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ABSTRACT 

The study of traits involved with behavior disorders and immune system can be complex and 

challenging. Gene expression and network analysis can help to elucidate the main molecules and 

pathways that influence complex traits. The goal of these studies is to understand factors that affect 

gene co-regulation patterns related to attention-deficit/hyperactivity disorder (ADHD), drug 

addiction, depression-like behavior, and immune challenge. ADHD is a common neuropsychiatric 

disorder that affects people of different ages. People with ADHD also have a predisposition to 

high levels of physical activity, and some drugs like amphetamine, are used to treat these type of 

disorders. The molecular mechanisms that contribute to the effectiveness of amphetamine therapy 

to ameliorate the symptoms of attention-deficit hyperactivity disorder (ADHD) are partially 

understood. The first experiment aimed to understand the molecular profiles supporting the 

ameliorating effect of amphetamine in a mouse hyperactivity line that exhibits ADHD-like 

behavior using mice striatum transcriptome. The findings support the development of therapies to 

ameliorate ADHD-like behaviors that target gene sub-networks while minimizing the disruption 

in other pathways triggered by amphetamine-based treatments. The second experiment implicated 

in understand the association between inflammation mechanism of action and behavioral disorders 

such as depression-like behavior. The tryptophan (Trp) metabolic route has been linked with 

chronic inflammatory diseases and psychiatric disorders, being tryptophan-degrading enzyme 

Indoleamine 2,3-dioxygenase (IDO1) activated during the inflammatory process. The goal of this 

study was to understand pathways associated with depression-like symptoms after recovery from 

immune challenge and deficiency of a gene associated with depression-like symptoms. The results 

confirmed that the genes identified can be used as potential candidates to understand the 

mechanisms involved in the infection leading to inflammation and depression-like behavior. The 

third study is a continuation of the first experiment, where a systems biology approach was used 

to elucidate mechanisms that regulate functional processes and pathways that are shared between 

genes found in the differential expression analyses. Differential co-expression analysis was also 

used to compare the structure of two co-expression networks between the conditions. Both 

weighted gene co-expression network analysis (WGCNA) and differential co-expression analysis 

were powerful alternatives to find more answers about complex systems. Differences in gene 

expression correlation across treatments and lines helped to understand changes in connectivity 

associated with the factors studied. 
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 
 

Introduction  

Many complex traits such as behavioral disorders, immune challenge, gene knockout, and 

use of drugs in immune response are influenced by the level of RNA transcribed from the 

genes.  Studies of gene expression are offering insights into the pathways that influence these traits. 

The aim of the study in Chapter 2 was to advance the understanding of the molecular profiles 

supporting the ameliorating effect of amphetamine in a mouse hyperactivity line that exhibits 

ADHD-like behavior using mice striatum transcriptome. Gene network analysis of the molecular 

pathways disrupted by amphetamine treatment in hyperactivity and control lines relative to saline 

treatment uncovered interactions between amphetamine treatment and ADHD-like hyperactivity 

line. In Chapter 3, gene differential expression and networks of peripheral macrophage after 

sickness recovery from BCG challenge relative to saline control in IDO1-KO relative to WT mice 

were explored. After the gene expression analysis studied in Chapter 2, Chapter 4 reported a 

systems biology approach to understanding the molecular basis of the simultaneous effects of 

hyperactivity line and amphetamine treatment. A review of approaches to measure and analyze 

gene expression and systems biology, and a review of traits that are influenced by gene expression 

variation follows. 

 

Gene expression measurements using RNA-seq platform 

RNA is a small molecule similar to DNA, but with few chemical modifications that change 

its properties relative to DNA, as the presence of ribonucleic acid. There are many classes of RNA: 

mRNA, tRNA, rRNA, and others. They are involved in the evolution of life and also play 

functional and regulatory roles in extant organisms  (Brosius and Raabe, 2016). 

Transcription is the process of copying DNA and creating mRNA. In eukaryotes, the 

mRNA, an intermediary molecule which carries the genetic information from the cell nucleus to 

the cytoplasm is converted to a protein sequence by the rRNA in a process called translation. Many 

proteins can be translated from a single mRNA molecule  (Brosius and Raabe, 2016). 

Transcriptome analysis with microarrays was widely used a few years ago. This 

methodology is still used, but it presents some limitations. The mRNA is converted into a stable 

cDNA form to allow the transcriptome study as mRNA degrades easily. Then, cDNA is labeled 
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with fluorochrome dyes Cy3 (green) and Cy5 (red) (Govindarajan et al., 2012). Complementary 

sequences are fixed in the chip, and they react with the cDNA targets resulting in a signal from the 

hybridization. The presence of artifacts from hybridization, poor dye-based detection, low 

detection of RNA splice patterns, and no discovery of new genes are some disadvantages of using 

microarray (Govindarajan et al., 2012). 

A new way to measure transcriptome composition and to discover new exons or genes is 

by next generation high-throughput sequencing of cDNA (Mortazavi et al., 2008). This technique 

is called RNA-sequencing (RNA-seq), and it results in sequence reads that will be individually 

mapped to the source genome and counted to obtain the number and density of reads corresponding 

to RNA from each new candidate gene, known exon, or splice event. If samples have enough reads, 

for example above 40 million, it is possible to detect and quantify RNAs (Mortazavi et al., 2008). 

There is a variety of different pipelines available for the analysis of RNA-seq, the choice 

will depend on research goals and organisms to be studied (Conesa et al., 2016). Also, there are 

some aspects that should be evaluated before RNA-seq analysis, like the design of the experiment, 

library type, depth of sequencing, and number of biological replicates. The analysis starts with the 

selection of the mRNA using 3’ polyadenylated (poly (A)) from the total RNA. Then the mRNA 

is fragmented and processed in double-stranded cDNA, adapters are fixed at one end (single-end) 

or both ends (paired-end), this step is called cDNA library preparation (Wang et al., 2009). After 

sequencing, data is acquired containing raw reads that will pass for a quality filtering due to 

possible biases that could be introduced during PCR amplification or other steps of the library 

preparation. FastQC, FASTX-Toolkit, and Trimmomatic are popular software used to quality 

control, the first one generate graphics to visualize the quality, and the others are used for filtering 

low-quality reads or bases and remove adaptor sequences (Conesa et al., 2016). 

RNA-seq technique improves genome annotation, allow discoveries of biological 

functions, and detection of alternative splices and new splices, resulting in more information of 

complex regulatory mechanisms of RNA (Martin and Wang, 2011). The depth coverage of RNA-

seq decreases the cost of the detection of gene expression, which facilitates proteomic studies and 

comparisons of peptides found by mass spectrometry with their respective gene sequence. RNA-

Seq has also been used as an efficient method to identify SNPs in transcribed regions from different 

species (Chepelev et al., 2009). One disadvantage of this methodology is the bioinformatics 
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knowledge and resources that are necessary to the analyses and the interpretation of huge volume 

of data. 

 

Bioinformatics analysis of gene expression studies 

Once the data passed the quality control, next step is to align reads against a reference 

genome or assemble them when there is no reference genome available. A frequent issue for the 

alignment step is that reads may map in multiple sequences of the genome due to repetitive 

sequences or common domains of paralogous genes (Conesa et al., 2016). The use of paired-end, 

in which both ends of the fragment are sequenced, is a more precise technique that facilitates 

reducing the number of alignment errors (Wang et al., 2009). 

Among various software available for mapping, TopHat2 is one of the most popular. This 

method identifies splice sites by first locating non-junction reads (those contained within exons) 

using Bowtie (http://bowtie-bio.sourceforge.net), and then splitting the unmapped reads and 

aligning them independently to identify exon junctions (Langmead et al., 2009). Bowtie is a 

mapping program that indexes the reference genome using the Burrows-Wheeler method which 

scan reads against a genome (Burrows and Wheeler, 1994). There are sequenced parts with 

incorrect base calls due to sequencing errors in low coverage regions. The reference genome is 

used by TopHat2 to call bases and captures missing sequences at the end of exons. TopHat2 also 

controls the gaps presented in exons using a parameter that merges different single exons when 

necessary (Trapnell et al., 2009). Pseudogenes are present in the reference genome and have high 

similarity with some functional genes that contain introns. Reads can be aligned in the pseudogene 

version of these genes by mistake, also may fail to align to structural variations of the genome. 

TopHat2 was implemented with a new algorithm that allows the right alignment of reads in indels 

(insertions and deletions), inversions and translocations (Kim et al., 2013). 

After the alignment, it is necessary to generate an assembly for each condition if one is 

using a similar method to TopHat2. There is a genome-guided method that takes advantage of 

longer read lengths; it is called Cufflinks2 (Trapnell et al., 2012). Cufflinks2 identify splice 

variants of genes and reports only the sets of isoforms that are compatible with read data, 

maximizing the precision of finding the most accurate combination of paths for assembling 

(Garber et al., 2011). Cufflinks2 quantify the expression level based on a statistical model, for 

genes that present multiple alternative splice events, its algorithm provides all the full-length 
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transcript fragments that are necessary to explain the splicing events. The normalization of the 

count is based on the length of each transcript, computed as FPKMs (fragments per kilo base of 

exon per million fragments mapped). Cufflinks2 algorithm also excludes less abundant transcripts 

that can be artifacts, and quantify abundances using a reference annotation (Trapnell et al., 2012). 

All the assemblies are merged using Cuffmerge, which generates a file that is used as the basis for 

calculating gene expression of each condition. Many of the concepts and algorithms used for 

Cuffmerge are the same that was used in Cufflinks assembles of individual reads. It is also possible 

to integrate Cuffmerge merged assemble with a reference genome annotation (Trapnell et al., 

2012). 

The merged assembly file is used for differentially expression analysis. Cuffdiff2 algorithm 

accurately identifies gene and isoform expression and consider the variability present across 

biological replicates (Trapnell et al., 2012). The consequences of not controlling for variability are 

the over-prediction of differentially expressed genes or transcripts and high false-positive rates. 

Errors can also be introduced due uncertainty in the presence of alternative splicing or repetitive 

regions. Cuffdiff2 addresses these problems by modeling variability of fragments abundance. It 

implements a Poisson model where the estimated variability is the mean count across replicates. 

The P-value is calculated for any observed change in the count of fragments. It identifies 

differential expression at transcriptional or post-transcriptional level (Trapnell et al., 2012). 

A different approach to analyze RNA-Seq data is using Kallisto (Bray et al., 2016). 

Aligning to a reference genome, and estimating the transcript abundances can be time-consuming 

in the analysis of RNA-seq. Kallisto is a two order methodology that is based on a pseudoaligment 

of reads to a reference genome, it combines information from k-mers within reads, and avoids to 

align individual bases, instead, it produces a list of transcripts that are compatible with each read. 

This program makes alignment using transcriptome de Bruijn graph constructed from k-mers 

(Compeau et al., 2011). For quantification, the method includes a model for bias and the 

expectation-maximization algorithm (Patro et al., 2014). The advantages of this software are the 

speed, the accuracy, and the simplicity. 

For analysis of similar methods to Kallisto, it is possible to integrate transcript-level 

abundance estimates into count-based statistical inference using an R package called tximport 

(Soneson et al., 2015). In this software, evidence showed that the use of gene-level is more 

statistically robust than transcripts. This methodology analyzes gene-level abundance but takes 
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advantage of transcript-level abundance estimates to improve differentially expression results. The 

package tximport imports transcript length and abundance estimates from Kallisto, for example, 

and export count matrices (Soneson et al., 2015). There is also an option to average transcript 

length correction terms and apply them to common statistical R packages that use counts as input 

to analyze differential expressions like edgeR (Robinson et al., 2010) and DESeq2 (Love et al., 

2014). 

 Both edgeR and DESeq2 are software packages available in R, the input data is a table of 

counts, where columns correspond to samples and rows to genes or transcripts (Love et al., 2014; 

Robinson et al., 2010). These packages determine if there are significant differences between 

counts across experimental conditions. To account for biological and technical variability edgeR 

uses an overdispersed Poisson model and empirical Bayes to improve the reliability of inference 

(Robinson et al., 2010). In DESeq2, each gene is described with a generalized linear model (GLM) 

of the negative binomial distribution, but it also uses empirical Bayes shrinkage for dispersion 

estimation (Love et al., 2014). The difference between DESeq2 and edgeR is that the first one 

estimates the width of the prior distribution from the data and controls the amount of shrinkage 

based on the observed properties of the data. The second one requires the prior degrees of freedom 

to weight the contribution of each gene and for the dispersion fit (Love et al., 2014). The advantage 

of using DESeq2 and edgeR is that they both provide the flexibility to analyze more complex 

designs, and present high sensitivity of the algorithms to controlled type-I error (Love et al., 2014). 

Figure 1 shows a brief workflow of bioinformatics tools used to perform the analysis in the 

Chapters of this thesis. 



 
 

6 
 

 
Figure 1. Workflow of bioinformatics tools used in the analysis of each Chapter. 

 

The Kallisto methodology 

Kallisto is considerate an ultra-fast alignment-free method, where alignments are not 

necessary to find the origins of reads (Bray et al., 2016). Kallisto does pseudo-alignments of reads 

by using hashing of k-mers (hash function is used for rapid data lookup, mapping data of any size 

to data with fixed size). Then, Kallisto combines the hashing k-mers with de Bruijn graph to 

perform the pseud-alignment, called transcriptome de Bruijn graph (T-DBG), which will be used 

to make the comparison of the reads to the transcripts (Bray et al., 2016). After the T-DBG is built, 

Kallisto maps each k-mer to the contig by using a hash table (a hash map that associate keys to 

values) and create the Kallisto index (Bray et al., 2016). The association of each k-mer in the T-

DBG with transcripts will belong to a determined class called k-compatibility class. The 

intersection of all k-compatibility classes that reads are associated will give the transcript that the 

read is compatible (Bray et al., 2016). Kallisto takes advantage of the redundant information along 

the path of the graph and does not consider k-mers that have same equivalent class because the k-

mers are redundant and provide no new information. Then, the intersection of the k-compatibility 

classes contains only non-redundant k-mers (Bray et al., 2016). 
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In comparison with Kallisto, Cufflinks has an alignment-dependent algorithms and is the 

most popular tool that makes novel transcript and isoforms discovery and quantification (Zhang et 

al., 2017). Although alignment-free methods like Kallisto are fastest for requiring less 

computational time, both methods showed strong concordance for highly expressed transcripts 

(Zhang et al., 2017). Cufflinks showed inferior accuracy performance than Kallisto, and also, 

FPKMs from Cufflinks produces largest variations in the estimation of quantification and 

underestimates the expression of absent transcript (Zhang et al., 2017). In general, Kallisto present 

more advantages related to speed and accuracy compared to Cufflinks to perform RNA-Seq 

analysis. 

 

Interpretation of gene expression analyses through Annotation, Enrichment, and Networks 

The use of technology like high-throughput next generation sequencing to ‘omics’ studies, 

usually result in large output files of genes. Understanding the biological meaning of large volume 

of data may be challenging. The software DAVID (the Database for Annotation, Visualization, 

and Integrated Discovery) allows analyzing many types of gene lists, coming from diverse 

platforms (Huang et al., 2009). It is a computational procedure that explores the biological meaning 

of the data. It provides annotation, enrichments, and have integrated data-mining environment. 

One can submit a list of genes for different purposes as genes that contain the same characteristics, 

genes for expression studies with fold changes >|2| or p-values <0.05, genes up or down regulated 

or lists of genes with an important statistical threshold to search for biological processes. Larger 

gene lists result in higher statistical power, higher sensitivity, consequently having more 

significant P-values and more enriched terms (Huang et al., 2009). One disadvantage of using 

DAVID is that it gets very limited if the gene list is small. The principle of the enrichment in 

DAVID analysis is that higher potential genes (enriched) are selected based on the background list 

and type of species that is provided. The enrichment is quantified by more than one method: 

Fisher’s exact test, Binomial probability, and Hypergeometric distribution. Enriched Gene 

Ontology (GO) terms, for example, are the most statistically over-represented terms of the list, 

which increases the likelihood to identify important biological processes (Huang et al., 2009). 

According to Huang et al. (2008), the enrichment score for groups is “the geometric mean 

of all the enrichment p-values (Expression Analysis Systematic Explorer - EASE scores) for each 

annotation term associated with the gene members in the group.” EASE scores are calculated based 
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on Fisher exact test (Gonzalez-Pena et al., 2016a). To be a relative score, the P-values suffer minus 

log transformation. Higher group score results in more enriched terms for gene members of that 

group. To control for false discovery rate, DAVID provides three types of multiple testing 

corrections for the enriched P-values: Bonferroni, Benjamini, and FDR (Huang et al., 2008). For 

the Functional Annotation Chart, the significance of enriched clusters is evaluated with a modified 

Fisher’s exact test (EASE score) (Huang et al., 2008). 

The Gene Set Enrichment Analysis (GSEA) is another analytical method to interpret gene 

expression data. As DAVID, it also focuses on a set of genes that share the same biological 

functions or patterns. The difference between them is that instead of just use genes that show 

largest differences to determine the biological meanings, GSEA uses all genes that are expressed 

on the list. In GSEA, it is considerate a gene set S (originated from prior studies and biological 

knowledge) and a list of genes L. The aim is to analyze if genes of the sets tend to go toward to 

the top or to the bottom of the list, showing if it is correlated with phenotype and its distribution 

(Subramanian et al., 2005). 

GSEA method has three principles: first, is the calculation of an enrichment score (ES), 

which means the level in where the sets S is overrepresented at the thorough list. The score 

increases when genes are part of the set, and it decreases when genes are not present in the set 

along the whole list. The ES is the maximum deviation from zero found on the list and is equivalent 

to a weighted Kolmogorov–Smirnov-like statistic (Hollander and Wolfe, 1999). Second, there is 

the estimation of the significance level of ES, where the nominal p-value of ES is calculated using 

an empirical phenotype-based permutation test method that maintains the correlation structure of 

data, generating a null distribution for the ES (Subramanian et al., 2005). Finally, the adjustment 

for multiple hypothesis testing is when the whole list of genes is evaluated, first it is normalized 

to account for the size of the set (normalized enrichment score - NES), then false positives are 

controlled by FDR (Subramanian et al., 2005). Also, significance levels are estimated for both 

positive and negative scoring gene sets. 

Networks have been used for data visualization and to find biological-meaningful answers 

for the data (Martin et al., 2010). Networks are used as a graph representation of molecules 

interaction in a known relationship, where nodes and edges are used to represent functional 

relations and type of entity, respectively. Estimated values associated with P-values resulted from 

differential gene expression analysis might be integrated, then the size of node indicates the 
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differential expression P-value and colors represent over- or under-expression between treatments 

(Martin et al., 2010; Shannon et al., 2003). There are several tools for construction and 

visualization of networks as VisANT (Hu et al., 2005), Osprey (Breitkreutz et al., 2003), and 

BisoGenet (Martin et al., 2010). VisANT provides a visual interface, annotation, integrates 

different types of biological information based on association and connectivity data. Osprey is a 

similar application and uses a wide range of platforms; it can incorporate new interactions into 

existing networks, and also uses connectivity levels to filter networks. However, these 

methodologies present some limitations, for example, Osprey is not efficient for large-scale 

network analysis and VisANT’s visual integration tools do not take any combination of operations 

in any order (Pavlopoulos et al., 2008). Bisogenet is a new tool for analyzing networks; it is 

different from the others because it can represent coding relations, for example, finding multiple 

isoforms of a gene as a result of alternative splicing (Martin et al., 2010). This program provides 

information of disease-related and tissue-specific, more regulatory information as transcription 

factors, and microRNA silencing relations, and consequently a more complete systems biology 

tool (Martin et al., 2010). BisoGenet is used as a Cytoscape plugin, and the information of 

annotation and pathways come from SysBiomics, a database that integrates many public data 

sources (Martin et al., 2010; Shannon et al., 2003). The statistical is based on cluster coefficient, 

and degree of the node depends on neighbor’s relationship and distance of paths (Martin et al., 

2010).  

The use of gene expression analysis, with the study of different statistical methods and 

bioinformatics tools and finally network analysis are provided to understand how biological 

information underlies complex traits such the molecular architecture of behavioral disorders and 

drug addiction.  

 

Weighted Gene Co-expression Network Analysis and differential co-expression analysis 

Studies of systems biology can be applied to transcriptome data to elucidate more complex 

mechanisms of regulation (Langfelder and Horvath, 2007). The use of systems biology has been 

widely applied to diseases (Sengupta et al., 2009). Methods of correlation network analysis 

contribute to finding patterns among genes across the samples. Gene co-expression networks have 

been used to detect modules that are biologically meaningful and organized according to functional 
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processes and pathways. A methodology that uses gene co-expression is the Weighted Gene Co-

expression Network Analysis (WGCNA) (Langfelder and Horvath, 2007). 

The concept for fundamental networks varies in three types: 1) networks not related to 

modules, 2) network properties of a module (intramodular), and 3) relationship between modules 

(intermodular) (Zhang and Horvath, 2005). Gene co-expression networks only identify 

correlations, indicating what genes act simultaneously in the same processes. Networks can 

explain the relationship between n nodes, which can be any biomolecule like genes or proteins. 

Networks are specified by an nxn dimensional adjacency matrix A = (Aij), being Aij the 

connection strength from node i to j (Zhang and Horvath, 2005). The gene-gene similarity matrix 

describes the similarity between expression patterns across samples. Measures of correlation are 

applied to construct the networks (van Dam et al., 2017). 

The resulted co-expression associations are used to construct modules. Modules are groups 

of co-expressed genes, identified using clustering methodologies as hierarchal clustering (van Dam 

et al., 2017). This clustering method divides each cluster into sub-clusters, resulting in a tree with 

branches where the branches are modules. An eigengene is a vector that best describes the patterns 

of all genes inside each module. As co-expressed genes are functionally related, functional 

enrichment analysis can be used to interpret the list of genes in each module. Final results will 

depend on the heterogeneity of samples, co-expression analysis decrease the statistical power to 

detect modules when limited to specific conditions to identify common co-expression patterns (van 

Dam et al., 2017). 

Differential co-expression analysis detects modules that cannot be detected in the regular 

co-expression or differential expression methods. Co-expression networks identify correlations, 

and genes active in the same biological process, while the differential co-expression analysis 

identifies co-expressed genes under different conditions, such as treatments, identifying modules 

unique to the specific type of treatment (van Dam et al., 2017). Therefore, genes identified in this 

analysis are more likely to explain the differences between phenotypes. Figure 2 shows the 

workflow of the WGCNA used in Chapter 4. 
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Figure 2. Workflow of WGCNA, including each step of the analysis. 

 
Complex behavior and immune traits 

Attention deficit/hyperactivity disorder and Drugs of Abuse 

Attention deficit/hyperactivity disorder (ADHD) is a common mental disorder that occurs 

during the childhood and may continue into adulthood. It has a substantial impact on someone’s 

life and despite it is characterized by high level of inattention, increased impulsivity and 

hyperactivity the diagnosis may not be so easy (Castellanos and Proal, 2012). The genetic 

predisposition for hyperactivity was already related to ADHD; the estimated heritability is 

approximately 76% in humans (Faraone et al., 2005). ADHD prevalence rate in the world is 

estimated at 5.9–7.1% for children and adolescents (Willcutt, 2012).  

People with ADHD also have a predisposition to high levels of physical activity 

(hyperactivity). These levels of physical activity are influenced by complex genetic factors that 

are associated with behavioral diseases, which require further elucidations of neurobiological 

mechanisms. A mouse line selected for increased home cage activity (Hyperactivity line) is an 

effective model to understand genetic factors involved in neurobiological processes influencing 

behavioral disorders (Majdak et al., 2014). This line emerged from a selective breeding method to 

produce animal models with extreme values allowing the study of genetic disorders. This selection 
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was made in a population over many generations to understand how genes related to 

neurobiological circuits increase levels of physical activity and consequently the features of 

ADHD (Zombeck et al., 2011). 

For the breeding selection, increased physical activity was measured by voluntary wheel 

running, open field behavior and forced treadmill running in mice. These traits are involved with 

neural circuits and act in different regions of the brain. The selection for increased home cage 

activity started from two populations: Hsd:ICR and Collaborative Cross G2:F1 (CC) mice (Chesler 

et al., 2008). Hsd:ICR was used because it was already explored for a selective breeding 

experiment for increased voluntary wheel running behavior (Swallow et al., 1998). The 

Collaborative Cross mice were used because it increases the genetic diversity due to the eight 

inbred strains that derived it: A/J, C57BL/6J, 129S1/SvImJ, NOD/LtJ, NZO/H1LtJ, CAST/EiJ, 

PWK/PhJ, and WSB/EiJ (Beck, et al. 2000; Zombeck et al., 2011). Based on these populations 

emerged two lines, High-Active and Control (Zombeck et al., 2011). 

After generations, the High-Active mice still demonstrated increased hyperactivity, being 

used as a model to study ADHD (Majdak et al., 2014). This study however also had another goal 

which was to demonstrate that the use of different doses of d-amphetamine can be therapeutic and 

ameliorate the behavioral symptoms of ADHD. Rhodes et al. (2004) (Rhodes et al., 2004) showed 

that exposure to methylphenidate made mice selectively bred to diminish running levels, while 

control lines that also received the same treatment increased wheel running. Majdak et al. (2014) 

(Majdak et al., 2014) had as a result that High-Active mouse line can be used to study 

neurobiological mechanisms related to hyperactivity suggesting that there is a response to 

amphetamine administration to it. 

The administration of different drugs had already shown addiction effects using striatum 

tissue. Drug administration affects dopamine and serotonin, neurotransmitters that can be 

responsible for developing the addiction. Studies showed the increase in total serotonin 

concentration in brain tissues including striatum after drug (cocaine) administration in rats (Kirby 

et al., 2011; Krzascik et al., 2015). In a study of meta-analysis using in vivo imaging of 

amphetamine and methamphetamine to understand the dopamine system and dependence process 

in humans, the amphetamine decreased striatal dopamine transporter availability (Ashok et al., 

2017). Drugs addiction effect is related to the striatum and its neurotransmitters. 
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Some genes already showed an important role in ADHD, a study of genotyping in Chinese 

children and adolescent suggested that SLC6A1 gene variants may have a significant effect on the 

ADHD risk (Yuan et al., 2017). Another study with mice also showed that SLC6A1 gene knock-

out (−/−) had hyperactivity and impaired sustained attention as phenotype (Chen et al., 2015). 

Growth factor receptor-bound protein isoform 10 (GRB10) is highly expressed in many brain 

regions rich in dopaminergic and serotonergic neurons, which are associated with ADHD (Franke 

et al., 2009). The gene cadherin 13 (CDH13) was associated with addiction vulnerability to 

substances like methamphetamine; it is expressed in regions of the brain that are related to ADHD 

and addiction behavior (Uhl et al., 2008). 

 

Understanding immune response 

The immune system is composed of dynamic and functional networks of specialized cell 

types and tissues that provide complex molecular and cellular events during an immune response. 

Gene expression analysis has been applied to all cell types of immune system, like cytokines and 

chemokines, to find the interaction between immune system components at the molecular level 

(Furman and Davis, 2015). 

Gene expression and bioinformatics tools have also been used to addiction-related traits to 

help to elucidate mechanisms of the immune system and how they are influenced by multiple 

genetic and environmental factors. Differentially expressed genes identify genes in regions 

depending on the magnitude of the behavioral trait complexity. These analyses are important to 

find genetic markers that influence amphetamine-related responses and identify genes and their 

precise function in a given behavior, however, they are also challenging due to the complexity of 

drug-related traits. Using genomic approaches, it was possible to link the action of amphetamine 

in the dopaminergic system and find dopamine-related genes to drug-response (Phillips et al., 

2008).  

Another method is the use of gene knockout on behavioral responses to drugs and immune 

system. Addiction studies found answers related to signaling and cell support molecules involved 

in complex drug reward-related traits (Phillips et al., 2008). Gene expression analyses take 

advantage of this technology allowing to understand the difference between transgenic animals 

with a knockout and the wild-type version to study the immune system.  
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Advances in technology also allowed researchers to make detailed studies of the 

immunoglobulin (Ig) and T-cell receptor (TCR) repertoires responding to vaccines. The 

development of computational tools to integrate models to analyze human immune response 

accelerates the understanding of how the immune system works and consequently accelerates 

vaccine and other medical treatments (Furman and Davis, 2015).  

The use of high-throughput sequencing approaches can be applied to the immune system 

to gives insights and identify immune biomarkers (Furman and Davis, 2015). The goal of these 

studies is to use information from gene expression analysis to understand the molecular basis of 

two complex traits: the simultaneous effect of amphetamine and ADHD, and immune response of 

macrophages. 

 

Inflammation in depression and ADHD 

Studies have been shown the relationship between inflammation and other conditions such 

as psychiatric disorders (Mitchell et al., 2017). Children and adolescents present high prevalence 

of conditions related to inflammation, like obesity, asthma, and allergy (Mitchell et al., 2017). 

Inflammation is a complex trait that can have a broad variety of reactions, including systemic 

reactions, migration and activation of leukocytes, and vascular responses (Mitchell et al., 2017). 

