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ABSTRACT

Targeting convolutional neural networks (CNNs), we adopt the high level

synthesis (HLS) design methodology and explore various optimization and

synthesis techniques to optimize design on an FPGA. Our motivation is to

target embedded devices that operate as edge devices. Recently, as machine

learning algorithms have become more practical, there have been much effort

to implement them on devices that can be used in our daily lives. However,

unlike server devices, edge devices are relatively small and thus have much

more limited resources and performance. Therefore, control of resource usage

and optimization play an important role when we want to implement machine

learning algorithms on an edge device. The key idea explored in this thesis

is backward pipeline scheduling which optimizes the pipeline between CNN

layers. This optimization technique is especially useful to utilize the limited

on-chip memory resource for classifying an image on an edge device. We have

achieved latency of 175.7 µs for classifying one image in the MNIST data set

using the LeNet and 653.5 µs for classifying one image in the Cifar-10 data

set using the CifarNet. For the LeNet we were able to maintain high accuracy

of 97.6% for the MNIST data set and 83.4% for the Cifar-10 data set. We

achieved the best single-image latency, 5.2x faster for the LeNet and 1.95x

faster for the CifarNet, compared with NVIDIA Jetson TX1.
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CHAPTER 1

INTRODUCTION

In recent years, we see the booming of deep convolutional neural networks

in solving artificial intelligence tasks. Some of these deep learning methods

have surpassed human-level performance and enabled new applications, such

as machine translation, AI medical diagnosis, and autonomous driving. In

order to deliver machine intelligence to more people, we need to find ways

to deploy such well-trained highly accurate deep learning models to Internet

of Things (IoT) devices, which require edge computing platforms. Edge de-

vices usually denote mobile or embedded systems, including phones, drones,

security cameras, or any other computing or sensing devices that connect

to a network and transfer data. These devices have tight energy/thermal

constraints and offer limited hardware resources/computing power, but are

often required to accomplish latency-critical tasks such as object detection

tracking for unmanned vehicles, facial recognition for security cameras, and

control mechanism for smart manufacturing.

Advances in high level synthesis (HLS) during the last decade have led

to its increased adoption as a primary design methodology. HLS offers im-

portant advantages in higher design productivity, better design space explo-

ration, friendly debugging of high level specifications, and automation of test

generation infrastructure. There are many active academic and commercial

HLS projects and tools that continue to improve both design quality and

productivity [1, 2, 3, 4, 5, 6]. Due to HLS, practical applications are em-

bedable on IoT devices easily and quickly. In [7], several design solutions

including long-term recurrent convolution network (LRCN) for video cap-

tioning, inception module for the FaceNet face recognition, as well as long

short-term memory (LSTM) for sound recognition are discussed. These and

other similar design solutions are ideal implementations to be deployed in

vision or sound based IoT applications.

Although HLS provides various advantages for FPGA designs, optimiz-
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ing the FPGA performance through HLS remains challenging. Applying the

right set of HLS techniques can prove complicated. The work in [8] demon-

strates that the HLS solution quality can range from very slow all the way

to 200x speedup compared to the CPU solution. Optimizing CNN through

HLS faces similar challenges because there are many parameters that can be

designed and controlled within CNN.

In this thesis, we explore different strategies and methodologies to opti-

mize CNN on an FPGA. As some of data set does not require a large CNN

structure, it is efficient to use smaller CNN architecture, and replicate the

CNN many times to improve both latency and throughput of the applica-

tion. However, since on-chip memory is very precious for FPGA, we need to

develop techniques to share the weight data among replicated CNNs while

they are processing different images in the same batch. Since all the images

involve the same weight data, data sharing between the same CNN tasks on

the loop-level is implemented to avoid replicated weight data storage.

