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ABSTRACT

As urban areas continue to grow in population and density of development, stormwater

management has become a higher priority for municipal leaders, civil engineers, and res-

idents. Traditional gray infrastructure, i.e., large, piped conveyance networks, effectively

removed stormwater runoff and all its associated problems (especially water quality issues)

from urban areas beginning in the early 20th century and was heralded as a public health

breakthrough. However, gray infrastructure networks have not kept pace with the growth

of cities, resulting in a variety of issues including increased peak runoff flow and volume,

flooding, increased pollutant loading, degraded water quality, and enhanced urban heat is-

land effect. Green stormwater infrastructure (GSI) mimics pre-development conditions in

urban areas attempting to manage excess stormwater runoff. GSI can take many different

forms, but its primary functions are to infiltrate stormwater and treat the water on-site, thus

reducing runoff volume and pollutant loading downstream. Rain gardens, permeable pave-

ment, green roofs, bioretention cells, street trees, swales, and grass strips are all examples

of GSI. Distributed, green networks can provide additional environmental benefits beyond

hydrologic improvements, including economic and social co-benefits. GSI networks present

an attractive opportunity for decision makers to achieve necessary hydrologic improvements

and possibly provide residents with additional co-benefits.

In this analysis, GSI is investigated in several capacities. First, GSI is taken out of

its traditional urban context and analyzed in an agricultural setting. “Agricultural green

infrastructure” is sought after as a potential solution to increasing water quality issues

upstream of Des Moines, Iowa, USA, representing similar water quality issues throughout

much of the agricultural Midwest. In these areas, heavy fertilizer use on agricultural fields

leads to increased nitrate loading in nearby surface waters, presenting a risk locally to people
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using such water as a source of drinking water. Two main proposals are put forward: 1) a

widespread, agricultural green infrastructure buildout is proposed throughout the Raccoon

River Watershed (RRW) upstream of Des Moines; and 2) treating the water at a nitrate

removal facility is investigated as the centralized, gray approach. Both scenarios theoretically

treat the polluted water to a high enough quality to consume as drinking water, but they

differ in co-benefits and cost. The distributed, green approach is estimated to cost between

$135 – $160 million: maintaining the current new nitrate removal facility costs around $71

million, but building a new facility can cost up to $184 million. However, building widespread

riparian buffers offers increased employment benefits, improves environmental conditions,

and helps address the rural-urban divide spreading throughout the United States. Although

agricultural green infrastructure might present a high initial cost, it is still less costly than

building a new facility sometime in the future and provides comparatively more benefits.

Distributed, green networks can provide significant co-benefits to communities, and these

co-benefits are the focus of the second portion of analyses. Specifically, social co-benefits

in urban areas are investigated. Many GSI calculators, tools, and frameworks exist to help

engineers and planners design GSI projects, and yet the literature does not speak to the

inclusion of social co-benefits in these GSI calculators. A qualitative analysis is performed

exploring whether 21 GSI calculators, tools, and frameworks mention and/or attempt to

quantify social co-benefits. Of these 21 calculators, only five mention social co-benefits, and

merely two of these attempt to quantify such benefits. A paradigm shift is suggested, one in

which social co-benefits are included at the planning stages of GSI projects to ensure that

such benefits are available to people engaging the GSI.

One derivative of such social co-benefits is the advancement of environmental justice, de-

fined as the equitable distribution of both environmental ills and environmental benefits,

regardless of race, income, or any other socioeconomic quality. Historically, low-income and

minority neighborhoods have not been locations for environmental outreach. This trend is

statistically analyzed in Chicago, IL and Philadelphia, PA, two national leaders in GSI instal-

lation, through regression and non-parametric testing, respectively. Results in Philadelphia

indicate that the city seems to be achieving its stated goal of investing in “environmental

justice” communities, based on median household income and race. Overall, results support
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the conclusion that open-source data can indeed be analyzed to track environmental justice

efforts, an important social co-benefit of GSI installation.

GSI is a relatively new concept, but it has already been adopted in cities throughout

the entire globe. It offers many benefits beyond those benefits provided by traditional gray

infrastructure, and GSI is integral to many cities’ long-term improvement plans. The present

analyses add to the growing body of knowledge concerning GSI through analyzing GSI in

an agricultural context and addressing its potential social co-benefits.
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CHAPTER 1

INTRODUCTION

In both urban and agricultural areas throughout the globe, stormwater can be an integral

part of the local hydrologic cycle. Precipitation has many positive effects, perhaps the

greatest of these being the growth of vegetation and food for human consumption. However,

stormwater can also have negative effects if, for example, there is excess stormwater and the

local conditions cannot handle the large volume of water. Managing stormwater is crucial

in both agricultural and urban contexts, and such management is the focus of this thesis.

1.1 Agricultural Runoff and Water Quality Implications

Agricultural intensification, including the widespread use of fertilizer and livestock manure,

has led to increased inputs, improved agronomic practices, and enhanced crop varieties [240].

Intensifying agriculture is necessary to meet the demand for crops from an increasing global

population (projected 2.3 billion person increase by 2050), but it comes with potentially

hazardous environmental effects [85]. Dabrowski et al. [48] found that the water required to

address water quality degradation in agriculture is similar to the water quantity required to

produce crops, indicating the extent to which fertilizer intensification affects water quality.

Impairment of waters due to agricultural runoff is a problem for many rural and urban

areas in the United States — a 2010 United States Geological Survey (USGS) study found

that nitrates were above recommended levels in 64 percent of surface water and shallow

groundwater monitoring wells throughout the United States [225]. Riparian buffers are

analyzed as one agricultural green infrastructure practice intended to reduce nutrient levels.

Buffers prevent degradation of surface water through uptake of nitrates by the vegetation,

as well as facilitating conditions necessary for denitrification and phosphorus removal [83,
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105]. Nitrogen, phosphorus, and sediment pollution challenges exist in the Raccoon River

Watershed (RRW) [156], representing one of the most nitrate-polluted watersheds in the

United States. Jones et al. [125] analyzed 2016 data to determine that Iowa contributes 41

percent of the nitrate load to the Gulf of Mexico. Thus, the RRW is a fitting location for

the analysis because of its large contribution to degraded water quality. Furthermore, it

is the setting of a recently-decided, contentious lawsuit between Des Moines Water Works

(DMWW) and three upstream drainage districts (Bd. of Water Works Trs. of Des Moines

v. Sac Cty. Bd. of Supervisors as Trs. of Drainage Dists. 32, 42, 65, 79, 81, 83, 86, No.

5:15-cv-04020, 2015 WL 1191173 ). The lawsuit is a microcosm of a larger theme throughout

the United States: a rural-urban divide that precipitates deadlock over environmental issues.

The final ruling stated that water leaving the drainage districts was not regulated, and the

districts did not have to recompense DMWW monetarily for having to treat the nitrate-

laden water. The RRW is unique in the extent to which nitrate pollution has led to greater

issues, and thus it was chosen as the focus of the analysis.

The RRW, as a source of pollutants both for Des Moines residents and the Gulf Hypoxia

Zone, is analyzed to determine where riparian buffers would be most effective throughout

the watershed and what scale of cost is associated with installing buffers. Furthermore, there

have been no studies, to the author’s knowledge, contrasting centralized gray infrastructure

and distributed green infrastructure in an agricultural context. Many studies analyze green

versus gray infrastructure in an urban setting, not an agricultural setting [79, 207, 226]. The

following questions are addressed:

• What are the ramifications of using agricultural green infrastructure for nitrate reduc-

tion?

• Where might agricultural green infrastructure be placed, and how much will it cost?

The present analysis is added to the greater body of knowledge in gray and green infras-

tructure comparisons.
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1.2 Social Co-Benefits of Green Stormwater Infrastructure

Distributed green spaces offer benefits in many different contexts, and they are an alter-

native to centralized, gray solutions to managing water quality and quantity. Such green

networks originally sprouted from urban applications, termed “green stormwater infrastruc-

ture” (GSI). GSI offers a multitude of environmental, economic, and social benefits, and

researchers have quantified many of the hydrologic (environmental) benefits [e.g., 21, 146,

among many others]. Further research has shown complementary environmental and eco-

nomic co-benefits from some forms of GSI, such as energy savings through the use of green

roofs [69, 239, 263]. However, fewer findings have been published concerning the potential

social co-benefits. This work aims to 1) assess the state of the art in quantifying social co-

benefits of green infrastructure, and 2) analyze the environmental justice impacts of green

infrastructure installation.

Social co-benefits concern the ways in which people interact with GSI, how people perceive

GSI, and emotional/physical/mental health benefits derived from engaging GSI. A portion

of this thesis analyzes various existing stormwater calculators regarding quantification of

social co-benefits of GSI. The following question provides the motivation for this section of

the thesis:

• To what extent are social co-benefits included in planning for GSI projects, as reflected

by available calculators?

1.3 Environmental Justice

One sought-after derivative of social co-benefits is environmental justice. Environmental

justice is defined as an equitable distribution of environmental benefits and environmental

ills regardless of race, income, or social status [97], i.e., “fairness in the distribution of

environmental well being” [84]. Di Chiro [56] suggests that the ‘environment’ need not be a

pristine, unharmed, and removed nature; instead, she broadens environment to include “the

place you work, the place you live, the place you play.” Just as public goods such as libraries

and schools or private goods such as grocery stores can be distributed differently between
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affluent and impoverished areas, ecosystem services (i.e., the benefits of GSI) can similarly be

differently (even “unjustly”) distributed. This broad sense of environmental justice includes

equitable distribution of access to GSI and the benefits it offers. GSI presents an excellent

opportunity to merge the hydrologic improvements often required of green spaces with the

goal of increasing access to green space for marginalized communities.

Anecdotal criticisms claim that GSI projects are often implemented in more affluent ur-

ban areas or areas favoring more racial homogeneity. This spatial challenge is expored by

statistically analyzing available GSI and socioeconomic data to determine whether GSI in-

stallations are in fact associated with certain socioeconomic trends. In the second part of the

analysis, statistical analyses of GSI and socioeconomic data are conducted to assess levels

of environmental justice, demonstrated for two major cities located in the United States:

Chicago, IL and Philadelphia, PA. Chicago is a national leader in GSI installation, espe-

cially regarding green roofs [133]. Similarly, Philadelphia has an ambitious GSI plan (‘Green

City, Clean Waters’) wherein the city will implement 25 years’ worth of GSI projects [191].

There is a significant precedent in research using geographic information systems (GIS) to

assess environmental justice within a city, and the approach employed here similarly uses

GIS [47, 75, 99]. The following questions is of import in this portion of the thesis:

• How might existing socioeconomic data be used to analyze GSI projects and their

implications on environmental justice?