The key modulators of inflammation are the cytokines, which are also mediators between the 

immune system and the central nervous system (Mitchell et al., 2017). Studies show the link 

between inflammation, pro-inflammatory cytokines, and depression in adult humans (Dowlati et 

al., 2010). Interferon (IFN)-a therapy can induce depression in patients treated for hepatitis C 

(Lotrich et al., 2009). People with depression present higher concentration of interleukin 6 (Il-6) 

and TNF-a relative to no depressed people (Mitchell et al., 2017). Inflammation was also 

associated with bipolar disorder, schizophrenia, and ADHD (Mitchell et al., 2017). Low levels of 

Il-10 are associated with ADHD and schizophrenia (Mittleman et al., 1997). Increased Il-16 and 

Il-13 were related to ADHD symptoms of hyperactivity and inattention in humans, respectively 

(Oades et al., 2010).  

ADHD and depression might be sharing common causative pathways. One example is the 

kynurenine metabolites that can modulate neurotransmission and have neuroprotective or 

neurotoxic properties (Myint et al., 2007). Pro-inflammatory cytokines induce the enzyme 



 
 

15 
 

indoleamine 2,3-dioxygenase (IDO) (Christmas et al., 2011). The increase of IDO1 activity may 

increase neurotoxic metabolites of the kynurenine pathways and cause tryptophan depletion, 

causing depression (Christmas et al., 2011). Metabolites of tryptophan/kynurenine pathway and 

cytokines activities were also related to children with ADHD symptoms in a medicated group 

(Oades et al., 2010).  

ADHD in children might be related to maternal care during pregnancy, affecting the 

kynurenine levels. Maternal smoking during pregnancy is related to decreasing levels of 

kynurenine, and increased levels of 3-hydroxy-kynurenine (3HK) in children with ADHD (Oades, 

2011). Medications and supplementations taken during pregnancy are also related to children that 

had ADHD compared to mothers of healthy children. Increasing levels of kynurenic acid in 

children with ADHD was associated with stressful events that occurred during pregnancy (Oades, 

2011). Tryptophan levels tend to decrease in children with ADHD that consume seafood and spend 

time with parents (Oades, 2011). Also, increased child care in these cases also decreases 

tryptophan levels and cytokines Il-2, IFN-y, and S100 calcium Protein B (S100B). Diet with fish 

might be beneficial to a kid with ADHD and increase pro-inflammatory IL-2 and IFN-y (Oades, 

2011). The tryptophan metabolism and cytokines may be influencing the occurrence of both 

ADHD and depression symptoms. 

 

The overarching goal of this thesis is to understand factors that affect gene co-regulation 

patterns. Complementary methodology was applied to two RNA-seq data sets. One experiment 

aimed at understanding the pathways associated with high voluntary activity genotype and the 

central nervous system stimulant amphetamine. The other experiment aimed at understanding the 

pathways associated with depression-like symptoms after recovery from immune challenge and 

deficiency of a gene associated with depression-like symptoms. The first experiment profiled the 

striatum and the second experiment profiled macrophages in mice.  
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CHAPTER 2 - GENE NETWORK EVIDENCE OF INTERACTION BETWEEN 
AMPHETAMINE TREATMENT AND HYPERACTIVITY IN A MOUSE MODEL OF 

ATTENTION-DEFICIT HYPERACTIVITY DISORDER 
 

Abstract 

The psychostimulant amphetamine is frequently used in treatments to ameliorate the symptoms of 

attention-deficit hyperactivity disorder (ADHD). The molecular mechanisms that contribute to the 

effectiveness of this therapy are partially understood. To address this, the striatum of mice from a 

line (H) selected for hyperactivity that models ADHD and a contemporary control line (C) 

receiving either amphetamine treatment (A) or saline (S) treatments were studied using RNA-Seq. 

Among the 1,498 genes that exhibited significant (FDR adjusted P-value < 0.05) treatment-by-line 

interaction effect. These genes included a high number of neuropeptide coding genes and genes 

associated with neurogenesis, memory and neuroplasticity, cell adhesion, angiogenesis, and 

synaptic signaling. Lesser frequent genes are exhibiting interaction effects associated with energy 

and redox processes that exhibited opposite differential expression between A and S treatments 

across H and C lines genes. Network analysis uncovers a unique association between the synaptic 

signaling genes Nrgn and Rims1 that could explain the therapeutic effect of amphetamine on 

ADHD symptoms. Our study of gene co-regulatory network uncovered one mode of action by 

which amphetamine ameliorates the antagonistic disruption of Arc and Shank in the hyperactive 

line that exhibits ADHD-like behaviors. The network module including Shank1, Arc, Rims1, 

Dlgap1, Rapgef4, and Dlgap1, Rapgef4 suggests that treatment A decreases the differential 

expression of genes between the H and C lines by targeting whole subnetworks of connected genes, 

rather than isolated genes. Our findings support the development of therapies to ameliorate 

ADHD-like behaviors that target gene sub-networks while minimizing the disruption in other 

pathways triggered by amphetamine-based treatments. 
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Introduction 

Amphetamine is a synthetic psychological and metabolic stimulant that enhances 

concentration and awareness. Individuals exposed to amphetamine exhibit over-activity levels 

disrupted sleep patterns, and reduced appetite (Weyandt et al., 2014). The effects of this stimulant 

have been harnessed in treatments to ameliorate the symptoms of behavioral disorders including 

attention-deficit hyperactivity disorder (ADHD) and in weight loss programs (Berman et al., 

2009). Amphetamine usage has an increased risk for development of tolerance, abuse, dependence, 

and addiction (Weyandt et al., 2014). Both ADHD status and amphetamine effects involve 

dysregulation of neurological and molecular mechanisms in the striatum (Burns et al., 1993; 

Castellanos and Proal, 2012), a brain region that controls locomotor activities, voluntary behavior, 

spatial memory, and response and addiction to psychostimulants (Gruber and McDonald, 2012; 

Mizumori et al., 2009; Yager et al., 2015).  

Given the therapeutic effect of amphetamine treatment on ADHD, mice “knocked out” for 

individual genes in the amphetamine addiction pathway have been used to understand the 

molecular mechanisms underlying ADHD. For example, heterozygous knockout mice for 

dopamine transporter hypofunctional (DAT+/-) exhibited hyperactivity, attentional and 

impulsivity deficits and molecular disruptions and these deficits were ameliorated with a low-dose 

chronic amphetamine treatment (Ashok et al., 2017; Mereu et al., 2017). Brain-derived 

neurotrophic factor (Bdnf) serves as a neurotransmitter and plays a role in the etiology of ADHD. 

Likewise, a conditional knockout of Bdnf ADHD exhibited high locomotor hyperactivity and 

ADHD behavioral characteristics (Sagvolden et al., 2005; Tsai, 2016). Another model 

encompasses mice null for adhesion G protein-coupled receptor L3 (Adgrl3), a gene associated 

with ADHD and susceptibility to addiction. Mice from this line took more time to become 

immobile and were immobile for shorter periods in a forced swimming test than wild-type mice 

and 11 genes associated with neuron structure and function were differentially expressed between 

these groups (Orsini et al., 2016). 

Selective breeding strategies that address the polygenic nature of ADHD offer effective 

models of this disorder (Majdak et al., 2016; Yen et al., 2013). One ADHD model consists of a 

mouse line selected for hyperactivity not only run and traveled more in the cage but also 

underperformed in the open field behavior and Morris water maze relative to the control line 

(Majdak et al., 2016). A chronic low-dose amphetamine treatment reduced the hyperactivity and 
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motor impulsivity and the activation of neurons in the prefrontal cortex and cerebellum in the 

selected line (Majdak et al., 2016). This treatment had the opposite effect on the activation of 

neurons in the control line suggesting a potential interaction between amphetamine treatment and 

activity line. Another ADHD model involves a mouse line selected for low trait anxiety-related 

behavior that displays hyperactivity in home cages (Yen et al., 2015). In this model, acute low-

dose amphetamine treatment was associated with a reduction of locomotor activity and inhibition 

of the activity of glycogen synthase kinase 3beta (Gsk3b) in the medial prefrontal cortex. A 

microarray study identified 75 genes differentially expressed in the spontaneously hypertensive rat 

line when exposed to amphetamine (dela Peña et al., 2015). These 75 genes were associated with 

angiogenesis, cell adhesion, apoptosis, and neural development. 

The objective of this study is to advance the understanding of the molecular profiles 

supporting the ameliorating effect of amphetamine in a mouse hyperactivity line that exhibits 

ADHD-like behavior. A comprehensive study of the molecular patterns disrupted by amphetamine 

treatment in the striatum of a mouse model of ADHD provides a complete understanding of the 

mode of action of amphetamine therapy. This model provides insights into the dysregulation of 

molecular mechanisms associated with amphetamine (independent of hyperactivity line) and into 

dysregulation associated with hyperactivity line (independent of amphetamine treatment). 

Moreover, our comparative gene network analysis of the molecular pathways disrupted by 

amphetamine treatment in hyperactivity and control lines relative to saline treatment uncover 

interactions between amphetamine treatment and ADHD-like hyperactivity line.  

 

Material and methods 

Animal experiments 

Generation 17 mice from a hyperactivity line selected for increased home cage activity 

(line H) and from a contemporary control line (line C) were studied (Majdak et al., 2014; Majdak 

et al., 2016; Zombeck et al., 2011). This selective breeding line constitutes a model for ADHD-

like behaviors. Home cage activity is individually measured using video recording at 

approximately two months of age as the average distance traveled during two days (Zombeck et 

al., 2011). By generation 16, male H mice exhibited significantly higher activity (distance traveled, 

wheel running) and motor impulsivity (measured using false alarms of the Go/No-go test) than C 
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mice. Moreover, H mice exhibited significant lower motor coordination and learning skills 

measured using the accelerating rotarod task (Majdak et al., 2016). 

Male mice were group-housed after weaning, and cages were placed in rooms monitored 

for temperature (21 ± 1 °C) and photo-period (12:12 Light:Dark; lights off at 8:00 AM). Food 

(Harlan Teklad, 7012) and water were provided ad libitum. At approximately five months of age, 

drug-naive mice were acclimated to their home cage for four days. The average activity traveled 

during days 2 and 3 of individual mice were used as a baseline measurement to confirm that the 

mice studied were representative of the H and C lines. On day 4, 1.5 hours into the Dark cycle 

(active phase for mice), one intraperitoneal injection of either 0.25 mg/kg of d-amphetamine 

(treatment A) or equal amount of saline (treatment S) was given to each mouse in the home cage 

over 3 days (Majdak et al., 2016). Two hours after injection, mice were decapitated followed by 

immediate removal of the brain. In total, 20 mice were analyzed across the 2 activity lines and the 

two amphetamine treatments. The Illinois Institutional Animal Care and Use Committee approved 

all animal procedures, and these procedures were in accordance with the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals. 

 

RNA-Seq analysis 

Striatum was extracted and dissected on a chilled aluminum block, snap frozen on dry ice, 

and stored in a centrifuge tube at -80oC following our published protocols (Caetano-Anollés et al., 

2016; Saul et al., 2017). The RNase-free disposable pellet pestle (Fisher Scientific, Pittsburgh, PA, 

USA) was used for tissue homogenization, and RNeasy1 Lipid Tissue Mini Kit (Qiagen, Valencia, 

CA, USA) was used for RNA extraction. The isolated RNA was purified with DNase I (Qiagen, 

Valencia, CA, USA). Total RNA yield measured using Qubit1 2.0 (Life Technologies, Carlsbad, 

CA, USA) was > 14 ug per sample. The RNA Integrity Number (RIN) measured using Fragment 

Analyzer (Advanced Analytical Technologies Inc., Ankeny, IA, USA) was > 8 for all samples. 

Libraries from individual mouse striatum samples were prepared using Illumina's TruSeq Stranded 

RNAseq Sample Prep kit (Illumina Inc., San Diego, CA, USA) and 100nt-long paired-end reads 

from each animal separately were obtained. The libraries were sequenced using Illumina HiSeq 

2500, and a TruSeq SBS sequencing kit version 4 (Illumina, San Diego, CA, USA) and the FASTQ 

files containing paired-end reads of length 100nt were generated and demultiplexed with the 

software Casava 1.8.2 (Illumina, San Diego, CA, USA).  
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The average Phred quality score of the reads was assessed using the software program 

FastQC (Andrews, 2010). The nucleotide quality score was > 30 across all read positions and was 

not trimmed (Nixon et al., 2015). The software program TopHat2 v2.1.1 was used to map the reads 

to the mouse genome assembly Genome Reference Consortium GRCm38 (Pruitt et al., 2006; 

Trapnell et al., 2009). Transcripts were assembled and abundance estimated using the software 

program Cufflinks (Trapnell et al., 2012) with default specifications: bias correction; weight reads 

mapping to multiple locations in the genome; upper quartile normalization of the number of 

fragments mapping to individual loci; use of reference genome annotation to provide additional 

information for assembly (Trapnell et al., 2012). Cuffdiff was used to test the changes in gene 

expression between groups (Trapnell et al., 2012).  

Comparison among line-treatment combination groups offers insights into the interaction 

between line and treatment (Caetano-Anollés et al., 2015). Mouse groups are identified with a 2-

letter acronym: the first letter denotes the line and the second letter denotes the treatment: H line 

and S treatment (HS group); H line and A treatment (HA group); C line and S treatment (CS 

group); and C line and A treatment (CA group). These four line-treatment groups enable the 

evaluation of six pairwise contrasts. The contrasts HA-HS and CA-CS offer information on gene 

dysregulation associated with amphetamine treatment within the H and C lines, respectively; HS-

CS and HA-CA offer information on gene dysregulation associated with hyperactivity within the 

A and S treatments, respectively; and HS-CA and HA-CS offer information on gene dysregulation 

associated with simultaneous effects of hyperactivity line and amphetamine treatment. Among the 

six possible contrasts between hyperactivity line-amphetamine treatment groups, the three 

orthogonal contrasts that will be interpreted are CA-CS, HA-HS, HS-CS. Comparison between 

lines (irrespective of treatment) and between treatments (irrespective of the line) offer insights into 

the main effects of line and treatment. All genes with 5 or more reads per line-treatment group 

were analyzed to ensure adequate representation across groups. The Benjamini-Hochberg false 

discovery rate (FDR) was used to adjust the differential expression P-value for multiple testing 

(Benjamini and Hochberg, 1995).  

 

Functional and network analysis 

Functional analysis was used to aggregate information on the level and pattern of gene 

expression profiles between hyperactivity line-amphetamine treatment groups. Two 
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complementary analyses were undertaken. The enrichment of functional categories among the 

differentially expressed genes was evaluated using a hypergeometric test within the web-service 

Database for Annotation, Visualization and Integrated Discovery (DAVID; Version 6.8) (Huang 

et al., 2009). The enrichment of functional categories was also evaluated using a Kolmogorov test 

on the standardized expression profile of all genes available in the Gene Set Enrichment Analysis 

(GSEA) software (Subramanian et al., 2005). The functional categories assessed included Gene 

Ontology (GO) biological processes (BP), molecular functions (MF), and the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways. The Functional Annotation Tool (FAT) categories 

corresponding to the GO terms available in DAVID were used to minimize redundancies across 

the GO hierarchy (Caetano-Anollés et al., 2016). Categories were clustered in DAVID, and the 

geometric mean of the enrichment P-values (Enrichment Score, ES) was used as evidence 

supporting the category clusters. The mouse genome was used as background for testing and FDR 

was used to adjust the enrichment P-values for multiple testing (Pruitt et al., 2006). 

Gene networks were reconstructed to uncover gene dysregulation on a system-level basis, 

using Bisogenet package within the Cytoscape environment (Delfino et al., 2011; Killcoyne et al., 

2009; Martin et al., 2010; Serao et al., 2013). These networks depict gene relationships based on 

protein-protein interactions annotated in BIOGRID, HPRD, DIP, BIND, INTACT, and MINT 

databases (Keshava Prasad et al., 2008; Mathivanan et al., 2006). Networks encompassing 75 

genes exhibiting significant differential expression in at least one of the 3 orthogonal contrasts 

between hyperactivity line-amphetamine treatment groups (CA-CS, HA-HS, HS-CS) were 

reconstructed to facilitate the comparison of disrupted networks across contrasts and interpretation 

(Caetano-Anollés et al., 2016; Gonzalez-Pena et al., 2016a; Gonzalez-Pena et al., 2016b). All 

genes in the final networks were associated with functional categories enriched among the genes 

exhibiting a significant interaction effect. The comparison and study of the expression profiles 

within networks reveal shared and distinct co-regulation patterns and complement the information 

from functional analysis. 

 

Results and discussion 

The sequencing of the striatum libraries produced a total of over 2.1 billion paired-end 

reads of length 100nt and on average 109 million reads per sample. Approximately 49 million 

pairs of reads were aligned to the mouse reference genome per sample on average amounting to 
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89.54% of concordant read pairs aligned. Approximately 19,450 genes were tested for gene 

expression analysis across the six contrasts between hyperactivity line-amphetamine treatment 

groups.  

 

Amphetamine treatment-by-hyperactivity line interaction effects on the transcriptome 

Our study of differential gene expression between hyperactivity line- amphetamine 

treatment groups, offered insights into transcriptome disruptions that are line- and amphetamine-

dependent. Overall, 1,498 genes exhibited significant (FDR adjusted P-value < 0.05) treatment-

by-line interaction effect. Table 1 highlights the top differentially expressed genes exhibiting 

significant interaction effect (FDR-adjusted P-value < 1.xE-7). Within pairwise contrast, the 

numbers of significantly differentially expressed (FDR adjusted P-value < 0.05) genes were: 494 

genes (HS-CS), 186 genes (HA-HS), 319 genes (HA-CA), 93 genes (CA-CS); 208 genes (HA-

CS), and 1,084 genes (HS-CA). 

 
Table 1. Most significant genes exhibiting amphetamine treatment-by-hyperactivity line 

interaction effect and log2(fold change) between combinations of treatment (A=amphetamine, 

S=saline) and line (H=hyperactivity, C=control) groups. 

  Log2(Fold Change)a Overall 

Gene Symbol CA-CS HA-HS HS-CA HA-CS HS-CS HA-CA Raw P-
value 

FDR P-
valueb 

LOC100861610 4.20 1.26 -1.73 3.73 2.47 -0.47 7.8E-13 7.0E-10 
Neurod6 0.79 1.62 -1.99 0.41 -1.20 -0.38 7.8E-13 7.0E-10 
3110035E14Rik 0.77 1.10 -1.45 0.41 -0.68 -0.36 7.8E-13 7.0E-10 
C1ql3 0.65 1.01 -1.26 0.40 -0.61 -0.25 7.8E-13 7.0E-10 
Prss12 0.65 1.09 -1.52 0.22 -0.88 -0.43 7.8E-13 7.0E-10 
Nr4a2 0.57 1.26 -1.55 0.29 -0.98 -0.29 7.8E-13 7.0E-10 
Ctgf 0.63 0.85 -1.42 0.06 -0.79 -0.57 7.8E-13 7.0E-10 
Cck 0.42 1.22 -1.39 0.25 -0.97 -0.18 7.8E-13 7.0E-10 
Nov 0.50 1.28 -1.64 0.14 -1.14 -0.36 7.8E-13 7.0E-10 
Slc17a7 0.45 1.58 -1.87 0.16 -1.42 -0.29 7.8E-13 7.0E-10 
Nptx1 0.40 0.80 -1.09 0.11 -0.69 -0.30 7.8E-13 7.0E-10 
Hap1 -0.34 -0.42 0.79 0.02 0.45 0.36 7.8E-13 7.0E-10 
Dlk1 -0.46 -0.71 1.24 0.07 0.78 0.53 7.8E-13 7.0E-10 
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Table 1 (cont.)         
 Log2(Fold Change)a Overall 
Gene Symbol CA-CS HA-HS HS-CA HA-CS HS-CS HA-CA Raw P-

value 
FDR P-

valueb 
Peg10 -0.52 -0.62 1.14 -0.01 0.62 0.51 7.8E-13 7.0E-10 
Irs4 -0.87 -0.59 1.68 0.23 0.81 1.09 7.8E-13 7.0E-10 
Gm9800 -1.54 1.46 0.25 0.17 -1.29 1.70 7.8E-13 7.0E-10 
Avp -1.70 -1.51 3.14 -0.07 1.44 1.63 7.8E-13 7.0E-10 
Gm5506 -0.51 0.83 -1.86 -1.54 -2.37 -1.04 7.8E-13 7.0E-10  
Oxt -2.41 -1.65 3.66 -0.40 1.26 2.01 7.8E-13 7.0E-10 
Cplx3 0.65 1.08 -1.46 0.26 -0.81 -0.39 1.6E-12 1.2E-09 
Tbr1 0.45 1.25 -1.53 0.17 -1.08 -0.28 1.6E-12 1.2E-09 
Sv2b 0.30 0.70 -0.95 0.05 -0.65 -0.26 1.6E-12 1.2E-09 
Adcy1 0.31 0.76 -1.02 0.04 -0.72 -0.26 2.3E-12 1.5E-09 
AW551984 -0.66 -0.48 1.33 0.19 0.67 0.84 2.3E-12 1.5E-09 
Arhgap36 -0.80 -0.74 1.74 0.19 0.93 0.99 2.3E-12 1.5E-09 
Gm11549 0.59 1.44 -1.78 0.25 -1.19 -0.34 3.1E-12 1.9E-09 
Scube1 0.43 1.33 -1.53 0.23 -1.10 -0.20 6.8E-12 4.2E-09 
Il1f9 -0.50 -1.05 1.13 -0.42 0.63 0.08 1.1E-11 6.2E-09 
Lingo1 0.30 0.59 -0.80 0.08 -0.51 -0.21 1.1E-11 6.4E-09 
Neurod2 0.43 1.54 -1.89 0.08 -1.46 -0.35 1.6E-11 8.6E-09 
Satb2 0.47 1.43 -1.68 0.21 -1.22 -0.25 1.9E-11 9.6E-09 
Galnt9 0.35 0.67 -0.86 0.16 -0.51 -0.19 1.9E-11 9.6E-09 
Trh -1.17 -0.57 2.20 0.47 1.03 1.64 1.9E-11 9.6E-09 
Ttr -1.63 -0.63 2.31 0.05 0.68 1.68 2.4E-11 1.2E-08 
Nrn1 0.31 1.22 -1.26 0.26 -0.96 -0.05 3.5E-11 1.6E-08 
Mical2 0.28 0.73 -0.81 0.19 -0.53 -0.09 3.6E-11 1.6E-08 
Calb2 -0.70 -0.38 1.64 0.56 0.94 1.25 4.3E-11 1.9E-08 
Pde1a 0.36 0.52 -0.66 0.23 -0.30 -0.14 4.9E-11 2.1E-08 
Igsf1 -0.67 -0.65 1.30 -0.02 0.63 0.65 5.4E-11 2.3E-08 
Mpped1 0.26 0.55 -0.68 0.12 -0.42 -0.13 5.9E-11 2.4E-08 
Rtn4rl2 0.42 1.65 -2.03 0.04 -1.61 -0.38 9.9E-11 4.0E-08 
Magel2 -0.50 -0.89 1.43 0.05 0.93 0.55 1.2E-10 4.6E-08 
Resp18 -0.46 -0.30 0.91 0.14 0.45 0.60 1.3E-10 4.8E-08 
Nts -0.37 -0.67 1.09 0.05 0.72 0.42 1.5E-10 5.6E-08 
Ecel1 -0.29 -0.49 0.77 -0.01 0.48 0.28 1.6E-10 5.7E-08 
Baiap3 -0.68 -0.46 1.14 0.00 0.46 0.67 1.7E-10 6.0E-08 
Mef2c 0.21 0.57 -0.73 0.05 -0.52 -0.16 1.7E-10 6.0E-08 
Fam70a -0.32 -0.42 0.85 0.11 0.52 0.43 1.7E-10 6.0E-08 
Cdhr1 1.31 0.85 -0.93 1.23 0.38 -0.08 1.8E-10 6.0E-08 
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Table 1 (cont.)         
 Log2(Fold Change)a Overall 
Gene Symbol CA-CS HA-HS HS-CA HA-CS HS-CS HA-CA Raw P-

value 
FDR P-

valueb 
Serpini1 0.21 0.56 -0.66 0.12 -0.44 -0.09 1.8E-10 6.0E-08 
Robo3 0.33 0.88 -1.10 0.11 -0.77 -0.23 1.9E-10 6.3E-08 
3110047P20Rik 0.31 0.79 -1.12 -0.03 -0.82 -0.33 2.2E-10 6.9E-08 
Prlr -0.54 -0.57 1.30 0.19 0.76 0.73 2.3E-10 7.2E-08 
Hba-a2 -1.42 -0.60 3.66 1.64 2.24 3.07 2.4E-10 7.2E-08 

aLog2(fold change) between different pairs of treatment-line groups: H=hyperactivity line; 

C=control line; A=amphetamine treatment; and S=saline treatment. 
bFalse Discovery rate adjusted P-value for the overall line-by-treatment interaction. 

 

The Venn diagram in Figure 3 depicts the overlap of differentially expressed genes (FDR-

adjusted P-value < 0.05) within each of four informative contrasts (CA-HA, CS-HS, CA-CS, and 

HA-HS). This diagram highlights the majority of the genes in the contrasts with the highest 

numbers of differentially expressed genes were unique to that contrast: 248 genes in CS-HS 

amounting to 33.4% of all differentially expressed genes, and 144 genes in CA-HA amounting to 

19.4% of all differentially expressed genes. In addition, a large number of differentially expressed 

genes (107 genes amounting to 14.4% of all differentially expressed genes overlapped between 

both contrasts suggesting a prevalent gene dysregulation that is associated with differences 

between the H line model of ADHD-like behaviors and the C line. 
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Figure 3. Venn diagram summarizing the number of differentially expressed genes (FDR-adjusted 

P-value < 0.05) within each of four informative contrasts between combinations of treatment 

(A=amphetamine, S=saline) and line (H=hyperactive, C=control) groups analyzed separately and 

the overlap. CAHA=CA-HA, CSHS=CS-HS, CACS=CA-CS, HAHS=HA-HS)  

 

The lowest number of differentially expressed genes were detected in the CS-CA contrast, 

and 13 of these genes (1.8% of all differentially expressed genes) did not overlap with another 

contrast. This suggests that the A treatment used elicits modest disruption in the transcriptome 

compared to the S treatment in the C line. Most of the differentially expressed genes in the CA-

CS contrast (52 genes amounting to 7% of the differentially expressed genes) overlapped with the 

CS-HS contrast. Both of these contrasts share the CS mouse group, and thus the response of these 

genes to CA and HS relative to CS support the effectiveness of the hyperactivity line model of 

ADHD to understand the responsive to amphetamine treatment.   

As expected, the lower number of differentially expressed genes in HA-HS (186 genes) 

relative to CS-HS (494 genes) indicates that gene expression in HS is more similar to HA than to 
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CS mice. The Venn diagram highlights the large percentage of the differentially expressed genes 

in HA-HS that overlap with CS-HS (115 genes amounting to 15.5% of the differentially expressed 

genes). Overall, the overlap of differentially expressed genes between HA-HS and CS-HS 

indicates that the A treatment reverted some of the gene dysregulation associated with the 

hyperactivity ADHD-like line. This conclusion is also supported by the number of differentially 

expressed genes (319 genes) in HA-CA that is intermediate between HA-HS and HS-CS. The 

previous results are consistent with the therapeutic effects of low-dose amphetamine on ADHD-

like symptoms and the interaction between the same amphetamine treatments and lines at earlier 

generation assessed at behavioral and protein levels. In early generations of the H line studied, 

amphetamine treatment lowered the locomotor activity in the line and increased the activity in the 

C line (Majdak et al., 2014). In later generations, a significant interaction between treatment and 

line on impulsivity was reported (Majdak et al., 2016). A significant interaction between anxiety 

behavior and amphetamine treatment on the activity of glycogen synthase kinase 3 beta (GSK3B) 

was also reported in another ADHD model that used a line selected for low trait anxiety behavior 

and amphetamine treatment (Yen et al., 2015). 

The Venn diagram identifies 14 genes that were differentially expressed in the four 

contrasts (Figure 3). These genes are: Rho GTPase activating protein 36 (Arhgap36), arginine 

vasopressin (Avp), expressed sequence AW551984 (AW551984), BAI1 associated protein 3 

(Baiap3), connective tissue growth factor (Ctgf), delta like non-canonical Notch ligand 1 (Dlk1), 

enolase 1B, retrotransposed (Gm5506), predicted gene 9800 (Gm9800), Huntingtin associated 

protein 1 (Hap1), immunoglobulin superfamily member 1 (Igsf1), insulin receptor substrate 4 

(Irs4), neuronal pentraxin 1 (Nptx1), oxytocin/neurophysin (Oxt), and paternally expressed 10 

(Peg10). From these 14 genes, 10 are among top 20 genes with lowest FDR P-value: Ctgf, Nptx1, 

Hap1, Dlk1, Peg10, Irs4, Gm9800, Avp, Gm5506, and Oxt. Also, most of the genes (Hap1, Dlk1, 

Peg10, Irs4, Avp, AW551984, Arhgap36, Igsf1, and Baiap3) present the same interaction profile 

“- - +”. Ctgf and Nptx1 present the opposite profile “+ + -”, while Gm9800 and Gm5506 present 

“- + -” profile. These interaction profiles, and especially the genes Avp, and Oxp are discussed in 

the next sections. 
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Interaction profiles 

The sign of the log2(fold change) corresponding to the three orthogonal contrasts enabled 

the precise characterization of the interaction profiles. The “+” or “-” sign of each denotes over-

expression or under-expression respectively in the first mice group relative to the second mouse 

group specified in the contrast. Profiles are expressed regarding the signs of the three contrasts in 

the following order: CA-CS, HA-HS, and HS-CS. For example, the profile “+ + -” corresponds to 

gene positive CA-CS (i.e., over-expression in CA relative to CS), positive HA-CS (i.e., over-

expression in HA relative to HS), and negative HS-CS (i.e., under-expression in HS relative to CS 

mice). Alternatively, this profile can also be summarized as positive A-S treatment contrast across 

both lines and negative HS-CS. Likewise, the profile “- - +” corresponds to negative CA-CS, 

negative HA-HS, and positive HS-CS log2(fold change) respectively. 

