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ABSTRACT 

In this thesis, multiple longstanding challenges in optical imaging are solved by the development 

of new computational imaging methods, where computational imaging does not simply refer to 

simulation or modeling, but to the entirety of an imaging technology in which significant 

computation is required to achieve the final image. Of the many optical imaging technologies 

currently in use, optical coherence tomography (OCT) is distinctive in that it provides coherent 

measurement of optical scattering within bulk biological tissue. Unfortunately, the optical 

wavefront is often distorted by defocus and aberration, from either the imaging system or the 

sample itself, leading to poor image quality. Through a careful consideration of the optical theory 

and imaging hardware, computational imaging methods can correct these distortions through 

creative data acquisition and processing schemes. Here, new computational OCT methods are 

developed from theory to implementation to address three related challenges in optical imaging. 

First, computational OCT is extended to polarization-sensitive imaging. This provides the 

improved resolution and imaging depth of computational OCT with the enhanced contrast of 

polarization-sensitive imaging. Second, computational OCT is combined with hardware-based 

wavefront correction. This addresses the low signal-to-noise ratio (SNR) limitation of 

computational OCT and provides improved performance beyond that of hardware-only correction. 

Lastly, distortion of the optical wavefront is computationally measured directly from the OCT 

data. This enables both measurement and correction of the optical wavefront throughout biological 

samples without additional hardware. Together, these results demonstrate the usefulness of 

computational OCT across a broad range of important imaging scenarios in biology and medicine.  
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Whatever you do, work heartily, as for the Lord and not for men 

- Colossians 3:23 
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1 INTRODUCTION 

1.1 Optical imaging 

Since the invention of the microscope in the sixteenth century, light microscopy has become an 

integral component of both science and medicine [1]. A well-known example is the use of 

histology in medical diagnosis. Amazingly, new breakthroughs are continually being made in 

optical imaging, despite its age. Multiple Nobel Prizes have been awarded for developments in 

microscopy, including the 1953 Nobel Prize in Physics for phase contrast microscopy, the 2008 

Nobel Prize in Chemistry for discovery of the green fluorescent protein, and the 2014 Nobel Prize 

in Chemistry for super resolution imaging. In addition to these breakthroughs, other developments 

such as confocal microscopy, multiphoton microscopy, quantitative phase imaging, optical 

coherence tomography, and photoacoustic imaging have opened new fields of research. 

Optical coherence tomography (OCT) provides real-time, three-dimensional (3D) images of 

scattering objects, including biological tissues [2,3]. OCT is a ranging technique, similar to 

ultrasound, and provides resolution on the scale of microns. However, a direct time-of-flight 

measurement is not feasible due to the high speed of light relative to the size scales within 

biological tissue. Therefore, the ranging measurement is performed using interferometry. By 

performing the ranging measurement across multiple locations, a 3D image of optical 

backscattering can be generated. 

Of the many new optical imaging technologies, OCT is perhaps the most commercially successful. 

OCT holds approximately 60% market share in the clinical optical imaging market, with the OCT 

market size estimated to exceed $1 billion by 2019 [4,5]. In particular, ophthalmic OCT is a 
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substantial market with great humanitarian significance. As stated by OCT pioneer Dr. Carmen 

Puliafito, “OCT has revolutionized the treatment of eye diseases on a global basis and it is now 

routinely used to make clinical decisions about treating patients with blinding diseases such as 

macular degeneration, diabetic retinopathy, and glaucoma [6].”  

In addition to becoming the standard of care in ophthalmology, OCT has been developed for 

application in cardiovascular, gastroesophageal, and cancer imaging [7–9]. It has also found 

application beyond the medical field, in areas such as metrology, non-destructive testing, 

microfluidics, and others [10]. A timeline showing the rapid increase in funding and applications 

of OCT is shown in Figure 1.1. 

 

Figure 1.1. Progress in OCT. Government funding and commercialization to new applications has increased 

dramatically since the invention of OCT. Adapted from [3]. 

Much of the work in this thesis is applicable to interferometric imaging methods in general. 