The present analyses support further application of GSI in both agricultural and urban

contexts, improving not only hydrologic conditions but the livelihoods of the people that

interact with the GSI. Additional background on GSI, stormwater management, and envi-

ronmental justice is presented in Chapter 2. In Chapter 3, a full analysis is performed on

the feasibility of utilizing riparian buffers as agricultural green infrastructure in the Raccoon

River Watershed with the goal of reducing nitrate pollution. Results can help inform future

solutions and policies regarding agricultural runoff. In Chapter 4, a review is performed

that seeks out how many currently available GSI calculators reference social co-benefits. A

paradigm shift is suggested wherein social co-benefits are included in the planning stages of

GSI projects, and a consequent statistical analysis of Chicago and Philadelphia provides an

4



example of such monitoring. Chapter 5 outlines conclusions and proffers potential applica-

tions in the GSI arena.
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CHAPTER 2

BACKGROUND

2.1 Green Stormwater Infrastructure

GSI is an alternative to traditional gray infrastructure in urban areas, i.e., piped con-

veyance networks that transport stormwater away. GSI mimics pre-development conditions,

allowing stormwater to naturally infiltrate into soil, reducing runoff volumes, peak flows,

and pollutant loads. Bioretention cells, green roofs, tree trenches, and pervious pavement

are all examples of GSI. Many American cities feature combined sewer systems, and when

there are large rain events, the system is overloaded with sewage and stormwater, oftentimes

causing a combined sewer overflow (CSO). The Clean Water Act states that cities must

have a permit to legally discharge water in a CSO [1]. GSI is one approach to helping solve

the CSO problem in urban areas. Many engineers, landscape architects, and others have

defined “green infrastructure.” Benedict and McMahon [19] state that GSI is “an intercon-

nected network of green space that conserves natural ecosystem values and functions and

provides associated benefits to human populations.” Tzoulas et al. [244] claim that GSI

can be “considered to comprise of all natural, semi-natural and artificial networks of multi-

functional ecological systems within, around and between urban areas.” In most cities, GSI

cannot completely replace the need for gray infrastructure; however, a distributed network

of GSI certainly reduces the burden placed on gray infrastructure systems, many of which

are outdated [221].

There are various types of GSI, including bioretention areas, permeable pavement, urban

trees, infiltration trenches, and green roofs. These different types of GSI have different

mechanisms through which they function, as well as different physical forms and benefits.

Bioretention areas, often in the form of rain gardens, are sunken areas designed to capture
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and accept large amounts of stormwater. Rain gardens are populated with native and

water-intense vegetation, perennial vegetation, and trees. Their benefits include increased

groundwater recharge, peak flow attenuation, decreased surface runoff, and pollutant removal

[58]. Davis [53] experimentally found that bioretention cells are effective for decreasing peak

flows, reducing stormwater volumes, and delaying peak flows. Kim et al. [139] physically

demonstrated how bioretention areas remove pollutants in runoff through “sedimentation,

filtration, and sorption on mulch and soil layers, plant uptake, and biodegradation by soil

microorganisms.”

Green roofs are another type of GSI. They are created through structural enhancements

to rooftops that then support a layer of soil and a layer of “green” vegetation. There are two

main types of green roofs; ‘intensive’ roofs with thick soil layers (and thus more structural

requirements), and ‘extensive’ roofs with thinner soil layers [58]. Fioretti et al. [74] showed

that green roofs’ greatest stormwater benefits include volume reduction (through stormwater

storage in the media and evapotranspiration by the plants), peak flow attenuation, and

increased concentration time. Green roofs have also been shown to reduce urban heat island

effects and are an effective means of addressing the effects of climate change in today’s cities

[233, 262]. A further manifestation of GSI is permeable pavement. There are many methods

of constructing permeable pavement, but the high-level idea is that the pavement sits above

a layer of soil and gravel that infiltrate stormwater runoff. Permeable pavements are suitable

in low-traffic areas such as alleys and parking lots, as well as bike/pedestrian paths. Their

benefits include recharging groundwater, pollutant removal, and reducing runoff volumes

[86].

There are many options for cities to utilize rights-of-way for GSI implementation, including

bioretention cells, infiltration basins, or retention trenches. “Infiltration devices” include

retention basins and infiltration trenches [86]. Infiltration trenches are a form of GSI that can

reduce runoff volume and improve water quality through sorption and filtration [5, 64, 210].

Infiltration trenches are compact and can fit in many urban environments, providing another

tool in GSI projects. Holman-Dodds et al. [106] confirmed that such devices reduce peak

flow and runoff volume, as well as improving groundwater quality through pollutant removal.

Urban trees are an environmentally and economically effective form of GSI. Urban trees
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can provide water quality protection during longer, less intense rainfall events that are

responsible for the majority of pollutant washout [266]. Tree roots penetrate compacted

urban soils and can increase infiltration in those soils by as much as 63 percent [14]. Canopy

interception reduces runoff volume, prevents pollutant washout, and reduces soil erosion

[10]. An additional environmental benefit of many of these vegetative forms of GSI is the

sequestration of air pollution [6, 181].

Philadelphia, a focus of this thesis, encourages the use of GSI through several avenues.

Property owners are responsible for all stormwater within their surface parking lots. Small

lots must be reviewed by the City Planning Commission to ensure the lot’s catch basins

and drains will accommodate runoff, while large lot owners might be required to submit a

stormwater plan to the Philadelphia Water Department [190]. Every commercial parking

lot is required to design at least 10 percent of the total lot area to be landscaped. The

City Planning Commission explicitly urges developers to utilize GSI in the design manual,

including porous pavement, solar power parking lot canopies, porous asphalt comparison,

bioretention cells, and curb cuts [190]. The City Planning Commission and the Philadelphia

Streets Department require curb cuts in residential driveways and garages. Furthermore,

Philadelphia has realized the social importance of maintaining streetscape devoid of front

parking/garages and thus requires that developers apply for a permit for front parking. These

requirements can ensure that developers are more thoughtful when deciding the quantity of

impervious space they want to introduce to an area [190].

Kaminker et al. [129] discuss how policy makers can create optimal conditions for invest-

ment in green infrastructure. The authors cite a shortage of objective information and data

to evaluate infrastructure investments and their inherent risks. Investment can come from

a variety of sources, but one of the authors’ main foci is private investment. According to

Hewes [102], covering as little as 1 percent of large buildings in mid- to large-sized cities in

the United States with green roofs would create over 190,000 jobs, divert billions of gallons

of stormwater from sewer systems, and provide billions of dollars in revenue to suppliers

and manufacturers of materials related to green roofs. To encourage increased private par-

ticipation in such GSI projects, barriers to implementation can be removed via education,

incentives, social influences, and inclusive participation [229, 230]. Mere encouragement from
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policy to create GSI is often deficient motivation for developers to include GSI as part of their

construction/retrofitting plans. The U.S. Environmental Protection Agency (EPA) insists

that incentives and regulations ought to be used in tandem to cause widespread acceptance

and implementation of GSI. Specifically, the EPA suggests that an incentive program can

initiate GSI regulation through introducing design criteria and technology; consequently,

private landowners will apply such designs, and later the municipality can introduce manda-

tory legislation [155]. Combining data collection, straightforward policy, and incentives can

lead to greater investment in GSI.

2.2 Social Co-Benefits of Green Stormwater Infrastructure

Cities throughout the United States (and the globe) continue to grow in population and

physical size, and thus they experience accompanying land use changes. Engineering systems

simultaneously change in complexity and technological advancement. Stormwater manage-

ment is one such system: in the early 20th century, engineers utilized ‘gray’ infrastructure

(i.e., large, piped conveyance networks) to quickly and efficiently transport stormwater runoff

out of cities. This “Promethean approach” satisfied the need to convey water away from

urban cores, but it essentially took the problems associated with stormwater (e.g., flooding,

water quality degradation, disease vector transport) and moved them downstream to the

next community [131]. Continuing into modern times, increased urban and suburban devel-

opment has led to problems such as degraded water quality, urban heat island effect, sewer

system malfunction, and flooding [204]. Stormwater runoff is a leading contributor to water

pollution throughout the United States [42, 177], and the growth of impervious surfaces

increases storm runoff in regard to volume and peak flow [88, 255]. Developed areas incur

changes in runoff temperatures and produce larger magnitudes of runoff from increased im-

pervious surfaces [205]. Streams in developed areas are subject to increases in peak volume,

discharge, and pollutant loading [161, 212, 214]. Furthermore, thermally-enriched runoff

from impervious surfaces causes spikes in stream temperatures [127, 253] that can affect

streams for up to 10 percent of summer days [178, 257]. Gray stormwater management

offered a solution to storm runoff for the better part of the 20th century, but maintaining
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and expanding such gray systems cannot keep pace with the immense growth of cities.

Extensive research has described potential effects of human engagement with green spaces,

including decreased stress levels [62, 130, 249], improved physical health through effects like

decreased asthma [157], and enhanced mental health [227]. The presence of GSI has also

been shown to decrease the occurrence of crime [19, 140]. A review by Velarde et al. [249]

found that simply viewing natural landscapes has a positive impact on health. Although

there are published studies showing such social co-benefits, findings can be highly site-

specific, and the study methods (often surveys or behavioral observation) can be expensive

to implement. And yet, the social co-benefits are nonetheless present, albeit sometimes

challenging to quantify.

Lafortezza et al. [142] analyzed the intersection of physical and psychological well-being

and interacting with green spaces in urban spaces and found that longer and more frequent

visits to green spaces generated significant improvements in well-being among users. Their

results supported the idea that green spaces can alleviate the suffering caused by periods

of heat stress. Parks offer many co-benefits beyond hydrologic improvements, including

physical well-being through activity [25, 158], as well as psychological and physiological

benefits through reducing stress and lowering blood pressure [96, 170, 248]. Some studies

have found that low-income and minority neighborhoods are located in areas with few or no

parks, depraving those residents of the many benefits parks offer [2, 222, 259]. Exposure to

green spaces has been linked to healthier cortisol levels [200] and reduced rates of attention-

deficit and hyper-activity disorder (ADHD) in children [261]. The human benefit of green

spaces for such children extends to economic benefits as well: Faber Taylor and Kuo [71]

found that children with ADHD who took a 20-minute walk in a park had significantly

better concentration than similar children who walked in an urban or residential setting.

Browning et al. [30] calculated that this could save Americans nationwide up to $228 million

in eliminated medication costs. Kuo [141] performed a multi-year study comprising of over

1,300 person-space observations in inner-city Chicago and found that trees and grass cover

were linked to numerous social health indicators, including stronger ties among neighbors,

greater sense of safety, healthier patterns of children’s play, fewer property crimes, and fewer

violent crimes. Browning et al. [30] quantified these social benefits and found that the
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Illinois Department of Corrections could save up to $162,000 annually from reduced crime if

the housing units in Kuo’s study were outfitted with green spaces. The presence of myriad

social co-benefits of GSI provide a motivation for the analyses in this thesis.

2.3 Environmental Justice

Historically, environmental justice was not considered during changes in land use and

cover, leading to some marginalized communities disproportionately suffering environmental

ills [123]. Often times, ethnic minority and low-income neighborhoods face such environ-

mental injustice [28], which is only made worse by economic insecurity [184]. Examples

include racial minorities subjected to higher levels of air pollution in Oakland, California

[75], as well as impoverished neighborhoods having less access to green spaces in Milwaukee,

Wisconsin [103]. Lejano and Iseki [145] found that the locations of hazardous waste treat-

ment, storage, and disposal facilities are significantly correlated with Latino residential areas

in Los Angeles. A two-year study of youth in Indiana found that greenness was inversely

related to body mass index [18], a key implication for environmental justice given the lack

of opportunities for physical activity in minority and low-income neighborhoods [77]. Many

studies have shown that low-income households are more often exposed to harmful pollu-

tion from road transportation compared to higher income households [91, 92, 176]. Uneven

social geographies have been shown to produce a phenomenon known as ‘thermal inequity,’

or a disproportionate impact of urban heating on lower-income and ethno-racially marginal-

ized populations [168, 169]. Thermal inequity is based on two conditions: greater exposure

to climate change related temperature increases and/or urban heat island effects and the

lower socio-economic and/or ethno-racial minority status of that population. Instances of

environmental injustice abound throughout the United States and elsewhere.