Profile “+ + -” was the most common profile (470 genes) among the 1,498 genes exhibiting 

significant treatment-by-line interaction effect. The “+ + -” profile includes positive CA-CS, 

positive HA-HS, and negative HS-CS. The frequencies of the remaining ordered profiles were 378 

genes “- - +” (negative CA-CS, negative HA-HS, and positive HS-CS); 256 genes “+ - +” (positive 

CA-CS, negative HA-HS, and positive HS-CS); 167 genes “- + -” (negative CA-CS, positive HA-

HS, and negative HS-CS); 97 genes “- - -” (negative CA-CS, negative HA-HS, and negative HS-

CS); 80 genes “+ + +” (positive CA-CS, positive HA-HS, and positive HS-CS); 32 genes “- + +” 

(negative CA-CS, positive HA-HS, and positive HS-CS); and 17 genes “+ - -” (positive CA-CS, 

negative HA-HS, and negative HS-CS). 

The predominance of the 2 opposite profiles “+ + -” and “- - +” across the 3 orthogonal 

contrasts CA-CS, HA-HS, and CS-HS highlights the impact of the differential gene expression 

between A and S treatments across both lines and the correspondence between A and S treatments 

with C and H lines receiving the S treatment. These profiles may trigger molecular mechanisms 

elucidating reports that low doses of amphetamine can decrease wheel running in mouse lines 

exhibiting standard activity levels (Williams and White, 1984) in addition to decreasing activity 

in hyperactive lines. 
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Amphetamine treatment-by-hyperactivity line interaction effects on individual gene 

expression profiles 

The fundamental study of individual gene profiles thrust our understanding of the 

molecular mechanisms that exhibited amphetamine treatment and ADHD model line-specific 

profiles. An unexpected finding was the high number of genes coding for neuropeptides and 

hormone, and associated receptors exhibited either one of the two most common yet opposite 

profiles (“+ + -” and “- - +”) across the three orthogonal contrasts CA-CS, HA-HS, and CS-HS 

(Table 1). Genes positive for the A-S treatment contrast in both lines and negative for HS-CS (“+ 

+ -” profile) included: cholecystokinin (Cck), neurogranin (Nrgn), vasoactive intestinal 

polypeptide (Vip), somatostatin receptor 3 (Sstr3), and cholecystokinin B receptor (Cckbr). Genes 

negative for the A-S contrast in both lines and positive for HS-CS ( “- - +” profile) included: Avp 

and Oxt (both common between the four contrasts in the Venn diagram presented in Figure 3), 

thyrotropin-releasing hormone (Trh), neurotensin (Nts), angiotensinogen (Agt), galanin (Gal), 

prolactin receptor (Prlr), and calcitonin receptor (Calcr). Our novel identification of a large number 

of hormone and neuropeptide genes exhibiting amphetamine treatment-by-hyperactivity line 

interaction is confirmed across numerous reports of dysregulation of neuropeptide genes, in 

particular, ADHD-related or amphetamine scenarios. Neuropeptides and hormones modulate the 

dopaminergic neurotransmitter systems and influence the effects of amphetamine. Nts blocks the 

hyperactivity induced by amphetamine treatment in rats (Boules et al., 2001). The observed over-

expression of Nrgn in the amphetamine-treated mice relative to saline is consistent with increased 

levels of Nrgn in the frontal cortex of amphetamine-treated rats (Szabo et al., 2009). Cck 

diminishes the locomotor stimulatory effects of low amphetamine doses in rats (Weiss et al., 1988). 

Cck diminishes the locomotor stimulatory effects of low amphetamine doses in rats. Amphetamine 

exposure alters Oxt, and dopamine neurotransmission in prairie voles (Young et al., 2014) and Oxt 

lowers the locomotor activity in cocaine- and methamphetamine-exposed mice (Carson et al., 

2013; Leong et al., 2016; Qi et al., 2008; Sarnyai and Kovács, 1994). Avp also reduces locomotor 

stimulation by amphetamine in mice (Chiu et al., 1998).  

Two thyroid-related genes exhibited the “- - +” profile characterized by negative A-S 

treatment contrast in both lines: Trh and transthyretin (Ttr). Trh plays a role in stimulating the 

release of the thyroid-stimulating hormone, and Ttr plays a role in thyroid synthesis. Thyroid 
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hormones influence behavior and cognitive function and individuals that have lower levels of this 

hormone exhibit behaviors similar to ADHD (Builee and Hatherill, 2004). The under-expression 

of Trh in the A relative to the S group is consistent with lower levels of Trh in the striatum of rats 

2 hours after amphetamine administration (Jaworska-Feil et al., 1995). Our findings demonstrate 

the potential impact of neuropeptide-driven therapies to ameliorate hyperactivity ADHD-like 

behaviors while minimizing the disruption in other pathways triggered by amphetamine-based 

treatments. 

In addition to neuropeptide- and thyroid-related genes, other genes exhibiting interaction 

effect have been associated with amphetamine or other psychostimulants, and to ADHD or related 

comorbidities (Table 1). Genes participating in synaptic signaling that exhibited the “+ + -” profile 

characterized by positive CA-CS and HA-HS and negative HS-CS included: Bdnf, 5-

hydroxytryptamine (serotonin) receptor (Htr5a), adenosine A1 receptor (Adora1), synapsin I 

(Syn1), syntaxin 1A (Stx1a), and synaptotagmin I, XIII and XVII (Syt1, Syt13, and Syt17). The 

profile of Bdnf is consistent with the well-established positive association between Bdnf levels 

and amphetamine administration (Meredith et al., 2002) and with higher striatal levels of Bdnf in 

wild-type mice relative to heterozygous Bdnf knockout mice after acute amphetamine injection 

(Saylor and McGinty, 2008). Consistent with the profile uncovered in this study, mutations and 

other disruptions in serotonin receptors including Htr5a have been linked to ADHD (Romanos et 

al., 2008). Also, Htr5a is over-expressed in the nucleus accumbens of mice exposed to the 

psychostimulant cocaine (Eipper‐Mains et al., 2013). Likewise, in agreement with the pattern 

detected in this study, mutations in Adora1 have been associated with anxiety (Johansson et al., 

2001) and the psychostimulant caffeine affects the level of Adora1 (Muñiz et al., 2016). Adora1 

has also been associated with regulation of blood pressure and blood vessel diameter, hormone 

secretion, synaptic depression, and cognition (Yang et al., 2010). Ours is the first study to 

simultaneously link hyperactivity and amphetamine exposure to Hrt5a and Adora1. 

Many genes associated with neuronal development presented the “+ + -” profile 

characterized by positive A-S treatment contrast across both lines and negative HS-CS (Table 1). 

These genes include transcription factor nuclear receptor subfamily 4, group A, member 2 (Nr4a2), 

and genes in the neuronal differentiation (Neurod) family (Neurod6, Neurod2, and Neurod1). 

Additional genes associated with neuronal development that exhibited positive CA-CS and 

negative HS-CS contrast included the transcription factors early growth response 2 (Egr2) and 
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members of the nuclear receptor (Nr) subfamily (Nr4a3, and Nr4a1). Egr2, Nr4a1, and Nr4a3 were 

also differentially expressed in a study of amphetamine-treated rats from the spontaneously 

hypertensive model of ADHD (dela Peña et al., 2015). The transcriptome study of the homozygous 

Lphn3 knockout model of ADHD uncovered disruption on genes that play a role in neuron 

structure and function (Orsini et al., 2016). Other transcription factors including SRY-box 1 (Sox1) 

and Forkhead box J1 (Foxj1) exhibited the reverse pattern, characterized by under-expression in 

A relative to S in both lines and were over-expressed in HS-CS (Table 1). Sox1 is associated with 

forebrain neuron development, and Foxj1 has been linked to brain development (Christie et al., 

2013). 

Genes participating in memory and learning processes that exhibited a significant 

interaction effect and a “+ + -” profile included Bdnf, neurogenic differentiation 2 (Neurod2), and 

Nrgn (Table 1). The positive A-S treatment contrast across lines exhibited by neurotrypsin 

(Prss12) is consistent with the higher focus observed in individuals exposed to amphetamine while 

Prss12 knockout mice exhibit impaired long-term memory formation and cognitive deficits and 

behavioral disorders in humans and mice (Schachtschneider et al., 2016). Our study confirms that 

ADHD and psychostimulant use are involved in disruption of neuronal development and cognition 

processes (Webb et al., 2009) and furthers the understanding that this effect expands across 

hyperactivity genotypes associated with ADHD.  

In addition to genes associated with neurogenesis and cognitive processes, several ion 

transport genes associated with neuroplasticity presented the “+ + -” profile (Table 1). These genes 

include various ATPase Ca++ transporters (e.g., Atp2b1), potassium channel family members 

(e.g., Kcnk2), and solute carrier family members (e.g., Slc17a7). The solute carrier family 17 

(sodium-dependent inorganic phosphate cotransporter), member 7 (Slc17a7, also known as 

vesicular glutamate transporter or VGluT1) plays a role in behavioral flexibility and adaptation 

(Granseth et al., 2015) that is typically associated with neuroplasticity in response to 

psychostimulants and ADHD-related disorders. 

Several genes that participate in cell adhesion processes exhibited significant amphetamine 

treatment-by-hyperactivity line interaction effect including connective tissue growth factor (Ctgf), 

adhesion G protein-coupled receptor L3 (Adgrl3 or Lphn3), and various members of the collagen 

(Col) family: Col9a3, Col24a1, Col6a5, Col11a1, Col5a2, Col6a2, Col19a1, Col6a3, Col8a2, 

Col27a1, Col4a2, Col9a2, Col16a1, and Col5a1 (Table 1). The “+ + -” profile of Ctgf 
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characterized by positive A-S treatment contrast across both lines is consistent with the profile 

observed in amphetamine-treated rats from the spontaneously hypertensive model of ADHD (dela 

Peña et al., 2015). Adgrl3 or Lphn3 also exhibited the “+ + -” profile. This gene is also involved 

in cell-cell adhesion and has been associated with susceptibility to ADHD, addiction processes 

(Liu et al., 2006) and a homozygous Lphn3 knockout mouse line are used as ADHD model (Orsini 

et al., 2016). Nephroblastoma overexpressed gene (Nov), together with plexin domain containing 

1 (Plxdc1) and R-spondin 3 (Rspo3) have the same profile as collagen genes Col4a2 and Col8a2, 

and all these genes are associated with angiogenesis processes. Consistent with our findings, genes 

involved in cell adhesion angiogenesis were differentially expressed in amphetamine-treated rats 

from the spontaneously hypertensive model of ADHD (dela Peña et al., 2015). Our findings ratify 

the proposition that physical activity stimulated by A treatment supports brain vasculature and 

blood flow and increases angiogenesis, and neurogenesis (Gapin et al., 2011). 

Dopamine receptor 3 (Drd3) is among the genes exhibiting the second most frequent profile 

(“- - +” profile) that is characterized by negative A-S treatment contrast in both lines and positive 

HS-CS (Table 1). Drd3 is associated with regulation of blood pressure, behavioral response to the 

psychostimulant cocaine, and locomotor behavior similar to genes exhibiting the reverse 

trajectory. Our Drd3 finding is in agreement with the reported striatal over-expression of Drd3 in 

the spontaneously hypertensive rat model of ADHD relative to control rats (Li et al., 2007).  

Among the third most common profile (“- + -” profile), ribosomal protein L29 (Rpl29) and 

Enolase 1B, retrotransposed (GM5506 or Eno1b) presented negative CA-CS, positive HS-CS, and 

negative HS-CS. The under-expression in H relative to C lines under S treatment is consistent with 

reports under-expression of Rpl29 in the Lphn3 null model of ADHD relative to wild-type mice 

(Orsini et al., 2016). Eno1b has been associated with neuronal diseases and is part of the glycolytic 

pathway that plays a role in ATP production in the brain (Sultana et al., 2006). The profile of 

Eno1b observed in the present study is consistent with the role of enolases in ATP production in 

the brain, where low energy availability in the brain may lead to cellular dysfunction (Sultana et 

al., 2006). LOC100042025 predicted as glyceraldehyde-3-phosphate dehydrogenase-like, 

transcript variant 2, also plays a role in glycolysis and follows a similar profile of positive HA-HS 

and negative HS-CS albeit no substantial expression differential in CA-CS.  

Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) exhibited less significant interaction 

effect including positive HS-CS. Gapdh participates in redox post-translational modifications (El 
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Kadmiri et al., 2014) and mice exposed to methamphetamine treatment exhibit higher GAPDH 

protein levels and had more oxidative stress in the brain (Mark et al., 2007; Nakajima et al., 2009). 

Amphetamine exposure is also associated with increased oxidative stress in rodent striatum (Frey 

et al., 2006; Wan et al., 2000). Also, in vitro studies detected that Gapdh increases cellular toxicity 

and enhances pathogenicity of intercellular transmission of Huntington disease (Mikhaylova et al., 

2016). The energy required by neuronal processes to sustain high activity in H mice or in response 

to treatment A may trigger the dysregulation of the previously reviewed genes involved in energy 

pathways.  

S-adenosylmethionine decarboxylase 2 (Amd2) and Glutathione S-transferase Pi 2 (Gstp2) 

were positive CA-CS, negative HA-HS, and positive HS-CS. The profile of these genes in related 

experiments is consistent with our findings. Amd2 is part of the polyamine system, and polyamine 

treatment has been associated with modulation of limbic dopamine function that is involved 

climbing and wheel running behavior in rodents (Hirsch et al., 1987). Gstp2 plays an important 

role in detoxification, protect cells from injury by toxic chemicals and from products of oxidative 

stress (Hayes et al., 2005). Forms of Gstp2 ameliorate the oxidative milieu especially prevalent in 

dopaminergic neurons (Beiswanger et al., 1994). Drd3 exhibited the same negative HA-HS and 

positive HS-CS profile as Gstp2 confirming the impact of H line and A treatment in the dopamine 

system.  

Three related transcription factors, FBJ osteosarcoma oncogene (Fos), FBJ osteosarcoma 

oncogene B (Fosb), and fos-like antigen 2 (Fosl2) exhibited the most frequent profile characterized 

by positive CA-CS, negative HA-HS, and positive HS-CS. Our result agrees with reports of 

elevated Fosb expression in the striatum of rats after exposure to the psychostimulant 

Methylphenidate (Ritalin) that is commonly used to treat ADHD and with findings of Fos 

induction associated with amphetamine exposure in young mice (Chase et al., 2005; Labandeira-

Garcia et al., 1994).  

Our study of treatment-by-line interaction effects on gene expression enabled us to detect 

transcript profiles that are simultaneously amphetamine-treatment and hyperactivity line-

dependent. This information will aid in the identification of molecular targets that can effectively 

ameliorate ADHD symptoms in consideration of psychostimulant treatments or alleviate the 

effects of psychostimulant use in consideration of genetic predispositions to behavioral disorders.  
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Amphetamine treatment-by-hyperactivity line interaction effects on molecular mechanisms 

The investigation of molecular mechanisms encompassing multiple genes exhibiting 

significant interaction effects augmented our understanding of the pathways and processes that are 

affected by an amphetamine treatment and hyperactivity line-dependent manner. Highly enriched 

and informative clusters and descriptive GO and KEGG terms among the 1,498 genes exhibiting 

a significant amphetamine treatment-by-hyperactivity line interaction effect are listed in Table 2. 

Enriched categories include the GO BP terms forebrain development, synaptic transmission, 

neurogenesis and neuronal development, ion transport, peptide hormone secretion, memory and 

learning, response to stimuli including hormones, and regulation of sensory perception.  

 

Table 2. Informative clusters (Enrichment Score ≥ 4) of descriptive DAVID FAT categories 

including Gene Ontology (GO) biological processes (BP) and molecular functions (MF) enriched 

among genes exhibiting significant (FDR adjusted P-value < 0.05) amphetamine treatment-by-

hyperactivity line interaction effects. 
Category Term Counta Raw P-

value 
FDR P-
valueb 

Cluster 1 Enrichment Score: 14.81 
   

BP  GO:0007399~nervous system development 268 8.45E-28 1.67E-24 
BP  GO:0030900~forebrain development 63 6.70E-11 1.33E-07 
Cluster 2 Enrichment Score: 13.98 

   

BP  GO:0007267~cell-cell signaling 176 3.52E-24 6.96E-21 
BP  GO:0099536~synaptic signaling 101 6.05E-22 1.20E-18 
Cluster 3 Enrichment Score: 12.36 

   

BP  GO:0007399~nervous system development 268 8.45E-28 1.67E-24 
BP  GO:0022008~neurogenesis 203 6.27E-23 1.24E-19 
BP  GO:0030182~neuron differentiation 172 1.29E-19 2.56E-16 
Cluster 4 Enrichment Score: 12.32 

   

BP  GO:0043269~regulation of ion transport 94 1.04E-17 2.06E-14 
MF  GO:0022843~voltage-gated cation channel activity 38 1.68E-14 2.78E-11 
Cluster 6 Enrichment Score: 7.73 

   

BP  GO:0007610~behavior 105 1.59E-17 3.15E-14 
BP  GO:0050890~cognition 51 1.19E-10 2.36E-07 
BP GO:0007611~learning or memory 45 3.59E-09 7.09E-06 
Cluster 10 Enrichment Score: 6.25 

   

BP GO:0009719~response to endogenous stimulus 165 4.85E-11 9.59E-08 
BP  GO:0009725~response to hormone 94 8.87E-09 1.75E-05 
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Table 2 (cont.)     
Category Term Counta Raw P-

value 
FDR P-

valueb 
Cluster 19 Enrichment Score: 4.98 

   

BP  GO:0051049~regulation of transport 205 4.34E-18 8.58E-15 
BP  GO:0030072~peptide hormone secretion 44 1.70E-08 3.37E-05 

aNumber of genes in the enriched category. 

bFalse Discovery rate adjusted P-value. 

 

Many of the functional categories exhibiting significant treatment-by-line interaction 

effects in this study have been previously associated with amphetamine exposure, hyperactivity, 

and ADHD (Gruber and McDonald, 2012). Neuronal development was enriched among the genes 

differentially expressed in the striatum of spontaneously hypertensive rats, an ADHD model, 

treated with amphetamine (dela Peña et al., 2015). The enrichment of genes associated with 

synaptic transmission was expected since ADHD treatment using amphetamine acts through 

disruption of this signaling system (Mazei-Robison and Blakely, 2006). The enrichment of the 

memory and learning term is consistent with the impaired working memory observed in congenic 

wiggling rats that are hyperactive, exhibit impulsive behaviors and are a model to study ADHD 

(Masuo et al., 2007). These functional analysis results advance the understanding of the etiology 

of ADHD that is characterized by poor performance in executive functions including attention, 

correct response time and working memory (Loos et al., 2010).  

Several enriched categories among the genes exhibiting significant treatment-by-line 

interaction effects are consistent with categories indirectly associated with ADHD and 

amphetamine effects. These categories are consistent with previous functional studies of behaviors 

and phenotypes typically associated with amphetamine treatment or ADHD. For example, high 

levels of physical activity have been associated with anatomical and physiological alterations in 

the brain, like size, volume, and spatial memory (Phillips et al., 2014).  

Many enriched clusters and categories shared genes that exhibited significant treatment-

by-line interaction effects. This finding supports both the understanding that multiple processes 

are associated with the effects of ADHD and amphetamine and that these processes are highly 

interconnected by genes. For example, Oxt participates in the enrichment of many categories 

ranging from cellular homeostasis to behavior, such as social behavior, and can have a therapeutic 

effect on addiction (Carson, 2014). Likewise, myocyte enhancer factor 2C (Mef2c) is annotated to 
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various functional categories previously discussed including the Oxt signaling pathway, cellular 

response to parathyroid hormone stimulus, and transcription factor activity. Mef2c presented a 

profile of positive CA-CS, positive HA-HS, and negative HS-CS. In agreement with this profile, 

conditional deletion of Mef2c was associated with the disrupted balance between excitatory and 

inhibitory synapses in the developing brain, neurodevelopmental disorders, behavioral changes 

including hyperactivity and repetitive movements (Harrington et al., 2016). Over-expression of 

Mef2c in mice prefrontal cortex neurons improves cognition, behavior, and working memory 

(Mitchell et al., 2017). 

In addition to the enrichment of categories among genes exhibiting significant treatment-

by-line interaction effects, the enrichment of categories within the most frequent profiles across 

the three orthogonal contrasts was studied. Highly enriched and informative clusters of descriptive 

categories identified by DAVID for the profiles with an Enrichment Score ≥ 4 are presented in 

Table 3. The most enriched categories among all genes exhibiting a significant interaction effect 

are also enriched in the two most frequent profiles: positive CA-CS, positive HA-HS, and negative 

HS-CS (“+ + -” profile) and negative CA-CS, negative HA-HS, and positive HS-CS (“- - +” 

profile). The remaining profiles included less than 170 genes, and no category reached an 

Enrichment Score > 2. 

 

Table 3. Highly enriched and informative clusters of DAVID FAT categories including Gene 

Ontology (GO) biological process (BP) and molecular function (MF) among genes exhibiting 

significant interaction effect and the 3 most common profiles across the 3 orthogonal contrast ((“+ 

+ -“, “- - +”, and “+ - +”)). 

Category Term Counta Raw P-
value 

FDR-
adjusted P-
valueb  

  Positive CA-CS, positive HA-HS, and negative HS-
CS (“+ + -“ contrast) 

      

Cluster 1 Enrichment Score: 11.13       

BP GO:0099536~synaptic signaling 49 2.0E-16 4.8E-13 

BP GO:0006836~neurotransmitter transport 19 3.5E-08 4.9E-06 

Cluster 2 Enrichment Score: 6.83       
MF GO:0005249~ voltage-gated potassium channel activity 16 6.4E-10 5.3E-07 
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Table 3 (cont.)     

Category Term Counta Raw P-
value 

FDR-
adjusted P-

valueb  
  Positive CA-CS, positive HA-HS, and negative HS-

CS (“+ + -“ contrast) 
      

BP GO:0006811~ion transport 58 4.4E-07 3.8E-05 

Cluster 3 Enrichment Score: 6.49       
BP GO:0030900~forebrain development 30 1.8E-08 3.3E-06 

Cluster 4 Enrichment Score: 5.9       
BP GO:0022008~Neurogenesis 79 5.4E-12 3.9E-09 

BP GO:0048666~neuron development 61 8.5E-12 4.6E-09 

Cluster 5 Enrichment Score: 5.56       
BP GO:0007610~Behavior 43 1.1E-09 3.3E-07 

BP GO:0007611~learning or memory 22 3.4E-07 3.1E-05 

Cluster 16 Enrichment Score: 2.64       
BP GO:0015833~peptide transport 19 8.3E-05 3.8E-03 

BP GO:0046879~hormone secretion 20 1.7E-04 7.2E-03 

Category Negative CA-CS, negative HA-HS, and positive HS-
CS (“- - +” contrast) 

Count Raw P-
value 

FDR-
adjusted P-
value 

Cluster 1 Enrichment Score: 4.94       

BP GO:0099536~synaptic signaling 26 6.0E-06 1.6E-03 

Cluster 2 Enrichment Score: 4.84       

MF GO:0005184~neuropeptide hormone activity 9 1.3E-08 1.0E-05 

MF GO:0005179~hormone activity 12 5.3E-06 1.0E-03 

Cluster 3 Enrichment Score: 3.78       

BP GO:0050801~ion homeostasis 30 5.9E-06 1.7E-03 

BP GO:0008015~blood circulation 20 1.2E-04 1.0E-02 

BP GO:0003013~circulatory system process 20 1.3E-04 1.1E-02 

Cluster 4 Enrichment Score: 3.39       

BP GO:0030900~forebrain development 19 1.3E-04 1.0E-02 

BP GO:0040011~Locomotion 43 4.3E-04 2.0E-02 

Cluster 10 Enrichment Score: 2.57       

BP GO:0046879~hormone secretion 16 5.4E-04 2.3E-02 

BP GO:0002790~peptide secretion 14 7.5E-04 2.9E-02 

Cluster 21 Enrichment Score: 2.19       

BP GO:1901698~response to nitrogen compound 33 1.8E-04 1.2E-02 

BP GO:0009725~response to hormone 27 8.1E-04 2.9E-02 
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Table 3 (cont.)     

Category Term Counta Raw P-
value 

FDR-
adjusted P-
valueb  

Category Positive CA-CS, negative HA-HS, and positive HS-
CS (“+ - +” contrast) 

Count Raw P-
value 

FDR-
adjusted P-
value 

Cluster 1 Enrichment Score: 2.74       

BP GO:0003341~cilium movement 9 9.7E-08 3.2E-04 

BP GO:0007018~microtubule-based movement 12 1.1E-05 1.8E-02 
aNumber of genes in the enriched category. 

bFalse Discovery rate adjusted P-value. 

 

The functional categories shared among the genes exhibiting the “+ + -” and “- - +” profiles 

included synaptic signaling, hormone secretion and peptide transport, and neurogenesis. The 

overlap in enrichment categories between the two opposite profiles and the interaction confirm the 

overlapping processes and overlapping genes corresponding to these processes disrupted by 

amphetamine and hyperactivity. The only highly enriched cluster of categories among the genes 

exhibiting the “+ + -” profile that was not detected at a significant level among the genes exhibiting 

the opposite profile “- - +” was GO BP memory/learning and cognition. Genes in this cluster 

include Nrgn, Vip, Bdnf, Neurod2, Adora1, amphiphysin (Amph), two members of the family of 

p21 proteins (Pak1 and Pak7), two members of the solute carrier family (Slc17a7 and Slc8a2), 

cannabinoid receptor 1 (Cnr1). Our finding is consistent with the effect of low amphetamine doses 

such as that used in the present study in enhancing focus and concentration and being used as a 

treatment to ameliorate behavioral disruptions in individuals with ADHD and in rodent models of 

ADHD. 

In addition to the functional analysis of the most common profiles across the three 

orthogonal contrasts, functional analysis of each orthogonal contrast separately enabled to uncover 

specific disruption of processes and functions. Most of the functional categories detected by the 

DAVID analysis of individual orthogonal contrasts confirm the categories enriched in the most 

frequent profiles across the three contrasts. These categories included: behavior, learning or 

memory, regulation of neurotransmitter levels, response to chemical stimulus, and ion 

homeostasis. The substantial consistency of enriched molecular mechanisms among the three 

orthogonal contrasts that characterize the interaction indicates that amphetamine treatment and 

hyperactivity line do not impact the processes being disrupted but rather the interaction impacts 
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the individual gene expression profiles within each disrupted process. The two categories enriched 

in a single contrast (neuropeptide hormone system in CA-CS and ion homeostasis in HS-CS) 

appear to be an artifact of the number of differentially expressed genes analyzed within contrast 

because these categories were also detected in the functional analysis of the profile across the three 

contrast. Several enriched categories detected among the genes differentially express within 

individual orthogonal contrasts that were not directly detected in the functional analysis of profiles 

involving three orthogonal contrast were nevertheless indirectly correlated with the categories 

detected in the analysis of profiles. For example, the category GO MF GO:0008201 heparin 

binding is related to regulation of blood pressure and GO BP GO:0007631 feeding behavior is 

related to hormone and neuropeptide activity. Additional insights from the GSEA analysis of the 

standardized log2(fold change) of all genes within contrast include the enrichment of ribosomal 

pathway terms. The GO and KEGG ribosomal categories were enriched among the genes negative 

for CA-CS and positive for HA-HS and HS-CS. The ribosome term enrichment pattern detected 

is in agreement with the potentiation of amphetamine-induced locomotion by ribosome 

inactivating protein (Saporin) treatment (Jeltsch et al., 2004). 

Two unexpected discoveries were drawn from the comparison of enriched categories 

between the two most common and opposite profiles (“+ + -” and “- - +”) among the genes 

exhibiting amphetamine treatment–by-hyperactivity line interaction effects. Our first discovery is 

that genes are associated with the same or similar processes. Table 3 highlights the overlap in 

enriched categories (e.g., GO BPs synaptic signaling, forebrain development, hormone secretion) 

between “+ + -” and “- - +”. A similar overlap of enriched processes was observed between the 

profiles “-+-” and “+-+” at lower significance levels. These opposite or reverse profiles of genes 

annotated to the same mechanisms reflect possible feedback regulation (Table 3). Our second 

discovery is that processes associated with genes in a particular pair of opposite trajectories (e.g. 

“+ + -” or “- - +”) were not identified among the genes in a distinct trajectory (e.g. “- + -” and “+ 

- +”). For example, Table 3 includes the enriched GO BP cilium movement that was only enriched 

in the “+ - +” profile but was not enriched in profiles “- + -” and “+ - +”. These observations 

confirm the strong and clear impact of hyperactivity line and amphetamine treatment on gene 

profiles and associated processes. 

