/h

2π(1− e−2π(d+−a)/h)
exd+ ||φ||+ + TMh, (3.10)

where TMh = keax

|n+1|π (Mh)n+1 if c = 0, n < −1, and TMh = keax

πνc(n+1)/ν Γ(n+1
ν , c(Mh)ν) if c > 0. Incom-

plete Gamma function Γ(s, b) =
∫∞
b
e−tts−1dt. Moreover, let Mh → ∞ and h → 0, then, bound of error

EFh,M (φ, a)(x) will decay to zero uniformly for θ ∈ Θ.

We also list regularity conditions for the weak law of large number (WLLN) theorem and central limit

(CLT) theorem for Markov processes which are proposed by Billingsley (1961). The Markov version of

WLLN and CLT will be key ingredients to show the consistency and asymptotic normality of AMLE. It

is worth to mention that Billingsley (1961) developed consistency and asymptotic normality for Markov

processes (Theorem 2.1) in a ’local’ version (the parameter space is around the true value) with different

definition of MLE compared with our work.

D.1 There exists an unique stationary distribution p(·; θ0). That is, for true parameter θ0 ∈ Θ, there exists

an unique probability measure p(·; θ0) such that p(A; θ0) =
∫
X p(dξ; θ0)F (ξ, A; θ0) where A ∈ FX .

D.2 Given x ∈ X and for true parameter θ0 ∈ Θ, the transition probability measure F (ξ, ·; θ0) is absolutely

continuous with respect to stationary probability measure p(·; θ0): F (ξ, ·; θ0)� p(·; θ0).

D.3 Suppose true parameter θ0 = {θ0
1, . . . , θ

0
p}. Eθ0 [|∂l(θ0;x0,x1)

∂θ0j
|2] ≤ ∞ for j = 1, 2, . . . , p. Eθ0 [·] denotes an

expected value computed under the assumption that initial distribution is the stationary distribution

(We just use this assumption when we calculate the expected value here. In fact, the initial distribution

even does not appear in our likelihood function).

Under Markov processes framework, Eθ0 [·] below denote an expected value computed under the assumption

that the initial distribution is the stationary distribution. This is just a computational device. We don’t

assume the initial distribution is in fact the stationary distribution. Let’s list the WLLN and CLT for

Markov processes proposed by Billingsley (1961).

Lemma 10.1 (WLLN and CLT for Markov processes). Under the regularity conditions of D.1 and D.2, for

any θ0 ∈ Θ, no matter what the initial distribution is, if Eθ0 |(k(X0, X1))| <∞, then,

lim
N→∞

1

N

N∑
j=1

k(Xj−1, Xj) = Eθ0 [k(X0, X1)]
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with probability one. Moreover, under all the regularity conditions of D class, we additionally have

1√
N

N∑
j=1

ϕ(Xj , Xj−1; θ0)
d→ N(0, I(θ0)),

where ϕ(Xj , Xj−1; θ) = ∂
∂θf(Xj |Xj−1; θ).

Similar to the i.i.d case, we have correspondent theorems about asymptotic properties of AMLE based

on WLLN and CLT for Markov processes. E class regularity conditions are listed in the Appendix B.1.2 to

guarantee the asymptotic property of MLE for Markov processes.

Theorem 11. Suppose θ̂N is the MLE defined as arg maxθ l(θ,X) which is unique. Fix sample size N ,

under C class regularity conditions, E.2 and E.3,

θ̂M,h,a
N

p→ θ̂N (3.11)

when h→ 0 and Mh→∞ with fixed a.

Theorem 12. Suppose MLE θN is unique given likelihood function for every large enough N . Under

C,D,E class of regularity condition, there exists M(n) and h(n) with respect to n and for AMLE θ̂M,h,a
N ,

θ̂
M(n),h(n),a
N

a.s→ θ0 with fixed a when N →∞.Furthermore,

√
n(θ̂M(n),h(n),a

n − θ0)
d→ N(0, I−1(θ0))

The first 4 regularity conditions in B class is responsible for consistency, while, the last 6 regularity conditions

in C class is specific for the asymptotic normality and asymptotic efficiency of AMLE θ̂M,h,a
N .

Similarly to the Theorem 9, we also have likelihood ratio tests for Markov process with similar proof.

Based on it, AIC and BIC might be available as well. We do not list all of them here.

3.3 Lévy process based models in finance

We consider several Lévy processes and one Lévy driven Ornastein-Uhlenbeck process. For Lévy processes,

There are two types of Lévy processes, finite activity Lévy processes and infinite activity Lévy processes.

Finite activity Lévy processes allow only finitely many jumps in any given time interval, while, infinite

activity Lévy processes include infinitely many jumps in any given time interval. Also, it can be shown

that finite activity Lévy processes are compound Poisson type processes typically including Merton’s jump-
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diffusion model (Merton (1976)) and Kou’s jump-diffusion model (Kou (2002)). Compared with compound

Poisson type processes, pure jump Lévy processes with infinite activity might have better representations

of stock price dynamics (Geman (2002)). Thus, we also consider several commonly used financial models

with infinite activities including normal inverse Gaussian model (Barndorff-Nielsen (1997)) and CGMY

model (Carr et al. (2002)). In addition to Lévy processes, we applied non-i.i.d data to one Lévy driven

Ornastein-Uhlenbeck process, IG-OU process to show validity of the extension described in Chapter 3.2.3.

3.3.1 Lévy processes

Lévy processes are commonly used in Finance due to its flexibility to model heavy tails and skewness

of financial time series. In our case, we assume the equity value series are St = exp(Yt) and {Yt} is a

Lévy process. Suppose data is observed over equally spaced timestamps (0, δ, 2δ, . . . , nδ). Then, total time

interval will be T = nδ and sample size will be n + 1. In practice, we model logarithm of equity returns

{Xt = Ytδ − Y(t−1)δ}n1 . They will follow the same distribution F due to the fact that Lévy processes have

independent stationary increments.

One important property we need to utilize later is Lévy-Khintchine formula. Suppose Xt is a Lévy process

described above, the characteristic function φ(u; θ) of Xt has the form

φ(u) = exp(δ(iua− bu2

2
+

∫
R

(exp(iux)− 1− iux1|x|≤1)J(dx))), (3.12)

where (a, b, J) is called Lévy triplet which fully determines a Lévy process. Lévy triplet includes the drift

parameter a ∈ R, the diffusion component σ ≥ 0 and Lévy measure J(dx) satisfying J({0}) = 0 and∫
min(1, x2)J(dx) < ∞. Through Lévy-Khintchine formula, implicit characteristic function is more likely

available compared with density functions for Lévy processes. Thus, if the logarithm of equity value series

{Yt}n1 follow Lévy processes, then the Levy increments {Xt}N1 will be i.i.d data with characteristic function

described in (3.12).

In this chapter, we mainly focus on several typical Lévy processes based models due to their availability

of the characteristic function. Introduction of those models are below and moments information about those

models are in Table 3.1. We will use them later in the simulation study and case study.
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Table 3.1: Moments of returns

Merton Kou NIG CGMY
Mean

(µ+ λµj)δ (µ+ λp
ηu
− λ(1−p)

ηd
)δ (µ+ βλ

(α2−β2)0.5 )δ (µ+ CΓ(1− Y )(M Y−1 −GY−1))δ

Variance

(σ2 + λ(µ2
j + σ2

j ))δ (σ2 + 2λpη2u
+ 2λ(1−p)

η2d
)δ λα2δ

(α2−β2)1.5 CΓ(2− Y )(M Y−2 +GY−2)δ

Skewness

λµj(µ
2
j+3σ2

j )

(σ2+λ(σ2
j+µ2

j ))
1.5δ0.5

6( λp
η3u
−λ(1−p)

η3
d

)

(σ2+2 λp
η2u

+2
λ(1−p)
η2
d

)1.5δ0.5
3β

αλ0.5(α2−β2)0.25δ0.5
Γ(3−Y )(M Y−3−GY−3)

C0.5(Γ(2−Y )(M Y−2+GY−2))1.5δ0.5

Kurtosis

λ(µ4
j+6µ2

jσ
2
j+3σ4

j )

(σ2+λ(µ2
j+σ

2
j ))2δ

24( λp
η4u

+
λ(1−p)
η4
d

)

(σ2+2 λp
η2u

+2
λ(1−p)
η2
d

)2δ

3(1+4 β
2

α2 )

λ(α2−β2)0.5δ
Γ(4−Y )(M Y−4+GY−4)

C(Γ(2−Y )(M Y−2+GY−2))2δ

Merton’s jump-diffusion model

In Merton’s jump-diffusion model, the observed stock price, St, satisfies the following equation:

Xt ≡ log(S(t+1)δ/Stδ) = µδ + σ
√
δZ +

Nt+1∑
i=Nt+1

Zi, (3.13)

where δ is the evenly spaced time interval of observed data; µ is drift; σ is volatility; Z is standard N(0, 1);

Nt is a Poisson process with intensity λ; {Zi} are jump sizes following i.i.d fz(x) ∼ N(µj , σ
2
j ). That is, in

Merton’s jump-diffusion model, jumps occur according to Poisson process Nt with jump sizes {Zi}.

The Lévy triplet of this model is (µ, σ2, J(dx) = λfz(x)dx). Although, the density of Xt has a complex form

(Tankov (2003)), its characteristic function, φ(u; θ), has a simple form through Lévy-Khintchine formula:

φ(u; θ) = exp(δ(iuµ− σ2u2/2 + λ(exp(iµju− σ2
ju

2/2)− 1))).

For regularity conditions, we can show that d+ and d− satisfying A.1 could be arbitrary positive number and

negative number. A.3 can be shown directly. A.4 can be satisfied when c = σ2/2 and ν = 2 if we allow c and

ν can depend on parameter θ. To make sure c is not related parameter θ, we assume the parameter space

Θ of Merton’s jump model is −∞ < Lµ ≤ µ ≤ Uµ < ∞, 0 < Lσ ≤ σ ≤ Uσ < ∞, 0 < Lλ ≤ λ ≤ Uλ < ∞,

−∞ < Lµj ≤ µj ≤ Uµj <∞, 0 < Lσj ≤ σj ≤ Uσj <∞, and true parameter θ0 ∈ Θ. Then, Θ is a compact

parameter space and we can let c to be L2
σ/2 which does not depend on parameter σ. In this case we do

not consider the case when σ = 0. The likelihood of Merton’s jump model can be regarded as a mixture

distribution and its value can reach infinity on some points of which σ = 0 (See Kiefer (1978)). Furthermore,

when σ = 0, the model degenerate to a compound Poisson process which is also not our primary interest.

To simulate Merton’s jump-diffusion model in the simulation study, we can utilize the method described
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in Glasserman (2003).

Kou’s jump-diffusion model

Compared with Merton’s jump-diffusion model, Kou’s jump-diffusion model allows the distribution of jump

sizes {Zi} to be asymmetric. To be specific, the observed stock price, St, satisfying the following equation:

Xt ≡ log(S(t+1)δ/Stδ) = µδ + σ
√
δZ +

Nt+1∑
i=Nt+1

Zi, (3.14)

where the jump size here, {Zi}, follows i.i.d. double exponential distribution, which has the density

fz(x) = pηu exp(−ηux1{x>0}) + (1− p)ηd exp(ηdx1{x<0}).

p is the positive jump probability; 1/ηu is the mean positive jump size; 1/ηd is the mean negative jump size.

The Lévy triplet of this model is (µ, σ2, J(dx) = λfz(x)dx). The density of Xt has a complex form (Ramezani

and Zeng (2007)), while, its characteristic function, φ(u; θ), has a simple form through Lévy-Khintchine

formula:

φ(u; θ) = exp(δ(iuµ− σ2u2/2− λ(1− pηu
ηu − iu

− (1− p)ηd
ηd + iu

))).

For regularity conditions, d+ ∈ (0, ηd) and d− ∈ (−ηu, 0) satisfy A.1 and A.3, which can be shown directly.

A.4 can be satisfied when c = σ2/2 and ν = 2, if we allow c and ν can depend on parameter θ. We assume

the similar parameter space to the Merton’s jump model: −∞ < Lµ ≤ µ ≤ Uµ <∞, 0 < Lσ ≤ σ ≤ Uσ <∞,

0 < Lλ ≤ λ ≤ Uλ <∞, 0 < Lp ≤ p ≤ Up < 1, 0 < Lηu ≤ ηu ≤ Uηu <∞, 0 < Lηd ≤ ηd ≤ Uηd <∞, and the

true parameter θ0 ∈ Θ. Then, Θ is a compact parameter space. We can let d+ = Lηd/2 and d− = −Lηu/2.

This setting is generally practical because ηu and ηd are positive which cannot be zero exactly. We can let

c to be L2
σ/2 which does not depend on parameter σ. In this case we do not consider the case when σ = 0.

The reason for it is same as Merton’s jump-diffusion model.

To simulate it in simulation study, we also utilize the method described in Glasserman (2003).

Normal inverse Gaussian model

Normal inverse Gaussian (NIG) model belongs to a more general class of Lévy processes, generalized hyper-

bolic model (Eberlein et al. (1998)). It is a infinite activity Lévy process. It can be characterized by

Xt ≡ log(S(t+1)δ/Stδ) = µδ + βzδ + λWzδ , (3.15)
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where zδ is the first time when a Brownian motion with drift γ reaches the positive level δ. The density of

zδ is inverse Gaussian (IG) distribution. Wzδ is a Brownian motion of which the calendar time is a random

time zδ.

Set α =
√
β2 + γ2, we have the Lévy triplet (µ, 0, J(dx) = f(x)dx), where

f(x) =
λα

π|x|
exp(βx)K1(α|x|).

Kn(x) is the modified Bessel function of the second kind with order n. Then, the probability density function

of Xt contains Bessel function, but the characteristic function is in a simple form

φ(u; θ) = exp(δ(iuµ− λ(
√

(α2 − (β + iu)2)−
√
α2 − β2))).

For regularity conditions, d+ ∈ (0, β + α] and d− ∈ [β − α, 0) can make the characteristic function analytic,

also satisfying A.3. A.4 can be satisfied when c = λ and ν = 1 if we allow c and ν can depend on parameter

θ. We assume the parameter space of the NIG model: −∞ < Lµ ≤ µ ≤ Uµ <∞, ∞ < Lα ≤ α ≤ Uα <∞,

∞ < Lβ ≤ β ≤ Uβ < ∞, 0 < Lα−|β| ≤ α − |β|, 0 < Lλ ≤ λ ≤ Uλ ≤ ∞, and true parameter θ0 ∈ Θ. Then,

Θ is a compact parameter space. We can let d+ = LL(α−β) and d− = −Lα−β . This setting is generally

practical because α − |β| is required to be positive by NIG model. We can let c to be Lλ, which does not

depend on parameter λ.

To simulate NIG process Xt in simulation study, we refer the method in Rydberg (1997).

CGMY model

Unlike finite-activity jump processes such as Merton’s jump-diffusion process, CGMY could be either finite

activity or infinite activity processes. That is, it could have infinitely many jumps in any finite time inter-

val. It came out as the generalization of Variance Gamma (Madan and Seneta (1987)) Lévy density with

parameters C, G, M and Y . Its Lévy triplet is (µ, 0, J(dx) = f(x)dx) and f(x) is:

f(x) =

 C exp(−M x)
x1+Y x > 0

C exp(−Gx)
|x|1+Y x < 0.

(3.16)

where C > 0, G ≥ 0,M ≥ 0, Y < 2.

In addition, when Y < 0, CGMY is a finite activity process. It could be regarded as a compound Poisson

process. When 0 < Y < 2, the process has infinite activities. The case Y = 0 degenerates to a variance
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gamma process. Here, we only consider infinite activity CGMY process with 0 < Y < 2.

The density function of CGMY process {Xt} is unknown for us. However, the characteristic function is

available for us.

For Y ∈ (0, 1) ∪ (1, 2):

φ(u; θ) = exp(δ(iµu+ CΓ(−Y )[(M − iu)Y −M Y + (G+ iu)Y −GY ])), (3.17)

and for Y = 1:

φ(u; θ) = exp(δ(iµu+ C((M − iu) log(1− iu/M ) + (G+ iu) log(1 + iu/G)− iu(log(M )− log(G))))).

It is not hard to show that the characteristic function of CGMY model is smooth with respect to parameters

C, G, M and Y , where C > 0, G ≥ 0,M ≥ 0, 0 < Y < 2.

For regularity conditions, d+ ∈ (0, G) and d− ∈ (−M , 0) make the characteristic function analytic.

A.3 can be shown directly. A.4 can be satisfied when c = fc(C, Y ) and ν = Y , where fc(C, Y ) =

δC|Γ(−Y ) cos(πY/2)| when Y ∈ (0, 1) ∪ (1, 2)) and fc(C, Y ) = δ π2C when Y = 1, if we allow c and ν can

depend on parameter θ. We assume the parameter space of the CGMY model: −∞ < Lµ ≤ µ ≤ Uµ < ∞,

0 < LC ≤ C ≤ UC < ∞, 0 < LG ≤ G ≤ UG < ∞, 0 < LM ≤ M ≤ UM < ∞, 0 < LY ≤ Y ≤ UY < 2, and

true parameter θ0 ∈ Θ. Then, Θ is a compact parameter space. To keep A.1 hold, we can let d+ = LG/2 and

d− = −LM /2. This setting is generally practical because M and G are required to be positive by CGMY

model. To keep A.4 hold, c = infC, Y fc(C, Y ) (considering fc(C, Y ) is continuous and C,Y are in compact

parameter space) and ν = LY which are not related to parameters any more.

We can simulate CGMY process by inverting characteristic function introduced in Chen et al. (2012).

3.3.2 Lévy driven Ornstein-Uhlenbeck processes

Lévy driven Ornstein-Uhlenbeck processes ( Lévy driven OU processes) is a sub-class of continuous-time

Markov processes. Such processes are popular to model stochastic volatility and interest rate. (see Barndorff-

Nielsen and Shephard (2001)).

The process X = {Xt}t≥0 is called a Lévy driven OU process when

dXt = −λXtdt+ dZλt, X0 > 0,

where λ is the drift parameter and λ > 0. {Zt}t≥0 is called background driving Lévy process (BDLP) with
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Lévy triplet (a, 0, J). BDLP is required to have no Brownian part, a non-negative drift and only positive

increments.

As mentioned in section 2 of Shiga (1990), the process is time-homogeneous satisfying the equation (3.6) in

Chapter 3.2.3.

What’s more, there exists an unique stationary distribution π such that Xt
d→ π ( See Sato (1999) Theorem

17.5 and Corollary 17.9) when ∫
|x|>2

log(|x|)J(dx) <∞, (3.18)

and π is the distribution implied by Lévy triplet (a∗, b∗, J∗) where

a∗ =
a0

2
b∗ =

∫
|x|>1

x

|x|
J(dx),

and

g(x) =

 J((x,∞)) x > 0

J((−∞, x)) x < 0.

π is not related to λ due to the deliberate setting of subscript λt of BDLP. Then, we find the Equation (3.18)

is equivalent to the Regularity condition D.1.

Moreover, we suppose the equity value series are {Pt}t≥0. If our discrete-time observations {Xt = Ptδ}

where δ is fixed time interval, the conditional characteristic function of the transition density f(Xt|Xt−1, θ)

is available (See Sato (1999) lemma 17.1):

φ(u,Xt−1; θ) = exp(iu exp(−λδ)Xt−1 + λ

∫ δ

0

g(exp(λ(z − δ))u)dz), (3.19)

where g(x) is the cumulation of Z(1) which is logE(ixz1). Thus, we have shown that with Equation (3.18)

holding, Lévy driven OU process is time-homogeneous with explicit formula of condition characteristic

function (3.19), and has unique stationary distribution. These prosperities satisfy the assumptions for

Markov processes in Chapter 3.2.3.

One way to construct Lévy driven OU processes is to specify the stationary distribution for the process.

Specifically, we define the marginal law D, when yt follows distribution D for arbitrary t > 0, if the initial

distribution (the distribution of y0) follows distribution D. Then, the OU process with marginal law D is

called D-OU process. Barndorff-Nielsen and Shephard (2001) showed that D-OU processes exists if and only
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if D is self-decomposable. Moreover, the relations between law D and BDLP is below:

g(x) = u
dgD(x)

dx
,

fz(x) = −u(x)− xu′(x),

(3.20)

where g(x) is the cumulant function of BDLP Z(1) (needed in (3.19)); gd(x) is the cumulant function of the

self-decomposable law D; fz(x) is the levy density, if exists, of Z(1); u(x) is the levy density, if exists, of law

D.

Remark 8. For IG-OU process, we assume the OU process follows inverse Gaussian (IG) law (IG distribution

is self-decomposable). We have the Lévy density of IG(a,b):

u(x) = (2π)−1/2ax−3/2 exp(−1

2
b2x), x > 0.

Then, through Equation (3.20), we have levy density of correspondent BDLP:

fz(x) =
1

2
(2π)−1/2ax−1/2(x−1 + b2) exp(−1

2
b2x), x > 0.

And the cumulant function of BDLP Z(1):

g(x) = −iab−1x(1 + 2xb−2)−1/2. (3.21)

We will use IG-OU process in our simulation study in Chapter 3.3.2.

Remark 9. Class D is the requirements for the Markov processes. Specifically, for Lévy driven OU processes,

Equation (3.18) is equivalent to D.1.

To check D.2, we might need to prove absolutely continuity. One idea to prove it is that, for typical

D-OU processes, we know the stationary distribution is D distribution. In most cases, it is not hard to show

that density of D is positive at every feasible point. Then, D and Lebesgue measure are equivalent. To show

the transition probability measure F (ξ, ·; θ0) is absolutely continuous with respect to D, we just need to

show transition probability measure is absolutely continuous with respect to Lebesgue measure. By showing

the conditional characteristic function is absolutely integral (or its binomial or exponential tails required by

C.4), absolute continuity with respect to Lebesgue measure is guaranteed by Fourier inversion theorem.

To check D.3, we generally can prove that |∂l(θ0;x0,x1)
∂θ0j

| is bounded on the support X × X in most cases

via Fourier inversion theorem.
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Remark 10. Another models might satisfy our setting of Markov processes is affine processes. A sub-class of

affine processes is called canonical affine processes. They are still time-homogeneous Markov processes and

stochastically continuous. Its characteristic function has fixed form called affine property. See, for example,

Duffie et al. (2003) for more details. Also, the unique existence of stationary distribution of canonical affine

processes can be found in Glasserman and Kim (2010). For more general cases, if we add jumps in affine

processes, which is called affine jump-diffusion models, Jin et al. (2016) shows the exponential ergodicity of

jump CIR process. All in all, some models based on affine processes also satisfy our requirement for Markov

process (Class D regularity conditions), which can be potentially applied to use likelihood inference.

IG-OU process

IG-OU process is Lévy driven Ornstein-Uhlenbeck process defined by

dYt = −λYtdt+ dLλt (3.22)

where Yt follows inverse Gaussian law and λ > 0. We assume Y0 is generated from IG(a, b). Though the

transition density is not available, we have conditional characteristic function by using Equation (3.19) and

(3.21):

φt(u : θ) ≡ E(exp(iuY(t+1)δ)|Ytδ) = exp(−a(
√
−2iu+ b2−

√
−2iu exp(−λδ) + b2)+iu exp(−λδ)Ytδ). (3.23)

3.3.3 Verifications of regularity conditions

Verification of A class of regularity conditions

In this section, we provide several ideas to prove the A class of maximum likelihood estimator (MLE) for com-

mon Lévy processes: Merton’s jump-diffusion model, Kou’s jump-diffusion model, normal inverse Gaussian

model and CGMY model. Other typical Lev́y processes might also use similar ways to prove. Once regularity

conditions are fulfilled, our approximated likelihood function will converge to its corresponding likelihood

function with exponential decay rate, which is fast and efficient. Thus, our proposed implementation should

be efficient, in theory.

Theorem 13. The characteristic function of Merton’s jump-diffusion model, Kou’s jump-diffusion model,

NIG model and CGMY model satisfy the regularity condition of class A if the analytic strip D(d−,d+) and

compact parameter space Θ are selected regarding to the Chapter 3.3.
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Positive definiteness

To conduct maximum likelihood inference for Merton’s jump-diffusion model, Kou’s jump-diffusion model,

NIG model and CGMY model, we might also be interested in the positive-definiteness of their fisher infor-

mation matrix, so that AMLE is asymptotic efficient.

To prove the fisher information is positive definite, we provide a sufficient condition implied by the fol-

lowing lemma:

Lemma 13.1. Suppose g(X) is vector of statistics with positive definite covariance matrix V (θ). Let h(θ) =

Eθg(X). Then, the matrix:

I(θ)− (
∂h(θ)

∂θ
)TV (θ)−1(

∂h(θ)

∂θ
)

is nonnegative definite, where I(θ) is the fisher information matrix. That is, if the matrix ∂h(θ)/∂θ has full

column rank, the fisher information matrix is positive definite.

We can apply lemma 13.1 to prove the fisher information matrix is positive definite given the set of

parameters. Notice that Lemma 13.1 is the sufficient condition. If ∂h(θ)/∂θ is not full rank given the

parameter θ, it doesn’t mean fisher information is not positive definite. In that case, we can try different

statistics vector g(X) and the new ∂h(θ)/∂θ might be full rank which indicates the positive definiteness of

the fisher information matrix.

To utilize the Lemma 13.1, we first construct statistics vector g(X). To guarantee the positive definiteness

of V (θ), we choose g(X) = (X,X2, ...Xp). Then, we have the following lemma:

Lemma 13.2. if X has continuous probability density over real line R given parameter θ, and X has finite

moments with orders up to 2p, g(X) = (X,X2, ...Xp) has positive definite covariance matrix V (θ).

Now, we choose g(X) = (X,X2, ...Xp). Then,we provide several propositions with respect to the full

rank of h(θ)/∂θ for multiple Lev́y processes.

Proposition 14. For Merton’s jump-diffusion model, if g(X) = (X,X2, . . . , X5), the determinant |h(θ)/∂θ| =

4δ5λ2σµjσj(µ
4
j + (6

√
6− 9)σ4

j )(µ4
j − (6

√
6− 9)σ4

j )

Notice that, if we choose the first 5 moments to construct g(x) for Merton’s jump-diffusion model, h(θ)/∂θ

is a square matrix. Then for h(θ)/∂θ, the full column rank is equivalent to the non-zero determinant. From

the proposition 14, if true parameters satisfy: λ 6= 0, σ 6= 0, µj 6= 0, σj 6= 0 and µj 6= ±
4
√

6
√

6− 9,

the h(θ)/∂θ has full column rank. That is, combined with Lemma 13.2, the fisher information matrix will
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be positive definite. The true parameters λ, σ, µj and σj are unlike zero. However, µj = ± 4
√

6
√

6− 9 is

possible. If µj = ± 4
√

6
√

6− 9, we can choose another g(X). For example, we also try g(X) = g(X) =

(X,X2, . . . , X4, X6) and we find µj = ± 4
√

6
√

6− 9 is not the factor of h(θ)/∂θ anymore.

Proposition 15. For Kou’s jump-diffusion model, if g(X) = (X,X2, . . . , X6), the determinant |h(θ)/∂θ| =

24883200δ6ση−12
u η−12

d (ηu + ηd)
4λ3(p− 1)p

Similarly, we choose the first 6 moments to construct g(x) for Kou’s jump-diffusion model to guarantee

the h(θ)/∂θ is a square matrix. Then for h(θ)/∂θ, the full column rank is equivalent to the non-zero

determinant. From the proposition 15, if true parameters satisfy: λ 6= 0, σ 6= 0, p 6= 0, p 6= 1, ηu 6= 0

and ηd 6= 0, the h(θ)/∂θ has full column rank. That is, combined with Lemma 13.2, the fisher information

matrix will be positive definite. Those conditions are fulfilled based on our restricted parameter space stated

in Chapter 3.3.1.

Proposition 16. For NIG model, if g(X) = (X,X2, . . . , X4), the determinant |h(θ)/∂θ| = 18δ4λ2α7(α2 −

β2)−15/2

Similarly, we choose the first 4 moments to construct g(x) for NIG model to guarantee the h(θ)/∂θ is a

square matrix. Then for h(θ)/∂θ, the full column rank is equivalent to the non-zero determinant. From the

proposition 16, if true parameters satisfy: λ 6= 0, α 6= 0, α2 6= β2, the h(θ)/∂θ has full column rank. That

is, combined with Lemma 13.2, the fisher information matrix will be positive definite. Those conditions are

fulfilled based on our restricted parameter space stated in Chapter 3.3.1.

Proposition 17. For CGMY model, if Y is fixed and known, we choose g(X) = (X,X2, . . . , X4), the deter-

minant |h(θ)/∂θ| = δ4C2GY−8M Y−8(G+ M )Gamma(−Y )3Y 3(Y −1)3(Y −2)2(Y −3)((4−Y )(G1+Y M 3 +

G3M 1+Y )+(2−Y )(GY M 4 +G4M Y )). If Y is also an unknown parameter, the determinant |h(θ)/∂θ| is far

more complex which is C3δ5G(−13+Y )M (−13+Y )(G+M )(−3+Y )(−2+Y )2Gamma[2−Y ]4(G7M 2Y (M 2(−5+

Y )(−4 + Y ) +G2(−2 + Y )2 +GM (−4 + Y )(−5 + 2Y ))−G2Y M 7(G2(−5 + Y )(−4 + Y ) + M 2(−2 + Y )2 +

GM (−4+Y )(−5+2Y ))+G3+Y M 3+Y ((G−M )(4(5G2 +11GM +5M 2)−13(G+ M )2Y +2(G+ M )2Y 2)−

(G+ M )3(−4 + Y )(−3 + Y )(−2 + Y )(logG− log M ))).

If we assume Y is fixed and known, we choose the first 4 moments to construct g(x) for CGMY model

to guarantee the h(θ)/∂θ is a square matrix. Then for h(θ)/∂θ, the full column rank is equivalent to the

non-zero determinant. From the proposition 16, if true parameters satisfy: C 6= 0, G 6= 0, M 6= 0, the

h(θ)/∂θ has full column rank. That is, combined with Lemma 13.2, the fisher information matrix will be

positive definite. Those conditions are fulfilled based on our restricted parameter space stated in Chapter
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3.3.1. However, if Y is included in the model, the determinant is far more complex. Though, |h(θ)/∂θ|

is not zero in a large parameter set, if G → M , |h(θ)/∂θ| → 0. Thus, if there is no significant skewness

(G ≈ M ), we might want to use other choice of statistics vector g(X) to prove the positive definiteness of

fisher information matrix. For example, we try g(X) = (X,X2, X3, X4, X6). Then, G = M will not imply

|h(θ)/∂θ| = 0.

3.4 Implementation and numerical studies

3.4.1 Implementation

In Chapter 3.2, we provide several regularity conditions to make sure that AMLE is consistent, asymptotically

normal and asymptotically efficient. Also, these regularity conditions can be satisfied on specific compact

parameter space for several typical Lévy processes. In this section, we illustrate how to obtain AMLE

effectively to do parameter estimation and model selection.

In each model, we define a compact subset of parameter space and assume the true value is located inside

(See Merton’s jump-diffusion model, Kou’s jump-diffusion model, normal inverse Gaussian model, CGMY

model and IG-OU model in Chapter 3.3).

To perform simulation study, we need to simulate samples from different models we introduced above.

The simulation methods introduced by each model are the exact simulation method except of CGMY model.

To simulate the sample from CGMY model, we use very rigorous error controls, based on the inverting CDF

methods Chen et al. (2012). Specific setting for the simulation study is in Appendix B.

To obtain reasonable AMLE, for each group of parameters and data, we properly select M,h to bound

the distance between approximated density (3.2) and real density less than 10−8. That is, we don’t select

a common M,h for all parameter values in our parameter space. Instead, we choose optimal M(θ), h(θ)

for every different parameter θ, so that the distance between approximated density and real density will

be small enough uniformly on the parameter space. It will reduce a lot of computational burden because

for some infeasible parameter values, M is required to be a huge number. Thus, we maximize (3.2) with

optimal M,h to control the error bound. We choose ’NOMAD’ optimization in ’OPTI’ toolbox (Abramson

et al. (n.d.)) of MATLAB to be our numerical optimization procedure here for three reasons. First, it is

fast and stable. Second, it is a nonlinear and non-smooth optimization algorithm. In our case, we choose

different M and h for different parameter to control the distance between approximated likelihood and real

livelihood uniformly for parameter. Thus, our approximated likelihood is non-linear and non-smooth. Last,

it is a constrained global optimization procedure which can deal with our compact parameter space which
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is not sensitive to the initial parameter setting. Implementation details are put in the Appendix B.