Although minority and low-income neighborhoods often bear the burden of environmental

injustice, Baptiste et al. [13] suggest that people living in low-income communities are more

willing to implement GSI. Such community ownership of GSI depends on public engagement

during planning and installation of GSI [128], which does not always occur. New York has

undertaken concerted efforts to provide green spaces in its low-income and visibly minority
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neighborhoods as a means of preventing the negative effects of high temperatures [202].

Going forward, involving marginalized communities in GSI planning and targeting benefits

for such communities present important steps toward advancing environmental justice goals.

Ernstson [67] analyzed the ecological connectivity of all green spaces and GSI within a

region, as well as a community’s protective and management capacities, as one procedure

to empower municipalities to further environmental justice. Analyzing whether more GSI is

required in impoverished areas is necessary to better connect an entire regional complex of

green spaces. Furthermore, fostering ownership of those spaces is an important factor in the

success of environmental justice efforts. Several studies have shown that detailed knowledge

of local communities, as well as continued involvement, is crucial for long-term success of

GSI implementation [7, 134, 172, 218]. Baptiste et al. [13] concluded that it is important to

understand the level of understanding of GSI among local residents. Environmental justice

efforts can also be analyzed through a “value articulation” lens. Value articulation of GSI

co-benefits features the scientists or experts providing substantiation for the articulated

values, as well as local actors and artifacts (maps, scientific reports) that describe GSI and

its values [68, 224]. In this context, empowering municipalities to choose the right agents of

articulation and artifacts is an important portion of addressing social co-benefits.

Baptiste et al. [13] performed an extensive survey on two neighborhoods near Syracuse,

New York, and found that GSI initiatives should be targeted for people who desire to improve

the aesthetic of their neighborhood and personal space, people whose financial commitments

will not be strained, and, significantly, low-income people. The positive health effects of GSI

are shown in several studies to be highest among residents in lower socioeconomic groups

[54, 170]. Focusing on such communities for investment in GSI provides part of the backdrop

and motivation for this thesis.
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CHAPTER 3

AGRICULTURAL GREEN INFRASTRUCTURE

3.1 The Issue of Nitrate Pollution

Nitrates pose a threat to both human and aquatic life. Consuming nitrates has been

shown to lead to two major health issues in humans, namely infant methemoglobinemia (or

“blue baby syndrome”) and cancers of the digestive tract [90, 193]. People with weakened

immune systems (babies, the elderly, and sick persons) are most susceptible to suffering

sicknesses due to ingesting nitrate-polluted drinking water. Nitrates are also toxic to various

fish species and can lead to degraded health and increased mortality rates [94, 111, 213], in

addition to contributing to eutrophication that further harms wildlife [100].

Nitrate pollution levels in the RRW upstream of Des Moines, Iowa, USA (Figure 3.1) are

some of the highest in the nation [208]. Water flowing from the RRW is used as drinking

water for the Des Moines metropolitan area, an area serving more than 500,000 people.

Nitrate levels were consistently high enough (continually above the federal 10 mg/L maxi-

mum contaminant level) to force DMWW, the region’s drinking water utility, to construct

the world’s largest nitrate removal facility [208]. Nitrates are costly to remove from water;

DMWW spends between $4,000 and $7,000 each day to operate its nitrate removal facility

[46]. Hatfield et al. [98] showed that the nitrate issue in the RRW has worsened over time;

since the 1970s, levels have increased, even with stagnant fertilizer use over the previous 15

years. Agricultural runoff is accountable for water quality violations in many other lakes,

streams, and estuaries [60, 110, 182], and yet regulation of such runoff is not a viable policy

solution. The Clean Water Act explicitly states in §502(14) that agricultural fields are ex-

empt from federal permitting, meaning that farmers voluntarily introduce best management

practices on their fields to reduce water pollution.
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Figure 3.1: The Raccoon River Watershed (RRW), situated upstream of Des Moines, Iowa,
USA, has some of the highest nitrate levels in the nation. Such high nitrate levels have led
to negative environmental, economic, and social effects throughout the region and beyond.

Although DMWW operates a centralized nitrate removal facility, there are distributed

solutions to preventing nitrate pollution. The idea of ‘agricultural green infrastructure’

is introduced in the form of riparian buffers. Agricultural green infrastructure functions

similarly to its urban counterpart, infiltrating runoff and reducing the amount of pollutants

reaching downstream. Its performance depends on topography, soil health, storm events,

and other climatic conditions.

Nitrogen and phosphorus pollutants have contributed vastly to the growing Gulf of Mexico

Hypoxia Zone, a dead zone that was measured at over 20,000 km2 in 2008 [194]. A hypoxia

zone is typified of low dissolved oxygen levels, caused by nitrogen and phosphorus, that

place large amounts of stress on aquatic ecosystems [150]. The Gulf of Mexico Hypoxia

Zone is the second largest on the planet after the Baltic Sea Hypoxia Zone [34, 151], and it
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represents an immense water quality issue that impacts wildlife, and consequently humans,

throughout the Gulf region [49, 87]. Agriculture in the Midwest is a significant driver of Gulf

Hypoxia; land covering over 50 percent of America’s farms drains into the Mississippi River

Basin. Reducing agricultural runoff and thereby water pollution would reduce the size and

toxicity of the Gulf Hypoxia Zone, and such goals are the motivation for various nutrient

load reduction programs throughout the 12 states comprising the Mississippi River Basin

[e.g., 113, 118, 167]. In many of these states, both rural and urban communities are required

to manage nutrients polluting their water. Many of those nutrients enter waterways through

fertilizers. Nitrogen fertilizer use in the Midwest has increased drastically since the 1960s,

remaining at a steady increase of 2.4 kg ha−1 year−1 until the late 1990s, when average

use stabilized at around 147 kg N/ha [59]. Swoboda [232] reported that in Iowa alone,

farmers spent approximately $100 million on excess nitrogen fertilizer applications while

not accounting for residual nitrogen in the soil. Such widespread fertilizer consumption has

severely degraded water quality, and some sort of solution is necessary going forward.

One such solution is the use of riparian buffers. Riparian buffers, such as grass strips,

riparian forests, or a combination of both, can mitigate water quality degradation, attenuate

flows running off fields, and reduce erosion [38, 185]. Buffers can be established anywhere

alongside a riparian corridor between a stream and the agricultural field (Figure 3.2). Hydro-

logically, buffer strips improve infiltration of water through the propagation of macropores

throughout the soil [37, 147] and enhance water holding capacity by adding organic matter

and increasing porosity [183]. Buffers have been shown to retain or remove nitrate by 60-90

percent [211, 216, 250]. Denitrification in particular is efficient under suboxic conditions with

plenty of available organic carbon. In the winter and early spring seasons, when susceptibil-

ity to erosion and nutrient leaching is highest, Burt et al. [32] showed that the higher water

table during these months creates the necessary oxic/anoxic conditions that, combined with

carbon-rich soils enhanced by vegetated buffer strips, prevents nitrates from leaching into

streams through the process of denitrification. Buffer design determines the rate at which

vegetation retains nitrates and enhances denitrification.
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Figure 3.2: Multi species riparian buffers include trees, shrubs, and prairie grasses. Grasses
attenuate surface runoff and filter out contaminants, while the deeper roots of the shrubs
and trees uptake nutrients from groundwater levels.

Buffer strips are also designed to take up phosphorus. Phosphorus (P) is another contrib-

utor to eutrophic conditions that lead to hypoxia. P losses occur as particulates attached

to soil sediments from field runoff and streambank erosion [57, 195]. Soluble P can also

leach into groundwater [219]. Buffers prevent P losses through attenuating and infiltrating

runoff, at which point particulate P is converted into biologically active P and is made avail-

able to plants and microorganisms [43]. In fact, the same conditions that are preferred for

denitrification facilitate the process of converting particulate P to biologically active P [61].

Riparian buffers present a potential solution to P pollution, but every ditch and stream in

agricultural watersheds cannot be lined with buffer strips. Terrain analyses are required to

prioritize the location of buffer construction.

In the Midwestern United States, tile drainage exacerbates the problem of nutrient-laden

water. Tile drains are located at some distance beneath the surface of a field and lower

the water table by conveying excess water away from the field. However, after fertilizers

are added to the soil and inorganic nitrogen undergoes nitrification, the resulting nitrates

leach into groundwater and are transported via tile drains to surface waters. Tile drains
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contribute to water pollution, but solutions such as diverting flow to a riparian buffer can

help decrease the amount of nutrients leaving fields [3, 101]. The 1992 National Resources

Inventory database is the most recent and comprehensive report of tile drainage use at the

U.S. county level [231], and for the 17 counties comprising the RRW, on average 51 percent

of the land utilizes tile drainage [247]. It is difficult to assess the extent of tile drainage

in the region, so the results of terrain analyses must be carefully inspected before deciding

where riparian buffers are constructed.

3.1.1 Agricultural Green Infrastructure — Riparian Buffers

Riparian buffers are often most effective along first- and second-order streams [242], where

a majority of the runoff in a watershed begins and can be targeted. Terrain analyses are

utilized to determine where buffers might be most effective throughout the RRW. Terrain

analyses determine topographically optimal locations with the most surface and subsurface

flow where buffers will be most effective. Terrain analysis methods using geographic informa-

tion systems (GIS) have proven effective at discerning fitting locations for buffers [45, 242].

Using the results from the analysis, a potential multi-species riparian buffer is designed

that could be used throughout the RRW. Buffer performance is dependent upon factors in

addition to topography, such as soil type, water table height, and vegetation type, and so

the design can be amended as necessary. Using the principles behind water-quality trading

(WQT), a partnership between DMWW and upstream agricultural operators is one possible

solution to the immense nitrate problems the watershed faces. In total, three scenarios that

DMWW (and Des Moines residents overall) could take to address nitrate pollution are inves-

tigated: S0) continuing business as usual, S1) constructing riparian buffers throughout the

entire RRW, and S2) installing a new nitrate removal facility (Table 3.1). The new nitrate

removal facility is labeled as a centralized, gray approach, and the riparian buffer solution

as the distributed, green approach, using language similar to urban stormwater manage-

ment. The economics of these potential solutions are analyzed with the additional goal of

presenting an example for other communities throughout the Mississippi River Basin. Water

quality is an increasingly important issue, and innovative solutions are required to create
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sustainable changes even while current policy cannot enforce such changes.

Table 3.1: Potential Des Moines Water Works Nitrate Control Solutions.

Scenario Description

S0 Business as usual

S1 ‘WQT’ Riparian Buffer Construction

S2 New Nitrate Removal Facility

Considering the plentiful benefits, the use of buffers is a viable option to manage nitrate

levels throughout the United States. A buffer’s ability to uptake nutrients and protect water

quality is dependent on its location within a watershed. Slope and soil conditions that

lead to higher runoff and sediment generation represent better locations for buffers; these

locations are typically alongside lower-order streams. Correll [45] found that most of the

water moving into receiving water bodies enters through first- and second-order streams.

Tomer et al. [242] further show that buffers function better by treating overland runoff and

shallow groundwater along first- and second-order streams. These streams are often the most

ideal for targeting water quality goals, and the analysis seeks to verify this finding through

investigating first- and second-order streams in the RRW.

The RRW has been widely studied; Jha et al. [124] performed SWAT analyses (Soil and

Water Assessment Tool, made available by United States Department of Agriculture (USDA)

Agricultural Research Service), first calibrating the tool and then completing various sensi-

tivity scenarios. The authors performed a sensitivity analysis in which they increased the

amount of conservation land throughout the RRW, similar to the proposed installation of

riparian buffers. Hatfield et al. [98] presented data from the past 70 years to show how crop-

ping practices, fertilizer use, and land use changes for certain crops have led to changes in

nitrate levels throughout the RRW. Schilling and Zhang [208] broke down nitrate concentra-

tion data in Iowa to determine the proportion of baseflow that contributes to nitrate levels.