Our study of treatment-by-line interaction effects on pathways and processes helped us to 

identify mechanisms that are predominantly and concurrently affected by amphetamine and line 
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effects. These findings support the discovery of pathways that can be targeted to address ADHD 

behaviors in a psychostimulant treatment-dependent fashion or to understand psychostimulant 

effects in consideration of ADHD indicators. 

 

Amphetamine treatment -by-hyperactivity line interaction effects on gene networks 

The results previously discussed offered insights into amphetamine treatment-by-

hyperactivity line interaction effects on individual genes and groups of genes belonging to the 

same functional terms. Network analysis complemented the previous analyses and helped us to 

elucidate the impact of the interaction on the relationship between genes. Gene networks were 

used to depict the relationship among the 75 genes exhibiting significant interaction effect (FDR-

adjusted P-value < 0.05) and log2(fold change) >|2| and P-value < 0.001 in at least one of the three 

orthogonal contrasts. Individual gene co-regulation networks were developed for the three 

orthogonal contrasts: CA-CS (Figure 4), HA-HS (Figure 5) and HS-CS (Figure 6). To facilitate 

interpretation, the contrast HA-CA (Figure 7) is also presented. Among the 75 genes considered, 

the inferred networks focus on the largest group of directly interconnected genes or core genes. 

Genes directly connected to the core genes that did not reach significant differential expression in 

at least one contrast or were not reliably quantified are also included in the network to facilitate 

the identification of indirect gene co-regulation. 
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Figure 4. Over- (green) and under- (red) expressed genes in the contrast between control 

amphetamine and control saline (CA-CS) groups for the network of genes exhibiting significant -

amphetamine treatment-by-hyperactivity line by interaction effect (FDR-adjusted P-value < 0.05) 

and at least one significant pairwise contrast between line-treatment groups (log2 (fold change) 

>|2| and P-value < 0.001). Color intensity is positively correlated with fold change. Gray 

connecting genes did not exhibit significant interaction effects. Genes: nerve growth factor 

receptor (Ngfr), neurogranin (Nrgn), inversin (Invs), Abelson helper integration site 1 (Ahi1), 

Fhl2, Huntingtin associated protein 1 (Hap1), necdin (Ndn), DLG associated protein 1 (Dlgap1), 

SH3 and multiple ankyrin repeat domains 1 (Shank1), activity regulated cytoskeleton-associated 

protein (Arc), Rapgef4, hemoglobin a (Hba-a1 and Hba-a2), and regulating synaptic membrane 

exocytosis 1 (Rims1).  
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Figure 5. Under- (red) and over- (green) expressed genes in the contrast between hyperactive 

amphetamine and hyperactive saline (HA-HS) groups for the network of genes exhibiting 

significant amphetamine treatment-by-hyperactivity line interaction effect (FDR-adjusted P-value 

< 0.05) and at least on significant pairwise contrast between line-treatment groups (log2 (fold 

change) > |2| and P-value < 0.001). Color intensity is positively correlated with fold change. Gray 

connecting genes did not exhibit significant interaction effects.  Genes: nerve growth factor 

receptor (Ngfr), neurogranin (Nrgn), inversin (Invs), Abelson helper integration site 1 (Ahi1), 

Fhl2, Huntingtin-associated protein 1 (Hap1), necdin (Ndn), DLG associated protein 1 (Dlgap1), 

SH3 and multiple ankyrin repeat domains 1 (Shank1), activity regulated cytoskeleton-associated 

protein (Arc), Rapgef4, hemoglobin a (Hba-a1 and Hba-a2), and regulating synaptic membrane 

exocytosis 1 (Rims1). 
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Figure 6. Over- (green) and under- (red) expressed genes in the contrast between hyperactive 

saline and control saline (HS-CS) groups for the network of genes exhibiting significant 

amphetamine treatment-by-hyperactivity line interaction effect  (FDR-adjusted P-value < 0.05) 

and at least one significant pairwise contrast between line-treatment groups (log2 (fold change) 

>|2| and P-value < 0.001). Color intensity is positively correlated with fold change. Gray 

connecting genes did not exhibit significant interaction effects.  Genes: nerve growth factor 

receptor (Ngfr), neurogranin (Nrgn), inversin (Invs), Abelson helper integration site 1 (Ahi1), 

Fhl2, Huntingtin-associated protein 1 (Hap1), necdin (Ndn), DLG associated protein 1 (Dlgap1), 

SH3 and multiple ankyrin repeat domains 1 (Shank1), activity regulated cytoskeleton-associated 

protein (Arc), Rapgef4, hemoglobin a (Hba-a1 and Hba-a2), and regulating synaptic membrane 

exocytosis 1 (Rims1). 
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Figure 7. Over- (green) and under- (red) expressed genes in the contrast between hyperactive 

amphetamine and control amphetamine (HA-CA) groups for the network of genes exhibiting 

significant amphetamine treatment-by-hyperactivity line interaction effect  (FDR-adjusted P-value 

< 0.05) and at least one significant pairwise contrast between line-treatment groups (log2 (fold 

change) >|2| and P-value < 0.001). Color intensity is positively correlated with fold change. Gray 

connecting genes did not exhibit significant interaction effects.  Genes: nerve growth factor 

receptor (Ngfr), neurogranin (Nrgn), inversin (Invs), Abelson helper integration site 1 (Ahi1), 

Fhl2, Huntingtin-associated protein 1 (Hap1), necdin (Ndn), DLG associated protein 1 (Dlgap1), 

SH3 and multiple ankyrin repeat domains 1 (Shank1), activity regulated cytoskeleton-associated 

protein (Arc), Rapgef4, hemoglobin a (Hba-a1 and Hba-a2), and regulating synaptic membrane 

exocytosis 1 (Rims1). 
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The edges in the gene networks represent known connections between genes based on 

curated databases of molecular interactions used by Bisogenet and the rectangular nodes represent 

the genes that exhibited significant interaction effects. The intensity of colors indicates the strength 

of the positive (green) and negative (red) contrast of gene expression between mouse groups. 

Within contrast, positively connected genes are identified by edges connecting nodes of the same 

color (green-to-green and red-to-red) whereas negatively connected genes are identified by edges 

connecting nodes of different color (green-to-red). 

The genes differentially expressed between line-treatment groups in the network are: nerve 

growth factor receptor (Ngfr), Nrgn, Inversin (Invs), Abelson helper integration site 1 (Ahi1), Fhl2, 

Hap1 (common gene between the four contrasts in the Venn diagram presented in Figure 3), 

necdin (Ndn), DLG associated protein 1 (Dlgap1), SH3 and multiple ankyrin repeat domains 1 

(Shank1), activity regulated cytoskeleton-associated protein (Arc), Rapgef4, hemoglobin a (Hba-

a1 and Hba-a2), and regulating synaptic membrane exocytosis 1 (Rims1). Ngfr is a neurotrophin 

receptor that plays a role in axonal growth. The genes depicted in the networks have been 

associated with angiogenesis, cell adhesion, apoptosis, and neuronal development processes. 

Consistent with our findings, these processes were also enriched in a study of the effects of 

amphetamine on the striatum of spontaneously hypertensive rat, an ADHD model (dela Peña et 

al., 2015).  

Consideration of the GO BP categories associated with the genes in each network aids in 

understanding both their connection and the nature of this connection. The integration of gene 

interaction and differential expression depicted in the network enabled the visualization of co-

regulation profiles. Nrgn and Rims1 positively correlated expression because both genes have the 

same pattern of differential expression (nodes with equal color) across all four networks. 

Moreover, the direction of the differential expression within contrast is consistent with the known 

role of these genes. Nrgn and Rims1 are over-expressed in the A relative to the S treatment groups 

across lines and under-expressed in the H relative to the C line across treatment. Both genes Nrgn 

and Rims1 play a role in calcium availability and transport. Nrgn is a neuropeptide positively 

associated with neural plasticity and negatively associated with cognitive deficit that binds to 

calmodulin decreasing the availability of calcium (Hoffma et al., 2014). Rims1 plays a role in 

synaptic potentiation and inhibition of postsynaptic potential through controls the neuronal 

voltage-gated calcium channels activity (Weiss et al., 2011). Calcium channel is essential to 
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neuronal signaling and was associated with substance abuse and emotional behaviors (Martínez-

Rivera et al., 2017). The trend of these synaptic signaling genes observed in the gene networks 

could serve to explain the therapeutic effect of amphetamine in ADHD symptoms. 

The inferred network depicts the relationship between 4 genes associated with 

neurogenesis: Ndn, Ahi1, Ngfr, and Hap1. In addition, Ndn has also been associated with sensory 

perception of pain and Ahi1 plays a role in the regulation of behavior. Ndn and Hap1 are directly 

associated in our network, and our findings support the positively correlated role of these genes 

because both genes have the same pattern of differential expression (nodes with equal color) across 

all four networks. The direction of the differential expression of Ndn, Ahi1, Ngfr, and Hap1 within 

contrast is consistent with the known role of these genes. Ndn, Ahi1, Ngfr, and Hap1 are over-

expressed in the A relative to the S treatment groups across lines and under-expressed in the H 

relative to the C line across treatment. Our network comparison suggests that the use of 

amphetamine to treat ADHD may be linked to the opposite trend between H and A on these 

neurogenesis genes. 

Further understanding of the capability of amphetamine to alleviate ADHD symptoms was 

gained from the juxtaposition of networks across contrasts across genes participating in multiple 

processes. Disruptions in Arc and Shank1 have been linked to psychostimulants and are involved 

with drug response in the mouse striatum (Buonaguro et al., 2017). Arc has been annotated to the 

amphetamine addiction KEGG pathway and is also associated with regulation of synaptic 

potentiation (Biever et al., 2016; Tan et al., 2000). Shank1 has been correlated with social and 

vocalization behavior, memory and synapse maturation. Our networks offer insights into the 

treatment- and line- dependent relationship between these genes across lines. Within line, Arc and 

Shank1 have a consistent green pattern indicating over-expression A relative to S groups, 

consistent with known gene function. However, Arc and Shank1 have opposite patterns in the 

contrasts of lines within S treatment and are not highly differentially expressed in the contrasts of 

lines within the A treatment. These results suggest that differences in expression between lines in 

these genes observed in the S treatment are diminished by the A treatment. Our network study 

uncovered one mode of action of amphetamine that ameliorates the antagonistic disruption of Arc 

and Shank in the hyperactive line. 

The comparison of the networks across contrasts complements the understanding of the 

differential response of the striatum transcriptome to amphetamine treatment between lines. All 
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except one gene (Hba-a1) in the CA-CS and HA-HS networks exhibit the same differential 

expression indicating that amphetamine had similar effects on both hyperactivity lines (Figs 2 and 

3). On the other hand, more genes exhibit opposite differential expression between HS-CS and 

HA-CA (Figs 4 and 5, respectively). Our network comparison depicts the interaction between 

amphetamine treatment and hyperactivity line in the disruption of gene profiles that could disrupt 

gene connections. 

The majority of the direct connections between genes affected by the treatment-by-line 

interaction across all four networks are among genes with the same pattern (e.g., edges connecting 

red nodes or edges connecting green nodes). The notable exception is Invs and the connection of 

this gene with Nrgn, Efhd2, and Ahi1. In all contrasts except HS-CS, Invs and Ahi1 share the same 

expression pattern and Invs and Nrgn have opposite expression patterns (Figure 6). This is the 

only contrast that does not involve the A treatment and network comparison enabled us to uncover 

a critical and unique effect of amphetamine. 

The comparative network analysis identified sub-networks of genes that were disrupted by 

the amphetamine treatment. The sub-network including Shank1, Arc, Rims1, Dlgap1, Rapgef4 

and Dlgap1, Rapgef4 (the latter two genes are associated with the GO BP regulation of synaptic 

signaling) does not exhibit substantial differential expression in HA-CA (Figure 7), in comparison 

to all other contrasts. This finding suggests that treatment A decreases the differential expression 

of genes between the H and C lines by targeting whole subnetworks of connected genes, rather 

than isolated genes. The HA-CA network (Figure 7) had the highest number of unchanged genes 

expression across all four networks. This depiction suggests that for the genes in the network, the 

low amphetamine dose used in this study was able to revert profiles dysregulated in the H line 

without major dysregulation in the C line.  

Network analysis highlighted the synergistic effect of the A treatment and H line in the co-

regulation of 3 genes associated with vascular and blood systems: Invs, Hba-a1, and Hba-a2. 

Disruption of genes associated with angiogenesis processes was also reported in a study of 

amphetamine and an ADHD model using the spontaneously hypertensive rat (dela Peña et al., 

2015). Hemoglobin is expressed in neurons and is essential to neuronal respiration and vascular 

system (Stankiewicz et al., 2015). All three genes, Invs, Hba-a1, and Hba-a2 were over-expressed 

in CA relative to CS (Figure 4) and under-expressed in CA relative to HA (Figure 7). Thus, the 

level of expression of these genes was HA > CA > CS, and this order suggests synergism between 



 
 

47 
 

the H line and A treatment. These genes support the circulation of blood carrying oxygen which 

in turn support the higher activity of mice in the H line and higher alertness, focus, intensity and 

duration of training with lower fatigue of mice receiving the A treatment.  

Five genes tend to be hub genes: Dlgap1, Hba-a1, Hba-a2, Invs, and Ahi1. In Figures 4 

and 5 that compares treatments between lines, the over-expressed (green) genes tended to be in the 

periphery (outside) the networks whereas under-expressed (red) genes tend to be hub genes in the 

middle of networks. Figure 4 has one green hub (Dlgap1) and four red hubs (Hba-a1, Hba-a2, 

Invs, and Ahi1), while Figure 5 has two green hubs (Dlgap1 and Hba-a1) and three red hubs (Hba-

a2, Invs, and Ahi1). The same is not applied to Figures 6 and 7, where the color of these hubs 

change completely. Figure 6 has two green hubs (Hba-a2 and Ahi1) and three red hubs (Dlgap1, 

Hba-a1, and Invs), while Figure 7 has only green hubs (Hba-a1, Hba-a2, Invs, and Ahi1) and 

Dlgap1 tend to be neutralized. The hubs Invs and Ahi1 share similar connected genes, and most 

of them are from two families: keratins (Krt1, Krt2, Krt5, Krt10, Krt14, Krt15, Krt42, Krt73, and 

Krt76) and heat shock proteins (Hspa5, Hspa8, Hspa9, and Hspab1). Keratins are intermediate 

filament proteins that can be found in neurons and glial cells and may play a role in the neural 

differentiation (Podgorniak et al., 2015). Intermediate filament proteins and heat shock proteins 

were associated with mouse pituitary gland under heat stress situations like elevated heart rate and 

sweating (Memon et al., 2016). The hubs Hba-a1 and Hba-a2 share genes from peptidase family 

(Ctsd, Ctsl, and Ctsb). The association of hemoglobin with peptidase might be related to 

mechanisms and controls of cerebral protein catabolism (Banay-Schwartz et al., 1985). The 

changes that occur in the hub genes might be linked to the activity of gray genes that did not exhibit 

significant interaction effects that are in some way also modified by the A treatment. 

Our study of treatment-by-line interaction effects on gene co-regulation enabled the 

detection of co-expression profiles that are simultaneously amphetamine- and line-dependent. This 

information will aid in the identification of co-regulated targets that can be used to develop 

personalized ADHD or psychostimulant exposure therapies. The ensuing step is to study 

transcriptome profiles that associated with changes in either amphetamine treatment or 

hyperactivity line.  
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Effect of hyperactivity line on the striatum transcriptome 

Our study of genes exhibiting significant H -C line contrast uncovered transcriptome 

disruptions in the ADHD model that is independent of the amphetamine treatment. Among the 860 

significantly differentially expressed genes in the striatum, 239 genes did not exhibit significant 

(FDR-adjusted P-value < 0.05) interaction effects. Table 4 lists the most differentially expressed 

genes (FDR-adjusted P-value < 0.05 and log2 (fold change) > |1.2|) that exhibit main line effect 

without significant treatment-by-line interaction.  

 

Table 4. Top genes differentially expressed (FDR-adjusted P-value < 0.05) and log2(fold change) 

> |1.2|) between mice in control (C) and hyperactivity line (H) genotypes that do not exhibit 

significant interaction effect. 
Gene Symbol Description Log2(C/H) Raw P-value FDR adjusted 

P-valuea 

Ubash3a ubiquitin associated and SH3 domain 
containing, A 

2.38 5.0E-05 2.0E-03 

Olfr658 olfactory receptor 658  -2.70 5.0E-05 2.0E-03 

Syce2 synaptonemal complex central element 
protein 2  

1.59 2.0E-04 6.5E-03 

Ninj2 ninjurin 2  -1.32 2.0E-04 6.5E-03 

A530076I17Rik RIKEN cDNA A530076I17 gene -1.84 2.5E-04 7.6E-03 

Gm2808 predicted gene, 2808  5.32 3.0E-04 8.8E-03 

Nup62cl nucleoporin 62 C-terminal like  -1.41 3.0E-04 8.8E-03 

Ppp1r2-ps2 protein phosphatase 1, regulatory 
(inhibitor) subunit 2, pseudogene 2 

5.03 4.0E-04 1.1E-02 

Nlrp6 NLR family, pyrin domain containing 6  1.30 5.5E-04 1.4E-02 

Gbp1 guanylate binding protein 1 -2.09 7.0E-04 1.7E-02 

5031414D18Rik RIKEN cDNA 5031414D18 gene -3.81 7.0E-04 1.7E-02 

P2rx1 purinergic receptor P2X, ligand-gated ion 
channel, 1 

1.31 9.0E-04 2.1E-02 

4930519G04Rik RIKEN cDNA 4930519G04 gene  2.58 1.5E-03 3.0E-02 

Il1a interleukin 1 alpha 1.40 1.6E-03 3.1E-02 

Gm17660 predicted gene, 17660 2.17 2.6E-03 4.6E-02 

1700030C10Rik RIKEN cDNA 1700030C10 gene -1.87 2.7E-03 4.8E-02 

E230025N22Rik RIKEN cDNA E230025N22 gene  1.45 2.8E-03 4.9E-02 
aFalse Discovery Rate adjusted P-value. 
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Among the top differentially expressed genes between the H and C groups listed in Table 

4, several genes are associated with immune response. Guanylate binding protein 1 (Gbp1, also 

known as guanylate binding protein 2b or Gbp2) is associated with cellular response to interferon 

beta and gamma and immune response. Gbp1 is over-expressed in the H-C line contrast, and this 

profile is consistent with reports that the cytokines interferon gamma and alpha (highly 

homologous to beta) decrease the activity in mouse (Crnic and Segall, 1992). Another gene 

associated with immune response, Il1a was under-expressed in H-C. The reverse association is in 

agreement with the identification of a mutation in this gene associated with children exhibiting 

Tourette syndrome that is characterized by motor tics and high risk for ADHD (He et al., 2015). 

NLR family, pyrin domain containing 6 (Nlrp6) was under-expressed in H-C and consistent with 

our finding this gene negatively regulates innate immunity and facilitate the recovery after 

peripheral nerve injury (Anand et al., 2012). 

Some genes differentially expressed in H-C has been associated in some cases with 

locomotor, behavioral, and ADHD-related disorders through methylation epigenetic mechanisms. 

Ninjurin 2 (Ninj2) exhibits positive H-C line contrast, and this gene is involved in cell adhesion, a 

process that is enriched among the genes over-expressed in HS-CS. Our findings are consistent 

with the identification of differential methylation in Ninj2 in children exhibiting ADHD symptoms 

(Wilmot et al., 2016). Likewise, 5031414D18Rik codes for a RUN and cysteine-rich domain 

containing beclin 1 interacting protein like (Rubcnl-like) and is over-expressed in H-C. Rubcnl is 

a known methylated promoter (Leal and Gulley 2017). Nucleoporin 62 C-terminal like (Nup62cl) 

encompasses a CG island that exhibits rapid or moderation methylation dynamics (Gendrel et al., 

2012). These findings support the hypothesis of epigenetic mechanisms playing important role in 

hyperactivity and potentially ADHD symptoms. 

Protein phosphatase 1, regulatory (inhibitor) subunit 2 (Ppp1r2) is enriched in GABAergic 

neurons (Belforte and Nakazawa, 2011) that are inhibited in ADHD models (Brennan and Arnsten 

2008). This association is consistent with the under-expression of Ppp1r2 in H-C found in our 

study. Also, Ppp1r2 treatment has been associated with memory suppressor in rats (Yang and 

Wilson, 2015) and this is in agreement with the enrichment of memory and learning processes 

among genes differentially expressed in HS-CS. Another gene associated with memory and 

learning under-expressed in H-C was purinergic receptor P2X, ligand-gated ion channel, 1 (P2rx1). 
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Our result is in agreement with reports of over-expression of P2rx1 in mice with improved memory 

and learning (Meng et al., 2009). 

Unexpectedly, the functional analysis of genes exhibiting hyperactivity line effect alone 

helped us identified processes that were also identified in the treatment-by-line interaction study. 

DAVID analysis for functional enrichment uncovered 3 clusters reached an Enrichment Score > 

1.5 (Table 5). The lower level of significant relative to the interaction enrichment may be 

associated with the limited number of genes exhibiting hyperactivity only effect in the absence of 

significant interaction. The enriched categories were consistent with those uncovered among genes 

exhibiting interaction effect and included neurogenesis and neuron development and actin 

cytoskeleton organization. These categories have also been associated with ADHD symptoms and 

related phenotypes. Actin cytoskeleton was enriched in the GSEA analysis of genes under-

expressed in the HS-CS contrast. The link between dysregulation of actin cytoskeleton processes 

and ADHD has been recognized (Lesch et al., 2008; Shiow et al., 2009). Moreover, actin 

cytoskeleton processes are associated with neuronal development and this together with 

neurogenesis and axogenesis were enriched among the genes differentially expressed in the HS-

CS contrast (Table 2). These novel results demonstrate that the dysregulation of some genes in the 

neurogenesis and neuronal development processes in the hyperactivity line are not alleviated by 

amphetamine since the dysregulation is consistent across treatments whereas the dysregulation of 

other genes in the same processes is affected by the amphetamine treatment received. Our study 

of the main effect of hyperactivity line on individual gene and biological processes support the 

identification of molecular targets that can be used to enhance treatments of ADHD and related 

behavioral disorders. 
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Table 5. Informative clusters (Enrichment Score ≥ 1.5) of descriptive DAVID FAT categories 

including Gene Ontology (GO) biological processes (BP) enriched among genes exhibiting 

significant (FDR adjusted P-value < 0.05) hyperactivity line effect excluding genes exhibiting 

interaction effect. 

Category Term Counta Raw P-
value 

FDR-
adjusted 
P-valueb 

Cluster 1 Enrichment Score: 2.01    
BP GO:0044089~positive regulation of cellular 

component biogenesis 
12 6.4E-3 5.4E-1 

Cluster 2 Enrichment Score: 1.59    
BP GO:0007010~cytoskeleton organization 19 4.2E-2 8.0E-1 
BP GO:0030036~actin cytoskeleton organization 11 6.4E-2 8.4E-1 
Cluster 3 Enrichment Score: 1.5    
BP GO:0022008~neurogenesis 32 6.9E-4 5.1E-1 
BP GO:0048666~neuron development 24 9.0E-4 5.1E-1 
BP GO:0010977~negative regulation of neuron 

projection development 
7 5.0E-3 5.0E-1 

aNumber of genes in the enriched category. 

bFalse Discovery rate adjusted P-value. 

 

Effect of amphetamine treatment on the striatum transcriptome 

The identification of genes that exhibited significant A-S treatment contrast permitted the 

identification of disruptions in the striatum associated with amphetamine exposure that is 

independent of the genetic background for hyperactivity in mouse as ADHD model. Among the 

183 genes exhibiting significant A-S treatment, two genes did not exhibit significant treatment-

by-line interaction (FDR-adjusted P-value < 0.05): potassium inwardly-rectifying channel, 

subfamily J, member 6 (Kcnj6) and RAR-related orphan receptor alpha (Rora). 

Kcnj6 exhibited positive A-S treatment contrast (log2 (fold change A/S) =0.37, FDR-

adjusted P-value < 0.038). Kcnj6 plays a role in the Oxy signaling pathway, morphine addiction 

pathway, potassium ion transport, neurotransmitter, and in the dopaminergic and GABAergic 

synapse. Mutations on one of the G-protein-gated inwardly-rectifying potassium (Girk) channel 

subunits, Girk2, are related to analgesic requirements the therapeutic effects of Girk channel 

inhibitors in the treatment of methamphetamine dependence and alcoholism have been proposed 

(Sugaya et al., 2013).  
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Rora is involved in amphetamine metabolism (Yarosh et al., 2015), plays a role in 

angiogenesis, learning, and positive regulation of circadian rhythm (Sun et al., 2015). Mutations 

in Rora are associated with impaired in motor functions and motor coordination (Lalonde and 

Strazielle, 2015). Rora was positive for the A-S contrast (log2 (fold change A/S) = 0.32, FDR-

adjusted P-value < 0.034) observed in this study confirms the effects that A elicits on Rora 

expression. 

 

Our study uncovered a large number of gene expression profiles exhibiting amphetamine 

effects on a hyperactive line-dependent manner (interaction effects) whereas substantially fewer 

genes exhibited amphetamine exposure effect on a line independent manner. These novel findings 

highlight the need to develop therapies for psychostimulant use that are dependent on the genetic 

background associated with ADHD and related disorders.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

53 
 

CHAPTER 3 - DIFFERENTIAL TRANSCRIPTOME ANALYSIS AND NETWORKS 
BETWEEN IDO1-KNOCKOUT AND WILD-TYPE MICE IN MACROPHAGES UNDER 

IMMUNE CHALLENGE 
 

Abstract 

Inflammation has been implicated in behavioral disorders such as depression-like behavior. The 

tryptophan-degrading enzyme Indoleamine 2,3-dioxygenase (IDO1) is part of the tryptophan 

metabolic route, that is linked to infectious diseases and psychiatric disorders. The effect of IDO1 

depletion on the peripheral macrophages transcriptome after Bacille Calmette Guérin (BCG)-

infection has not been studied. Transcriptome and transcription factors (TF) network analyses were 

performed in the macrophages from IDO1-knockout (IDO1-KO) mice relative to wild-type (WT) 

mice under both BCG-infected and saline (Sal) treatment. Among the 546 differentially expressed 

genes exhibiting interaction effect (P-value < 0.05), sphingosine kinase 1 (Sphk1) plays a role in 

immune processes by activating of tumor necrosis factors (TNF)-alpha signaling and nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-kB) pathways, and serum amyloid a1 (Saa1) 

that is related to depressive-like behavior. Both genes were under-expressed in BCG-infected 

compared to Sal treated IDO1-KO mice. The comparison between IDO1-KO relative to WT 

genotype irrespective of challenge suggested that the macrophages may find a way to compensate 

the absence of IDO1 restoring the immune response. Also, 8,798 genes were significantly 

differentially expressed (FDR-adjusted P-value < 0.05) between BCG-infected relative to Sal 

treated mice. Among them, ATP binding cassette subfamily b member (Tap1) was under-

expressed in the BCG-infected relative to Sal treated mice, while histamine receptor h1 (Hrh1) 

was over-expressed. The functional analysis confirmed the participation of genes in significant 

GO terms (FDR-adjusted P-value < 0.05) associated with microbial response and host defense 

(i.e., GO BP response to virus; interaction with host), and macrophage metabolism (i.e., GO BP 

regulation of cysteine-type endopeptidase activity). Regulatory network analysis uncovered the 

enrichment of the transcription factors: signal transducer and activator of transcription 1 (Stat1), 

Rela proto-oncogene, NF-kB subunit (Rela), forkhead box g1 (Foxg1) and forkhead box l1 

(Foxl1). Our findings can be used as potential candidates to understand the mechanisms involved 

in the BCG-infection leading to inflammation and depression-like behavior. 
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Introduction  

Many diseases including heart diseases, obesity, and AIDS, are characterized by chronic 

and systemic inflammations. The tryptophan (Trp) metabolic route has been linked with infectious, 

autoimmune, chronic inflammatory diseases, and psychiatric disorders (Baumgartner et al., 2017; 

Dantzer et al., 2008). The enzymes present in this pathway are regulated by cytokines, and their 

interaction may have a potential role in cardiovascular diseases (Baumgartner et al., 2017). The 

tryptophan-degrading enzyme Indoleamine 2,3-dioxygenase (IDO1) is activated during the 

inflammation process and impairs T cell proliferation (O'Connor et al., 2009). Some studies 

showed that IDO1 could suppress immune responses to infections and also inhibit local 

inflammation and autoimmunity (Put et al., 2016).  

Macrophages are immune cells that are found in all tissues in a variety of processes like 

development, homeostasis, and mainly immune responses to pathogens (Wynn et al., 2013). 

During inflammation, macrophages are involved in the phagocytosis of dead cells and the 

protection of the host through innate immunity (Martinez and Gordon, 2014). The acquisition of 

enhanced antimicrobial resistance is due to the interaction of macrophages with T and B 

lymphocytes (Martinez and Gordon, 2014). Disruptions in the blood-brain barrier may enable the 

migration of immune cells from the peripheral blood and elicit inflammation in the central nervous 

system. Macrophages exist in between two extremes with distinct functions: M1 macrophages 

defend the body in the presence of pathogens and tumor cells whereas M2 macrophages are related 

to inflammatory responses and adaptive immunity (Wang et al., 2014). 