Whenever we have AMLE, we can perform likelihood ratio test and model selection described in Chapter

3.2.2. To perform likelihood ratio test correctly, we need to check the regularity conditions. Unfortunately,

regularity conditions cannot be satisfied for several typical cases. More details are in Chapter 3.2.2. As

for model comparison, by rigorously controlling the approximation error of approximated likelihood, our

AICM,h and BICM,h defined in Chapter 3.2.2 will be reasonably closed to AIC and BIC. We can use AIC

and BIC to select appropriate model by penalizing over-fitting. Again, the asymptotic property of AIC

and BIC might not be applied for our models. But, hopefully, they can at least get some useful hints. It is

still an open question which model selection technique is the most appropriate one for financial models with

good asymptotic properties.

3.4.2 Simulation study

In this section, we conduct the simulation study to examine the performance of AMLE. We mainly have

two targets. First, we want to check if our AMLE matches the true parameter based on simulated data.

In addition, we compare our AMLE estimates with the estimates based on other methods (approximated

ECF estimation) to illustrate the smaller asymptotic variance of AMLE. Second, we want to discover more

asymptotic properties of the estimated parameter from our simulation study. To the best of knowledge, there

is few rigorous study of the asymptotic property of MLE based on Lévy processes. The main reason for it

is that the density function implied by Lévy processes usually don’t have a implicit form. Then, it might

be too difficult to verify the regularity conditions of MLE asymptotic properties. Even, those regularity

conditions can be verified, it is still hard to know the property of asymptotic variance of MLE due to the

complicated form of fisher information matrix. Thus, considering AMLE inherits the asymptotic property

of MLE (Theorem 8),we are able to find some interesting implications of MLE’s asymptotic properties for

several popular Lévy processes.

We consider the Lévy process based models described in Chapter 3.3 including Merton’s jump-diffusion

model, Kou’s jump-diffusion model, NIG model, CGMY model and IG-OU processes.

For each Lévy model in Chapter 3.3, we fit the model based on simulated 500 sample paths with different

sample size N = {200, 100, 500}, daily frequency (δ = 1/252) and weekly frequency (δ = 1/52). We also

provide the approximated ECF estimates (proposed in Chapter 4.4) based on the same data dataset and same

model. Global optimization ’NOMAD’ is used to search the AMLE. The large enough compact parameter

space required by Theorem 7 and Theorem 8 is set following the way mentioned in Chapter 3.3 for each

model. Specific setting of the parameter space is reported in Table 3.2. For the Lévy driven Markov model,
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Table 3.2: Parameter spaces

Merton Kou NIG CGMY
True values
µ = 0.1, σ = 0.3, λ = 20 µ = 0.2, σ = 0.2, λ = 30 µ = 0,α = 50, β = −5, λ = 5 C = 3, G = 79, M = 83
µj = −0.5, σj = 0.25 p = 0.4, ηu = 5, ηd = 2.5 Y = 0.9
Parameter spaces
−1 ≤ µ ≤ 1 −1 ≤ µ ≤ 1 1 ≤ α− |β| 1 ≤ C ≤ 100
0.01 ≤ σ ≤ 1 0.01 ≤ σ ≤ 1 −10 ≤ β ≤ 10 1 ≤ G ≤ 100
1 ≤ λ ≤ 50 1 ≤ λ ≤ 50 0.5 ≤ δ ≤ 10 1 ≤ M ≤ 100
−1 ≤ µj ≤ 1 0.1 ≤ p ≤ 0.9 1 ≤ α ≤ 150 0.1 ≤ Y ≤ 1.9
0.05 ≤ σj ≤ 1 1 ≤ ηu ≤ 20

1 ≤ ηd ≤ 20

IG-OU process, we use monthly frequency (δ = 1/12) which is consistent to the setting in Chen et al. (2012).

In Table 3.3, we report the empirical means, corresponding standard errors of parameter estimates and

true parameter values based on 500 simulated sample paths. For jump-diffusion models [Table3.3a,3.3b,3.3c

and 3.3d], empirical means are reasonably closed to true parameters. With sample size N increasing,

empirical means tend to converge to true value. This finding supports the consistency of AMLE (Theorem

7). In addition, when the sample size gets 5 times bigger (sample size from 200 to 1000 or from 1000 to

5000), the standard error becomes roughly 1/
√

5 smaller. This is consistent to the convergence rate of

asymptotic normality,
√
N , indicated by Theorem 8. No matter for Merton’s jump-diffusion model or Kou’s

jump-diffusion model, we find 200 sample size is enough to recover the true parameter value by AMLE for

weekly data, while 1000 sample size is needed for daily data. That is, roughly five year’s data can match the

true parameter with AMLE very well. If we have less data, for example, one year’s data, most parameter

can be estimated very well except of the drift parameter µ and certain jump’s parameter. Take jump size

parameter ηu in Kou’s jump-diffusion model for an instance. The standard error is 2.9812 when the daily

sample size is 200. This makes the estimate value 5.9695 less than three standard error away from zero.

If we check further the histogram of ηu’s estimates based on 500 simulated sample path (not shown in the

work), we find a few estimates hits the parameter space boundary which makes the histogram deviate from

normal distribution density. Thus, 200 daily sample might not be enough to estimate the parameters of

jump-diffusion’s model very well for our parameter setting.

What’s more, for jump-diffusion models, if we set the sample size to be equal, we can find generally

weekly data estimates have less or similar bias (difference between empirical mean and true value) and

standard error, while, daily data estimates have larger or similar bias and standard error. This might be an

indication that relative high frequency sampled data might imply relative slow or similar convergence speed

compared with relative low frequency data. In general, it seems that when the total sample size is fixed,

dense data might lead to more difficulties to estimate parameters. This finding is also intuitive. For finite

activity Lévy processes (jump-diffusion models), there are finite big jumps in time interval. Weekly data
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with fixed sample size have a longer time span, indicating more big jumps compared with daily data. Thus,

denser data with less big jumps information lead to less accuracy of the estimates of jump parameters.

It is worth noticing that this is not the case for infinite activity Lévy processes [Table 3.3e,3.3f,3.3g and

3.3h]. For example, for parameters in NIG model and CGMY model, denser data (e.g. daily data) implies a

less bias and standard error of the AMLE. Intuitively, the reason is that for these models, jumps will happen

on each data point no matter it is daily data or weekly data. The data with a longer time span doesn’t

contain more jump information because in all fixed time interval, jumps will happen infinitely.

For infinite activity Lévy processes, the estimation performance varies. The estimated parameters in

NIG model imply the consistency and convergence rate information. Based on empirical mean with true

initial value in Table [Table 3.3e,3.3f], larger sample size N implies a smaller estimated bias and smaller

standard error. For CGMY model, performance of estimation is not stable. Table 3.3g and Table 3.3h

report the estimation result of CGMY model. We find parameter C and Y are hard to be identified with a

big estimation standard error especially for the data. For the daily data, estimation performance gets even

worse. It still seems that a very large sample size (larger than 5000) is necessary to identify C and Y .

We find there are two reasons for the issue above. First, the characteristic function decay slowly for

CGMY model, especially when Y parameter is small (Y < 0.4). In our theory, this is because ν = Y for

CGMY model (Check section 3.3.1 and regularity condition A.4) and smaller ν leads to slower decay of

the characteristic function’s tail. And this slower decay will generally lead to large Mh to make truncation

approximation error bound TMh the same. Now, we let the discretization approximation error bound the

same. That is, h is unchanged. We will have a larger M to control overall bound of error to be same.

This usually leads to a very huge value of M to control our approximation error. For daily data, δ in

the characteristic function (Equation 3.17) is smaller, making the characteristic function decay even slower

(because smaller δ implies smaller c in regularity condition A.4 (check Section 3.3.1)). Thus, it implies that

daily data even need biggerM compared with weekly data. In practice, when optimization algorithm searches

the parameters in those unfeasible parameter space (e.g. Y is very small), a very large M (M > 5000) is

needed to control the approximation error to be small (less than 10−8). We set an upper-bound for M during

each optimization iteration to reduce the computational burden in practice. This leads to large errors of

the approximation for certain parameter values. This is more serious for daily data because daily data in

general need larger M than weekly data.

Moreover, we find there is a relative flat trace in the likelihood surface of C and Y , so that smaller Y will

lead to dramatically big Y and bigger Y will make C closed to zero. This makes the optimization algorithm

tend to search those unfeasible area (Y < 0.4) easily and frequently, amplifying the effects of approximation
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error caused by M . Figure 3.1a shows us a saddle-shaped log-likelihood surface of C and Y , when fixing

G, M to be the true parameter based on 1000 generated daily data. Figure 3.1b exhibits a relative flat

trace of C and Y (Yellow trace) including the maximum point on this saddle-shaped log-likelihood surface.

Log-likelihood is estimated from Equation (3.3) which has an accuracy of 6 significant digits and a precision

of 2 decimal places by controlling truncation error, discretization error and set a = 0 (We only draw the log-

likelihood surface when Y > 0.5 because controlling the error to be smaller needs a huge M when Y < 0.5).

It is reasonable to believe there exists even flatter space when relaxing G and M . This supports our opinions

about the poor performance because optimization algorithm might search the area where C is large and Y

is small in that flat trace, causing big approximation errors and wrong estimates. We also find log-likelihood

of parameter G and M when fixing C and G is hump-shaped and is relatively fat which also indicating not

small standard errors of parameter estimates [Figure 3.1c and 3.1d].

To express the issue of CGMY model estimation further, we redo the simulation study with larger sample

size and a little smaller parameter space (Reduce the computational burden). Then, we plot the histogram

of estimated parameters based on 500 simulated sample paths. All models show the normal distributed

shapes except of CGMY model. To address this difficulty, we list the histogram of estimated parameters for

CGMY model below. Figure 3.2 and Figure 3.3 show the histogram of estimated parameters C, G, M , Y

with different sample size n and different frequencies (daily and weekly). Parameters C, G, M , Y are

listed from first row to forth row in each figure. Sample size increases with column number increasing. For

weekly data (Figure 3.2), 5000 sample size might be able to make parameter G and M in normal distribution

shape. But, histogram of C and Y are still not in a good shape. It is skewed for the histogram of parameter

C and multi-peaked for the histogram of parameter Y . Then, when it comes to daily data, it seems the

histogram has better shape. When sample size is as big as 25000, the mode of histogram is around the true

parmeters. However, parameter C’s histogram is still a little skewed. Overall, parameters in CGMY model

are relatively hard to estimate. Parameter C and Y might have some identification problems of practical

simulated data, making the likelihood surface relative flat in certain part. This amplifies the issues caused

by the big error of the approximation. The CGMY model might need a very large sample size to make the

flat part of log-likelihood surface steeper, making AMLE reasonably closed to true parameter. Or, simply a

smaller parameter space is suggested.

We also compare our AMLE with approximated ECF estimates for Merton’s jump-diffusion model, Kou’s

jump-diffusion model and NIG model. ECF estimation is implemented based on Chapter 4 (See the Chapter

4.3 and Chapter 4.4 for implementation details). Empirical characteristic function (ECF) is another efficient

method to do parameter estimation for Lévy processes. It can be regarded as a generalized moment match
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method to match empirical characteristic function and the model’s characteristic function. The approximated

ECF estimation introduced in Chapter 4 also has asymptotic normality property. However, the asymptotic

variance cannot reach the MLE efficiency. That is, the asymptotic variance of MLE should be smaller than

the one of approximated ECF estimate in theory. We set the tuning parameter in AECF estates to be a big

number (M = 200) and conduct both MLE and ECF methods based on same 5000 simulated data in Table

3.4. We find that the empirical means of both estimates (MLE and ECF) are similar and the standard error

of the estimates is smaller for AMLE. This is consistent to the asymptotic efficiency of AMLE.

Another interesting finding is about the running time. The running time in the table is the median

of running time based on 500 simulated paths. Running time depends on the optimization algorithm,

likelihood surface and our computing device. All the simulation study was conducted by the same laptop

with Intel Core i5-5300U CPU (2.30GHz). Table 3.3 shows the increasing ruining time (per simulated path

in ’second’ scale) when sample size is increasing. This is reasonable due to large sample size indicating large

computational burden of approximated likelihood (Equation (3.2)). Moreover, denser (daily) simulated data

indicates a larger running time than more scattered data (weekly data) when controlling the same sample size

N . This can be explained by our Equation (3.4) in Theorem 6. That is, denser data can make the model’s

characteristic function decay more slowly with bigger parameter k in truncation error bound TMh. This

indicates we need larger Mh to make the truncation error bound unchanged if we have larger k. Suppose we

also control the discretization error bound in Equation (3.4) which is only related to parameter h, we find

we need larger M to control the total error bound with larger k. And, larger M leads to higher computation

cost due to our approximated likelihood equation (3.2). Thus, to control the same likelihood approximation

error bound, denser data from the same model need larger M which indicating larger computation cost

(running time).

For a Lévy driven Markov process, IG-OU process, the proposed estimates as reported in Table 3.3i are

reasonably closed to the true values and standard errors decrease with increasing sample size. In summary,

this simulation results suggest that AMLE can accurately estimates most models introduced here with

reasonable sample size. CGMY model has relatively flat log-likelihood and more samples might be necessary

to make AMLE closed to true parameters. But, this doesn’t mean extreme large data set is needed to fit

CGMY model in practice. It is believed that practical data can’t be exactly from a model. In this way, true

parameter might only live in our simulation study rather than real world. Comparing estimated parameter

with true parameter is even more impossible. If we just utilize information of log-likelihood or to match

several moments, relatively smaller sample size might be possible.
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Table 3.3: Empirical averages and their standard errors (in parentheses) of the approximated maximum
likelihood estimates (AMLE) with sample size N = 200, 1000, 5000. Running time is also reported in the
’second’ scale

(a) Merton’s jump-diffusion model (weekhly data)

N µ = 0.1 σ = 0.3 λ = 10 µj = −0.5 σj = 0.25 time
200 0.0860(0.1745) 0.2989(0.0178) 10.0263(1.8771) −0.5048(0.0585) 0.2397(0.0482) 6.4756
1000 0.0956(0.0771) 0.3001(0.0081) 9.9184(0.8146) −0.5039(0.0261) 0.2482(0.0209) 11.7263
5000 0.1012(0.0337) 0.3002(0.0037) 9.9912(0.3634) −0.5004(0.0109) 0.2490(0.0093) 35.4301

(b) Merton’s jump-diffusion model (daily data)

N µ = 0.1 σ = 0.3 λ = 10 µj = −0.5 σj = 0.25 time
200 0.1030(0.3609) 0.2989(0.0152) 9.8928(3.5901) −0.5017(0.1107) 0.2152(0.0792) 10.8874
1000 0.1025(0.1567) 0.3001(0.0068) 9.9730(1.7330) −0.5007(0.0464) 0.2411(0.0335) 16.4473
5000 0.0991(0.0682) 0.3002(0.0031) 9.9354(0.7451) −0.4997(0.0204) 0.2480(0.0158) 41.0280

(c) Kou’s jump-diffusion model (weekly data)

N µ = 0.2 σ = 0.2 λ = 30 p = 0.4 ηu = 5 ηd = 2.5 time
200 0.1868(0.1667) 0.1993(0.0188) 30.0854(4.1172) 0.4041(0.0679) 5.1941(1.1422) 2.5463(0.3884) 8.9960
1000 0.1979(0.0708) 0.1997(0.0083) 30.0221(1.7681) 0.3999(0.0301) 5.0303(0.5109) 2.5180(0.1717) 19.3745
5000 0.1970(0.0327) 0.2000(0.0038) 29.9995(0.8350) 0.3997(0.0134) 4.9838(0.2307) 2.5061(0.0797) 64.5251

(d) Kou’s jump-diffusion model (daily data)

N µ = 0.2 σ = 0.2 λ = 30 p = 0.4 ηu = 5 ηd = 2.5 time
200 0.2078(0.2483) 0.1993(0.0117) 30.2998(7.2142) 0.4066(0.1231) 5.9695(2.9812) 2.7645(0.9177) 29.5504
1000 0.2034(0.1159) 0.2002(0.0053) 30.0147(3.2294) 0.3994(0.0530) 5.1325(0.8929) 2.5381(0.3481) 48.1453
5000 0.2009(0.0468) 0.2001(0.0023) 29.9410(1.3322) 0.3999(0.0234) 5.0509(0.3810) 2.4981(0.1526) 146.1137
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Table 3.3 (cont.)

(e) Normal inverse Gamma model (NIG)(weekly data)

n µ α = 50 β = −5 λ = 5 time
200 −0.1738(0.5910) 58.8797(26.0311) −3.2901(6.0864 5.7439(2.3579) 4.4612
1000 −0.0133(0.3862) 53.3473(14.0727) −4.9311(3.9311) 5.3110(1.3506) 5.8038
5000 0.0041(0.1906) 50.8198(5.7839) −5.0761(1.9559) 5.0781(0.5307) 13.2580

(f) Normal inverse Gamma model (NIG)(daily data)

N µ α = 50 β = −5 λ = 5 time
200 −0.0970(0.5134) 55.5646(19.7875) −3.9036(5.5808) 5.3684(1.4257) 33.3807
1000 0.0087(0.2759) 51.0985(6.7145) −5.2008(3.0870) 5.0792(0.5097) 51.8738
5000 0.0014(0.1253) 50.2575(3.0809) −5.0808(1.4329) 5.0235(0.2149) 124.7928

(g) CGMY model (weekly data)

N C = 3 G = 79 M = 83 Y = 0.9 time
200 11.5818(20.7850) 80.2868(15.9604) 84.7726(15.8860) 0.8538(0.3248) 37.3605
1000 5.7926(8.4604) 80.4154(8.3584) 84.4865(8.4944) 0.8987(0.1760) 52.9537
5000 3.4610(2.5674) 79.0453(3.7624) 83.1361(3.8104) 0.8851(0.0955) 75.6349

(h) CGMY model (daily data)

N C = 3 G = 79 M = 83 Y = 0.9 time
200 8.6386(20.3133) 87.7222(18.6472) 91.1323(16.2169) 0.3980(0.3919) 113.7943
1000 4.7185(8.1174) 88.2859(12.4441) 91.4449(10.9292) 0.5302(0.3882) 176.2361
5000 3.4651(3.0954) 84.9388(9.9740) 88.1790(8.6123) 0.6962(0.3344) 244.2984

(i) Inverse Gaussian-OU model (monthly data)

λ = 10 a = 1 b = 20
N = 125 10.3244(1.8016) 1.0146(0.0799) 20.2936(1.6439)
N = 250 10.1797(1.1867) 1.0098(0.0533) 20.1805(1.0898)
N = 500 10.0187(0.8242) 1.0036(0.0400) 20.0888(0.8298)
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Table 3.4: Comparison of empirical averages and their standard errors (in parentheses) between the approxi-
mated maximum likelihood estimates (AMLE) and approximated empirical characteristic function estimates
(AECF). 500 sample paths are generated and each sample path has 5000 data.

Merton

Method Frequency µ = 0.1 σ = 0.3 λ = 10 µj = −0.5 σj = 0.25 time
MLE Weekly 0.1012(0.0337) 0.3002(0.0037) 9.9912(0.3634) −0.5004(0.0109) 0.2490(0.0093) 35.4301
ECF Weekly 0.1015(0.0341) 0.3001(0.0041) 10.0037(0.3936) −0.4996(0.0140) 0.2498(0.0129) 25.2845
MLE Daily 0.0991(0.0682) 0.3002(0.0031) 9.9354(0.7451) −0.4997(0.0204) 0.2480(0.0158) 41.0280
ECF Daily 0.0999(0.0702) 0.3003(0.0033) 9.9268(0.7451) −0.4995(0.0250) 0.2463(0.0219) 41.2290

Kou

Method Frequency µ = 0.2 σ = 0.2 λ = 30 p = 0.4 ηu = 5 ηd = 2.5 time
MLE Weekly 0.1970(0.0327) 0.2000(0.0038) 29.9995(0.8350) 0.3997(0.0134) 4.9838(0.2307) 2.5061(0.0797) 64.5251
ECF Weekly 0.1963(0.0342) 0.1999(0.0050) 30.0004(0.9112) 0.3999(0.0137) 4.9919(0.3216) 2.5011(0.1014) 78.1217
MLE Daily 0.2009(0.0468) 0.2001(0.0023) 29.9410(1.3322) 0.3999(0.0234) 5.0509(0.3810) 2.4981(0.1526) 146.1137
ECF Daily 0.2007(0.0478) 0.2001(0.0024) 29.9443(1.3620) 0.4193(0.0239) 5.0413(0.6093) 2.5081(0.2253) 90.0734

NIG

Method Frequency µ = 0 α = 50 β = −5 λ = 5 time
MLE weekly 0.0041(0.1906) 50.8198(5.7839) −5.0761(1.9559) 5.0781(0.5307) 13.2580
ECF weekly 0.0041(0.1995) 50.7725(5.9230) −5.0778(2.0616) 5.0732(0.5433) 38.7957
MLE daily 0.0014(0.1253) 50.2575(3.0809) −5.0808(1.4329) 5.0235(0.2149) 124.7928
ECF daily 0.0002(0.1354) 50.1876(3.2926) −5.0785(1.6281) 5.0185(0.2287) 27.2182
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(a) C, Y surface plot with fixed G, M (b) C, Y surface plot with fixed G, M

(c) G, M surface plot with fixed C, Y (d) G, M surface plot with fixed C, Y

Figure 3.1: Log-likelihood surface of CGMY model with fixed G, M and fixed C, Y where true parameters
are C = 3, G = 78, M = 82, Y = 0.9 (denoted by red ′•′) based on 1000 simulated data. Red ′∗′ is the
maximum likelihood point when fixing G, M or C, Y to true parameter. Log-likelihood has an accuracy of
6 significant digits and a precision of 2 decimal places
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Figure 3.2: Histogram of parameters of CGMY model based on simulated weekly data: sample size n are
200, 1000, 5000 from first column to third column. Parameters C, G, M , Y are from first row to forth row
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Figure 3.3: Histogram of parameters of CGMY model based on simulated daily data: sample size n are
1000, 5000, 25000 from first column to third column. Parameters C, G, M , Y are from first row to forth
row
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Table 3.5: Maximum likelihood estimates, AIC and BIC

Model Parameters AIC BIC

Ticker (Date): CRSP (7/2/1962-12/31/1987)

Merton µ σ λ µj σj

0.1318 0.0949 33.1195 −0.0003 0.0138 −22241.75 −22207.93

Kou µ σ λ p ηu ηd

0.1128 0.08892 76.2045 0.3986 129.8429 169.2817 −22247.83 −22207.23

NIG µ α β λ

0.3136 117.6695 −14.9778 1.8168 -22301.12 -22274.05

CGMY µ C G M Y

0.2820 7.9363 122.2715 149.0953 0.6068 −22298.90 −22265.08

Ticker (Date): SPD (1/3/1995-12/30/2005)

Merton µ σ λ µj σj

0.2057 0.097 175.5738 −0.0005 0.0110 −8677.01 −8647.38

Kou µ σ λ p ηu ηd

0.4646 0.0917 319.4898 0.3560 147.8200 182.5037 −8679.49 −8643.92

NIG µ α β λ

0.2053 85.3495 −3.1783 2.6518 -8683.59 -8659.88

CGMY µ C G M Y

0.2100 6.6229 86.9645 93.6477 0.6792 −8681.91 −8652.28

Ticker (Date): LCBM (1/3/1995-12/30/2005)

Merton µ σ λ µj σj

−0.7005 0.3596 79.6837 0.01541 0.0628 −5183.74 −5154.10

Kou µ σ λ p ηu ηd

−0.2784 0.2851 197.3305 0.4409 25.7382 42.4000 −5205.31 −5169.75

NIG µ α β λ

−0.9066 13.5180 2.7874 6.1501 -5223.93 -5200.22

CGMY µ C G M Y

−0.8350 7.1241 16.7069 11.3917 0.7334 −5223.80 −5194.16
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Table 3.5 (cont.)

Ticker (Date): INTC (1/3/1995-12/30/2005)

Merton µ σ λ µj σj

0.2129 0.3375 55.1745 0.0022 0.0418 −6011.52 −5981.89

Kou µ σ λ p ηu ηd

−0.2867 0.3206 120.1293 0.6686 51.7683 40.3296 −6013.49 −5977.93

NIG µ α β λ

−0.0698 37.3429 1.6204 7.7685 −6012.79 -5989.08

CGMY µ C G M Y

0.0160 0.7001 20.1865 17.7136 1.2777 -6015.26 −5985.63

Ticker (Date): DOW (1/3/1995-12/30/2005)

Merton µ σ λ µj σj

−0.0258 0.2045 74.3908 0.0026 0.0255 −7200.55 −7170.91

Kou µ σ λ p ηu ηd

−0.2746 0.1822 182.2514 0.5976 81.1307 78.7373 −7202.45 −7166.88

NIG µ α β λ

−0.2798 50.7061 4.7008 4.5448 -7206.89 -7183.18

CGMY µ C G M Y

−0.2493 0.9548 37.2887 28.6712 1.1076 −7205.89 −7176.25

Ticker (Date): TBL(1/3/1995-12/30/2005)

Merton µ σ λ µj σj

−0.1301 0.2786 73.8747 0.0067 0.0401 −6191.56 −6161.93

Kou µ σ λ p ηu ηd

−0.2466 0.2457 169.454 0.5418 45.8613 54.3658 −6197.51 −6161.95

NIG µ α β λ

−0.4690 27.7655 4.0255 5.4340 -6208.18 -6184.48

CGMY µ C G M Y

−0.4630 2.2258 25.0830 17.1563 0.9812 −6206.86 −6177.22

Ticker (Date): TIF(1/3/1995-12/30/2005)
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Table 3.5 (cont.)

Merton µ σ λ µj σj

−0.2880 0.2668 86.7467 0.0070 0.03509 −6277.41 −6247.78

Kou µ σ λ p ηu ηd

−0.5308 0.2476 167.8447 0.6036 50.4098 55.8244 −6282.77 −6247.20

NIG µ α β λ

−0.4690 27.7655 4.0255 5.4340 -6290.54 -6266.83

CGMY µ C G M Y

−0.6357 1.3821 26.5877 16.4158 1.0882 −6289.98 −6260.34

3.4.3 Fitting equity returns

In this section, we study daily financial series. The weekly series can be analyzed in the same way. The

daily data we use include value weighted CRSP, S&P-500 and 5 individual stocks. CRSP is the daily series

with 6410 value weighted return from 1926 to 1987. The S&P-500 and individual stock series are from 1995

to 2005 containing 2771 daily returns. Individual series are adjusted by dividends. Individual stocks are

chosen based on large range of kurtosis [DOW (6.6754), INTC (7.5635), TBL (9.5721), TIF (10.0038) and

LCBM (26.4485)].

We estimate Merton’s jump-diffusion model, Kou’s jump-diffusion model, NIG model and CGMY model

for each series and utilize AIC and BIC to do model selection. To confirm the accuracy of estimation, we

rigorously control discretization and truncation error described in 6 so that Log-likelihood has a precision

of 2 decimal places.

Table 3.5 summarizes the AMLE of four models with corresponding AIC and BIC. First, we find different

models contain consistent information. For the drift term µ, all models implies the same sign except INTC of

which drift term is around zero. Because NIG and CGMY model doesn’t contain diffusion term, we compare

diffusion term estimates of Merton’s jump-diffusion and Kou’s jump-diffusion model and find they are similar

in most cases. For the skewness, negative µj estimates in Merton’s jump-diffusion model, negative p
ηu
− (1−p)

ηd

in Kou’s jump-diffusion model, negative β and negative G −M roughly indicate a density skewing to the

left. Positive values imply a density skew to the right. It is obviously to find for all financial series we use,

all models imply consistent skewness. What’s more, if we only focus on jumps, Kou’s jump-diffusion model,

NIG model and CGMY model indicate that symmetric jumps (p=0.5, G = M and β = 0) rarely happen.

Thus, Merton’s jump-diffusion model might not be the best choice in a lot of cases.
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For the kurtosis, we find CRSP and CPD both have relatively small µj and σj for Merton’s jump-diffusion

model compared with individual stocks which indicates lighter tails. For Kou’s jump-diffusion model, larger

ηu and ηd in CRSP and SPD than individual stocks also have the same implications which is also consistent

to the result in Ramezani and Zeng (2007). NIG model with large α and CGMY model with large C also

roughly indicate high kurtosis of CRSP and SPD compared with most individual stocks.

If we roughly compare our estimation results with Ramezani and Zeng (2007), we can find that most

parameters are in reasonable range except extreme large λ in SPD. Even if we don’t consider that λ, both

our estimates and estimates in Ramezani and Zeng (2007) still imply a large jump intensity λ. That is, jump

frequency is very high. For jump sizes ηu and ηd, we find that they range from 25.74 to 182. Similar to

the analysis Ramezani and Zeng (2007), considering density of up jumps following Pareto distribution with

parameter (1, ηu), over 95% of the up jumps will be less than3% when ηu = 80. This might be appropriate

to be regarded as diffusion part for some individual stocks. Thus, jump-diffusion model might come cross a

problem for several real world data to identify jumps from diffusion part due to the fact that jumps might

include both small high frequent jumps and large low frequent jumps. In this way, infinite frequency jump

structure like NIG model and CGMY model might be a good alternative to jump-diffusion models. Also,

our parameter estimates of CGMY model are comparable to those reported in Kim et al. (2008). That

estimates of CGMY model is roughtly C = 3, G = 78,M = 82, Y = 0.9 for the S&P-500 series from 2000 to

2005. Ours are C = 6.6, G = 86.9,M = 93.62, Y = 0.67 for the S&P-500 series from 1995 to 2005.

Turning to the model selection, it has been mentioned that smallest BIC (AIC) provides the best fits

of data. We find that NIG model provides the best fit with respect to BIC (AIC) in all (6 out of 7) time

series. CGMY model has comparable performance with NIG model and provides the lowest AIC for INTC.

Compared with jump-diffusion model, infinitely activity Lévy processes including NIG model and CGMY

model are preferred. The reason for it might be what we mentioned in the last paragraph that small jumps

are too frequent in some return series. If we only compare jump-diffusion models, AIC prefers to select Kou’s

jump-diffusion model for all time series, while BIC tends to select Kou’s jump-diffusion model for 2 out of

7 return series in case study.

In conclusion, we fit both jump-diffusion models and infinite activity Lévy models to the daily return

series. Most AMLE we get is reasonable and comparable with other studies. From our AMLE of parameters,

we confirm the result in Ramezani and Zeng (2007) that high frequency of jumps are identified by jump-

diffusion models for return series. Our model selection result also prefers infinite activity Lévy processes to

finite activity Lévy processes (Jump diffusion processes). This is also partly consistent to the result men-

tioned in Geman (2002) that infinitely activity and finite variation pure jump Lévy processes are preferred.
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Moreover, all of our selected optimal models have infinite variation here even for our selected CGMY model

with Y = 1.2777 based on INTC (Y > 1 indicates infinite variation , while Y < 1 implies finite variation).

Because testing finite variation is not our main focus here, we don’t discuss it here. But, it is an interesting

topic to discriminate finite variation from infinite variation based on discrete and equally spaced data since

variation is a limit concept while discrete data only contain limited jump information.

3.4.4 Concluding remarks

In this chapter, we construct approximated likelihood based on inverse Fourier transform. We propose

the approximated maximum likelihood estimation (AMLE) and model selection. On the theoretical side,

we propose asymptotic properties of AMLE. On the application side, AMLE is applied to Lévy and its

based processes. Simulation study indicates the asymptotic property of AMLE. Also, it raised a problem

of statistical estimation for CGMY model. The likelihood surface, especially of parameter C and Y is flat

and large sample size might be necessary to match the estimated parameter back to the true parameter

based on simulated paths. Numerical results show the apprealingness of some infinite activity models, such

as NIG model. Both simulation study and numerical results show the effectiveness and efficiency of our

implementation of AMLE.
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Chapter 4

Empirical characteristic function
estimation for Lev́y processes in
finance

4.1 Introduction

Lévy processes are widely favored in economic and financial applications due to their capability of capturing

skewness and fat tails. Suppose Y = {Yt, t = 0, δ, 2δ, . . .} is a sequence of an evenly sampled financial variable,

e.g., the log price of a certain asset. If we assume that Y is a Lévy process, then {Xk = Ykδ−Y(k−1)δ, k ≥ 1}

is an i.i.d. sequence due to the fact that Lévy processes have independent and stationary increments.

To estimate the parameters in the Lévy processes, we can conduct traditional inference methods on this

i.i.d. sequence X = {X1, . . . , Xn}. For example, we can use maximum likelihood methods, which have

asymptotic efficiency property under mild regularity conditions. However, maximum likelihood methods

usually require the explicit form of the distribution of Xi, which is usually complex or not available explicitly

for Lévy processes. A discussion of maximum likelihood inference for Lévy processes is in Chapter 3.