Tomer et al. [242] performed terrain analyses in Iowa, focusing on the Keg and Silver Creek

watersheds. Thus, the gap in literature concerning terrain analyses of the RRW precipitates

the necessity of the present analysis.
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3.1.2 The Principles of Water-Quality Trading

Water-quality trading (WQT) represents an opportunity for municipalities, wastewater

utilities, and other regulated dischargers to achieve regulatory water quality goals while al-

lowing for flexibility in the level of technology employed. The U.S. Environmental Protection

Agency (EPA) states that WQT is “an option for compliance with a water quality based

effluent limitation in a National Pollution Discharge Elimination System (NPDES) permit”

[66]. Regulated dischargers, most notably industrial and municipal wastewater treatment

plants (WWTPs), need to meet water quality standards pertaining to the waterbody to

which they discharge effluent. Total maximum daily loads (TMDLs) are assigned if a given

waterbody continually fails to meet water quality standards. It can be difficult for WWTPs

to meet TMDLs if agricultural runoff is a large contributor to the water quality problem.

WQT, then, enables regulated dischargers to purchase agricultural nonpoint source cred-

its. These agricultural nonpoint source credits often lead to adoption of best management

practices (BMPs), such as cover crops, reduced tillage, and riparian buffers. Conceptually,

regulated dischargers should be willing to purchase agricultural nonpoint source credits if

the cost of implementing BMPs is less than treating the water on-site. Additionally, agri-

cultural operators should be willing to sell credits if the price the regulated dischargers are

willing to pay is greater than the credit production costs. Credit production costs include

any verification costs, as well as BMP implementation costs [228]. It is important, however,

to engage agricultural operators throughout the process concerning their positions on such

environmental policies [206]. WQT has been cost-effective for WWTPs in agricultural wa-

tersheds [188], including the Chesapeake Bay [126, 132, 252]. WQT programs often focus on

eutrophication issues associated with nutrients, specifically nitrogen and phosphorus [76, 89].

Using the WWTP as a precedent, the same concept is used to analyze the possibility of

DMWW (a drinking water utility) “purchasing” agricultural nonpoint source credits through

sponsoring installation of riparian buffers throughout the RRW. The proposal is that Des

Moines residents, through DMWW, pay for buffer installations in appropriate locations

upstream to reduce the cost of treating drinking water downstream. There is a similar

precedent in water quantity trading; interbasin water transfers have occurred frequently
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throughout the history of the arid southwestern United States [24, 52]. Drinking water

utilities, to the author’s knowledge, have not previously utilized the ideas behind WQT to

reduce the cost of removing nutrients from water. However, urban residents (through a

drinking water utility) might encourage such a solution to reducing nutrient pollution in

a river/lake/estuary, as their drinking water source. The economic feasibility of such an

approach is explored in the RRW.

3.2 Materials and Methods

3.2.1 Terrain Analysis

Terrain analysis techniques put forth by Moore et al. [173] are used to determine factors

such as upslope contributing area, slope, and catchment area that demonstrate portions of

a watershed featuring water accumulation. Analysis of the RRW relies on two factors; slope

(β, in degrees) and specific catchment area (As, units of m2 m−1). Slope determines the

stream network and subbasins within the RRW, and slope also affects whether a location is

fitting to readily remove nitrates from surface runoff or shallow groundwater flow. Specific

catchment area is the upslope area that can potentially contribute surface runoff to a grid-

cell location per width of flow. Calculating As for a raster of topography requires knowledge

of the overland flow direction between adjacent cells. Thus, the D-∞ method put forth

by Tarboton [236] using software published by D.G. Tarboton [235] is employed. Rather

than the typical 8-direction model, the D-∞ method proportions flow as an angle in radians

between 0 and 2π based on the steepest descent among eight triangular facets formed in a

3x3 cell block, with the cell of interest in the center (see Tarboton [236] for details).

After calculating β and As, compound hydrologic indices can be calculated to identify

priority areas within the RRW. Topographic wetness index (TWI) is defined in Equation 3.1

and is the compound hydrologic index of interest.

TWI = ln(As/tanβ) (3.1)
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TWI is used to demarcate areas most prone to soil saturation during precipitation events.

The tanβ changes slope from degrees to more topographically useful units of rise over run

(m/m). The natural log is used because the ratio (As/tanβ) spans many orders of magnitude

over various landscapes. Areas with a large TWI are better situated for riparian buffers

to remove nitrates. Specifically, flat areas with large upslope contributing areas potentially

enable buffers to uptake nitrates from shallow groundwater flow and filter surface runoff. Flat

areas at the bottom of hillslopes present opportunities for buffers to filter surface runoff, and

flat riparian areas often feature shallow groundwater flow. Permanent vegetation can benefit

water quality in all of these potential situations. Typically, riparian forest buffers function

well for removing nutrients from shallow groundwater flow, while grass strips effectively filter

contaminants from surface runoff [189, 209]. Similar terrain analyses have been applied to

determine priority stream reaches [31] and riparian zones for field-level planning [241].

Raster datasets of the RRW were retrieved from the National Map. The National Map

[246] is a comprehensive bare earth elevation dataset of North America at a 30-meter scale

and provides freely available digital elevation models (DEMs). DEMs for the area surround-

ing the RRW were collected and clipped to the RRW boundaries using watershed delineations

found through the National Hydrography Dataset. Two 8-digit Hydrologic Unit Code regions

comprise the RRW: the North Raccoon (07100006) and the South Raccoon (07100007).

3.2.2 Buffer Design and Cost Analysis

A sustainable approach to nitrate pollution throughout the RRW takes into considera-

tion the economic costs alongside the environmental benefits. A cost analysis is performed

for the distributed approach of agricultural green infrastructure. Equation 3.2 presents the

total cost (CT ) and includes vegetation planting (V ), crop opportunity costs (O), and main-

tenance/labor costs (ML).

CT = V +ML+O (3.2)

The buffer design, summarized in Figure 3.3, determines vegetation costs. Figure 3.3 il-
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lustrates what is called a “buffer unit,” i.e., what comprises a 20 m x 2 m area of buffer.

There are two species of trees (Jack pine, Pinus banksiana, and eastern red cedar, Junipe-

rus virginiana), two species of bushes (redosier dogwood, Cornus stolonifera, and ninebark,

Physocarpus opulifolius), and one species of tall prairie grass (switchgrass, Panicum virga-

tum). All are native to Iowa, and the tree/shrub saplings can be purchased through the

Iowa Department of Natural Resources state forest nursery [117]. Jack pine and eastern red

cedar are chosen for tree species because both are evergreens and both grow at a rapid pace

in full sun. Evergreen trees are preferable over deciduous trees because of the potential for

deciduous trees to eventually contribute to water pollution after litterfall [152]. Redosier

dogwood and ninebark are chosen because of their rapid growth rate and ability to grow

in full sun. Buffer width is significant, as it determines nitrate removal efficiency. Based

off a meta-analysis of riparian buffer studies [159], a 20 meter wide buffer system is chosen.

A 20 meter wide multi-species riparian buffer can be expected to remove about 75 percent

of nitrates coming off agricultural fields [159]. Nitrate levels as high as 30.5 mg/L have

been recorded at USGS Gage 05482500, North Raccoon River near Jefferson, Iowa. Even at

such high levels, assuming a fully effective riparian buffer, nitrate levels would be reduced

to below the 10 mg/L federal drinking water limit set by the EPA [245]. Using a 20 meter

wide buffer balances the tradeoff between nitrate removal and total cost.

Jack Pine
(2m x 2m)

Eastern Red Cedar
(2m x 2m) Redosier Dogwood &

Ninebark (1m x 2m)

Switchgrass (7m wide)Stream

One bu�er “unit”
20m x 2m

Direction of surface runo�/groundwater �ow

Row crops

Figure 3.3: Multi-species riparian buffer design with spacing dimensions. One ‘unit’
represents three parallel Jack pines, two parallel eastern red cedars, one redosier dogwood
bush, one ninebark bush, and a 7m x 2m plot of switchgrass.
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Net present vegetation costs are calculated from three years’ of planting data, discounted

at a rate of 5 percent. The underlying assumption is a 60-70 percent tree/shrub survival rate

from year to year, a conservative approach (see, e.g., [215]). The cost of trees and shrubs are

sourced from the Iowa Department of Natural Resources seedling catalog. Trees require a

shelter and accompanying stake upon planting, and thus these costs are included and based

on a sample manufacturer, Forestry Suppliers [78]. Switchgrass costs are based on the cost

of seed; Equation 3.3 presents the cost of one hectare of switchgrass, where ‘PLS’ indicates

‘pure live seed,’ the term used to describe switchgrass seed. The cost of switchgrass seed

comes from the Osenbaugh Prairie Seed Farms in Lucas, Iowa [186], and the amount of seed

comes from a study published by West and Kincer [254] that determined 6.72 kg PLS ha−1

grew a sufficient amount of switchgrass. Vegetation costs are presented in Table 3.2

$7.50

PLS lb
· lb

0.454 kg
· 6.72 kg PLS

1 hectare
= $111/ha (3.3)

Table 3.2: Vegetation material costs per hectare for the first three years. Ranges represent
the amount of replanting necessary from year to year.

Item Quantity
Initial

Cost

Replanting,

Years 2&3

Tree Shelter,

3 years

Net Present

Cost, 3 years

Eastern Red Cedar 500 $500 $150–$200 $1,129–$1,270 $1,908–$2,142

Jack Pine 750 $413 $124–$165 $1,694–$1,906 $2,336–$2,625

Redosier Dogwood 250 $225 $68–$90 N/A $351–$392

Ninebark 250 $225 $68–$90 N/A $351–$392

Switchgrass 1 $111 N/A N/A $111

Maintenance costs cover several activities and materials, including herbicide treatment

and mowing between rows of vegetation. Mowing is necessary to reduce competition be-

tween inevitably-occurring weeds and the newly planted trees and bushes. Herbicides are

also recommended to reduce such competition. These two maintenance techniques are rec-

ommended by the Iowa State University (ISU) Extension with corresponding maintenance

cost data [119]. Accompanying such maintenance costs are the labor costs associated with
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preparing the land for buffer placement, planting vegetation, and maintaining the buffers.

According to the Bureau of Labor and Statistics 2016 data for the state of Iowa, forest and

conservation workers (occupation code 45-4001) earned a mean hourly salary of $15.86. Us-

ing the ISU Extension labor data to estimate the time required for various activities, labor

costs per hectare of buffer installation are calculated (Table 3.3).

Table 3.3: Maintenance activities and their associated labor costs for buffer installation,
using the labor rate from the Iowa State University Extension, for an entire year. Ranges
represent the amount of labor required based on replanting rates.

Site Prep (hr/ha) 5

Vegetation Planting (hr/ha) 40–50

Site Maintenance (hr/ha) 3.75–7.5

Mowing (hr/ha) 3.75

Labor Rate ($/hr) $15.86

Herbicide Costs ($/ha) $39–$42

Total Labor ($/ha) $871–$1,093

The final category included in the riparian buffer cost analysis is labeled “opportunity

costs.” Payments to farmers for use of their land as well as payments in recompense for

lost crop growth (and thus, lost revenue) are included in opportunity costs. There are

six counties that make up the RRW: Dallas, Guthrie, Greene, Carroll, Sac, and Calhoun.