As CNN is a sequential architecture in which the output of one layer be-

comes the input for the next layer, it is very important to pipeline between

each layer to reduce the waiting time for the next layer. In order to achieve

efficient pipelining, we apply our novel method, backward pipeline schedul-

ing, resulting in dramatic latency improvement of processing an image, which

is considered to be critical for an edge device. Due to the backward pipeline

scheduling algorithm, data that is computed in one layer does not have to

wait for all other data in the same layer to be computed. As data is com-

puted from one layer, the data is used immediately for the next layer and this

process propagates in the pipeline. Furthermore, along with the backward

pipelining, to increase the throughput, we applied batch processing to our

work. We process 10k images, where each time we process 5 or 25 images as

a batch, and complete the whole application with hundreds of batches. Since

all the images that are in the same batch involve the same filters, computa-

tion can be further optimized. In summary, our work makes the following

contributions:

•We propose backward pipeline scheduling in designing the CNN acceler-

ator to achieve deep pipelining among layers in the neural network.

•We propose an implementation of CNN handwriting digits and Cifar-10

2



object recognition through HLS for embedded FPGAs as edge devices. The

single image performance is 5.2x faster than NVIDIA Jetson TX1 for the

LeNet and 1.9x faster for the CifarNet.

•We implement a data sharing method to save limited on-chip memory

resource on the FPGA while enabling effective batch parallel processing.

The rest of the thesis is organized as follows. Chapter 2 presents the back-

ground of CNN and HLS. In Chapter 3, our algorithm and methodology for

optimizing CNN through HLS on an FPGA are discussed in detail. Chapter

4 discusses hardware architecture implementation of the design. Chapter 5

presents and analyzes our experimental results, and Chapter 6 concludes the

thesis.
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CHAPTER 2

BACKGROUND

2.1 FPGA Based CNN Optimization

FPGA has become a promising platform for hardware acceleration because

of its high performance, low power consumption, shorter development cycle

and the reconfiguration flexibility compared to ASIC solutions. With such

advantages, recently several research works have used FPGAs to accelerate

CNN computations [9, 10, 11, 12, 13, 14]. Specifically, [12] discussed a mul-

tistage data-flow implementation of CNN, which takes efficient utilization of

the computation resources to achieve high performance in object classifica-

tion. In [13], an FPGA based CNN network accelerator is proposed. The

paper discussed two main types of constraints of CNN designs: communi-

cation rate and computation capacity. Their design faced the constraint of

limited communication rate between the FPGA and the external memory.

In our work, we are able to overcome such a limitation through effectively

reducing external data transfers and layer combinations.

2.2 High Level Synthesis Design Flow

HLS brings about such advantages by providing automated code trans-

formations from high level languages (such as C, C++, SystemC, etc.) to

hardware description languages (HDL). HLS also provides automated opti-

mization options through compiler pragmas, which can control the HLS en-

gine to generate the RTL code following specific implementation styles. For

example, these pragmas can guide the generation of loop and tiling structures,

function interfaces, pipelining and inlining, and various resource instantia-

tions. In this thesis, we leverage Xilinx Vivado HLS to facilitate our CNN
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Figure 2.1: LeNet & CifarNet Architecture

design and report unique design techniques with the HLS design methodol-

ogy. This automated code transformation provided by HLS enables designers

to implement more delicate work easily onto FPGAs [15, 16]. Y. Guan et al.

proposed an efficient FPGA based LSTM-RNN accelerator with HLS tool in

2017 [17]. R. Zhao et al. also adopted HLS as design tool in their work of

binarized convolutional neural network in 2017 [18].

2.2.1 CNN Structure

Figure 2.1 shows the CNN architectures we used to classify handwritten

digits in the MNIST data set [19] and 10 objects in the Cifar-10 data set [20].

For the Cifar-10 data set, we have pre-processed the images to train better

and faster. While pre-processing the images, we discard their boundaries

in order to make the network focus more on actual pixels that display the

object to classify. Also, by distorting the images, by for example rotating and

re-scaling, we can have more input data than given by the Cifar-10 data set.

