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Abstract

Inducing nonreciprocal wave propagation is a fundamental challenge across a wide

range of physical systems in electromagnetics, optics, and acoustics. Linear, time-

invariant systems are always reciprocal, but reciprocity can be broken through the

action of a bias that is asymmetric under time-reversal. Magnetic fields are the most

common bias used to produce nonreciprocal devices. However, nonreciprocal devices

using magnetic fields are difficult to integrate into larger systems that may be sensi-

tive to magnetic fields. To overcome this challenge, recent efforts to create nonrecip-

rocal devices have instead exploited momentum-based techniques such as coherent

spatiotemporal modulation of resonators and waveguides. One such technique, in-

direct interband scattering, uses a traveling wave bias to scatter light between two

modes which differ in frequency and momentum. Due to momentum conservation,

this process is inherently nonreciprocal — light traveling in different directions will

be scattered differently by the traveling wave bias. This thesis extends the method

of indirect interband scattering in two separate domains. Indirect interband scat-

tering has so far been demonstrated only between co-propagating traveling modes,

both in waveguides and whispering-gallery-mode resonators. Here, indirect scatter-

ing between a waveguide and standing-mode resonator is described and demonstrated

experimentally. There are several capabilities and advantages unique to this type of

indirect scattering, which we term “nonreciprocal coupling”. Additionally, while in-

direct scattering has so far mainly been explored in optical systems, the experiments

in this thesis occur in the microwave frequency domain.
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Chapter 1

Introduction

This chapter provides the background necessary to understand the remainder of the

thesis, which focuses on extending the idea of indirect interband photonic transi-

tions to a new regime - between waveguides and resonators. First, the concepts of

reciprocity and nonreciprocity are introduced, beginning from Maxwell’s equations.

A brief history of indirect interband photonic transitions and their use in creating

nonreciprocal devices is presented. Finally, motivations for the research presented in

this thesis are discussed. The basis for the research presented in this thesis was first

published in Ref. [1].

1.1 Reciprocity

In general, reciprocity of wave propagation means that waves traveling in opposite

directions behave identically [2]. In electromagnetics there are two formulations of

reciprocity that both can be derived directly from Maxwell’s equations.

Consider the electromagnetic field [EEE1,HHH1] produced by the source [JJJ1,MMM1], and

the field [EEE2,HHH2] produced by the source [JJJ2,MMM2], where EEE is the electric field,

HHH is the magnetic field, JJJ is the electric current density, and MMM is the (fictitious)

magnetic current density (bold symbols are both time-harmonic phasors and vectors).

Maxwell’s equations in differential form for these fields are

∇×EEE1 = −jωµHHH1 −MMM1 ,

∇×HHH1 = jωεEEE1 + σEEE1 + JJJ1 ,
(1.1)
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∇×EEE2 = −jωµHHH2 −MMM2 ,

∇×HHH2 = jωεEEE2 + σEEE2 + JJJ2 ,
(1.2)

where ε is the permittivity, µ is the permeability, and σ is the conductivity of the

medium. All medium parameters vary with position ~r, and are assumed to be linear

and time-invariant. These equations can be combined to form the reciprocity theorem

in integral form [3] by applying Gauss’ theorem to a surface S enclosing a finite

volume V

‹
S

(HHH2 ×EEE1 −HHH1×EEE2) · dS

=

˚
V

(EEE1 · JJJ2 +HHH2 ·MMM1 −EEE2 · JJJ1 −HHH1 ·MMM2)dV .

(1.3)

There are two special cases of this equation, respectively called Lorentz reciprocity

and Rayleigh-Carson reciprocity [3, 4]. In a region with all the sources (if the volume

is taken to infinity) or no sources, both sides of Eq. (1.3) are equal to zero and the

equation can be rewritten

‹
S

(HHH2 ×EEE1) · dS =

‹
S

(HHH1 ×EEE2) · dS . (1.4)

This form, known as the Lorentz reciprocity theorem, gives an equivalence between

the electric and magnetic fields on a surface enclosing the region. Under the same

assumption, Eq. (1.3) can also be rewritten as

˚
V

(EEE1 · JJJ2 −HHH1 ·MMM2)dV =

˚
V

(EEE2 · JJJ1 −HHH2 ·MMM1)dV , (1.5)

which is known as the Rayleigh-Carson reciprocity theorem. This equation can be

simplified by removing the magnetic currents (which do not exist in reality)

˚
V

EEE1 · JJJ2dV =

˚
V

EEE2 · JJJ1dV . (1.6)

The above reciprocity theorems, derived directly from Maxwell’s equations, show a
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relation between the fields produced by different sources within the same volume.

However, these formulations are not directly usable for many applications.

To produce a more directly applicable formulation of reciprocity, the Rayleigh-

Carson reciprocity theorem can be further simplified when applied to networks de-

fined by ports. We define a port n by a point-like current In and voltage Vn. Equation

(1.6) can be rewritten for a network of such ports as∑
n

V 1
n I

2
n =

∑
n

V 2
n I

1
n (1.7)

where V m
n is the voltage on port n from applied current Imn . If we consider a two

port network where I1 = I0
1 and I2 = I0

2 (an identical current applied to either port

1 or 2), this equation reads

V2 = V1 . (1.8)

Equation (1.8) states that the voltage at port 2 from a current at port 1 is identical to

the voltage at port 1 from the same current at port 2. This basic rule of reciprocity

can be extended to networks with more than two ports, and is the more easily

understood statement of reciprocity.

The currents and voltages at the ports of an N -port network can be compiled into

column vectors (borrowing the bra-ket notation from quantum mechanics)

|i〉 =


I1

...

IN

 , |v〉 =


V1

...

VN

 , (1.9)

which follow the relation

|v〉 = Ẑ |i〉 . (1.10)

The matrix Ẑ is known as the impedance matrix and it follows from Eq. (1.7) that,

for reciprocal networks, Ẑ must be symmetric (Ẑ = ẐT ). This can be shown by
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rewriting Eq. (1.7) in bra-ket notation

〈v∗1|i2〉 = 〈v∗2|i1〉 . (1.11)

Using the definition of the impedance matrix 〈v∗| = 〈i∗| ẐT , this equation takes the

form

〈i∗1|ẐT |i2〉 = 〈i∗2|ẐT |i1〉 . (1.12)

Since both sides are simply a complex number, the left-hand side can be transposed

without changing the relation such that

〈i∗2|Ẑ|i1〉 = 〈i∗2|ẐT |i1〉 . (1.13)

which clearly shows that the matrix Ẑ must be symmetric (Ẑ = ẐT ).

In addition to the impedance matrix definition of a network, it is often more useful

to define a network by its scattering matrix Ŝ, where

|v−〉 = Ŝ |v+〉 . (1.14)

The kets |v−〉 and |v+〉 represent output and input voltages from the ports, respec-

tively. These voltages can be interpreted as the amplitudes of incoming and outgoing

voltage waves at each port. The diagonal terms of the scattering matrix describe the

reflection from each port, while the off-diagonal terms describe transmission between

ports. Defined in this manner, the scattering matrix is related to the impedance

matrix [5] as

Ŝ = (Ẑ + Î)−1(Ẑ − Î) , (1.15)

where Î is the identity matrix. Since Î = ÎT and Ẑ = ẐT , the scattering matrix

for a reciprocal network obeys Ŝ = ŜT . This definition of a reciprocal network

— that its scattering matrix is symmetric — is widely used because a network is

usually characterized by its scattering matrix. From this definition, reciprocity can

be interpreted as the requirement that transmission between ports (e.g. from port

m → n, Snm) is identical to transmission between the same ports in the opposite
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direction (e.g. from port n→ m, Smn = Snm).

Although most networks are reciprocal there are many applications that require

an asymmetric scattering matrix, or a system where reciprocity is broken. Such

networks are known as nonreciprocal and can be created in a number of different

ways. Recall that in the reciprocity theorems above we assumed that the medium

was linear and time-invariant. Therefore time-varying systems are not required to

be reciprocal, and we can imagine a nonreciprocal network that obeys

Ŝ(t) = ŜT (−t) . (1.16)

This is the relation that nonreciprocal systems based on the magneto-optic effect in

gyrotropic materials [3, 6] obey. These systems can be understood by the relation

[7]

Ŝ(HHH) = ŜT (−HHH) , (1.17)

where the magnetic fieldHHH is used as a bias which is asymmetric under time-reversal.

However, using magnetic fields to break reciprocity creates inherent challenges if the

created nonreciprocal devices must be integrated into larger systems, since magnetic

fields often interfere with these larger systems and thus such nonreciprocal devices

require bulky magnetic shielding. Due to these challenges, there has been recent

interest in other methods of breaking reciprocity — including nonlinear [8, 9, 10, 11]

as well as explicitly time-varying [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26, 27, 28] techniques. The rest of this thesis will focus on a technique involving

spatiotemporal modulation, where a bias is applied which varies in both space and

time, that exploits a phenomenon known as indirect interband photonic transitions.

1.2 Indirect interband photonic transitions

Indirect interband photonic transitions are a phenomenon that can be exploited

to produce nonreciprocity. This section presents a broad overview of the previous

work on this topic: indirect electronic transitions, the analogy to indirect photonic
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transitions, and how such transitions can be used to create nonreciprocal networks.

From the perspective of an electron, a crystal appears as a nearly infinite periodic

array of atoms. Due to the approximately infinite nature of the crystal, the number

of available states for electrons to occupy is also nearly infinite. The available states,

mainly the outermost atomic orbitals, are spatially overlapping due to the short

distance between atoms in the crystal. These overlapping states hybridize and their

energy degeneracy lifts, forming energy bands with distributed wavefunctions [29].

These electronic energy bands can be described by the energy and momentum of

the electrons occupying the band. For certain spacings of the atoms in the crystal

lattice a gap can open where there are no available states in the energy bands: this

is known as a bandgap [29].

There are broadly two types of band gaps: direct and indirect. In a direct bandgap

the lowest energy state of the higher band has the same momentum as the highest

energy state of the lower band, while in an indirect bandgap the states closest in

energy differ in momentum (Fig. 1.1). Electrons can transition across a bandgap if

they gain or lose energy by absorbing or emitting a photon, but because photons carry

very little momentum in comparison to their energy this process primary occurs only

if the bandgap is direct. For electrons to transition across an indirect bandgap there

must be an additional exchange of momentum. Typically, this additional momentum

comes from the creation or annihilation of a phonon, a vibration of the crystal lattice

that has high momentum and low energy. This process is known as an indirect

interband electronic transition.

The explicit analogy from indirect electronic transitions to indirect photonic tran-

sitions was first made in a 1999 paper by Winn et al. (Ref. [30]) in the context

of photonic crystals, though similar ideas were proposed earlier [31, 32]. Photonic

crystals are periodic arrays of alternating materials with strongly contrasting dielec-

tric constants that mimic electronic crystals and can also have energy bands and

bandgaps [33]. They proposed that photons (light) can be scattered between the

energy bands of a photonic crystal if the refractive index is modulated in both time

and space, provided that the modulation matches the frequency and momentum dif-

ference between the bands. This process may be achieved in nonlinear media through
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Figure 1.1: Electronic bandgaps can be either direct (left) or indirect (right). In a
direct bandgap, transitions between the top of the valence band and bottom of the
conduction band require no momentum shift and thus only require additional
energy, usually absorbed from a photon (a particle with high energy and low
momentum). In an indirect bandgap, transitions between the bands require a
momentum shift, usually satisfied by absorption or emission of a phonon (a
quasi-particle with low energy and high momentum) in addition to the photon.
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a similar process as harmonic generation [34], where light perturbs the dielectric con-

stant of a χ(2) medium. However, this is not the only method for producing indirect

interband photonic transitions — any process that modulates the refractive index in

the appropriate manner will cause such transitions. For example, an experimental

demonstration of indirect interband transitions in a silicon optical ring resonator

[35] used a pulsed pump laser to generate free electron-hole pairs, which modified

the refractive index in the appropriate manner.