Yield, hectares planted, and market price data published by the USDA National Agriculture

Statistics Service for the year 2016 are used to calculate the cost of taking corn/soybean

crops out of production (Table 3.4). Upper and lower bounds represent the amount of land

assumed to viably support crop growth. The conservative upper bound assumes all buffer

land otherwise would have supported crops, and the realistic approach assumes 75 percent of

buffer land would have supported crops (lower bound). Buffers would be placed on already

marginal land, and thus, in practice, DMWW and the farmers could likely compromise on

a payment between the two bounds. Final opportunity costs are an average between the six

counties. Opportunity costs represent the largest portion of total costs for the riparian buffer
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scenario because of the fact that farmers are being asked to take land out of production,

representing both an economic and cultural cost.

Table 3.4: Land lease and opportunity costs per hectare for RRW counties. Values are
based on 2016 National Agriculture Statistics Service data, in addition to the land rent
values.

County
Corn

(ha)

Opportunity

Cost—Corn

Soybean

(ha)

Opportunity

Cost—Soybean

2017

Rent

Total

Opportunity

Cost ($/yr)

Dallas 58,881 $1,825–$2,247 39,416 $1,586–$1,929 $558 $1,729–$2,120

Guthrie 44,919 $1,716–$2,126 36,381 $1,515–$1,857 $487 $1,626–$2,018

Greene 72,842 $1,840–$2,266 47,347 $1,676–$2,048 $561 $1,775–$2,179

Carroll 79,115 $1,873–$2,293 43,503 $1,641–$1,983 $613 $1,791–$2,169

Sac 68,795 $1,932–$2,374 52,001 $1,718–$2,090 $603 $1,840–$2,260

Calhoun 74,461 $1,866–$2,294 51,596 $1,678–$2,044 $581 $1,789–$2,194

3.2.3 Nitrate Removal Facility Costs

In the second proposed solution to the nitrate management issue, costs required for

DMWW to operate its nitrate removal facility, as well as construct a new treatment facility

altogether, are gathered. A recently-passed Five-Year Capital Plan [55, 165] includes $70

million earmarked specifically for nitrate removal measures, with an additional $10 million in

the sixth year. Net present cost of such expenditures is calculated using a 5 percent discount

rate, similar to the distributed, green approach. DMWW CEO Bill Stowe has stated that

the utility company prefers to continually repair and maintain the current nitrate removal

facility over constructing a new one [165]. A new facility could cost up to $184 million [46],

a tremendous burden on Des Moines residents. However, such a project would include high

costs initially but reduced maintenance costs over time. The $184 million estimate is used

as the upper bound on the second scenario.
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3.3 Results

Terrain analyses confirmed that first- and second-order streams are most suitable for buffer

placement within the RRW. Figure 3.4 presents TWI for the extent of the RRW, and Table

3.5 gives the results for each stream order. A Student’s t-test is performed to determine

which stream orders are significantly different from one another, and the results indicate

that first-order streams have significantly (p < 0.05) higher TWI values compared to higher-

order streams. This finding agrees with other studies analyzing optimal buffer placement

[9, 45]. Consequently, first-order streams in the RRW are focused as prime locations for

buffer installation under the agricultural green infrastructure approach.

Table 3.5: Topographic wetness index results for the Raccoon River Watershed indicate
that first-order streams are most suitable for buffer location based on topography.

Stream Order Maximum Range Mean Standard Deviation

1 17.9 16.1 5.41 1.93

2 16.3 14.8 5.37 2.00

3 17.5 15.6 5.27 1.98

4 19.2 17.5 5.08 1.92

5 20.4 18.8 4.94 1.82

6 20.8 19.1 4.69 1.72

7 22.7 21.2 4.71 1.67

8 23.2 21.6 4.59 1.71

Table 3.6 summarizes the total costs per hectare of riparian buffer installation, and Table

3.7 presents overall costs for each of the scenarios. The business as usual scenario, S0, is

not feasible because the current insufficient nitrate removal facility will eventually become

defunct without renovation or replacement; not meeting drinking water nitrate standards is

not allowed by law. Final costs for the distributed, green approach are estimated between

$135-$160 million. Again, the proposal is a partnership between DMWW and upstream

agricultural operators, based off the principles of WQT, wherein Des Moines residents are

paying for these costs over the period of time required to finance the buffer installation
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project. These numbers represent a conservative approach in which agricultural green in-

frastructure in the form of riparian buffers are installed along every first-order stream. In

total, there are about 10,700 hectares of riparian buffer, and the upper and lower bounds

represent the amount of replanting required (and accompanying labor/maintenance costs).

The centralized, gray approach, has wide monetary bounds due to the different approaches

DMWW might take. The lower bound ($71 million) represents money already earmarked for

updates and maintenance on the nitrate removal facility [55]. DMWW already anticipates

passing these costs to ratepayers. The upper bound ($184 million) is the estimated cost

of a completely new nitrate removal facility [46]. Constructing a new facility is the worst-

case scenario economically, as DMWW would require financing, the cost of which would

eventually be transferred to ratepayers.

27



¯0 30 6015 Kilometers

Des Moines

¯
0 200 400100 Kilometers

Topographic Wetness
Index (TWI)
Value

High : 23.2

Low : 1.37

Created by J.F. Canning: January 15, 2018

Des Moines

Figure 3.4: The resulting TWI map. A higher TWI represents land more suitable for
riparian buffer placement.
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Table 3.6: Total net present cost of the agricultural green infrastructure approach over
three year period per hectare.

Vegetation Costs $ 5,071 – $ 5,678

Labor Costs $ 2,491 – $ 3,126

Opportunity Costs $ 5,028 – $ 6,167

Net Present Cost $ 12,590 – $ 14,970

Table 3.7: Scenario analysis results show that water-quality trading (WQT) can be a cost
competitive approach to nitrate control through agricultural green infrastructure.

Scenario Description
Cost

($ million)
Satisfies EPA Requirements?

S0 Business as usual N/A No — illegal

S1 WQT Riparian Buffers $ 135–$ 160 Yes — nitrate levels below 10 mg/L

S2 Nitrate Removal Facility $ 71–$ 184 Yes — nitrate levels below 10 mg/L

3.4 Discussion

3.4.1 Policy Implications — Current Policy and Shortcomings

Terrain analysis results can lead to improved water quality if riparian buffers are em-

ployed throughout the RRW; however, implementing buffers is currently left to farmers and

other riparian property owners to do so voluntarily. Buffers are often supported financially

and technologically by USDA conservation reserve programs, but there are no regulations

requiring farmers to install buffers. Researchers have scrutinized whether voluntary conser-

vation programs have environmental benefits that actually outweigh the cost of taxpayer

dollars. Several studies investigated the cost-benefit relationship of agri-environment pro-

grams [41, 72]. Claassen et al. [41] found that both the Conservation Reserve Program (CRP)

and Environmental Quality Incentive Program (EQIP), two of USDA’s largest conservation

programs, have much room for improvement; i.e., the deficit between benefits and costs can
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be eliminated and then reversed. The authors state that targeting payments toward perfor-

mance of conservation measures (instead of mere practice) can increase benefits, and costs

could be pushed down through encouraging more intense competition for payments [41].

Quantification of benefits is crucial for informing policy, and so studies that detail benefits

are important for improving voluntary conservation programs.

Various authors have analyzed whether source water protection is a viable, cost-effective

program. In 1986, Shortle and Dunn [220] compared policy measures that could be used to

improve water quality conditions hampered by agricultural runoff. The authors found that

economic incentives (e.g., a tax on soil loss) placed on farm management practices were the

most practical and cost-effective measures that could be implemented. A small portfolio

of incremental taxes for certain management practices would encourage farmers to adopt

practices that maximize social environmental benefits. Three decades have passed since

Shortle and Dunn [220], along with Harrington et al. [95], Gianessi and Peskin [81], and

Libby [148], recommended economic incentives change behaviors and improve the quality of

source water rather than voluntary participation.

In 2014, USDA introduced the Source Water Protection Program (SWPP) with a goal of

helping communities, especially rural communities, develop a plan to decrease source water

pollution risks. The SWPP does not 1) regulate agricultural runoff; 2) require that farmers

comply with runoff standards; or 3) levy taxes on farmers for creating polluted waters.

The Clean Water Act prevents SWPP, CRP, EQIP, and other programs from enforcing any

sort of regulation restricting the runoff flowing off agricultural fields (as nonpoint sources),

subsequently affecting rural communities. Despite long-standing research recommendations

to create economic incentives to deter source water pollution, policymakers have been unable

to improve upon voluntary conservation measures. Source water pollution became a serious

issue for the city of Des Moines, Iowa, USA, and led to potential changes in how agricultural

runoff might be addressed.
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3.4.2 DMWW Lawsuit and Long-Term Policy Significance

Polluted drinking water has become an increasingly divisive issue in Des Moines. On

March 16, 2015, DMWW filed a lawsuit (Bd. of Water Works Trs. of Des Moines v. Sac

Cty. Bd. of Supervisors as Trs. of Drainage Dists. 32, 42, 65, 79, 81, 83, 86, No. 5:15-cv-

04020, 2015 WL 1191173 ) against drainage districts in three Iowa counties (Buena Vista,

Calhoun, and Sac). DMWW alleged that the drainage districts, located upstream of Des

Moines and draining into the RRW, illegally discharge polluted water from a point source,

i.e., tile drains. DMWW contends that the runoff is indeed a point source and thus liable to

the full regulatory requirements of the Clean Water Act [197]. DMWW has been operating a

nitrate removal facility since 1991, and costs to remove nitrates have risen to between $4,000

– $7,000 per day [46]. If elevated nitrate levels continue, the utility will need to construct

a new nitrate removal facility costing taxpayers between $76 million and $183.5 million

[46]. There are 77 entities that discharge into the Raccoon River and must hold National

Pollution Discharge Elimination System permits, which require nitrate levels below 10 mg/L

of effluent [198]. DMWW argued that the drainage districts must also remain below this

nitrate threshold.

In January and March of 2017, after two years of deliberation, the final rulings in the

DMWW lawsuit came from the Iowa Supreme Court and a federal judge, respectively. The

former stated that the drainage districts were not responsible for costs incurred due to high

nitrate levels, declaring the drainage districts would not pay the $1 million DMWW was

demanding. The federal judge argued that drainage districts lack the regulatory powers

bestowed on other governmental entities, and furthermore, they were not depriving DMWW

of the water, a common good, in the Raccoon River [23]. The judge abstained from ruling

whether tile drains can be regulated as a point source. Thus, DMWW and other water

quality stakeholders were forced to resort to encouraging voluntary conservation efforts and

awaiting legislative action pertaining to nutrient pollution. Even though the courts decided

the drainage districts are exempt from regulation and from paying for nitrate removal, the

lawsuit could still have its desired effect. For example, the EPA could hand down a consent

decree that forces a state to develop stricter regulations on agricultural runoff [46]. Already,
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there are 12 Midwestern states that have developed nutrient reduction strategies for this

very purpose [e.g., 113, 118, 167], but such strategies do not have direct regulatory power.

The recommended best management practices are left up to farmers to voluntarily adopt.

However, voluntary conservation efforts can be ineffective, and thus another approach might

be needed for water quality stakeholders. Water-quality trading is one such approach.

3.4.3 Comparing the Gray and Green Approaches

The RRW has an increasing water quality problem. DMWW unsuccessfully attempted to

force farmers to pay to treat the water flowing off their fields, and the paltry effectiveness of

USDA conservation programs indicates that novel physical and policy solutions are required.