Therefore, the network can learn fast as it can converge faster and generate

higher accuracy. The inputs are pre-processed to have size of 24x24x3 instead

of the original size of 32x32x3. The detailed layer configurations of the LeNet

and the CifarNet are shown in Tables 2.1 and 2.2.
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Table 2.1: LeNet Configuration

Type Input Size Output Size # Params
Convolution 28x28 24x24x8 5x5x8
ReLU 24x24x8 24x24x8 NA
Pooling 24x24x8 12x12x8 NA
Convolution 12x12x8 8x8x16 5x5x16
ReLU 8x8x16 8x8x16 NA
Pooling 8x8x16 4x4x16 NA
Fully Connected 256 128 256x128
ReLU 128 128 NA
FullyConnected 128 10 128x10
Softmax 10 10 NA

Table 2.2: CifarNet Configuration

Type Input Size Output Size # Params
Convolution 24x24x3 24x24x32 5x5x3x32
ReLU 24x24x32 24x24x32 NA
Pooling 24x24x32 12x12x32 NA
Normalization 12x12x32 12x12x32 NA
Convolution 12x12x32 12x12x32 5x5x32x32
ReLU 12x12x32 12x12x32 NA
Pooling 12x12x32 6x6x32 NA
Normalization 6x6x32 6x6x32 NA
Fully Connected 1152 192 1152x192
ReLU 192 192 NA
FullyConnected 192 48 192x48
ReLU 48 48 NA
FullyConnected 48 10 48x10
Softmax 10 10 NA
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CHAPTER 3

ALGORITHM AND METHODOLOGY

In this chapter, we introduce our algorithm to perform the backward

pipeline scheduling which achieves optimal data dependency relation among

consecutive 2D-window operation layers. We use the LeNet and the Cifar-

Net as examples to demonstrate the algorithm and method. However, the

methodology can be applied to any other neural networks.

3.1 Data Dependency Analysis

A regular CNN network usually consists of convolutional layers, activation

layers, and pooling layers. Such layers typically have a mesh-like layout and

have a window-structured data dependency on the output from their previous

layers. The input and output of a typical CNN network layer are configured

in the format of feature-map with multiple channels. The output of a CNN

layer is obtained through a particular type operation based on a 2D window

of size F on the feature-map with fixed moving stride S. We define input to

be feature maps of size H ×W and C channels. We use Ii,x,y and Oi,x,y to

denote the pixel value in the ith channel and location (x, y) of input and out

array.

Equation 3.1 gives the computation of output in the convolutional layer

with Ki,o,h,w representing the the filter element.

Oi,x,y =
C∑

o=1

F∑
h=1

F∑
w=1

Ki,o,h,wIo,xS+h,yS+w (3.1)

Equation 3.2 provides the computation of a max-pooling layer with window

size W and stride S.

Oi,x,y = max({Ii,xS+h,yS+w|h ∈ [0, F ), w ∈ [0, F )}) (3.2)
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For simplicity, we consider all the data with the same location in feature-

map through the channel dimensions to be combined in one data chunk. To

compute a certain data chunk in output with feature map coordinate 〈x, y〉,
we need a set of data chunks from the input array. We define the set of

coordinates of required data chunks to be the dependency set Dep(〈x, y〉) of

coordinate 〈x, y〉. We can write the data dependency set as Equation 3.3.

The equation works for all the layers with 2D window-structured on feature-

map dimensions. Considering the factor of padding, we improve Equation

3.3 to Equation 3.4 with Z as the padding size.

Dep(〈x, y〉) =

{〈i, j〉|xS < i ≤ xS + F, yS < j ≤ yS + F}
(3.3)

Dep(〈x, y〉) =

{〈i, j〉|xS − Z ≤ i < xS + F − Z, 0 ≤ i < H,

yS − Z ≤ j < yS + F − Z, 0 ≤ j < W}

(3.4)

3.2 Backward Pipeline Scheduling

To achieve optimal pipeline and reduce the waiting time caused by data

dependency, we develop an algorithm to arrange the order of data request

in the current layer to fulfill the data requests in the following layer. We

implement this algorithm by finding the data dependency set of each pixel

coordinate in the computation order of the next layer.

Figure 3.1 illustrates an example of generating data request list for a max-

pooling layer of window size 2 and stride 2. The output feature-map size is

2× 2 with the order of data request labeled in the corresponding mesh block

in the Fig. 3.1.