A spatiotemporal modulation which generates indirect transitions and thus car-

ries momentum necessarily breaks time-reversal symmetry, since momentum itself is

asymmetric under time-reversal. Since indirect interband photonic transitions rely on

this type of modulation, they can be used to create nonreciprocal devices. The idea

to create nonreciprocity through indirect transitions was first proposed by Zongfu

Yu and Shanhui Fan in a 2009 paper (Ref. [13]). The motivation behind this work is

the inherent difficulty in on-chip integration of magneto-optic nonreciprocal devices

[36]. In contrast, a nonreciprocal device based on indirect interband transitions could

be produced in a CMOS-compatible process, and would not be restricted to specific

power ranges as is the case with nonlinear nonreciprocal devices [13].

Amplitude nonreciprocity can be quantified through a parameter known as isola-

tion contrast. The power isolation contrast Imn between ports m and n is

Imn =
|Smn|2

|Snm|2
, (1.18)

or in dB form

I [dB]
mn = 20log10|Smn| − 20log10|Snm| . (1.19)

Complete isolation refers to the case where the isolation contrast is ±∞ dB, meaning

that there is zero transmitted power in one direction and finite transmitted power

in the other. It can be shown mathematically that indirect interband photonic tran-

sitions can lead to complete optical isolation. Following Ref. [13], consider a two-

dimensional optical waveguide that is uniform and infinite in the z direction. Such

a waveguide hosts both symmetric and anti-symmetric modes that can be classified
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Figure 1.2: Illustration of the dispersion of two modes in an electromagnetic
waveguide. These “photonic” modes can be coupled by a spatiotemporal
modulation which matches their frequency and momentum (wavevector) difference,
similarly to how indirect electronic transitions can occur. These transitions are
inherently nonreciprocal because the momentum matching only works for one
direction of propagation (here, the forward direction).
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by their frequencies and wavevectors (ω1, k1) and (ω2, k2), as pictured in Fig. 1.2. A

spatiotemporal modulation of the dielectric constant of the medium that the waves

propagate in is given by

ε′(x, z, t) = α(x) cos(Ωt− (−q)z) , (1.20)

where α(x) is the spatially dependent amplitude of the modulation. As previously

discussed, for the modulation to produce indirect interband transitions (scatter light

between the two modes of the waveguides), the frequency of modulation must equal

the frequency difference between the modes, Ω = ω2−ω1. Additionally, the wavevec-

tor of the modulation (proportional to momentum) must equal the wavevector dif-

ference between the modes, q = k2 − k1. To account for modulation with a slightly

different wavevector it is useful to introduce the variable ∆k = k2 − k1 + q. The

electric field in the waveguide can be written

E(x, z, t) = a1(z)E1(x)ei(−k1z+ω1t) + a2(z)E2(x)ei(−k2z+ω2t) , (1.21)

where a1,2 are the amplitudes and E1,2 are the spatial profiles of the two waveguide

modes. Using the slowly varying amplitude approximation [37], Maxwell’s equations

can be solved for these electric fields through the coupled-mode equation [38]

d

dz

(
a1

a2

)
=

(
0 jCe−j∆kz

jCej∆kz 0

)(
a1

a2

)
, (1.22)

where

C =
ε0
8

ˆ ∞
−∞

α(x)E1(x)E2(x)dx , (1.23)

which is an overlap integral between the two modes and the applied modulation.

Given the initial condition that only mode 1 is excited, a1(0) = 1, a2(0) = 0, the
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solution to Eq. (1.22) is

a1(z) = e−jz∆k/2
[

cos
(
z
√
C2 + (∆k/2)2

)
+ j

∆k

2
√
C2 + (∆k/2)2

sin
(
z
√
C2 + (∆k/2)2

) ]
,

a2(z) = jejz∆k/2
C sin

(
z
√
C2 + (∆k/2)2

)
√
C2 + (∆k/2)2

.

(1.24)

In the case of perfect phase matching, ∆k = 0, this reduces to

a1(z) = cos (zC) ,

a2(z) = j sin (zC) ,
(1.25)

and an incident wave in mode 1 will completely transition to mode 2 over a length

`c = π/(2C). In the opposite direction the phase matching condition is not satisfied,

since (−k2) − (−k1) + q 6= ∆k. Therefore the indirect transition only occurs for

one direction, creating a nonreciprocal device. This device follows the nonreciprocal

scattering matrix definition described in the previous section,

SSS(q) = SSST (−q) , (1.26)

since (−k2)− (−k1) + (−q) = −(k2 − k1 + q) = −∆k.

Indirect interband scattering has been extended beyond the original proposal of

a two-dimensional waveguide to create a variety of nonreciprocal devices. The phe-

nomenon has been observed experimentally in both waveguides [17, 15, 18] and res-

onators [22, 23, 26, 39]. Coupling has been shown between optical modes [17, 15,

18, 39], between an optical and an acoustic mode [22, 23, 26], and can be realized

between two acoustic modes [40]. Despite the variety of methods and types of waves

with which nonreciprocity through indirect interband transitions has been realized,

limitations remain. This thesis aims to remove some of these limitations as well as

introduce new nonreciprocal capabilities based on indirect interband transitions.
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1.3 Motivation and scope of this work

As discussed in the previous section, indirect interband transitions are a power-

ful tool for creating nonreciprocal devices without the challenges associated with

gyrotropic or non-linear media. However, nonreciprocal devices based on indirect

photonic transitions have so far been limited because such devices exclusively rely

on scattering between co-propagating modes in wave-guides [13, 17, 15, 18, 40] or

resonators [22, 23, 26, 39]. Mainly, the use of co-propagating modes has resulted

in all the demonstrated devices having nonreciprocal transfer functions that are re-

stricted to a Lorentzian-shaped frequency response. Co-propagating modes exist in

the same medium, limiting the degrees of freedom (DOFs) that could be tuned to

produce customizable higher-order frequency responses, which require multiple DOFs

[5, 41, 42, 43]. Using co-propagating resonant modes adds an additional parameter,

the quality factor of the modes used, but with only two modes it remains impossible

to produce higher-order nonreciprocal transfer functions.

This thesis proposes that indirect transitions can also be induced between a guided

mode and a stationary resonant mode. The indirect transitions are produced through

spatiotemporal modulation of spatially distributed coupling sites between the guided

and resonant mode. Such modulation is termed “synthetic phonons” since it emu-

lates the action of phonons with high momentum and low frequency and is realized

through phased modulation of coupling sites, analogous to the modulation of lat-

tice sites that constitutes phonons in a crystal. The indirect transitions effectively

generate nonreciprocal coupling between the guided and resonant mode, as light

propagating in different directions is coupled to the resonance differently. It will be

shown nonreciprocal coupling enables nonreciprocal devices with highly tailorable,

reconfigurable transfer functions that can be arranged using conventional waveguides

and resonators.

It is important to note a major difference between indirect transitions among co-

propagating modes and nonreciprocal coupling between a guided and resonant mode.

In a closed system, co-propagating modes in a waveguide or resonator are orthogo-

nal and thus, by definition, are not coupled unless by an applied bias. In contrast,
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resonant modes often couple to guided modes. This coupling is reciprocal, making it

undesirable in systems utilizing nonreciprocal coupling. To ensure that nonreciprocal

coupling is not disturbed by this “reciprocal coupling”, it is useful to intentionally

create a phase mismatch between the guided and resonant modes. Throughout this

thesis such phase mismatched resonant modes are referred to as dark states because,

analogous to atomic dark states [44, 45], they are localized resonances that cannot

emit or absorb light. These dark states are an example of parametric bound states

in the continuum (BICs) [46, 47], where the tuning parameter to produce the BIC is

the separation between coupling sites. Dark states have previously been studied for

applications in photonics [48, 49, 50] and have several properties, namely suppressed

emission and long lifetime, that are especially useful for creating nonreciprocal de-

vices.

Chapter 2 of this thesis focuses on the theory of nonreciprocal coupling. It will

review temporal coupled-mode theory as applied to waveguide-resonator systems,

describe how phase mismatched resonant modes (dark states) can be produced, and

propose a method for producing indirect transitions between waveguides and these

dark states. Chapter 3 presents experimental evidence of nonreciprocal coupling in

microstrip circuits. First, this chapter reviews resonators and waveguides in mi-

crostrip circuits and technical details important to understanding time-varying cou-

pling rates between such waveguides and resonators. It next provides experimental

data which demonstrates nonreciprocal coupling to microstrip resonators, and ex-

perimental validation of the theory of operation. Chapter 4 proposes applications

of nonreciprocal coupling and demonstrates experimentally how this nonreciprocal

coupling can be used to produce fundamental nonreciprocal devices as well as higher-

order nonreciprocal filters. Finally, Chapter 5 summarizes the work in this thesis and

proposes future work that extends the concepts introduced.
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Chapter 2

Nonreciprocal coupling: Theory

This chapter presents a theoretical analysis of nonreciprocal coupling using the frame-

work of temporal coupled-mode theory. It reviews temporal coupled-mode theory as

applied to waveguide-resonator systems, describes how phase mismatched resonant

modes (dark states) can be produced, and proposes a method for producing indirect

transitions between waveguides and these dark states.

2.1 Temporal coupled mode theory

Coupled-mode theory is an important and widely used technique for calculating how

energy is transferred between coupled modes, which can be either guided or resonant

modes. This section will present an overview of temporal coupled mode theory, which

will be used later in this chapter to show how resonant states can be engineered into

dark states and how coupling can be engaged to such dark states nonreciprocally.

A review of the history of coupled-mode theory can be found in Ref. [51]. For

the purposes of this thesis, the temporal coupled-mode theory presented in Refs.

[38, 52, 53], which make use of the slowly varying amplitude approximation [37], is

adequate. In the following, the Dirac’s bra-ket notation is used to denote a vector

(e.g. a vector |x〉), and matrices are denoted by a “hat” (e.g. a matrix Â).

Consider a system with n resonant modes. Following Ref. [53], the time-varying

amplitude of each mode can be modeled by the differential equation

d |a〉
dt

= jΩ̂ |a〉 . (2.1)

14



Here |a〉 is a vector of length n which representing the mode amplitudes of the

resonant modes

|a〉 =


a1

a2

...

an

 , (2.2)

and Ω̂ is an n × n matrix which describes the resonant frequencies and coupling

between the modes

Ω̂ =


ω0,1 ω12 . . . ω1n

ω21 ω0,2 . . . ω2n

...
. . .

ωn1 ωn2 . . . ω0,n

 . (2.3)

If the coupling between the resonant modes is reciprocal, this matrix is symmetric.

Each diagonal term ω0,n is the resonant frequency of the nth mode, and the off-

diagonal terms ωn1,n2 describe direct coupling between modes n1 and n2. As will be

shown later, it is also possible to create indirect coupling between the modes through

interactions with a waveguide. Although Ref. [53] only considers lossless resonant

modes, such modes are impossible to realize in practice. To account for the intrinsic

losses in the resonant modes, we can introduce a diagonal matrix κ̂,

κ̂ =


κ1 0 . . . 0

0 κ2 . . . 0
...

. . .