Although the distribution form of Lévy processes is usually not available, their characteristic function

φ(u; θ) = E(exp(iuXk)) often has an explicit form due to the Lévy-Khintchine formula (refer to Tankov

(2003)). Given u ∈ R, the characteristic function can be regarded as a generalized moment of Lévy processes

(in R) with close form. This makes generalized moment match (GMM) inference possible. We do not

introduce GMM in details here. More discussion of GMM can be found in Hansen (1982).

We focus on an ECF estimation method belonging to the generalized moment match inference. This

method exploits the empirical characteristic function φn(u), to estimate the model’s parameters based on

the data X = {X1, . . . , Xn} (Definition of empirical characteristic function is in Chapter 4.2). Specifically,

this method searches parameters θ by minimizing the distance between empirical characteristic function

φn(u) and the model’s characteristic function φ(u; θ) continuously over u ∈ R:

arg min
θ

∫
|φ(u, θ)− φn(u)|2dG(u),

where G(u) is a weight function. Considering an integration is involved in the ECF target function, this
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might lead to a huge computational cost for ECF estimation procedure.

In this chapter, we provide a way to implement ECF estimation efficiently and effectively by using the

analyticity of the characteristic function. We show that our method works for popular Lévy processes. We

also provide the theoretical framework to establish the asymptotic property of the ECF estimation obtained

by our implementation. Simulation study shows that our ECF estimates match the true parameter very

well. In addition, few points (about 20 points) can approximate the integration in the ECF estimation very

well in most cases.

The chapter is organized as follows. In Chapter 4.2, we present our ECF estimates with asymptotic prop-

erties and the corresponding regularity conditions. In Chapter 4.3, we present the detailed implementation

and some commonly used Lévy models. In Chapter 4.4, we perform simulation studies. Chapter 4.5 is the

conclusion. All proofs are in the Appendix C.

4.2 Methods

In this section, we study the approximated empirical characteristic estimation based on trapezoidal rule. We

assume X = {X1, . . . , Xn} is identically and independently distributed (i.i.d) and its characteristic function

φ(u; θ0) is available, where θ0 is the true parameter vector and u ∈ R. However, its probability density

function (PDF) f(x; θ) might not have close form. We denote θ = (θ1, . . . , θp) as unknown parameters of

distribution f within parameter space Θ ⊂ Rp. F (x; θ) is the cumulative distribution function (CDF) and

Fn(x) is the empirical CDF.

The increments of Lev́y processes are independent and stationary. In addition, their density function are

usually not tractable, but the form of their characteristic function is known due to Lev́y-Khintchine formula.

Thus, our i.i.d assumptions above can be applied to Lev́y processes directly.

4.2.1 Empirical characteristic function estimation

Empirical characteristic function estimation is an estimation method to match the empirical characteristic

function implied by the data and the characteristic function derived from the model. It can be viewed as a

generalized method of moment (GMM) estimation (Hansen (1982)).

Suppose we have the characteristic function:

φ(u; θ) = E(exp(iuX)) =

∫
exp(iux)dF (x; θ) =

∫
exp(iux)f(x; θ)dx, (4.1)
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and the empirical characteristic function is:

φn(u) =

∫
exp(iux)dFn(x) =

1

n

n∑
j=1

exp(iuXj), (4.2)

where i =
√
−1.

Then, we have following infinite moment conditions:

m(u,Xi; θ) = exp(iuXi)− φ(u; θ),

satisfying Em(u,Xi; θ0) = 0 for infinite and arbitrary choices of u ∈ R.

If we select q discrete u = {u1, . . . , uq} and denote m(Xi, θ) = (m(u1, Xi; θ), . . . ,m(uq, Xi; θ)) as the

vector of moment conditions, we also have Em(Xi, θ) = 0 (′0′ is a vector of 0 here). Then, we can apply

GMM estimation method to estimate the parameter θ. Specifically, we minimize the GMM target function:

θ̂GMM = arg min
θ

1

n

n∑
j=1

m(Xj ; θ)
′Wn

1

n

n∑
j=1

m(Xj ; θ),

where Wn is a positive semidefinite weighting matrix. Under some regularity conditions, the GMM estiamte

θ̂GMM is consistent and asymptotic normally distributed. A good choice of Wn can further make the

asymptotic variance of the GMM estiamte reach a lower bound. We refer Hansen (1982) for detailed

properties of GMM estimates.

However, the asymptotic variance lower bound of GMM estimates highly depends on the choice of u.

An interesting question will be how to select the optimal discrete points u to minimize the lower bound of

GMM estimates’ asymptotic variance, finally reaching the Cramér-Rao lower bound (maximum likelihood

efficiency). Feuerverger and McDunnough (1981b) shows that Cramér-Rao lower bound can be reached by

sufficiently large number of discrete points and the grid also should be sufficiently dense and extended. This

might suggest that a ’continuous’ weight function with support on the sufficient large space might be more

appropriate than a weight matrix with finite discrete points u.

To use this ’continuous’ weight function, Heathcote (1977) and Knight and Yu (2002) propose the ECF

method, which minimizes the integral:

θ̂ECF = arg min
θ

∫
|φ(u, θ)− φn(u)|2dG(u),

where G(u) is the weight function.
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They also assume G(u) is bounded and non-increasing to guarantee the consistency and normality of

ECF estimate θ̂ECF . This assumption implies that G(u) is differentiable almost everywhere. We assume

g(u) = G′(u). Then, we have:

θ̂ECF = arg min
θ

∫
|φ(u, θ)− φn(u)|2g(u)du. (4.3)

To minimize the Equation (4.3), integration calculation is involved in, which might be computationally

intensive. In this chapter, we show that trapezoidal rule can approximate this integration efficiently under

mild regularity conditions on characteristic functions φ(u; θ) and weight functions g(u). Typical financial

models such as Merton’s jump-diffusion model, Kou’s jump-diffusion model, normal inverse Gaussian (NIG)

model and CGMY model can be applied, with a broad choice of weight function g(u).

4.2.2 The Sinc expansion and trapezoidal rule approximation

Suppose we have the ECF target function:

e(θ;X) ≡
∫
R

|φ(u; θ)− φn(u)|2g(u)du. (4.4)

To do the integration in Equation (4.4), we need to know the value of φ(u; θ), based on every single point

of u. If we only know the value of characteristic function on an evenly spaced grids set u ∈ {−Mh , . . . ,Mh},

we can reconstruct the characteristic function based on its Sinc expansion Ch,M (φ)(u; θ):

Ch,M (φ)(u; θ) =

M∑
j=−M

φ(jh ; θ)
sin(π(u− jh)/h)

π(u− jh)/h
,

where M and h are two tuning parameters of the evenly spaced grids {−Mh , . . . ,Mh}, controlling the error

of the approximation.

Feng and Lin (2013) shows only a few points can recover φ(u; θ) very well based on the Sinc expansion

when φ(u; θ) has good properties in analytic strip. Figure 4.1 shows the minor difference between the char-

acteristic function of NIG model (will be introduced in Chapter 4.3) and its Sinc expansion approximation

with M = 5 and h = 10. The difference between the Sinc expansion approximation and corresponding

characteristic function is in the 10−3 level and even smaller when u is around 0. Thus, we can find only

11 points in the evenly spaced grids {−Mh , . . . ,Mh} can approximate the characteristic function very well

(only real part of the characteristic function is shown here). This is due to the analyticity of the NIG model’s

characteristic function. This inspires us that good analyticity property can also lead to the approximation
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(a) Sinc expansion approximation (b) Difference between Sinc and Real

Figure 4.1: (Real part of) characteristic function of normal inverse Gaussian process (NIG) weekly increments
and its corresponding Sinc expansion approximation. Parameters of NIG processes are α = 50, β = −5, λ =
5 and µ = 0. The First figure shows both NIG’s characteristic function and its Sinc approximation. The
second figure shows the difference between them.

of the ECF target in Equation (4.4), which is a function of the characteristic function.

To reconstruct the integral in Equation (4.4), we try to use the trapezoidal rule based on evenly spaced

grids. Hopefully, when φ(u; θ) and g(u) have good analytic properties, we can also find that only a few grid

points can approximate the Equation (4.4) very well.

Specifically, we have the following trapezoidal rule approximation of Equation (4.4):

eM ,h,a(θ;X) =

M∑
j=−M

|φ(jh + ia; θ)− φn(jh + ia)|2g(jh + ia)h ,
(4.5)

where M and h are two tuning parameters of the evenly spaced grids {−Mh , . . . ,Mh}, controlling the error

of the approximation. a controls the shifted horizontal line {x+ ia;x ∈ R} to conduct trapezoidal rule, by

the Cauchy integral theorem.

The approximated ECF estimate is defined as:

θ̂M ,h,a
n = arg min

θ∈Θ
eM ,h,a(θ;X).

Before describing trapezoidal rule approximation performance and asymptotic properties of this approx-

imated ECF estimate θ̂M ,h,a
n , we need the following regularity conditions of A for characteristic functions

φ(u; θ) and weight functions g(u):
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A.1 For any θ ∈ Θ, |φ(u; θ) − φn(u)|2g(u) is analytic in strip D[d−,d+] where D[d−,d+] = {z ∈ C : =(z) ∈

[d−, d+]}, −∞ < d− < 0 < d+ <∞ and d−, d+ do not depend on θ. <(z) is the real part and =(z) is

the imaginary part of z.

A.2 For any given x ∈ R, |φ(x+ id±; θ)| is uniformly bounded by C with respect to θ ∈ Θ.

A.3
∫ d+

d− |g(x+ iy)|dy → 0 when x→ ±∞.

||g||± :=
∫
R
|g(x+ i(d±))|dx < +∞.

A.4 |φ(x+ ia; θ)−φn(x+ ia)|2|g(x+ ia)| ≤ k |x|n exp(−c|x|ν), x ∈ R with a ∈ [d−, d+] for some k > 0, ν >

0, c > 0, n ∈ R or k > 0, ν > 0, c = 0, n < −1. Here,k , ν, c, n may or may not depend on a and not

related to the parameter θ ∈ Θ. a is trapezoidal approximation parameter in Equation (4.5), which a

given real value, a ∈ [d−, d+].

A.5 Mh ≥ (n/cν)1/ν1c>0,n>0 for n , c, ν defined above.

Remark 11. Regularity condition A.1 and A.2 are the conditions for characteristic function. Considering

φn(u) is a simple function, we only need φ(u : θ) and g(u) is analytic in the strip D[d−,d+]. For regularity

condition A.2, because our characteristic function has closed form, it is easy to verify when a compact

parameter space Θ is given. Actually, it is easy prove that this is true for common Lev́y processes such

as Merton’s jump-diffusion model, Kou’s jump-diffusion model, normal inverse Gaussian model and CGMY

model. Regularity condition A.3 and A.4 are two regularity conditions for the continuous weight function

g(u). For the most weight functions with exponential tail, A.3 is easily verified. For the regularity condition

A.4, in the usual case, we do the trapezoidal rule over the real line R. That is, a = 0. Then, |φ(x+ ia; θ)−

φn(x+ ia)| are obviously bounded by 2. A.4 generally requires that g(u) at least has a polynomial tail. g(u)

can be one of most smooth probability densities with exponential tail on the whole real line such as normal

distribution, Gumbel distribution, normal inverse Gaussian distribution, which are easily verified to satisfy

Regularity conditions. A.5 is the condition for tuning parameters M and h which are trivial to verify.

Now, we have following theorem to control the bound of trapezoidal rule approximation error based on

the regularity conditions of class A:

Theorem 18. Under regularity conditions of class A, we define the error of approximation by trapezoidal

rule as

EFh,M (e, a)(θ;X) = e(θ;X)− eM ,h,a(θ;X)

=

∫
R

|φ(u; θ)− φn(u)|2g(u)du−
M∑

j=−M

|φ(jh + ia; θ)− φn(jh + ia)|2g(jh + ia)h .
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Then, we have the bound of error

|EFh,M (e, a)(θ;X)| ≤ e−2π(a−d−)/h

1− e−2π(a−d−)/h C1||g||− +
e−2π(d+−a)/h

1− e−2π(d+−a)/h C2||g||+ + TMh (4.6)

where TMh = 2k
|n+1| (Mh)n+1 if c = 0, n < −1, and TMh = 2k

νc(n+1)/ν Γ( n+1
ν , c(Mh)ν) if c > 0. Incom-

plete Gamma function Γ(s, b) =
∫∞
b
e−tts−1dt. C1 = C + 1 +

∑n
j=1 exp(−d−Xj) and C2 = C + 1 +∑n

j=1 exp(−d+Xj) which are not related to parameter θ (C is the uniform bound in regularity condition

A.2.). Moreover, let Mh → ∞ and h → 0, then, the bound of error EFh,M (φ, a)(x) will decay to zero uni-

formly on θ ∈ Θ. That is, with any given data X, eM ,h,a(θ;X) converges to e(θ;X) uniformly for θ ∈ Θ

when Mh →∞ and h → 0.

Thus, under regularity conditions of class A, we have the uniform convergence with respect to θ ∈ Θ of

the trapezoidal approximation. Moreover, the first two terms of Equation (4.6) are only related to h and

have an exponential decay rate. The last term of Equation (4.6) is related to Mh and also has an exponential

decay rate. We denote the first two terms as discretization error bound and the last term as truncation error

bound. More explanations are in the proof.

Thus, from the error bound listed in Equation (4.6), we find the bound of error decays very quickly (expo-

nential rate) with respect to bigger Mh and smaller h . Considering the evenly spaced grids {−Mh , . . . ,Mh},

to control the error bound to be small, we even don’t need very small interval length h or very big extension

Mh due to the exponentially decay of error bound. In fact, implied by a lot of cases in our simulation study,

h = 10 can give us a very good approximation.

4.2.3 Asymptotic properties of the approximated empirical characteristic

function estimation

In this section, we provide asymptotic properties of our approximated ECF estimate θ̂M ,h,a
n .

Based on Theorem 18, we have the following asymptotic properties between ECF estimate and approxi-

mated ECF estimate.

Theorem 19. Suppose θ̂n is the unique ECF estimate defined as arg minθ e(θ,X) with large enough sample

size n. We assume parameter space Θ is compact and e(θ,X) is continuous with respect to θ. Fixing large

enough sample size n, under A class regularity conditions

θ̂M ,h,a
n

p→ θ̂n, (4.7)
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when h → 0 and Mh →∞ with fixed a.

Theorem 20. We introduce B class of regularity conditions in appendix C.1.1 to guarantee the asymptotic

properties of ECF. Under A class of regularity condition and B class of regularity conditions , there exists

M (n) and h(n) with respect to n and for Approximated ECF estimate θ̂M ,h,a
n , θ̂

M (n),h(n),a
n

p→ θ0 with fixed a

when n→∞. Furthermore,

√
n(θ̂M (n),h(n),a

n − θ0)
d→ N(0, B−1(θ0)A(θ0)B−1(θ0)),

where A(θ0) = var(K(X1; θ0)).

Remark 12. The regularity conditions in B class are borrowed from Knight and Yu (2002). The first 4

regularity conditions in B class are responsible for consistency of ECF estimate , while, the last 3 regularity

conditions in B class are specifically designed for the asymptotic normality of ECF estimates. Combine

B class regularity conditions with A class regularity conditions, the approximated ECF estimate θ̂M ,h,a
n is

consistent and asymptotic normally distributed.

All in all, under certain regularity conditions, consistency, asymptotic normality can be reached by the

approximated ECF estimate by utilizing trapezoidal rule approximation in Equation (4.5).

4.3 Implementation

In this section, we study the detailed implementation of our approximated ECF estimation based on trape-

zoidal rule. Specifically, we list some typical Lev́y processes in quantitative finance which satisfying our

regularity conditions of class A and B. Then, we propose some suggestions on the selection of the weight

function g(u) and tuning parameters M , h , d+ and d− in our approximated ECF estimation.

4.3.1 Selected Lévy processes

We first introduce some typical Lévy processes. Lévy processes are commonly used in Finance due to its

flexibility to model heavy tails and skewness of financial time series. One of its property is that they have

independent stationary increments. That is, if we assume equity value series are St = exp(Yt) and {Yt}

is a Lévy process, the logarithm of the evenly spaced equity returns {Xt = Ytδ − Y(t−1)δ}n1 will follow the

same distribution F , where evenly spaced timestamps are defined as (0, δ, 2δ, . . . , nδ). Then, we can use the

i.i.d. data to fit the model. Another important property of Lev́y processes is Lévy-Khintchine formula. This
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formula provides implicit form of the characteristic function of Yt:

φ(u) = exp(δ(iua− bu2

2
+

∫
R

(exp(iuy)− 1− iux1|y|≤1)J(dy))), (4.8)

where (a, b, J) is called Lévy triplet which fully determines a Lévy process Yt. a ∈ R is drift parameter,

σ ≥ 0 is the diffusion component and Lévy measure J(dx) satisfying J({0}) = 0 and
∫

min(1, x2)J(dx) <∞.

We can derive the characteristic function via Lévy-Khintchine formula no matter the density function of

Lévy processes is available or not.

In this chapter, we will implement our parameter estimation algorithm for several typical Lévy processes

including: Merton’s jump-diffusion model (Merton (1976)), Kou’s jump-diffusion model (Kou (2002)), NIG

model (Barndorff-Nielsen (1997)) and CGMY model (Carr et al. (2002)). Merton’s jump-diffusion model

and Kou’s jump-diffusion model belong to the finite activity Lévy processes class, which allow only finitely

many jumps in any given time interval, while, infinite activity Lévy processes include infinitely many jumps

in any given time interval including NIG model and CGMY model.

Merton’s jump-diffusion model

In Merton’s jump-diffusion model, the observed stock price, St, satisfying the following equation:

Xt ≡ log(S(t+1)δ/Stδ) = µδ + σ
√
δZ +

Nt+1∑
i=Nt+1

Zi, (4.9)

where δ is the evenly spaced time interval of observed data; µ is drift; σ is volatility; Z is standard N(0, 1);

Nt is Poisson process with intensity λ; {Zi} are jump sizes following i.i.d fz(x) ∼ N(µj , σ
2
j ). That is, in

Merton’s jump-diffusion model, jumps occur according to a Poisson process Nt with jump sizes {Zi}.

The Lévy triplet of this model is (µ, σ2, J(dx) = λfz(x)dx). Although, the density of Xt has a com-

plex form (Tankov (2003)), its characteristic function, φ(u; θ), has a simple form through Lévy-Khintchine

formula:

φ(u; θ) = exp(δ(iuµ− σ2u2/2 + λ(exp(iµju− σ2
ju

2/2)− 1))). (4.10)

We set the following compact parameter space: −∞ < Lµ ≤ µ ≤ Uµ < ∞, 0 < Lσ ≤ σ ≤ Uσ < ∞,

0 < Lλ ≤ λ ≤ Uλ < ∞, −∞ < Lµj ≤ µj ≤ Uµj < ∞, 0 < Lσj ≤ σj ≤ Uσj < ∞, and true parameter

θ0 ∈ Θ. For regularity conditions, we can show that d+ and d−, satisfying A.1 and A.2, could be arbitrary

positive number and negative number due to this compact parameter space setting and the holomorphic

property of the characteristic function of Merton’s jump-diffusion model. Regularity condition A.4 also
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holds, if |g(x + ia)| has an exponential or binomial decay tail due to uniform boundedness of φ(x + ia; θ)

and φn(x+ ia) with respect to the parameter θ ∈ Θ. Thus, Merton’s jump-diffusion model can easily fulfill

the A class of regularity conditions.

To simulate Merton’s jump-diffusion model in the simulation study, we can utilize the method described

in Glasserman (2003).

Kou’s jump-diffusion model

Merton’s jump-diffusion model assumes the jump size is symmetric following normal distribution. Kou’s

jump-diffusion model allows the distribution of jump sizes {Zi} to be asymmetric following double exponen-

tial distribution. To be specific, the observed stock price, St, satisfying the following equation:

Xt ≡ log(S(t+1)δ/Stδ) = µδ + σ
√
δZ +

Nt+1∑
i=Nt+1

Zi, (4.11)

where jump size here {Zi} follows i.i.d. double exponential distribution and its distribution density is

fz(x) = pηu exp(−ηux1{x>0}) + (1− p)ηd exp(ηdx1{x<0}),

where p is the positive jump probability; 1/ηu is mean positive jump size; 1/ηd is mean negative jump size.

The Lévy triplet of this model is (µ, σ2, J(dx) = λfz(x)dx). The density of Xt has a complex form

(Ramezani and Zeng (2007)). Its characteristic function, φ(u; θ), has a simple form through Lévy-Khintchine

formula

φ(u; θ) = exp(δ(iuµ− σ2u2/2− λ(1− pηu
ηu − iu

− (1− p)ηd
ηd + iu

))).

For regularity conditions, d+ ∈ (0, ηd) and d− ∈ (−ηu, 0) can make the characteristic function analytic and

also satisfy A.2 with following parameter space: −∞ < Lµ ≤ µ ≤ Uµ < ∞, 0 < Lσ ≤ σ ≤ Uσ < ∞,

0 < Lλ ≤ λ ≤ Uλ < ∞, 0 < Lp ≤ p ≤ Up < 1, 0 < Lηu ≤ ηu ≤ Uηu < ∞, 0 < Lηd ≤ ηd ≤ Uηd < ∞,

and true parameter θ0 ∈ Θ. Then, Θ is a compact parameter space. To make this model satisfy regularity

condition A.1, d+ and d− should not be related to parameters. We can let d+ = Lηd/2 and d− = −Lηu/2

due to our compact parameter setting. This setting is generally practical because true parameter of ηu

and ηd are positive which cannot be zero exactly. Regularity condition A.4 also holds, if |g(x+ ia)| has an

exponential or binomial decay tail due to uniform boundedness of φ(x+ ia; θ) and φn(x+ ia) with respect to

the parameter θ ∈ Θ. Thus, Kou’s jump-diffusion model can easily fulfill the regularity conditions of class

A.
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To simulate it in simulation study, we also utilize the method described in Glasserman (2003).

Normal inverse Gaussian model

Normal inverse Gaussian (NIG) model belongs to a more general class of Lévy processes, generalized hyper-

bolic model (Eberlein et al. (1998)). It can be characterized by

Xt ≡ log(S(t+1)δ/Stδ) = µδ + βzδ + λWzδ , (4.12)

where zδ is the first time when a Brownian motion with drift γ reaches the positive level δ. The density of

zδ is inverse Gaussian (IG) distribution. Wzδ is a Brownian motion of which the calendar time is a random

time zδ.

Set α =
√
β2 + γ2, we have the Lévy triplet (µ, 0, J(dx) = f(x)dx) where

f(x) =
λα

π|x|
exp(βx)K1(α|x|).

Kn(x) is the modified Bessel function of the second kind with order n. Then, the probability density function

of Xt contains Bessel function but the characteristic function is in a simple form

φ(u; θ) = exp(δ(iuµ− λ(
√

(α2 − (β + iu)2)−
√
α2 − β2))).

For regularity conditions of class A, d+ ∈ (0, β + α) and d− ∈ (β − α, 0) can make the characteristic

function analytic and fulfill A.2 as well, with following parameter space: −∞ < Lµ ≤ µ ≤ Uµ < ∞,

∞ < Lα ≤ α ≤ Uα < ∞, ∞ < Lβ ≤ β ≤ Uβ < ∞, 0 < Lα−|β| ≤ α − |β|, 0 < Lλ ≤ λ ≤ Uλ ≤ ∞,

and true parameter θ0 ∈ Θ. Then, Θ is a compact parameter space. We can simply let d+ = L(α−β)/2

and d− = −Lα−β/2 to make sure the characteristic function is analytic in D[d−,d+] which is not related

parameters. Then, regularity condition A.1 holds. Regularity condition A.4 also holds, if |g(x+ ia)| has an

exponential or binomial decay tail due to uniform boundedness of φ(x+ ia; θ) and φn(x+ ia) with respect

to the parameter θ ∈ Θ. Thus, NIG model can easily fulfill the regularity conditions of class A.

To simulate NIG process Xt in simulation study, we refer the method in Rydberg (1997).
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CGMY model

CGMY model can be regarded as the generalization of Variance Gamma (Madan and Seneta (1990)). The

Lévy triplet of it is (µ, 0, J(dx) = f(x)dx) and f(x) is:

f(x) =

 C exp(−Mx)
x1+Y x > 0

C exp(−Gx)
|x|1+Y x < 0,

(4.13)

where C > 0, G ≥ 0,M ≥ 0, Y < 2.

In addition, when Y < 0, CGMY is a finite activity process. It could be regarded as a compound Poisson

process. When 0 < Y < 2, the process is an infinite activity process. The case, when Y = 0, is variance

gamma process. Here, we only consider infinite activity CGMY process with 0 < Y < 2.

The density function of CGMY process {Xt} is unknown for us. However, the characteristic function is

available for us.

For Y ∈ (0, 1) ∪ (1, 2):

φ(u; θ) = exp(δ(iµu+ CΓ(−Y )[(M − iu)Y −MY + (G+ iu)Y −GY ])), (4.14)

and for Y = 1:

φ(u; θ) = exp(δ(iµu+C((M − iu) log(1− iu/M) + (G+ iu) log(1 + iu/G)− iu(log(M)− log(G))))). (4.15)

It is easily verified that the characteristic function of CGMY model is smooth with respect to its param-

eters. For regularity conditions, d+ ∈ (0, G) and d− ∈ (−M, 0) can make the characteristic function analytic

in D[d−,d+]. To further make CGMY model satisfy regularity condition A.1, we can let d+ = LG/2 and

d− = −LM/2, so that D[d−,d+] not related to parameters. A.2 and A.4 can be easily verified when |g(x+ ia)|

has an exponential or binomial decay tail and parameter space are set to be: −∞ < Lµ ≤ µ ≤ Uµ < ∞,

0 < LC ≤ C ≤ UC < ∞, 0 < LG ≤ G ≤ UG < ∞, 0 < LM ≤ M ≤ UM < ∞, 0 < LY ≤ Y ≤ UY < 2. and

true parameter θ0 ∈ Θ. Thus, CGMY also satisfy regularity conditions of class A.

We can simulate CGMY process by inverting characteristic function introduced in Chen et al. (2012).

4.3.2 Selection of weights function

To do ECF estimation, we need to select a weight function g(u). It can be shown that the ECF estimation can

reach maximum likelihood efficiency by choosing an optimal weight function (Feuerverger and McDunnough
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(1981a)). However, this weight function is based on Fourier inversion transform of a function of log likelihood

which is unknown when the likelihood function has no closed form. If we only need the estimator to be

consistent and asymptotic normally distributed, any bounded and non-decreasing G(u) can guarantee it,

where g(u) = G′(u) (Knight and Yu (2002)).

Our regularity condition A.1 implies that analytic functions in strip D[d−,d+] could be a good choice for

g(u). A.3 and A.4 should hold when this analytic function has an exponential decay tails. Actually, we

can choose g(u) to be a probability density function of common distributions on the whole real line such

as normal distribution, Gumbel distribution, normal inverse Gaussian distribution. They all satisfy the

regularity condition A.1, A.3 and A.4. We select probability density function of the normal distribution to

be our weight distribution in this work and prove that it satisfying our regulatory condition A.1, A.3 and

A.4 as following. In the simulation study, we find that normal distribution weight function have a good and

efficient estimation performance.

Proposition 21. if g(u) follows normal distribution N(µ, σ2), it satisfies our regularity condition of class

A.

The normal distribution also suggests putting more weights on the points around the origin, which is

also indicated by our Proposition 22.

Proposition 22. If we fix u, following the central limit theorem, we have:

√
n(<(φn(u))−<(φ(u, θ)))

d→ N(0,
1

2
+

1

2
<(φ(2u, θ))− (<(φ(u, θ)))2),

√
n(=(φn(u))−=(φ(u, θ)))

d→ N(0,
1

2
− 1

2
<(φ(2u, θ))− (=(φ(u, θ)))2).

Proposition 22 provides the central limit theorem of the empirical characteristic function with fixed u.

It shows that moment matching is generally easier for u around the origin than the large enough u. That is,

the asymptotic variance is smaller around the origin and bigger when u is sufficient large. Because φ(u, θ)

is available for Lévy processes, we can even write down an implicit expression of the asymptotic variance.

For the typical Lévy listed in our work, |φ(u, θ)| → 0 when u→ 0. Thus, it is easily verified that asymptotic

variance of both real and imaginary part of empirical characteristic function is around 1
2 with sufficient large

u compared with the 0 asymptotic variance around the origin. That is, it might be more appropriate to put

more weights around the origin of u.

Suppose we have a weight distribution g(u), we also need to pin down the parameters within that
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distribution. We describe a way to do it, which gives us a stable and good estimation performance. The

general idea is to capture all useful information of the characteristic function where its value deviated from

0. However, when u is large, empirical ECF could be very noisy and volatile. This is also supported by

the large asymptotic variance of large u in Proposition 22. Thus, we can set a threshold value and mainly

use the information when empirical likelihood function value larger than this value (which is not noisy and

volatile). Thus, we define the ECF information L and its threshold Lthreshold as following:

L = {u : Lthreshold ≤ <(φn(u)) ≤ 1}, (4.16)

where Lthreshold can be selected to be 5 ∗
√

(1/2n) and n is the sample size. The reason for this selection is√
(1/2n) is the standard deviation of φ(u, θ) with sufficient large u and sufficient large sample size n (See

Proposition 22). 5 ∗
√

(1/2n) can exclude noises of φn(u) with large u very well in practice because of the

asymptotic normal distribution of φn(u) indicated in Proposition 22. We use the real part of the empirical

characteristic function to find L because imaginary part is relative more volatile in practice. To find L

efficiently given Lthreshold, binary search algorithm can be utilized.

Figure 4.2 describe the real part and imaginary part of the empirical characteristic function and the cor-

responding characteristic function of Merton’s jump-diffusion model. The empirical characteristic function

is defined in Equation (4.2) based on 100, 500 and 1000 simulated data and the characteristic function is

from Equation (4.10). The model’s parameter is selected to be same as the one in our simulation study.

We can find that empirical characteristic function is more closed to real characteristic function when u is

more closed to origin and sample size is bigger. When u is bigger, empirical characteristic function is more

volatile and can deviate more from the morel’s characteristic function.

Figure 4.3 shows an example to choose L and Lthreshold for NIG model with simulated sample size 100.

Lthreshold = 0.35 from the definition in (4.16). L value can be found by binary searching the value Lthreshold

on empirical characteristic function of sample size 100. We can find the interval u ∈ [−L,L] covers the most

area that empirical characteristic function closed to the model’s characteristic function.

When we have ECF information value L, we can design the parameter in g(u) to cover this interval

[−L,L]. For example, if g(u) ∼ N(µ, σ2). We can let µ = 0 and 3σ = L due to 3σ covers the interval [−L,L]

in probability more than 99.5%.

In summary, our weight function can be selected in three steps when we have data:

� Select g(u) satisfying regularity conditions A.1, A.3 and A.4 (for example, normal distribution density:N(µ, σ2)).

� Binary search ECF information value L on empirical characteristic function regarding (4.16) with
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(a) Real part of Merton’s CF (b) Imaginary part of Merton’s CF

Figure 4.2: Characteristic function of Merton’s model and its corresponding empirical characteristic function
with sample size 100, 500 and 1000. Parameters are µ = 0.1, σ = 0.3, λ = 10, µj = −0.5 and σj = 0.25.
Blue curve is the characteristic function. Red, yellow and purple curves represent empirical characteristic
function with 1000, 500, 100 simulated samples.

Lthreshold = 5 ∗
√

(1/2n).

� Design parameters in g(u) to cover interval [−L,L] well (for normal distribution N(µ, σ), µ = 0 and

σ = L/3).

4.3.3 Selection of tuning parameters in trapezoidal approximation

In this section, we discuss the way to select tuning parameters a, M and h in trapezoidal approximation

(4.5). From Theorem 18, we find that approximation error will decay to zero when Mh → ∞ and h → 0.

da is defined as 2 min(d+ − a, a − d−). Furthermore, the first two terms of Equation (4.6) implies that the

decay rate is exponential, which is exp(−πda/h). The last term of Equation (4.6) implies that the decay

rate is also exponential which is exp(−c(Mh)ν) if c > 0. This suggests that we can select h to make three

terms in Equation (4.6) converge to zero at the same exponential rate. That is, we have:

exp(−πda/h) = exp(−c(Mh)ν).

Then,

h(M ) = (πda/c)
1
ν+1 M − ν

ν+1 , (4.17)

which is also suggested by Feng and Lin (2013). For a, we simply select a = 0 in this work and it has efficient

and good performance.
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Figure 4.3: Characteristic function of NIG model and its corresponding empirical characteristic function
with sample size 100. Parameters are µ = 0, α = 50, β = −5, λ = 5. Blue curve is the characteristic
function. Red curve represents empirical characteristic function with 100 simulated samples. Green dashed
line indicates that ECF information value L = 107.5 based on the threshold Lthreshold = 0.35 (calculated
from the definition in (4.16))

.