However, the work has been thoroughly developed for OCT due to its power to generate 3D images 

for many biologically and medically important applications.  
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1.2 Computational optical imaging 

Computational imaging refers to methods where computation plays an integral role in the image 

formation process [11]. Following a historical trend seen in other modalities, optical imaging is 

becoming increasingly computational. Historical precedents include the evolution of X-ray 

projections into computed tomography [12,13], nuclear magnetic resonance into magnetic 

resonance imaging [14], and radar imaging into synthetic aperture radar (SAR) [15,16]. These 

computational optical imaging methods have recently become capable of reconstructing in vivo 

data, providing high-resolution aberration-free imaging of living biological tissues beyond what 

was previously achievable by standard OCT imaging alone [17,18]. 

The use of computational imaging techniques has been inspired by two inherent limitations 

ubiquitous in optical imaging—restricted depth-of-field and wavefront aberrations. Limited depth-

of-field reduces the usable imaging range, while optical aberrations of both the imaging system 

and the sample itself limit the achievable resolution and signal-to-noise ratio (SNR). Various 

hardware solutions have been proposed to overcome these challenges. In particular, the trade-off 

between resolution and depth-of-field has been addressed in hardware by focus shifting [19] and 

multiple beam imaging [20]. Alternatively, a non-Gaussian imaging beam, such as a Bessel beam, 

can be used to extend the depth-of-field [21,22]. Inspired by developments in astronomy [23,24], 

hardware adaptive optics (HAO) has been used to correct aberrations in microscopy through the 

use of a wavefront sensor and deformable mirror to sense and negate wavefront distortions [25-27]. 

However, HAO systems have not seen widespread use due to their inherent cost and complexity. 

It is desirable to achieve high-resolution, aberration-free volumetric imaging without the need for 

additional hardware. Interferometric detection provides access to both the amplitude and the phase 
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of the backscattered light. Access to this phase information provides computational control of the 

full complex wavefront, enabling refocusing and correction of higher-order optical aberrations. 

Computational depth-of-field solutions include numerical refocusing [28–30], depth-encoded 

synthetic aperture microscopy [31,32], holoscopy [33,34], and interferometric synthetic aperture 

microscopy [35]. Aberration correction can also be performed through manipulation of the spatial 

frequency data. This has been previously achieved in digital holographic microscopy for imaging 

of thin samples [36,37], and recently in thick tissue samples using computational adaptive 

optics [38,39]. 

Interferometric synthetic aperture microscopy (ISAM) is a solution to the inverse problem for 

optical microscopy that provides depth-independent transverse resolution, overcoming the 

traditional depth-of-field limitation without the need for additional hardware [35,40–42]. ISAM 

reconstruction achieves this through a Fourier domain resampling which provides 3D defocus 

correction. ISAM is a point-scanning method, which avoids the cross-talk artifacts inherent in 

related full-field techniques [30,34,43]. It has been shown to be robust with respect to motion 

through the use of high scanning speeds or motion correction algorithms, and is parallelizable for 

real-time processing on a graphics processing unit (GPU) [17,44]. Together, these features have 

contributed to the successful in vivo application of the ISAM technique. 

Computational adaptive optics (CAO) extends the ISAM model to include optical aberrations 

which can be corrected through manipulation of the complex interferometric data [38]. This is 

achieved by multiplication with a phase-only aberration correction filter which negates the 

wavefront aberrations. In this way, volumetric aberration-free imaging can be achieved. This 

flexible processing method can be used to correct for arbitrary aberrations of high order [45], and 

can be optimized for selected sample regions to overcome spatially varying aberrations [46]. CAO 
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has recently been applied to in vivo imaging of the human retina for visualization of the 

photoreceptor mosaic [18]. 

1.3 Challenges in computational OCT 

It is the goal of this thesis to build upon the foundations of ISAM and CAO to develop new 

computational imaging methods that address remaining challenges in OCT imaging. Multiple 

challenges and the proposed strategies for addressing them are briefly summarized below. 

Appropriate background information for the new methods is covered in Chapter 2. 

1.3.1 Polarization-sensitive imaging 

Polarization-sensitive optical coherence tomography (PS-OCT) is a variation of OCT developed 

for imaging birefringent materials and biological tissue [47,48]. In addition to imaging the 

scattering structure, PS-OCT measures the polarization state of the backscattered light. Samples 

that exhibit birefringence will cause a change in the measured polarization state.  

In biological tissues, form birefringence arises due to the organization of the tissue 

microenvironment, which provides insight into various biological processes. In particular, PS-

OCT has been particularly valuable for imaging disease in birefringent tissues such as muscle, 

skin, the retina, arterial plaque, and collagen in the breast [49,50]. 