The algorithm is described in Algorithm 1. For each coordinate in the data

request list of the next layer (nextList), the data dependency set is com-

puted. Then following the order of data request list, the coordinates in each

dependency set are scheduled to a new data request list of the current layer

(curList). Interleaved coordinates are only scheduled once during the first

dependency set to which they belong. This (curList) becomes (nextList)

of the previous layer. The current layer shall assume that its preceding layer

8



Figure 3.1: Data Request List Generation

feeds output data chunks following the order specified by the data request

list of the current layer (curList or nextList of the previous layer) and the

current layer is implemented to compute its output data following the data

request list of its next layer (nextList or curList of the next layer).

Algorithm 1 Algorithm for data request list generation

1: function(nextList)
//Input nextList: the data request coordinate 〈x, y〉 list of the next
layer
//Output curList: the data request coordinate 〈x, y〉 list of the current
layer
//Output curCompList: the list which stores the index of data after
the transmission of which the data dependency is fulfilled

2: curList=[], curCompList=[], Outputindex=0
3: for i = 0 to nextList.length-1
4: 〈x, y〉 = nextList[i]
5: for all 〈m,n〉 in Dep(〈x, y〉)
6: if 〈m,n〉 /∈ curList
7: curList.append(〈m,n〉)
8: Outputindex++
9: curCompList.append(Outputindex);

10: return curList, curCompList

The algorithm generates the data request list and computation index list

for the current layer using the data request list of the next layer. Therefore,

the overall scheduling algorithm proceeds in a backward manner: we initial-

ize the output order of the last layer in the row-major order and perform

Algorithm 1 backwardly to the first layer. After the scheduling process, each

layer will have its own request list and computation index list which stores the

required number of inputs needed to calculate the output (curCompList).

A typical CNN structure usually consists of several convolutional layers and
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pooling/activation layers followed by fully connected layers. Since the algo-

rithm only works for layers based on 2D-window operations, we only schedule

the pipeline behavior of layers before the last several fully connected layers.

Figure 3.2 provides the comparison between the non-pipelined design and the

design with our algorithm. The example in the figure includes one 3x3 stride

1 convolution layer and one 2x2 stride 2 pooling layer. For a non-pipelined

design, the pooling layer can only start working after the input of convo-

lution and pooling layers is entirely computed. For the backward pipeline

scheduled design, the pooling layer can begin computing its first output pixel

when the first 16 pixels of the convolution layer’s input are calculated. The

waiting latency for the pooling layer is reduced to the computation time for

the dependent data in the input of the convolution layer and the pooling

layer.

Figure 3.2: Backward Pipeline Scheduling Flow

3.3 Layer Behavior

The data request list and the computation index list provide a fixed sched-

ule that each layer must follow to compute its output data. Each layer holds

a buffer matrix to store its input data generated by its previous layer. The

data is sent in the unit of data chunks following the current data request list.

Each time a layer receives a data chunk from the previous layer, it stores the

data chunk in the buffer matrix at the coordinates indicated by the current

data request list. Also, the computation index list monitors whether the data

in the buffer matrix is enough to compute the output that is requested by
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next layer. The current layer enqueues the generated data chunk into the

FIFO connecting the current layer and next layer. The algorithm is specified

in Algorithm 2. In the algorithm, the function window operation denotes

the compute process of the 2D-window operation of the current layer such as

Equation 3.1 or Equation 3.2. We denote the enqueue operation as symbol

� and the dequeue operation as symbol �.

Algorithm 2 Algorithm for layer behaviour

1: module(fifo in, fifo out)
//Input Port fifo in: the FIFO port to which the previous layer feed
data chunks
//Output Port fifo out: the FIFO port to which the current layer feed
computed data chunks

2: const curList, const curCompList, const nextList
3: matrix buffer
4: ComputeIndex = 0
5: for i = 0 to curList.length-1
6: 〈x, y〉 = curList[i]
7: fifo in � buffer[x][y]
8: while( i = curCompList[ComputeIndex])
9: 〈i, j〉=nextList[ComputeIndex]

10: fifo out � window operation(〈i, j〉,buffer)
11: ComputeIndex++

3.4 Latency Balancing

Considering the application environment as edge devices, we balance the

latency for each layer to achieve optimal resource utilization under the same

performance. We assume the computation resource area to be proportional

to the computation capability of the module window operation. The data

consumption rate of the current layer should match the data production rate

of the previous layer. We conclude the average data consumption rate (R)

for one layer as Equation 3.5 where F and L represent the total latency to

complete lines 8-10 and lines 11-13 in Algorithm 2 respectively. With the

same notation, the average data production rate (P ) is shown in Equation

3.6.