If M is given, we still need to know da, c and ν. c and ν parameters can be simply determined from

regularity condition A.4. For example, if we define continuous weight function g(u) to be normal distribution

density function N(µ, σ2) and a = 0, the corresponding ν = 2 and c = 1
2σ2 which is 9

2L2 given that σ = L
3

suggested in Chapter 4.3.2.

For da, we notice that we generally like bigger da to have bigger h(M ). Then, if we the fix grid extension

Mh , M could be smaller which reduce our computation burden (M is the number of grid points in trapezoidal

rule.). We select different da based on different given parameter in each iteration of the optimization program.

To explain it in details, recall that we need search the estimated parameter by minimize Equation (4.5). The

optimization program will evaluate Equation (4.5) in each iteration with given parameter value θ. Suppose

the parameter value is given in one optimization iteration, we can determine the corresponding biggest da,

which is the value to make sure characteristic function is analytic in a strip (regularity condition A.1). This

provides a connection between da and θ. Specifically, Chapter 4.3.1 provides a general guide to choose

d± based on parameters. For example, Merton’s jump-diffusion model can allow arbitrary d± because its

characteristic function is holomorphic. In practice, we can choose da = 10 with a good performance. Kou’s

jump-diffusion model need d+ ∈ (0, ηd) and d− ∈ (−ηu, 0). We can simply make da to be a value slightly

smaller than 2 min(ηu, ηd). Similarly, we can make da to be a value slightly smaller than 2 min(α−β, α+β)

for NIG model and da to be a value slightly smaller than 2 min(G, M) for CGMY model given parameter

in each iteration of the optimization program.

Once we can determine h given M and parameter θ, we only need to determine M . We can do it in two
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ways.

In the first way, we can select M in each iteration of the optimization program. That is, when we

minimize Equation (4.5), optimization program will evaluate it in each iteration with given parameter value

θ. Thus, for a fix parameter θ, we can increase M gradually to make eM ,h,a(θ;X) stable with changes

less than a error threshold (i.e. 10−8). From our practical experience, if we set initial M = 50, for most

reasonable parameters in the parameter space, there is no need to increase M multiple times.

In the second way, we can simply try different fixed M and minimize eM ,h,a(θ;X) based on fixed M .

Then, use the M when we get stable approximated ECF estimate θ̂M ,h,a
n (ECF estimate converges to a stable

value by increasing M ). We conduct the second way in our simulation study.

We recommend using global optimization program which can also deal with non-smooth function. We

choose ’NOMAD’ optimization in ’OPTI’ toolbox (Abramson et al. (n.d.)) of MATLAB to be our numerical

optimization procedure which is stable and fast implied by our simulation study.

4.3.4 Verifications of regularity conditions

In this section, we want to show that the selected popular Lévy processes satisfy the regularity condition of

class A and class B. If class A regularity conditions holds for those processes, our ECF target approximation

(Equation (4.5)) converges to the ECF target (4.4) with the exponential rate. That is, our approximation

will be accurate due to fast convergence. Also, if class B regularity conditions holds, our approximated ECF

estimates will have good asymptotic properties.

Theorem 23. If g(u) satisfies the regularity conditions of class A (e.g. normal distribution shown in

Proposition 21), the characteristic function of Merton’s jump-diffusion model, Kou’s jump-diffusion model,

NIG model and CGMY model satisfy the regularity condition of class A if the analytic strip D[d−,d+] and

compact parameter space Θ are selected regarding to the Chapter 4.3.1.

Theorem 24. If g(u) satisfies the regularity conditions of class A (e.g. normal distribution shown in

Proposition 21), satisfies the regularity conditions of class A (e.g. normal distribution shown in Proposition

21), the characteristic function of Merton’s jump-diffusion model, Kou’s jump-diffusion model, NIG model

and CGMY model satisfy the regularity condition of class B.

In our simulation study, we just select g(u) to be the probability density function of normal distribution

(suggested by selection 4.3). This setting satisfies the requirements of Theorem 23 and Theorem 24.
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Table 4.1: Parameter spaces

Merton Kou NIG CGMY
True values
µ = 0.1, σ = 0.3, λ = 20 µ = 0.2, σ = 0.2, λ = 30 µ = 0,α = 50, β = −5, λ = 5 C = 3, G = 79, M = 83
µj = −0.5, σj = 0.25 p = 0.4, ηu = 5, ηd = 2.5 Y = 0.9
Parameter spaces
−1 ≤ µ ≤ 1 −1 ≤ µ ≤ 1 1 ≤ α− |β| 1 ≤ C ≤ 100
0.01 ≤ σ ≤ 1 0.01 ≤ σ ≤ 1 −10 ≤ β ≤ 10 1 ≤ G ≤ 100
1 ≤ λ ≤ 50 1 ≤ λ ≤ 50 0.5 ≤ δ ≤ 10 1 ≤M ≤ 100
−1 ≤ µj ≤ 1 0.1 ≤ p ≤ 0.9 1 ≤ α ≤ 150 0.1 ≤ Y ≤ 1.9
0.05 ≤ σj ≤ 1 1 ≤ ηu ≤ 20

1 ≤ ηd ≤ 20

4.4 Simulation Study

In this section, we conduct a simulation study to examine the performance of approximated ECF estimate.

We mainly have two targets. First, we want to show that only a small M in Equation (4.5) is needed to

approximate the ECF target (4.2) very well, when the model satisfies our regularity conditions. That is,

we can nearly use few points to approximate ECF target without computational intensive integration. This

is shown theoretically by Theorem 18 due to the very fast decay rate of approximation error (exponential

decay). Second, we want to check if our approximated ECF estimate will match the true parameter based

on simulated data. This is already implied by the asymptotic properties of approximated ECF estimates

(Theorem 20).

We conduct the simulation study based on the Lévy processes described in Chapter 4.3.1 including

Merton’s jump-diffusion model, Kou’s jump-diffusion model, NIG model and CGMY model.

For each Lévy model in Chapter 4.3.1, we fit the model based on simulated 500 sample paths with

different sample size n, daily frequency (δ = 1/252) and weekly frequency (δ = 1/52). In each sample

path, we simulate 5000 samples for each model and fit the model based on first 200, 1000 and 5000 samples

separately. Based on each same sample, we also set fixed tuning parameter M = {10, 30, 50, 100, 200} to

illustrate that in most cases, a small M (M = 10 or M = 30) can give us a very stable estimation result.

The large enough compact parameter space required by regularity conditions A and B is set following the

way mentioned in Chapter 4.3.1 for each model. Specific setting of the parameter space is reported in Table

4.1. In Table 4.2, we report the empirical means, corresponding standard errors of parameter estimates

and true parameter values used for simulating 500 sample paths. Global optimization ’NOMAD’ is used

to search the approximate ECF estimate. The implementation follows Chapter 4.3 with normal distributed

weight function g(u).
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4.4.1 Tuning parameters analysis

We discuss the result based on our tuning parameter M in the approximated ECF estimation (Equation

(4.5). M is the key parameter in our ECF approximation. By selecting the tuning parameter h based on

equation (4.17), we can show the approximation error bound decay exponentially with respect to M . M is

also the parameter to control the computational cost of our estimation procedure. Larger M indicates more

terms involved in our ECF approximation which implies more computational cost. The exponential decay

of error bound in our theoretical result indicates that we don’t need a large enough M usually, so that our

approximated ECF estimates are stable. Table 4.2 provides the empirical means, corresponding standard

errors of parameter estimates and true parameter values based on same 500 simulated sample path, different

sample size and different tuning parameter M . For Merton’s jump-diffusion model in Table 4.2a and Table

4.2b, we find M = 50 is generally large enough to guarantee that empirical means and their standard errors

converge to a number with a precision of 4 decimal places for weekly data. While, for daily data, M might be

a little larger, which is 100. This can be explained by our Equation (4.6). It can be proved that denser data

(daily data) have a smaller parameter δ in the characteristic functions (Check expressions of characteristic

functions in Chapter 4.3.1). And a smaller δ will lead to a larger k and larger truncation error bound

TMh (check Equation(4.6) and regularity condition A.4), making the bound of error TMh decay to zero more

slowly. This implies that we need a larger Mh to make the truncation error bound unchanged if we have a

larger k . Then, M will be larger due to our tuning parameter h selection equation (4.17). Overall, daily data

(denser data) usually need larger M (more computational cost) to guarantee the same ECF approximation

error bound from Equation (4.6). If we don’t need this high precision of 4 decimal places, M = 10 can give

us a reasonably good ECF estimate which is closed to the true parameter with stable standard error. That

is, around 20 points in total can estimate the integration form in Equation (4.4) very well, which gives us

effective estimates.

For Kou’s jump-diffusion model in Table 4.2c and Table 4.2d, we have a little higher requirement for M .

That is, M = 10 in a lot of cases cannot give us a reasonable result. For example, empirical mean of ηd is

6.3708, which is too far away from 2.5 compared with the case of M ≥ 30. Similar issues happen for daily

simulated data with n = 1000 and n = 5000. This is mainly due to the small true parameter value of ηd.

That is, the characteristic function of Kou’s jump-diffusion model is analytic in the strip [−ηd, ηu]. Thus,

based on the selection rule described in the Chapter 4.3.3, da is a value slightly smaller than 2 min(ηu, ηd).

That is, if ηu and ηd are small, da is small. Then, we need a larger M to make sure we have the same

tuning parameter h with the same exponential decay rate of approximation error bound (4.6) for the true

parameter. Actually, this issue is not obvious for weekly data because we have shown that daily data usually
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need larger M compared with weekly data to have the same bound of error. This is also an indication that

daily data (denser data) require a relative large M to control the ECF approximation error bound (explained

in the last paragraph for Merton’s jump-diffusion model).

For NIG and CGMY model in Table [4.2e, 4.2f, 4.2g and 4.2h], we find the requirement for tuning

parameter is low. M = 10 is enough to give us a stable estimates. Again, this is due to the large da around

the true parameter. Compared with Kou’s jump-diffusion model of which da ≈ 5, da ≈ 90 for NIG model

and da ≈ 158 for CGMY model. Thus, with the same exponential error bound decay rate in Equation (4.6),

the CGMY and NIG model need much smaller M compared with Kou’s jump-diffusion model around the

true parameter. Thus, M = 10 is generally big enough to give us reasonable approximate ECF estiamte for

NIG model and CGMY model in this parameter setting. More detailed explanation about tuning parameters

M , h and da can also be found in the Chapter 4.3.3.

We also plot the tuning parameter h value for each model in Figure 4.4, based on different choices of

M . This can give us a general idea of the h values corresponding to the different values of M . Figure 4.4

shows the h values in each NOMAD optimization iteration, based on one simulated path. It is calculated

via the Equation (4.17). Recall that M indicates the number of grid points in the evenly spaced grids set

{−Mh ,−h(M − 1), . . . , h(M − 1),Mh}. Thus, h represents its dense degree in this grids set. We can find

that if M is as small as 10, h could be around 10 for the daily simulated data of Merton’s jump-diffusion

model, Kou’s jump-diffusion model, or even larger than 20 for NIG model and CGMY model. Actually,

h = 10 can give us reasonably good estimates from our analysis above for Merton’s jump-diffusion model,

NIG model and CGMY model. Thus, we can conclude that scattered grids (large h) might be able to provide

good approximation of the ECF target (Equation 4.4), which gives us stable approximated ECF estimates.

For Kou’s jump-diffusion model, the requirement of M and h is relative high, h is around 1 for daily data

when M = 200 and h is around 0.5 for weekly data when M = 200. That is due to our parameter setting

of small da.

Overall, we find that a relative small M and relative large h can approximate the ECF target (4.2) very

well when the model satisfying our regularity conditions. That is, we can nearly use few scattered points

with large spans to approximate ECF target without computational intensive integration. This will save us

a lot of computation time and burden. We report the median of running time based on 500 simulated paths.

All the simulation study was conducted by the same laptop with Intel Core i5-5300U CPU (2.30GHz). We

find the running time of M = 10 is 1/5 even 1/10 of the running time of M = 200.
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4.4.2 Asymptotic properties evidences

In this section, we want to check if our approximated ECF estimate matches the true parameter based

on simulated data. This is implied by the asymptotic properties of approximated ECF estimate (Theorem

20). For jump-diffusion models [Table4.2a,4.2b,4.2c and 4.2d], empirical means are reasonably closed to

true parameters. With sample size n increasing, empirical means tend to converge to true value and the

standard error tends to converge. The convergence rate is roughly
√
n because when the sample size gets

5 times bigger (sample size from 200 to 1000 or from 1000 to 5000), the standard error becomes roughly

1/
√

5 smaller. These findings are consistent to the consistency and asymptotic normality of approximated

ECF estimates (Theorem 19 and Theorem 20). For weekly data, small sample size n = 200 might be enough

to identify volatility parameter σ and jump parameters λ, µj , σj (Merton’s jump-diffusion model) or λ, p,

ηu and ηd (Kou’s jump-diffusion model) about three standard errors far away from zero. For daily data,

this corresponding sample size might be as large as n = 1000. In addition, it seems that when the total

sample size is fixed, dense data might lead to more difficulties to estimate parameters. This is consistent

to our intuition. For finite activity Lévy processes, there are finite big jumps in time interval. Weekly

data with fixed sample size have longer time spans, indicating more big jumps compared with daily data.

Thus, more big jumps information leads to more accuracy of the estimate. However, this is not the case for

infinite activity Lévy processes [Table 4.2e,4.2f,4.2g and 4.2h]. For example, for parameters in NIG model

and CGMY model, denser data implies a less bias and standard error of the approximated ECF estimates.

Intuitively, the reason is that for these models, jumps will happen on each data point no matter it is daily

data or weekly data. The data with longer time spans doesn’t contain more jump information because in

all time intervals, jump will happen infinitely.

For infinite activity Lévy processes, the estimation performance is a little worse than finite activity Lévy

processes above due to the model itself. The estimated parameters in NIG and CGMY model also imply

the consistency and convergence rate information. Based on empirical mean with true initial value in Table

[Table 4.2e,4.2f,4.2g and 4.2h], larger sample size n implies a smaller estimated bias and smaller standard

error. For CGMY model, we find the parameter C identification problem. Table 4.2g and Table 4.2h report

the estimation result of CGMY model. We find parameter C is hard to be identified with a big estimation

standard error. For example, 1000 sample size might not be enough to identify C from 0 for weekly data.

5000 weekly data might be needed to match the estimates with true value with reasonable small standard

error. However, 5000 weeks are rough 100 years.

In summary, this simulation results show that approximated ECF estimates are effective which can

accurately match the true parameter values with reasonable small sample size. CGMY model might need
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more data. More importantly, our approximated ECF estimates doesn’t need a large tunning parameter M ,

which is computationally efficient to implement.

Table 4.2: Empirical averages and their standard errors (in parentheses) of the approximated empirical
characteristic function(ECF) estimates with sample size n = (200, 1000, 5000) and different choices of M =
(10, 30, 50, 100, 200).

(a) Merton’s jump-diffusion model (Weekly data)

n M µ = 0.1 σ = 0.3 λ = 10 µj = −0.5 σj = 0.25 time
n = 200 M = 10 0.0855(0.1774) 0.2978(0.0197) 10.2269(2.1213) −0.0043(0.6148) 0.2443(0.0660) 1.2707
n = 200 M = 30 0.0862(0.1776) 0.2987(0.0188) 10.1107(1.9900) −0.4924(0.1193) 0.2448(0.0763) 1.2413
n = 200 M = 50 0.0862(0.1777) 0.2987(0.0187) 10.1035(1.9862) −0.4985(0.0724) 0.2413(0.0598) 1.3396
n = 200 M = 100 0.0862(0.1777) 0.2987(0.0187) 10.1034(1.9862) −0.4985(0.0724) 0.2413(0.0598) 1.5193
n = 200 M = 200 0.0862(0.1777) 0.2987(0.0187) 10.1034(1.9862) −0.4985(0.0724) 0.2413(0.0598) 1.9045
n = 1000 M = 10 0.0957(0.0782) 0.2998(0.0088) 9.9613(0.9061) −0.1383(0.5771) 0.2496(0.0292) 1.3785
n = 1000 M = 30 0.0956(0.0782) 0.2999(0.0086) 9.9503(0.8735) −0.4983(0.0750) 0.2509(0.0436) 1.6762
n = 1000 M = 50 0.0957(0.0781) 0.2999(0.0086) 9.9498(0.8737) −0.5013(0.0335) 0.2494(0.0280) 2.0314
n = 1000 M = 100 0.0957(0.0781) 0.2999(0.0086) 9.9498(0.8736) −0.5013(0.0335) 0.2494(0.0280) 3.3563
n = 1000 M = 200 0.0957(0.0781) 0.2999(0.0086) 9.9499(0.8737) −0.5013(0.0335) 0.2494(0.0280) 5.7590
n = 5000 M = 10 0.1012(0.0343) 0.3000(0.0042) 10.0044(0.4107) −0.2053(0.5370) 0.2497(0.0132) 2.0658
n = 5000 M = 30 0.1015(0.0341) 0.3001(0.0041) 10.0033(0.3938) −0.4996(0.0140) 0.2498(0.0129) 4.5251
n = 5000 M = 50 0.1015(0.0341) 0.3001(0.0041) 10.0036(0.3936) −0.4996(0.0140) 0.2498(0.0129) 6.8596
n = 5000 M = 100 0.1015(0.0341) 0.3001(0.0041) 10.0036(0.3936) −0.4996(0.0140) 0.2498(0.0129) 12.8914
n = 5000 M = 200 0.1015(0.0341) 0.3001(0.0041) 10.0037(0.3936) −0.4996(0.0140) 0.2498(0.0129) 25.2845

(b) Merton’s jump-diffusion model (daily data)

n M µ = 0.1 σ = 0.3 λ = 10 µj = −0.5 σj = 0.25 time
n = 200 M = 10 0.1053(0.3656) 0.2981(0.0168) 10.3672(4.5100) 0.1964(0.5946) 0.2057(0.2118) 2.2306
n = 200 M = 30 0.1061(0.3655) 0.2989(0.0163) 9.8865(3.6263) 0.0757(0.7118) 0.2062(0.1011) 2.3533
n = 200 M = 50 0.1066(0.3653) 0.2987(0.0164) 10.0009(3.6660) −0.2945(0.5091) 0.2795(0.2582) 2.3917
n = 200 M = 100 0.1065(0.3656) 0.2989(0.0165) 9.9237(3.6510) −0.4881(0.1419) 0.1921(0.0965) 2.9422
n = 200 M = 200 0.1064(0.3655) 0.2988(0.0165) 9.9629(3.6589) −0.4867(0.1457) 0.1915(0.0962) 3.6945
n = 1000 M = 10 0.1035(0.1648) 0.2999(0.0076) 10.0810(2.0117) 0.1716(0.5945) 0.2739(0.2063) 2.5013
n = 1000 M = 30 0.1038(0.1645) 0.3001(0.0074) 9.9627(1.7658) −0.1368(0.6344) 0.2445(0.0724) 3.0720
n = 1000 M = 50 0.1039(0.1644) 0.3000(0.0074) 9.9879(1.7594) −0.4098(0.3604) 0.2791(0.1788) 3.7781
n = 1000 M = 100 0.1040(0.1645) 0.3001(0.0074) 9.9652(1.7588) −0.4995(0.0566) 0.2362(0.0460) 6.0785
n = 1000 M = 200 0.1040(0.1645) 0.3001(0.0074) 9.9652(1.7590) −0.4995(0.0566) 0.2363(0.0460) 10.1221
n = 5000 M = 10 0.1002(0.0705) 0.3001(0.0034) 10.0000(0.8495) 0.3414(0.6189) 0.2874(0.1782) 4.0002
n = 5000 M = 30 0.0998(0.0702) 0.3003(0.0033) 9.9121(0.7500) −0.0823(0.6623) 0.2495(0.0410) 7.5911
n = 5000 M = 50 0.0998(0.0702) 0.3002(0.0033) 9.9318(0.7455) −0.4726(0.2009) 0.2588(0.0980) 11.5485
n = 5000 M = 100 0.0999(0.0702) 0.3003(0.0033) 9.9265(0.7452) −0.4995(0.0250) 0.2463(0.0219) 21.1049
n = 5000 M = 200 0.0999(0.0702) 0.3003(0.0033) 9.9268(0.7451) −0.4995(0.0250) 0.2463(0.0219) 41.2290
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Table 4.2 (cont.)

(c) Kou’s jump-diffusion model (weekly data)

n M µ = 0.2 σ = 0.2 λ = 30 p = 0.4 ηu = 5 ηd = 2.5 time
n = 200 M = 10 0.1786(0.2076) 0.1931(0.0353) 30.9883(5.3240) 0.4194(0.0780) 5.7473(3.0542) 2.7305(1.1330) 5.5777
n = 200 M = 30 0.1839(0.1778) 0.1960(0.0247) 30.4946(4.6563) 0.4072(0.0695) 5.4008(2.0607) 2.5580(0.6144) 4.9446
n = 200 M = 50 0.1834(0.1771) 0.1965(0.0240) 30.4218(4.5907) 0.4068(0.0690) 5.3832(2.0102) 2.5336(0.5551) 4.9779
n = 200 M = 100 0.1836(0.1771) 0.1965(0.0239) 30.4223(4.5856) 0.4068(0.0690) 5.3806(2.0052) 2.5361(0.5528) 5.6622
n = 200 M = 200 0.1836(0.1771) 0.1965(0.0239) 30.4231(4.5856) 0.4068(0.0690) 5.3807(2.0057) 2.5364(0.5526) 7.0234
n = 1000 M = 10 0.1948(0.0851) 0.1978(0.0146) 30.2325(2.1517) 0.4035(0.0377) 5.1789(1.1742) 2.5397(0.4867) 5.7777
n = 1000 M = 30 0.1981(0.0766) 0.1990(0.0108) 30.0752(1.8969) 0.3999(0.0316) 5.0673(0.7259) 2.5022(0.2375) 6.2845
n = 1000 M = 50 0.1983(0.0762) 0.1990(0.0107) 30.0678(1.8948) 0.3999(0.0315) 5.0602(0.7166) 2.5027(0.2295) 7.3662
n = 1000 M = 100 0.1983(0.0762) 0.1990(0.0107) 30.0677(1.8934) 0.3999(0.0315) 5.0599(0.7163) 2.5031(0.2290) 11.7326
n = 1000 M = 200 0.1984(0.0762) 0.1990(0.0107) 30.0675(1.8932) 0.3999(0.0315) 5.0596(0.7161) 2.5031(0.2290) 19.2467
n = 5000 M = 10 0.1958(0.0379) 0.1995(0.0066) 30.0455(1.0070) 0.4017(0.0166) 4.9983(0.5568) 2.5194(0.2086) 8.1813
n = 5000 M = 30 0.1963(0.0343) 0.1998(0.0050) 30.0032(0.9159) 0.3999(0.0137) 4.9953(0.3267) 2.5011(0.1046) 15.6615
n = 5000 M = 50 0.1963(0.0342) 0.1999(0.0050) 30.0008(0.9116) 0.3999(0.0137) 4.9926(0.3220) 2.5009(0.1014) 22.4953
n = 5000 M = 100 0.1963(0.0342) 0.1999(0.0050) 30.0009(0.9115) 0.3999(0.0137) 4.9921(0.3219) 2.5011(0.1012) 40.4674
n = 5000 M = 200 0.1963(0.0342) 0.1999(0.0050) 30.0004(0.9112) 0.3999(0.0137) 4.9919(0.3216) 2.5011(0.1014) 78.1217

(d) Kou’s jump-diffusion model (daily data)

n M µ = 0.2 σ = 0.2 λ = 30 p = 0.4 ηu = 5 ηd = 2.5 time
n = 200 M = 10 0.2174(0.2698) 0.1966(0.0159) 32.0937(8.0065) 0.5054(0.2102) 6.8176(6.2990) 6.3708(6.0965) 5.4246
n = 200 M = 30 0.2080(0.2586) 0.1986(0.0125) 31.1331(7.4277) 0.4295(0.1412) 7.0238(5.8910) 3.7597(3.8401) 5.8465
n = 200 M = 50 0.2079(0.2595) 0.1988(0.0118) 31.0456(7.3824) 0.4154(0.1307) 6.8661(5.6867) 3.5158(3.8262) 6.5503
n = 200 M = 100 0.2090(0.2588) 0.1987(0.0118) 31.1609(7.3101) 0.4164(0.1234) 6.8023(5.6340) 3.5981(3.8678) 7.2795
n = 200 M = 200 0.2096(0.2589) 0.1986(0.0118) 31.2379(7.2819) 0.4193(0.1236) 6.8508(5.4292) 3.6818(3.6920) 8.5291
n = 1000 M = 10 0.2090(0.1244) 0.1996(0.0076) 30.7498(3.8770) 0.4810(0.1665) 5.5683(4.3218) 4.5213(3.7909) 7.5394
n = 1000 M = 30 0.2020(0.1197) 0.2001(0.0058) 30.1173(3.3195) 0.4043(0.0704) 5.4637(2.4314) 2.6179(0.9473) 9.1346
n = 1000 M = 50 0.2021(0.1206) 0.2001(0.0056) 30.1009(3.2952) 0.3991(0.0567) 5.3977(2.0309) 2.5391(0.6569) 10.8261
n = 1000 M = 100 0.2024(0.1206) 0.2001(0.0056) 30.0933(3.2994) 0.3993(0.0544) 5.3290(1.8427) 2.5472(0.5657) 14.5648
n = 1000 M = 200 0.2027(0.1209) 0.2001(0.0056) 30.0961(3.2975) 0.4004(0.0544) 5.2813(1.7398) 2.5733(0.5510) 21.9689
n = 5000 M = 10 0.2036(0.0487) 0.2004(0.0032) 29.9217(1.6269) 0.4678(0.1512) 4.8981(2.8994) 3.3779(1.9191) 13.9644
n = 5000 M = 30 0.1999(0.0476) 0.2001(0.0024) 29.9313(1.3701) 0.3983(0.0311) 5.1329(0.8225) 2.4587(0.3844) 22.6049
n = 5000 M = 50 0.2006(0.0478) 0.2001(0.0024) 29.9470(1.3632) 0.3996(0.0247) 5.0697(0.6424) 2.4953(0.2702) 30.7117
n = 5000 M = 100 0.2006(0.0479) 0.2001(0.0024) 29.9473(1.3700) 0.4000(0.0244) 5.0623(0.7379) 2.5036(0.2308) 47.4964
n = 5000 M = 200 0.2007(0.0478) 0.2001(0.0024) 29.9443(1.3620) 0.4193(0.0239) 5.0413(0.6093) 2.5081(0.2253) 90.0734
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Table 4.2 (cont.)

(e) Normal inverse Gamma model (NIG)(weekly data)

n M µ = 0 α = 50 β = −5 λ = 5 time
n = 200 M = 10 −0.1766(0.5791) 54.2762(24.5082) −3.2620(5.8970) 5.3479(2.2210) 3.4409
n = 200 M = 30 −0.1771(0.5808) 53.5725(23.5995) −3.2511(5.9281) 5.2978(2.1778) 3.5649
n = 200 M = 50 −0.1765(0.5804) 53.6826(23.6676) −3.2583(5.9247) 5.3095(2.1892) 3.8705
n = 200 M = 100 −0.1759(0.5804) 53.6546(23.7462) −3.2657(5.9275) 5.3043(2.1847) 4.3231
n = 200 M = 200 −0.1774(0.5803) 53.6072(23.6188) −3.2496(5.9259) 5.3015(2.1805) 5.5611
n = 1000 M = 10 −0.0273(0.3862) 52.3664(13.5416) −4.7776(3.9328) 5.2237(1.3066) 3.9003
n = 1000 M = 30 −0.0292(0.3850) 52.2119(13.4305) −4.7549(3.9196) 5.2108(1.2944) 4.7854
n = 1000 M = 50 −0.0290(0.3839) 52.2234(13.4435) −4.7575(3.9123) 5.2117(1.2942) 5.6850
n = 1000 M = 100 −0.0295(0.3845) 52.2338(13.4900) −4.7515(3.9148) 5.2129(1.2988) 8.3360
n = 1000 M = 200 −0.0300(0.3837) 52.1743(13.3832) −4.7466(3.9079) 5.2075(1.2906) 13.0213
n = 5000 M = 10 0.0056(0.1980) 50.8440(6.0785) −5.0980(2.0446) 5.0784(0.5536) 4.8432
n = 5000 M = 30 0.0033(0.1999) 50.7352(5.9069) −5.0695(2.0654) 5.0698(0.5414) 8.7562
n = 5000 M = 50 0.0045(0.2002) 50.7944(5.9501) −5.0695(2.0686) 5.0751(0.5454) 12.0437
n = 5000 M = 100 0.0039(0.1996) 50.7684(5.9226) −5.0764(2.0636) 5.0728(0.5431) 20.7758
n = 5000 M = 200 0.0041(0.1995) 50.7725(5.9230) −5.0778(2.0616) 5.0732(0.5433) 38.7957

(f) Normal inverse Gamma model (NIG)(daily data)

n M µ = 0 α = 50 β = −5 λ = 5 time
n = 200 M = 10 −0.1023(0.5289) 52.9748(19.5433) −3.8273(5.7551) 5.1952(1.4367) 2.0956
n = 200 M = 30 −0.0967(0.5253) 53.3950(18.7111) −3.9115(5.7534) 5.2323(1.3583) 2.3162
n = 200 M = 50 −0.0966(0.5253) 53.3845(18.6927) −3.9123(5.7534) 5.2316(1.3571) 2.3873
n = 200 M = 100 −0.0966(0.5253) 53.3914(18.7059) −3.9125(5.7534) 5.2321(1.3580) 2.7628
n = 200 M = 200 −0.0966(0.5253) 53.3961(18.7360) −3.9127(5.7533) 5.2323(1.3581) 3.5458
n = 1000 M = 10 −0.0002(0.2849) 50.8573(7.3647) −5.0857(3.3062) 5.0646(0.5456) 2.0279
n = 1000 M = 30 0.0003(0.2835) 50.8586(7.3807) −5.0979(3.2650) 5.0652(0.5465) 2.6538
n = 1000 M = 50 0.0003(0.2835) 50.8583(7.3807) −5.0981(3.2650) 5.0652(0.5465) 3.3830
n = 1000 M = 100 0.0003(0.2835) 50.8580(7.3810) −5.0981(3.2641) 5.0652(0.5466) 5.0605
n = 1000 M = 200 0.0003(0.2835) 50.8575(7.3809) −5.0985(3.2642) 5.0651(0.5466) 8.1698
n = 5000 M = 10 −0.0005(0.1365) 50.1891(3.2879) −5.0647(1.6587) 5.0186(0.2285) 2.9783
n = 5000 M = 30 0.0002(0.1354) 50.1865(3.2925) −5.0782(1.6279) 5.0185(0.2287) 5.5391
n = 5000 M = 50 0.0002(0.1354) 50.1880(3.2925) −5.0782(1.6282) 5.0186(0.2288) 7.9247
n = 5000 M = 100 0.0002(0.1354) 50.1871(3.2930) −5.0764(1.6301) 5.0188(0.2287) 14.4405
n = 5000 M = 200 0.0002(0.1354) 50.1876(3.2926) −5.0785(1.6281) 5.0185(0.2287) 27.2182
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Table 4.2 (cont.)