A distributed, green approach — widespread riparian buffer installation — would indeed

cost DMWW (i.e., ratepayers) tens of millions of dollars more than continuing to maintain

the nitrate removal facility. However, there are many benefits to the distributed, green

approach compared to the centralized, gray approach. Construction and maintenance of

the buffer network would require hundreds of hours of human labor, giving people living-

wage and accessible employment. Such a social co-benefit pointedly addresses the triple-

bottom line assessment of sustainability. Constructing a new nitrate removal facility would

also require increased engineering and manufacturing jobs, an unquantified benefit of that

scenario. However, such jobs might not be as accessible to unemployed/underemployed

lower skilled laborers seeking work. Further benefits include carbon sequestration [187] and

wildlife habitat due to the vegetation [51]. Once established, the trees would provide cooling

effects throughout the stream network, providing further water quality benefits [174]. These

benefits are not quantified in the present analysis, but installation of buffers offers more

than reduction of nitrates in drinking water. Economically and socially, although buffer

installation costs more than maintaining the present nitrate removal facility, the former

offers various additional environmental and social benefits.

Agricultural green infrastructure is indeed more expensive than maintaining and updat-

ing the current nitrate removal facility, but building out riparian buffers could avoid the

extravagant costs associated with building a new nitrate removal facility. DMWW already
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has committed $71 million in maintaining the current facilities. At some point, increased

investment will be necessary to at least renovate the facility, especially if nitrate levels con-

tinue to rise. Building a new facility might not be necessary in the near future given such

investment in renovation; however, the facility cannot endure into perpetuity. A new facil-

ity will most likely be necessary at some point, at which time costs will almost certainly

be higher. Furthermore, maintaining and/or building the current/new facility will accrue

no environmental or social benefits. It might be more expensive at the current moment to

install widespread riparian buffers, but such a project helps avoid the need to invest heavily

in a new facility in the medium- to long-term future.

Both the centralized, gray approach and the distributed, green approach fulfill the re-

quirement that DMWW reduce nitrate levels below the federal standard. However, the

distributed, green approach might also help to alleviate an issue that appeared during the

DMWW litigation: the rural-urban disconnect. The U.S. Water Alliance recently pub-

lished seven ideas to solve America’s water crises, and at the top of the list is accelerat-

ing “agriculture-utility partnerships to improve water quality” [70]. Water-quality trading

through the construction of riparian buffers allows the wealthy and resource-intensive urban

residents to sponsor projects in rural communities that provide clean drinking water. Rural

residents are fairly compensated for use of their land, and there are other environmental

and social/economic benefits for both communities. WQT enables a compromise that offers

benefits to both urban and rural residents, benefits that the lawsuit could not offer to both

parties.

Additional considerations beyond the present analysis include determining where tile

drainage is used throughout the RRW and incorporating such drainage into the multi-species

riparian buffer design. Buffers do not reduce nutrient pollution if tile drains are installed;

however, there are potential solutions available. One such suggested solution is the use of

constructed wetlands at certain intervals along a field with tile drainage [104, 192]. Con-

structed wetlands are similar to riparian buffers in that they feature vegetation that will

uptake nutrients running off agricultural fields; their defining feature, however, is the anoxic

conditions they create, allowing for denitrification to occur. Constructed wetlands are placed

between the tile drain outlet and the recipient stream, thus acting to purify surface runoff and
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groundwater before it enters the stream. To reduce the problem of flow bypassing riparian

buffers, Schultz et al. [215] recommended that one hectare of wetland be constructed at the

field outlet for every 100 hectares of tile-drained agricultural field. Using the distributed,

green approach in the RRW would require field-level analysis to determine whether tile

drainage is present and, if so, where to install constructed wetlands.
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CHAPTER 4

SOCIOECONOMIC ANALYSIS

As was evident in the agricultural green infrastructure analysis, comparing costs between

various GSI projects and traditional gray infrastructure improves with the inclusion of eco-

nomic and social impacts [258]. In an urban context, specifically quantifying co-benefits

and encouraging municipalities to continually monitor and adjust GSI projects as an “ur-

ban experiment” [29, 36] adds to the store of data and information that investors demand.

Providing decision makers with a framework that quantifies economic, environmental, and

social costs and benefits can help alleviate potential investors’ risks [129].

Analyzing social co-benefits can better equip decision makers in choosing how to design

and construct GSI, depending not only on topographic or hydrologic factors but also human

and social factors. The primary goals of GSI are typically environmental, i.e., hydrologic ben-

efits, and economic/social co-benefits are an additional bonus. Many available stormwater

calculators, featuring options to include GSI in their analyses, present the various hydrologic

benefits that GSI offers without including details on potential economic or social co-benefits.

This exclusion could partly be due to the nature of economic and social co-benefits — they

are difficult to quantify and even more difficult to generalize across the various scenarios an-

alyzed with stormwater calculators. However, municipal and regional decision makers strive

to act as good stewards of the public’s tax money, and thus these leaders seek out some

sort of analysis pertaining to potential co-benefits of implementing GSI throughout their

communities.
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4.1 Stormwater Calculator Analysis

4.1.1 Methodology

Morales-Torres et al. [175] reviewed 11 decision support tools that analyze the costs and

benefits of various forms of GSI, finding them to be lacking in presenting the entire breadth

of benefits in the decision making process. The authors also created their own decision

support tool, E2STORMED. Throughout the publication, Morales-Torres et al. [175] focus

on hydrologic benefits, energy consumption, and costs estimation; they do not hone in on

the potential social benefits of the various decision support tools. Jayasooriya and Ng [122]

compared 20 different GSI modeling tools, reviewing which GSI practices are supported (i.e.,

rain gardens, permeable pavement, and so on) and the purpose of such modeling tools. The

authors make mention of the need for quantifying social benefits, but they do not analyze

whether the tools themselves present social co-benefits. Available literature does not address

whether or not stormwater calculators and tools avail social co-benefits to users. Value is

added to the greater body of knowledge concerning GSI through the analysis of social co-

benefits in these calculators and tools.

This portion of the analysis critically assesses 21 different stormwater calculators and

modeling tools with the goal of determining to what extent each presents potential social

co-benefits of GSI. When applicable, the calculator/tool was downloaded to discern any in-

dication of social co-benefits. Otherwise, manuals, reports, and publications were analyzed

for any presence of social co-benefits. A variety of potential social co-benefits was sought

out, including improved mental health, recreation, decreased anxiety/stress, improved emo-

tional health, reduced crime, and increased human engagement of the natural environment.

Calculators and tools that include one or more social co-benefits are discussed in detail. A

framework is then presented for amending the paradigm in GSI planning to incorporate a

heightened awareness of social co-benefits.

Currently-available tools often highlight one particular region. These tools certainly offer

valuable insight into the regions of origin (e.g., Tucson [115], New York [180], and St. Louis

[166], among others) but are less applicable outside that region. Furthermore, current tools
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frequently cannot function across multiple spatial-temporal scales; i.e., they provide GSI

benefits at the site-scale but not at a watershed-scale. The scale on which such calculators

attempt to include social co-benefits is noted.

4.1.2 Results

Table 4.1 presents the results of the stormwater calculator analysis. Of the 21 GSI cal-

culators, frameworks, and tools being analyzed, five have some sort of mention of social

co-benefits, but only two attempt to quantify social co-benefits. The five tools acknowledg-

ing social co-benefits are the Center for Neighborhood Technology (CNT) Green Values Na-

tional Stormwater Management Calculator (CNT Green Calculator), the Victoria Institute

of Strategic Economic Studies (VISES) Green Paper, the CNT “The Value of Green Infras-

tructure” Framework (CNT GI Framework), the Stantec Evaluation of GI/LID Benefits in

the Pima County Environment (Stantec Evaluation), and the Mersey Forest GI Valuation

Toolkit (Mersey Toolkit). The CNT GI Framework and Mersey Toolkit go further and pro-

vide methods to quantify some social co-benefits. The other 16 calculators, frameworks,

and tools all focus primarily on hydrologic benefits of GSI, including water quantity and

quality improvements. While these tools are certainly useful for planning the hydrologic and

environmental impacts of GSI installation, they would not be helpful in accounting for social

co-benefits.
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The CNT Green Calculator was created with the purpose of evaluating the performance,

cost, and benefits of GSI and comparing to conventional stormwater management. Many

studies have utilized the CNT Green Calculator, especially for its capability to estimate

the cost comparison between gray and green stormwater infrastructure [93, 120, 121, 135,

258]. The CNT Green Calculator includes several potential social co-benefits in its analysis,

including aesthetic, public health, recreation, shelter, and sound absorption. However, no

method of quantifying such social co-benefits is presented, and furthermore, the aesthetic

and shelter categories do not cite any sources. Any proposed project evaluated with the

Green Calculator will yield hydrologic, environmental, and economic benefits, but the tool

will not quantify social co-benefits for the user. The CNT Green Calculator indeed makes

users aware of potential social co-benefits but only if the user investigates the benefits fact

sheet.

The VISES Green Paper and Stantec Evaluation likewise present potential social co-

benefits without methods of quantifying those benefits. The VISES Green Paper goes into

great detail about potential social co-benefits at the individual, community, and institu-

tional levels. The authors further discuss “social discounting,” or the practice of creating

a present value for future long-term social benefits like recreation or improved physical and

mental health. The VISES Green Paper does present quantified social co-benefits of several

case studies; however, these numbers actually came from the Mersey Toolkit. The Stantec

Evaluation uses a proprietary calculator called AutoCASETM, created by Impact Infrastruc-

ture, LLC [114], as well as the EnvisionTM rating system [116]. AutoCASETM does produce

detailed social co-benefits, such as reduced heat stress mortality for the Pima County case

study. Because it is proprietary, however, the methodology is not presented, and current

costs between $1,500–$25,000 prevent present analysis of the GSI tool. The EnvisionTM

rating system quantifies social co-benefits, but at the completion of a project, as is the case

with the Stantec Evaluation. The report uses EnvisionTM to corroborate how GSI can lead

to social co-benefits. Overall, the Stantec Evaluation presents robust social co-benefits for

GSI implementation in Pima County, Arizona, but the methodology is relatively opaque and

not transferable to other projects.

The CNT GI Framework includes four social co-benefits: aesthetics, recreation, reduced
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noise pollution, and community cohesion [35]. Aesthetics are quantified as the increase in

property value due to the presence of trees and green space. Recreation is quantified as an in-

crease in “user days,” or the additional days people gain access to the green space. The CNT

GI Framework cites one Philadelphia study that quantified the value of increased user days

for recreation [196]. Reduced noise pollution is also monetized as property values increase in

response to decreased decibel levels. Lastly, community cohesion is qualitatively described as

a benefit. The CNT GI Framework satisfactorily describes three quantified social co-benefits

— such results would be helpful for planning GSI installation in the future. However, one

issue is that property value increases can be highly variable and location-specific. The stud-

ies cited in the CNT GI Framework took place in Portland, OR; Philadelphia, PA; and

King County, WA. Although the methods of valuation could apply elsewhere, GSI might

not have the same magnitude of effect in other locations. Furthermore, no mention is made

of environmental justice in relation to social co-benefits. Overall, the CNT GI Framework

robustly presents several social co-benefits, given the difficulties of quantifying such benefits

as property value increases.

Lastly, the Mersey Toolkit contains a thorough quantification of social co-benefits. In

fact, the Mersey Toolkit focuses on social co-benefits: 6 of 11 subcategories of the calculator

concern some measure of social co-benefits. These benefits categories include place and

communities, health, land and property values, labor productivity, tourism, and recreation.

The calculator’s spreadsheets are detailed and require a deep knowledge of the potential

GSI project, leading to robust results. Results include a cost-benefit analysis, a summary

of economic outputs, and a summary of all benefits. The Mersey Forest created the Toolkit

with the purpose of fostering a common understanding of all the potential GSI benefits

between government, businesses, and civil society through an open-source platform.