The higher activity of IDO1 in response to the immune challenge has been associated with 

behavioral disorders. IDO1 plays a role in macrophage differentiation and because of the 

involvement in mechanisms of tumor immune tolerance, IDO1 is considered a target for 

therapeutic studies (Wang et al., 2014). Transcriptome studies showed that macrophages regulate 

T cell responses via up-regulation of IDO1 and this process is associated with behavioral disorders  

(Gonzalez-Pena et al., 2016b).  

Bacilli Calmette Guerin (BCG) is an intracellular pathogen and an attenuated strain of 

Mycobacterium bovis that is used in tuberculosis vaccines (O'Connor et al., 2009). Challenge with 

BCG triggers in mice immune response, inflammation in the brain, activation of IDO1 in the brain, 

and is associated with depression-like behavioral disorders (Dantzer et al., 2008; Rodriguez-Zas 

et al., 2015). Despite recovery from sickness phenotypes within one week, depression-like 
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symptoms may remain up to one month after challenge (Gonzalez-Pena et al., 2016a).  No study 

has simultaneously profiled the expression of genes in macrophages from wild-type and IDO1-

KO mice after sickness recovery from BCG challenge. 

The first objective of this study was to identify gene differential expression of peripheral 

macrophage after sickness recovery from BCG challenge relative to saline control in IDO1-KO 

relative to WT mice. Second, to identify regulatory network and enrichments that uncover 

transcription factors. Finally, to find potential candidates to understand the relationship between 

inflammation caused by BCG-infection and depression-like behavior. 

 

Material and methods 

Animal experiments 

Male mice, with approximately 22 weeks old, from the C57BL/6J genotype (wild-type or 

WT) and from an IDO1-knockout genotype that had a C57Bl/6J background (IDO1-KO) were 

studied. Mice were housed in individual cages in a controlled environment, under a normal 12:12 

h light/dark cycle, 23°C of temperature, 45% of humidity. Water and food (Teklad 8640 chow, 

Harlan Laboratories, Indianapolis, IN, USA) were served ad libitum. Briefly, during three weeks 

prior to the challenge, mice were acclimated to the light cycle and facility before the injection with 

BCG or Sal. Mice were individually handled every day for few minutes before the challenge. 

Half of the mice from each genotype were challenged with BCG, and half received Saline 

(Sal) treatment following protocols (Dantzer et al., 2008; Gonzalez-Pena et al., 2016a; Gonzalez-

Pena et al., 2016b; Nixon et al., 2015). Before inoculation, each vial’s reconstitution was made 

according to provider protocols using preservative-free saline. Live attenuated mycobacteria TICE 

BCG (50 mg wet weight of lyophilized culture containing 1x108 colony forming units or 

CFU/vial; Organon Teknika Corp. LLC, USA Inc., USA) was used (Gonzalez-Pena et al., 2016a; 

Gonzalez-Pena et al., 2016b). Mice were injected once with either 10 mg/mouse (BCG-challenged 

group, n = 12) or sterile saline solution (Control group, n = 12) administered via intraperitoneal 

injection (Rodriguez-Zas et al., 2015). No peritoneal mycobacteria infection was detected in mice 

by day 20 after intraperitoneal infection with BCG. However, there was a dissemination of 

infection to other organs, including the lung, spleen, and bone marrow (Ufimtseva, 2015). 
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 Mice were euthanized seven days after BCG challenge. The endpoint was chosen based 

on prior studies that showed the recovery from sickness yet persistence of depressive-like 

symptoms seven days after challenge (Rodriguez-Zas et al., 2015). Mice were euthanized by 

trained personnel with CO2 asphyxiation; everything was made to minimize suffering (Gonzalez-

Pena et al., 2016b). Animal experimental procedures were performed under the approval of the 

Illinois Institutional Animal Care and Use Committee and were in accordance with the NIH Guide 

for the Care and Use of Laboratory Animals. 

Macrophages were extracted from the peritoneum (abdominal cavity)  using the previous 

protocols (Gonçalves and Mosser, 2015; Nixon et al., 2015). Mice had their abdomens disinfected, 

the skin retracted, and the peritoneal cavity was flushed with Hank's Balanced Salt Solution (cold 

harvest medium). The peritoneal fluid was centrifuged, and the resulting cell pellet was 

resuspended and plated. After 2 h incubation, the medium was aspired to remove non-adherent 

cells. The surviving adherent cells constituted the non-thioglycollate elicited peritoneal 

macrophages and cells from individual mice were frozen in Trizol at -80°C for RNA extraction 

(Gelsthorpe et al., 1997).  

Flow cytometry validation of macrophages isolation encompassed cell staining with 

primary fluorescent antibodies for two primary markers for macrophages: CD11b (Integrin 

Subunit Alpha M) and CD45 (protein tyrosine phosphatase, receptor type, C antibody) (Gonzalez-

Pena et al., 2016a; Gonzalez-Pena et al., 2016b). Fc receptors were blocked by incubation with 

anti-CD16/CD32 antibody before incubation with eBioscience anti-CD11b and anti-CD45 

antibodies (eBioscience Inc., San Diego, CA). Surface receptor expression was identified using a 

Biosciences LSR II Flow Cytometry Analyzer with BD FACSDiva software (BD Biosciences, San 

Jose, CA). Antibody gating was determined using isotype-stained controls. 

RNA extraction from macrophages followed the Trypsin procedure using a total RNA Kit 

(Omega Bio-Tek, Norcross, GA) and a DNase step to remove DNA contamination (Gelsthorpe et 

al., 1997). The RNA Integrity Numbers were accessed by using the Agilent 2100 Bioanalyzer with 

RNA Pico chip (Agilent Technologies, Palo Alto, CA). 

Differential expression analysis 

RNA libraries from individual mouse were sequenced using an Illumina HiSeq 2500 

(Illumina, San Diego, CA) and 100nt long paired-end reads were obtained (Gonzalez-Pena et al., 
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2016a). FastQC (Babraham Institute, 2013) was used for reading quality control (Andrews, 2010). 

Quality control analysis indicated Phred nucleotide quality score above 30 and sequences were not 

trimmed or filtered (Gonzalez-Pena et al., 2016a). 

Reads were mapped to the Genome Reference Consortium GRCm38 mouse assembly 

using software Kallisto (Bray et al., 2016) with the Illumina iGenomes package (mm10; 

http://support.illumina.com/sequencing/sequencing_software/igenome.html) (Pruitt et al., 2006; 

Trapnell et al., 2009). After the quantification of transcript isoforms' abundance into counts, an R 

package tximport was used to combine counts with mapping information to quantify gene 

expression (Soneson et al., 2015). The edgeR package was used to describe the gene counts using 

a linear model including the main factors of treatment (BCG vs. Sal) and mice genotype (IDO1-

KO vs. WT) and the interaction between treatment and genotype (Robinson et al., 2010). The 

Benjamini-Hochberg false discovery rate (FDR) was used to adjust the differential expression P-

value for multiple testing (Reiner et al., 2003).  

 

Functional and Transcription Factor analyses  

Functional analysis was explored to find enriched categories among genes exhibiting 

interaction effect and main effects of treatment and genotype. The functional analysis used the 

Database for Annotation, Visualization and Integrated Discovery (DAVID; Version 6.8). 

Functional categories used in the analysis were Gene Ontology (GO) biological processes (BP), 

molecular functions (MF), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. 

Functional Annotation Tool (FAT) classes were used in DAVID to facilitate interpretation 

(Caetano-Anollés et al., 2016). Expression Analysis Systematic Explorer (EASE) scores were used 

to measure the category enrichment, computed using a one-tailed jackknifed Fisher 

hypergeometric exact test. The statistical significance for each cluster of functional categories was 

evaluated using an Enrichment Score (ES) computed as the geometric mean (-log10 geometric 

mean of the cluster members EASE scores) (Gonzalez-Pena et al., 2016a). The Mus musculus 

genome was used as background for testing, and FDR was used to adjust the enrichment P-values 

for multiple testing (Pruitt et al., 2006; Trapnell et al., 2009). 

Transcription factors (TF) enriched among genes exhibiting significant differential 

expression (FDR adjusted P-value < 0.05) were identified using iRegulon (Shannon et al., 2003; 

Verfaillie et al., 2014). This routine is a plugin available in the Cytoscape environment that detects 
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gene expression regulators (regulons) and gene targets using a motif prediction parameters for 

enrichment score threshold (Shannon et al., 2003; Verfaillie et al., 2014). The information from 

many databases including GeneSigDB, Ganesh clusters, and MSigDB is integrated to identify 

transcription factors and target genes (Culhane et al., 2011; Liberzon et al., 2015). The Area Under 

the cumulative Recovery Curve obtained from the database search is used to compute the 

normalized enrichment score (NES) for each transcription factor (Shannon et al., 2003; Verfaillie 

et al., 2014). 

 

Results and Discussion 

The level of the RNA integrity indicator (RIN) was highly comparable across the four 

groups of samples. The average RIN for the samples corresponding to the groups WT-Sal, WT-

BCG, KO-Sal, and KO-BCG were: 9.7, 9.5, 9.4, and 9.6, respectively. Similarly, the average 

number of reads was similar across the four groups of samples. The average number of individual 

reads per sample corresponding to the groups Sal-WT, BCG-WT, Sal-KO, and BCG-KO were: 

55,243410.3, 59,182973.4, 62,929589.2, and 62,315095.8, respectively. The number of genes per 

sample detected from the mapping of reads to the genome was similar across groups. The average 

number of detected genes per sample corresponding to the groups Sal-WT, BCG-WT, Sal-KO, 

and BCG-KO were: 22508, 22463, 22762, and 22701. The relative difference between the groups 

with highest and lowest number of genes was 1%.  

Treatment-by-genotype interaction effects on the macrophage transcriptome 

Immune treatment-by-IDO1 genotype interaction effects were identified on 65 genes (P-

value < 0.005). Table 6 highlights the genes with most significant interaction effect (P-value < 

5x10-4). Among these are genes related to inflammatory response and immune response including: 

interleukin 10 (Il10), sphingosine kinase 1 (Sphk1), serum amyloid A1 (Saa1), C-C motif 

chemokine ligand 7 (Ccl7), C-X-C motif chemokine ligand 1 (Cxcl1), trophoblast glycoprotein 

(Tpbg), heparin binding epidermal growth factor (Egf) like growth factor (Hbegf), and 

cystathionine gamma-lyase (Cth).  
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Table 6. Most significant (P-value < 5x10-4) genes exhibiting treatment-by-genotype interaction 

effect between combinations of treatment (BCG=infected, Sal=saline) and genotype (KO=IDO1-

KO, WT=wild type) groups.  

 Overall Log2(Fold Change)a 

Gene 
Symbol P-value FDR P-

value 
BCG(WT)-

Sal(WT) 
BCG(KO)-

Sal(KO) 
Sal(KO)-
Sal(WT ) 

BCG(KO)-
BCG(WT) 

BCG(KO)-
Sal(WT) 

Sal(KO)-
BCG(WT) 

Il10 2.61E-05 3.70E-01 -1.55 -5.2 1.44 -2.23 -3.78 2.99 

Creb3l1 1.27E-04 6.10E-01 -1.08 -2.41 0.63 -0.7 -1.8 1.72 

Hbegf 1.41E-04 6.10E-01 -1.2 -3.54 1.46 -0.89 -2.12 2.66 

Cth 2.37E-04 6.10E-01 -1.58 -3.46 0.38 -1.51 -3.1 1.96 

Cxcl1 2.54E-04 6.10E-01 -1.39 -3.82 0.98 -1.47 -2.87 2.38 

Sphk1 2.93E-04 6.10E-01 -1.27 -3.32 1.32 -0.73 -2.02 2.6 

Ccl7 3.24E-04 6.10E-01 -0.4 -2.61 1.69 -0.53 -0.95 2.09 

Tpbg 3.68E-04 6.10E-01 -1.1 -3.24 0.86 -1.29 -2.39 1.97 

Saa1 3.82E-04 6.10E-01 -0.45 -3.46 1.36 NAc -2.12 1.81 
aLog2(fold change) between different pairs of treatment-genotype groups 
bFalse Discovery rate adjusted P-value for the overall treatment-by-genotype interaction. 
cNot available 

 

Many studies have associated inflammatory response to depression (Wiener et al., 2017). 

Peripheral levels of inflammatory cytokines might be associated with depression symptoms 

(Capuron and Miller, 2011). People with bipolar disorder had peripheral levels of Il10 positively 

correlated with functional impairment of the disorder (Wiener et al., 2017). Il10 is an 

immunosuppressive cytokine produced by almost all cells of the innate and adaptive arms of the 

immune system and can be anti- and pro-inflammatory. Il10 is engaged in the activation of the 

JAK-STAT signaling pathway and is involved with NF-kappa-B (NF-kB) activity (Ma et al., 

2015). Il10 was under-expressed in WT relative to IDO1-KO mice in macrophages in a previous 

study with the same mice genotype (Gonzalez-Pena et al., 2016b). 

Sphk1 plays an important role in inflammatory, anti-apoptotic, and immune processes by 

activating of tumor necrosis factors (TNF)-alpha signaling and the NF-kB pathways (Alvarez et 

al., 2010). Sphk1 is an isoenzyme that generates sphingosine-1-phosphate (S1P) in the central 

nervous system (CNS), S1P is a key regulator of cell death and survival, and the decrease of Sphk1 
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in hippocampus might be associated with neurological problems (Alvarez et al., 2010; Zhang et 

al., 2013). Reduced levels of SP1 and abnormal sphingolipid metabolism were reported in the brain 

with Alzheimer’s disease (Zhang et al., 2013).  Consistent with this, the present results showed 

over-expression of Sphk1 in the Sal-WT and Sal-KO, compared with BCG-WT and BCG-KO, 

which might be associated with a less protective activity of Sphk1 occurring during inflammation.  

Serum amyloid A (Saa) is an apolipoprotein used as a biomarker of infection and 

inflammation (Ma et al., 2015). A study characterized Saa as a novel mechanism for regulation of 

inflammation and immunity by an acute-phase protein by activating IL-23/IL-17 pathway (Ma et 

al., 2015). Saa1 is highly expressed in the inflammation response pathway and tissue injury (Jang 

et al., 2017). The presence of Saa1 was associated with depressive-like behavior (Jang et al., 2017). 

Consistent with this result, another study found a gene from the same family (Saa3) in mice brain 

under BCG-immune challenge (Gonzalez-Pena et al., 2016a).  

Chemokines are chemotactic cytokines coordinators of the immune system (Leighton et 

al., 2017). Ccl7 and Cxcl1 are from C-C subfamily of chemokines, and CXC subfamily of 

chemokines, respectively. Chemokines of these both subfamilies have a relationship with cognitive 

and neuromodulatory functions (Leighton et al., 2017). Ccl7 recruits pro-inflammatory cells and 

drive the response to an inflammatory activated state that contributes to depression through many 

mechanisms including enhancement of neurotoxicity, disruption of neurotransmitter systems, and 

aberrant tryptophan metabolism (Dantzer et al., 2008; Stuart et al., 2015). The up-regulation of 

Cxcl1 in CNS or peripherally occurs in response to stressor factors as peripheral 

lipopolysaccharide (LPS) injection (Girotti et al., 2011; Stuart et al., 2015). Ccl7 and Cxcl1 were 

both over-expressed in Sal-(KO) relative to Sal-(WT).   

A tropic factor that is induced by inflammatory stimuli is known as Hbegf, which is highly 

induced in astrocytes during multiple sclerosis lesion formation (Schenk et al., 2013). In the brain, 

neurotrophins are essential for neurons survival, this gene is considerate important for neural 

development, and promoting survival of dopaminergic neurons (Oyagi et al., 2009). Hbegf 

knockout in mice’s brain exhibited molecular biological characteristics of abnormal behavior 

similar to psychiatric disorders as depression and schizophrenia (Oyagi et al., 2009).  

Cth produces the enzyme cystathionine gamma-lyase (Cse) that transforms cystathionine 

into cysteine. Cse is involved in the hydrogen sulfide pathway (H2S) biosynthesis, and H2S could 

be an inflammatory mediator in human’s macrophages via the NF-kB/ERK pathway (Badiei et al., 
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2015; Liu et al., 2017a). This gene was up-regulated in macrophages of mice under LPS challenge, 

Cse/H2S biosynthesis ameliorated the inflammatory response (Liu et al., 2017a). The Cse/H2S 

system had a protective function against the LPS-induced inflammation in another study in mice’s 

vascular cells under immune challenge (Bourque et al., 2017). This study showed over-expression 

of Cth in the Sal-WT and Sal-KO, compared with BCG-WT and BCG-KO, more studies should 

be done to understand why the activity of Cth is low during inflammation.  

 Creb3l1 and Tpbg exhibited a significant treatment-by-genotype interaction. Creb3l1 may 

have a role blocking the proliferation of virus-infected cells and inhibiting virus activity (Denard 

et al., 2011). Tpbg is a member of glycoprotein containing leucine-rich repeats that are used as a 

target antibody-mediated immune responses (Harrop et al., 2006). Creb3l1 and Tpbg were under-

expressed in BCG relative to Sal treated mice in both genotypes. In this study, some genes that 

have a protective function have decreased expression during inflammation.  

 

Functional categories enriched among genes exhibiting treatment-by-genotype interaction 

effects 

Enriched functional categories using 546 genes exhibiting an interaction effect (P-value 

<0.05) were investigated by DAVID. Table 7 summarizes informative clusters that had 

Enrichment Score > 3. Enriched functional categories confirm the treatment-by-genotype 

interaction effect on genes involved in the regulation of the GO terms immune system, 

inflammatory response, generation of neurons, cardiovascular system development, regulation of 

cellular component movement, and response to lipopolysaccharide identified among genes with a 

significant interaction effect. 

In addition to Cxc1, ccl7, and Il10 discussed before; six more genes in the chemokine 

subfamily were part of the enriched GO term positive regulation of immune system process 

category. Other important genes present in this enriched GO term are: Poliovirus Receptor (Pvr), 

Toll-Like Receptor 1 (Tlr1), Cd14 Molecule (Cd14), and Leucine-Rich Repeat Containing G 

Protein-Coupled Receptor 4 (Lgr4). This enrichment is in accordance with another study of BCG-

challenged and control mice in microglia and macrophages (Gonzalez-Pena et al., 2016a). 

Some genes that were enriched in many GO terms are essential to understanding regulation 

of immune system process. Pvr plays an important role in microbial infection acting as a cellular 
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receptor for poliovirus replication mediates natural killer (NK) cell adhesion and leads to 

immunological synapse between the target cell and NK cell (Fuchs et al., 2004). Tlr1 is from the 

Toll-like receptor (TLR) family, important to develop effective immunity and acts with Cd14 in 

response to triacylated lipopeptides (Oliveira-Nascimento et al., 2012). The Cd14 mediates 

inflammatory response, innate immune response to bacterial lipopolysaccharide and is expressed 

in monocytes/macrophages. Proinflammatory cytokine secretion leads to NF-kB activation 

(Arroyo-Espliguero et al., 2004). Lgr4 act as negative regulator of innate immunity and is 

important for autoimmune diseases (Du et al., 2013).  

From the enrichment of the category generation of neurons, some genes presented in this 

GO term were discussed in association with behavior disorders, like SH3 and multiple ankyrin 

repeat domains 3 (Shank3), Wnt family member 2 (Wnt2), and solute carrier family 6 member 4 

(Slc6a4). The Shank3 is an intracellular scaffolding protein associated with neurotransmitter 

receptors, synapse formation, schizophrenia, and autism (Südhof, 2008). Wnt2 is a secreted growth 

factor important for developmental processes and multiple biological functions like cellular 

differentiation, and regulation of neuronal migration was associated with autism (Won et al., 

2013). Slc6a4 is a member of neurotransmitter transports’ family associated with transport of 

serotonin, is a target of psychomotor stimulants, and has been related to depression (Margoob and 

Mushtaq, 2011). 

The GO term cardiovascular system development included two genes identified for 

interaction effect, Hbegf, and Cth, among others important for this system like ryanodine receptor 

2 (Ryr2) and adam metallopeptidase domain 19 (Adam19). Ryr2 is found in the cardiac muscle 

sarcoplasmic reticulum and is a component of calcium channel, important for the cardiac muscle 

contraction (Lanner et al., 2010). Adam19 has main roles in heart development, neurogenesis, 

angiogenesis, and release of proteins like EGF receptor ligands (Zhou et al., 2004). 

From the genes annotated to the GO term response to lipopolysaccharide, Cxcl1, Il10, and 

Admt are also involved in other pathways like GO terms regulation of cell proliferation and 

positive regulation of the metabolic process. Other genes that are participating in the GO term 

response to lipopolysaccharide is platelet factor 4 (Pf4). The Pf4 is a regulator of vascular and 

immune biology has a direct role in B-cell differentiation in bone marrow, has antimicrobial 

activity and inhibits hematopoiesis, angiogenesis and T-cell function (Field et al., 2017).  
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GO terms that are involved in categories such as regulation of leukocyte chemotaxis, 

response to peptide, leukocyte activation, regulation of transmembrane receptor protein 

serine/threonine kinase signaling pathway, and peptidyl-tyrosine phosphorylation were enriched 

in this study in response to immune challenge. The treatment-by-genotype interaction effects on 

pathways and processes helped to identify mechanisms and specific genes that can be targeted to 

address depression-like behaviors after inflammation or to understand effects of IDO1 knockout 

in the whole process. 

Table 7. Informative clusters (Enrichment Score > 3) of descriptive DAVID FAT categories 

including Gene Ontology (GO) biological processes (BP) and KEGG pathway enriched among 

546 genes exhibiting significant treatment-by-genotype interaction effects. 
Category Term Counta Raw P-

value 
FDR-

adjusted P-
valueb 

Cluster 1 Enrichment Score: 16.44    
BP FAT GO:0051272~positive regulation of cellular 

component movement 
46 2.21E-15 4.30E-12 

 Cluster 3 Enrichment Score: 8.87 
   

BP FAT GO:0002684~positive regulation of immune 
system process 

48 6.00E-09 1.16E-05 

 Cluster 4 Enrichment Score: 8.64 
   

BP FAT GO:0006954~inflammatory response 43 9.10E-10 1.76E-06 
 Cluster 12 Enrichment Score: 5.25 

   

BP FAT GO:0042981~regulation of apoptotic process 69 1.26E-07 2.43E-04 
 Cluster 14 Enrichment Score: 4.75 

   

BP FAT GO:0048699~generation of neurons 66 3.28E-06 6.34E-03 
 Cluster 15 Enrichment Score: 4.64 

   

BP FAT GO:0072358~cardiovascular system 
development 

56 5.03E-08 9.73E-05 

 Cluster 16 Enrichment Score: 4.38 
   

BP FAT GO:0032496~response to lipopolysaccharide 26 1.27E-05 2.47E-02 
 Cluster 20 Enrichment Score: 4.08 

   

BP FAT GO:0018108~peptidyl-tyrosine phosphorylation 21 9.83E-06 1.90E-02 
 Cluster 25 Enrichment Score: 3.89 

   

BP FAT GO:0090092~regulation of transmembrane 
receptor protein serine/threonine kinase 
signaling pathway 

18 1.26E-05 2.43E-02 

 Cluster 26 Enrichment Score: 3.82 
   

BP FAT GO:0002688~regulation of leukocyte 
chemotaxis 

13 1.15E-05 2.22E-02 
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Table 7 (cont.)     
Category Term Counta Raw P-value FDR-

adjusted P-
valueb 

 Cluster 36 Enrichment Score: 3.19 
   

KEGG 
PATHWAY 

mmu04390:Hippo signaling pathway 16 2.40E-05 3.06E-02 

aNumber of genes in the enriched category. 

bFalse Discovery rate adjusted P-value. 

 

Transcription factor network analysis of genes exhibiting treatment-by-genotype 

interaction effects 

The study of TFs is important to detect regulators of the genes associated with treatment-

by-genotype interaction effects. Among the 65 genes identified (P-value < 0.005) by interaction 

effects, 20 genes with P-value < 0.002 were present in the network analysis. Figure 8 shows the 

regulatory networks for TF exhibiting a normalized enrichment score (NES) > 3.0, the top enriched 

TFs with higher NES were selected. Table 8 lists the enriched TFs exhibiting a normalized 

enrichment score > 2.0 among the 65 genes identified (P-value < 0.005) by interaction effects. 

 

Table 8. Transcription factors (TF) enriched (normalized enrichment score NES > 3.0) among 

differentially expressed (number N of target genes = 65) genes exhibiting significant treatment-

by-genotype interaction effects at P-value <0.005. 

Transcription factor NESa Target Gene Nb 
Pparg 5.186 29 
Ugp2 4.726 9 
E2f1 4.479 27 
Jazf1 4.346 11 
Klf13 4.217 15 
Spib 4.189 10 
Hnrnph3 4.170 23 
Pura 4.151 28 
Mafa 3.877 14 
Pou2f1 3.589 8 
Sod1 3.509 5 
Hand2 3.482 30 
Foxc2 3.440 17 
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Table 8 (cont.)   
Transcription factor NESa Target Gene Nb 
Hey1 3.422 23 
Ing4 3.41 7 
Kdm5a 3.366 17 
Mtf1 3.215 12 
Gata2 3.207 10 
Jdp2 3.169 17 
Socs4 3.139 13 
Zcchc14 3.114 20 
Hand2 3.111 11 
Purg 3.033 13 
Tfap4 3.024 35 
Nr4a2 2.996 11 
Mylk 2.978 41 
Smad4 2.956 15 
Tead3 2.910 25 
Mettl14 2.880 9 
Nxph3 2.870 9 
Ahr 2.836 12 

aNormalized enrichment score 
bNumber N of target genes 

 

Among genes identified by iRegulon network analysis (Figure 8), the Creb3l1, Hbegf, 

Sphk1, and Tpbg were already discussed in the treatment-by-genotype interaction effects on the 

macrophage transcriptome section. The most enriched TF peroxisome proliferator-activated 

receptor gamma (Pparg) is involves in antidepressant-like activity and is a regulator of 

adipogenesis, being an important parameter in the obesity, which is associated with inflammation 

(Donma and Donma, 2016). Pparg is regulating both Hbegf and Sphk1. Both TFs UDP-Glucose 

Pyrophosphorylase 2 (Ugp2) and JAZF Zinc Finger 1 (Jazf1) are regulating the gene Creb3l1. The 

gene E2F transcription factor 1 (E2fr) promote expression of pro-apoptotic factors and is 

upregulated during neuroinflammation (Wu et al., 2014). The TF E2fr is regulating Tpbg. 
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Figure 8. Regulatory network of transcription factors (normalized enrichment score > 3.0) and the 

target genes exhibiting significant treatment-by-genotype interaction effects at P-value <0.005. 

Green octagons denote TFs. The pink ovals are targets. 

The identification of TFs with regulatory networks confirmed the findings discussed in the 

treatment-by-genotype interaction effects on the macrophage transcriptome section and both 

regulons and regulators could be potential candidates to understand the mechanisms involved in 

the interaction effects. 

 

Effect of IDO1 genotype on the macrophage transcriptome 

The processes and pathways of immune systems activating macrophages are very complex. 

Having a gene knockout in macrophages may be important to understand molecular mechanisms 

affecting the regulation and dysregulation of specific genes. This study aims to understand the 

regulation of gene expression in the macrophages in the presence and absence of IDO1, a gene 

that is highly regulated by cytokines (Baumgartner et al., 2017). Table 9 lists four significant 

(FDR-adjusted P-value < 0.05) differentially expressed genes between mice with IDO1-KO and 

WT line.  
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The genes differentially expressed might be related to other mechanisms of control 

occurring in the macrophage to compensate for the absence of IDO1 in the cell. Macrophages are 

not the only immune cells that produce cytokines, other cells, like NK cells, have the same function 

(Martinez and Gordon, 2014). IDO1 deficiency in dendritic cells leads to decrease of regulatory T 

cells (Tregs) and Il10 in serum. However, controversial results for IDO1 deletion in the 

inflammatory response were also existed (Baumgartner et al., 2017). 

In this study, a gene from transmembrane protein’s (Tmem) family, Tmem181, was under-

expressed in the IDO1-KO relative to the WT genotype group. Tmem181 is a receptor for 

cytolethal distending toxins (CDTs), which are potent toxins secreted by bacteria or virus. Mutant 

Tmem181 may have a role in the rate-limiting intoxication, where the CDT can bind the protein 

of Tmem181’s cell surface (Carette et al., 2009). This gene might be essential to understanding 

pathogenesis and mechanisms of pathogen intoxication in the macrophages. The Tmem181 

activity may be affected by the lack of IDO1 in the inflammation response in the IDO1-KO 

genotype group. 

Another differentially expressed gene that might be involved in the suppression of IDO1 

is the dynein light chain tctex-type 1 (Dynlt1). Dynein chains interact with viral proteins and are 

involved in the cellular cytoplasmic transportation mechanism that transport organelles along the 

microtubules, permitting the virus to travel and reach their replication sites (Merino-Gracia et al., 

2011). Dynein motor is essential for the successful viral infection. The over-expression of dynein 

light chains could increase the infection of papillomavirus, while the Dynlt1 depletion can inhibit 

the infection of this virus (Schneider et al., 2011). Dynlt1was under-expressed in the IDO1-KO 

relative to WT genotype group, giving a higher anti-viral response in the macrophages of IDO1-

KO group. 