0 0 . . . κn

 , (2.4)

such that
d |a〉
dt

=
(
jΩ̂− κ̂

)
|a〉 . (2.5)

If the n resonant modes are coupled to m ports (e.g. ports of the network discussed
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in Chapter 1), the resulting system can be modeled through the equations

d |a〉
dt

=
(
jΩ̂− κ̂− Γ̂

)
|a〉+ K̂T |s+〉 (2.6)

and

|s−〉 = Ĉ |s+〉+ D̂ |a〉 . (2.7)

The vectors |s+〉 and |s−〉 respectively describe the input and output fields at the

ports (numbered 1→ m) and are related to each other through the scattering matrix

Ŝ as

|s−〉 = Ŝ |s+〉 , (2.8)

where

|s+〉 =


s1+

s2+

...

sm+

 , (2.9)

|s−〉 =


s1−

s2−
...

sm−

 , (2.10)

and

Ŝ =


S11 S12 . . . S1m

S21 S22 . . . S2m

...
. . .

Sm1 Sm2 . . . Smm

 . (2.11)

The relation between any input sa+ and any output sb− is

sb− = Sbasa+ . (2.12)

Defined in this manner, a network of ports and resonant modes is nonreciprocal if
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Ŝ 6= ŜT . The matrix elements of the scattering matrix can be obtained by solving

for the ratio sb−/sa+.

Returning to Equations (2.6) and (2.7), there are several additional matrices that

must be defined, Γ̂, K̂, Ĉ, and D̂. Along with Ω̂, these matrices define the system

their combination creates the scattering matrix Ŝ. The Γ̂ matrix,

Γ̂ =


γ1 γ12 . . . γ1n

γ21 γ2 . . . γ2n

...
. . .

γn1 γn2 . . . γn

 , (2.13)

defines the decay of the resonant modes to the ports (the diagonal terms γ1 →
γn), as well as coupling between the modes (the off-diagonal terms) that is caused

by interactions with the ports. As can be seen in Equations (2.6) and (2.7), the

interactions with the ports are captured by the K̂ and D̂ matrices. In Ref. [53]

it is shown that K̂ = D̂ due to time-reversal symmetry and although the systems

we will analyze are nonreciprocal, time-reversal symmetry is preserved in the form

Ŝ(t) = ŜT (−t) and the requirement that K̂ = D̂ remains. Therefore, only K̂ is used

in the following. The matrix K̂ is an m× n matrix

K̂ =


k11 k12 . . . k1n

k21 k22 . . . k2n

...
. . .

km1 km2 . . . kmn

 , (2.14)

where each term kab describes coupling between the ath port and the bth mode. Note

that if the number of ports is not equal to the number of modes, K̂ is not a square

matrix. It is shown in Ref. [53] that, due to energy conservation, the coupling

between the ports and modes is related to the decay rate of the modes through the

relation K̂†K̂ = 2Γ̂. This relation can be used to calculate the coupling between

resonant modes induced by interactions with the ports.

Finally, the matrix Ĉ is a scattering matrix that describes direct connections
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between the ports. In a lossless and reciprocal system Ĉ must be respectively unitary

and symmetric [53]. In this thesis, the direct connections between ports described

by Ĉ will be referred to as “waveguides”. In the following sections, the formalism

presented in this section will be used to show how “dark states”, resonances which are

not coupled to any ports, can be created using destructive interference. It will then

be shown how this coupling can be re-enabled nonreciprocally using spatiotemporal

modulation referred to as “synthetic phonons”.

2.2 Engineering dark states through destructive interference

Consider a representative system (Fig. 2.1a): two ports directly connected by a

waveguide with a frequency-dependent propagation constant β(ω), and a resonator

supporting a single mode at angular frequency ω0. The resonator is side-coupled

to the waveguide at N independent sites that are periodically separated on the

waveguide by a constant length `. For simplicity, assume that each coupling site

is located at the same spatial location on the resonator, and that the waveguide is

lossless and only supports a single mode. Forward propagation in the waveguide is

defined as from port 1 toward port 2.

This system can be characterized by analyzing the coupling between the waveg-

uide and the resonator using the framework of temporal coupled-mode theory as

described in the previous section. Since each coupling site is independent, the cou-

pling constants k1 and k2 (Fig. 2.1b) between the ports and resonator are evaluated

as a superposition of the contributions from each site,

k1 =
N∑
n=1

cne
−jβ`(n−1) ,

k2 =
N∑
n=1

cne
jβ`(n−1) ,

(2.15)

where cn is the coupling constant at the nth site. The exponential term in these
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Figure 2.1: A resonator and two-port waveguide are coupled at multiple spatially
separated sites.

definitions accounts for propagation in the waveguide between adjacent coupling sites

spaced by `, and differs between k1 and k2 due to the opposite propagation directions.

As illustrated in Fig. 2.1b, k1 describes coupling from the forward waveguide mode

into the resonator and coupling out of the resonator to the backward waveguide

mode. k2 describes coupling from the backward waveguide mode into the resonator

and coupling out of the resonator to the forward waveguide mode. As described

in the previous section, the coupling constants are related to the resonator’s decay,

described by the decay rate to the ports

γ =
|k1|2 + |k2|2

2
. (2.16)

Equation (2.15) reveals that the contribution to the total coupling constant from

the nth coupling site carries a phase β`(n− 1). When summed, these contributions

interfere such that the maximum coupling rate occurs only if all N contributions are

in-phase (phase matched coupling). Away from this maximum, the coupling rate

decreases, reaching zero when the contributions perfectly destructively interfere. In

the case of a complete phase mismatch, we obtain γ = 0 and the resonator can be

classified as a dark state, or a bound state in the contiuum, since it cannot be excited

19



by or decay to the waveguide. Since phase matching in this system is determined by

the product β`, it is possible to arrange a dark state from an arbitrary waveguide

and resonator by selecting the appropriate `.

2.3 Synthetic phonons enable nonreciprocal coupling

A dark state created by a total phase mismatch can be coupled to the accompanying

waveguide through a synthetic phonon bias (Fig. 2.2). Recall from Chapter 1 that a

synthetic phonon is a spatiotemporal variation of the coupling constants, in much the

same way the phonons are spatiotemporal variations of atomic position. Consider

synthetic phonons having angular frequency Ω, momentum q, and amplitude δc,

which are written as a modulation of each site’s coupling rate (illustrated in Fig.

2.2a)

cn = c0 + δc cos(Ωt− q`(n− 1)) . (2.17)

The product q` is simply a phase offset on the modulation applied to adjacent sites,

thus any phonon momentum q can be selected by modulating each site with a phase

offset θn = q`(n − 1). The synthetic phonon bias breaks time-reversal symmetry,

and thus induces nonreciprocal coupling, if the momentum q satisfies q` 6= zπ, where

z is an integer. This condition is equivalent to requiring synthetic phonons with a

non-zero momentum, since if q` = zπ a standing wave is formed.

When this spatiotemporally modulated coupling is substituted into Eqs. (2.15) it

is illustrative to separate the resulting terms into frequency components as follows:

k1 =

k01︷ ︸︸ ︷
c0

N∑
n=1

e−jβ`(n−1) +

k+1︷ ︸︸ ︷
cM
2
ejΩt

N∑
n=1

e−j(β+q)`(n−1)

+

k−1︷ ︸︸ ︷
cM
2
ejΩt

N∑
n=1

e−j(β−q)`(n−1) ,

(2.18)
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Figure 2.2: Theoretical description of nonreciprocal coupling. (a) A resonator and
two-port waveguide are coupled at multiple spatially separated sites. The coupling
at these sites is modulated to create synthetic phonons, which enable nonreciprocal
coupling between the waveguide and resonator. (b) Interactions between photons
and phonons enable coupling to photonic dark states by modifying the phase
matching condition. Phonon-enabled coupling occurs only when the frequency and
momentum difference between the waveguide mode and resonator mode are
matched by the phonon frequency and momentum. This coupling is inherently
nonreciprocal: the forward (right-traveling) guided mode only couples to the dark
resonant state through phonon annihilation at the Stokes sideband frequency
(ω0 − Ω), and the backward (left-traveling) guided mode only couples to the
resonator through phonon creation at the anti-Stokes sideband frequency (ω0 + Ω).
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k2 =

k02︷ ︸︸ ︷
c0

N∑
n=1

ejβ`(n−1) +

k+2︷ ︸︸ ︷
cM
2
ejΩt

N∑
n=1

ej(β−q)`(n−1)

+

k−2︷ ︸︸ ︷
cM
2
e−jΩt

N∑
n=1

ej(β+q)`(n−1) .

(2.19)

For brevity, from here the terms that make up the coupling constants are referred

to as km = k0
m + k+

m + k−m for m = 1, 2. The first term, k0
m, does not depend on the

modulation amplitude δc and describes coupling which would occur without synthetic

phonons. This coupling is zero in the case of a dark state. The remaining terms

describe coupling enabled by interactions with synthetic phonons: k+
m corresponds

to coupling where a synthetic phonon is annihilated and the photon shifts up in

frequency, and k−m corresponds to coupling where a synthetic phonon is created and

the photon shifts down in frequency. Due to energy and momentum conservation,

both terms incorporate a frequency shift (e±jΩt) and momentum shift (β ± q), as

depicted in Fig. 2.2b. The momentum shift modifies the original phase matching

condition and can enable coupling to a resonator which would otherwise be dark.

Additionally, note that the frequency shifted coupling constants are unequal (k±1 6=
k±2 ) due to the directional momentum shift.

Coupling to the resonator, including coupling enabled by the action of synthetic

phonons, has a significant impact on wave transmission through the waveguide due to

resonant absorption or reflection. As described in the previous section, the scattering

matrix (which describes the transmission and reflection coefficients) can be found

using temporal coupled-mode theory as a function of the input frequency ω. As

discussed in the previous section, the differential coupled-mode equation describing

the resonant field a of a standing-wave resonator in the time-domain with inputs s1+

and s2+ is
da

dt
= (jω0 − γ − κ)a+ jk1s1+ + jk2s2+ . (2.20)

22



The output fields s2−, s1− are

s2− = e−jβ`(N−1)s1+ + jk2a ,

s1− = e−jβ`(N−1)s2+ + jk1a .
(2.21)

In these equations ω0 is the resonance frequency, γ is the decay rate of the mode to

the ports, κ is the intrinsic decay rate of the mode, and km is the effective coupling

between port m and the resonant mode. The waveguide is matched to the ports and

is lossless with a propagation constant β.

To find the scattering matrix elements S11 and S21 as function of the input fre-

quency ω, we insert Eqs. (2.18) and (2.19) into Eq. (2.20), only considering inputs

from port 1
da

dt
= (jω0 − ζ)a+ jk0

1s1+ + jk+
1 s1+ + jk−1 s1+ , (2.22)

using ζ = γ + κ. Since s1+ is time-harmonic with frequency ω and the coupling

constants k±1 also have frequency components, we can rewrite this equation as

da

dt
= (jω0 − ζ)a+ jk0

1 s̃1+e
jωt + jk̃+

1 s̃1+e
j(ω+Ω)t + jk̃−1 s̃1+e

j(ω−Ω)t , (2.23)

where x̃ signifies the time-invariant part of x. This is effectively a transformation

from a system with modulated coupling to a system with three inputs at different

frequencies. The steady-state solution to Eq. (2.23) is

a =
jk0

1 s̃1+e
jωt

j(ω − ω0) + ζ
+

jk̃+
1 s̃1+e

j(ω+Ω)t

j(ω + Ω− ω0) + ζ

+
jk̃−1 s̃1+e

j(ω−Ω)t

j(ω − Ω− ω0) + ζ
.

(2.24)

Equation (2.24) shows that there are three components of the resonant field ampli-

tude a, one at the original frequency ω and two sidebands at ω±Ω. These sidebands

occur because the time-varying coupling rate amplitude-modulates the incoming sig-

nal.