R =
curList.length

curList.length · F + curCompList.length · L
(3.5)
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P =
nextList.length

curList.length · F + curCompList.length · L
(3.6)

To achieve an efficient pipeline between two consecutive layers A and B,

we need to set the production rate of A to match the consumption rate of B.

Note that curList.length equals the size of input feature-map HI×WI while

nextList.length and curCompList.length equal the size of input feature-map

HO×WO. We have Equation 3.7 to constrain the latency F and latency L

and eliminate the bottleneck effect in the pipeline.

Constant ≈ HIA ·WIA · FA + HOA ·WOA. · LA

≈ HIB ·WIB · FB + HOB ·WOB · LB

(3.7)
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CHAPTER 4

HARDWARE IMPLEMENTATION

This chapter introduces the hardware architecture details for implementing

CNN structure with backward pipeline scheduling. We use the LeNet-5 and

the CifarNet as our benchmark to test our design methods. However, the

method is general and can be applied to other types of DNNs as well.

Figure 4.1: Block Structure of the Design

4.1 Architecture Overview

The CNN design consists of two main convolution layer groups and several

fully connected layers. Each convolution layer group contains one convolu-

tion layer, one ReLU layer and one max-pooling layer as shown in Fig. 4.1.

These groups are instantiated as 2D-window modules which will be further
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discussed in Section 4.2. The fully connected layers are implemented using

paralleled matrix multiplication module. Apart from the computation mod-

ules, the CNN accelerator also contains an on-chip memory module, which

stores the weight data frequently requested by the modules while process-

ing. The hardware design communicates with external memory through the

AXI4 stream DMA interface. The AXI4 stream interface is a FIFO stream-

ing interface which transfers data from or to external memory sequentially.

Weight and image data will be fed into the FPGA hardware through the

AXI4 stream interfaces while the result label sequence from classification

computed by computation module is sent out to the external memory by

the AXI4 stream interfaces. Each AXI4 stream interface contains a FIFO

buffer which continuously reads data from external memory. In this design,

we use two AXI4 stream interfaces for input and output streaming. The

overall structure is shown in Fig. 4.1. The AXI4 interface first streams in

the weight data as shown in step 1 in Fig. 4.1. Then the image data is fed

in frame by frame to the computation module and goes through convolution

groups and fully connected layers to perform the corresponding computation

as shown in step 2. Meanwhile, the output labels will be sent back to the

external memory.

This design is built in such a way for the following purposes. First, it

avoids the transfer operations of weight and inter-layer data between FPGA

and external memory compared to conventional CNN hardware implementa-

tion. According to the calculation in [13], the bottleneck for CNN designs is

usually the communication rate instead of computation capacity. The com-

munication rate refers to how fast the FPGA can communicate with external

memory. By reducing the data transfer operations, the limitation of perfor-

mance caused by the bandwidth is removed. Therefore, better performance

can be achieved by full usage of computation resources. Second, pipelining re-

quires modules accessing weight data simultaneously. By storing weight data

on-chip, the computation modules can access corresponding weight value in-

dependently without interfering with other computation modules.
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Figure 4.2: General Block Structure of 2D-Window Operation Modules

4.2 2D-Window Modules

The convolution and pooling layer are implemented as 2D-window oper-

ation modules. The 2D-Window operation modules are designed to behave

as described in Algorithm 2. Figure 4.2 shows the general structure of a 2D

window. The structure consists of three major parts: the control unit, the

memory block group, and window operation module.