The differentially expressed gene Relt like 1 (Rell1) is homolog/paralog of Relt, from the 

TNF-receptor superfamily. TNF is important for regulating the immune response, inflammation, 

and for participating in many processes in the cell (Cusick et al., 2010). Rell1 has been reported 

as a stimulator of T-cell proliferation and responsible for activating an apoptotic pathway in 

epithelial cells (Cusick et al., 2010). IDO1 over-expression can also induce cellular death, by 

producing kynurenine (Kyn), which has pro-apoptotic properties (Asghar et al., 2017). On the 

other hand, supplemented Kyns can suffer cytotoxic and anti-proliferative effects caused by human 
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T cells (Asghar et al., 2017). Although the mechanisms involving T cells and IDO1 are still 

ambiguous, Rell1 and IDO1 might play a common role in apoptosis.  

Midline1 (Mid1) was associated with the airway hyper-responsiveness (AHR), a chronic 

airway inflammation (Foster et al., 2017). The inhibition of the activity of Mid1 can decrease the 

expression and production of some interleukins, and also decrease AHR (Foster et al., 2017). This 

gene can indirectly promote type 2 helper t cells (Th2) responses, which are essential for the 

immune system (Foster et al., 2017). Mid1 was over-expressed in the IDO-KO relative to the WT 

group, which might be related to a mechanism that suppresses the absence of IDO1. 

The number of genes differentially expressed prevented the identification of enriched 

categories using DAVID. The results of differentially expressed genes showed that few genes are 

involved in the differences between IDO1 phenotype and WT, suggesting that the macrophages 

may find a way to compensate the absence of IDO1 restoring the cell function. The mechanisms 

involved with this possible suppression can be the activation of inflammatory cells and induction 

of immune tolerance by divergent pathways. 

 

Table 9. Differentially expressed genes (FDR-adjusted P-value < 0.05) between mice in wild-type 

(WT) and IDO1 knocked out (KO) genotypes.  

Gene Symbol Description Log2(IDO1-
KO/WT) 

Raw P-
value 

FDR 
adjusted 
P-valuea 

Tmem181b-ps Transmembrane protein 181B, pseudogene -0.91 1.60E-42 2.30E-38 
Dynlt1b Dynein light chain Tctex-type 1 -1 2.00E-21 1.40E-17 
Rell1 RELT-like protein 1 precursor 0.4 1.50E-07 7.30E-04 
Mid1 PREDICTED: E3 ubiquitin-protein ligase 

Midline-1 
0.78 4.20E-06 1.50E-02 

G530011O06Rik RIKEN cDNA G530011O06 gene 1.03 7.4E-05 2.1E-01 
Rps4l Ribosomal protein S4-like 0.36 9.4E-05 2.2E-01 
Srpx Sushi-repeat-containing protein SRPX 

precursor 
1.20 3.0E-04 5.3E-01 

Pde8a High affinity cAMP-specific and IBMX-
insensitive 3\',5\'-cyclic phosphodiesterase 8A 

-0.22 3.2E-04 5.3E-01 

Gm33272 Predicted gene, 33272 -0.72 3.3E-04 5.3E-01 
aFalse Discovery Rate adjusted P-value. 

 

 



 
 

69 
 

Effect of BCG infection on the macrophage transcriptome 

The transcriptome of macrophages BCG-infected compared to the Sal unchallenged mice, 

allowed to find many possible pathways involved in the recovery process post-infection. Among 

the 8,798 significant differentially expressed genes (FDR-adjusted P-value < 0.05), 4,530 genes 

were under-expressed in the BCG relative to Sal treatment and 4,268 genes were over-expressed 

in the BCG relative to Sal treatment. Most significant genes that were under-expressed and over-

expressed in BCG relative to Sal treatment are listed in Tables 10, and 11, respectively.  

Table 10. Top 20 differentially expressed genes (FDR-adjusted P-value < 0.05) under-expressed 

in the BCG relative to Sal treatment.  

Gene Symbol Description Log2(BCG/Sal) Raw P-
value 

FDR 
adjusted P-

valuea 
Ly6i PREDICTED: lymphocyte antigen 6I -9.20 1.0E-66 1.5E-62 
Ly6c2 PREDICTED: lymphocyte antigen 6C2 -8.09 6.9E-66 5.0E-62 
Zbp1 Z-DNA-binding protein 1 -4.43 2.2E-60 1.1E-56 

Fcgr1 high affinity immunoglobulin gamma Fc 
receptor I precursor -5.62 1.2E-59 3.5E-56 

Pira6 paired-Ig-like receptor A6 -4.68 1.2E-59 3.5E-56 
AW112010 expressed sequence AW112010 -4.79 9.5E-59 2.3E-55 
Spon1 spondin-1 precursor -6.99 3.2E-57 5.8E-54 

Smpdl3b acid sphingomyelinase-like phosphodiesterase 
3b precursor -4.30 3.3E-57 5.8E-54 

Lair1 leukocyte-associated immunoglobulin-like 
receptor 1 -4.23 3.7E-57 5.8E-54 

Gpr141 PREDICTED: probable G-protein coupled 
receptor 141 -6.33 1.8E-56 2.6E-53 

Gbp2 guanylate-binding protein 1 -4.38 1.7E-55 2.2E-52 
Tap1 antigen peptide transporter 1 -2.87 1.0E-54 1.2E-51 

Ms4a6b membrane-spanning 4-domains subfamily A 
member 6B -3.68 1.4E-54 1.5E-51 

Fcgr4 low-affinity immunoglobulin gamma Fc region 
receptor III-A precursor -4.08 1.8E-54 1.8E-51 

I830127L07Rik PREDICTED: lymphocyte antigen 6A-2/6E-1 -8.85 6.9E-54 6.6E-51 
Aif1 PREDICTED: allograft inflammatory factor 1 -4.45 7.7E-54 6.9E-51 
Hrh2 PREDICTED: histamine H2 receptor -4.16 1.8E-53 1.5E-50 
Il18bp PREDICTED: interleukin-18-binding protein -3.48 2.4E-53 1.9E-50 

Bst1 ADP-ribosyl cyclase/cyclic ADP-ribose 
hydrolase 2 precursor -2.34 4.6E-53 3.5E-50 

Lst1 leukocyte-specific transcript 1 protein -4.69 7.6E-53 5.5E-50 
aFalse Discovery Rate adjusted P-value. 
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Many under-expressed genes in the BCG relative to Sal treatment (Table 10), are 

associated with microbial response and host defense, macrophage structure, function, or 

metabolism. The genes Z-DNA binding protein 1 (Zbp1), leukocyte-associated immunoglobulin-

like receptor 1 (Lair1), high affinity immunoglobulin gamma Fc receptor I (Fcgr1), low affinity 

immunoglobulin gamma Fc region receptor III-a precursor (Fcgr4), allograft inflammatory factor 

1 (Aif1), and guanylate binding protein 2 (Gbp2) have the host defense function in common. The 

genes spondin 1 (Spon1), sphingomyelin phosphodiesterase acid like 3b (Smpdl3b), transporter 1, 

ATP binding cassette subfamily b member (Tap1), share the macrophage component function.  

 The Zbp1 is a Z-DNA binding protein that interacts with RIP homotypic interaction motif 

(Rhim), a domain that is present in the protein encoded by Zbp1 and may lead to the activation of 

NF-kB, caspase 8-dependent apoptosis, and interferon production (Upton and Kaiser, 2017). Zbp1 

plays a role in the innate immunity and limit some virus infection (Upton and Kaiser, 2017). The 

absence of this gene can cause damage in parasite degradation by the system, augmenting the 

parasite number, and parasite survival (Pittman et al., 2016). The under-expression of this gene in 

the BCG relative to Sal treatment is different from studies that found Zbp1 more expressed during 

the infection, nevertheless, this decrease of expression might be related to a lack of activation that 

is induced by IFN-y, favoring the parasite growth (Pittman et al., 2016). 

Lair1 belongs to an immunoglobulin superfamily and produces a signal that downregulates 

NK cells, T cells, and B cells (Poggi and Zocchi, 2014). Lair1 is present in leukocytes, and the 

decrease or absence of this gene can cause autoimmune or neoplastic diseases, like B cell chronic 

leukemia (Poggi and Zocchi, 2014). Lair1 was recently classified as an antibody, which are 

proteins of the immune system that respond to the presence of bacteria, virus, and parasites (Hsieh 

and Higgins, 2017).  

Fcgr1 is a receptor that has a high affinity for antibodies, binding to immunoglobulin-G 

(IgG) in neutrophils and is related to the immune system (Minett et al., 2016). As a leukocyte 

surface antigen, Fcgr1a plays a role in the innate and adaptive responses (Farias et al., 2014). The 

expression of this gene in microglia was associated with neurodegenerative pathologies like 

dementia, and bad cognition (Minett et al., 2016). The expression of Fcgr1a can be induced by 

inflammatory cytokines in the presence of bacteria and is over-expressed during infection on the 

surface of neutrophils (Farias et al., 2014). This gene may have a potential therapeutic role and 

may be used as a biomarker for infection or sepsis, and as measurer of systemic inflammatory 
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responses (Farias et al., 2014). Fcgr1a was under-expressed in the BCG relative to Sal treatment. 

This profile is opposite to that previously reported suggesting that the expression of this gene can 

also be negatively affected by the presence of high level of inflammation. Another gene from the 

CD molecules family was under-expressed in the BCG relative to the Sal treatment Fcgr4is part 

of NK cells and have a cytotoxic function (Suzuki et al., 2017). A study showed that low levels of 

CD56+CD16- are associated with depression, sleep disturbance, and vulnerability to viral infection 

(Suzuki et al., 2017). 

The gene Aif1 induces macrophages activation and might be related to bipolar disorder and 

sleep disorder (Cai et al., 2017; Kittel-Schneider et al., 2017; Wadhwa et al., 2017). In this findings, 

Aif1 is under-expressed in the in the BCG relative to Sal treatment. In a study of depression-related 

symptoms, Aif1, that is also a glial cell marker in the brain, had elevated expression in a group 

under LPS challenge. In the same study, IDO was up-regulated in the brain of animals that suffered 

LPS treatment, suggesting that the peripheral immune challenge can cause neuroinflammation and 

kynurenine production (Parrott et al., 2016).  

Gbp2 is essential for antibacterial defenses, inhibiting bacterial replication, and providing 

host protection against different types of pathogens (Li et al., 2017b). Mutation in this gene was 

associated with a migraine, and the absence of Gbp2 expression was associated with no migraine 

(Jiang et al., 2015). In macrophages, genes from Gbp family can also promote caspase-11 

activation when infected with bacteria, regulating inflammation and cell death, mice deficient of 

Gbp have higher mortality in LPS infection than compared with the WT mice (Finethy et al., 2017). 

In these results, Gbp2 is under-expressed in the BCG relative to the Sal treatment.  

Some differentially expressed genes were also related to macrophage component function. 

Spon1 encodes the protein F-spondin that is induced by neuronal injury and damage the binding 

of cells to the extracellular matrix protein (ECM) (Jahanshad et al., 2013). Spon1 interacts with 

receptors’ family of alipoliprotein E (Apoe), which might be a strong genetic risk factor for 

Alzheimer’s disease (Jahanshad et al., 2013). The over-expression of Spon1 is related to cognitive 

improvements (Jahanshad et al., 2013). The under-expression of Spon1 in the BCG relative to the 

Sal treatment might be associated with a difficulty to recover the normal functions caused by the 

infection. 

The Smpdl3b is involved in the innate immunity signaling, and TLR-induced signaling 

processes have a role in the lipid metabolism, and macrophages that are deficient in this gene 
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present a hyper-responsiveness to TLR (Heinz et al., 2015). Smpdl3b is also a high 

phosphodiesterase active in macrophages surface, and a reduction in the expression of this gene 

causes reduction of the macrophage order (Heinz et al., 2015). Cells with Smpdl3b depletion 

present hyper-inflammatory response in the presence of lipid supplementation (Heinz et al., 2015). 

The under-expression of this gene in the BCG-infected group might be related to the damage 

caused by inflammation, compared to the Sal treated group that presents normal levels of 

expression of Smpdl3b. 

Tap1 is from the ATP-binding cassette (ABC) transporters family, and has a role in the 

transportation of peptides across the ER membrane, the depletion of this gene is related to the 

impairment of assembly and transport of MHC class I (Nelson et al., 2013). Loss of MHC class I 

shows a deficit of memory, being important in synaptic plasticity and cognition, and might be 

related to depression (Nelson et al., 2013). These results are in agreement with findings of this 

study where Tap1 was under-expressed in the BCG relative to Sal treatment, suggesting a presence 

of depression-like behavior. 

The results of under-expressed genes showed that many genes are involved in the 

differences between mice infected with BCG and with Sal. Some of the top genes presented in 

Table 10 were discussed and showed direct mechanisms of action in the host defense that might 

be damaged, by destroying the action against the microbial infection or preventing protective 

mechanisms to improve the impaired functions caused by the infection. Some genes were related 

to neurodegenerative disorders or depression, confirming the hypothesis that the BCG infection 

might have a role in the cause of depression-like behaviors. Also, another suggestion for this results 

is that the mechanisms involved in the inflammation process can be influencing other organs in a 

similar way.  

Table 11 lists the top 20 genes over-expressed in the BCG compared with Sal treatment. 

Genes over-expressed in the BCG relative to the Sal treatment, similarly to those under-expressed 

have roles related to the microbial response and host defense, and macrophage structure. The genes 

lysozyme 1 (Lyz1) and aquaporin 9 (Aqp9) have the microbial response function. The genes 

mitochondrial calcium uniporter (Mcu) and histamine receptor h1 (Hrh1) are associated with 

macrophage structure. 

 Lyz1 encodes lysozymes, that are antimicrobial agents, and related to immune system, 

playing a role in the phagosome, and activation of NLR family pyrin domain containing 3 (Nlrp3), 
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which regulates inflammation, apoptosis, and cytokine production (Vance, 2010). Digestive 

enzymes activate immune sensors inside the cell, and the resistance of bacteria to lysozyme avoid 

the recognition of their presence by Nlrp3 inflammasome (Shimada et al., 2010; Vance, 2010). 

Lysozyme resistance facilitates the bacteria to evade the inflammasome (Vance, 2010). Also, 

lysozyme is important for innate response and upregulated against infection by pathogens (Gao et 

al., 2017). Lyz1 is over-expressed in the BCG relative to the Sal treatment. Aqp9 is from 

aquaporin’s (Aqp) family, and the high expression of Aqp9 was associated with infectious disease 

and systemic inflammatory response syndrome compared with healthy controls (Holm et al., 

2016). In agreement with this study, Aqp9 is over-expressed in the BCG relative to the Sal 

treatment. The over-expression of both Lyz1 and Aqp9 in the BCG relative to the Sal treatment 

might be confirming the presence of inflammation and immune system reaction. 

Mcu is a mediator of ER calcium uptake by mitochondria, regulates metabolism, cell 

viability, and ROS production (Gu et al., 2017). Mcu silencing can correct calcium defect 

associated with an increase of excessive mitochondrial calcium (Wang et al., 2017). This defect is 

caused by the clearance of apoptotic cells by phagocytes (Wang et al., 2017). Mice that were Mcu 

deficient in macrophages were protected from pulmonary fibrosis (Gu et al., 2017). Mcu is over-

expressed in the BCG relative to the Sal treatment suggesting damage in the immune response. 

Hrh1 encodes a histamine G-coupled receptor (H1R) and is part of the histaminergic 

system (Wright et al., 2017). Some genes of this system play a role in the neuroinflammation, 

cognition, sleep, and attention (Wright et al., 2017). Hrh1 was associated with NF-kb signaling, 

and cytokine production (Virakul et al., 2016). The Hrh1 was over-expressed in in the BCG relative 

to the Sal treatment. Genes (FDR-adjusted P-value < 0.05) over-expressed in the BCG relative to 

the Sal treatment showed the potential relationship between inflammation and behavioral 

problems. These results can be used to understand the role of treatment in depression-like 

behaviors. 
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Table 11. Top 20 differentially expressed genes (FDR-adjusted P-value < 0.05) over-expressed in 

the BCG relative to Sal treatment. 

Gene Symbol Description Log2(BCG/Sal) Raw P-
value 

FDR 
adjusted 
P-valuea 

Lyz1 lysozyme C-1 precursor 1.29 8.8E-27 3.7E-25 

Mcu PREDICTED: calcium uniporter protein, 
mitochondrial 0.81 7.1E-26 2.8E-24 

Neurl1a E3 ubiquitin-protein ligase NEURL1 1.76 8.4E-26 3.2E-24 
Fam198b PREDICTED: protein FAM198B 2.07 1.1E-24 3.7E-23 
Hrh1 histamine H1 receptor 1.65 2.3E-24 7.5E-23 
Aqp9 aquaporin-9 1.41 2.3E-24 7.7E-23 

Dcstamp PREDICTED: dendritic cell-specific 
transmembrane protein 2.27 7.0E-24 2.2E-22 

Ear2 eosinophil cationic protein 2 precursor 2.30 8.0E-24 2.5E-22 
LOC108168644 PREDICTED: proline-rich protein 36-like 2.24 9.2E-24 2.9E-22 

Cdkn1c PREDICTED: cyclin-dependent kinase 
inhibitor 1C 1.79 2.5E-23 7.6E-22 

Cd200r3 PREDICTED: cell surface glycoprotein CD200 
receptor 3 2.10 2.8E-23 8.4E-22 

Tspyl2 PREDICTED: testis-specific Y-encoded-like 
protein 2 0.88 2.9E-23 8.6E-22 

Epas1 endothelial PAS domain-containing protein 1 2.03 1.9E-22 5.1E-21 

Cpeb1 PREDICTED: cytoplasmic polyadenylation 
element-binding protein 1 2.16 2.8E-22 7.5E-21 

Atp6v0a1 V-type proton ATPase 116 kDa subunit a 1.10 4.6E-22 1.2E-20 
Hpn serine protease hepsin 2.03 8.7E-22 2.2E-20 
Gbe1 1,4-alpha-glucan-branching enzyme 1.28 1.2E-21 2.8E-20 

Lrrc32 PREDICTED: leucine-rich repeat-containing 
protein 32 2.39 2.3E-21 5.5E-20 

F13a1 coagulation factor XIII A chain precursor 1.81 6.5E-21 1.5E-19 
Nav2 PREDICTED: neuron navigator 2 1.70 7.5E-21 1.7E-19 
aFalse Discovery Rate adjusted P-value. 

 

Functional analysis of genes exhibiting BCG treatment effect 

The functional analysis of genes exhibiting significant BCG infection effects can 

complement our findings in the differential expression analysis. However, different from the 

pattern assumed for the differentially expressed analysis of BCG-infected effects, the direction of 

regulation in over-expression or under-expression was not separated to find informative categories 

related to BCG-challenged. Functional analysis of 2,255 differentially expressed genes (FDR-

adjusted P-value < 0.05) with log2 (fold change) >|1| was implemented using DAVID. Most 

informative clusters (Enrichment Score > 2) of descriptive DAVID FAT categories including Gene 
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Ontology (GO) biological processes (BP), molecular functions (MF), and KEGG pathways 

enriched among genes exhibiting significant effects are described in Table 12. 

Enriched functional categories confirm the patterns previously discussed including GO BP 

terms related to microbial response and host defense, and macrophage structure or metabolism. 

For microbial response and host defense the following categories were enriched: response to virus, 

negative regulation of inflammatory response, response to lipid, positive regulation of cytokine 

production involved in immune response, antigen processing and presentation of peptide antigen 

via MHC class I, positive regulation of T cell mediated cytotoxicity, positive regulation of cell 

death, myeloid cell activation involved in immune response, negative regulation of viral life cycle, 

interaction with host, positive regulation of response to wounding, antigen processing, and 

presentation of endogenous peptide antigen (Table 12). 

Myocyte enhancer factor 2c (Mef2c), toll-like receptor 3 (Tlr3), and S100 calcium binding 

protein a8 (S100a8) are part of many functional categories. Mef2c was associated with cognition, 

behavior, and memory  (Mitchell et al., 2017). The expression of genes of TLR family is associated 

with the major depressive disorder in the presence of inflammation (Hung et al., 2017). The 

presence of gene S100a8 in inflammation is in accordance with a study that had S100a8 over-

expressed in response to BCG challenge in microglia cells (Gonzalez-Pena et al., 2016a). Another 

gene from the same family of S100a8, S100a9, was also associated with inflammation and 

depression (Ha et al., 2010). 

For functional categories related to macrophage structure, cellular function, and 

metabolism, the following  GO BP and MF terms were enriched: regulation of GTPase activity, 

cellular response to peptide hormone stimulus, nucleoside-triphosphatase regulator activity, 

regulation of peptidyl-tyrosine phosphorylation, cellular calcium ion homeostasis, 

phosphatidylinositol-mediated signaling, regulation of cysteine-type endopeptidase activity, and 

regulation of peptidase activity (Table 12). 

In agreement with this study, genes related to metabolism of regulatory peptides, 

inflammatory response, and immune system were associated with major depressive disorder (Song 

et al., 2013). Alanyl aminopeptidase, membrane (Anpep) and matrix metallopeptidase 8 (Mmp8) 

are associated with both inflammatory response and depression (Song et al., 2013). In this study, 

these genes are enriching the significant GO BP term anatomical structure formation involved in 
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morphogenesis. Pathways related to inflammatory responses, energy metabolism, including 

hormonal signals were also associated with depression in humans (Carboni et al., 2016).  

Seven KEGG pathways were enriched in this analysis: graft-versus-host disease; antigen 

processing, and presentation; type I diabetes mellitus; axon guidance; chemokine signaling 

pathway; ECM-receptor interaction; focal adhesion. These results are highlighting the host defense 

mechanism that is acting in the presence of infection. The KEGG pathways together suggest that 

the animals might have behavior-like symptoms. First, because genes related to neuronal function, 

axon guidance, and synaptic vesicle cycle were associated with symptoms of depression (Brites 

and Fernandes, 2015; Carboni et al., 2016). Second, because focal adhesion and chemokine 

signaling pathway were also described as significantly enriched for major depressive disorder 

(Carboni et al., 2016). Finally, Type I diabetes mellitus was significantly enriched in the KEGG 

pathway, which is consistent with the findings that glucose metabolism, gluconeogenesis, and 

glycolysis are associated with the disorder. Also, the risk for type 2 diabetes mellitus may be 

increased in patients with depression (Carboni et al., 2016).   

The enrichment of categories among genes exhibiting significant BCG effects relative to 

Sal treatment using GSEA confirmed and complemented the results of GO terms related to 

immune system. These findings allowed a better understanding of the processes that might be 

happening in the macrophage during the inflammation response affecting the whole immune 

system and consequently developing depression-like behaviors. 

 

Table 12. Most informative clusters (Enrichment Score > 2) of descriptive DAVID FAT categories 

including Gene Ontology (GO) biological processes (BP), molecular functions (MF), and KEGG 

pathways enriched among genes exhibiting significant (FDR-adjusted P-value < 0.05) and with 

log2(fold change) >|1| between mice infected with BCG relative to Sal treatment. 
Category Term Counta Raw P-

value 
FDR P-

valueb 
  Cluster 11 Enrichment Score: 15.49 

   

 BP_FAT GO:0009615~response to virus 86 1.04E-12 2.11E-09 
  Cluster 14 Enrichment Score: 11.10 

   

 BP_FAT GO:0043087~regulation of GTPase activity 55 1.3E-05 2.64E-02 
  Cluster 15 Enrichment Score: 10.80 

   

 BP_FAT GO:0050728~negative regulation of inflammatory 
response 

33 2.38E-07 4.82E-04 
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Table 12 (cont.)     
Category Term Counta Raw P-

value 
FDR P-

valueb 
  Cluster 17 Enrichment Score: 8.62 

   

 BP_FAT GO:0001916~positive regulation of T cell mediated 
cytotoxicity 

11 1.98E-05 4.01E-02 

  Cluster 20 Enrichment Score: 8.18 
   

 BP_FAT GO:0010942~positive regulation of cell death 115 1.9E-09 3.85E-06 
  Cluster 22 Enrichment Score: 7.42 

   

 BP_FAT GO:0071375~cellular response to peptide hormone 
stimulus 

50 1.12E-05 2.26E-02 

  Cluster 27 Enrichment Score: 6.70 
   

 MF_FAT GO:0060589~nucleoside-triphosphatase regulator 
activity 

58 8.46E-07 1.45E-03 

  Cluster 29 Enrichment Score: 6.52 
   

 BP_FAT GO:0050730~regulation of peptidyl-tyrosine 
phosphorylation 

52 1.14E-07 2.30E-04 

  Cluster 31 Enrichment Score: 6.37 
   

 BP_FAT GO:0033993~response to lipid 162 1.1E-08 2.22E-05 
  Cluster 34 Enrichment Score: 6.25 

   

 BP_FAT GO:0002720~positive regulation of cytokine 
production involved in immune response 

15 3.67E-06 7.43E-03 

  Cluster 36 Enrichment Score: 6.10 
   

 BP_FAT GO:0006874~cellular calcium ion homeostasis 73 1.4E-05 2.83E-02 
  Cluster 37 Enrichment Score: 5.94 

   

 BP_FAT GO:0002474~antigen processing and presentation 
of peptide antigen via MHC class I 

26 3.63E-08 7.36E-05 

KEGG_PATHWAY mmu05332:Graft-versus-host disease 21 7.43E-07 9.82E-04 
KEGG_PATHWAY mmu04612:Antigen processing and presentation 25 1.62E-05 2.15E-02 
KEGG_PATHWAY mmu04940:Type I diabetes mellitus 21 1.7E-05 2.24E-02 
  Cluster 40 Enrichment Score: 5.58 

   

KEGG_PATHWAY mmu04360:Axon guidance 43 3.17E-10 4.19E-07 
  Cluster 41 Enrichment Score: 5.562 

   

 BP_FAT GO:0002275~myeloid cell activation involved in 
immune response 

24 1.57E-06 3.17E-03 

  Cluster 43 Enrichment Score: 5.43 
   

 BP_FAT GO:1903901~negative regulation of viral life cycle 24 4.22E-06 8.55E-03 
  Cluster 45 Enrichment Score: 5.31 

   

 BP_FAT GO:0048015~phosphatidylinositol-mediated 
signaling 

31 2.39E-05 4.84E-02 

  Cluster 47 Enrichment Score: 5.14 
   

KEGG_PATHWAY mmu04062:Chemokine signaling pathway 49 4.9E-07 6.48E-04 
  Cluster 53 Enrichment Score: 4.75 

   

KEGG_PATHWAY mmu04512:ECM-receptor interaction 28 1.78E-06 2.35E-03 
KEGG_PATHWAY mmu04510:Focal adhesion 49 2.65E-06 3.50E-03 
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Table 12 (cont.)     
Category Term Counta Raw P-

value 
FDR P-

valueb 
  Cluster 62 Enrichment Score: 4.24 

   

 BP_FAT GO:2000116~regulation of cysteine-type 
endopeptidase activity 

45 2.25E-05 4.55E-02 

  Cluster 79 Enrichment Score: 3.24 
   

 BP_FAT GO:0052547~regulation of peptidase activity 67 3.02E-06 6.12E-03 
  Cluster 84 Enrichment Score: 3.09 

   

 BP_FAT GO:0051701~interaction with host 24 1.61E-05 3.26E-02 
  Cluster 96 Enrichment Score: 2.87 

   

 BP_FAT GO:1903036~positive regulation of response to 
wounding 

20 1.26E-05 2.55E-02 

  Cluster 122 Enrichment Score: 2.47 
   

 BP_FAT GO:0002483~antigen processing and presentation 
of endogenous peptide antigen 

11 7.4E-07 1.50E-03 

aNumber of genes in the enriched category. 

bFalse Discovery rate adjusted P-value. 

 

Transcription factor network analysis of genes exhibiting BCG treatment effect 

The understanding of TFs that affect the macrophage transcriptome is important to find 

sets co-dysregulated genes associated with BCG infection effects. The top significant genes 

(4,455) that were differentially expressed (FDR adjusted P-value < 2.0E-6) for BCG infection 

effects were used for transcription factor discoveries, without separating by the direction of 

expression (Table 13). The top enriched TF (NES > 3.0) in this analysis was the interferon 

regulatory factor 4 (Irf4), important in to mediate inflammation (Al Mamun et al., 2018). The 

second enriched TF, Irf9, is also from the IRF family of transcription factors, and both Tables 13 

and 14 showed this gene between the top enriched TFs. 

All the 4,530 genes under-expressed (FDR-adjusted P-value < 0.05) in the BCG relative to 

the Sal treatment, and all the 4,268 genes over-expressed (FDR-adjusted P-value < 0.05) in the 

BCG relative to the Sal treatment were used for co-regulation analysis. The results of the TFs 

identified for both under- and over-expressed are in Table 14. Among these enriched TFs (NES > 

3.0), the ETS transcription factor (Elk1) is the top enriched TF for the under-expressed genes. The 

Elk1 is a nuclear effector of the ERK cascade, which plays a role in synaptic plasticity and memory 

(Thiels et al., 2002). Network analysis in another study that leads inflammation to major depressive 

disorder in twins revealed that both Pparg (top enriched TF for interaction effects section) and the 
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top enriched TF for over-expressed genes, MYC proto-oncogenes, BHLH transcription factor 

(Myc), are interacting through the Jun proto-oncogene, AP-1 transcription factor subunit (Jun), 

important in inflammatory responses and depression-like behavior (Malki et al., 2016). In the same 

study of network analysis, Elk1 also interacts with Jun (Malki et al., 2016). 