The steady-state outputs at the ports can be found using Equations (2.24) and
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(2.21) as

s2− = s1+

(
e−jβ`(N−1) − k0

2k
0
1

j(ω − ω0) + ζ
− k+

2 k
0
1

j(ω − ω0) + ζ

− k−2 k
0
1

j(ω − ω0) + ζ
− k0

2k
+
1

j(ω + Ω− ω0) + ζ

− k+
2 k

+
1

j(ω + Ω− ω0) + ζ
− k−2 k

+
1

j(ω + Ω− ω0) + ζ

− k0
2k
−
1

j(ω − Ω− ω0) + ζ
− k+

2 k
−
1

j(ω − Ω− ω0) + ζ

− k−2 k
−
1

j(ω − Ω− ω0) + ζ

)
,

(2.25)

and

s1− = s1+

(
e−jβ`(N−1) − k0

1k
0
1

j(ω − ω0) + ζ
− k+

1 k
0
1

j(ω − ω0) + ζ

− k−1 k
0
1

j(ω − ω0) + ζ
− k0

1k
+
1

j(ω + Ω− ω0) + ζ

− k+
1 k

+
1

j(ω + Ω− ω0) + ζ
− k−1 k

+
1

j(ω + Ω− ω0) + ζ

− k0
1k
−
1

j(ω − Ω− ω0) + ζ
− k+

1 k
−
1

j(ω − Ω− ω0) + ζ

− k−1 k
−
1

j(ω − Ω− ω0) + ζ

)
.

(2.26)
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Using the definition of the scattering matrix elements, Sab = sa−/sb+:

S21 = e−jβ`(N−1) − k0
2k

0
1

j(ω − ω0) + ζ
− k+

2 k
0
1

j(ω − ω0) + ζ

− k−2 k
0
1

j(ω − ω0) + ζ
− k0

2k
+
1

j(ω + Ω− ω0) + ζ

− k+
2 k

+
1

j(ω + Ω− ω0) + ζ
− k−2 k

+
1

j(ω + Ω− ω0) + ζ

− k0
2k
−
1

j(ω − Ω− ω0) + ζ
− k+

2 k
−
1

j(ω − Ω− ω0) + ζ

− k−2 k
−
1

j(ω − Ω− ω0) + ζ
,

(2.27)

and

S11 = e−jβ`(N−1) − k0
1k

0
1

j(ω − ω0) + ζ
− k+

1 k
0
1

j(ω − ω0) + ζ

− k−1 k
0
1

j(ω − ω0) + ζ
− k0

1k
+
1

j(ω + Ω− ω0) + ζ

− k+
1 k

+
1

j(ω + Ω− ω0) + ζ
− k−1 k

+
1

j(ω + Ω− ω0) + ζ

− k0
1k
−
1

j(ω − Ω− ω0) + ζ
− k+

1 k
−
1

j(ω − Ω− ω0) + ζ

− k−1 k
−
1

j(ω − Ω− ω0) + ζ
.

(2.28)
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A similar procedure can be done to find that

S12 = e−jβ`(N−1) − k0
1k

0
2

j(ω − ω0) + ζ
− k+

1 k
0
2

j(ω − ω0) + ζ

− k−1 k
0
2

j(ω − ω0) + ζ
− k0

1k
+
2

j(ω + Ω− ω0) + ζ

− k+
1 k

+
2

j(ω + Ω− ω0) + ζ
− k−1 k

+
2

j(ω + Ω− ω0) + ζ

− k0
1k
−
2

j(ω − Ω− ω0) + ζ
− k+

1 k
−
2

j(ω − Ω− ω0) + ζ

− k−1 k
−
2

j(ω − Ω− ω0) + ζ
,

(2.29)

and

S22 = e−jβ`(N−1) − k0
1k

0
1

j(ω − ω0) + ζ
− k+

1 k
0
1

j(ω − ω0) + ζ

− k−1 k
0
1

j(ω − ω0) + ζ
− k0

1k
+
1

j(ω + Ω− ω0) + ζ

− k+
1 k

+
1

j(ω + Ω− ω0) + ζ
− k−1 k

+
1

j(ω + Ω− ω0) + ζ

− k0
1k
−
1

j(ω − Ω− ω0) + ζ
− k+

1 k
−
1

j(ω − Ω− ω0) + ζ

− k−1 k
−
1

j(ω − Ω− ω0) + ζ
.

(2.30)

Recall that the coupling constants k±m contain ej±Ω terms, which are frequency shifts

of ±Ω. Thus, the scattering matrix has several components that can be separated

by the frequency shift they impose. The linear transfer functions, with no frequency

shift, are

S21 = e−jβ`(N−1) − k0
2k

0
1

j(ω − ω0) + ζ
− k−2 k

+
1

j(ω + Ω− ω0) + ζ

− k+
2 k
−
1

j(ω − Ω− ω0) + ζ
,

(2.31)
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Figure 2.3: Example transmission calculated from Equations (2.31) and (2.32). The
coupling parameters used in these calculations are shown in Table 2.1. The
modulation frequency is Ω = 10ζ and the intrinsic resonator loss is κ = (1/15)ζ.

and

S12 = e−jβ`(N−1) − k0
1k

0
2

j(ω − ω0) + ζ
− k−1 k

+
2

j(ω + Ω− ω0) + ζ

− k+
1 k
−
2

j(ω − Ω− ω0) + ζ
.

(2.32)

In the paths composing these linear transfer functions there is either no frequency

shift (in the first term) or two cancelling frequency shifts (in the second and third

terms). The linear transfer function, with no overall frequency shift, is typically the

most important piece of the total transfer function, since unwanted terms that are

frequency shifted can be filtered out by a band-stop (band-reject) filter.

From the above equations and Fig. 2.3 we find that the synthetic phonon enabled
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Table 2.1: Coupling parameters used to calculate the transmission spectra shown in
Fig. 2.3. The sum of the coupling rates 2γ = (28/15)ζ such that γ = (14/15)ζ.

Center frequency Stokes sideband Anti-Stokes sideband
S21 k0

2k
0
1 = (2/15)ζ k−2 k

+
1 = (2/3)ζ k+

2 k
−
1 = (1/3)ζ

S12 k0
2k

0
1 = (2/15)ζ k−1 k

+
2 = (7/15)ζ k+

1 k
−
2 = (2/15)ζ

coupling results in a distinct transmission spectrum where resonant absorption can

occur at the original resonance frequency, ω0, as well as the shifted frequencies ω0±Ω.

In the rest of this thesis, the absorption at ω0−Ω is referred to as the Stokes sideband

and the absorption at ω0 + Ω as the anti-Stokes sideband (see Fig. 2.2b). Since

k+
1 6= k−1 and k+

2 6= k−2 (from Equations (2.18) and (2.19)), transmission at the

sideband frequencies can be strongly nonreciprocal due greater resonant absorption

for one direction at each sideband. As an example, the spectrum of the calculated

linear transfer functions S21 and S12 are shown in Fig. 2.3 with the parameters listed

in Table 2.1. The transmission spectrum is clearly nonreciprocal at the sideband

frequencies, where the nonreciprocal coupling occurs. Note that, as in Fig. 2.3,

absorption at the sidebands is in general asymmetric due to the frequency dependence

of k1,2 that results from the frequency dependence of β.
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Chapter 3

Nonreciprocal coupling: Experiment

This chapter presents experimental evidence of nonreciprocal coupling in microstrip

circuits. First, it reviews the theory of resonators and waveguides in microstrip cir-

cuits and discusses technical details important to understanding modulated coupling

between such waveguides and resonators. It next showcases experimental data which

demonstrates nonreciprocal coupling to microstrip resonators and experimental con-

firmation of the theory of operation from Chapter 2.

3.1 Microstrip circuits: Waveguides and resonators

Modeling electromagnetic waves traveling at a finite speed is vital to the study of

waveguides and resonators. Conventional circuit theory assumes that the physical

dimensions of a circuit are much smaller than the wavelength, so that all parts of the

circuit can be considered in-phase for a given time-varying signal. Transmission line

theory extends circuit theory to account for the travel time in circuits that cannot

be approximated in this way. A detailed analysis of transmission lines can be found

in Ref. [5].

Conventional circuit theory can be used to model small pieces of a transmission

line with length ∆z, as shown in Fig. 3.1. The transmission line is modeled as

having a series resistance per unit length R, a series inductance per unit length L,

a shunt conductance per unit length G, and a shunt capacitance per unit length C.

Applying Kirchoff’s laws to this circuit model leads to the differential equations for
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Figure 3.1: Voltage and current definitions and equivalent circuit for an
incremental length of transmission line. (a) Voltage and current definitions. (b)
Lumped element equivalent circuit. From Ref. [5].

30



the voltage and current
dV (z)

dz
= −(R + jωL)I(z) , (3.1)

dI(z)

dz
= −(G+ jωC)V (z) , (3.2)

using phasor notation with a frequency of ω. Equations (3.1) and (3.2) are known

as the telegrapher equations.

The solutions to these equations take the form of traveling waves

V (z) = V +
0 e
−γz + V −0 e

γz , (3.3)

I(z) = I+
0 e
−γz + V −0 e

γz , (3.4)

where the e−γz terms represent waves traveling in the +z direction, and the other

term waves traveling in the −z direction. The propagation constant γ can be defined

in terms of the circuit parameters as

γ =
√

(R + jωL)(G+ jωC) . (3.5)

The amplitude of the voltage and current waves are related by the characteristic

impedance Z0 of the transmission line,

V +
0

I+
0

=
V −0
I0

= Z0 . (3.6)

The characteristic impedance Z0 can also be defined in terms of the circuit parame-

ters,

Z0 =

√
R + jωL

G+ jωC
. (3.7)

If loss in the transmission line is small, the line can be approximated as lossless by

setting R = G = 0. In this case the propagation constant reduces to γ = jβ =

jω
√
LC, and the characteristic impedance to Z0 =

√
L
C

. Note that this is the same

propagation constant that was assumed in the waveguide in the previous section. In
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Figure 3.2: Microstrip transmission line geometry. From Ref. [5].

fact, transmission lines are (loosely) the same thing as waveguides.

Microstrip transmission lines are a very widely used type of planar transmission

line, mainly because they can be fabricated and integrated with other microwave

devices easily [5]. A cross section of a microstrip line is shown in Fig. 3.2, it consists of

a conductive ground plane, a dielectric (insulator) of height d with dielectric constant

εr, and a top conductor of width W . The geometry of the top conductor, which can

take any shape desired, defines the microstrip line. For example, the top conductor

can be pattern in a thin straight line to form a waveguide, in a fan shape [54] or

spiral [55] to form a compact filter, or in a multitude of different shapes to produce

more complex behaviors. Surface mount components, including resistors, capacitors,

and diodes, can be soldered to the top conductor to connect these devices to the

microstrip transmission line. The top conductor or any surface mount component

can be shorted directly to the ground plane through a via, a hole in the substrate

lined with conductive material.

The propagation constant β of a microstrip transmission line can be expressed as

β =
ω

c

√
εe , (3.8)

where c is the speed of light in a vacuum. The effective dielectric constant εe is related

to the dielectric constant εr of the insulator substrate used to build the microstrip line

by a complex relationship that depends on the substrate thickness d, the conductor

width W , and the frequency of operation. These effects can be modeled analytically
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Figure 3.3: Transmission line diagram of a waveguide-resonator circuit.

or simulated using computer software to find the effective dielectric constant. The

impedance of the microstrip line also depends on several parameters and can either be

solved for analytically or using a software simulation. Modern simulations are quite

accurate and give results that match very closely with experimental results, especially

at lower frequencies (< 10 GHz), making microstrip a convenient technology for

accurate experimental implementation of transmission line circuits.

Using conventional transmission line theory, it can easily be shown how resonators

can be constructed from transmission lines, including microstrip transmission lines.

A diagram of a simple transmission line resonator coupled to a waveguide is shown in

Fig. 3.3. It consists of an open-circuited transmission line stub, coupled in parallel

through a capacitor to a series of transmission lines that form a waveguide.