The traditional approach to planning and implementing GSI focuses on hydrologic im-

provements as the primary goal. Economic and social co-benefits are not the focus, and the

presence of such co-benefits might or might not add value to the GSI project sponsor. The

16 calculators that do not make mention of these co-benefits corroborates this traditional

approach. A change to the traditional approach is suggested to incorporate consideration

of the sustainability triple bottom line, wherein hydrologic, economic, and social benefits
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are analyzed and incorporated into a GSI project from the beginning (Figure 4.1). Utilizing

such a tool as the Mersey Toolkit, GSI planners can better ensure that projects advance the

ability of people to derive value from interaction with GSI.

Environmental Economic Social

Desired Green Stormwater Infrastructure Outcomes

Status Quo

Hydrologic/Environmental

Economic

Social

Reduced runoff volume; 
improved water quality; 
reduced urban heat 
island effect; 
groundwater recharge; 
enhanced air quality

Increased property value; 
additional investment and 
development of areas 
with GSI

Improved mental health; 
reduced crime; access to 
recreation; enhanced 
physical health; 
environmental justice

Figure 4.1: A shift in thinking is suggested, where green stormwater infrastructure
designers and decision makers incorporate economic and social co-benefits at the planning
stage and include those goals along with hydrologic benefits.

4.2 Green Stormwater Infrastructure and Environmental Justice
Statistical Analyses

4.2.1 Chicago Data Description

GSI throughout the entirety of the City of Chicago is analyzed. Census tract-level socioe-

conomic data are first collected for the year 2015 for the 828 tracts within the city limits

of Chicago. Race and income subsets of Census data are included. Income data consisted

of the median household income. Race data include seven categories specified by the Cen-

sus Bureau; white, black or African American, Asian, Native American and Alaska Native,

Native Hawaiian and other Pacific Islander, some other race, and two or more races. These
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data are used to determine the percent white population present in each Census tract and

use that percentage in the analysis. Note that there is inherent bias in these socioeconomic

Census data, particularly regarding response bias. Furthermore, race categories can be con-

fusing and even controversial [137]. The analysis proceeds fully acknowledging that these

biases exist and might misrepresent the findings, yet U.S. Census data are the most complete

socioeconomic data available.

GSI data were collected from the City of Chicago Data Portal [40] on neighborhood

gardens, green roofs, and park spaces. As of 2015, there were 64 gardens, 172 green roofs,

and 462 parks throughout Chicago. Data are downloaded as shapefiles and include the

location of GSI and the areal coverage. Figure 4.2 presents an overview of the GSI within

Chicago. The GSI data were combined with Census tract data and use ArcGIS to interpolate

results for the frequency and areal coverage of GSI in each given Census tract. These results

are used to perform statistical analyses on potential association of GSI with socioeconomic

factors.
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GSI in Chicago
! Neighborhood Gardens
X Green Roofs

Parks

0 10 205 km ¯

Green Infrastructure in Chicago by Census Tract

0 60 12030 km

Chicago
Illinois

Figure 4.2: Green stormwater infrastructure (GSI) locations within the City of Chicago.
The analysis investigates whether there is a relationship between the frequency and areal
extent of GSI and socioeconomic factors for different Census tracts (data source: City of
Chicago [40]).
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4.2.2 Chicago Statistical Analysis

The aim in analyzing the City of Chicago is to determine whether both the number of GSI

and areal coverage are associated with any trends in socioeconomic data. Linear regressions

are employed to determine such associations. In total, there are five dependent variables and

two independent variables — models are summarized in Table 4.2. Equations 4.1 through

4.5 represent the models, where PWhite is the percent white population and Y is median

household income. For all regression models, a significance level of α = 0.05 is chosen.

FreqGarden = β0 + β1PWhite + β2Y (4.1)

AreaGarden = β0 + β1PWhite + β2Y (4.2)

FreqRoof = β0 + β1PWhite + β2Y (4.3)

AreaRoof = β0 + β1PWhite + β2Y (4.4)

AreaParks = β0 + β1PWhite + β2Y (4.5)

Table 4.2: The ten components as part of the Chicago analyses comprise racial makeup,
income, and educational attainment.

Socioeconomic Indicator Garden Green Roof Park

Race Frequency Area (sq ft) Frequency Area (sq ft) Area (ac)

Income Frequency Area (sq ft) Frequency Area (sq ft) Area (ac)

4.2.3 Chicago Results

Concerning the analysis of Chicago, the five regression models produced rather uncon-

vincing results. Of the five, only one model was statistically significant: furthermore, only
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the median household income was a significant indicator variable (for both of the green roof

models). Table 4.3 presents the results for all of the models. The green roof frequency

model was significant, and median household income was a significant predictor in that

model (correlated positively with GSI): however, the poor R2 value of 0.04 indicates that

more predictor variables would be necessary to fully predict variation in the frequency and

area of green roofs in Chicago. Although the results are not conclusive regarding environ-

mental justice in Chicago, it is worth establishing that data do exist and can be analyzed.

The analysis in Chicago is a springboard for a deeper look into environmental justice and

GSI in Philadelphia.

Table 4.3: Resulting significant linear regression coefficients based on household income.

GSI Neighborhood Gardens Green Roofs Parks

Model Count Area Count Area Area

R2 0.02 0.01 0.04 0.03 0.003

Significant

Variables

Median Household

Income (+)

Median Household

Income (+)

p-value 0.58 0.73 0.03 * 0.09 0.52

4.2.4 Philadelphia Data Description

The analysis of GSI in Philadelphia (see Figure 4.3) involves a related yet different statis-

tical approach. Multiple years of Census data are collected for Philadelphia, spanning from

2000 to 2016. Of particular interest are two subsets of the overall Census data: race and

median household income, and the inherent bias mentioned previously is acknowledged.
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PA Rivers
Philadelphia

¯

0 10 205 km

0 400 800200 km

¯
Philadelphia

Created by J.F. Canning
February 21, 2018

Figure 4.3: Philadelphia is situated along the Delaware River, and several tributaries run
through the City (data source: The Pennsylvania Geospatial Data Clearinghouse [237]).

The United States Census Bureau has data available at the tract-level for the years 2000

and 2009–2016. Figure 4.4 presents the 2015 median household income and percent white

residents at each tract, one example of the data in Philadelphia. The 2000 and 2010 data
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are the result of decennial efforts made by the Census Bureau. The 2009 and 2011–2016

data are the result of five-year American Community Survey (ACS) responses. The ACS

began in 2005, and the first multi-year results were published in 2008. Initially, information

was only collected in areas with a population greater than 20,000: however, beginning with

results published in 2009, data were provided at the Census tract-level. Since the data are

limited, non-parametric statistical tests are employed to accommodate the relatively small

number of observations.
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Created by J.F. Canning
February 26, 2018

2015 Median
Household Income

$11,100 - $25,000
$25,001 - $34,700
$34,701 - $45,000
$45,001 - $60,800
$60,801 - $180,000

0 10 205 km
¯

2015
% White

0 - 7
7 - 27
27 - 57
57 - 80
80 - 100

White space indicates
tracts with no data

Figure 4.4: The median household income and racial makeup of Philadelphia in 2015 shows
large differences between the city center and outlying areas (data source: U.S. Census
Bureau).

Open-source GSI data from The Pennsylvania Geospatial Data Clearinghouse are then col-

lected. The ‘Philadelphia Green Stormwater Infrastructure Projects’ [238] includes projects
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that began since the inception of the Philadelphia ‘Green City, Clean Waters’ program in

2011. This set of GSI data was chosen to analyze socioeconomic characteristics of Cen-

sus tracts before and after GSI installation in 2011. In total, there were 277 different GSI

projects, comprising of various types of GSI (stormwater tree trenches, rain gardens, infiltra-

tion trenches, and others). Figure 4.5 presents the location of GSI throughout Philadelphia.

Created by J.F. Canning
February 26, 2018

¯
0 6.5 133.25 km

Green Stormwater Infrastructure
Green Roof
Infiltration/Storage Trench
Other
Porous Paving
Rain Garden
Stormwater Basin
Stormwater Bumpout
Stormwater Planter
Stormwater Tree Trench
Stormwater Wetland
Swale

Figure 4.5: Green stormwater infrastructure locations within the City of Philadelphia
(data source: The Pennsylvania Geospatial Data Clearinghouse [238]).
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4.2.5 Philadelphia Statistical Analysis

In total, there are nine years of socioeconomic data: three years before GSI installation

and six years after. A non-parametric approach is then taken to analyze this relatively

small dataset. Non-parametric testing assumes the data are independent and identically

distributed, and is suitable for datasets of limited size. The Wilcoxon Rank Sum Test is

utilized, a two-sample location problem that tests whether medians of the two samples are

equal to one another [256]. The prediction is that median household income and percent

white population will exhibit a statistically significant change after GSI installation efforts

were initiated in 2011. Equation 4.6 lists the null and alternate hypotheses, where µ repre-

sents median household income or percent white population in a given tract. A significance

threshold of α = 0.05 is used to distinguish tracts that exhibit changes in income or percent

white population before and after GSI installation.

H0 : µpre = µpost

HA : µpre 6= µpost

(4.6)

The 277 GSI projects were spread throughout 142 Census tracts as of 2013. Of those 142

tracts, 36 were newly created at the 2010 Census, meaning that 106 existed at the 2000

Census and 2009 ACS data. There are a total of 384 tracts in Philadelphia as of 2016,

and there are a total of 106 tracts with complete data. It is worth noting that numerous

tracts are either not populated or have some extenuating circumstance rendering them non

applicable to the analysis. For example, Tract 9891 encompasses a prison and thus has a

population with no income; Tracts 50, 9807, and 9809 have no population, and Tract 9803

is the Northeast Philadelphia Airport.

4.2.6 Philadelphia Results

After performing a Wilcoxon Rank Sum Test on the median household income and per-

cent white population before and after Philadelphia’s Green City Clean Waters program

initiation in 2011, the analysis determined that 29 tracts exhibit a significant difference in

median household income and 26 tracts exhibit a statistically significant difference in per-
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cent white population (p < 0.05). Of the 29 tracts that underwent a significant change in

median household income before and after GSI installation, 7 increased in median household

income between 2000 and 2016 (dollar amounts were adjusted for inflation). The mean 2000

household income in tracts that underwent a significant change was $37,300, lower than the

overall mean of $38,800 for all tracts analyzed (in 2016 inflation-adjusted dollars). Of the 26

tracts with a significant change in percent white population, 16 had an increase in percent

white population between 2000 and 2016. In 2000, the mean percentage of white population

in tracts that underwent a significant change was 20.6 percent, lower than a mean value

of 30.8 percent for all tracts analyzed. There were eight tracts that exhibited a significant

change in both median household income and percent white population: two tracts had an

increase in both factors; two tracts had a decrease in both factors, and four tracts had a

decrease in median household income and simultaneous increase in percent white population.