 
Table 13. Transcription factors (TF) enriched (normalized enrichment score NES > 2.0) among 

differentially expressed genes (FDR adjusted P-value < 2.0E-6; number N of target genes = 4,455) 

genes in BCG-infected relative to Saline treated mice. 

Transcription factor NESa Target Gene Nb 
Irf4 5.232 2186 
Irf9 5.230 1058 
Sirt6 3.656 664 
Ikzf1 3.383 965 
Snapc4 3.333 461 
Zfp503 3.317 184 
Nf1 3.238 457 
Gata2 3.238 1719 
Pura 2.932 1093 
Rrn3 2.888 1578 
Ywhaz 2.882 260 
Srf 2.824 237 
Klf4 2.698 2584 
Gm4204 2.677 950 
Bcl3 2.646 338 
Stat6 2.602 1131 
Elk1 2.560 806 
Cebpe 2.559 300 
Ets1 2.557 605 
Hes5 2.543 1334 
Ubp1 2.514 1624 
Bach2 2.504 1107 
Stat1 2.503 599 
Ar 2.494 245 
Foxo1 2.444 48 
Atf5 2.443 553 
Runx1 2.437 1582 

aNormalized enrichment score 
bNumber N of target genes 
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Table 14. Transcription factors (TF) enriched (normalized enrichment score NES > 3.0) among 

under-expressed (number N of target genes = 4,530) and over-expressed (number N of target genes 

= 4,268) genes in BCG-infected relative to Saline treated mice. 

Under-expressed genes  Over-expressed genes 
TFa NESb Target 

Gene Nc 
 TF NES Target 

Gene N 
Elk1 5.530 3031  Myc 3.502 1048 
Zfp143 4.308 1513  Smad1 3.416 94 
Yy1 4.118 1371  Tef 3.314 1147 
Sp3 3.766 2394     
Irf9 3.657 1152     
Rfx2 3.631 1789     
Mlx 3.019 238     

aTranscription Factor 
bNormalized enrichment score 
cNumber N of target genes 

 

Network analysis were performed on more stringent number of differentially expressed 

genes to identify the transcription factors that are influencing the BCG infection effects. Among 

the 4,530 genes under-expressed (FDR-adjusted P-value < 0.05) in the BCG relative to the Sal 

treatment, 150 genes with log2 (fold change) < -3 were selected for co-regulation analysis. Among 

the 4,268 genes over-expressed in the BCG relative to the Sal treatment, 105 genes with log2 (fold 

change) > 2.5 were selected for co-regulation analysis. Figures 9 and 10 show the regulatory 

networks for TF exhibiting a normalized enrichment score > 3.0, the top enriched TFs (> 30 

targets) with higher number of targets were selected, however, to facilitate visualization, they were 

filtered to 30 targets for each TF in the network. Table 15 lists the enriched TFs exhibiting a 

normalized enrichment score > 3.0 among genes under-expressed and over-expressed (FDR-

adjusted P-value < 0.05) in the BCG relative to the Sal treatment. 
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Figure 9. Regulatory network of transcription factors (normalized enrichment score > 3.0 and > 

30 targets) and the 30 target genes under-expressed in BCG relative to Saline-treated mice. Red 

octagons denote TFs. The blue ovals are TFs that are targeting each other. The purple ovals are 

targets. 

 

The co-regulatory network results are in agreement and complement the results discussed 

in the other sections. The regulatory network for under-expressed target genes (Figure 9) includes 

signal transducer and activator of transcription 1 (Stat1; normalized enrichment score = 5.9), Rela 

proto-oncogene, NF-kB Subunit (Rela; normalized enrichment score = 4.9), core-binding factor 

beta subunit (Cbfb; normalized enrichment score =3.7), and interferon regulatory factor 6 (Irf6; 

normalized enrichment score = 3.6) as the predicted regulons (Table 15).  
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Stat1 is from STAT protein family and can be activated by interferons (IFNs) and 

cytokines. Specifically, IFN-a, which is associated with depression symptoms, can lead to the 

phosphorylation of Stat1 and Stat2 (Borsini et al., 2017). Both IFN-alpha and Stat1-mediated 

production of cytokine is involved in cell apoptosis process in the brain and neurogenesis (Borsini 

et al., 2017). The presence of high levels of Stat1 was associated with severe major depressive 

disorder and dysregulation of neurotransmitter systems (Hoyo-Becerra et al., 2015). Stat1 was a 

hub gene connected with Janus kinase 2 (Jak2), signal transducer, an activator of transcription 3 

(Stat3), and nuclear factor erythroid derived2 (Nfe2) in network analysis, being over-expressed in 

the BCG-infected compared to Sal treatment group within macrophages and microglia (Gonzalez-

Pena et al., 2016a). Stat1 is regulating a gene that serves as a neurotransmitter, brain-derived 

neurotrophic factor (Bdnf), which is considerate a marker for depression treatment (Martocchia et 

al., 2014). Stat1 is being regulated by the predicted regulons Irf6 and is also both regulating and 

being regulated by Rela. 

The gene Rela is a subunit of the canonical pathway NF-kB, which is essential for B cell 

maturation and activation (Milanovic et al., 2017). Rela is an abundant form in NF-kB, important 

to play a role in the innate and adaptive immune system, inflammation and cancer (Martincuks et 

al., 2017). Rela and Stat1 regulate five genes in common: B-cell CLL/lymphoma 3 (Bcl3), growth 

arrest and DNA damage-inducible beta (Gadd45b), C-C motif chemokine ligand 2 (Ccl2), 

intercellular adhesion molecule 1 (Icam1), and cyclin-dependent kinase inhibitor 1a (Cdkn1a). 

Cdkn1a is regulated by the four predicted regulons or TFs. 

As the Irf4 and Irf 9 found as enriched TFs in Tables 13 and 14, the Irf6 is also from the 

interferon transcription factor (IRF) family, which primarily regulate immune system maturation, 

playing a role in the expression of pro- and anti-inflammatory cytokines (Li et al., 2017a). Irf6 

plays a role in the macrophage activation, and is related to metabolic disorders and indirectly 

mediate TLR signaling (Li et al., 2017a). In the network, Irf6 is regulating many genes related to 

immune system like Il6 (Figure 9). 

The TF Cbfb regulates genes involved in hematopoiesis and osteogenesis and is constituted 

of genes from RUNX family (Morita et al., 2017). The inhibition of RUNX has anti-tumor 

potential, implicating in cell death pathway (Morita et al., 2017). Cbfb regulates the target 

suppressor of cytokine signaling 1 (Socs1), that is a negative regulator of Tlr4 signaling, and a 

negative regulator of Trl4 has been associated with depression (Hung et al., 2017). The four TFs 
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enriched among under-expressed genes between mice infected with BCG relative to Sal treatments 

implicated in the finding of candidate regulons that can be potentially used as biomarkers to 

understand the molecular mechanisms involving inflammation and depression-like behavior. 

Four enriched TFs were selected and had > 30 target genes among the genes over-expressed 

in the BCG-infected relative to the Sal treatment group (Figure 10): forkhead box g1 (Foxg1; 

normalized enrichment score = 3.8), forkhead box l1 (Foxl1; normalized enrichment score = 3.7), 

upstream transcription factor 1 (Usf1; normalized enrichment score = 3.6), and TEA domain 

transcription factor 1 (Tead1; normalized enrichment score = 3.1) (Table 15). 

 

Figure 10. Regulatory network of transcription factors (normalized enrichment score > 3.0 and > 

30 targets) and the 30 target genes over-expressed in BCG-infected relative to Saline treated mice. 

Red octagons denote TFs. The purple ovals are targets. 
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Foxg1 plays a role in the brain development and may lead to human neurological disorders 

(Kumamoto and Hanashima, 2017). This TF is a candidate gene for two neurological disorders, 

West and Rett syndromes, and in epilepsy, suggesting the participation of Foxg1 in the interneuron 

development (Yang et al., 2017). Also, Foxg1 regulates SMAD/transforming growth factor beta 

(TGF-B) pathway that leads to antidepressants mechanisms of action (Kinsler et al., 2010). 

Deficiency of Foxg1 may reflect in differences in behavior, such as hyperactivity, and can lead to 

impairment of antidepressant response (Kinsler et al., 2010). In agreement with these findings, 

Foxg1 is connected to the SMAD family member 3 (Smad3) suggesting a possible neurological 

effect during inflammation in the BCG-infected relative to Sal treatment group (Figure 10). 

Although Foxl1 also belongs to the FOX family, this gene plays a different role in the 

immune system (Zhong et al., 2017). An over-expression of Foxl1 is related to inhibition of cell 

proliferation and migration, downregulation of Wnt/B-catenin signaling pathway and can also 

promote TNF-related apoptosis-inducing ligand (TRAIL) (Li et al., 2016; Zhong et al., 2017). In 

Figure 10, both Foxg1 and Foxl1 are regulating fos proto-oncogene, ap-1 transcription factor 

subunit (Fos or c-fos), which is related to antidepressant treatment, high neuronal activity and 

behavioral disorders (Fan et al., 2017; Zhu et al., 2017). Foxg1 and Foxl1 regulate fos and more 

fifteen genes in common, and from these, one is regulated by all four regulons (Cdkn1a), and one 

is regulated by three regulons (Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-

terminal domain 2 (Cited2)). Cdkn1a is a cell cycle regulator, related to clock genes (Sato et al., 

2017). Cited2 is a repressor of macrophage pro-inflammatory activation (Kim et al., 2017). 

Usf1 also is a TF that binds the gene Bdnf promoter IV in the brain of rats (Cortes-Mendoza 

et al., 2013; Ren et al., 2016; Spohrer et al., 2017). Usf1 is regulating the gene Cad, mutations in 

this gene were involved with epileptic encephalopathy (Koch et al., 2017). Tead1 belongs to TEAD 

transcription factor family and plays an important role in development and Hippo signaling 

pathway, which regulates cell growth, proliferation, and homeostasis (Lin et al., 2017). In Figure 

10, Tead1 is regulating Saa1, a gene that was discussed in the interaction section and is related to 

depressive-like behavior in brain (Jang et al., 2017). The study of regulons with regulatory 

networks confirmed the findings discussed in other sections and implicated in the identification of 

transcription factors that can be potential candidates to understand the mechanisms involved in the 

BCG-infection leading to inflammation and depression-like behavior. 
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Table 15. Transcription factors (TF) enriched (normalized enrichment score NES > 3.0) among 

under-expressed (number N of target genes = 150) and over-expressed (number N of target genes 

= 105) genes in BCG-infected relative to Saline treated mice. 

Under-expressed genes  Over-expressed genes 
TFa NESb Target 

Gene Nc 
 TF NES Target 

Gene N 
Stat1 5.982 94  Zbtb18 4.111 29 
Rela 4.936 46  Foxg1 3.795 30 
Cbfb 4.344 39  Foxl1 3.728 42 
Ywhae 4.146 25  Foxn4 3.613 40 
Ikzf1 3.999 18  Pou3f4 3.596 25 
Tppp 3.817 15  Usf1 3.562 35 
Bcl6 3.676 14  Sox10 3.426 17 
Irf6 3.573 56  Ing4 3.348 14 
Gata5 3.443 16  Kdm4d 3.331 17 
Jun 3.341 31  Tead1 3.135 49 
Mettl3 3.307 15  Stat1 3.123 30 
Ets1 3.033 12  Jun 3.064 19 
Trp53 3.004 8  Smad4 3.026 17 

aTranscription Factor 
bNormalized enrichment score 
cNumber N of target genes 

 

According to Table 15, the gene Jun proto-oncogene, AP-1 transcription factor subunit 

(Jun) was also among the top enriched TF for under-expressed genes in BCG-infected relative to 

Saline-treated mice and had > 30 targets. Jun, as discussed at the beginning of this section, was 

associated with major depressive disorder, neuroplasticity and neurogenesis in a rat model of 

depression in the prefrontal cortex (Malki et al., 2015). Among the top TF enriched over-expressed 

genes, the forkhead box N4 (Foxn4) and Stat1 also had > 30 targets. Foxn4 positively regulates 

the orphan nuclear receptor subfamily 4 group A member 2 (Nr4a2), which is essential for the 

ventral midbrain dopaminergic neurons and is related to Parkinson’s disease (Jiang and Xiang, 

2009). Despite zinc finger and BTB domain containing 18 (Zbtb18) was not in the top enriched 

TFs, this gene had 29 targets and had the highest score for NES among the TFs for over-expressed 

genes in BCG-infected relative to Saline-treated mice. Zbtb18 is associated with microdeletion 

syndrome, characterized by intellectual disability (De Munnik et al., 2014). Both Jun and Stat1 
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might be important TFs in this study for being enriched for under-expressed and over-expressed 

genes in BCG-infected relative to Saline-treated mice. 

 

Comparison between results of two different pipelines 

The analysis of the contrast BCG(WT)-Sal(WT) was performed using both Tuxedo 

pipeline (TopHat, Cufflinks, Cuffdiff) and Kallisto, tximport and edgeR to better identify how 

different these two methodologies are. The number of significant differentially expressed genes 

(FDR adjusted P-value <0.05) identified with Cuffdiff was 4,137, while edgeR identified 6,843. 

The edgeR method had 2,681 genes that were not present in Cuffdiff analysis, and Cuffdiff had 

995 genes not present in edgeR analysis. The values of P-value, FDR-adjusted P-values, and fold 

changes from Cuffdiff were compared with edgeR using 11,029 genes that were common between 

both analyses. Both initial files were filtered by non-annotated genes, low or no expressed genes. 

Then, data from both analyses were combined by gene Id. P-value, FDR-adjusted P-values, and 

fold changes were logged 10 transformed to normalize data. However, the data were still not 

normally distributed, and Spearman method was used to calculate correlation in the SAS software 

(Saxton and Institute 2004).  

The Spearman method results showed 87% of correlation (P-value < 0.0001) between 

adjusted P-values, 98% of correlation (P-value < 0.0001) between log10 (fold changes), and also 

87% of correlation (P-value < 0.0001) between P-values for both analyses. The results showed that 

both pipelines, having Cuffdiff and edgeR for differential expression analysis, share a high number 

of significant genes, with a similar level of P-value, FDR-adjusted P-values, and fold changes. 

Despite a lower number of differentially expressed genes in Cuffdiff, both methods showed a 

strong correlation in the results. 

 

In summary, our study of individual gene expression patterns, functional analysis, and TF 

confirmed that genes associated with immune pathways remain dysregulated seven days after BCG 

treatment. The association between macrophage transcriptome and depression-like symptoms may 

support reports that immune cells from the peripheral blood can surpass the blood-brain barrier 

and elicit central nervous system inflammation. The detection of genes that exhibited interaction 

effect suggests that the impact of BCG challenge after recovery in the macrophages is different 
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between IDO1-KO and WT mice. Several genes and pathways associated with depression and 

neurological disorders that exhibit depression symptoms further aid in understanding the 

depression-like symptoms that mice present even after sickness recovery from BCG challenge.  
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CHAPTER 4 - GENE CO-EXPRESSION NETWORK ANALYSIS TO FIND MODULAR 
ORGANIZATION OF COMPLEX TRAITS 

 
 

Abstract 

Systems biology approaches are used to elucidate mechanisms that orchestrate cellular 

functions and regulate complex traits. Gene co-expression networks are useful for interpretation 

of large datasets. Networks modules can reveal functional processes and pathways that are shared 

between genes. Differential co-expression analysis compares the structure of two co-expression 

networks between conditions, in this case, providing insight into alterations in the regulatory 

systems between genotype lines and between drug treatments. Weighted gene co-expression 

network analysis identified modules related to the selected line (H) for hyperactivity and drug 

treatment of amphetamine (A). Co-expressed genes in module grey were significantly correlated 

with genotype, and functional analysis enriched the GO BP terms regulation of cell death and Wnt 

signaling pathway. Among the members of module grey, the genes frizzled class receptor 9 (Fzd9), 

insulin-like growth factor (Igf1), and tachykinin receptor 1 (Tacr1) are related to behavior, 

learning, and memory, and genes peptidylprolyl isomerase F (cyclophilin F) (Ppif) and cytochrome 

c oxidase subunit IV isoform 2 (Cox4i2) is associated with neurodegenerative disorders. Genes in 

modules tan, cyan, and salmon were significantly correlated with treatment. The tan module had 

GO BP terms related to nervous system development, while cyan module had regulation of 

nitrogen compound metabolic process and salmon module had regulation of multicellular 

organismal process as significant. Among genes in the salmon module, the gene Jun proto-

oncogene (Jun) is specifically related with an amphetamine addiction, and the genes neurogenic 

differentiation 1 (Neurod1), purine-nucleoside phosphorylase (Pnp), and xanthine dehydrogenase 

(Xdh) are related with response to the drug, drug binding, and drug metabolism, respectively. In 

the cyan module, the gene cAMP responsive element binding protein 3-like 1 (Creb3l1) is related 

to the dopaminergic synapse, Huntington's disease, and amphetamine addiction. From the tan 

module, the gene oxytocin (Oxt) plays a role in response to amphetamine and behavior, while the 

gene kallikrein related-peptidase 8 (Klk8) is important in the nervous system development, 

behavior, learning or memory. Four co-expressed genes found in the significant modules, Creb3l1, 

Neurod1, Ppif and Oxt also exhibited significant (FDR adjusted P-value < 0.05) treatment-by-line 

interaction effect in Chapter 2. Differentially co-expressed results identified EPH receptor B3 
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(Ephb3), important for the nervous system, as negatively differentially connected to mice receiving 

the A relative to the S treatment. The gene Ppif was positively differentially connected to mice 

from C relative to the H line and is possibly one of the most important genes of this analysis for 

being differentially expressed, significantly co-expressed in the grey module, and differentially 

co-expressed. 

 

Introduction 

Gene expression analysis helped to understand the molecular basis of the simultaneous 

effects of genotype, using mice from the line (H) selected for hyperactivity, a model of attention 

deficit hyperactivity disorder (ADHD), and of amphetamine treatment (A). Systems biology is 

used in this study to understand better the mechanisms underlying the hyperactivity line-

amphetamine treatment.  

The systems biology methods of correlation network analysis and identification of hub 

genes that contribute to gene patterns across the samples have been widely applied to diseases like 

heart disease, and diabetes (Sengupta et al., 2009; Tang et al., 2018). The networks can be 

constructed based on the data from gene expression analysis. Gene co-expression networks have 

been used to detect modules that are biologically meaningful and to find the relationship between 

modules. These modules are composed of highly interconnected genes organized according to 

functional processes and pathways. Weighted Gene Co-expression Network Analysis (WGCNA) 

is a software package in the R environment that uses gene co-expression information to uncover 

networks (Langfelder and Horvath, 2007). WGCNA routines were used to identify gene modules 

related correlated to the hyperactivity line or amphetamine treatment. 

Another approach known as differential co-expression analysis compares the structure of 

two co-expression networks and connectivity between conditions, providing insight into 

alterations in the regulatory systems (de la Fuente, 2010). This method has been successfully used 

to identify differential co-expression in cancer and to identify transcription factors and microRNAs 

related with phenotypes (Choi et al., 2005). 

 The objective of this study was to identify modules and genes associated with the selected 

line (H) for hyperactivity and drug treatment of amphetamine (A) using WGCNA and differential 

co-expression analysis. Another goal was to compare the results of these analyses with the results 
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of differential gene expression found in Chapter 2 and complement our insights, as these are 

powerful alternatives to find more answers about complex systems. 

 

Materials and Methods 

Data collection and sequencing 

Mice from a hyperactivity line (H) selected for increased home cage activity and from a 

contemporary control line (C) were studied (Majdak et al., 2014; Majdak et al., 2016; Zombeck et 

al., 2011). Home cage activity was individually measured, and male H mice exhibited significantly 

higher activity and motor impulsivity compared to C mice. Room conditions of temperature, light, 

diet, and management followed previous protocols (Majdak et al., 2016). At approximately five 

months of age, one intraperitoneal injection of either 0.25 mg/kg of d-amphetamine (treatment A) 

or equal amount of saline (treatment S) was given to each mouse in the home cage over three days 

(Majdak et al., 2016). Two hours after injection, mice were decapitated, and brains were removed 

immediately. In total, 20 mice were analyzed across the 2 activity lines and the two amphetamine 

treatments. All animal procedures were approved by the Illinois Institutional Animal Care and Use 

Committee and were in accordance with the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals. 

Striatum was extracted and dissected and stored in a centrifuge tube at -80oC following 

published protocols (Caetano-Anollés et al., 2016; Saul et al., 2017). RNA was extracted, isolated, 

and purified. Total RNA yield measured using Qubit1 2.0 (Life Technologies, Carlsbad, CA, USA) 

was > 14 ug per sample. The RNA Integrity Number (RIN) measured using Fragment Analyzer 

(Advanced Analytical Technologies Inc., Ankeny, IA, USA) was > 8 for all samples. The libraries 

were prepared and sequenced using Illumina HiSeq 2500. FASTQ files containing paired-end 

reads of length 100nt were generated and demultiplexed with the software Casava 1.8.2 (Illumina, 

San Diego, CA, USA).  

The software program FastQC was used to assess Phred quality score of the reads 

(Andrews, 2010). The nucleotide quality score was > 30 across all read positions and was not 

trimmed (Nixon et al., 2015). The software program TopHat2 v2.1.1 was used to map the reads to 

the mouse genome assembly Genome Reference Consortium GRCm38 (Pruitt et al., 2006; 

Trapnell et al., 2009). Transcripts were assembled and abundance estimated using the software 
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program Cufflinks2 (Trapnell et al., 2012) with default specifications, generating fragment per 

kilobase per million mapped reads (FPKM) for each sample.  

 

Weighted Gene Co-expression Network Analysis  

The WGCNA package in R was used for the analysis of co-expression networks (Zhang 

and Horvath, 2005). The input data was the table of FPKM values generated by Cufflinks2 per 

annotated gene and sample. The expression on 44,796 genes and “CUFFs” (short transcripts 

assembled by Cufflinks or transfrags in GTF format, normally not annotated) across 20 samples 

genes were available. This information was filtered to remove genes with low expression level or 

variation across samples as per recommendations in the software manual. Genes that had mean 

expression < 0.1 and standard deviation < 0.3 across samples were excluded as well all “CUFFs”. 

This filtering reduced the number of genes available for network analysis to 2,193 genes. The 

purpose was to eliminate low-expressed or non-varying genes that are considerate noise in 

WGCNA analysis (Zhang and Horvath, 2005).   

After filtering, the FPKM values were log transformed (log2 (FPKM +1)). Although 

normalization does not make a lot of difference for WGCNA analysis, the log-transformed FPKM 

values were also normalized by mean and standard deviation across all samples (van Dam et al., 

2017). The genes that remained on the list were evaluated according to their connectivity. The 

Pearson correlation coefficient was used as a measure for co-expression, and a threshold was given 

to this correlation to find networks that influence the trait. Genes that had significant pairwise 

expression profiles associated with samples/phenotype were considered connected (Zhang and 

Horvath, 2005).  

In a network, nodes are considerate biomolecular species as metabolites, proteins, and 

genes, while the edges represent the interaction between nodes (de la Fuente, 2010). The 

probability that a node is connected with another “k” node decays following the power law, 

indicating that large networks are organized into scale-free networks (Zhang and Horvath, 2005). 

The power-law distribution is also called scale-free topology and can be explained using a network 

growth model. In other words, the free-scale topology depends on the growth of the network; new 

nodes are preferentially connected to already existing nodes (Albert et al., 2000). Highly connected 
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nodes are called hubs, and scale-free networks are dominated by heterogeneous topology detecting 

few hubs that are more essential in the system (Zhang and Horvath, 2005).  

Next step was choosing a set of soft-thresholding power by calling the network topology 

analysis function (Zhang and Horvath, 2005). A soft threshold determines that the network will be 

weighted by assigning a connection weight to each gene pairs (Zhang and Horvath, 2005). 

Constructing a weighted gene network entails the choice of the soft thresholding power β to which 

co-expression similarity is raised to calculate adjacency. A measure of similarity between the gene 

expression profiles was defined (Zhang and Horvath, 2005). In this study, the absolute value of 

the Pearson correlation sij = |cor(i, j)| was used. Each co-expression network corresponds to an 

adjacency matrix that encodes the connection strength between each pair of nodes (Zhang and 

Horvath, 2005). The resulting adjacency matrix was used to define a measure of node dissimilarity 

(distance). The node dissimilarity measure was used as input of a clustering method to define 

network modules (clusters of nodes) (Zhang and Horvath, 2005). An important aim of co-

expression network analysis is to detect subsets of nodes (modules) that are tightly connected to 

each other. The use of ‘soft’ adjacency functions is to avoid the disadvantages of hard thresholding 

(Zhang and Horvath, 2005).  

Connectivity, clustering coefficient, and topological overlap were calculated for the 

networks (Zhang and Horvath, 2005). The connectivity or row sum is the sum of the correlations 

between a gene and all the other genes of the network. The adjacency matrix encodes the 

connection strengths between pairs of nodes or genes, and this matrix is generated by the Pearson 

correlation between all genes elevated to the beta parameter, which is chosen based on topology 

scale-free index (R2) (Zhang and Horvath, 2005).  

The groups of genes that have the same degree of overlap is determined by counting the 

number of neighbors (first-order interactions) that a pair of nodes shares (Zhang and Horvath, 

2005). The topological overlap matrix (TOM) is calculated from this, and a value between 0 and 

1 (connected =1, all neighbors of a node are also neighbors of the other node; unconnected=0, two 

nodes do not share any neighbors) is attributed to each pair of nodes (Zhang and Horvath, 2005). 

The TOM matrix was used as input for an average linkage hierarchical clustering step based on 

Euclidean distances method that results in a dendrogram or tree. A height cutoff value was chosen 

in the dendrogram to decide where to cut the tree branches; the cutoff choice is guided by the TOM 

plot that is generated and results in the number of modules. Large height values result in big 
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modules, and small values result in small tight modules. The resulting branches correspond to gene 

modules (Zhang and Horvath, 2005).  

In WGCNA, co-expression modules are represented by eigengene networks that contain 

genes that are more representative of the gene expression profile instead of using all genes. A 

module eigengene is equivalent to a first principal component of a given module, and usually 

explains more than 50% of the variance of the module expressions (Langfelder and Horvath, 

2007).  

The association of individual genes with the traits (genotype and treatment) was made by 

Gene Significance (GS), which is the absolute value of correlation between the gene and the trait. 

The correlation of the module eigengene and the gene expression profile was also quantified, this 

measure is called module membership (MM) (Zhang and Horvath, 2005). 

In this study two traits were considered for final interpretation: the line H versus line C, 

and treatment A versus treatment S. Statistically significant modules selected and the genes present 

in these modules were studied for functional enrichment using a hypergeometric test, the web-

service Database for Annotation, Visualization and Integrated Discovery (DAVID; Version 6.8) 

(Huang et al., 2009). The functional categories Gene Ontology (GO) biological processes (BP), 

molecular functions (MF), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 

were assessed. The geometric mean of the enrichment P-values (Enrichment Score, ES) was used 

as evidence supporting the category clusters. The mouse genome was used as background for 

testing and FDR was used to adjust the enrichment P-values for multiple testing (Pruitt et al., 

2006). 

 

Differential co-expression analysis 

In Chapter 2, the differential expression between two traits (line and treatment) and the 

interaction between them were discussed. In differential expression analysis, genes were 

significantly different for both line (H and C) and treatment (A and S) based on the observation of 

the mean expression level of genes. A new approach called differential co-expression was applied 

in this study to find genes significantly different for both line and treatment based on the 

observation of the correlation between the expression levels of two or more genes (de la Fuente, 

2010).  
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The difference of connectivity between two or more genes in two different conditions, 

(between H and C and between A and S) can play an important role in the phenotypes (line and 

treatment). The difference from co-expression analysis is that the networks will be constructed 

from two different subgroups of samples (two conditions) from a prior WGCNA. In total, 18 

samples and 2,193 genes were used in WGCNA analysis, and for differential co-expression 

analysis the number of samples and genes were the same (5 Control-Amphetamine (CA), 4 

Control-Saline (CS), 5 Hyperactive-Amphetamine (HA), 4 Hyperactive-Saline (HS)). The Pearson 

correlation was used to quantify the association between two gene expression levels. The 

calculation of correlation of the expression between a pair of genes was made separately for the 

fours subgroups: H, C A and S, and the connectivity were compared between lines and between 

treatments separately. 

The same step used in WGCNA was repeated for each subgroup. An adjacency matrix that 

measures the connection strengths was constructed, and the power for each subgroup was selected 

based on the free topology criterion (de la Fuente, 2010). Then, the connectivity was calculated as 

a function of the soft-thresholding power. 

After finding the connectivity of each subgroup, the connectivity estimates were 

normalized to facilitate the comparison between subgroups (range of values for normalized 

connectivity was 0-1). Normalization encompasses the dividing each gene connectivity by the 

maximum connectivity of that subgroup (Fuller et al., 2007). The measure to calculate the 

differential connectivity between subgroups is DiffK(i) = K1(i) – K2(i). The results are the 

differences in the connectivity between two subgroups, and the differences are considerate 

significant if DiffK is < |0.4| (Fuller et al., 2007). Negative values of this difference imply that line 

C or treatment S connectivity (K2) is greater than line H or treatment A (K1) connectivity. The 

differentially co-expressed genes were analyzed for functional enrichment using DAVID. 