Like standard OCT imaging, PS-OCT suffers from poor transverse resolution outside the depth-

of-field. This limits the resolution and usable imaging range. The standard PS-OCT model does 

not consider the nature of the focused imaging beam. By a comparison of the PS-OCT and ISAM 

models, a new reconstruction method was developed to provide the benefits of ISAM for 



6 

 

polarization-sensitive imaging. The new method, termed PS-ISAM, is described and demonstrated 

in Chapter 3. 

1.3.2 Retinal imaging 

Imaging the human retina requires imaging through the optics of the eye itself, which are highly 

aberrated when the pupil of the eye is large. By compensating for these aberrations, it is possible 

to achieve cellular level resolution. Both hardware adaptive optics (HAO) and CAO have been 

demonstrated in the human retina [18,51].  

HAO physically modifies the optical wavefront using a deformable mirror to tightly focus the 

imaging beam onto the retina. This allows for high signal even in the presence of strong ocular 

aberrations. However, HAO typically updates its wavefront correction more slowly than the OCT 

volume is acquired, and the correction is limited to a single retinal depth. Therefore, image quality 

is not optimal for much of the acquired volume. 

With CAO, the image formation process can continue after data acquisition, and therefore the data 

need not be aberration-free when acquired, decreasing the complexity of the imaging system. 

Additionally, the aberration correction can be fine-tuned for spatially and temporally varying 

aberrations. However, because CAO does not physically modify the wavefront, any signal lost due 

to the presence of aberrations cannot be recovered using CAO alone.  

HAO and CAO were used together to address the shortcomings of each method, and to demonstrate 

how their strengths can be integrated to provide more complete correction of ocular aberrations 

and improved visualization of the cellular retinal features. Details of the implementation along 

with imaging results are presented in Chapter 4. 
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1.3.3 Aberration measurement 

Measurement and correction of aberrations is an important step in achieving high-resolution 

images in optical microscopy [27]. To date, CAO has primarily been used for aberration correction 

to improve image resolution. However, it is also important to measure, or “sense,” the aberrations 

to provide knowledge of the imaging system or even aberrations of the sample itself [52]. 

The appropriate CAO correction can be determined using a variety of methods. Regardless of 

which method is used, the computational wavefront correction corresponds to the double-pass 

system point spread function (PSF). In general, this is not identical to the single-pass aberration of 

the system. However, it may be possible to compute the true aberration from a measurement of the 

double-pass aberration.  

To accomplish this task, the OCT forward model was explored for the case of an aberrated imaging 

pupil. A computational method was then developed to recover the single-pass aberration from the 

OCT data using CAO. Theoretical derivation, simulation, and experimental results are presented 

in Chapter 5. 
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2 BACKGROUND 

2.1 Optical coherence tomography 

OCT is a depth ranging imaging technique, where low coherence interferometry (LCI) is used to 

determine the depth range information. An LCI system is illustrated in Figure 2.1. In LCI, 

broadband near-infrared light is directed through a beam splitter into two paths known as the 

reference and sample arms which illuminate a reference mirror and the sample of interest, 

respectively. Recombining the reflected light from the reference and sample arms at the beam 

splitter results in an interference pattern that depends on the depth structure of the sample. 

 

Figure 2.1. Illustration of a low coherence interferometer, the basic concept underlying OCT imaging.  

The field at the output of the beam splitter, Eout, is the sum of the reflected reference and sample 

fields, ER and ES [53]. The intensity signal detected by the photodiode is given by  
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where the brackets denote time average. The first two terms in Eq. (2.1) account for autocorrelation 

of the reference and sample fields respectively. The final term is the cross-correlation between the 

reference and sample fields, and is the term of interest in OCT. Assuming identical illumination 

of both sample and reference, for a given path delay 2 /z c    between the reference and sample 

arms, the cross-correlation term becomes  

   2 Re ,  (2.2) 

where  

      R RE t E t     (2.3) 

is the autocorrelation of the field.  

Equation (2.3) can be considered the impulse response of the LCI system due to a perfect reflector. 