(g) CGMY (weekly data)

n M C = 3 G = 79 M = 83 Y = 0.9 time
n = 200 M = 10 4.9237(5.5964) 79.8082(10.1230) 84.3237(9.5742) 0.8597(0.1761) 1.6727
n = 200 M = 30 5.1597(6.2451) 79.5460(10.1620) 84.0606(9.7654) 0.8541(0.1842) 1.7228
n = 200 M = 50 5.1942(6.1846) 79.5789(10.1352) 84.0939(9.6720) 0.8530(0.1847) 1.9034
n = 200 M = 100 5.0816(6.2178) 79.7728(9.9587) 84.2880(9.4997) 0.8571(0.1796) 2.3687
n = 200 M = 200 5.1459(6.0211) 79.5272(10.1491) 84.0432(9.6020) 0.8547(0.1837) 3.1707
n = 1000 M = 10 3.7650(2.0202) 79.8530(4.5741) 83.8771(4.6435) 0.8717(0.0810) 1.4976
n = 1000 M = 30 3.7557(2.0022) 79.9348(4.4372) 83.9586(4.5874) 0.8722(0.0820) 2.0228
n = 1000 M = 50 3.7480(1.9923) 79.9167(4.4308) 83.9406(4.5271) 0.8724(0.0813) 2.5595
n = 1000 M = 100 3.7668(2.0794) 79.8664(4.3671) 83.8905(4.5587) 0.8720(0.0826) 4.5197
n = 1000 M = 200 3.7592(2.0995) 79.9457(4.5301) 83.9696(4.6172) 0.8727(0.0824) 8.0488
n = 5000 M = 10 3.3548(0.8212) 79.0259(1.9861) 83.0857(2.1687) 0.8837(0.0383) 2.1797
n = 5000 M = 30 3.3481(0.7239) 79.0482(1.8807) 83.1079(2.0624) 0.8837(0.0365) 5.0230
n = 5000 M = 50 3.3414(0.6963) 79.0641(1.8569) 83.1238(2.0343) 0.8840(0.0353) 7.7427
n = 5000 M = 100 3.3460(0.7089) 79.0709(1.9131) 83.1307(2.0942) 0.8838(0.0356) 14.7654
n = 5000 M = 200 3.3474(0.7228) 79.0499(1.8839) 83.1096(2.0661) 0.8838(0.0364) 28.6536

(h) CGMY (daily data)

n M C = 3 G = 79 M = 83 Y = 0.9 time
n = 200 M = 10 6.7472(11.0038) 82.3170(10.6091) 87.4827(9.8201) 0.8541(0.2002) 3.0932
n = 200 M = 30 6.8214(10.7326) 82.2827(10.9506) 87.4494(9.9995) 0.8518(0.2010) 3.3347
n = 200 M = 50 6.7942(10.8521) 82.3795(11.1892) 87.5430(10.1011) 0.8536(0.2002) 3.7647
n = 200 M = 100 6.6717(10.7255) 82.0844(10.9620) 87.2545(10.2268) 0.8560(0.2010) 4.6166
n = 200 M = 200 6.8321(11.6814) 82.1539(10.8451) 87.3220(9.6834) 0.8540(0.2006) 6.3195
n = 1000 M = 10 4.0526(2.5416) 81.8516(5.5046) 85.8938(5.7504) 0.8687(0.0920) 2.1551
n = 1000 M = 30 4.1071(2.7390) 81.9503(5.4208) 85.9927(5.7259) 0.8673(0.0937) 3.0954
n = 1000 M = 50 4.0733(2.8436) 81.8911(5.6086) 85.9365(5.7532) 0.8678(0.0909) 3.9532
n = 1000 M = 100 4.0862(2.5802) 81.9416(5.5369) 85.9842(5.7541) 0.8675(0.0929) 7.2494
n = 1000 M = 200 4.0202(2.3862) 81.8797(5.5703) 85.9194(5.8295) 0.8691(0.0921) 12.8699
n = 5000 M = 10 3.3465(0.8003) 79.7171(2.2706) 83.8696(2.5123) 0.8858(0.0382) 2.7697
n = 5000 M = 30 3.3501(0.6946) 79.7185(2.3513) 83.8703(2.4740) 0.8853(0.0387) 6.7488
n = 5000 M = 50 3.3289(0.6620 79.7172(2.3483) 83.8690(2.5180) 0.8864(0.0378) 10.5584
n = 5000 M = 100 3.3403(0.6977) 79.7283(2.3870) 83.8783(2.4906) 0.8859(0.0387) 19.5148
n = 5000 M = 200 3.3274(0.6761) 79.7588(2.3416) 83.9093(2.5314) 0.8866(0.0379) 37.5094
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Figure 4.4: For one simulated path with sample size 1000, the tuning parameter h ’s value in NOMAD
optimization procedure. M = {10, 30, 50, 100, 200}. h is calculated based on Equation (4.17), which is
suggested in Chapter 4.3.3.

4.5 Concluding remarks

In this chapter, we construct approximated ECF estimates based on the trapezoidal approximation. On the

theoretical side, we show the exponential decay of the error bound of our ECF estimation target function’s
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approximation. This fast decay rate reduces the computational burden of approximation procedure. In

addition, we also propose the asymptotic property of our approximated ECF estimates and prove the selected

popular Lévy processes satisfy the regularity conditions. On the application side, our estimation procedure

is applied to popular Lévy processes. Simulation study indicates that our approximated ECF estimates are

efficient and effective.
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Chapter 5

A dynamic model for evolving truth
discovery

This Chapter includes my joint project, collaborated with Shi Zhi1, Zheyi Zhu2, Qi Li3, Zhaoran Wang4 and

Jiawei Han5. I am the equally contributed first author with Shi Zhi.

5.1 Introduction

Nowadays, people can access vast amount of information from all kinds of sources every day. Suppose

a traveler would like to check the current departure time of his flight, he may go to some frequently used

websites for it. Also, when the business owners investigate the daily pedestrian counts to make an investment,

they may get this information from sensors of traffic lights, the number of cell phones connected to a Wi-

Fi hotspot, or from some hired workers. Multiple information sources provide us chances to validate the

truth, but at the same time bring possible misinformation due to lack of expertise, malicious purposes

or broadcasting failures. Take the stock market as an example. Market capitalization is one of the key

information that investors are interested in. Based on the statistics on the collected market capitalization

data from 55 sources during 20116, we find that within 1000 stocks, the sources provide market capitalization

information with 95.6% on average, and 19.7 days on average out of 21 trading days . Meanwhile, the only

source that provides information for all stocks during July 2011, ‘pc-quote’, ranks at the bottom in terms

of the precision. This drives us to develop an efficient algorithm to discover the reliable information with

complete coverage along time. Thus, if we collect the information about the same object from different

information sources, it is common that data have both consensus and conflict at the same time. This brings

in the truth discovery problem, which aims to find the most trustworthy information collected from multiple

sources.

One naive approach to resolve the conflicts of the data is median/mean. However, this is not always the

1shizhi2@illinois.edu
2zzhu27@illinois.edu
3qili5@illinois.edu
4zhaoran@princeton.edu
5hanj@illinois.edu
6http://lunadong.com/fusionDataSets.htm
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case. Thus, the general principle is introduced here: if the piece of information is from a reliable source,

then it is more trustworthy, and the source that provides trustworthy information is more reliable. This

intuition is emerging as a promising methodology in resolving conflicts in various scenarios Yin et al. (2008)

and various domains such as natural language processing tasks Yu et al. (2014); Liu et al. (2017) and online

health community Mukherjee et al. (2014). These applications reveal the necessity to develop truth discovery

methods.

Most of the existing truth discovery algorithms are proposed to work on static data. However, batch

algorithms would not properly solve the dynamic truth discovery problem mainly due to three reasons. First,

since the data arrives sequentially, it is costly to re-run the batch algorithms all over from the first timestamp

on large-scale data.

Second, we observe that in real-world scenarios, the truth of the same entity usually will fluctuate as time

changes and would not stay as a constant value, and the truths of consecutive timestamps are correlated in

most cases. For example, we examine the auto-correlation of market capitalization of 100 stock symbols, and

with a significant portion of time the auto-correlation is larger than 0.2. This auto-correlation provides us

another evidence that using estimated true value from the history can benefit the estimation of current true

value. Moreover, a common case is that the sources are unlikely to provide an observation to every objects

at every timestamp, or even no sources provide an observation at some date, we name it as ‘missing data

problem’. If we can correctly estimate the correlation along time, we may alleviate the missing data problem

by using the latent truths from last timestamps as a smoother for the current estimation and making the

best guess on it. Li et al. Li et al. (2015) also re-weigh the current estimated true value with the estimated

truth from last timestamp using a smoothing factor as a fixed parameter. However, in the real world data,

the balance of value from last timestamp and the integration from current observations always fluctuate

along time, and differ from entity to entity, and both parameters in Li et al. (2015) are given by users and

fixed for all entities along time. This raises a huge challenge to dynamically estimate the smoothing strength

and the current estimation.

Thirdly, inspired by Li et al. (2015), we also observe that the source quality would also evolves over time

and the source quality consistency assumption of existing methods does not hold any more. However, Li

et al. (2015) assumes the source quality stays the same along time, and compensates the sudden change

by a decaying factor assigned on source quality, which is pre-defined by users. Our proposed model can

naturally incorporate this decaying effect by dynamically estimating it. Also, as illustrated in Dong et al.

(2009b), sources may copy from each other, or get information from similar sources. Similar situations

appear when multiple stock information websites are actually operated by the same head company. This
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may be harmful to validate the truthfulness when happening among bad sources. Thus, understanding the

source dependency can help us to better estimate the truth.

In this work, a new truth discovery method for evolving numerical data based on hidden Markov model

is developed for dynamic scenarios. We take into account evolving truth, source quality, source correlation,

objects correlation in our model. The case study shows its effectiveness compared with previous methods.

In summary, our contributions in this work are as follows.

1. Model the evolving truth discovery in probability and statistics methods with theoretical guarantees.

2. Balance truth smoothing and current estimation dynamically.

3. The model is robust to missing observations.

4. Estimate source dependency in a unified hidden Markov model.

5. Develop both batch-mode algorithm and efficient O(T) online version.

6. Case study shows its effectiveness over several real datasets.

5.2 Related works

Truth discovery problem has been studied to resolve the conflict among sources. The essential idea is by

incorporating the source quality, information from high-quality sources are more trustworthy, and should

weigh more in truth estimation. It is first formally introduced by Yin et. al. Yin et al. (2008), which models

source quality as a single score and iteratively updates source quality and truth value in an unsupervised

way. The idea is shared in some early works Pasternack and Roth (2010); Vydiswaran et al. (2011); Liu

et al. (2011). These algorithms focus on categorical truth.

Then more papers propose new truth discover algorithms in various scenarios. CRH Li, Li, Gao, Zhao,

Fan and Han (2014) is an integrated framework for both numerical and categorical truths, by defining

different loss function and combines them into an optimization object function, and Li, Li, Gao, Su, Zhao,

Demirbas, Fan and Han (2014) proposes a new framework for long-tail phenomenon. Probabilistic graphical

model is also widely adopted in truth discovery domain, where the latent truth and source quality can be

modeled as latent variables. Expectation-Maximization (EM) is naturally used to infer the truth and source

quality Zhao et al. (2012); Wang et al. (2012); Qi et al. (2013); Ma et al. (2015); Zhi et al. (2015).

There have been some recent works that solve the sub-problems discussed in our model. As for source

dependency analysis, Dong et al. (2009a) is the first to consider copy-cats among sources and integrate it
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into the inference of truth values. Zhao and Han (2012) also directly models the real-value truth by putting

normal distribution assumption on the observation given the latent truth. Since both of them are focused

on static data, it does not make use of the correlation of truths between timestamps.

In works that study the temporal change of truth, Pal et. al. Pal et al. (2012) models the history

of the objects using hidden semi-Markovian process. However, it assumes source independency, which is

not true in the real cases. We will show the dependency analysis in Chapter 5.4.2. Li et. al. Li et al.

(2015) provides an incremental framework that updates truths and source weights as new data come, but

the temporal correlation is captured by manually prefixed parameters. We can achieve the same function

as those prefixed parameters when estimating the parameters in our model. A recent work Garcia-Ulloa

et al. (2017) proposes a truth discovery model based on recursive Bayesian estimation in spatio-temporal

tasks, but specifically for categorical truth value. Our method models the temporal correlation of numerical

truth and incorporates source dependency, and we further propose an efficient and effective online estimation

algorithm.

5.3 The model

In this section, we first formulate the problem of evolving truth discovery problem using the hidden Markov

model, where the truths are the hidden vairables. Then, we provide Kalman filter and smoother with the

efficient blocked parameter updating under expectation maximization (EM) schema. We provide an effective

data pre-processing method and an online algorithm with pre-train step for practical use.

5.3.1 Problem formulation

Notation

Input. Let O = {o1, o2, . . . , oO} be the objects that we are interested in. Let S = {s1, s2, . . . , sS} be the

set of sources. Numerical observations of O objects can be collected from S sources at each timestamp

t ∈ {1, 2, . . . , T} (t ∈ 1 : T 7). Let vij,t represent the observation provided by the source si of the object oj

at the t-th timestamp. For convenience, we denote all the observations from source si at time t as X it , that

is, X it = {vij,t}oj∈O. Further, the size of this set is denoted as cit = |X it |.

Output. Let µj,t be the truth for object oj at time t, and the output is the whole set of truths at time

t, denoted by Tt = {µ1,t, µ2,t, ..., µO,t}.

Besides inferring truths, truth discovery methods can also estimate source reliability degrees. Let Σ

7a : b, where a, b are arbitrary integers and b ≥ a, represents the set {a, a+ 1, . . . , b} in this work.

96



denote the source covariance matrix. Its diagonal element σ2
i can be interpreted as the source quality of

source si. Its off-diagonal elements σi,i′ can be used to measure the source dependency between source si

and si′ .

Task definition

We formally define the task in this paper as follows.

Inferring truth. Until timestamp T , we collect observations {v1:S
j,t } of O objects from S sources. Our

goal is to infer the true values {µj,1:T } for each object oj by aggregating observations {v1:S
1:O,1:T } of O objects

from S sources.

Inferring source quality. Besides inferring truths, we also would like to infer source covariance matrix

during timestamp t ∈ 1 : T given observations of all objects from all sources.

Inferring other parameters. We can also infer sources dependency σi,i′ in our work. It is useful to

capture the effects of copying among sources.

5.3.2 Batch solution: hidden Markov model

We first build a hidden Markov model for evolving truth discovery when we can observe all data until time

T . Figure 5.1 shows the dynamics of truths and observations. We use Markov processes to model the

dynamics of truths with the underlying temporal correlations. We assume first-order Markov property on

latent truths, where the current latent truth depends on the latent truth from the last timestamp. The

current observations of objects only depends on the latent truth of current timestamp, and observations

are conditionally independent along the timeline. Assume that we observe the same set of objects along

the timeline. µt = (µ1,t, . . . , µO,t)
T denotes the vector of latent truths, where the superscript T represents

transpose of a vector or a matrix. Then, the dynamics of truths can be written in the following form

µt+1 = Aµt + ωt (5.1)

, where t ∈ {1, 2, . . . , T}, µt is the latent vector we aim to estimate, and A ∈ RO×O is the transition matrix

of latent truth for all timestamps. Eq. 5.1 means that the current truth is the linear combination of truths

from last timestamp, plus an error term. If A is a diagonal matrix, truth of each object will only depend on

the previous true value of the same object, whereas if A is non-diagonal, truth of an object will also depend

on the true values of other objects at last timestamp.
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Let the initial distribution of µ1 follow a multivariate normal distribution

µ1 ∼ Normal(π1, V1) (5.2)

, where π1 ∈ RO×1 and V1 ∈ RO×O are the mean vector and covariance matrix of the initial state, respec-

tively.

Then, let the error vector ωt ∈ RO follow multivariate normal distribution

ωt ∼ Normal(0,Γ) (5.3)

, where Γ ∈ RO×O is the covariance matrix of the truths of all objects. It, together with the transition

matrix A, reflects the dependency among objects.

We assume the observation for object oj from source si at time t, i.e., vij,t, fully depends on the truths

at time t, i.e. µt, following the multivariate normal distribution

vt = Cµt + εt, C = IO ⊗ 1S. (5.4)

. vt ∈ ROS×1 is the stacked observation vector including all objects from their sources at timestamp t. It is

firstly ordered by sources, then by objects. Specifically, vt = (v1
1,t, . . . , v

S
1,t, v

1
2,t . . . , v

S
O,t)

T . ⊗ is Kronecker

product. 1S ∈ RS×1is a vector in which all elements are ones. IO ∈ RO×O is the identity matrix thus

C ∈ ROS×O. Implied by Eq. 5.4, we assume the mean of the observations are the centered at the truths.

If vij,t is not provided by source si, we regard it as missing data. Note that the missing data is prevalent in

the real truth discovery cases, where not all sources will provide observations for every object.

We assume εt follows multivariate normal distribution independently as follows

εt ∼ Normal(0,Π) (5.5)

, where the diagonal blocks of Π are denoted by Σ, and the off-diagonal blocks all 0. The diagonal elements

of Σ (σ2
1 , σ

2
2 . . . , σ

2
S) are interpreted as source quality, because large variability of the observations could

most likely be from unreliable sources. The off-diagonal elements of Σ represent the correlation between

each pair of sources. The observations from the same source or each pair of sources will share the same

diagonal or non-diagonal parameters from Σ. Thus the source quality σ2
i and source dependency σi,i′ are

actually estimated from observations on all objects. If we assume sources are not correlated to each other,
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Figure 5.1: Hidden Markov model with observations from multiple sources

σi,i′ can also set to 0. Otherwise, they can be estimated from the data. We will discuss both the diagonal

and non-diagonal cases in Chapter 5.3.

The hidden Markov model is composed of Eq. (5.1)-(5.5). The parameters to estimate are transition

matrix A, objects covariance matrix Γ, initial truth parameters π1, V1 and source quality covariance matrix

Σ. Given parameter values, Kalman filter and smoother are typical methods Harvey (1990) to infer the

latent truth at timestamp t by estimating E(µt|v1:t) (filtering) or E(µt|v1:T ) (smoothing). The essential

difference is that when estimating the expected value of current latent truth, filtering only uses previous

observations, while smoothing uses observations from the past, the present and the future.

Model inference

To estimate the parameters in the model, both maximum likelihood and Bayesian methods are available. We

refer Durbin and Koopman (2012) for background discussions on hidden Markov models. In this work, we

adopt EM algorithm to estimate the Kalman filter and smoother, the time-variant truths and the parameters

iteratively. In most cases, not all sources will provide observations for all objects at any timestamp t. It is

prevalent that one source does not provide any observation about some objects at timestamp t. Here, we

treat unavailable data as missing data. We adopt the EM algorithm Shumway and Stoffer (1982) to infer

the truths, source quality and dependency information based on our model with missing data.
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The joint log likelihood of the complete data µ1:T ,v1:T can be written in the following form

logP (µ1:T ,v1:T) = −1

2
log |V1| −

1

2
(µ1 − π1)V −1

1 (µ1 − π1)

− T

2
log |Γ| − 1

2

T∑
t=2

(µt −Aµt−1)TΓ−1(µt −Aµt−1)

− TO

2
log |Σ| − 1

2

T∑
t=1

(vt − Cµt)T (IO ⊗ Σ−1)(vt − Cµt)

(5.6)

.

E-step:

We use µt|τ to denote the conditional expectation E(µt|v1:τ ), Vt|τ to denote the conditional covariance

matrix V ar(µt|v1:τ ) and Vt,t−1|τ to denote the conditional cross-covariance matrix Cov(µt, µt−1|v1:τ ) for

t, τ ∈ {1, 2, . . . , T}. Starting from t = 1, we have the following Kalman filter forward recursions at r-th

round

µt|t−1 = A〈r〉µt−1|t−1

Vt|t−1 = A〈r〉Vt−1|t−1A
T
〈r〉 + Γ〈r〉

µt|t = µt|t−1 +Kt(v
∗
t − C∗µt|t−1)

Vt|t = Vt|t−1 −KtC
∗Vt|t−1

Kt = Vt|t−1C
∗T (C∗Vt|t−1C

∗T + Π〈r〉)
−1

(5.7)

, where v∗t is the vector by entering zeros in the vt if the object is not observed and C∗ is the matrix by

zeroing out the corresponding row of the matrix C in Eq. (5.4). A〈r〉, Γ〈r〉 and Π〈r〉 are the parameters

estimated from r-th round of M-step. The Kalman gain Kt is deducted by minimizing the trace of the

covariance matrix Vt|t. The estimation of current timestamp µt|t is the combination of the prediction from

previous timestamp and the current observations from all sources, and Kalman gain automatically balances

these two parts.

Eq. (5.7) also reflects the advantages of the use of source quality. If we assume latent truths from different

objects are conditional independent at time t, and sources are independent, the terms C∗Vt|t−1(C∗)T and

Σ in Kt will be diagonal. When the j-th source is more reliable, i.e. the corresponding variance σ2
j in Σ is

small, the entries related to sj in Kt will be large. It would put more weight of the observations from sj on

the estimation of latent truth, and also put more weight in reducing the uncertainty, i.e. Vt|t.

The initial state prediction is µ1|0 = π1,〈r〉 and V1|0 = V1,〈r〉. Starting from t = T , we have Kalman
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smoother backward recursions at r-th round using observations from 1 to T

µt−1|T = µt−1|t−1 + Jt−1(µt|T −A〈r〉µt−1|t−1)

Vt−1|T = Vt−1|t−1 + Jt−1(Vt|T − Vt|t−1)JTt−1

Jt−1 = Vt−1|t−1A
T
〈r〉(Vt|t−1)−1

Vt−1,t−2|T = Vt−1|t−1J
T
t−2 + Jt−1(Vt,t−1|T −A〈r〉Vt−1|t−1)JTt−2

(5.8)

with initial value VT,T−1|T = A〈r〉VT−1|T−1 −KTC
∗A〈r〉VT−1|T−1.

Blocked Kalman filter and smoother in E-step

In the E-step, we use Kalman filter and Kalman smoother to estimate the covariance matrix and the cross-

covariance matrix which will be used in M-step. If large numbers of objects are considered together, the

dimension of µt will be high. The matrix calculation in E-step will take huge memory and turn out to

be computationally expensive. If objects are not correlated, or only correlated in their own group, the

computational cost may be greatly reduced. Here, we provide a blocked Kalman filter and smoother when

the following conditions are satisfied. (1) Given truths at time t − 1, µt−1, truths in different blocks are

independent at timestamp t. (2) Observations in different blocks are independent given truths at any

timestamp t. Then, conditional latent truth of block b, i.e. µbt |v1:t and µbt |v1:T , are independent among

different blocks. That is, we can implement Kalman filter and Kalman smoother in E-step for decomposed

blocked objects independently. Then we can update the blocks of E(µt|v1:t) and E(µt|v1:T ) independently

by conducting the same Kalman filtering and smoothing Eq. (5.7), (5.8) based on block related observations

v1:S
block,t and parameters.

M-step:

In the M-step, we maximize the conditional expectation of log likelihood in Eq. (5.6) with respect to the

latent truths. We add prior distribution of source quality matrix Σ in log likelihood. We can update

parameters at r-th iteration as follows.

If we assume sources are independent, Σ will be a diagonal matrix with elements {σ2
1:S}. We set the

prior distribution of σ2
i as independent inverse gamma distribution, Inv −Gamma(αi, βi), and σ2

i is in the

form

σ2
i,〈r+1〉 =

2βi +
∑O
j=1

∑T
t=1E((vij,t − µj,t)2|v1:T )

2(αi + 1) +
∑T
t=1 c

i
t

=
2βi +

∑O
j=1

∑T
t=1(vij,t

2 − 2vij,tµj,t|T + µ2
j,t|T + Vj,t|T )

2(αi + 1) +
∑T
t=1 c

i
t

(5.9)
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, where µj,t|T and Vj,t|T are the element of object oj in µt|T and Vt|T obtained in E-step, respectively.

If sources are dependent, we set the prior distribution of Σ inverse Wishart distribution, W(Φ, ν), and

Σ〈r+1〉 is in the form

Σ〈r+1〉 =

∑T
t=1

∑O
j=1DjtΣ

i
jtDjt + Φ

T ×O(T ×O + S + ν + 1)
(5.10)

, where Djt ∈ RS×S is the permutation matrix that switches missing values in the observations of oj , i.e.

vj,t = (v1
j,t, v

2
j,t, . . . , v

S
j,t)

T , to the end in order. That is, Djtvj,t = (v
(1)
j,t ,v

(2)
j,t ) where v

(1)
j,t is the observed

portion and v
(2)
j,t is the unobserved portion, where (1) and (2) are the lengths of the two vectors. The

corresponding entries of oj matrix C in Eq. (5.4) is permuted to (C
(1)
jt , C

(2)
jt )T = Djt. The expression of

covariance matrix of (v
(1)
j,t ,v

(2)
j,t ) is as follows

Σijt =

 Σ11
jt Σ12

jt

Σ21
jt Σ22

jt

 (5.11)

, where

Σ11
jt = (v

(1)
j,t − C

(1)
jt µj,t|T )(v

(1)
j,t − C

(1)
jt µj,t|T )T + C

(1)
jt (Vj,t|T )(C

(1)
jt )

T

Σ12
jt = (Σ21

jt )
T

= Σ11
jt (Σ

11
〈r〉)
−1Σ12

〈r〉

Σ22
jt = Σ22

〈r〉 − Σ21
〈r〉(Σ

11
〈r〉)
−1Σ12

〈r〉 + Σ21
〈r〉(Σ

11
〈r〉)
−1Σ11

jt (Σ
11
〈r〉)
−1Σ12

〈r〉

(5.12)

, and the r-th iteration of source covariance matrix Σ with respect to (v
(1)
j,t ,v

(2)
j,t ) is denoted as

 Σ11
〈r〉 Σ12

〈r〉

Σ21
〈r〉 Σ22

〈r〉

.

The initial state parameters π1 and V1 are estimated as follows

π1,〈r+1〉 = µ1|T , V1,〈r+1〉 = V1|T (5.13)

.

The transition matrix A is estimated in the following way

A〈r+1〉 = (

T∑
t=2

Vt,t−1|T + µt|Tµ
T
t−1|T )(

T∑
t=2

Vt−1|T + µt−1|Tµ
T
t−1|T )−1 (5.14)

. If A is blocked matrix following the rules in Chapter 5.3.2, the blocks in A can be calculated in the same

way of Eq. (5.14) using corresponding blocked objects information in Vt,t−1|T , µt|T , µt−1|T and Vt−1|T .
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The covariance matrix of the truths Γ is updated as follows

Γ〈r+1〉 =
1

T − 1
(

T∑
t=2

Vt|T + µt|Tµ
T
t|T −A〈r+1〉

T∑
t=2

Vt,t−1|T + µt|Tµ
T
t−1|T ) (5.15)

. If Γ is blocked matrix following the rules in Chapter 5.3.2, the blocks in Γ will be calculated in the same

way of Eq. (5.15) using corresponding block information in Vt,t−1|T , µt|T , µt−1|T , Vt|T and A.

Comparison with previous methods

To explicitly illustrate the power of our model, we compare the deduction of our model with the evolving

truth model Li et al. (2015). In Li et al. (2015), source quality is modeled as source weight in the following

way

wi =
2(αi − 1) +

∑T
t=1 γ

T−tcit

2βi + θ
∑O
j=1

∑T
t=1(γT−t(vij,t − µj,t)2)

(5.16)

, where (αi, βi) is the parameter of Gamma prior distribution, µj,t is estimated using source weighted sum

of observations, γ is the decay factor used to adjust the source weight, and θ is the regularization parameter.

Compared with the update of our source quality σ2
j in Eq. (5.9), we can see that our source quality parameter

σ2
j is similar to the inverse of source weight wj in Li et al. (2015), i.e. σ2

j ≈ 1/wj . Therefore, if we assume

truths are independent of each other, sources are independent of each other, and observations given the

truths are conditionally independent, our model will reduce to a similar solution of the model in Li et al.

(2015). The key advantage of our model, in addition to the power to model dependencies, is to use the

population variance adjusted by Kalman smoother rather than the population variance adjusted by a fixed

decay factor.

The updated µj,t in Li et al. (2015) is

µj,t =

∑ni
i=1 wiv

i
j,t + λv̂∗j,(t−1)∑ni

i=1 wi + λ
(5.17)

. Comparing with the update of E(µj,t|v1:t) in Eq. (5.7) and E(µj,t|v1:T ) in Eq. (5.8) where Kt is Kalman

Gain matrix related to source quality matrix Σ, we can see both Eq. (5.7) and (5.8) balance the new

observation and previous state estimation. However, our balance is dynamic based on the estimated Kalman

Gain. In Li et al. (2015), the balancing parameter λ is predefined and fixed.

Moreover, by relaxing the independence assumptions, our model is sufficiently general and flexible to

provide other estimations such as source correlation and object correlation.
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5.3.3 Data preprocessing

The detection of outliers is important in making an accurate estimation of truth and source quality. Implied

by Eq. (5.2), (5.3) and (5.5), we utilize the normal distribution to model the truths and observations. In most

cases, the outliers of observations are unlikely to be the truth in most practical cases. The normalization of

observations is also necessary especially we take into account a large number of objects. The expressions in

Eq. (5.9)-(5.12) imply that if one object has an extreme large scale compared to others, this object would

dominate the source quality, making the source quality estimation biased.

We implement data preprocessing step before EM algorithm.To detect outliers of the observations of

each object at time t, we use the median absolute deviation to find outliers Iglewicz and Hoaglin (1993).

After removing all outliers, we normalize the observations to its z-scores as the input of the EM algorithm.

Specifically, for each object oj at time t, normalized vij,t is (vij,t-mean(v1:S
j,t ))/std(v1:S

j,t ). When there are no

sufficient data at time t for object oj , we aggregate observations from consecutive timestamps in a fixed

length sliding window to normalize the data. The detailed data preprocessing algorithm is described in

Algorithm 3. The observation whose modified z-score is larger than the threshold parameter δ will be

classified as outliers and removed from the estimation. Following Iglewicz and Hoaglin (1993), we use 0.6745

as the constant multiplier in the modified z-score and set the threshold δ = 3.5.

Data: The observation vector vj,t for object oj from S sources at time t.
{Outlier Detection:}
med=nanmedian(vj,t) ; // calculate the median without missing value.

diff=abs(vj,t −med) ; // calculate the absolute deviations between vij,t and its median.

med abs dev=nanmedian(diff) ; // calculate the median of absolute deviations.

if med abs dev == 0 then
for i in 0:(S-1) do

if diff [i] == 0.0 or isnan(diff [i])==True then
out lier[vj,t[i]]← False

else
out lier[vj,t[i]]← True

end

end

else
for i in 0:(S-1) do

modified zscore[i] = 0.6745 ∗ diff [i]/med abs dev if modified zscore[i] > δ then
out lier[vj,t[i]]← True

else
out lier[vj,t[i]]← False

end

end

end
{Normalization:calculating z-scores:}
The normalized z-score of vij,t from source si is (vij,t −mean(vj,t))/std(vj,t)

Algorithm 3: Data Preprocessing
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5.3.4 Online solution: EvolveT (T ∗)

The key challenge of integrating streaming data is that (1) we are not able to use the future data to estimate

the present, and (2) using all the data at each timestamp is time-consuming. Here, we propose an online

solution. When a new data point arrives, we update the estimation of current truth with the parameters at

previous timestamp using Kalman filtering one step further without running Kalman smoother backwards

in E-step, and update the parameters in M-step in an incremental way with O(1) complexity. The reason we

can update the estimates incrementally is that Kalman forward recursion is defined in an incremental way,

and parameters in Eq. (5.9), (5.10), (5.13), (5.14) and (5.15) contain only accumulated term
∑T
t=1(·). Thus,

this online version can incrementally update the truths and parameters sequentially with time complexity

O(T ).

Though future data is not accessible during the estimation, the historical records can help to better

initialize the parameters. We first run the batch solution with both Kalman filtering and smoothing until

EM step converges for the first few timestamps, followed by the online version. We call it the pre-train step.

We summarize our entire algorithm in Algorithm 4. We call it Evolving Truth algorithm, denoted by

EvolvT (T ∗). T ∗ denotes the history length to run the batch-mode version. We will compare the performance

of different T ∗ in the experiments section. For historical T ∗ timestamps data, we iteratively update Kalman

recursions µt|T∗ , Vt|T∗ based on Eq. (5.7), (5.8) and parameters based on Eq. (5.9), (5.10), (5.13), (5.14)

and (5.15) until all of them converge. At the pre-train step, we assume the source quality matrix Σ to

be consistent for stable initialization.After first T ∗ pre-train timestamps, we update truths and parameters

in an incremental way and only scan the remaining data once from time T ∗ to T . Truths are updated

based on Kalman forward recursions µt|t, Vt|t in Eq. (5.7). Parameters are updated following Eq. (5.9),

(5.10), (5.13), (5.14) and (5.15), but replacing smoothing estimates (µt|T , Vt|T , Vt−1,t|T ) by filtering estimates

(µt|t, Vt|t, Vt−1,t|t). Here, the source quality matrix Σ is actually changing over time.

Theoretical analysis

According to Wu et al. Wu (1983), when the complete likelihood function satisfies the continuity condition,

then all the limit points of any parameters of an EM algorithm are local maxima of the likelihood, and

converge monotonically for some local maximum. Since Eq. (5.6) is continuous in terms of all the parameters,

our EM algorithm will achieve the local maxima of the log likelihood.
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Data: The observation vector vj,t for object oj from S sources at time t.
{Data preprocessing step:};
Follow Algorithm 3;
{Training step:(if T ∗ > 0)}
while ||para〈r〉 − para〈r − 1〉||2 > δem; // para〈r〉 is the vector of all parameters to be estimated

at r-th iteration.

do
E-Step:
for block b in 1:B tcp*B: number of independent blocks do

for h in 1 : T ∗ do

update filtering estimates µb
h|h and V b

h|h based on Eq. (5.7) in blocks

end
for h in (T ∗, T ∗ − 1, . . . , 1) do

update smoothing estimates µb
h|T∗ , V

b
h|T∗ and V b

T∗−1,T∗|T∗ based on Eq. (5.8) in blocks

end

end
M-Step:
Update source quality Σ based on Eq. (5.9) or (5.10)
Update initial state parameters π1 and V1 based on Eq. (5.13)
Update transition matrix A based on Eq. (5.14)
Update truth covariance matrix Γ based on Eq. (5.15)

end
{Incremental updating step:};
for t in T*:T*+T do

for block b in 1:B do

update filtering estimates µb
t|t and V b

t|t based on Eq. (5.7) in blocks

end
Repeat M-Step above and replace smoothing estimates by Kalman estimates if they are used to update
parameters

end

Algorithm 4: Evolving Truth algorithm, EvolvT (T ∗)
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5.4 Experiments

In this section we show the effectiveness, efficiency and case study of our new model on the real-world

datasets. All the experiments are conducted on a laptop with 4 GB RAM, 1.4 GHz Intel Core i5 CPU, and

OS X 10.11.6, with Python 3.6.