Figures 4.6 and 4.7 graphically show the analyzed tracts and their changes in percent white

population and median household income, respectively.
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Excluded Tract

Created by J.F. Canning
February 26, 2018

¯
0 6.5 133.25 km

Difference in Percent White
Between 2000 and 2016

-48.7 - -1.1
-1.1 - -0.5

4.1 - 12.5
12.5 - 34.8

-0.5 - 0.0

0.0 - 4.1

Statistically Significant Difference
Pre- and Post-GSI

Figure 4.6: 106 tracts were analyzed for significant changes in racial makeup before and
after green stormwater infrastructure (GSI) installation in 2011. Positive change indicates
that the percentage of white residents increased between 2000 and 2016, while negative
change indicates that racial diversity increased between 2000 and 2016. Hatching on an
analyzed tract marks a statistically significant (p < 0.05) change in the percent of white
residents.
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Figure 4.7: 106 tracts were analyzed for significant changes in median household income
before and after green stormwater infrastructure (GSI) installation in 2011. Positive
change indicates an increase in income between 2000 and 2016, and negative change
indicates the opposite. Hatching on an analyzed tract marks a statistically significant (p <
0.05) change in the percent of white residents.
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4.3 Statistical Analyses Discussion

These analyses first demonstrate that existing data can be analyzed using socioeconomic

indicators to predict GSI installation in Chicago. Regression is used to show that median

household income has a positive correlation with green roofs. That particular model is

significant, yet ineffective with low predictive capability. However, the correlation between

median household income and GSI still exists — as income increases, so does the likelihood

that GSI is present near that Census tract. Further work could investigate more factors

that could contribute to the presence of GSI throughout Chicago. Regression is a potential

method of analyzing GSI for environmental justice implications. The Philadelphia analysis

builds off these conclusions from the Chicago analysis.

Concerning Philadelphia, the analysis yielded some interesting and significant results.

Multiple factors affect changes in median household income and the demographic makeup

of each Census tract. Capturing all of these factors is outside the scope of this work;

however, these results present possible correlations between GSI and income/demographics

that have environmental justice implications. The 22 of 29 tracts that experienced a decrease

in median household income between 2000 and 2016 could indicate that Philadelphia is

intentionally installing GSI in economically depressed areas. Furthermore, the mean 2000

median household income was lower in these 22 tracts as compared to all tracts analyzed. In

their “Green City, Clean Waters” Program Summary, the Philadelphia Water Department

explicitly mentions striving to “restore urban waterways” in “areas not historically targeted

by environmental outreach,” i.e., environmental justice communities [191]. It would appear

that Philadelphia is indeed focusing on communities that had been experiencing declines

in median household income as locations for GSI installation. These results reflect this

correlation between GSI and tracts that underwent a decrease in median household income.

This analysis of changes in demographics (i.e., changes in the percent white population

living in a given tract) also yields results with implications for environmental justice. The 16

tracts that experienced a significant difference in demographic makeup had a larger minority

population prior to GSI installation. Moreover, the 16 tracts consistently had a larger

minority population throughout the entire time period as compared to the overall mean
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minority population in the 106 analyzed tracts. Environmental outreach has historically been

neglected in minority communities, and thus once again, it appears that the Philadelphia

Water Department is attaining its goal of furthering environmental justice as part of its

Green City, Clean Waters program. However, the minority population is decreasing in those

16 tracts after GSI installation in 2011. Assessing causation between GSI installations and

changing minority populations is beyond the capabilities of available data; however, it is

worth mentioning that one undesirable effect of GSI implementation could be gentrification.

Gentrification can loosely be defined as the “result of an alteration of preferences and/or a

change in the constraints determining which preferences will or can be implemented” [223].

Gentrification can be thought of as a movement of capital and people back into a city center.

Wolch et al. [260] showed that urban greening can have the unfortunate effect of displacing

the same people whose livelihoods it strives to improve, and Dale and Newman [50] indicated

that local sustainable development projects cannot guarantee maintaining existing social

diversity and equity. This analysis does not imply that the same phenomenon is occurring

in Philadelphia; the results merely illustrate that the decrease in racial diversity in these 16

tracts could possibly be an indication of impending gentrification. Further research would

be necessary to fully substantiate the implications of these changes in racial demographics.
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CHAPTER 5

CONCLUSION

As mentioned at the beginning of this document, stormwater management is necessary

across all sorts of landscapes, both agricultural and urban. The immense growth of humanity

and the demands placed on the planet have pushed stormwater management to the forefront

of water-related issues in both agricultural and urban contexts. Green infrastructure mimics

pre-development conditions and provides a more sustainable alternative to traditional gray

infrastructure used to manage stormwater. This thesis addressed green infrastructure in

both agricultural and urban contexts, seeking to maximize the triple-bottom line benefits

offered by green infrastructure in both of the applications.

5.1 Agricultural Runoff and Water Quality Implications

Nitrates running off agricultural fields from fertilizer inputs are a major water-quality

issue throughout the Midwestern United States. The Raccoon River Watershed (RRW)

upstream of Des Moines, Iowa, USA, has some of the highest nitrate levels in the country,

and Des Moines Water Works (DMWW) operates one of the world’s largest nitrate removal

facilities to reduce levels below the federal drinking water standard. In 2015, DMWW

pursued litigation against upstream drainage districts, claiming that agricultural operators

ought to be responsible for the high nitrate levels and treat the water leaving fields through

tile drains. DMWW was unsuccessful in its litigation, and the nitrate problem continues to

plague Des Moines residents. At the outset, several questions were proposed:

• What are the ramifications of using agricultural green infrastructure to nitrate reduc-

tion?

• Where might agricultural green infrastructure be placed, and how much will it cost?
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Three possible response scenarios to the issue are analyzed: S0) business as usual, S1) initi-

ating an extensive agricultural green infrastructure project, and S2) maintaining the current

nitrate removal facility and/or building a new facility. The first scenario is not sustainable

because eventually the current nitrate removal facility will become defunct and DMWW will

not meet the federal drinking water standard. The second response is widespread installation

of agricultural green infrastructure in the form of riparian buffers along first-order streams

throughout the RRW; the distributed, green approach. Water-quality trading (WQT) en-

courages utility-agriculture partnerships to improve water quality, extended to apply to

drinking water quality at DMWW. This proposition could cost Des Moines residents between

$135 and $160 million, depending on the amount of vegetation required. This investment is

admittedly a large sum of money; however, there are additional benefits beyond improved

water quality, including increased living-wage jobs and carbon sequestration. Furthermore,

the distributed, green approach helps bridge the rural-urban divide through providing a

means for cooperation between the two parties. The third response includes renovations of

the nitrate removal facility and potential construction of a brand new facility; the centralized,

gray approach. In the present analysis, this proposition could cost Des Moines ratepayers

anywhere between $71 and $184 million, the upper bound representing a completely new

nitrate removal facility. Building a new nitrate removal facility certainly addresses nitrate

pollution, but it does not advance cooperation between DMWW and upstream agricultural

operators. Ultimately, infrastructure and management approaches are necessary to address

water quality challenges, both in the RRW and throughout other agricultural watersheds in

the Midwestern United States. Centralized treatment provides residents with clean drinking

water, without the added co-benefits of a distributed, green approach. Agricultural green

infrastructure is a potential solution to improving water quality with several co-benefits, and

water-quality trading approaches can encourage such solutions.

5.2 Social Co-Benefits of Green Stormwater Infrastructure

Green stormwater infrastructure (GSI) is a distributed, natural means of infiltrating and

treating stormwater runoff, akin to agricultural green infrastructure but in an urban context.

59



GSI is an alternative to traditional gray infrastructure and offers many co-benefits above and

beyond achieving hydrologic improvements. These co-benefits follow a triple bottom-line ap-

proach and include environmental, economic, and social improvements. This thesis focuses

on social co-benefits: GSI has been shown to improve physical health, reduce crime, decrease

stress, improve mental health, and provide recreation. Often, achieving hydrologic goals is

the primary motivation behind GSI projects, and social co-benefits are an afterthought.

However, results suggest that more emphasis could be placed on attaining social co-benefits

at the planning stages of GSI implementation. Synergistic planning between engineers, land-

scape architects, policy makers, and neighborhood leaders can foment projects that achieve

hydrologic and social benefits for the local community. A question was posed investigating

whether such synergistic planning is possible using currently available GSI calculators:

• To what extent are social co-benefits included in planning for GSI projects, as reflected

by available calculators?

Currently available GSI calculators, tools, and frameworks are examined to assess whether

they include social co-benefits as part of their methodologies/results. Several similar studies

have analyzed multiple calculators for their hydrologic methodologies, but none, to the au-

thor’s knowledge, have focused on the social aspects of GSI. A total of 21 different calculators,

tools, and frameworks were assessed, and only five mention social co-benefits. Of these five,

two attempt to quantify social co-benefits in a meaningful way: the Center for Neighborhood

Technology “The Value of Green Infrastructure” Framework and the Mersey Forest Green

Infrastructure Valuation Toolkit. The latter is an extensive set of spreadsheets that focuses

more on quantifying social co-benefits than on quantifying hydrologic/environmental bene-

fits. Admittedly, GSI is typically designed for hydrologic functions, but more of a concerted

effort can be made to achieve social co-benefits, especially environmental justice.

5.3 Environmental Justice

Environmental injustice has burdened a disproportionate amount of environmental ills on

disadvantaged communities, such as low-income and minority communities, and allowed a
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disproportionate amount of environmental benefits to befall affluent communities. Theoreti-

cally, decision makers could utilize the information provided in GSI calculators to enact social

change and benefits as they pertain to investing in low-income and minority communities.

The following question was addressed:

• How might existing socioeconomic data be used to analyze GSI projects and their

implications on environmental justice?

Two different statistical approaches are conducted to analyze two cities leading in GSI

implementation in the United States: Chicago, IL and Philadelphia, PA. Maps indicating

where GSI are located at the Census tract-level are utilized and socioeconomic data at the

tract-level are gathered to determine whether potential relationships exist. In Chicago, a

regression is used to analyze potential correlations between median household income and

race and the frequency and size of GSI in 2015. Findings indicate that median household

income significantly (p < 0.05) correlates positively with green roof frequency and area.

However, using these indicators does not explain much of the variation in GSI frequency

and area (R2 values were less than 0.1). The analysis shows how freely-available data can

be used to investigate GSI implications on environmental justice.

Socioeconomic data are further used at the Census tract-level to analyze the City of

Philadelphia and its Green City, Clean Waters program. Using 2011 as the crux point,

the differences in median household income and race before and after GSI installation are

analyzed using non-parametric testing to find significant changes at the tract-level. In total,

106 tracts are analyzed: of these tracts, 29 had a significant change in median household

income and 26 had a significant change in percent of white residents (p < 0.05). Philadelphia

Water Department included in their goals as part of Green City, Clean Waters to invest in

areas not traditionally targeted for environmental outreach. The program is still rather

young at about seven years, but findings indicate that Philadelphia Water Department

is indeed investing in low-income neighborhoods. The analysis shows that several areas

have experienced statistically significant increases in income from the period before GSI

installation to after. There are many possible reasons such an increase could occur; however,

the results suggest that Philadelphia Water Department is moving toward its environmental
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justice goals. The analysis in Philadelphia, like the analysis in Chicago, shows that these

socioeconomic data can be utilized to plan and monitor environmental justice efforts as part

of GSI installation.

5.4 Concluding Remarks

Policy makers, engineers, landscape architects, and community leaders have an opportu-

nity to streamline hydrologic and social improvements in agricultural areas through the use

of agricultural green infrastructure and in urban areas through the use of GSI. Adjusting

the GSI paradigm can achieve the necessary hydrologic improvements while simultaneously

improving local residents’ mental and physical health, providing recreation and aesthetic,

and advancing environmental justice in low-income communities. Encouraging widespread

use of riparian buffers in agricultural watersheds can reduce water quality degradation lo-

cally and further downstream, besides providing social co-benefits such as increased access

to living-wage jobs. Overall, distributed, green systems of stormwater runoff management

yield plentiful benefits over centralized, gray systems of treatment and management.
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