The control unit includes the state-machine that controls the loop itera-

tion and condition flow. All the scheduling lists are instantiated as constant

ROMs inside the control unit for quick index access. The control unit also

handles the input data fetching and arbitrates the service of the RAM which

acts as the buffer matrix. The control unit fetches data from the input stream

port and stores the data at the address referenced from the List ROM. If the

counter matches the current output of computation index list ROM, the con-

trol unit passes the output coordinate 〈x, y〉, transfers the RAM service and

initializes the operation of the window operation module.

In the pooling layers, the 2D-window module is instantiated as a max-

pooling module. The pooling module decodes the vector 〈x, y〉 into RAM

addresses mapped by coordinates in Dep(〈x, y〉). Through the decoded ad-

dress, the max-pooling module loads in the data chunk from the RAM buffer.

The data chunk is unpacked into a partitioned array of feature map value

along channel dimension. The pooling module then performs pooling and

ReLU operations on the data arrays to generate pooling and ReLU results.

The pooling results are repacked to a data chunk and fed into the output

FIFO.

In the convolution layers, the 2D-window module is instantiated as a
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convolution module. The data chunk in dependency set is read in and un-

packed in the same way as in the pooling module. A paralleled and pipelined

convolution is performed with the weight and bias data fetched from the

on-chip memory modules. This process is shown in Listing 4.1. The pseudo

code performs the computation process in Equation 3.1 with a fixed 〈x, y〉
pair and varying index i. The two innermost loops are unrolled to achieve

parallel computation. The convolution result Oarray is packed back to a

data chunk and fed into output FIFO.

Listing 4.1: Tiled Convolutional Layer Pseudo Code

1 c o n v t i l e ( xS , yS ,

2 Buf f e r [ HI ] [ WI] , weight [CO] [ CI ] [ F ] [ F ] ) {
3 Ia r ray [ CI ] ; //ARRAY PARTITION

4 Oarray [CO] ; //ARRAY PARTITION

5 // c l e a r array Oarray

6 for ( int h=0; h<F, h++){
7 for ( int w=0; w<F; w++){
8 #pragma HLS p i p e l i n e

9 unpack ( Buf f e r [ iS+h ] [ jS+w] , I a r ray ) ;

10 for ( int co =0;co<CO; co++){
11 #pragma HLS u n r o l l

12 for ( int c i =0; c i<CI ; c i ++){
13 #pragma HLS u n r o l l

14 Oarray [ co]+=

15 weight [ co ] [ c i ] [ h ] [ w]∗ I a r ray [ c i ] ;

16 }}}}
17 return pack ( Oarray ) ;

18 }

4.3 Batch Processing

In [13], the authors discuss how to use loop unrolling and loop pipelining

to achieve better performance for a single convolution layer. However, the

method discussed in [13] does not give much performance increase for smaller

CNN due to the smaller number of filters in those CNNs. Therefore, even
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Figure 4.3: Batch Processing Computation Module

though the maximum unrolling factor has been chosen, the computation re-

source is still not fully utilized. In order to take full advantage of computation

resources and achieve much better performance, batch processing methods

can be applied.

With streaming input data, the batch processing will fetch a set of im-

ages and complete their processing simultaneously. Similar techniques are

used in GPU domain as well [21]. We first stream in the images and store

them in the image batch which is instantiated using on-chip memory. Then

each image in the batch goes through an independent computation module.

Finally, the generated labels are also stored in batch and then streamed out.

This procedure is shown in Fig. 4.3 with N as the batch size.

Figure 4.4: Structure for Batch Mode 2D Window Array

However, naively duplicating the modules is inefficient and wastes re-

sources. All the computation module copies require access to the same weight
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data stored in on-chip memory while the on-chip memory port can only serve

one module at the same time, which causes racing and latency of the waiting

time for RAM service among modules. Also, the control logic of the mod-

ules in the same batch has the same behavior pattern: multiple copies cause

unnecessary resource occupations. To avoid the problem caused by direct

duplication, we only copy the necessary components. We combine the mod-

ule batch into one single module with only one copy of the control module

as shown in Fig. 4.4. Since different images generate different input/output

feature maps, the FIFOs between layers and matrix buffers are widened by N

times to transmit and store N data chunks at the same time. For the pooling

layer, the widened data chunk goes through the same process to generate

a widened pooling result chunk in the window operation module. For the

convolutional layer, the behavior of the convolution module is modified to

accommodate batch mode as shown in Listing 4.2. Variable BufferWIDE

represents the widened matrix buffer. The modified unpack/pack function

transfers the widened data chunk from or to N data arrays along the channel

dimensions. The N input arrays are processed in parallel to generate results

on the N output arrays with share weight data from on-chip memory module

as shown in the fully unrolled for-loop in lines 15-19 of the code listing.