5.4.1 Experiment setup

Datasets

We adopt the market capitalization data, fight arrival data, weather forecast data and pedestrian counts

data to evaluate the algorithms.

Market capitalization data (Stock). The market capitalization data consists of 1000 stock symbols from

55 sources on trading days in July 2011 Li et al. (2012). The ground truth for evaluation is built on NAS-

DAQ100 stocks collected by taking the majority values provided by five stock data providers: nasdaq.com,

yahoo finance, google finance, bloomberg and MSN finance.

Flight arrival data (Flight). The flight arrival time contains 3000 flights from 38 sources over 1-month

period (31 days) (December 2011) from Li et al. (2012). We normalize the arrival time into minutes. Ground

truth for evaluation is provided by corresponding airline websites.

Weather forecast data (Weather). We collect the highest temperature weather forecast data for 88 U.S.

cities from 6 websites: wunderground.com, worldweatheronline.com, openweathermap.org, DarkSky.net,

APIXU.com and yahoo.com. The data last for 2 months, from June 8th, 2017 to August 8th, 2017 (61

days). We also collect the actual highest temperature (°F) observations as the ground truth. Pedestrian

data (Pedestrian). Given by Dublin City Council 8 , the data consist of daily pedestrian counts of four

streets in 2015. There are many sources that may provide the pedestrian counts, such as sensors from traffic

light, surveillance cameras, infrared beam counters, etc. Since it is not easy to collect the real data from the

aforementioned sources, we simulate six different sources by varying the Gaussian noise level with different

variances. We use data from November 1st to December 31st and set the variances as 1, 1.44, 1.96, 2.56,

3.24, 4, respectively.

Evaluation metrics

We use mean absolute error and root mean square error to measure the correctness of all the truth discovery

algorithms.

8https://data.gov.ie/dataset/pedestrian footfall
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Mean Absolute Error (MAE) is the average of the sum of absolute distance between truth and the

estimated value.

Root Mean Square Error (RMSE) is the root of the average on the sum of square loss between the

truth and the estimated value.

Compared methods

A large portion of the existing methods are only working on stable truths. To demonstrate the advantages

of modeling dynamic truths, we treat the streaming data in a batch way to run these methods.

The following algorithms are designed for categorical truth, where distance between answers are not

measurable in Euclidean distance. Thus, the true answer is selected from one of the candidate answers.

Since our paper is focused on numerical truth, we treat numerical truth as one of the candidate to fit in

the models. TruthFinder Yin et al. (2008) and AverageLog Pasternack and Roth (2010) iteratively

estimate the truths and source quality using additive or multiplicative ways. In Investment and Pooled-

Investment Pasternack and Roth (2010), each source uniformly invests its quality among the answers they

provide, and its quality is a weighted sum of the credibility of those answers. 3Estimates Galland et al.

(2010) extends the framework further by introducing an additional factor, i.e. difficulty of the question when

evaluating the truths and source quality.

For these methods modeling continuous data, we list them all as follows. Median and Mean are

two naive methods that do not consider the source quality and take median or mean at each timestamp

independently. GTM Zhao and Han (2012) is a probabilistic graphical model designed for continuous data

in static truth discovery. DynaTD+ALL is the incremental version with both decay and smoothing factors

and the best performed algorithm reported in Li et al. (2015). We also use our data preprocessing algorithm

for the data.

For our proposed method, EvolvT, we develop a set of different versions by varying the pre-train step

T ∗. We take three sets of (T ∗) to illustrate their difference. EvolveT (0) is a fully online version starting

with no historical data and random initialized parameters. Parameters such as source quality, transition

matrix, and object covariance matrix will also be updated along time. EvolvT (t)(t 6= 0) is to use historical

t timestamps to evaluate truths and parameters, then conduct the O(T ) algorithm to infer the truths left.

EvolvT is a fully batch-mode version when we observe all the streaming data and estimate the truths at all

timestamps and fix source quality along time. parameter from last timestamp, this method For all baseline

methods, we use the suggested parameters, initializations and convergence conditions in the original papers.

For our model, the parameters are set ν = 2, Φ = (S + ν + 1 ∗ I), αi = βi = 10 for each source sj , µ1 = 0,
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Table 5.1: Performance comparison

Stock Flight Weather Pedestrian
Methods MAE RMSE Time(s) MAE RMSE Time(s) MAE RMSE Time(s) MAE RMSE Time(s)

TruthFinder 3.49 9.44 98.12 1.19 5.85 50.04 2.81 3.33 2.11 1.79 2.28 1.11
3Estimates 6.05 27.70 208.99 28.90 119.90 146.75 3.34 4.42 1.76 1.79 2.28 1.11
AverageLog 3.60 9.70 31.53 0.98 4.85 22.20 2.53 3.65 0.78 1.79 2.28 0.05
Investment 6.05 27.50 44.48 28.91 119.90 30.76 3.34 4.42 0.93 1.79 2.28 0.05
PooledInv 3.23 11.19 50.69 0.39 3.13 44.68 2.55 3.36 1.41 1.79 2.28 0.08

Median 2.97 13.29 39.93 2.55 6.40 45.44 2.49 3.20 3.08 0.79 0.95 0.18
Mean 4.60 19.26 57.87 5.78 10.75 62.19 2.46 3.25 4.42 0.87 1.01 0.36
GTM 2.24 11.83 103.28 2.70 3.31 125.82 2.55 3.35 0.70 0.98 1.19 0.10

GTM+ours 1.63 9.27 131.32 3.37 6.73 150.35 2.46 3.53 2.75 0.80 0.96 0.11
DynaTD+All 2.05 8.01 8.82 2.89 8.48 0.23 2.97 4.45 10.23 0.78 1.01 0.16

EvolvT 2.05 7.97 3.63 2.54 4.31 140.1 2.52 3.78 54.78 0.72 0.95 0.12
EvolvT(0) 1.96 8.35 4.01 2.80 9.18 0.49 2.64 3.49 2.33 0.72 0.93 0.03
EvolvT(5) 1.86 7.54 7.93 3.25 8.53 3.85 2.48 3.28 11.38 0.69 0.89 0.04
EvolvT(10) 1.54 6.91 3.85 3.31 8.61 22.89 2.42 3.21 22.89 0.70 0.90 0.06

V1 and A to identity matrix. We evaluate Evolve in the batch mode without any historical data. As for T ∗,

we set it to [0, 5, 10], and evaluate all methods from 11th timestamps for fair comparison.

5.4.2 Experimental results

In this section, we empirically demonstrate the effectiveness and efficiency of our algorithm, EvolvT (T ∗),

and illustrate the impact of different factors to the estimation performance.

Dynamic Truth Inference

Table 5.1 shows the performance comparison of all the models. In general, the methods for numerical data

perform better that those for categorical data on stock, weather and pedestrian datasets, and dynamic

models performs better than static numerical models. Our method are significantly better than all other

algorithms on stock, weather and pedestrian datasets. With pre-train step of historical records, our method

gets better performance than random initialization EvolvT (0). The batch-mode version performs slightly

better than online version, but would cost more time due to the convergence requirements.

Discussion on numerical truth discovery

If we assume truth is from one candidate, choose the candidate which is most closed to our estimated truth.

One interesting finding is that though flight arrival time is real-valued parameter, whose difference can be

measured using Euclidean distance, the actual distribution of flight arrival time observations do not follow a

normal distribution. Due to the delays or accidental incidents, some websites may not immediately update

the information timely, or not updated until the flight actually arrives, leading to scattered distribution
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centered at some discrete value. Thus, the optimal solution, with high probability, will be one of the time

provided by certain sources. Table 5.1 shows that TruthFinder, AverageLog, and PooledInvestment have

better performance than the Gaussian-based method, GTM.

Efficiency

We also report the running time of all the algorithms. For efficiency, the running time (s) of our proposed

model is close to Median and Mean. Iterative methods usually takes 10 times more times to converge at

each timestamp, while our single-pass O(T) version gains better performance with even shorter running

time. Our algorithm can largely reduce the running time by single-pass O(T) algorithm without loss in

performance. The reason behind it is that algorithm can keep track of the parameter information from the

history such that source quality, object dependency and prediction power are properly inherited, while the

batch-mode algorithms do not use the history information, making the running time relatively long.

Missing observations.

To illustrate the robustness of our algorithm to missing observations, we randomly remove some of the

observations of sources. Since we have shown in Table 5.1 that the methods specifically working on numerical

truth work consistently better than those on categorical truth, we only run part of the baseline algorithms

for further comparison on missing observations. The sampling rate demonstrates the proportion that we

keep out of all the data. We range the sampling rate in [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.].

Figure 5.2 shows the MAE and RSME changes along with the sampling rate. We can observe that our

method Evolve(10) performs the best in terms of MAE in most cases on both stock and pedestrian datasets.

One interesting observations is that Median performs well in terms of RSME when we only keep half of

the data on both datasets. one our model can still effectively give an estimation on the missing data. One

possible reason is that as the number of data points significantly drops, there are no sufficient data to

estimate the parameters of the truth discovery model.

Effectiveness of data preprocessing.

To demonstrate the effectiveness of our data preprocessing step, we replace the outlier detection and nor-

malization step of GTM, denoted by GTM+ours. We can see that using our preprocessing can reduce the

MAE of GTM on three datasets.
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Figure 5.2: MAE, RSME of sampled stock, pedestrian

Source dependency

We also compare the performance with and without the source dependency assumption. Table 5.2 list the

performance of dependent sources model. We find that assuming all sources are correlated would not have a

good estimation on the truths. The major reason is that the number of parameters is square of the number

of sources in the dependency case.

For source dependency study, we also rank all the sources by their quality at the last timestamp, i.e.

1/σ2
i from top to low, and separate them into three different groups. The sources in highest quality group

is listed in Figure 5.3a, and the corresponding source name is listed on our website 9. 2:bloomberg, 21:tmx-

quotemedia and 10:investoguide,24:yahoo-finance have highest correlation in this group. Figure 5.3b and

9http://shizhi2.web.engr.illinois.edu/
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Table 5.2: Performance of the dependent sources model

Stock Flight Weather
Methods MAE RMSE MAE RMSE MAE RMSE

dep-EvolvT(0) 2.59 9.24 3.18 15.78 3.60 2.44
dep-EvolvT(5) 2.58 8.74 3.17 16.23 3.78 11.38
dep-EvolvT(10) 2.56 8.65 3.50 16.3 3.40 22.94

5.3c shows the second and last quality group with decreasing source quality.(4:cnn-money, 15:optimum) are

highly correlated, and (barrons10, and marketwatch11, screamingmedia) are highly correlated. We further

check the the origins of these three websites, and find barrons and marketwatch are all owned by Dow

Jones & Company, which is an American publishing and financial information firm, and screamingmedia is

just pre-owned by Dow Jones & Company12. With high possibility, these websites get information from an

identical source.

As for the flight data, we plot the graph with all sources as shown in Figure 5.3d. (6:flights, 7:busi-

nesstravellogue, 8:flylouisville) are highly correlated, and (9:flightview, 10:panynj, 11:gofox, 12:foxbusiness,

13:allegiantair, 14:boston) are highly correlated. One possible reason is they may copy the flight information

from each other, or they achieve information from similar sources.

For the weather data, we find that within the 6 sources, only APIXU and worldweatheronline are highly

correlated, with correlation score=0.9. We further check on the web and find that World Weather Online

acquires Apixu platform 13. Thus, the source correlation is validated, showing that our method can effectively

detect the source dependencies.

5.5 Conclusions

In this chapter, we aim to discovery the evolving truths from the streaming data. We propose a general

hidden Markov model with analytical solution to effectively model the temporal dynamics of the truths

with the noisy observations from multiple sources. We propose both the batch version, blocked version and

an efficient online version algorithms with effective data preprocessing step. These three methods reduce

the computational cost and boost the performance, allowing the real-time truth discovery applications. To

address the efficiency, we propose the blocked version and one-pass version to reduce the computational cost

and to allow online inference. Experiments on the real-world datasets demonstrate the great effectiveness of

our algorithm. In the future, it would be interesting to examine the object dependency using our model.

10https://en.wikipedia.org/wiki/Barron%27s (newspaper)
11https://en.wikipedia.org/wiki/MarketWatch
12http://adage.com/article/btob/dow-jones-sells-screaming-media-yellowbrix/276811/
13https://www.facebook.com/worldweatheronline/posts/1160440014032686
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(a) Stock: quality level 1 group (b) Stock: quality level 2 group

(c) Stock: quality level 3 group (d) Flight: all sources

Figure 5.3: Source dependency.
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Chapter 6

Future directions

In Chapters 2 and 3, we study the statistical inference methods based on characteristic functions. In the

future work, we might be able to extend the pseudo-marginal MCMC algorithm proposed in Chapter 2

and approximated ECF methods in Chapter 4 to Markov processes with implicit conditional characteristic

functions.

6.1 An MCMC approach for Lévy process based models in

finance

In Chapter 2, we propose an MCMC approach to do inference based on characteristic functions. It mainly

can be applied to Lévy processes. Actually, we might be able to extend it to certain Markov processes, Lévy

process based models, because their conditional characteristic functions are usually available (See Chapter

3.2.3). Specifically, we can follow the logic in Chen et al. (2013) to build our integrated empirical likelihood

below.

Let {Xtδ}nt=1 be n discretely sampled observations of Markov process. For notation simplification, we

denote Xtδ as Xt. Suppose that we can get conditional characteristic function:

Φt(u; θ) = Eθ(e
iuTXt+1 |Xt).

Thus, for all u ∈ Rd:

Eθ(Φt(u; θ)− eiu
TXt+1 |Xt) = 0.

Then, for any weight factor, A(Xt, u, s), and all u,

Eθ[(Φt(u; θ)− eiu
TXt+1)A(Xt, u, s)] = 0.
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For any τ = (u, s) ∈ R2d, define:

εt(τ, θ) = (Φt(u; θ)− eiu
TXt+1)A(Xt, u, s).

Thus, we have the moment condition:

E(εt(τ, θ)) = 0.

Due to the Markov property, also for t1 6= t2, we have

Cov(εt1(τ ; θ), εt2(τ ; θ)) = 0.

Because the observations are equally spaced, εt1(τ ; θ) has the same distribution as εt2(τ ; θ) when t1 6= t2.

Thus, we use the same EL strategy in Chapter 2.2 to deal with Markov process under the moment condition

above.

Ln(τ ; θ) = max{
n∏
j=1

(nwj) : wj ≥ 0,

n∑
j=1

wj = 1,

n∑
j=1

pj ε̃j(τ, θ) = 0, }

where ε̃j = (εRj , ε
I
j )
T . Then, we can follow the exact same procedure in Chapter 2.2 to build the integrated

empirical likelihood Tn(θ):

Tn(θ) =

∫
S

Ln(τ ; θ)dG(τ), (6.1)

and G(τ) is either a given discrete distribution or a smooth distribution function of τ with support on

compact set S ⊂ R2d.

With a prior specification p0(θ) on the parameter θ, we have the posterior density

p(θ|X) ∝ p0(θ)Tn(θ). (6.2)

Then, the maximum empirical posterior estimator (MEPE) θ̂ as

θ̂ = arg max
θ
p(θ|X). (6.3)

Thus, we can follow Chapter 2.3 to study this MEPE’s asymptotic properties and utilize the exact same

sampling algorithm in Chapter 2.4 to estimate the parameter.
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In this framework, our computing dimension is doubled to 2d. Thus, the efficiency of sampling algorithm

is worthy to study. Moreover, it could be very interesting to study how to design the weight factor A(Xt, u, s)

to generally provide a lower asymptotic variance of the MEPE.

6.2 Empirical characteristic function estimation for Lévy process

based models in finance

In Chapter 4, we propose an approximated ECF estimation based on characteristic function. It mainly can

be applied to Lévy processes. Actually, we might be able to apply it to certain Markov processes, Lévy

process based models, if the joint characteristic function is available.

The approach through joint characteristic function with asymptotic property is discussed in Knight and

Yu (2002). The idea is to define the moving blocks of data. Specifically, Zj = (Xj , . . . , Xj+p)
T (j =

{1, . . . , T − p}), could be regarded as T − p moving blocks for {X1, . . . , XT }. Each block size is p and the

joint characteristic of each moving blocks is:

φ(u; θ) = E(exp(iuTZj)), (6.4)

and the empirical characteristic function is:

φn(u) =

∫
exp(iuT z)dFn(z) =

1

n

n∑
j=1

exp(iuTZj), (6.5)

where i =
√
−1 and u = (u1, . . . , up+1).

Then, similar to Chapter 4, we can estimate the parameter by minimizing the distance between joint

characteristic function and empirical joint characteristic function:

θ̂ECF = arg min
θ

∫
|φ(u, θ)− φn(u)|2dG(u)

where G(u) is the continuous weight function.

Then, we need define the trapezoidal rule approximation for multiple integration
∫
|φ(u, θ)−φn(u)|2dG(u)

and build a similar theorem to Theorem 18 to control the error bound of trapezoidal rule approximation.

Hopefully, the approximation will again related to the analyticity property of the joint characteristic function.

.
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Appendix A

Appendix of Chapter 2

A.1 Lemmas of the positive-definiteness of integrated matrices

Lemma 24.1. {A(t)}t∈Rd are positive-semidefinite n×n matrices of which entries are continuous functions

of t ∈ Rd. G(t) is a probability measure with support S containing an open set I ⊂ S . Then, there will be

no open set I ⊆ I so that
∫
I A(t)dG(t) is positive definite.

⇔ there exists non-zero constant β so that ∀t ∈ I, A(t)β = 0.

Proof. ⇐ Note that there exists non-zero constant vector β(not related to t) so that for ∀t A(t)β = 0 with

∀t ∈ I. Thus, for any open set I ⊂ I, we have
∫
I(A(t))dG(t)β =

∫
I(A(t))βdG(t) = 0. That is,

∫
I A(t)dG(t)

is not full rank.

⇒ We prove it by contradiction. If ∀I ⊆ I,
∫
I A(t)dG(t) is not full rank. First we select an arbitrary

open set I1 ⊆ I. Because
∫
I1 A(t)dG(t) is not full rank, there exists non-zero constant vector β1 satisfying∫

I1 A(t)dG(t)β1 = 0. Then,
∫
I1 β

T
1 A(t)β1dG(t) = 0. Considering A(t) is positive-semidefinite matrix and

A(t) is continuous with respect to t, we have βT1 A(t)βT1 = 0 for ∀t ∈ I1. Also, A(t) can be written as

P (t)TP (t) by Cholesky decomposition. Then, we have (P (t)βT1 )T (P (t)β1) = 0 which is A(t)β1 = 0 for

∀t ∈ I1. Because there is no non-zero constant vector β so that A(t)β = 0 for ∀t ∈ I, there exists t2 /∈ I1

so that A(t2)β1 6= 0. Thus, we select another open set I2 satisfying I2 ⊃ (I1 ∪ t2) and I2 ⊆ I. Because∫
I2 A(t)dG(t) is not full rank, there exists non-zero constant vector β2 satisfying

∫
I2 A(t)dG(t)β2 = 0.

Definitely we also have A(t2)β2 = 0. Repeating the procedure above, we will have:

1. Open set I1 ⊂ I2 · · · ⊆ I;

2. Non-zero constant vector βi satisfying A(t)βi = 0 for ∀t ∈ Ii (i = 1, 2, . . .);

3. For j = 2, 3, . . ., there exists tj ∈ Ij \ Ii−1 satisfying A(tj)βj−1 6= 0. But, A(tj)βk = 0 for ∀k ≥ j.

Suppose we select β1, β2, . . . , βn+1. Then, they must be linearly dependent (β is n × 1 vector). That is,

there exists at least one non-zero real numbers c1, . . . , cn+1 so that c1β1 + c2β2 + · · ·+ cn+1βn+1 = 0. Then,

A(t2)(c1β1 + c2β2 + · · ·+ cn+1βn+1) = 0. Then, we have c1A(t2)β1 = 0 which lead to c1 = 0. Similarly, we

multiply A(t3) by c2β2 + · · · + cn+1βn+1 to get c2 = 0. In the end, we will get c1 = c2 = · · · = cn+1 = 0.
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This is a contradiction. �

Lemma 24.2. {A(t)}t∈Rd is positive-semidefinite n × n matrices with entries are functions of t ∈ S.

Then, we can at least find t1, t2, . . . , tn+1−m so that A(t1) + A(t2) + · · · + A(tn+1−m) is full rank where

m = maxt∈S{rank(A(t))}.

⇔ There will be no non-zero constant vector β(not related to t), so that, for any t ∈ S, A(t)β = 0.

What is more, if we suppose that there will be no non-zero constant vector β(not related to t), so that, for

any t ∈ S, A(t)β = 0, we can either construct or check t1, t2, . . . in this way: sequentially selecting {βi}ki=1

satisfying (A.1). Whenever βk is non-exist, A(t1) + A(t2) + · · ·+ A(tk) is positive definite. You will never

select {βi}ki=1 endlessly. The maximum of k is n+ 1−m.

Proof. ′ ⇒′ If there exists non-zero constant β so that A(t)β = 0 for ∀t ∈ Rd, then, (A(t1) + A(t2) + · · · +

A(tn+1−m))β = 0 for ∀t1, t2, . . . tn+1−m. Then, A(t1) + · · ·+A(tn+1−m)is not full rank.

′ ⇐′ First, let’s select t1 so that rank(A(t1)) = m ≤ n. if A(t1) is full rank, then r = 1. If A(t1) is not

full rank, there exists non-zero constant vector β1 so that A(t1)β = 0. But, from our condition, there is no

non-zero constant vector β to make A(t)t = 0 for any t ∈ Rd. That is, we can find t2 so that A(t2)β1 6= 0.

If A(t1) + A(t2) is full rank, then, r = 2. Otherwise, there exists non-zero constant vector β2 so that

(A(t1) + A(t2))β2 = 0. Because A(t1) and A(t2) are non-negative definite matrices, we have A(t1) = L1L
T
1

and A(t2) = L2L
T
2 due to Cholesky decomposition where L1 and L2 are lower triangular matrices. Then,

we have βT2 (A(t1) + A(t2))β = (LT1 β1)T (LT1 β1) + (LT2 β2)T (LT2 β2) = 0⇔ A(t1)β2 = A(t2)β2 = 0. Similarly,

we can select t3 so that A(t3)β 6= 0 by using our condition. We repeat the procedure above until r = k ≥ 1.

That is, if A(t1) + A(t2) + · · ·+ A(tk) is full rank, r = k. Otherwise, A(t1) + A(t2) + · · ·+ A(tk) is not full

rank, we will use the same procedure above to have β1, β2, . . . , βk satisfying

A(t1)β1 = 0, A(t2)β1 6= 0,

A(t1)β2 = A(t2)β2 = 0, A(t3)β2 6= 0,

...
...

A(t1)βk = . . . = A(tk)βk = 0, A(tk)βk−1 6= 0.

(A.1)

Note that β1, . . . , βk ⊆ {β : A(t1)β} i.o. the solution space S of A(t1)β = 0. It is easy to know Dim(S) =

n−m due to linear algebra where rank(A(t1)) = m. Now, we prove β1, . . . , βk are linearly independent. if

c1β1 + · · ·+ ckβk = 0 where c1, . . . , ck are real constant. Then, A(t2)(c1β1 + · · ·+ ckβk) = c1(A(t2)β1) = 0.

Because A(t2)β2 6= 0, we have c1 = 0. Then, we have A(t3)(c2β2 + · · · + ckβk) = c2A(t3)β2 = 0. That is,

c2 = 0 because A(t3)β2 6= 0. Similarly, we have c1 = c2 = · · · = ck = 0. In other words, β1, . . . , βk are

linearly independent. Thus, k ≤ n−m. That is, if we repeat our procedure n + 1−m times, we will have
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full rank A(t1) + · · ·+A(tn+1−m).

The selection of {ti}ki=1 will just follow the procedure of proof above based on the selection of {βi}ki=1. �

Remark 13. n + 1 − m is optimal for Corollary 24.2 holding for all positive-semidefinite n × n matrices

{A(t)}t∈R. That is, Here, we give an example of A(t) so that A(t1) + · · ·+A(tr) is not full rank no matter

what t1, . . . , tr we use, where r ≤ n−m and m = maxt∈R{rank(A(t))}.

A(t) =



f1(t)

f2(t)

. . .

fn(t)


,

where

fj(t) =

 1 t = j or j < m

0 t 6= j and j ≥ m
.

The proof of it is trivial because it is easy for us to find a row in A(t1) + · · ·+A(tn−m) is all zeros.

Remark 14. For some certain positive-semidefinite n×nmatrices {A(t)}t∈R, to make A(t1) + · · ·+A(tr) full

rank, r could be smaller than n+ 1−m. But, r still has a lower bound for it which is d nme. The reason for

it is that n = rank(A(t1) + · · ·+A(tr)) ≤ rank(A(t1)) + · · ·+ rank(A(tr)) ≤ r×m. The example to attain

equality is trivial and we don’t discuss more here.

A.2 Proofs

A.2.1 Proof of Theorem 1

Proof. Similar to the proof of Lemma 1 in Qin and Lawless (1994), proof of (detail) in Owen (1990) and

proof of lemma 1 (ii) in Yuan et al. (2014), we can get

λn(u, θ) = { 1

n

n∑
i=1

g(u,Xi; θ)g
T (u,Xi; θ)}−1{ 1

n

n∑
i=1

g(u,Xi; θ)}+ o(n−
1
3 ) (A.2)

almost surely and uniformly in ||θ−θ0|| ≤ n−
1
3 with u ∈ S due to the fact that each component in g(u,Xi; θ)

is between 0 and 1(satisfying the condition E||g(u,Xi; θ)||3 ≤ 1 in Qin and Lawless (1994),Owen (1990) and

Yuan et al. (2014)).

Denote θ = θ0 + vn−
1
3 . Let’s give a lower bound for Tn(θ) on the surface of the ball ||θ − θ0|| = n−

1
3 when
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||v|| = 1. Scaling our posterior(2.4) by multiplying nn and performing Taylor expansion, we have

nnp(θ|X) =

∫
S

nnp0(θ)Ln(u; θ)dG(u)

=

∫
S

exp{−
n∑
i=1

log{1 + λTn (u; θ)g(u,Xi; θ)}+ log(p(θ0))}dG(u)

=

∫
S

exp{−
n∑
i=1

λTn (u; θ)g(u,Xi; θ) +
1

2

n∑
i=1

{λTn (u; θ)g(u,Xi; θ)}2

+ o(n
1
3 )}dG(u)

=

∫
S

exp{−n
2
{ 1

n

n∑
i=1

g(u,Xi; θ)}T {
1

n

n∑
i=1

g(u,Xi; θ)g
T (u,Xi; θ)}−1

× { 1

n

n∑
i=1

g(u,Xi; θ)}+ o(n
1
3 )}dG(u)

=

∫
S

exp{−n
2
{ 1

n

n∑
i=1

g(u,Xi; θ0) +
1

n

n∑
i=1

∂g(u,Xi; θ0)

∂θ
vn−

1
3 }T { 1

n

n∑
i=1

g(u,Xi; θ)g
T (u,Xi; θ)}−1

× { 1

n

n∑
i=1

g(u,Xi; θ0) +
1

n

n∑
i=1

∂g(u,Xi; θ0)

∂θ
vn−

1
3 }+ o(n

1
3 )}dG(u)

=

∫
S

exp{−n
2
{O(n−1/2(log log n)1/2) + E(

∂g(u,Xi; θ)

∂θ
)vn−

1
3 }T {Eg(u,Xi; θ0)gT (u,Xi; θ0)}−1

× {O(n−1/2(log log n)1/2) + E(
∂g(u,Xi; θ)

∂θ
)vn−

1
3 }+ o(n

1
3 )}dG(u).

(A.3)

We rewrite equation (A.3) as
∫
S

exp(−n 1
3 (f(u) + o(1)))dG(u), where f(u) denotes

vTE( ∂∂θg(u, x; θ0))T (Eg(u,Xi; θ0)gT (u,Xi; θ0))−1E( ∂∂θg(u, x; θ0))v and f(u) ≥ 0.

Now, we prove that there exists large enoughK > 0 so that
∫
S

exp(−n 1
3 (f(u)+o(1)))dG(u) ≤ exp(−n 1

4 (
∫
S

(f(u)dG(u))))

holds with n > K. To prove it, equivalently, we can show for large enough n,

n−
1
4 (log

∫
S

exp(−n 1
3 f(u))dG(u)) ≤ −

∫
S

f(u)dG(u). (A.4)

From regularity condition A.4, we know that for any non-zero vector v, E(f(u)) is positive. Because

Ef(u) =
∫∞

0
P (f(u) > x)dx, there exists m > 0 so that P (f(u) > m) > 0. Then,

n−
1
4 (log

∫
S

exp(−n 1
3 f(u))dG(u)) ≤ P (f(u) > m)m(−n 1

12 ) + P (f(u) ≤ m)n−
1
4 .
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Then, it is obvious to see that left side of equation (A.4) will go to −∞ as n → ∞. Thus, we prove the

inequality above. Then, we have

∫
S

exp{−n
2
{O(n−1/2(log log n)1/2) + E(

∂g(u,Xi; θ)

∂θ
)vn−

1
3 }T {Eg(u,Xi; θ0)gT (u,Xi; θ0)}−1

× {O(n−1/2(log log n)1/2) + E(
∂g(u,Xi; θ)

∂θ
)vn−

1
3 }+ o(n

1
3 )}dG(u)

≤ exp(−n 1
4 (

∫
S

(f(u)dG(u))))

≤ exp(−(c− ε)n 1
4 )

(A.5)

almost surely and uniformly in ||v|| = 1, where c > 0 and c is the smallest eigenvalue of

∫
S

E(
∂

∂θ
g(u, x; θ0))T (Eg(u,Xi; θ0)gT (u,Xi; θ0))−1E(

∂

∂θ
g(u, x; θ0))dG(u),

Similarly,

nnTn(θ0) =

∫
S

exp{−n
2
{ 1

n

n∑
i=1

g(u,Xi; θ0){ 1

n

n∑
i=1

g(u,Xi; θ0)gT (u,Xi; θ0)}−1

× { 1

n

n∑
i=1

g(u,Xi; θ0)}+ o(1)}dG(u)

= O((log n)−1).

(A.6)

Combining (A.5) and (A.6), we find that Tn(θ) attains its maximum value in the interior of the ball ||θ−θ0|| ≤

n−
1
3 .

Also, θ̂n satisfies ∂
∂θp(θ|X) = 0 which is the second equation in (2.6). The first equation is from (2.2) �

A.2.2 Proof of Theorem 2

Proof. Similar to the proof of Theorem 2 in Chan et al. (2009), it can be shown by uniform law of large number

that ∂
∂θQ1n(u; θ0, 0)

p→ s12(u), ∂
∂λT

Q1n(u; θ0, 0)
p→ s11(u), ∂∂θQ2n(u; θ0, 0) = 0 and ∂

∂λT
Q1n(u; θ0, 0)

p→ s21(u)

uniformly in u ∈ S.

Denote Q3n(u; θ, λ) = exp(−
∑n
i=1 log(1 + λT g(u,Xi; θ))). Similarly, according to (2.6) in Theorem 1,we

have

0 =Q1n(u; θ̂n, λn(u; θ̂n))

=Q1n(u; θ0, 0) +
∂Q1n(u; θ0, 0)

∂θ
(θ̂n − θ0) +

∂Q1n(u; θ0, 0)

∂λT
λn(u; θ̂n) + op(δn)

(A.7)
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uniformly in u ∈ S, and

0 =nn
∫
S

p0(θ̂n)Ln(u; θ̂n)Q2n(u; θ̂n, λn(u; θ̂n))− 1

n

∂p0(θ̂n)

∂θ
Ln(u; θ̂n)dG(u)

=

∫
S

{p0(θ0)Q3n(u; θ0, 0)Q2n(u; θ0, 0) + p0(θ0)Q3n(u; θ0, 0)
∂Q2n(u; θ0, 0)

∂θ
(θ̂n − θ0)+

Q2n(u; θ0, 0)Q3n(u; θ0, 0)
∂p0(θ0)

∂θ
(θ̂n − θ0) +Q2n(u; θ0, 0)p0(θ0)

∂Q3n(u; θ0, 0)

∂θ
(θ̂n − θ0)+

p0(θ0)Q3n(u; θ0, 0)
∂Q2n(u; θ0, 0)

∂λT
λn(u; θ̂n) + p0(θ0)Q2n(u; θ0, 0)

∂Q3n(u; θ0, 0)

∂λT
λn(u; θ̂n)}dG(u) + op(δn)

(A.8)

Then, with Q3n(u; θ0, 0) = 1, Q2n(u; θ0, 0) = 0 and ∂
∂θQ2n(u; θ0, 0) = 0,

0 =

∫
S

p0(θ0)
∂Q2n(u; θ0, 0)

∂λT
λn(u; θ̂n)dG(u) + op(δn).