The input impedance of a transmission line characterizes the voltage-current re-

lationship at a point a specific distance away from a load that terminates the line.

For a lossless line, the input impedance at a distance ` from a load with impedance
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ZL is defined as [5]

Zin = Z0
ZL + jZ0 tan(β`)

Z0 + jZL tan(β`)
. (3.9)

If the transmission line is terminated in an open circuit such that ZL → ∞ (as in

Fig. 3.3), forming an open-circuited stub, this reduces to

Zin = −jZ0 cot(β`) . (3.10)

As will be demonstrated shortly, this stub behaves as a resonator if it is weakly

coupled (through a small capacitance or large inductance) to another circuit. The

resonance frequencies of the stub resonator are located at the frequencies where the

relation β` = (2n+ 1)π, where n is an integer, is satisfied. Since β` is approximately

linearly dependent on frequency, there will always exist a number of frequencies

for which the open-circuited stub resonates. The lowest of these frequencies, where

β` = π (or n = 0), is the fundamental resonance of the stub.

The stub resonator can be coupled to a waveguide through a small capacitance.

The impedance of a capacitor is given by

Zcap =
1

jωC
. (3.11)

The capacitor is connected to the stub resonator in series, resulting in an overall

impedance

Zres = Zcap + Zin =
1

jωC
− jZ0 cot(β`) . (3.12)

To connect this resonator to a waveguide, we can place it as a shunt admittance in

parallel with a transmission line, where the shunt admittance is defined as

Yres =
1

Zres

. (3.13)

The transmission through the waveguide with this shunt admittance in parallel is

given by [5]

S21 = S12 =
2

2 + YresZ0

, (3.14)
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Figure 3.4: Calculated transmission through a waveguide with characteristic
impedance Z0 = 50 Ω coupled to a stub resonator of length β` = π at the resonance
frequency f0 = ω0/2π = 1 GHz. The resonator and waveguide are coupled through
a capacitor with C = 0.5 pF. All transmission line theory calculations were
performed using MATLAB [56].

where Z0 is the characteristic impedance of the waveguide transmission line, not the

resonator transmission line as in Eq. (3.10). Of course, often the resonator and

waveguide are created from the same transmission line and have the same character-

istic impedance. An example of the calculated power transmission spectrum for this

system, 20 log10 |S21|, is shown in Fig. 3.4. The spectrum clearly shows the typical

response of a resonator, a sharp dip in transmission.

The transmission line resonator system can be modeled using coupled-mode theory

as discussed in Chapter 2. As derived in the previous chapter, the canonical equation

for transmission through a waveguide that is side-coupled to a lossless resonator (such

that the resonator behaves as a shunt admittance) is

S21 = 1− γ

j(ω − ω0) + γ
, (3.15)
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where γ is the coupling rate between the waveguide and resonator and ω0 is the res-

onator’s resonance frequency. A zoomed-in version of Fig. 3.4 is shown in comparison

to the coupled-mode theory model in Fig. 3.5. The two models match reasonable

well, although there is some slight asymmetry in the spectrum of the transmission

line model that is not present in the coupled-mode theory model. Especially for

low coupling rates (if the capacitor impedance Ccap ≥ Z0), the coupled-mode theory

model of a resonator provides a good approximation of the more exact transmission

line model. From this analysis, we can see that microstrip transmission lines provide

a viable platform for experimentally testing the theory developed in Chapter 2. Mi-

crostrip transmission lines can be used to produce both waveguides and resonators,

and capacitors can be used to couple these together. The next section will discuss in

detail how coupled-mode theory applies to microstrip resonator circuits and where

deviations from the theory occur.

3.2 Transmission line resonators and coupled-mode theory

Coupled-mode theory can be used to model the interactions between transmission

line waveguides and resonators. However, there are several approximations made

in coupled-mode theory that can break down in commonly encountered situations

when using microstrip resonator circuits. The model used in Chapter 2, which simply

injects time-varying coupling rates, is over-simplified and not sufficiently accurate to

design working circuits. This section will discuss some of the deviations from coupled-

mode theory that are encountered in the design of microstrip circuits that exhibit

strong nonreciprocal coupling.

An extremely illustrative example of where the coupled-mode theory approxima-

tions break down is shown in Fig. 3.6. This figure displays six transmission spectra

for the simple waveguide resonator circuit in Fig. 3.3. Each subplot (a-f) differs

only in the coupling capacitance. For a small capacitance of 0.5 pF or less (Fig.

3.6a, also Fig. 3.5) the transmission line resonator is well-modeled by coupled-mode

theory and the transmission spectrum is approximately symmetric. However, as the
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Figure 3.5: Calculated transmission for a waveguide side-coupled to a resonator.
Black line corresponds to the transmission line theory (Fig. 3.4), red line
corresponds to coupled-mode theory fit. Transmission dip is deeper than in Fig. 3.4
due to the increased resolution — since this is a lossless resonator transmission is
exactly 0 (−∞ dB) at the resonance frequency.
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Figure 3.6: Calculated transmission through a transmission line waveguide coupled
to a transmission line resonator with fundamental resonance frequency f0 = 1 GHz.
The waveguide and resonator are coupled with through a: (a) 0.5 pF capacitor, (b)
1 pF capacitor, (c) 2 pF capacitor, (d) 4 pF capacitor, (e) 8 pF capacitor, (f) 1000
pF capacitor.
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coupling capacitance increases (b-e), the transmission spectrum becomes more and

more asymmetric and the coupled-mode theory model becomes less accurate.

There are several features that illuminate why the spectrum is asymmetric. First,

note that transmission at the resonance frequency (1 GHz) is always unity. This is

counter-intuitive since normal resonators resonate at their resonance frequency, i.e.

the resonance frequency is typically where the highest absorption occurs. However,

Eq. (3.12) shows that the resonator impedance goes to∞ at the resonance frequency,

thus no energy can enter the resonator and no absorption can occur. In general, the

transmission line resonator impedance varies with frequency. This property also

affects how frequency-shifted coupling behaves, as will be discussed later in this

section.

The other feature of Fig. 3.6 is the transmission spectrum as the coupling capac-

itance C → ∞, shown in subplot (f). Here the spectrum has a purely sinusoidal

shape, in contrast to the Lorentzian for a low coupling capacitance. In this limit, the

capacitance behaves as a short circuit (with Zcap = 0) so that the response of the

resonator is the same as an open-circuited stub. The interplay between the sinusoidal

response at very high capacitance and Lorentzian at very low capacitance, which is

well modeled by coupled-mode theory, determines the transmission spectrum of the

transmission line resonator.

Now consider the same simple transmission line resonator circuit, but the capac-

itance can vary with time. First, we can examine how adiabatic changes in the

capacitance affect the overall transfer function. Figure 3.7 shows a comparison of

two transmission spectra. The left transmission spectrum is from the canonical

transmission line resonator circuit with 0.9 pF coupling capacitance (black) with a

coupled-mode theory fit using the coupled-mode theory equation (red, dashed)

S21 = 1− γ

j(ω − ω0) + ζ
, (3.16)

where ζ = γ + κ and κ is the intrinsic loss rate of the resonator. A small amount

of loss is added to the transmission line resonator such that the peak absorption
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Figure 3.7: Comparison of transmission spectrum of two transmission line
waveguide-resonator circuits (black) with coupled-mode theory fits (red, dashed).
The two transmission line circuits vary only in the coupling capacitance.

increases with an increasing coupling rate. The right transmission spectrum is from

an identical circuit but with a 1.1 pF coupling capacitance (black) with a similar

coupled-mode theory fit.

By inspecting these graphs, we can see that increases in the coupling capacitance

lead to both a negative frequency shift, an increase in the peak absorption, and an

increase in the linewidth. The frequency shift occurs because the coupling capaci-

tance effectively loads the transmission line, increasing its electrical length (and thus

shifting the frequency down). This effect is not modeled in coupled-mode theory as

it has been presented, and must be added in explictly. The latter two of these three

are well modeled by coupled-mode theory, since by increasing γ in Eq. (3.16) both

the peak absorption and linewidth increases.

Table 3.1: Fitting parameters used in Fig. 3.7.

0.9 pF 1.1 pF
f0 = ω0/(2π) 957 MHz 948 MHz

γ 6.3 MHz 9.0 MHz
κ 1.7 MHz 1.7 MHz
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The parameters for the coupled-mode theory fits in Fig. 3.7 are given in Table

3.1. Focusing on the coupling parameter γ, we find the relation(
0.9

1.1

)2

≈ 6.3

9
, (3.17)

where the left-hand side is the coupling capacitance ratio squared, and the right-

hand side is the γ relation between the two graphs. These are approximately equal

(the fit is not perfect so there is some discrepancy), meaning that a small change

in capacitance can be modeled as a linear change in the coupling constant, which is

related to
√
γ. This analysis shows that a modulated coupling constant as introduced

in Chapter 2 can be implemented in an experimental system directly as a modulated

capacitance.

The derivation of nonreciprocal coupling presented in Chapter 2 assumes that the

frequency of modulation Ω is much larger than the linewidth ζ, the resolved sideband

regime. The resolved sideband regime only occurs in non-adiabatic systems, and non-

adiabatic changes in the coupling capacitance produce a very different transmission

spectrum than the adiabatic changes in capacitance described above. The simplest

system that we can analyze is the same canonical transmission line resonator circuit

as before, but with a coupling capacitance that varies rapidly. This problem is

difficult to solve using standard transmission line theory, but is simple to produce

experimentally.

To perform this experiment, a transmission line resonator circuit with a single

variable capacitor was implemented using microstrip circuits and varactor diodes.

Details on the implementation are discussed in the next section. The transmitted

power was measured at the original incidence frequency and the first-order sidebands

at ω±Ω when the coupling capacitance was sinusoidally modulated at 100 MHz. The

results are shown in Fig. 3.8. The black data points correspond to the transmitted

power without a frequency shift, and clearly show the resonant absorption response.

The resonance frequency of this circuit is 1.4 GHz due to capacitive loading, while

the unloaded resonance frequency (the point of infinite impedance) is ≈ 1.65 GHz.
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The orange and blue data points correspond to the transmitted power at ω +

Ω and ω − Ω respectively. The main result of this experiment is the asymmetric

frequency response: below the resonance frequency both the up- and down- shifted

transmission is approximately equal, while above it they are drastically different. At

the resonance frequency of 1.4 GHz there is a clear peak in the up-shifted transmission

that corresponds to incidence at 1.3 GHz and inelastic scattering into the resonance.

However, there is no clear peak in the down-shifted transmission for the same process

- why is this?

We know from the transmission line analysis that the impedance of the resonator

is infinite at the unloaded resonance frequency (here 1.65 GHz) and lowest where

the largest absorption occurs (1.4 GHz). However, below the absorption peak the

resonator impedance does not rise rapidly, instead it remains fairly low. In fact,

it can be seen from the transmission line analysis that at half the unloaded reso-

nance frequency the stub impedance is 0 and the entire resonator system behaves

as a capacitor short-circuited to ground. Thus, we can understand the discrepancy

in the modulated scattering as a result of the resonator impedance: above the ab-

sorption peak the impedance rises rapidly and inelastic scattering to and from these

frequencies is suppressed, while below it the impedance remains low and scattering is

permitted. In the limit where the resonator impedance goes to infinity, at 1.65 GHz,

there can be no scattering at all from the modulated capacitance. This limit can

be understood easily: since impedance of a capacitor in series with an open circuit

(infinite impedance) is always infinite, modulating the capacitance has no effect.