 

Results and Discussion  

Weighted Gene Co-expression Network Analysis 

Filtering of genes. A CVS file including columns corresponding to the 20 samples from 

the four genotype-treatment groups: CA, CS, HA, HS. This file contained a total of 44,796 rows 

corresponding to genes and entries denoted CUFFS that had non-zero FPKM in at least one group. 
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All entries denoted CUFFS were deleted because of unknown annotation leaving 4,530 genes. 

Another filter was applied per gene row. Genes that had no expression value in at least ten samples 

were removed leaving 3,472 genes for analysis. Further filtering for computational reasons 

encompassed removal of genes that had mean expression < 0.1 and standard deviation < 0.3 were 

removed, leaving 2,193 genes for WGCNA analysis. From these 2,193 genes, 333 exhibited 

significant interaction effect, 54 were differentially expressed in the main effect of A treatment, 

and 194 genes were differentially expressed in the main effect of H genotype at FDR adjusted P-

value < 0.05. 

Filtering and clustering of samples. Figure 11 shows the clustering of 20 samples based 

on the log-transformed FPKM of 2,193 genes after pre-processing with the objective of outlier 

detection. Two samples (CS411 and HS499) were creating a separated branch from the main one, 

and for this reason, these two samples were eliminated of the analysis as they might be 

confounding factors in the attempt to create one big simple cluster. Figure 12 presents the cluster 

of the remaining 18 samples based on 2,193 genes used for WGCNA analysis.  
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Figure 11: Clustering dendrogram of 20 genotypes by treatment samples (5 Control-Amphetamine 

(CA), 5 Control-Saline (CS), 5 Hyperactive-Amphetamine (HA), and 5 Hyperactive-Saline (HS)) 

based on their Euclidean distance using 2,193 genes. Height corresponds to the cut of the tree. The 

leaves of the tree correspond to the samples. LogFPKM means log transformed FPKMs.  
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Figure 12: Clustering dendrogram of 18 genotypes by treatment samples (5 Control-Amphetamine 

(CA), 4 Control-Saline (CS), 5 Hyperactive-Amphetamine (HA), and 4 Hyperactive-Saline (HS)) 

based on their Euclidean distance using 2,193 genes. The first color band represents line (red 

indicates line H and white indicates line C). Height corresponds to the cut of the tree. The leaves 

of the tree correspond to the samples. LogFPKM means log transformed FPKMs.  

 

The clustering in Figure 12 includes three grey boxes showing that HS samples tend to 

cluster close to the CA samples (samples HS197 with CA409 and CA407; samples HS886, HS483 

and CA454). Also, the HA samples tend to cluster close to CS samples (samples HA487, HA872, 

HA905, and CS477). These trends could suggest that the amphetamine treatment used in this study 

affects the transcripts of control mice similar to the hyperactivity genotype (CA ~ HS). Also, the 

amphetamine treatment used in this study had opposite associations with the transcript level 

between both mice genotypes. The amphetamine treatment on the hyperactive line was associated 

with transcript levels similar to saline treatment on control mice (HA ~ CS). These results are 

consistent with the findings in Chapter 2. 

Line 
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Gene network analysis in WGCNA focuses on the clustering of genes based on their gene 

expression, rather than the clustering of samples. An approach similar was used to compare the 

gene expression pattern using a cluster of samples to prove that samples that clustered together 

had transcriptional patterns (Svahn et al., 2016).  

The information in Figure 13 was used to select a set of soft-thresholding power by calling 

the network topology analysis function. The selected power was 6, the lowest power for which the 

scale-free topology fit index curve flattens out upon reaching a high value (in this case, roughly 

0.85). 

 

Figure 13: Analysis of network topology for various soft-thresholding powers. The left panel 

shows the scale-free fit index (y-axis) as a function of the soft-thresholding power (x-axis). The 

right panel displays the mean connectivity (degree, y-axis) as a function of the soft-thresholding 

power (x-axis). 

The selection of the soft-thresholding power enabled the identification of gene modules. 

These modules encompass genes that exhibit highly correlated expression profiles across the 

samples or high topological overlap. Both Figures 14 and 15 show a hierarchical clustering 

dendrogram of the eigengenes based on the dissimilarity. Figure 14 shows the dendrogram of the 
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network application and provides a simple visual comparison of module assignments (branch 

cuttings) based on the dynamic hybrid branch cutting method. Figure 15 is more used in the case 

that one wants to merge such modules since their genes are highly co-expressed.  

 
Figure 14: Clustering dendrogram of genes and gene modules identified using different colors. 

Height corresponds to the cut of the tree. Dynamic tree cut results from hierarchical linkage 

clustering. The color-band below the dendrogram denotes the modules, which are defined as 

branches in the dendrogram. 
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Figure 15. Clustering dendrogram of genes, with dissimilarity based on the topological overlap, 

with the original module colors.  Height corresponds to the cut of the tree. ME before the name of 

colors means module eigengenes. 

 
Table 16 lists the number of genes in each of 19 modules depicted in Figure 15. The list 

of the correlation estimates and P-values between the 19 module eigenvalues and the genotype and 

treatment indicators is presented in Figure 16. The C and H genotypes were coded 0 and 1, 

respectively and the S and A treatments were coded 0 and 1, respectively, to compute correlation. 

Thus, a -0.5 correlation between transcript eigenvalue for the cyan module and treatment indicates 

that higher levels of gene expression in this module are associated with the S relative to the A 

treatment. One correlation between module eigenvalues and genotypes (grey module) had a P-

value < 0.1 and the estimate were -0.62 indicating that higher gene expression levels were observed 

in the C relative to the H genotype. Three modules (tan, cyan, and salmon) exhibited a significant 

(P-value < 0.1) correlation between the eigenvalue transcripts. The tan and cyan modules had 

negative correlations whereas salmon had a positive correlation. The grey, tan, cyan and salmon 

modules included 247, 97, 90, and 95 genes respectively (Table 16). 
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Table 16. Number of genes in each module of Figure 15: 
Dynamic Colors 

Black 

112 

Blue 

142 

Brown 

134 

Cyan 

90 

Green 

119 

Green Yellow 

99 

Grey 

247 

Grey60 

85 

Light Cyan 

88 

Light Green 

80 

Magenta 

106 

Midnight Blue 

89 

Pink 

107 

Purple 

104 

Red 

118 

Salmon 

95 

Tan 

99 

Turquoise 

152 

Yellow 

124 

  

 

 
Figure 16.  The matrix of module-trait correlations (first cell entry) and P-values (second cell entry 

in parenthesis) between traits (columns) and module eigenvalues (rows). The color scale on the 

right indicates the sign and strength of the correlation estimate from –1 (green) to 1 (red). In the 

figure, the significant modules are highlighted (P-value < 0.1). “Line” means genotype and “trt” 

means treatment. ME before the name of colors means module eigengenes. 
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The plots in Figure 17 depict the gene significance (GS) versus module membership (MM) 

for the modules that exhibited a significant (P-value < 0.1) association between the eigengene and 

genotype (grey, Figure 17A) or treatment (tan, cyan and salmon, Figure 17B, C, and D, 

respectively). The GS and MM measures allow identifying genes that correlate with the traits as 

well as high module membership in interesting modules. Here, the grey module was the only 

significant module and presented moderate correlation with genotype. Despite significant, the 

modules salmon, cyan, and tan presented weak correlation with treatment.  

A)                                                                   B) 

 
Figure 17. Gene significance (GS) versus module membership (MM) for four modules exhibiting 

significant (P-value < 0.1) association between the eigenvalue expression and genotype or 

treatment.  A) Grey module presented moderate correlation with genotype. B) Salmon module 

salmon presented weak correlation with treatment. C) Cyan module presented weak correlation 

with treatment. D) Tan module presented weak correlation with treatment. “Cor” means 

correlation and “p” means P-value. 
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Figure 17 (cont.) 

C)                                                                      D) 

 
Figure 17 (continued). Gene significance (GS) versus module membership (MM) for four 

modules exhibiting significant (P-value < 0.1) association between the eigenvalue expression and 

genotype or treatment.  A) Grey module presented moderate correlation with genotype. B) Salmon 

module salmon presented weak correlation with treatment. C) Cyan module presented weak 

correlation with treatment. D) Tan module presented weak correlation with treatment. “Cor” 

means correlation and “p” means P-value. 

 
Genes and enriched function with module associated with genotype or treatment 

Table 17 summarizes the most significant clusters of enriched GO BP terms within the 

grey module that had eigenvalue expression significantly correlated with genotype, like regulation 

of cell death and Wnt signaling pathway. Table 18 summarizes the most significant clusters of 

enriched GO BP terms within the tan, cyan and salmon modules that had eigenvalue expression 

significantly correlated with treatment. The tan module had GO BP terms related to nervous system 

development, while cyan module had regulation of nitrogen compound metabolic process and 

salmon module had regulation of multicellular organismal process as significant. 
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Table 17. Enriched clusters (FDR adjusted P-value <0.05) of Gene Ontology (GO) biological 
processes (BP) among the 247 genes in the grey module that had eigenvalue expression 
significantly associated with genotype.  

Category Term Counta Raw P-
value 

FDR- 
adjusted 
P-valueb 

Cluster 1 Enrichment Score: 4.13 
   

BP GO:0010941~regulation of cell death 34 2.64E-05 0.049 
Cluster 3 Enrichment Score: 3.18 

   

BP GO:0030278~regulation of ossification 12 8.21E-06 0.015 
Cluster 6 Enrichment Score: 2.49 

   

BP GO:0016055~Wnt signaling pathway 15 2.50E-05 0.046 
BP GO:0198738~cell-cell signaling by wnt 15 2.57E-05 0.048 

aNumber of genes in the enriched category. 

bFalse Discovery rate adjusted P-value. 

 

Table 18. Clusters of Gene Ontology (GO) biological processes (BP) among the 95 genes in the 

salmon module, among the 90 genes in the cyan module, and among the 99 genes in the tan module 

that had eigenvalue expression significantly associated with treatment. 
Category Term Counta Raw P-

value 
FDR-

adjusted   
P-valueb 

Salmon 
    

Cluster 1 Enrichment Score: 2.13 
   

BP GO:2000026~regulation of multicellular organismal 
development 

16 0.0013 2.29 

BP GO:0051241~negative regulation of multicellular 
organismal process 

12 0.0016 2.79 

Cyan 
    

Cluster 1 Enrichment Score: 1.137 
   

BP GO:0051171~regulation of nitrogen compound 
metabolic process 

24 0.025 34.99 

Tan 
    

Cluster 1 Enrichment Score: 1.92 
   

BP GO:0051960~regulation of nervous system 
development 

16 4.43E-06 0.01 

BP GO:0008285~negative regulation of cell proliferation 12 6.81E-05 0.12 
BP GO:0007399~nervous system development 23 7.76E-05 0.14 

aNumber of genes in the enriched category. 

bFalse Discovery rate adjusted P-value. 
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The top genes of each module were selected based on their function that may be important 

for the trait, and are presented in Table 19. Four of these genes also exhibited significant (FDR 

adjusted P-value < 0.05) treatment-by-line interaction effect. One of these genes (Oxt) was already 

discussed in Chapter 2. 

 

Table 19. Top important genes found in the four significant modules of the analysis and P-values 

and FDR adjusted P-values according to the comparison with treatment-by-line interaction effect 

and the main effect of genotype (grey module) and treatment (salmon, cyan, and tan modules) in 

the differential expression analysis of Chapter 2.  
Gene Symbol Gene Name P-value FDR adjusted P-

valuea 
Grey Module    
Fzd9 Frizzled class receptor 9 0.333 0.868 
Igf1 Insulin-like growth factor 0.902 0.999 
Tacr1 Tachykinin receptor 1 0.556 0.989 
Atf4 Activating transcription factor 4 0.771 0.999 
Bche Butyrylcholinesterase 0.366 0.896 
Cat Catalase 0.668 0.999 
Ppif Peptidylprolyl isomerase F (cyclophilin F) 2.7E-06 1.4E-04 
Cox4i2 Cytochrome c oxidase subunit IV isoform 2 0.917 0.999 
Salmon Module    
Jun Jun proto-oncogene 0.546 0.999 
Neurod1 Neurogenic differentiation 1 6.6E-09 1.0E-06 
Pnp Purine-nucleoside phosphorylase 0.432 0.999 
Xdh Xanthine dehydrogenase 0.542 0.999 
Cyan Module    
Creb3l1 cAMP responsive element binding protein 3-

like 1 
2.2E-03 2.9E-02 

Emx2 Empty spiracles homeobox 2 0.775 0.999 
Ppia Peptidylprolyl Isomerase A 0.440 0.999 
Gm3244 Predicted pseudogene 3244 0.546 0.999 
Tgm2 Transglutaminase 2, C polypeptide 0.353 0.999 
Tan Module    
Oxt Oxytocin 7.8E-13 7.0E-10 
Klk8 Kallikrein related-peptidase 8 0.559 0.999 
Cxcr4 Chemokine (C-X-C motif) receptor 4 0.336 0.999 

aFalse Discovery rate adjusted P-value. 

 

The identification of gene modules by WGCNA gives more information about the gene 

expression dataset that may be ignored just by doing differentially expression analysis. These 

results prove this concept by revealing important genes for the main effects of genotype and 

treatment, mostly not discussed before. Within the grey module, that was significantly correlated 

with C line relative to H line, the genes frizzled class receptor 9 (Fzd9), insulin-like growth factor 
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(Igf1), and tachykinin receptor 1 (Tacr1) were selected for being related to behavior, learning, and 

memory according to DAVID Functional Annotation Table. In agreement with this study, Fzd9 (-

/-) mutant mice in hippocampus presented severe deficits on tests of visuospatial learning/memory, 

and increased apoptosis in developing dentate gyrus (Zhao et al., 2005). Igf1 is involved in synaptic 

plasticity and acts on Igf1-receptor, which deletion causes impaired memory formation and 

learning (Liu et al., 2017b). Tacr1 is also known as a neurokinin-1 receptor (Nk1r) in the brain. 

Nk1r activation in the hippocampus plays a role in neuropeptides that have excitatory effects, and 

in the striatum, Tacr1 mediates learning and memory (Liu et al., 2017b). The gene activating 

transcription factor 4 (Atf4) is related to dopaminergic synapse and amphetamine addiction, and 

the gene butyrylcholinesterase (Bche) and catalase (Cat), with response to drug cocaine, and 

alcohol, respectively (e Silva et al., 2018; Mattes et al., 1997; Pavlovsky et al., 2013; Valera et al., 

2013). Atf4 is induced by amphetamine and stress in rat striatum, and the overexpression of this 

genes is involved with addiction-like and emotional behavior (Green et al., 2008; Pavlovsky et al., 

2013). Peptidylprolyl isomerase F (cyclophilin F) (Ppif) encodes cyclophilin D, which deficiency 

in improves learning, memory and synaptic function in Alzheimer’s disease (Du et al., 2008). 

Cytochrome c oxidase subunit IV isoform 2 (Cox4i2) is up-regulated in astrocytes in hypoxic and 

toxic conditions and is involved with increased necrosis rates in a mice model of Huntington’s 

disease (Misiak et al., 2010). The fact that all these genes are correlated with C line relative to H 

line might suggest an alteration in the activity of these genes in the H line. 

Genes found in these modules can be acting similarly or together with differentially 

expressed genes. For example, both neuropeptide vasopressin (Avp) and Tacr1 are important in 

the social interaction (Nelson et al., 2017). Avp, already discussed in Chapter 2, exhibiting 

significant treatment-by-line interaction effect, can also influence social, affective and addictive 

behaviors (Nelson et al., 2017). The increase in the expression of Avp and Tacr1 are associated 

with a decrease in social interaction (Nelson et al., 2017). This study identifies genes inside 

modules that are important for the complex system, which makes analysis of co-expression 

essential to complement the results already found. 

Among genes in the salmon module that was significantly correlated with mice receiving 

A relative to S treatment, the gene Jun proto-oncogene, AP-1 transcription factor subunit (Jun) is 

related to an amphetamine addiction, exposition to amphetamine increases brain expression of Jun, 

which is in agreement with the correlation found in this module (Persico et al., 1993). The purine-
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nucleoside phosphorylase (Pnp) deficiency causes apoptosis of activated T-cells, which 

consequently turns Pnp in the chemotherapeutic target for T-cell proliferative disorders (Gebre et 

al., 2017). Xanthine dehydrogenase (Xdh) is related to oxidative metabolism of purines and the 

increase in the expression of this gene is involved with oxidative stress in the brain of mice model 

for diabetes (Aliciguzel et al., 2003). The activity of neurogenic differentiation 1 (Neurod1) 

decreases after drug (morphine) administration, impairing contextual memory, regulating the 

opioid tolerance’s development (Li et al., 2014). These genes are correlated with A relative to S 

treatment which might suggest a drug addiction behavior and an alteration in the purine 

metabolism and due to the A treatment. Just Neurod1 exhibited significant treatment-by-line 

interaction effect; the other genes were not differentially expressed in a previous analysis of the 

main effect of in mice receiving the A relative to the S treatment. 

The cyan module that was significantly correlated with mice receiving S relative to A 

treatment also presented important genes that complement results found in Chapter 2, like the gene 

cAMP responsive element binding protein 3-like 1 (Creb3l1), that is a putative transcription factor 

of gene Avp (involved with addiction behavior before) in rat hypothalamus, and also called 

old astrocyte specifically induced substance (Oasis) when expressed in astrocytes, and may be 

important for protection against neuronal damage (Chihara et al., 2009; Greenwood et al., 2015). 

Mutations in the gene empty spiracles homeobox 2 (Emx2) may cause central nervous system 

malformation called schizencephaly and can include a motor or cognitive impairment and epilepsy  

(Dies et al., 2013). Peptidylprolyl isomerase A (Ppia) is also called cyclophilin A, and the presence 

extracellular Ppia mediates neuroinflammation in both patients and mouse model of sclerosis 

(Pasetto et al., 2017). The up-regulation of transglutaminase 2, C polypeptide (Tgm2) in different 

brain regions, is implicated with several neurodegenerative disorders, like Huntington’s, 

Alzheimer’s and Parkinson’s diseases (Lai et al., 2008). The presence of these genes correlated 

with mice receiving S relative to A treatment suggests protection or damage of neuronal functions. 

Finally, from the tan module that was also significantly correlated with mice receiving S 

relative to A treatment, oxytocin (Oxt) was selected for playing a role in response to amphetamine 

and behavior as discussed before. Kallikrein related-peptidase 8 (Klk8) that is related to nervous 

system development, behavior, learning or memory according to DAVID Functional Annotation 

Table. Klk8-knockout mice in hippocampus present impaired spatial working memory and 

anxiety-related behavior (Hirata et al., 2001; Tamura et al., 2017). And gene chemokine (C-X-C 
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motif) receptor 4 (Cxcr4) that modulates brain inflammation and neurotransmitter release, is down-

regulated in the presence of drug anti-depressant administration in the hippocampus and the frontal 

cortex of adult rats in an animal model of depression (Trojan et al., 2017). 

From the genes selected in the significant modules, four of them, one present in the grey 

module (Ppif), one in the salmon module (Neurod1), one in the cyan module (Creb3l1), and one 

in the tan module (Oxt), were differentially expressed in Chapter 2 and co-expressed in this 

analysis. Although Ppif, Neurod1, Creb3l1, and Oxt exhibited significant treatment-by-line 

interaction effect, just Oxt was discussed due to a large number of significant genes. 

 

Differential Co-expression Analysis 

Both WGCNA and differential co-expression analysis is useful for finding genes related to 

the traits of this study. The WGCNA showed genes in modules that are significantly and correlated 

with genotype and treatment. In WGCNA, all samples, irrespective of the trait (genotype or 

treatment) are used for the module construction (Fuller et al., 2007). In differential co-expression 

analysis what changes is that now we have subgroups to compare. Our aim in this analysis was to 

identify differentially connected genes between genotypes and between treatments. The genes that 

have differential connectivity may have a rewiring in response to environmental changes (Fuller 

et al., 2007). 

Differential co-expression analysis revealed that 1,968 genes showed differences in the 

connectivity between the A and S treatments. Table 20 is showing the top 10 of 87 genes that were 

meaningful (DiffK > |0.4|) and positively differentially connected, meaning that 87 genes had 

greater connectivity in A treatment than in S treatment. Table 21 is showing the top 10 of 188 

genes that were meaningful (DiffK > |0.4|) and negatively differentially connected, meaning that 

188 genes had greater connectivity in S treatment than in A treatment. 
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Table 20. Top 10 genes that were meaningful (DiffK > |0.4|) and positively differentially 
connected in mice receiving the A relative to the S treatment. 

Gene Symbol Connectivity in A 
treatment 

Connectivity in S 
treatment 

Norm.a in A 
treatment 

Norm. in S 
treatment 

DiffKb 

Slc35c1 55.236 4.902 0.989 0.072 0.917 
Zfpm2 55.842 5.737 1 0.085 0.915 
Ccdc3 55.842 7.656 1 0.113 0.887 
Atoh8 55.842 8.244 1 0.122 0.878 
Efna1 55.842 9.530 1 0.141 0.859 
Nrtn 51.593 4.489 0.924 0.066 0.857 
9330133O14Rik 55.842 12.126 1 0.179 0.821 
Foxk1 55.842 12.339 1 0.182 0.818 
Zfp316 55.842 12.755 1 0.188 0.812 
Copz2 55.842 12.806 1 0.189 0.811 

a Normalization dividing connectivities by the maximum value 
b Differential co-expression 

 

Table 21. Top 10 genes that were meaningful (DiffK > |0.4|) and negatively differentially 
connected in mice receiving the A relative to the S treatment. 

Gene Symbol Connectivity in A 
treatment 

Connectivity in S 
treatment 

Norm.a in A 
treatment 

Norm. in S 
treatment 

DiffKb 

Phax 6.655 67.694 0.119 1 -0.881 
Anxa2 6.244 67.167 0.112 0.992 -0.880 
Rai2 6.694 67.694 0.119 1 -0.880 
Zfp39 6.895 67.167 0.123 0.992 -0.869 
Bmp2 7.608 67.694 0.136 1 -0.864 
Gna15 7.910 67.167 0.142 0.992 -0.850 
Ephb3 8.596 67.694 0.154 1 -0.846 
C1qtnf6 8.637 67.694 0.155 1 -0.845 
Lysmd1 8.744 67.694 0.157 1 -0.843 
Gpn3 8.879 67.694 0.159 1 -0.841 

a Normalization dividing connectivities by the maximum value 
b Differential co-expression 

 

This analysis also revealed that 2,128 genes showed differences in the connectivity 

between the H and C lines. Table 22 is showing the top 10 of that 109 genes that were meaningful 

(DiffK > |0.4|) and positively differentially connected, meaning that 109 genes had greater 

connectivity in C line than in H line. Table 23 is showing the top 10 of 50 genes that were 
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meaningful (DiffK > |0.4|) and negatively differentially connected, meaning that 50 genes had 

greater connectivity in H line than in C line. 

 

Table 22. Top 10 genes that were meaningful (DiffK > |0.4|) and positively differentially 
connected in mice from C relative to the H line. 

Gene Symbol Connectivity in 
C line 

Connectivity in 
H line 

Norm.a in 
C line 

Norm. in 
H line 

DiffKb 

Mterf 75.542 37.040 0.834 0.333 0.501 
Tmco1 87.790 51.887 0.969 0.467 0.503 
Zfp748 73.043 33.689 0.807 0.303 0.504 
Ccdc80 75.542 36.678 0.834 0.329 0.505 
Slc19a2 75.542 36.619 0.834 0.329 0.505 
Ppif 66.891 25.925 0.739 0.233 0.506 
Trim62 73.043 33.478 0.807 0.301 0.506 
Ddc 73.043 33.196 0.807 0.298 0.508 
Haus4 73.043 32.944 0.807 0.296 0.511 
2310008H04Rik 87.790 50.954 0.970 0.459 0.512 

a Normalization dividing connectivities by the maximum value 
b Differential co-expression 

 

Table 23. Top 10 genes that were meaningful (DiffK > |0.4|) and negatively differentially 
connected in mice from C relative to the H line. 

Gene Symbol Connectivity in 
C line 

Connectivity in 
H line 

Norm.a in 
C line 

Norm. in 
H line 

DiffKb 

Hspe1 23.311 111.164 0.257 1 -0.742 
A330050F15Rik 26.913 111.164 0.297 1 -0.703 
Chchd8 27.003 111.164 0.298 1 -0.702 
Sbk1 27.076 111.164 0.299 1 -0.701 
Pcdh20 27.456 111.164 0.303 1 -0.697 
Dolk 27.476 111.164 0.303 1 -0.696 
Mki67ip 27.917 111.164 0.308 1 -0.692 
Snora65 27.930 111.164 0.308 1 -0.691 
Hhip 28.757 111.164 0.318 1 -0.682 
Cotl1 29.037 111.164 0.321 1 -0.679 

a Normalization dividing connectivities by the maximum value 
b Differential co-expression 
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From the most meaningful (DiffK > |0.4|) and positively differentially connected to mice 

receiving the A relative to the S treatment, the gene atonal bhlh transcription factor 8 (Atoh8) may 

be important for the implication in specification and differentiation of neuronal cell lineages in the 

brain (Yao et al., 2010). For the negatively differentially connected to mice receiving the A relative 

to the S treatment, EPH receptor B3 (Ephb3) is an ephrin receptor and mediate numerous 

developmental processes, particularly in the nervous system, playing a deleterious role in synaptic 

stability and plasticity after brain injury (Perez et al., 2016). 

From the most meaningful (DiffK > |0.4|) and positively differentially connected to H-C 

line, the gene Ppif is a member of the peptidyl-prolyl cis-trans isomerase (PPIase) family. Among 

the related pathways of Ppif are calcium signaling pathway and respiratory electron transport 

according to DAVID Functional Annotation Table. This gene is probably one of the most 

important for this analysis because Ppif was differentially expressed in Chapter 2, significantly co-

expressed in the module grey, and differentially co-expressed. For the most meaningful (DiffK > 

|0.4|) and negatively differentially connected to mice from C relative to the H line, SH3 domain 

binding kinase 1 (Sbk1) is related to signal-transduction pathways and control of brain 

development according to DAVID Functional Annotation Table. The number of genes positively 

and negatively differentially connected to mice receiving the A relative to the S treatment and mice 

from C relative to the H line prevented the identification of enriched categories using DAVID. 

However, DAVID Functional Annotation Table was used to identify what function is related to 

each gene. 

 

Comparisons between analyses 

Weighted Gene Co-expression Network Analysis vs. Differential Expression Analysis 

Among the 2,193 genes analyzed in WGCNA, 54 were differentially expressed using 

Cuffdiff software (Chapter 2) for the main effect of A treatment, and 194 genes were differentially 

expressed in the main effect of H genotype, and 333 genes exhibited significant treatment-by-line 

interaction effect at FDR adjusted P-value < 0.05. Among the 194 genes differentially expressed 

across genotypes, the significant grey module included five genes: sarcospan (Sspn), lymphocyte 

cytosolic protein 1 (Lcp1), angiotensin II receptor-associated protein (Agtrap), insulin-like growth 

factor binding protein 6 (Igfbp6), and cerebellin 1 precursor (Cbln1). Among these, Cbln1 must 
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be highlighted as being required for synapse integrity and synaptic plasticity (Hirai et al., 2005). 

Among the genes in module grey, 41 presented significant interaction effect, as the Ppif, already 

discussed, neuronal differentiation 6 (Neurod6), that might be involved in the development and 

differentiation of the nervous system, and synuclein gamma (Sncg) that is a paralog of synuclein 

alpha (Sncg), involved in the pathogenesis of neurodegenerative diseases like Parkinson’s disease 

(Khan et al., 2017; Siddiqui et al., 2016).  

Among the modules including genes correlated with treatment, the salmon module did not 

encompass differentially expressed genes. The tan module presented 12 genes significant for 

interaction effects, including insulin receptor substrate 4 (Irs4), and Oxt. The cyan module 

presented 13 genes that were significant for interaction effects, including Creb3l1 and family with 

sequence similarity 19 member A1, C-C motif chemokine-like (Fam19a1)). The gene Fam19a1 

encodes TAFA proteins, which are neurokines that act as regulators of immune and nervous cells  

(Tang et al., 2004). In general, the WGCNA analysis gives complementary information about the 

gene expression dataset and helps to focus on genes that might be important. 

 

Weighted Gene Co-expression Network Analysis vs. Differential Co-expression Analysis 

Differential co-expression analysis identified 87 genes that were meaningful and positively 

differentially connected, while 188 genes were meaningful and negatively differentially connected 

between mice receiving the A relative to the S treatment. From the positively differentially 

connected, seven were present in the tan module, and three were present in the cyan module. From 

the negatively differentially connected, ten genes were also present in the salmon module, one in 

the tan module, and two in the cyan module. 

This analysis also revealed that 109 genes were meaningful and positively differentially 

connected, while 50 genes that were meaningful and negatively differentially connected between 

mice from C relative to the H line. From the positively differentially connected, just three genes 

were also present in the grey module, including the gene Ppif. No gene was both co-expressed in 

the grey module and negatively differentially connected between mice from C relative to the H 

line. The differential co-expression analysis also added information to the WGCNA analysis. 
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The study of weighted gene co-expression network and differential co-expression analysis 

offered insights that complemented the findings from the differential expression, functional and 

network analyses in Chapter 2. The study of correlations between genes and treatments or lines, 

and correlations between genes identified genes that exhibited similar patterns of expression 

irrespectively of the individual level of differential expression. Differences in gene expression 

correlation across treatments and lines help to understand changes in connectivity associated with 

the factors studied. 
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