Listing 4.2: Batched Convolutional Layer Pseudo Code Batch

1 c o n v t i l e ( xS , yS ,

2 BufferWIDE [ HI ] [ WI] , //ARRAY PARTITION dim=1,2

3 weight [CO] [ CI ] [ F ] [ F ] //ARRAY PARTITION dim=1,2

4 ){
5 Ia r ray [N ] [ CI ] ;

6 Oarray [N ] [CO] ;

7 // c l e a r array Oarray

8 for ( int h=0; h<F, h++){
9 for ( int w=0; w<F; w++){

10 #pragma HLS p i p e l i n e

11 unpack ( BufferWIDE [ iS+h ] [ jS+w] , I a r ray ) ;

12 for ( int co =0;co<CO; co++){
13 #pragma HLS u n r o l l

14 for ( int c i =0; c i<CI ; c i ++){
15 for ( int cb=0; cb<N; cb++){

18



16 #pragma HLS u n r o l l

17 Oarray [ cb ] [ co]+=

18 weight [ co ] [ c i ] [ h ] [ w]∗ I a r ray [ cb ] [ c i ] ;

19 }}}}}
20 return pack ( Oarray ) ;

21 }
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CHAPTER 5

EXPERIMENT RESULT AND ANALYSIS

To get experimental results for our algorithm we have implemented both

the LeNet and the CifarNet on an FPGA and a GPU. Since we want to

target embedded devices, we have selected NVIDIA Jetson TX1 and Xilinx

ZYNQ-7000 SOC ZC706. The platform specifications are shown in Tables

5.1 and 5.2. All the computations are fully parallelized to effectively and

quickly generate output.

Table 5.1: Xilinx ZC706 Device Spec

LUT 218600
Flip-Flop 437200
BRAM 1090
DSP 900
Clock Sources Fixed 200 MHz LVDS oscillator

Table 5.2: Jetson TX1 Device Spec

Global memory 3995 MBytes
GPU Max Clock rate 72 MHz
Max constant memory 65536 bytes
Max shared memory 49152 bytes
Max Block Dimension (1024, 1024, 64)
Max Grid Dimension (2147483647, 65335, 65335)

5.1 Statistical Analysis

In the experiment, we use the design optimized by naive pipeline and unroll

pragmas as the baseline to illustrate the effectiveness of our algorithm and

strategy discussed above. Table 5.3 lists the latency, throughput and resource

utilization of designs after each optimization method. The backward pipeline
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scheduling improves the latency by 1.6X by enabling interaction of request

lists among layers. After the backward pipeline scheduling, we notice that

convolution layer 1 has prominent latency among the pipelined layers as

shown in Fig. 5.1. Meanwhile, convolution layer 2 occupies extra DSPs

and LUTs resources but makes little contribution to the performance. We

alter the unrolling factors in the operation module of convolution layer 1

and convolution layer 2 and reduce the bottleneck latency to 16,034 clock

cycles. The overall performance is improved by 1.53X after latency balancing.

Also, the DSP, flip flop and LUT usage are reduced by 3.24X, 2.22X and

2.25X respectively. Then we optimize our design with the batch method

which improves the throughput but makes no improvement on single image

latency. We can observe that the throughput increases proportionally to the

batch size while the latency remains almost the same. Overall, we implement

the LeNet digit classifier with the highest throughput of 130871.9 images/s

and best single image latency of 175.7 µs. We implement and optimize the

CifarNet using backward pipeline scheduling and latency balancing. Due to

the device constraint, we did not apply batch optimization on the CifarNet.

The resource and performance result of our final version of the CifarNet

are listed in Table 5.4. We achieve single image latency of 653.4 µs and

throughput of 1530.3 image/s in our implementation of the CifarNet.