From the above analysis we can conclude several important points that have a

major impact on the experimental implementation of nonreciprocal coupling. First,

the capacitance of the coupling capacitor has a major influence on the frequency

of the resulting resonator. While this would in theory mean that modulating the

capacitance would also modulate the resonance frequency, this problem is automat-

ically overcome by using three or more coupling capacitors (coupling sites) that are

phased such that the total capacitance does not change in time. Since the loading

depends only on the summed total of all coupling capacitors (if they are connected

to the same point on the resonator), these modulation schemes result in an unmod-
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Figure 3.8: Power transmission through a microstrip resonator circuit with a
coupling capacitor modulated at 100 MHz. Black dots are measured power
transmission with no frequency shift, showing the absorption curve of the
resonator. Blue and orange points are the measured power transmission with a
±100 MHz frequency shift. The x-axis frequency is the output frequency, including
the frequency shift.
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ulated resonance frequency. Second, the coupling constant used in coupled-mode

theory is linearly proportional to the capacitance of the coupling capacitor between

a transmission line waveguide and resonator (assuming a small coupling capacitance).

Time-varying capacitors can therefore be used experimentally to directly implement

the time-varying coupling constants described the theory of nonreciprocal coupling

in Chapter 2. Third, the effectiveness of the modulated coupling capacitor (at shift-

ing the frequency of incoming waves as they couple into the resonator) is highly

dependent on the resonator’s impedance at both the incident frequency of the waves

and the final frequency after scattering. The exact nature of this relationship is not

easily understood, but in the limiting case of infinite resonator impedance at either

frequency no scattering occurs at all.

Any circuit designed to experimentally realize nonreciprocal coupling must take

this “modulation efficiency” into account. It may be possible to approximate the

resonator impedance in more complex circuits, such as those with multiple coupling

capacitors where the frequency (or frequencies) of high resonator impedance is not so

easily found, by measuring the derivative of the transmission amplitude with small

changes in the coupling capacitance. While this is somewhat of a heuristic, it is

based in sound arguments and is useful for the design of circuits that implement

nonreciprocal coupling. If the transmission amplitude does not change much with

changes in coupling capacitance, it means that the capacitor does not affect the

waves in the waveguide much, and a high resonator impedance and therefore low

modulation efficiency can be assumed. In contrast, if the transmission amplitude

changes significantly it means that the capacitor has a large effect on waves in the

waveguide and a high modulation efficiency can be assumed. The circuits used in

the experiments described in the remainder of this chapter and in Chapter 4 were

designed with these principles in mind.
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3.3 Nonreciprocal coupling in microstrip circuits

All experimental microwave circuits in this thesis are fabricated on Rogers RT/duroid

5880 or RT/duroid 6006 substrate with a 1 oz copper conductor, and consist of a

microstrip waveguide coupled to a stub or ring resonator by N varactor diodes (Sky-

works SMV1275) that act as variable capacitors. The coupling strength cn of each

capacitive coupler is an approximately linear function of the applied voltage Vn (for

small changes), allowing a modulation of cn that is proportional to a modulation

of Vn. A DC bias is applied to each varactor diode with a DC power supply (Agi-

lent E3631A), which lowers the capacitance and decreases the background reflection

caused by the coupling system. On top of this bias, small sinusoidal signal is applied

from a signal generator (HP-8647B). This signal is split (Minicircuits ZA3CS-400-

3W-S) into three variable phase shifters (Minicircuits JSPHS-150+) so that the phase

shift between each signal can be independently controlled. The DC bias and three 104

MHz modulation signals are combined through a three bias tees (Minicircuits ZFBT-

4R2GW-FT+) and connected directly to the circuit, e.g. through the ports labeled

Bias in Fig. 3.9. On each circuit, butterfly band-pass filters were incorporated along

with a another low-frequency biasing tee (Johanson Technology L-14C10N-V4T 10

nH inductor and Johanson Technology R14S 6.8 pF capacitor) as shown in Fig. 3.9

to isolate the lower-frequency (104 MHz) bias modulation from the higher-frequency

(≈ 1.4 GHz) resonant circuit.

To experimentally validate the theory of nonreciprocal coupling, a waveguide-

resonator system with three coupling sites (N = 3) was implemented using a mi-

crostrip waveguide and stub resonator (Fig. 3.9, right). The fabricated resonator

has a loaded resonance frequency ω0/2π ≈ 1.4 GHz. The waveguide and resonator are

coupled through variable capacitors (varactor diodes), which allows dynamic control

over the coupling constants cn though an applied voltage. The coupling site separa-

tion is designed such that β(ω0)` = 2π/3, resulting in a complete phase mismatch and

creating a dark state. Without a synthetic phonon bias, the measured transmission

for this circuit (Fig. 3.9, left) does not indicate any dips corresponding to resonant

absorption, confirming that interactions between the resonator and waveguide are
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Figure 3.9: Experimental measurement of an engineered dark state. Picture of the
experimental circuit (right, see Fig. 3.11d for the circuit diagram) and measured
power transmission (left). The resonance does not interact with the waveguide (i.e.
is dark) due to destructive interference from multiple coupling sites, and therefore
no dip in transmission is observed.

suppressed by the phase mismatch. The broadband background transmission losses

are caused by a reflection from the capacitive coupling network, an effect that is not

well modeled by temporal coupled-mode theory.

Synthetic phonons are applied to this circuit through an applied time-varying

voltage. The synthetic phonons have frequency Ω/2π = 104 MHz and momentum

q = −β(ω0 + Ω), which is implemented through a phase offset θn = (5π/3)(n− 1) as

described by Eq. (2.17). This phonon momentum was empirically tuned to maximize

the coupling rate k+
1 k
−
2 , between the resonator and backward waveguide mode at the

anti-Stokes sideband. From Eq. (2.31), this coupling rate also describes coupling

for the forward waveguide mode at the Stokes sideband (neglecting the frequency

dependence), thus resonant absorption should occur nonreciprocally: at the anti-

Stokes sideband for backward transmission and at the Stokes sideband for forward

transmission. The coupling rate k+
2 k
−
1 is simultaneously minimized by this choice

of phonon momentum, so no absorption is expected at these frequencies for the
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Figure 3.10: Experimentally measured nonreciprocal resonant absorption from
synthetic-phonon enabled coupling between a microstrip waveguide and resonator.
b, Synthetic phonons with the correct momentum are applied such that
−β(ω0 + Ω)− q = 0, facilitating nonreciprocal coupling to the resonator which
manifests as a Stokes sideband for forward propagating photons (S21 measurement)
and an anti-Stokes sideband for reverse propagating photons (S12 measurement).
The resonance is broadened in momentum space due to the number of couplers
(N = 3), which only completely destructively interfere for β = ±2π/3`. c,
Synthetic phonons with zero momentum (q = 0) are applied. Although no
momentum shift occurs, coupling is present at the sideband frequencies due to
waveguide dispersion. The system is reciprocal because these phonons do not break
time-reversal symmetry.
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opposite directions (anti-Stokes for forward transmission and Stokes for backward

transmission).

The measured forward (S21) and backward (S12) transmission coefficients for this

system are shown in Fig. 3.10a. As predicted, resonant absorption occurs at ≈ 1.3

GHz only in the forward direction and at ≈ 1.5 GHz only in the backward direc-

tion. The frequency dependence of β creates a slight phase mismatch at the Stokes

sideband, resulting in less absorption. The measured absorption (and therefore trans-

mission) is highly nonreciprocal: no resonant absorption is observed at ≈ 1.3 GHz

in the backward direction or at ≈ 1.5 GHz in the forward direction, validating that

k−1 = k+
2 ≈ 0.

This experiments demonstrates that interactions with synthetic phonons can fa-

cilitate coupling to dark states by modifying the original phase matching condition.

Furthermore, it shows that phonon-assisted coupling results in nonreciprocal trans-

mission if this modified phase matching condition is not satisfied for both directions

simultaneously. Synthetic phonons that do not modify the phase matching condi-

tion, i.e. phonons with zero momentum (q = 0), can also enable coupling to a dark

resonator due to the frequency dependence of k. This case, which is shown experi-

mentally in Fig. 3.10b, demonstrates that both waveguide directions can couple to

a dark state simultaneously. Note that because a partial phase mismatch remains,

the coupling is weaker at the sidebands and absorption is reduced compared to Fig.

3.10a.

3.4 Experimental tests of momentum matching

This section focuses on experiments testing how the transmission amplitude, which

is the inverse of the coupling rate, varies with the applied synthetic phonon mo-

mentum q. Nonreciprocal waveguide-resonator systems having N = 2 and N = 3

couplers were implemented using microstrip ring resonators [57], as shown in Fig.
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3.11. Synthetic phonons of the form

cn = c0 + δc cos(Ωt− q`(n− 1)) (3.18)

were introduced with tunable momentum

q =
θn

`(n− 1)
=
φ

`
, (3.19)

where θn is the phase factor of the modulation applied to the nth coupling site and

φ is the phase shift between adjacent θn: θn − θn−1 = φ = q`. In the following, the

variable φ is used to quantify the synthetic phonon momentum.

Using φ instead of q the coupling equations, Equations (2.18) and (2.19), can be

rewritten as

k1 =

k01︷ ︸︸ ︷
c0

N∑
n=1

e−jβ`(n−1) +

k+1︷ ︸︸ ︷
cM
2
ejΩt

N∑
n=1

e−j(β`+φ)(n−1)

+

k−1︷ ︸︸ ︷
cM
2
ejΩt

N∑
n=1

e−j(β`−φ)(n−1) ,

(3.20)

k2 =

k02︷ ︸︸ ︷
c0

N∑
n=1

ejβ`(n−1) +

k+2︷ ︸︸ ︷
cM
2
ejΩt

N∑
n=1

ej(β`−φ)(n−1)

+

k−2︷ ︸︸ ︷
cM
2
e−jΩt

N∑
n=1

ej(β`+φ)(n−1) .

(3.21)

With this new definition, it becomes clear that the coupling rate is determined by

the phase shift β` at the central band and β` ± φ at the sidebands. By measuring

the coupling rate at various φ, we can test this theoretical prediction of how the
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nonreciprocal coupling arises. Additionally, by looking for the φ which minimizes

the total coupling rate, we can measure the waveguide-induced phase shift β`.

The fabricated resonator system with two couplers (N = 2) shown in Fig. 3.11a,b

has a loaded resonance frequency ω0/2π ≈ 1.57 GHz. Figure 3.12a shows the mea-

sured Stokes and anti-Stokes transmission sidebands in forward and reverse directions

when Ω/2π = 100 MHz modulation is applied to the couplers, with relative phase

setting of φ = 0 (dashed lines) and φ = π/2 (solid lines). The measured transmis-

sion at the Stokes sideband (frequency ω0 − Ω) and anti-Stokes sideband resonance

(ω0 + Ω) as φ is swept from −π to π are shown in Figure 3.12b,c respectively. As

predicted, reciprocal transmission is observed at both φ = 0, π. However, when φ

is not equal to an integer multiple of π the coupling in the sidebands diverges de-

pending on wave directionality, resulting in appreciable nonreciprocal transmission.

In the Stokes sideband there is minimum forward coupling at φ = π/2 and minimum

reverse coupling at φ = −π/2, confirming that the fabricated circuit has β` = π/2 at

the Stokes sideband ω = ω0 − Ω. On the other hand, anti-Stokes sideband coupling

is minimized at φ ≈ ±π/6 (positive sign corresponds to minimized forward coupling)

indicating that β` = 7π/6 at ω = ω0 + Ω. The large difference in β` for these two

frequencies can be attributed to the dispersion characteristics of the waveguide which

are non-negligible in this experiment. Due to undesired additional resonant modes

(which arise due to the symmetry of the ring resonator) and reflections in the circuit

implementation the anti-Stokes sideband is much smaller and misshapen compared

to the Stokes sideband. Despite these experimental difficulties, strong nonreciprocal

coupling and over 5 dB of directional contrast is observed in this experiment.