Then, we have

0 =

∫
S

∂Q2n(u; θ0, 0)

∂λT
λn(u; θ̂n)dG(u) + op(δn). (A.9)

because p0(θ) is positive in the neighbor of θ0 implied by regularity condition A.7.

Following (A.7), we get

λn(u; θ̂n) = −s−1
11 (u)Q1n(u; θ0, 0)− s−1

11 (u)s12(u)(θ̂n − θ0) + op(δn). (A.10)

Plugging (A.10) into (A.9), we find

θ̂n − θ0 = −{
∫
S

s21(u)s−1
11 (u)s12(u)dG(u)}−1{

∫
S

s21(u)s−1
11 (u)Q1n(u; θ0, 0)dG(u)}+ op(δn), (A.11)

Then, conclusion (2.8) in Theorem 2 is directly from (A.10) and (A.11). �

A.2.3 Proof of Theorem 3

Proof. For θ ∈ {||θ − θ0|| = O(n−
1
2 )}, by Taylor expansion,

log p(θ|X) = log p(θ̂n|X)− 1

2
(θ − θ̂n)TJ(θ̂n)(θ − θ̂n) + op(||θ − θ̂n||2).

Because op||θ − θ̂n||2 ≤ op||θ − θ0||2 + op||θ0 − θ̂n||2, we have op||θ − θ̂n||2 = op(n
−1). Then,

p(θ|X) ∝ exp{−1

2
(θ − θ̂n)TJ(θ̂n)(θ − θ̂n) + op(1)}. (A.12)
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Now, suppose J(θ̂n) is positive definite and let D = J(θ̂n)
1
2 (θ − θ̂n). Then, from (A.12), we have

p(D|X) ∝ exp{−1

2
DTD + op(1)}.

To show the convergence property of cumulated distribution function

J(θ̂n)
1
2 (θ − θ̂n)

d→ N(0, I),

we need to prove tails probability goes to zero based on the convergence property of posterior density in

(A.12). That is, we need to prove

P (||J(θ̂n)
1
2 (θ − θ̂n)|| > δ)→ 0,

when δ →∞ and n→∞.

From (A.12), for any θ = θ̂ + J(θ̂n)−
1
2D, we have

p(θ|X)
p→ p0(θ0) exp{−||D||2/2}

By the dominate convergence theorem due to the fact that p(θ|X) ≤ p0(θ),we have

∫
||D||>δ

p(θ̂n + J(θ̂n)−
1
2D|X)dD

p→ p0(θ0)

∫
||D||>δ

exp{−||D||2/2}dD

for any δ ≥ 0. Then, we have

P (||J(θ̂n)
1
2 (θ − θ̂n)|| > δ|X) =

∫
||D||>δ p(θ̂n + J(θ̂n)−

1
2D|X)dD∫

||D||>0
p(θ̂n + J(θ̂n)−

1
2D|X)dD

→
p0(θ0)

∫
||D||>δ exp{−||D||2/2}dD

p0(θ0)
∫
||D||>0

exp{−||D||2/2}dD

= (2π)−
p
2

∫
||D||>δ

exp{−||D||2/2}dD < ε,

where δ is a number larger than 1− ε quantile of standard normal distribution. �

A.2.4 Proof of Theorem 4

Proof. Proof of Theorem 4:

We notice that (2.9) is continuous with respect to θ and it is positive-semidefinite. We can apply Lemma

24.1 by setting A(t) to be (2.9). Then, Theorem 4 is proved. �
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A.2.5 Proof of Theorem 5

Proof. We notice that (2.9) is continuous with respect to θ and it is positive-semidefinite. Due to the

discussion in Section 2.3.3, we know that m = 2 in our case. We can apply Lemma 24.2 by setting A(t) to

be (2.9). Then, Theorem 5 is proved. �
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Appendix B

Appendix of Chapter 3

B.1 Asymptotic properties of maximum likelihood

We list several typical asymptotic properties of maximum likelihood for Lévy processes and Markov processes

with proofs under B, E class regularity conditions. Those properties will be used to prove the theorems of

previous sections in this paper.

Lemma 24.3. Xn ∈ X is a n−dimensional random vector and Q(θ;Xn) is a real-valued function of θ given

Xn. Q0(θ) is a real-valued function of θ. Suppose θ ∈ Θ ⊂ Rp and θ̂n is defined as the value of θ ∈ Θ

maximizing Q(θ;Xn). Under such regularity conditions below:

L24.3.1 Parameter space Θ is compact.

L24.3.2 Q0(θ) is uniquely maximized at θ0.

L24.3.3 Q0(θ) is continuous in θ ∈ Θ.

L24.3.4 Q(θ;Xn) converges uniformly in probability to Q0(θ). That is, supθ∈Θ |Q(θ;Xn) − Q0(θ)| p→ 0 as

n→∞.

then, θ̂n
p→ θ0 as n→∞.

Remark 15. This lemma is the Theorem 2.1 in Newey and McFadden (1994). In fact, the condition L24.3.3

can be generalized to be upper-continuous. The combination of conditions L24.3.1, L24.3.2 and L24.3.3 can

be replaced by a more general condition: θ0 is a well-separated point of the maximum (See Corollary 3.2.3

in Van der Vaart (2000)).

Proof. let Bε(θ0) = {θ : ||θ− θ0|| < ε}. Because Θ∩BCε (θ0) is compact (L24.3.1) and Q0(θ) is a continuous

function (L24.3.3), there exists θ∗ ∈ Θ∩BCε (θ0) to achieve supθ∈Θ∩BCε (θ0){Q0(θ)}. Because θ0 is the unique

to maximize Q0(θ) (L24.3.2), we denote Q0(θ0)−Q0(θ∗) as δ > 0.
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Notice that:

sup
θ∈(Θ∩BCε (θ0))

|Q(θ;Xn)−Q0(θ)| < δ

2
⇒ Q(θ;X) < Q0(θ) +

δ

2
≤ Q0(θ∗) +

δ

2
= Q0(θ0)− δ

2
.

sup
θ∈Θ∩Bε(θ0)

|Q(θ;Xn)−Q0(θ)| < δ

2
⇒ Q(θ0;Xn) > Q0(θ0)− δ

2
.

Then, we have:

sup
θ∈Θ
|Q(θ;Xn)−Q0(θ)| < δ

2
⇒ Q(θ0;Xn) > Q(θ;Xn) for θ ∈ Θ ∩BCε (θ0)⇒ θn ∈ Θ ∩Bε(θ0).

Due to the L24.3.4, as n→∞, we have

P (sup
θ∈Θ
|Q(θ;Xn)−Q0(θ)| < δ

2
)
p→ 1.

Then, we have P (θn ∈ Θ ∩Bε(θ0))
p→ 1 as n→∞. Equivalently, we have θ̂n

p→ θ0 as n→∞. �

Lemma 24.4 (Uniform convergence). Let a(X, θ) be a matrix of functions of random vector X and the

parameter θ. ||a|| is the Frobenius norm (also called as L2, 2 norm) of the matrix a. Under such regularity

conditions below:

L24.4.1 Parameter space Θ is compact.

L24.4.2 a(x, θ) is continuous at θ ∈ Θ given observation x ∈ X .

L24.4.3 There exists d(x) with ||a(x, θ)|| ≤ d(x) for all θ ∈ Θ and Eθ0 [d(X)] <∞.

L24.4.4 Suppose we have random vectors X1, . . . , Xn from a specific stochastic process satisfying above con-

ditions separately. They also have ergodic properties: 1
n

∑n
i=1 a(Xi, θ)

p→ Eθ0 [a(Xj , θ)]. Moreover,

∆(Xi; δ) = sup||θ1−θ2||<δ ||a(Xi, θ1) − a(Xi, θ2)|| also has ergodic property that 1
n

∑n
i=1 ∆(Xi, θ)

p→

Eθ0 [∆(Xj , θ)] (This indicates Eθ0 [a(Xj , θ)] and Eθ0 [∆(Xj , θ)] does not depend on subscript j where

1 ≤ j ≤ n. Thus, we might write X denoting Xj under Eθ0 later in these situations) .

then, E[a(X, θ)] is continuous and we have uniform convergence law: supθ∈Θ || 1n
∑n
i=1 a(Xi, θ)−Eθ0 [a(X, θ)]|| p→

0.

Remark 16. This lemma basically is the Lemma 2.4 in Newey and McFadden (1994) to deal with i.i.d data.

We extend it to deal with non-i.i.d case which is also suggested in page 2129 in Newey and McFadden (1994).
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Proof. Continuity of E[a(X, θ)]:

Suppose for every θ ∈ Θ, we construct θk → θ. By L24.4.2, we have a(x, θk) → a(x, θ) given x.

Since L24.4.3, Eθ0 [a(X, θk)] → Eθ0 [a(X, θ)] due to dominated convergence theorem. Thus, Eθ0 [a(X, θ)] is

continuous in θ ∈ Θ.

Uniform convergence law:

We need to show ∀ε, η, there exists H(ε, η) so that P (supθ∈Θ || 1n
∑n
i=1 a(Xi, θ)−Eθ0 [a(X, θ)]|| > ε) < η.

First, let us to decompose supθ∈Θ || 1n
∑n
i=1 a(Xi, θ)−Eθ0 [a(X, θ)]|| into three parts. Suppose ∪θ∈ΘBδ(θ)

is the open cover of parameter space Θ. Since Θ is compact (L24.4.1), there exists finite sub-cover so that

Θ ⊂ ∪Jj=1Bδ(θj). Thus, we have this decomposition

sup
θ∈Θ
|| 1
n

n∑
i=1

a(Xi, θ)− Eθ0 [a(X, θ)]|| = sup
1≤j≤J

sup
θ∈Bδ(θj)∩Θ

|| 1
n

n∑
i=1

a(Xi, θ)− Eθ0 [a(X, θ)]||

≤ sup
1≤j≤J

sup
θ∈Bδ(θj)∩Θ

{
|| 1
n

n∑
i=1

a(Xi, θ)−
1

n

n∑
i=1

a(Xi, θj)||︸ ︷︷ ︸
1O (including sup sup part)

+ || 1
n

n∑
i=1

a(Xi, θj)− Eθ0 [a(X, θj)]||︸ ︷︷ ︸
2O (including sup sup part)

+ ||Eθ0 [a(X, θj)]− Eθ0 [a(X, θ)]||︸ ︷︷ ︸
3O (including sup sup part)

}
.

Thus, we have

P (sup
θ∈Θ
|| 1
n

n∑
i=1

a(Xi, θ)− Eθ0 [a(X, θ)]|| > ε) ≤ P ( 1O >
ε

3
) + P ( 2O >

ε

3
) + P ( 3O >

ε

3
).

Second, let us study 1O, 2O and 3O separately.

For 1O, we utilize ∆(X; δ) = sup||θ1−θ2||<δ ||a(Xi, θ1) − a(X, θ2)||. Thus, 1O ≤ 1
n

∑n
i=1 ∆(Xi; δ). Thus

we have

P ( 1O >
ε

3
) ≤ P (

n∑
i=1

∆(Xi; δ) >
ε

3
)

= P ((

n∑
i=1

∆(Xi; δ)− Eθ0 [∆(X1, δ)]) + Eθ0 [∆(X1, δ)] >
ε

3
).

Since a(x, δ) is continuous in θ (L24.4.2) and θ ∈ Θ which is compact (L24.4.1), a(x, δ) is uniformly continuous

in θ. In addition, ||∆(x; δ)|| ≤ 2d(x) where Eθ0 [d(X1)] ≤ ∞ (L24.4.3), by dominated convergence theorem,

we have Eθ0 [∆(X1, δ)]→ 0 as δ → 0. Thus, we can let δ < δ1 so that Eθ0 [∆(X1, δ)] <
ε
6 . Then, we have

P ( 1O >
ε

3
) ≤ P (

n∑
i=1

∆(Xi; δ)− Eθ0 [∆(X1, δ)] >
ε

6
).
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Through ergodic property in L24.4.4, we can find H1(ε, η), when n > H1(ε, η), we have

P ( 1O >
ε

3
) ≤ P (

n∑
i=1

∆(Xi; δ)− Eθ0 [∆(X1, δ)] >
ε

6
) <

η

2
.

For 2O, it is obvious that

P ( 2O >
ε

3
) ≤

J∑
j=1

P (|| 1
n

n∑
i=1

a(Xi, θj)− Eθ0 [a(X, θj)]|| >
ε

3
).

Through ergodic property L24.4.4, there exists H2j(ε, η) so that ,when n > H2j(ε, η), we have

P (|| 1
n

n∑
i=1

a(Xi, θj)− Eθ0 [a(X, θj)]|| >
ε

3
) <

η

2J
.

Let H2(ε, η) = max1≤j≤J H2j(ε, η). Then, when n > H2(ε, η), we have

P ( 2O >
ε

3
) ≤

J∑
j=1

P (|| 1
n

n∑
i=1

a(Xi, θj)− Eθ0 [a(X, θj)]|| >
ε

3
) <

η

2
.

For 3O, we have shown that E[a(X, θ)] is continuous (See the first paragraph of this proof). We also

know that Θ is compact ( 1O), we have E[a(X, θ)] is uniformly continuous. Thus, we can find δ2 so that,

whenδ < δ2, we have P ( 3O > ε
3 ) = 0.

Last, by setting δ = min(δ1, δ2) to form the open cover of Θ at the very first step, we can select

H(η, ε) = max(H1(ε, η), H2(ε, η)) and have

P (sup
θ∈Θ
|| 1
n

n∑
i=1

a(Xi, θ)− Eθ0 [a(X, θ)]|| > ε) <
η

2
+
η

2
+ 0 = η

when n > H(η, ε). That is, we have the uniform convergence law, which is

sup
θ∈Θ
|| 1
n

n∑
i=1

a(Xi, θ)− Eθ0 [a(X, θ)]|| p→ 0.

�

Lemma 24.5 (Interchange of differentiation and integration). a(x, θ) is a real-valued function of an obser-

vation x ∈ X and the parameter θ. If a(x, θ) is continuously differentiable at θ ∈ N for all x ∈ X where

N is an open set and
∫
X (supθ∈N || ∂∂θa(x, θ)||)dx <∞, then,

∫
X a(x, θ)dx is continuously differentiable and

∂
∂θ

∫
X a(x, θ)dx =

∫
X ( ∂∂θa(x, θ))dx.
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Proof. For any θ ∈ N , we can choose a sequence θn ∈ N so that θn → θ because N is an open set.

Since a(x, θ) is continuously differentiable at θ ∈ N for all x ∈ X , we have ∂
∂θn

a(x, θ) → ∂
∂θn

a(x, θ). In

addition, we know that
∫
X (supθ∈N || ∂∂θa(x, θ)||)dx <∞, Thus,

∫
X ( ∂∂θa(x, θn))dx→

∫
X ( ∂∂θa(x, θ))dx due to

dominated convergence theorem. Thus,
∫
X ( ∂∂θa(x, θ))dx is continuous. By mean-value expansion theorem,

we have a(x, θn) = a(x, θ) + ∂
∂θa(x, θ)′(θn − θ) + r(x, θn) where r(x, θn) = [ ∂∂θa(x, θ∗n) − ∂

∂θa(x, θ)]′(θn − θ)

and θ∗n is the mean value located in the line between θn and θ. Because N is an open set, for all θn

closed enough to θ, we can assume that θ∗n ∈ N without losing generality. Then, we have ||r(x, θn)||/||θn −

θ|| ≤ || ∂∂θa(x, θ∗n) − ∂
∂θa(x, θ)|| → 0 by the continuity of ∂

∂θa(x, θ). In addition, ||r(x, θn)||/||θn − θ|| ≤

2 supθ∈N || ∂∂θa(x, θ)||, we have ||r(x, θn)||/||θn − θ|| → 0 by dominated convergence theorem. Therefore,

|
∫
X a(x, θn) −

∫
X a(x, θ) − [

∫
X

∂
∂θa(x, θ)dx]′(θn − θ) = |

∫
X r(x, θn)dx| ≤

∫
X |r(x, θn)|dx = o(||θn − θ||).

Equivalently, we have ∂
∂θ

∫
X a(x, θ)dx =

∫
X ( ∂∂θa(x, θ))dx. �

Lemma 24.6 (Unique maximum for I.I.D). If X1, . . . , Xn are I.I.D. The true parameter θ0 is identified.

That is, θ 6= θ0 ⇔ f(x; θ) 6= f(x; θ0) where f(x|θ) is the density function of i.i.d data. In addition, if we

have Eθ0 | log f(X; θ)| <∞ for all θ ∈ Θ where Θ is the parameter space. Then, Eθ0 [log f(X; θ)] is uniquely

maximized at θ0.

Proof. Take g(y) = − log(y) and we have E[g(Y )] ≥ g(EY ) due to Jensen’s inequality. Let Y = f(X;θ)
f(X;θ0) .

Because the true parameter θ0 is identified, Y is not a constant when θ 6= θ0. Thus, we have E[g(Y )] > g(EY )

which is

Eθ0 [− log(
f(X; θ)

f(X; θ0)
)] > − log(Eθ0 [

f(X; θ)

f(X; θ0)
]).

Notice that

Eθ0 [
f(X; θ)

f(X; θ0)
] =

∫
X

f(x; θ)

f(x; θ0)
f(x; θ0)dx =

∫
X
f(x; θ) = 1

Therefore, we have Eθ0 [log f(X; θ0)] > Eθ0 [log f(X; θ)] for any θ 6= θ0. �

B.1.1 B regularity conditions in Chapter 3

We list the following B class of regularity conditions which will be used for consistency and asymptotic

normality of MLE for I.I.D case.

B.1 θ 6= θ0 ⇔ L(θ; ·) 6= L(θ0; ·)

B.2 The parameter space Θ is compact.

B.3 L(θ;x) is a continuous function of θ for almost all x ∈ X ⊂ R. X is the support of f(x; θ).
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B.4 ||l(θ;x)|| ≤ g1(x) for all θ ∈ Θ and Eθ0 [g1(X)] <∞.

B.5 θ0 lies in the interior of compact parameter space Θ.

B.6 L(x; θ) is twice continuously differentiable and L(x; θ) > 0 in a neighborhood of θ0, Ω0.

B.7 ||∂L(θ;x)
∂θ || ≤ g2(x) for all θ ∈ Ω0 and

∫
X g2(x)dx <∞.

B.8 I(θ0) = Eθ0 [∂ logL(θ;x)
∂θ

∂ logL(θ;x)
∂θ

T
] is positive definite.

B.9 ||∂
2l(θ;x)
∂θ∂θT

|| ≤ g3(x) for all θ ∈ Ω0 and Eθ0 [g3(X)] <∞.

B.10 ||∂
2L(θ;x)
∂θ∂θT

|| ≤ g4(x) for all θ ∈ Ω0 and
∫
X g4(x)dx <∞.

Lemma 24.7 (Consistency and normality for I.I.D). Under regularity conditions B.1 ∼ B.4, the MLE θ̂N

is a consistent estimator. That is,

θ̂N
p→ θ0 (B.1)

when N →∞. When all B class of regularity conditions hold, then

√
N(θ̂N − θ0)

d→ N(0, I−1(θ0))

Proof. Consistency:

To prove the consistency of MLE, we mainly use Lemma 24.3 by setting Q(θ;XN ) = 1
N

∑N
j=1 l(θ;Xj).

Now we prove that regularity conditions B.1,B.2,B.3 and B.4 are equivalent to regularity conditions L24.3.1,

L24.3.2, L24.3.3 and L24.3.4 provided by Lemma 24.3.

First, L24.3.1 is the same as B.2.

Second, to show L24.3.2, we use Lemma 24.6. In fact, regularity B.2 and B.4 guarantee the availability

of Lemma 24.6 so that Q0(θ) is uniquely maximized at true parameter θ0.

Last, to show L24.3.3 and L24.3.4 together, we use Lemma 24.4 by setting a(Xj , θ) = l(θ;Xj) for

j = 1, . . . , N . That is, we need to verify L24.4.1, L24.4.2, L24.4.3 and L24.4.4. In fact, L24.4.1 is guaranteed

by B.2. L24.4.2 is guaranteed by B.3. L24.4.3 is guaranteed by B.4. L24.4.4 is guaranteed by B.3 and B.4

together via the Weak law of large numbers for I.I.D data. Thus, we have the consistency property, that is,

θ̂N
p→ θ0.

Asymptotic normality:

Let N ⊂ Θ is an open set containing true parameter θ0. Due to the consistency of MLE θ̂N and

regularity condition B.5, we have 1{θ̂N∈N}
p→ 1. We denote 1{θ̂N∈N} as 1̂. When MLE θ̂N is inside N , we
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have 1̂ · ∂∂θQ(θ̂N ;XN ) = 0 due to the first order condition. By the mean-value expansion theorem (regularity

condition B.6):

1̂N · [
1√
N

N∑
j=1

ϕ(Xj ; θ0) + {−J∗N}
√
N(θ̂N − θ0)] = 0 (B.2)

where ϕ(Xj ; θ) is defined as ∂
∂θ l(θ;Xj). J

∗
N is a p× p random matrix where jth row of the matrix is the jth

row of JN evaluated at the mean value θ∗jN between θ̂N and θ0 and

JN (θ) = [− 1

N

N∑
j=1

∂2 logL(θ;Xj)

∂θ∂θ′
]

Suppose we have: (we will prove them later)

1O: 1√
N

∑N
j=1 ϕ(Xj ; θ0)

D→ N(0, I(θ0)) as N →∞.

2O: J∗N
p→ I(θ0) as N →∞.

Then, we denote 1{θ̂N∈N∩J∗N is non-singular} as 1̃. Then, by Equation (B.2), we have

1̃ ·
√
N(θ̂N − θ0) = 1̃ · (J∗N )−1

N∑
j=1

ϕ(Xj ; θ0)

Due to regularity condition B.8, we know 1̃
p→ 1. Combined with 1O, 2O and Slutsky’s theorem, we have

√
N(θ̂N − θ0)

d→ N(0, I−1(θ0))

Proof of 1O: We only need to show Eθ0ϕ(Xj ; θ0) = 0, then, through central limit theorem for I.I.D data,

we have 1√
N

∑N
j=1 ϕ(Xj ; θ0)

D→ N(0, I(θ0)) as N → ∞. To show Eθ0ϕ(Xj ; θ0) = 0, we utilize Lemma 24.5.

Set a(x, θ) in Lemma 24.5 to be L(θ;x). The regularity conditions in Lemma 24.5 can be guaranteed by B.6

and B.7. Then, we have

E[ϕ(x; θ)] =

∫
X

∂f(x; θ)/∂θ

f(x; θ)
f(x; θ)dµ(x) =

∂

∂θ

∫
X
f(x; θ)dx = 0

Proof of 2O: Similar to the proof of 1O, we have Eθ0 [Jn(θ0)] = I(θ0) by utilizing Lemma 24.5 based on

regularity conditions B.6, B.7 and B.10. If we denote Eθ0 [− ∂2

∂θ∂θ′ log f(X; θ)] as J(θ), we have Jn(θ)
p→ J(θ)

due to the weak law of large number and B.10. We utilize Lemma 24.4 by setting a(X, θ) to be the random

matrix Jn(θ). Based on the regularity condition B2, B.6, B.9, B.10 and week law of large number for I.I.D

data, we have that J(θ) is continuous at θ ∈ N and uniform continuity supθ∈N ||Jn(θ) − J(θ)|| p→ 0. To
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prove 2O, we use triangle inequality

||J∗n − I(θ0)|| ≤ ||J∗n − J(θ∗)||+ ||J(θ∗)− I(θ0)||

||J∗n − J(θ∗)|| p→ 0 is due to the uniform convergence proved above and ||J(θ∗) − I(θ0)|| p→ 0 is since θ∗ is

consistent defined in (B.2). �

Lemma 24.8 (Unique maximum for Markovian data). If X1, . . . , Xn are following Markov processes.

f(·|·; θ) is the stationary transition density. The true parameter θ0 is identified. That is, θ 6= θ0 ⇔ f(·|·; θ) 6=

f(·|·; θ0). In addition, if we have Eθ0 | log f(X1|X0; θ)| < ∞ for all θ ∈ Θ where Θ is the parameter space.

Then, Eθ0 [log f(X1|X0; θ)] is uniquely maximized at θ0.

Remark 17. Through our definition of Eθ0 [·], Eθ0 [log f(Xj |Xj−1; θ)] will be not related to j. Without losing

generality, we normally write it as Eθ0 [log f(X1|X0; θ)].

Proof. Take g(y) = − log(y) and we have E[g(Y )] ≥ g(EY ) due to Jensen’s inequality. Let Y = f(X1|X0;θ)
f(X1|X0;θ0) .

Because the true parameter θ0 is identified, Y is not a constant when θ 6= θ0. Thus, we have E[g(Y )] > g(EY )

which is

Eθ0 [− log(
f(X1|X0; θ)

f(X1|X0; θ0)
)] > − log(Eθ0 [

f(X1|X0; θ)

f(X1|X0; θ0)
]).

Notice that

Eθ0 [
f(X1|X0; θ)

f(X1|X0; θ0)
] =

∫
X×X

f(x1|x0; θ)

f(x1|x2; θ0)
f(x1|x0; θ0)p(x0)dx0dx1 =

∫
X×X

f(x1|x0; θ)p(x0)dx0dx1 = 1

where p(x0) is the stationary distribution of the Markov process. Therefore, we have Eθ0 [log f(X1|X0; θ0)] >

Eθ0 [log f(X1|X0; θ)] for any θ 6= θ0. �

B.1.2 E regularity conditions in Chapter 3

We list the following E class of regularity conditions which will be used for consistency and asymptotic

normality of MLE for Markovian case.

E.1 θ 6= θ0 ⇔ f(·|·; θ) 6= f(·|·; θ0). f(·|·; θ) is transition density.

E.2 The parameter space Θ is compact.

E.3 l(θ;x0, x1) is a continuous function of θ for all x0 ∈ X ⊂ R and x1 ∈ X ⊂ R.

E.4 ||l(θ;x0, x1)|| ≤ g1(x0, x1) for all θ ∈ Θ and Eθ0 [g1(X0, X1)] <∞. Eθ0 [·] is defined in D.3.
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E.5 θ0 lies in the interior of compact parameter space Θ.

E.6 L(θ;x0, x1) is twice continuously differentiable and L(θ;x0, x1) > 0 in a neighborhood of θ0, Ω0 for all

x0 ∈ X ⊂ R and x1 ∈ X ⊂ R.

E.7 ||∂L(θ;x0,x1)
∂θ || ≤ g2(x0, x1) for all θ ∈ Ω0 and

∫
X×X g2(x0, x1)µ(dx0 × dx1) <∞.

E.8 I(θ0) = Eθ0 [∂ logL(θ;x0,x1)
∂θ

∂ logL(θ;x0,x1)
∂θ

T
] is positive definite. Eθ0 [·] is defined in D.3.

E.9 ||∂
2 logL(θ;x0,x1)

∂θ∂θT
|| ≤ g3(x0, x1) for all θ ∈ Ω0 and Eθ0 [g3(X0, X1)] <∞. Eθ0 [·] is defined in D.3.

E.10 ||∂
2L(θ;x0,x1)
∂θ∂θT

|| ≤ g4(x0, x1) for all θ ∈ Ω0 and
∫
X×X g4(x0, x1)µ(dx× dx) <∞.

Lemma 24.9 (Consistency and normality for I.I.D). Under regularity conditions D.1, D.2 and E.1 ∼ E.4,

the MLE θ̂N is a consistent estimator. That is,

θ̂N
p→ θ0 (B.3)

when N →∞. When all D and E class of regularity conditions hold, then

√
N(θ̂N − θ0)

d→ N(0, I−1(θ0))

Proof. Consistency:

To prove the consistency of MLE, we mainly use Lemma 24.3 by settingQ(θ;XN ) = 1
N

∑N
j=1 l(θ;Xj , Xj−1).

Now we prove that regularity conditions E.1,E.2,E.3 and E.4 are equivalent to regularity conditions L24.3.1,

L24.3.2, L24.3.3 and L24.3.4 provided by Lemma 24.3.

First, L24.3.1 is the same as E.2.

Second, to show L24.3.2, we use Lemma 24.8. In fact, regularity E.2 and E.4 guarantee the availability

of Lemma 24.8 so that Q0(θ) is uniquely maximized at true parameter θ0.

Last, to show L24.3.3 and L24.3.4 together, we use Lemma 24.4 by setting a(Yj , θ) = l(θ;Xj , Xj−1)

for j = 1, . . . , N (We use Yj to represent the Xj in Lemma 24.4). That is, we need to verify L24.4.1,

L24.4.2, L24.4.3 and L24.4.4. In fact, L24.4.1 is guaranteed by E.2. L24.4.2 is guaranteed by E.3. L24.4.3 is

guaranteed by E.4. L24.4.4 is guaranteed by E.3 and E.4 and the Weak law of large numbers for Markovian

data (D.1 and D.2). Thus, we have the consistency property, that is, θ̂N
p→ θ0.

Asymptotic normality:
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Let N ⊂ Θ is an open set containing true parameter θ0. Due to the consistency of MLE θ̂N and

regularity condition E.5, we have 1{θ̂N∈N}
p→ 1. We denote 1{θ̂N∈N} as 1̂. When MLE θ̂N is inside N , we

have 1̂ · ∂∂θQ(θ̂N ;XN ) = 0 due to the first order condition. By the mean-value expansion theorem (regularity

condition E.6):

1̂N · [
1√
N

N∑
j=1

ϕ(Xj , Xj−1; θ0) + {−J∗N}
√
N(θ̂N − θ0)] = 0 (B.4)

where ϕ(Xj , Xj−1; θ) is defined as ∂
∂θ l(θ;Xj , Xj−1). J∗N is a p × p random matrix where jth row of the

matrix is the jth row of JN evaluated at the mean value θ∗jN between θ̂N and θ0 and

JN (θ) = [− 1

N

N∑
j=1

∂2 logL(θ;Xj , Xj−1)

∂θ∂θ′
]

Suppose we have: (we will prove them later)

1O: 1√
N

∑N
j=1 ϕ(Xj , Xj−1; θ0)

D→ N(0, I(θ0)) as N →∞.

2O: J∗N
p→ I(θ0) as N →∞.

Then, we denote 1{θ̂N∈N∩J∗N is non-singular} as 1̃. Then, by Equation (B.4), we have

1̃ ·
√
N(θ̂N − θ0) = 1̃ · (J∗N )−1

N∑
j=1

ϕ(Xj , Xj−1; θ0)

Due to regularity condition E.8, we know 1̃
p→ 1. Combined with 1O, 2O and Slutsky’s theorem, we have

√
N(θ̂N − θ0)

d→ N(0, I−1(θ0))

Proof of 1O: This is guaranteed by Lemma 10.1 under regularity conditions of D class.

Proof of 2O: We have Eθ0ϕ(Xj , Xj−1; θ0) = 0 and then Eθ0 [Jn(θ0)] = I(θ0) by utilizing Lemma 24.5

based on regularity conditions E.6, E.7 and E.10. If we denote Eθ0 [− ∂2

∂θ∂θ′ log f(X1|X0; θ)] as J(θ), we have

Jn(θ)
p→ J(θ) due to the Lemma 10.1 (D.1 and D.2) and E.10. We utilize Lemma 24.4 by setting a(X, θ) to

be the random matrix Jn(θ). Based on the regularity condition E.2, E.6, E.9, E.10 and Lemma 10.1 (D.1

and D.2), we have that J(θ) is continuous at θ ∈ N and uniform continuity supθ∈N ||Jn(θ)− J(θ)|| p→ 0. To

prove 2O, we use triangle inequality

||J∗n − I(θ0)|| ≤ ||J∗n − J(θ∗)||+ ||J(θ∗)− I(θ0)||

where θ∗ is mean value defined in (B.4). ||J∗n − J(θ∗)|| p→ 0 is due to the uniform convergence proved above
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and ||J(θ∗)− I(θ0)|| p→ 0 is since θ∗ is consistent defined in (B.4). �

Under the framework of Section 3.2.2, we have the hypothesis:

H0 : g1(θ) = 0, . . . , gq(θ) = 0, 1 ≤ q < p.

against

Ha : ∃k, gk(θ) 6= 0, 1 ≤ k ≤ q.