Table 5.3: Resource utilization and Performance Statistic of the LeNet

Version BRAM DSP FF LUT Latency
Clock
Period

Throughput
(img/s)

Baseline 144 162 27325 30056 447.3 µs 8.02 ns 2099.5
Backward
Pipeline
Schedule

144 162 28432 32467 278.4 µs 8.54 ns 3591.9

Latency
Balancing

144 50 12793 14392 175.7 µs 8.54 ns 5660.6

Batch(5) 247 170 41403 46573 176.4 µs 8.60 ns 28472.5
Batch(25) 762 850 202777 208612 191.0 µs 9.09 ns 130871.9
Resource
@ZC 706

1090 900 437200 218600 NA NA NA
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Table 5.4: Area and Performance for the CifarNet

CifarNet Resource @ZC 706 Utiliazation
BRAM 492 1080 45%
DSP 162 900 18%
FF 59925 437200 13%
LUT 54017 218600 24%
Latency 653.4 µs NA NA
Throughput 1530.3 NA NA

Figure 5.1: Latency Comparison for Latency Balancing

5.2 Performance Comparison

The tables comparing the performance of NVIDIA Jetson TX1 and our

design are shown in Tables 5.5 and 5.6. For an image from the MNIST data

set, TX1 takes 0.91 ms to classify. The throughput of GPU for the MNIST

data set is 26455 image/s if we set the batch size to be 25. For an image from

the Cifar-10 data set, it takes 1.27 ms to classify and the throughput is 787.4

image/s. Based on our experimental result we can see that FPGA processes

one image 5.2x faster than TX1 does. We see that even if the algorithms are

fully parallelized for the LeNet on TX1, the resources of TX1 cannot be fully

utilized for small batch size. As batch size gets much larger, TX1 will be

able to start processing many more images in parallel, beating the speed of

FPGA. However, since we are targeting edge devices, we focus on the latency

of classifying one image or a small batch of images. The latency of classifying
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Table 5.5: Performance Comparison for the LeNet

Version Latency Throughput Accuracy
TX1(Batch 1) 0.91 ms 1098.9 img/s 98.8%
TX1(Batch 25) 0.945 ms 26455.0 img/s 98.8%
Ours. (Batch 1) 175.7 µs 5660.6 img/s 97.6%
Ours. (Batch 25) 191.0 µs 130871.9 img/s 97.6%

one or a small batch of images is more important for an edge device as it

has to process the input in real time and it usually is not in a large batch

mode as used in cloud computing [22]. We also compare our LeNet single

image latency with that of [23] and [24]. The result is listed in Table 5.7.

We achieve 11x and 7.5x speedup by enabling proper pipeline among layers

and further optimization in parallel computation architecture.

Table 5.6: Performance Comparison for the CifarNet

Version Latency Throughput Accuracy
TX1(Batch 1) 1.27 ms 787.4 img/s 86.7%
Our Design(Batch 1) 653.4 µs 1530.3 img/s 83.6%

Table 5.7: Performance Comparison with Previous Work for the LeNet

[23] [24] Our work
CNN model LeNet-5 LeNet-5 LeNet-5
platform ZC706 VC709 ZC706
Precision fixed(25) fixed(8-16) fixed(16)
Latency 2ms 1.318 ms 175.7 µs
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CHAPTER 6

CONCLUSION

When applying machine learning algorithms on IoT devices, implement-

ing the algorithms on limited resources is important. The algorithm must

work fast on the embedded devices to achieve practicality. In this work, we

optimized the CNN structure for high-accuracy handwriting digits and Cifar

object recognition through a novel scheduling algorithm and high-level syn-

thesis. We explored methodologies such as parallel classifying operations with

batch processing, backward pipelining and latency balancing. We achieved

5.2x speedup compared to the GPU version. We believe the techniques pro-

posed and the HLS design methodology used should be applicable to other

types of convolutional neural networks and enable FPGAs to become strong

candidates for high throughput, high speed, yet low power/energy acceler-

ators for various types of IoT applications, which can lead to far-reaching

impact.
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