The circuit with three coupling points (N = 3) has a loaded resonance frequency

ω0/2π ≈ 1.41 GHz and is shown in Fig. 3.11c,d. The Stokes and anti-Stokes sideband

measurements for φ = 0 (dashed lines) and φ = π/3 (solid lines) are shown in

Fig. 3.13a for an applied modulation frequency of Ω/2π = 100 MHz. The measured

transmission at the Stokes and anti-Stokes sideband resonances as φ is swept from

−π to π are shown in Fig. 3.13b,c. The three coupler case yields two distinct dips in

transmission (one large, one small) as the phase setting φ is varied. These two dips

in transmission correspond to two local maximums which occur in the sum of three
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Figure 3.11: Microwave demonstration circuits for reconfigurable nonreciprocal
coupling. (a,b) Photograph and schematic of a system with N = 2 coupling points.
(c,d) Photograph and schematic of a system with N = 3 coupling points. Each
microstrip ring resonator is coupled to the waveguide through multiple varactor
diodes that are separated on the waveguide by phase β`, with the DC and
time-modulated biased controlled using voltages Vn. For the 3-coupler circuit,
biasing to the central varactor is provided through the resonator.
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complex exponentials, as in Eq. (2.18) for N = 3. In the Stokes sideband the large

transmission dip occurs at φ ≈ ∓π/3 (minus sign corresponding to minimized forward

transmission) corresponding to β` = π/3. Figure 3.13a shows simultaneous coupling

of both forward and backward waves to the resonance at the lower sideband. This

occurs since forward waves couple to the resonator due to the small local maximum

of the coupling function, while backward waves couple strongly at the large local

maximum. These two local maxima occur for the same modulation phase φ due to the

waveguide dispersion. The anti-Stokes sideband exhibits similar behavior with one

large local coupling maximum at φ = ∓π/3 and a smaller local coupling maximum at

φ ≈ 4π/3, corresponding to β` = 5π/3. Again, this large difference in β` between the

sidebands can be attributed to non-idealities in the circuit implementation. Figure

3.13c shows that on the anti-Stokes sideband the experimental circuit achieves strong

coupling for backward waves and essentially zero coupling for forward propagating

waves, demonstrating over 7 dB of contrast with φ = ±π/3.
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Figure 3.12: (a) Experimentally measured power transmission coefficients for the
N = 2 circuit are presented at both sidebands using 100 MHz modulation applied
to the couplers. Data for forward transmission (S21, red) and backward
transmission (S12, blue) are presented for both φ = 0 (dashed lines) and φ = π/2
(solid lines). (b,c) Data present the line-center forward (red, x) and backward
(blue, o) transmission coefficients at the lower (upper) sideband frequency 1.47
GHz (1.67 GHz) for selected values of φ. Nonreciprocal coupling to the resonance is
observed while using coupler phase settings of φ 6= 0, π in both upper and lower
sidebands of the resonance.
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Figure 3.13: (a) Experimentally measured power transmission coefficients for the
N = 3 circuit are presented at both sidebands using 100 MHz modulation applied
to the couplers. Data for forward transmission (S21, red) and backward
transmission (S12, blue) are presented for both φ = 0 (dashed lines) and φ = π/3
(solid lines). (b,c) Data present the line-center forward (red, x) and backward (blue,
o) transmission coefficients at the lower (upper) sideband frequency 1.31 GHz (1.51
GHz) for selected values of φ. Nonreciprocal coupling is observed when φ 6= 0, π.
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Chapter 4

Applications of nonreciprocal coupling

Nonreciprocal devices, such as isolators, gyrators, and circulators, are vital com-

ponents for advanced signal processing. This chapter discusses how such devices,

as well as higher-order nonreciprocal filters, can be constructed using nonreciprocal

coupling to resonant modes, as was experimentally demonstrated in the previous

chapter. For all of these devices, both the theory of operation and experimental

transmission measurements are presented.

4.1 Isolator

An isolator is a two-port nonreciprocal device with high transmission amplitude in

one direction and low transmission amplitude in the other. The circuit diagram

representation of an isolator is shown in Fig. 4.1. Isolators are commonly used to

protect sources (especially in networks of sources), including lasers, RF amplifiers,

and high-power signal generators, from potentially harmful back-reflections or inter-

ference from other sources, which can cause source instability [58]. The scattering

Figure 4.1: Circuit diagram of an isolator.
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matrix of an ideal isolator is

Ŝisolator =

(
0 0

1 0

)
. (4.1)

The scattering matrix is not unitary, meaning that an isolator cannot be lossless. In

practice isolators are not ideal and always permit some transmission in the backward

direction. Typically a magnetic-based isolator will have around 20 dB to 30 dB of

isolation contrast (IdB
21 ), where

IdB
21 = 20log10|S21| − 20log10|S12| . (4.2)

Isolators based on spatiotemporal modulation have shown isolation ranging from 3

dB [18] to over 50 dB [24]. Note that an ideal isolator has infinite isolation contrast.

Now consider an isolator with high transmission amplitude in the forward direction

that operates at the anti-Stokes sideband frequency ω0 + Ω. Recalling the transmis-

sion equations from Chapter 2,

S21 = e−jβ`(N−1) − k0
2k

0
1

j(ω − ω0) + ζ
− k−2 k

+
1

j(ω + Ω− ω0) + ζ

− k+
2 k
−
1

j(ω − Ω− ω0) + ζ
,

(4.3)

and

S12 = e−jβ`(N−1) − k0
1k

0
2

j(ω − ω0) + ζ
− k−1 k

+
2

j(ω + Ω− ω0) + ζ

− k+
1 k
−
2

j(ω − Ω− ω0) + ζ
,

(4.4)

note that the third term (with denominator j(ω − Ω − ω0) + ζ) corresponds to the

anti-Stokes absorption sideband. High transmission is the forward direction and

zero transmission is the backward direction occurs at this frequency when k+
1 k
−
2 = ζ

(the critical coupling condition [59]) and k+
2 k
−
1 = 0. This case was experimentally
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Figure 4.2: Microstrip circuit used to demonstrate nonreciprocal coupling. The
circuit consists of a two-port microstrip waveguide and a microstrip stub resonator.
Varactor diodes act as voltage-controlled capacitors, which are used to realize
modulated coupling rates. The bias ports are used to apply independently
controlled voltage biases to the varactor diodes.
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Figure 4.3: Experimentally measured transmission showing complete isolation near
the anti-Stokes sideband of a microstrip resonator. a, Measured power transmission
and phase under the critical coupling condition C+

1 C
−
2 = γ. There is nearly zero

transmission (< −92 dB) through the waveguide in the critically coupled direction.
b, Measured power isolation when the resonator is critically coupled to one
direction of the waveguide through scattering from synthetic phonons. At the
resonance frequency measured isolation is 82 dB.

investigated using the circuit shown in Fig. 4.2. The resonance frequency was tuned

to ω0/2π ≈ 1.42 GHz, and synthetic phonons were again applied with frequency

Ω/2π = 104 MHz and q = −k(ω0 + Ω). The synthetic phonon amplitude δc was

increased until the critical coupling condition k+
1 k
−
2 = ζ was reached. The measured

forward (S21) and backward (S12) transmission coefficients for synthetic phonons

with this critical amplitude are presented in Fig. 4.3a. A large Lorentzian dip

can be observed in the measured backward transmission, which drops to below −89

dB at 1.52 GHz. No resonant absorption is visible in the forward direction. The

measured isolation contrast (Fig. 4.3b) exceeds 82 dB with a 10 dB bandwidth of

approximately 12 MHz.

58



4.2 Gyrator

Figure 4.4: Circuit diagram of an isolator.

A gyrator is a two-port nonreciprocal device which has high transmission amplitude

in both directions, but a π phase shift between the forward and backward transmis-

sion. The gyrator was first proposed by Tellegen as a nonreciprocal circuit-element

that could be used to produce any other nonreciprocal circuit [60]. Combinations

of gyrators with reciprocal elements can be used to built isolators, circulators, and

more complex nonreciprocal networks, making gyrators the fundamental nonrecipro-

cal building block. The circuit diagram representation of a gyrator is shown in Fig.

4.4. The scattering matrix of an ideal gyrator is

Ŝgyrator =

(
0 −1

1 0

)
. (4.5)

This matrix is unitary, meaning that an ideal gyrator is lossless. While practical

gyrators will always have a small amount of loss, it is important that this loss is

equal between the opposite directions of propagation (reciprocal).

Consider a gyrator that operates at the anti-Stoke sideband frequency ω0 + Ω.

Using the same system as in the previous section, it is evident from Eqs. (4.3)

and (4.4) that the gyrator case occurs when the phonon amplitude is increased such

that k+
1 k
−
2 ≈ 2ζ (strong over-coupling) while the opposite direction remains uncou-

pled. Nonreciprocal over-coupling was realized in the same circuit as nonreciprocal

critical coupling (Fig. 4.2) by further increasing the synthetic phonon amplitude

such that k+
1 k
−
2 > ζ. Figure 4.5a shows the measured transmission with the antici-
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pated nonreciprocal π phase shift at the anti-Stokes sideband frequency ≈ 1.52 GHz.

Unfortunately, the experimental circuit is unable to realize the required synthetic

phonon amplitude to achieve k+
1 k
−
2 ≈ 2ζ due to limitations caused by non-linearity

in the varactor diodes. For comparison, the transmission amplitude and phase were

also measured in the under-coupled case, where k+
1 k
−
2 < ζ. In this case there is no

nonreciprocal π phase shift at the anti-Stokes sideband (Fig. 4.5b).

4.3 Circulator

A circulator is a nonreciprocal device which “circulates” inputs between three or

more ports. The circuit diagram representation of a circulator is shown in Fig. 4.6.

Circulators are used for many signal processing applications, including in sensitive

quantum measurements [61] and to enable full duplex communication [62]. Circu-

lators can also be used to turn one-port amplifiers into two-port amplifiers, and

in combining multiple signals without interfering with the signal sources [58]. The

scattering matrix of a three port circulator is

Ŝcirc,3 =

0 0 1

1 0 0

0 1 0

 , (4.6)

and the scattering matrix of a four port circulator is

Ŝcirc,4 =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 . (4.7)

These matrices are unitary, meaning that ideal circulators are lossless. The circulator

scattering matrix clearly shows the “circulating” behavior: a signal travels from ports

1→ 2, 2→ 3, 3→ 4, etc.
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Figure 4.5: Experimentally measured transmission showing nonreciprocal phase
shifts near the anti-Stokes sideband of a microstrip resonator. a, Measured power
transmission amplitude and phase for above-critical synthetic phonon amplitude.
The resonator is over-coupled and there is a π nonreciprocal phase shift at the
anti-Stokes sideband frequency. b, Measured power transmission amplitude and
phase for below-critical synthetic phonon amplitude. The resonator is
under-coupled and there is no phase shift at the anti-Stokes sideband frequency.
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Figure 4.6: Circuit diagrams of a three (left) and four (right) port circulator. The
arrows indicate the circulation direction.

Using two waveguides and a single resonator, it is possible to realize a four-port

circulator through synthetic phonon enabled nonreciprocal coupling. Since there are

four ports, the additional coupling constants k3 and k4 are introduced to couple the

resonator to ports 2 and 3 respectively, as illustrated in Fig. 4.7a. These additional

coupling constants can be expressed in the same way as the coupling constants on

the original waveguide,

k1 = k3 =
N∑
n=1

cne
−jβ`(n−1) ,

k2 = k4 =
N∑
n=1

cne
jβ`(n−1) .