Lemma 24.10. Let {X} be i.i.d data. Assume that we can treat H0 as θ1 = θ0
1, ·, θr = θ0

r via reparametriza-

tion where θ0
j is the jth true parameter. When H0 holds, B classes of regularity conditions applied to both

parameter space Θ and its subspace Θ0 of parameter vector (θr+1, . . . , θp), we have

−2 log Λ
d→ χ2

k

where

Λ =
L0(

ˆ̂
θN ;X)

L1(θ̂N ;X)
,

ˆ̂
θN ∈ Θ0 is the MLE of the likelihood L0(θ;X) under H0. θ̂N ∈ Θ1 is the MLE of the likelihood L1(θ;X) in

parameter space Θ. The dimension of parameter space is p for Θ and (p− q) for Θ0. χ2
k−p is a Chi-squared

distribution with degree freedom k.

Proof. If we denote {θ0
1, . . . , θ

0
r ,

ˆ̂
θN} as θ̃, we have L1(θ̃N ;X) = L0(

ˆ̂
θN ;X). Suppose log-likelihood is

l1(θ;X) = logL1(θ;X) (l0(θ;X) = logL0(θ;X)). Noticing that:

l1(θ;X) =

N∑
j=1

l1(θ;Xj),

we first perform mean-value expansion theorem (regularity condition B.6) to both l0(
ˆ̂
θN ;X) and l1(θ̂N ;X):

l0(
ˆ̂
θN ;X) =

N∑
j=1

l1(θ̃N ;Xj) =

N∑
j=1

l1(θ0;Xj) +

N∑
j=1

ϕ(θ0;Xj)
′(θ̃N − θ0) +

N

2
(θ̃N − θ0)′(−J∗1N )(θ̃N − θ0)

l1(θ̂N ;X) =

N∑
j=1

l1(θ̂N ;Xj) =

N∑
j=1

l1(θ0;Xj) +

N∑
j=1

ϕ(θ0;Xj)
′(θ̂N − θ0) +

N

2
(θ̂N − θ0)′(−J∗2N )(θ̂N − θ0)

where ϕ(θ;Xj) = ∂
∂θ l1(θ;Xj) and J∗1N , J∗2N are p× p random matrix where jth row of the matrix is the jth
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row of JN evaluated at the mean value between θ̂N and θ0 and

JN (θ) = [− 1

N

N∑
j=1

∂2 logL1(θ;Xj)

∂θ∂θ′
].

Then, we apply Equation (B.2) and 2O in Lemma 24.7 to ϕ, J∗1N and J∗2N based on B class of regularity

conditions combined with Slutsky’s theorem, we have

l0(
ˆ̂
θN ;X) =

N∑
j=1

l1(θ̃N ;Xj) =

N∑
j=1

l1(θ0;Xj) +
1

2

√
N(θ̃N − θ0)′(I(θ0))

√
N(θ̃N − θ0) + op(1)

l1(θ̂N ;X) =

N∑
j=1

l1(θ̂N ;Xj) =

N∑
j=1

l1(θ0;Xj) +
1

2

√
N(θ̂N − θ0)′(I(θ0))

√
N(θ̂N − θ0) + op(1)

Then, we have

−2 log Λ =
1

2

√
N(θ̂N − θ̃)′(I(θ0))

√
N(θ̂N − θ̃) + op(1)

We decompose θ̂N = {θ̂1
N , θ̂

2
N} and θ̃N = {θ̃1

N , θ̃
2
N} in the following way:

θ̂1
N = {θ̂1, . . . , θ̂k} θ̂2

N = {θ̂k+1, . . . , θ̂p} θ̃1
N = {θ0

1, . . . , θ
0
k} θ̃2

N = { ˆ̂θk+1, . . . ,
ˆ̂
θp}

Thus, we know that
√
N(θ̂1

N − θ̃1
N )

d→ N(0, I−1
1:k,1:k(θ0))

√
N(θ̂2

N − θ̃2
N )

d→ 0

via asymptotic normality indicated by Lemma 24.7. Then, obviously we have −2 log Λ
d→ χ2

k which is a

Chi-squared distribution with degree freedom k. �

B.2 Proofs

B.2.1 Proof of Theorem 6

For each θ ∈ Θ, EFh,M (φ, a)(x) will decay to zero (see Therorem 2.3 and Corollary 2.4 in Feng and Lin

(2013)). Because the bound of |EFh,M (φ, a)(x)| in Equation (3.4) doesn’t depend on parameter θ based on

the A class regularity conditions, |EFh,M (φ, a)(x)| decay to zero uniformly on θ ∈ Θ as Mh→∞ and h→ 0.
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B.2.2 Proof of Theorem 7

Proof. We utilize Lemma 24.3 by setting Q(θ,X,M, h, a) = lM,h,a(θ;X) and Q0(θ,X) = l(θ;X). We know

that Q(θ,X,M, h, a) converges to Q0(θ,X) uniformly for θ ∈ Θ when Mh→∞ and h→ 0 via Theorem 6.

Then, Lemma 24.3 holds and θ̂M,h,a
N

p→ θ̂N . �

B.2.3 Proof of Theorem 8

Proof. Under B class regularity conditions, we have

√
N(θ̂N − θ0)

d→ N(0, I−1(θ0))

via Lemma 24.7. Combined with Theorem 7, we have θ̂M,h,a
N , θ̂

M(N),h(N),a
N

p→ θ0 with fixed a when N →∞,

and
√
N(θ̂

M(N),h(N),a
N − θ0)

d→ N(0, I−1(θ0))

via Slutsky’s theorem. �

B.2.4 Proof of Theorem 9

Proof. Under B class regularity conditions, we have

−2 log Λ∗
d→ χ2

k

where

Λ∗ =
L0(

ˆ̂
θN ;X)

L1(θ̂N ;X)
,

via Lemma 24.10. Combined with Theorem 7, we have Λ
p→ Λ∗ as Mh→∞ and h→ 0. Then,

−2 log Λ
d→ χ2

k

via Slutsky’s theorem. �

B.2.5 Proof of Theorem 10

For each θ ∈ Θ, EFh,M (φ, a)(x) will decay to zero (see Therorem 2.3 and Corollary 2.4 in Feng and Lin

(2013)). Because the bound of |EFh,M (φ, a)(x)| in (3.4) doesn’t depend on parameter θ based on the C class
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regularity conditions, then, |EFh,M (φ, a)(x)| decay to zero uniformly on θ ∈ Θ as Mh→∞ and h→ 0.

B.2.6 Proof of Theorem 11

Proof. We utilize Lemma 24.3 by setting Q(θ,X,M, h, a) = lM,h,a(θ;X) and Q0(θ,X) = l(θ;X). We know

that Q(θ,X,M, h, a) converges to Q0(θ,X) uniformly for θ ∈ Θ when Mh→∞ and h→ 0 via Theorem 10.

Then, Lemma 24.3 holds combined with regularity condition E.2 and E.3, and θ̂M,h,a
N

p→ θ̂N . �

B.2.7 Proof of Theorem 12

Proof. Under E class regularity conditions, we have

√
N(θ̂N − θ0)

d→ N(0, I−1(θ0))

via Lemma 24.9. Combined with Theorem 11, we have θ̂M,h,a
N , θ̂

M(N),h(N),a
N

p→ θ0 with fixed a when N →∞,

and
√
N(θ̂

M(N),h(N),a
N − θ0)

d→ N(0, I−1(θ0))

via Slutsky’s theorem. �

B.2.8 Proof of Theorem 13

Proof. If we follow the selection of analytic strip D[d−,d+] for each model in Section 3.3, A.1 is satisfied

because their characteristic function φ(u; θ) is analytic in the analytic strip. The proof of analyticity for

each model is trivial.

For A.2 and A.4, the model’s characteristic function forms are provided in the Section 3.3. And all of them

|(φ(x + iy))| are bounded, analytic and having exponential tails with respect to x ∈ R within the analytic

strip. Given the compact parameter space (actually it is a closed interval for each parameter), A.2 and A.4

are satisfied. The specific computation step is omitted.

�

B.2.9 Proof of Lemma 13.1

Proof. Please see the proof of Lemma 2.3 in Mukerjee and Sutradhar (2002) or 5a.3 in Rao et al. (1973). �
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B.2.10 Proof of Lemma 13.2

Proof. if V (θ) is not positive definite, there exists non-zero β ∈ Rp, so that cov(β1X+β2X
2+. . .+βpX

p) = 0.

Then, β1X+β2X
2 + . . .+βpX

p = C, where C is a constant. Because X has a continuous probability density

over real line R, thus X could be any value at least within a small open interval. Notice that {X,X2, . . . , Xp}

are linearly independent. Thus, β is a zero vector. This is a contradiction to non-zero β ∈ Rp. Thus, V (θ)

is positive definite. �

B.3 The simulation of CGMY processes

We simulate CGMY processes with parameter C = 3, G = 78, M = 82 and Y = 0.9. We mainly use the

method proposed by Chen et al. (2012). For the daily data (δ = 1/252), we choose M = 150 and h = 3 to

approximate CDF F̃ (x) of Levy processes X(δ) at time δ by using Hilbert transform method (Section 2 in

Chen et al. (2012)). The choice of M and h can guarantee the approximation error less than 10−12 for every

possible x in this parameter set. Suppose the expected value of X(δ) is mcgmy and variance is varcgmy.

We choose n1 and n2 so that F̃ (xl) < 10−8 and 1 − F̃ (xu) < 10−8 based on xu = mcgmy + n1(varcgmy)0.5

and xl = mcgmy − n2(varcgmy)0.5. Then, we construct 222 points {x} between xu and xl uniformly and

calculate their corresponding approximated CDF F̃ (x). Then we simulate u following uniform distribution

and calculate F̃−1(u) based on the linear interpolation or a solver. F̃−1(u) will follow the distribution of

X(δ) approximately. We find interpolation can give us very accurate F̃−1(u) and the error of F̃−1(u) less

than 10−12. if simulated u < 10−8 or u > 1 − 10−8, we set F̃−1(u) to be xu and xl. This averagely

happens every 108 samples which is very rare and the error of F̃−1(u) is also less than 10−12.All in all, our

implementation of the simulation method can control the error less than 10−12.

B.4 Approximated MLE implementation details

To approximate the likelihood l(θ;x), for our simulated data x = {xj}Nj and parameter θ, we find M and

h so that the approximation error is small. To be simple, we set a = 0 to approximate log-likelihood.

Thus, our approximated likelihood is lM,h,0(θ;x). First, through Theorem 6, we find Mh is only related

to the parameter and h is related to both parameter and data x for the bound of error. Moreover, for

one data xj , larger |xj | generally requires smaller h to control the approximation error. Following these

two phenomenon, we separate data x into two groups x1 and x2. max |x1| < 0.1, min |x2| > 0.1. If

we want to model equity values, most data will be has the absolute value less than 0.1. If we fix Mh,
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we can find that group 1 generally can have larger h with smaller M and notice that large M is mainly

the large computation requirement from based on Equation 3.2. Then, we choose common M and h for

either group 1 data or group 2 data to guarantee both |lM,h,0(θ;xmax) − l2M,h,0(θ;xmax)| < 10−8 and

|lM,h,0(θ;xmax)−l2M,h/2,0(θ;xmax)| < 10−8 where xmax is either max |x1| or max |x2|. In this way separating

data into two groups can effectively reduce the computation burden. In the end, I will check if selected M

and h can satisfying |lM,h,0(θ;xmax)− l2M,h,0(θ;xj)| < 10−8 and |lM,h,0(θ;xmax)− l2M,h/2,0(θ;xj)| < 10−8

for all 1 ≤ j ≤ N . In our experience, this is general the case. If error can be controlled for data xmax,(in our

case, error is controlled by 10−8), similar error can also be controlled for every data point. In this way, we

don’t need to search M and h for each data point of x and we can save a lot of time. To search M and h, we

set the initial search point is M = 50 and h = 5. This initial point is set by our practical experience. The

search pattern for M , h is from the expression of error of bound in Lemma 6. It can be shown that the first

two terms converge to zero at the exponential rate exp(−πd/h) and TMh converges to zero at the exponential

rate exp(−c(Mh)ν). Thus, we choose the search new M1 and h1 to be exp(−(M1h)ν) ≈ exp(−(Mh)ν) ∗ δ1

and exp(−(π)/h1) = exp(−(π)/h) ∗ δ2. We set δ1 = 0.1 and δ2 = 0.5 in our algorithm applied to the

simulation study and case study and it shows high efficiency to search M and h.
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Appendix C

Appendix of Chapter 4

C.1 Useful lemmas

We list several typical asymptotic properties of ECF estimates for Lévy processes with proofs under B

class regularity conditions. Those properties will be used to prove the theorems of previous sections in this

chapter.

We first list the lemma to help us to prove the Theorem 18. This is basically the Theorem 2.3 in Feng

and Lin (2013).

A function f is in H(D(d−,d+)) if it is analytic in D(d−,d+) and satisfies

∫ d+

d−

|f(x+ iy)|dy → 0, x→ ±∞.

||f ||± ≡ lim
ε→0+

∫
R

|f(x+ i(d± ∓ ε))|dx < +∞.

Lemma 24.11. Suppose f ∈ H(Dd−,d+). The trapezoidal sum approximation:

Th,M (f, a) =

M∑
m=−M

f(mh+ ia)h

. The approximation error is:

ETh,M (f, a) =

∫ ∞
−∞

f(x)dx− Th,M (f, a).

Then for any a ∈ (d−, d+),

|ETh,M (f ; a)| ≤ e−2π(a−d−)/h

1− e−2π(a−d−)/h
||f ||− +

e−2π(d+−a)/h

1− e−2π(d+−a)/h
||f ||+ + TMh.
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When f satisfies that:

|f(x+ ia)| ≤ k|x|n exp(−c|x|ν), x ∈ R

for some k > 0, ν ≥ 0 and either c > 0, n ∈ R or c = 0, n < −1, we have TMh = 2k
|n+1| (Mh)n+1 if c = 0, n <

−1, and TMh = 2k
νc(n+1)/ν Γ(n+1

ν , c(Mh)ν) if c > 0. Incomplete Gamma function Γ(s, b) =
∫∞
b
e−tts−1dt.

Proof. see Theorem 2.3 in Feng and Lin (2013). �

We list the following lemma which helps us to prove the Theorem 19.

Lemma 24.12. Xn ∈ X is a n−dimensional random vector and Q(θ;Xn) is a real-valued function of θ

given Xn. Q0(θ) is a real-valued function of θ. Suppose θ ∈ Θ ⊂ Rp and θ̂n is defined as the value of θ ∈ Θ

maximizing Q(θ;Xn). Under such regularity conditions below:

L24.12.1 Parameter space Θ is compact.

L24.12.2 Q0(θ) is uniquely maximized at θ0.

L24.12.3 Q0(θ) is continuous in θ ∈ Θ.

L24.12.4 Q(θ;Xn) converges uniformly in probability to Q0(θ). That is, supθ∈Θ |Q(θ;Xn) − Q0(θ)| p→ 0 as

n→∞.

then, θ̂n
p→ θ0 as n→∞.

Remark 18. This lemma is the Theorem 2.1 in Newey and McFadden (1994). In fact, the condition L24.12.3

can be generalized to be upper-continuous. The combination of conditions L24.12.1, L24.12.2 and L24.12.3

can be replaced by a more general condition: θ0 is a well-separated point of the maximum (See Corollary

3.2.3 in Van der Vaart (2000)).

Proof. let Bε(θ0) = {θ : ||θ− θ0|| < ε}. Because Θ∩BCε (θ0) is compact (L24.12.1) and Q0(θ) is a continuous

function (L24.12.3), there exists θ∗ ∈ Θ∩BCε (θ0) to achieve supθ∈Θ∩BCε (θ0){Q0(θ)}. Because θ0 is the unique

to maximize Q0(θ) (L24.12.2), we denote Q0(θ0)−Q0(θ∗) as δ > 0.

Notice that:

sup
θ∈(Θ∩BCε (θ0))

|Q(θ;Xn)−Q0(θ)| < δ

2
⇒ Q(θ;X) < Q0(θ) +

δ

2
≤ Q0(θ∗) +

δ

2
= Q0(θ0)− δ

2
.

sup
θ∈Θ∩Bε(θ0)

|Q(θ;Xn)−Q0(θ)| < δ

2
⇒ Q(θ0;Xn) > Q0(θ0)− δ

2
.
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Then, we have:

sup
θ∈Θ
|Q(θ;Xn)−Q0(θ)| < δ

2
⇒ Q(θ0;Xn) > Q(θ;Xn) for θ ∈ Θ ∩BCε (θ0)⇒ θn ∈ Θ ∩Bε(θ0).

Due to the L24.12.4, as n→∞, we have

P (sup
θ∈Θ
|Q(θ;Xn)−Q0(θ)| < δ

2
)
p→ 1.

Then, we have P (θn ∈ Θ ∩Bε(θ0))
p→ 1 as n→∞. Equivalently, we have θ̂n

p→ θ0 as n→∞. �

C.1.1 B class regularity conditions in Chapter 4

We list the following B class of regularity conditions for the asymptotic property of ECF estimation, which

is proposed by Knight and Yu (2002). This class of regularity conditions work for both i.i.d and dependent

data. We discard the regularity conditions which are for non-i.i.d data (always hold for i.i.d data) and only

list the ones for i.i.d data.

B.1 θ0 lies in the interior of compact parameter space Θ.

B.2 With probability one, e(θ;X) is twice continuously differentiable under the integral sign with respect

to θ over Θ.

B.3 Let e0(θ) =
∫
|φ(u; θ)− φ(u; θ0)|2g(u)du and e0(θ) = 0 only if θ = θ0.

B.4 K(x; θ) is a measurable function of x for all θ and bounded, where

K(x; θ) =

∫
{(cos(ux)−<φ(u; θ))

∂<φ(u; θ)

∂θ
+ (sin(ux)−=φ(u; θ))

∂=φ(u; θ)

∂θ
}g(u)du

B.5 B(θ0) =
∫

(∂φ(u; θ0)/∂θ)(∂φ(u; θ0)/∂θT )g(u)du is nonsingular and ∂2φ(u; θ)/∂θ∂θT is uniformly bounded

by a g-integrable function over Θ.

Now, we list the lemma to prove the Theorem 20.

Lemma 24.13 (Consistency and normality of ECF estimates for I.I.D data). Under regularity conditions

B.1 ∼ B.3, the ECF estimate θ̂ECF is a consistent estimator. That is,

θ̂ECF
p→ θ0 (C.1)
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when sample size n→∞. When all B class of regularity conditions hold, then

√
n(θ̂ECF − θ0)

d→ N(0, B−1(θ0)A(θ0)B−1(θ0)),

where A(θ0) = var(K(x1; θ0)).

Proof. See the Theorem 2.1 in Knight and Yu (2002) �

This interchange of differentiation and integration lemma will be used to prove Theorem 24.

Lemma 24.14 (Interchange of differentiation and integration). a(x, θ) is a real-valued function of an ob-

servation x ∈ X and the parameter θ. If a(x, θ) is continuously differentiable at θ ∈ N for all x ∈ X where

N is an open set and
∫
X (supθ∈N || ∂∂θa(x, θ)||)dx <∞, then,

∫
X a(x, θ)dx is continuously differentiable and

∂
∂θ

∫
X a(x, θ)dx =

∫
X ( ∂∂θa(x, θ))dx.

Proof. For any θ ∈ N , we can choose a sequence θn ∈ N so that θn → θ because N is an open set.

Since a(x, θ) is continuously differentiable at θ ∈ N for all x ∈ X , we have ∂
∂θn

a(x, θ) → ∂
∂θn

a(x, θ). In

addition, we know that
∫
X (supθ∈N || ∂∂θa(x, θ)||)dx <∞, Thus,

∫
X ( ∂∂θa(x, θn))dx→

∫
X ( ∂∂θa(x, θ))dx due to

dominated convergence theorem. Thus,
∫
X ( ∂∂θa(x, θ))dx is continuous. By mean-value expansion theorem,

we have a(x, θn) = a(x, θ) + ∂
∂θa(x, θ)′(θn − θ) + r(x, θn) where r(x, θn) = [ ∂∂θa(x, θ∗n) − ∂

∂θa(x, θ)]′(θn − θ)

and θ∗n is the mean value located in the line between θn and θ. Because N is an open set, for all θn

closed enough to θ, we can assume that θ∗n ∈ N without losing generality. Then, we have ||r(x, θn)||/||θn −

θ|| ≤ || ∂∂θa(x, θ∗n) − ∂
∂θa(x, θ)|| → 0 by the continuity of ∂

∂θa(x, θ). In addition, ||r(x, θn)||/||θn − θ|| ≤

2 supθ∈N || ∂∂θa(x, θ)||, we have ||r(x, θn)||/||θn − θ|| → 0 by dominated convergence theorem. Therefore,

|
∫
X a(x, θn) −

∫
X a(x, θ) − [

∫
X

∂
∂θa(x, θ)dx]′(θn − θ) = |

∫
X r(x, θn)dx| ≤

∫
X |r(x, θn)|dx = o(||θn − θ||).

Equivalently, we have ∂
∂θ

∫
X a(x, θ)dx =

∫
X ( ∂∂θa(x, θ))dx. �

We also need to use the following lemma proposed in Chapter 2.3.3 (Lemma 24.1) to prove the regularity

condition B.5.

Lemma 24.15. {A(t)}t∈Rd are positive-semidefinite n×n matrices of which entries are continuous functions

of t ∈ Rd. G(t) is a probability measure with support S containing an open set I ⊂ S . Then, there will be

no open set I ⊆ I so that
∫
I A(t)dG(t) is positive definite.

⇔ there exists non-zero constant β so that ∀t ∈ I, A(t)β = 0.

Proof. ⇐ Note that there exists non-zero constant vector β(not related to t) so that for ∀t A(t)β = 0 for

∀t ∈ I. Thus, for any open set I ⊂ I, we have
∫
I(A(t))dG(t)β =

∫
I(A(t))βdG(t) = 0. That is,

∫
I A(t)dG(t)
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is not full rank.

⇒ We prove it by contradiction. If for ∀I ⊆ I,
∫
I A(t)dG(t) is not full rank. First we select an arbitrary

open set I1 ⊆ I. Because
∫
I1 A(t)dG(t) is not full rank, there exists non-zero constant vector β1 satisfying∫

I1 A(t)dG(t)β1 = 0. Then,
∫
I1 β

T
1 A(t)β1dG(t) = 0. Considering A(t) is positive-semidefinite matrix and

A(t) is continuous with respect to t, we have βT1 A(t)βT1 = 0 for ∀t ∈ I1. Also, A(t) can be written as

P (t)TP (t) by Cholesky decomposition. Then, we have (P (t)βT1 )T (P (t)β1) = 0 which is A(t)β1 = 0 for

∀t ∈ I1. Because there is no non-zero constant vector β so that A(t)β = 0 for ∀t ∈ I, there exists t2 /∈ I1

so that A(t2)β1 6= 0, Thus, we select another open set I2 satisfying I2 ⊃ (I1 ∪ t2) and I2 ⊆ I. Because∫
I2 A(t)dG(t) is not full rank, there exists non-zero constant vector β2 satisfying

∫
I2 A(t)dG(t)β2 = 0.

Definitely we also have A(t2)β2 = 0. Repeating the procedure above, we will have:

1. Open set I1 ⊂ I2 · · · ⊆ I;

2. Non-zero constant vector βi satisfying A(t)βi = 0 for ∀t ∈ Ii (i = 1, 2, . . .);

3. For j = 2, 3, . . ., there exists tj ∈ Ij \ Ii−1 satisfying A(tj)βj−1 6= 0. But, A(tj)βk = 0 for ∀k ≥ j.

Suppose we select β1, β2, . . . , βn+1. Then, they must be linearly dependent (β is n × 1 vector). That

is, there exists not all zero real numbers c1, . . . , cn+1 so that c1β1 + c2β2 + · · · + cn+1βn+1 = 0. Then,

A(t2)(c1β1 + c2β2 + · · ·+ cn+1βn+1) = 0. Then, we have c1A(t2)β1 = 0 which lead to c1 = 0. Similarly, we

multiply A(t3) by c2β2 + · · · + cn+1βn+1 to get c2 = 0. In the end, we will get c1 = c2 = · · · = cn+1 = 0.

This is a contradiction. �

C.2 Proofs

C.2.1 Proof of Theorem 18

We basically follow the proof of Theorem 2.2 in Feng and Lin (2013) (Lemma 24.11). For simplicity, we use

a close analytic strip D[d−,d+] in our work instead of the open one in Feng and Lin (2013). This will not

make a difference.

Let f = |φ(u; θ) − θn(u)|2g(u). Then, for each fixed θ ∈ Θ, regularity condition A.1, A.2 and A.3 can

guarantee f ∈ H(D[d−,d+]), ||f ||− ≤ C1||g||− and ||f ||+ ≤ C2||g||+. Applying Lemma 24.11 with regularity

condition A.4 and A.5, we have:

|EFh,M (e, a)(θ;X)| ≤ e−2π(a−d−)/h

1− e−2π(a−d−)/h C1||g||− +
e−2π(d+−a)/h

1− e−2π(d+−a)/h C2||g||+ + TMh .

Moreover, Because bound of |EFh,M (φ, a)(x)| in (4.6) doesn’t depend on parameter θ based on the A class
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regularity conditions, then, |EFh,M (φ, a)(x)| decay to zero uniformly on θ ∈ Θ as Mh →∞ and h→ 0.

C.2.2 Proof of Theorem 19

Proof. We utilize Lemma 24.12 by setting Q(θ,X,M , h , a) = −eM ,h,a(θ;X) and Q0(θ,X) = −e(θ;X). We

know that Q(θ,X,M , h , a) converges to Q0(θ,X) uniformly for θ ∈ Θ when Mh → ∞ and h → 0 via

Theorem 18. Then, Lemma 24.12 holds and θ̂M ,h,a
n

p→ θ̂ECF when n→∞. �

C.2.3 Proof of Theorem 20

Proof. Under B class regularity conditions, we have

√
n(θ̂ECF − θ0)

d→ N(0, B−1(θ0)A(θ0)B−1(θ0))

via Lemma 24.13. Combined with Theorem 19, we have θ̂M ,h,a
n , θ̂

M (n),h(n),a
n

p→ θ0 with fixed a when sample

size n→∞, and
√
n(θ̂

M (n),h(n),a
ECF − θ0)

d→ N(0, B−1(θ0)A(θ0)B−1(θ0))

via Slutsky’s theorem. �

C.2.4 Proof of Proposition 21

Proof. g(u) = 1√
2π

exp− u2

2σ2 , which is analytic function. This satisfies the A.1.

g(x+ iy) = 1√
2π

exp−x
2−y2+2ixy

2σ2 converge to zero when x→∞ given any y ∈ [−d, d]. Also, it is simply to

show ||g||+ is bounded due to its exponential tail exp(−x2/(2σ2)). Thus, A.3 is fulfilled.

For the common lèvy processes, |φ(x + ia; θ) − φn(x + ia)| is uniformly bounded with respect to θ into a

compact parameter space. Also, it is easy to show that g(x + ai) ≤ k |x|n exp(−c|x|ν), x ∈ R with n = 0,

ν = 2, c = 1/(2σ2) and k = 1√
2π

exp(max2(−d−, d+)/(2σ2)). Thus, A.4 also hold. Thus, normal distribution

density satisfies the regularity condition. �

C.2.5 Proof of Proposition 22

Proof. Utilize cental limit theorem for cos(uX) and sin(uX). Also, notice that cos(2uX) = 1− 2 cos2(uX).

Then, we have the result in Proposition 22. �
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C.2.6 Proof of Theorem 23

Proof. If we follow the selection of analytic strip D[d−,d+] for each model in Section 4.3.1, A.1 is satisfied

because their characteristic function φ(u; θ) is analytic in the analytic strip. The proof of analyticity for

each model is trivial.

For A.2, the model’s characteristic function forms are provided in the Section 4.3.1. And all of them,

|(φ(x+ iy))|, are bounded, analytic and having exponential tails with respect to x ∈ R within the analytic

strip. Given the compact parameter space (actually it is a closed interval for each parameter), A.2 is satisfied.

The specific computation step is omitted.

Similarly to A.2, we can show |(φ(x+ ia))| is uniformly bounded with respect to parameter θ given a. Also,

empirical characteristic function φn(x + ia) is also obviously bounded given the data set X and a due to

its definition. Thus, ||φ(x + ia; θ) − φn(x + ia)|| is uniformly bounded with respect to θ into a compact

parameter space. Also, we know that g(x+ ai) ≤ k |x|n exp(−c|x|ν), x ∈ R based on our selection of g(u)

which satisfies regularity condition A.4. Thus, A.4 is satisfied. �

C.2.7 Proof of Theorem 24

Proof. B.1 is satisfied based on our choice of compact parameter space Θ in Section 4.3.1.

To prove B.2, we can use the Lemma 24.14 and show
∫
X (supθ∈N || ∂∂θ |φ(x; θ) − φn(x)|g(x)||)dx < ∞. The

computation is tough. We use Mathematica and find ∂
∂θ |φ(x; θ)−φn(x)| is uniformly bounded for each model

with respect to the parameter in the compact parameter space. Also, we know g(x) is selected to satisfy

class A regularity conditions. That is, g(x) ≤ k |x|n exp(−c|x|ν), x ∈ R. Then,
∫
X (supθ∈N || ∂∂θ |φ(x; θ) −

φn(x)|g(x)||)dx < ∞. Also, it is easy to show that |φ(x; θ) − φn(x)|g(x) is continuously differentiable at θ

inside the parameter space, Thus, B.2 is satisfied.

To prove B.3, we only need to show φ(u; θ) and φ(u; θ0) have different values for u within an inter-

val. This is also easy to prove by using the linear independent property in the linear algebra. We take

NIG model as an instance. log φ(u; θ) = iµu − λ(
√

(α2 − (β + iu)2) −
√
α2 − β2). Also, log φ(u; θ0) =

iµ0u− λ0(
√

(α2
0 − (β0 + iu)2)−

√
α2

0 − β2
0). We can find that iµu, λ

√
(α2 − (β + iu)2) and λ

√
α2 − β2 are

linear independent in terms of u. Then, iµu = iµ0u, λ(
√

(α2 − (β + iu)2)) = λ0(
√

(α2
0 − (β0 + iu)2) and

λ
√
α2 − β2 = λ0

√
α2

0 − β2
0 for all u in the interval. Then, we use the similar logic for λ(

√
(α2 − (β + iu)2)) =

λ0(
√

(α2
0 − (β0 + iu)2) by square both sides, we can find λ = λ0 and β = β0. Then, we can find α = α0 from

the equation λ
√
α2 − β2 = λ0

√
α2

0 − β2
0 and µ = µ0 from the equation iµu = iµ0u. Thus, B.3 is satisfied

for NIG model. Similarly, Merton’s jump-diffusion model, Kou’s jump-diffusion model also can be proved

simply. For CGMY model, to prove the identification, we can use the (7.14) and (7.15) in Miyahara (2002).
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To prove B.4, we can show stronger result that K(x, θ) is continuously differentiable under the integral sign

based on the Lemma 24.14. The proof is similar to the proof of B.2 and we use Mathematica to conduct

the calculation, finding the part inside the integral is smooth, bounded and exponential tail with respect

to u uniformly on θ in the compact parameter space (defined in Section 4.3.1). Computational details are

skipped here.

To prove B.5, we first prove B(θ0) is nonsingular. This is a little tricky because we do not have a close form

of B(θ0) because it is an integration with respect to u. We use Lemma 24.15 which proposed in Chapter

2.3.3. Notice that in our framework, G′(u) = g(u) and G(u) is bounded and increasing function. Thus, if we

define A(t) in the Lemma 24.15 to be A(t) = (∂φ(t; θ0)/∂θ)(∂φ(t; θ0)/∂θT ), Lemma 24.15 can be applied.

Then, we only need to show that there is no β so that A(t)β = 0 for t ∈ R, where β is not a function of t.

This is relative easy to prove because we know the close form of A(t) and A(t) does not have the integration

part anymore. We use Mathematica to calculate A(t) for each model first, we find for the most cases, all the

elements in the first row of A(t) is even linearly independent with respect to t. Thus, β = 0. Then, there is

no β to guarantee A(t)β = 0 for t ∈ R. Then, B(θ0) is nonsingular.

To prove that ∂2φ(u; θ)/∂θ∂θT is uniformly bounded by a g-integrable function over Θ. We use Mathematica

to derive the close form of ∂2φ(u; θ)/∂θ∂θT for each model and find each element in ∂2φ(u; θ)/∂θ∂θT can be

uniformly bounded by a constant, given compact parameter space in Section 4.3.1. A constant is certainly

a g-integrable function, because
∫
R
g(u) = G(u)|∞0 , which is bounded in ECF framework. �
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