(4.8)

Using the same synthetic phonon definition on both sets of coupling constants,

cn = c0 + δc cos(Ωt− q`(n− 1)) , (4.9)

we can again separate the coupling into components with no frequency shift, a posi-
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Figure 4.7: a, Diagram of the coupling constants k1−4 which connect the ports to
the resonator. b, Schematic of the proposed circulator design. Arrows correspond
to the high transmission pathways: S21 and S34 (black), S23 (blue), and S41 (red).
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tive frequency shift, and a negative frequency shift as

k1 = k3 =

k01 , k
0
3︷ ︸︸ ︷

c0

N∑
n=1

e−jβ`(n−1) +

k+1 , k
+
3︷ ︸︸ ︷

cM
2
ejΩt

N∑
n=1

e−j(β+q)`(n−1)

+

k−1 , k
−
3︷ ︸︸ ︷

cM
2
ejΩt

N∑
n=1

e−j(β−q)`(n−1) ,

(4.10)

and

k2 = k4 =

k02 , k
0
4︷ ︸︸ ︷

c0

N∑
n=1

ejβ`(n−1) +

k+2 , k
+
4︷ ︸︸ ︷

cM
2
ejΩt

N∑
n=1

ej(β−q)`(n−1)

+

k−2 , k
−
4︷ ︸︸ ︷

cM
2
e−jΩt

N∑
n=1

ej(β+q)`(n−1) .

(4.11)

For the four port circulator, the transmission coefficients between ports 1 and 2

(and 3 and 4) are the same as in the single waveguide case, and transmission through

the resonator takes the form

S31 = − k0
3k

0
1

j(ω − ω0) + ζ
− k−3 k

+
1

j(ω + Ω− ω0) + ζ
− k+

3 k
−
1

j(ω − Ω− ω0) + ζ
, (4.12)

since there is no direct path connecting the ports. The new scattering matrix pa-

rameters can be calculated using the same derivation as presented in Chapter 2.

The principle of operation of the circulator can be described in terms of indirect

transitions, as shown in Fig. 4.8.

As in the previous sections, consider a device that functions at the anti-Stokes

sideband frequency. The circulation behavior is illustrated in Fig. 4.7b. If the

resonator is critically coupled to the backward direction of each waveguide such that
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k+
1 k
−
2 = k+

3 k
−
4 = ζ and k−1 k

+
2 = k−3 k

+
4 = 0, the scattering matrix is

|Ŝ(ω0 + Ω)|2 =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 , (4.13)

which is the definition of an ideal four-port circulator. Note that due to the additional

coupling terms between the resonator and second waveguide, decay of the resonant

mode to the ports increases proportionally as

2γ = 〈k1k
∗
1 + k2k

∗
2 + k3k

∗
3 + k4k

∗
4〉 . (4.14)

From this equation we can see that this ideal device, which is critically coupled in

both directions

ζ =
k+

1 k
−
2

2
+
k+

3 k
−
4

2
, (4.15)

can only be realized with a lossless resonator (κ = 0) since by definition

ζ ≥ k+
1 k
−
2

2
+
k+

3 k
−
4

2
+ κ . (4.16)

However an ideal circulator can be approximated by making κ small compared to the

coupling rates, and ensuring that minimal coupling occurs to the backward direction.

A four-port circulator was implemented using a similar circuit as the isolator and

gyrator, but with an additional waveguide having three coupling sites (Fig. 4.9a).

Synthetic phonons were applied to each trio of coupling sites with the same bias

voltage to ensure symmetric coupling k1 = k3 and k2 = k4. The measured transmis-

sion (Fig. 4.9b) shows clear circulation behavior, with high transmission from ports

1→ 2, 2→ 3, 3→ 4 (not shown), and 4→ 1, and low transmission in the opposite

direction.

Since the intrinsic loss rate in the resonator (κ) is not negligible in this experiment,

the critical coupling condition for near-ideal circulation cannot be achieved. The
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Figure 4.8: Frequency-momentum diagram illustrating nonreciprocal coupling (pink
arrows) at the anti-Stokes sideband, as used in the circulator design in (b). Due to
the phase matching requirement, the synthetic phonon bias only couples the
backward mode (port 2→ 1 or 4→ 3) in each waveguide to the resonator.
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Figure 4.9: a, Photograph of the circuit implementing the circulator design in Fig.
4.9(b) with three coupling sites between each waveguide and the resonator. b,
Measured power transmission for the circuit in (a), under a synthetic phonon bias
which maximizes k+

1 k
−
2 and k+

3 k
−
4 . Colors correspond to the arrow colors in Fig.

4.9(b). Unshown transmission coefficients S43 and S34 are equal to S21 and S12

respectively, due to mirror symmetry. All other unshown transmission coefficients
are reciprocal.

presence of coupling at the Stokes sideband and the original resonance frequency,

although small, also increases the decay rate as described by Eq. (4.14). Due to

these limitations, the circulator exhibits low contrast between S21 and S12, and the

measured transmission between ports on opposite waveguides is highly lossy. These

challenges could be addressed with a higher Q-factor resonator or by increasing the

nonreciprocal coupling rate. Additionally, by increasing the number of coupling sites

(N) and thereby making the phase matching condition more strict, coupling at the

Stokes sideband and original resonance frequency can be decreased. The increased

number of coupling sites would also increase the nonreciprocal coupling rate, which

is proportional to N2. Despite the current challenges, this experiment provides clear

evidence that circulation using synthetic phonon enabled coupling is possible.
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4.4 Higher-order nonreciprocal filters

Higher-order filters are necessary for many signal processing applications [41, 42].

Such filters can realize frequency responses that are not possible with first-order

filters, such as maximally flat responses [63] or multiple sharp features. However,

frequency-selective nonreciprocal filters (frequency selective isolators) have so far

been limited to first-order Lorentizian responses [18, 19, 20, 22, 23, 24, 62]. Higher-

order nonreciprocal filters have potential for use in any signal processing application

which requires a specific frequency response that differs depending on the direction

of propagation. Synthetic phonon-enabled coupling is a technique uniquely suited to

address this challenge because it can permit unidirectional access to arbitrary band-

limited load impedances (Fig. 4.10a), producing arbitrary nonreciprocal responses.

Additionally, different frequency responses could be simultaneously achieved in op-

posite directions by coupling each direction to an appropriate resonator network

[43].

Implementing this idea, this section provides experimental demonstrations of non-

Lorentzian nonreciprocal transfer functions. All experiments were done using the

circuit shown in Fig. 4.10b, which is a modified version of that in Fig. 3.9. In the

modified circuit, two additional microstrip stub resonators with tunable resonance

frequencies are coupled to the original stub resonator used in previous experiments

(Fig. 4.10b), providing six additional degrees of freedom: the additional resonance

frequencies ω1, ω2, inter-resonator coupling rates κ1, κ2, and linewidths ζ1, ζ2.

A maximally flat nonreciprocal filter with constant isolation over an appreciable

bandwidth is arguably one of the most important functionalities that cannot be

implemented using a single resonant response. Such a flat response can be approxi-

mated in the three resonator network using ζ1 = ζ2 = ζ, κ1 = κ2 = 9
14
ζ, ω1 = ω0 + 3

7
ζ,

and ω2 = ω0 − 3
7
ζ, where the loss rate ζ and resonance frequency ω0 are associated

with the original resonator. Both the resonance frequencies (ω1, ω2) and coupling

rates (κ1, κ2) of the additional resonators in the circuit (Fig. 4.10b) were tuned near

these values until the desired transfer function was achieved. Since the resonators

are fabricated on the same substrate and conductor, their linewidths are intrinsically
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Figure 4.10: (a) Nonreciprocal coupling can be engaged to an arbitrary
band-limited impedance network. Several of these impedance networks can be
simultaneously coupled in either direction to create customizable responses. (b)
Photograph (left) and schematic (right) of the circuit used to demonstrate
customizable nonreciprocal transfer functions.
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Figure 4.11: Measured power transmission showing a flat band over which a
constant isolation is obtained.

equal. The experimentally measured transmission through the waveguide (Fig. 4.11)

exhibits nearly constant isolation of 14 dB over a 10 MHz bandwidth.

Figure 4.12 shows four additional examples of arbitrary nonreciprocal transfer

functions obtained by varying the inter-resonator coupling strength and frequency

separation of the three resonators. In these experiments, the forward transmission

(S21) is consistently flat even though the reverse transmission (S12) varies, clearly

demonstrating that propagation in the uncoupled direction is largely unaffected by

changes to the impedance network.
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Figure 4.12: Experimental demonstration of four distinct nonreciprocal transfer
functions obtained by tuning the resonator network.
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Chapter 5

Conclusions

This work has proposed a method for generating indirect photonic transitions be-

tween a waveguide and resonator to produce a variety of nonreciprocal devices. Be-

ginning from temporal coupled mode theory, it was shown that such indirect tran-

sitions can be induced by modulating the coupling constants of multiple spatially

separated coupling sites between a waveguide and resonator. This modulation was

termed a “synthetic phonon” in an analogy to phonons in crystals, which modulate

the atomic positions in much the same way that the coupling constants are modu-

lated. Phonons in crystals can induce indirect electronic transitions, while synthetic

phonons can induce indirect photonic transitions. The indirect photonic transitions

between a waveguide and resonator lead to a phenomenon termed “nonreciprocal

coupling”, where different directions of the waveguide couple to the resonator differ-

ently.

Nonreciprocal coupling was explored experimentally using microwave frequency

circuits. Microstrip waveguides were used to implement direct connections between

ports, while microstrip stub and ring resonators approximated the idealized reso-

nances of coupled-mode theory. Capacitance was found to be linearly proportional

to the coupling constants in coupled-mode theory, so the time-varying coupling

constants between the waveguides and resonator were implemented using varactor

diodes, which change their capacitance in response to an applied voltage. Using cir-

cuits constructed in this manner, nonreciprocal coupling was experimentally demon-

strated and the theory’s prediction that the coupling rate would depend on the

momentum of the applied synthetic phonons was verified. Several nonreciprocal de-

vices, the isolator, gyrator, and circulator, were demonstrated using nonreciprocal

72



coupling in microstrip circuits. Additionally a new device, a higher-order nonrecipro-

cal filter, was demonstrated using nonreciprocal coupling to a network of resonators.

Nonreciprocal coupling between waveguides and resonator is clearly a powerful tool,

since it can be used to realize fundamental nonreciprocal devices as well as more

complex ones.

Although initial experiments have shown that nonreciprocal coupling could be

used to produce a variety of nonreciprocal devices, there is still much work to be

done. Presently, the experimental circuits are unable to observe lossless nonrecipro-

cal transmission due to several non-ideal factors in the design. Specifically, in circuit

implementation of a waveguide and ring resonator coupled with discrete capacitors

there are several effects that are not accounted for in the temporal coupled-mode

theory the most important of which are reflections from the capacitive couplers that

can significantly distort the resonance shape and the slightly non-linear response of

the varactor diodes. Due to this effect we observe scattering from the modulated cou-

plers even far from the resonance, which effectively creates extra loss in the system.

This behavior could be overcome in circuit implementations by lowering the intrinsic

losses in the resonator and using a smaller capacitance for coupling. These modifica-

tions will decrease the distortion of the resonance shape as well as the non-linearity

introduced by the varactor diodes.

Although our experiments take place in microstrip circuits, the nonreciprocal be-

havior of our system is captured by coupled-mode theory and thus the underlying

method can be extended to a wide variety of physical systems. Nonreciprocal cou-

pling could be implemented in optical, acoustic, and mechanical systems, providing

a platform for customizable nonreciprocity in each of these domains. Additionally,

the concept of nonreciprocal coupling can be applied broadly to a number of band-

limited devices besides resonators, including antennas, amplifiers, oscillators, and

sensors, allowing the creation of highly customizable integrated devices.
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