Therefore, for an arbitrary sample structure the resulting OCT signal is proportional to the 

convolution 

      ,R S h      , (2.4) 

where the depth structure of the sample is encoded in ( )h  . By scanning the reference arm distance, 

τ is varied to measure the entire interference pattern. The incident beam is then scanned in two 

dimensions over the surface of the sample, providing depth information at each transverse location 

to construct 3D datasets. 

This interference pattern may be detected in either the time-domain (TD-OCT) or Fourier-domain 

(FD-OCT). FD-OCT is usually preferred due to increased SNR and acquisition speed. The FD-
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OCT detection is performed by spectrally resolving the output signal using a grating and 

spectrometer instead of a single photodiode. Alternatively, the signal may be detected using a 

photodiode as the wavelength of the source is varied over time. This is known as swept-source 

OCT (SS-OCT). In either case the reference arm remains fixed for FD-OCT. For a perfect reflector 

in the sample arm, the intensity as a function of frequency ω is given by 

               
2 2 2 2

2 cosS P P H P H z          , (2.5) 

where 

    2 /R Sz z z c     (2.6) 

is the phase delay due to optical path length difference between the reference and sample arm 

positions zR and zS. The power spectrum of the source is given by 
2

( )P  and the frequency 

response of the sample is ( )H . The first term can be easily measured and removed using 

background subtraction, while the second term is typically negligible. Assuming that the 

magnitude response of the sample arm is uniform over the measured frequencies, taking the 

Fourier transform of the third term leads to  

      , * [( 2 ) / ] [( 2 ) / ]R S R S R Sz z c z z c         . (2.7) 

This matches the result from Eq. (2.4) for a perfect reflector. The symmetry term is a result of the 

measurement containing only the real component in the frequency domain. 

The axial point spread function of the OCT system is given by the auto-correlation of the source 

spectrum. Assuming a Gaussian spectrum, the full-width-half-max (FWHM) resolution of the 

auto-correlation function is given in [54] as 
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where Δλ is defined as the FWHM of the source spectrum. Therefore, an increase in bandwidth 

will result in an improved axial resolution. The typical axial resolution in OCT ranges from 

1-10 µm. Transverse resolution is calculated independently from axial resolution in OCT. Light is 

focused onto the sample using a standard microscope objective. The transverse resolution is 

therefore given by Abbe's formula 

 
01.22

2NAobj

x


  , (2.9) 

where NA is the numerical aperture of the OCT microscope [53]. The typical transverse resolution 

in OCT ranges from approximately 5-20 µm. 

Optical imaging of tissue is often performed using wavelengths in the near-infrared in what is 

known as the biological window. Components of biological tissue such as hemoglobin, melanin, 

and water are less absorbing in the near-infrared than in the visible range. Common wavelengths 

used in OCT imaging are 800 nm and 1300 nm, due to windows in the absorption spectra near 

these wavelengths. It has been shown that the attenuation in dense biological tissues is greater at 

800 nm [55]. Therefore, imaging at 1300 nm is often preferred when imaging thick biological 

tissues such as the human breast. However, this comes with a loss of resolution, as indicated by 

Eq. (2.8). A wavelength of approximately 1050 nm is best suited for imaging the retina due to low 

absorption by the vitreous humor [56]. 

The maximum optical path length difference that can be measured in FD-OCT is determined by 

the number of points used to sample to spectrum [53]. Sampling the spectrum with N points will 

result in a maximum imaging range of 
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While zmax can be several millimeters, or in some cases centimeters, the imaging depth into tissue 

is limited by multiple scattering to 1-3 mm beneath the surface. 

 

Figure 2.2. OCT dataset of the living human retina. (a) Rendering of volumetric wide-field 3D-OCT data. 

(b) Virtual (arbitrary) cross-sectional image showing deep image penetration and ability to visualize choroid 

and sclera. Arrow indicates scleral vessel. (c) En face OCT image of the choroid obtained by integrating signal 

below the retinal pigment epithelium (RPE). Red line indicates orientation of cross section in (b). En face OCT 

images at depths (d) 30, (e) 80, and (f) 200 μm below the RPE showing choroidal layers and sclera. Signal 

integrated from 40-μm thick slices. Reproduced from [57]. 

The example OCT dataset in Figure 2.2 shows the living human retina. The data was acquired 

in vivo and demonstrates the powerful capability of OCT to provide depth resolved images in 

biological tissue.  

2.2 Polarization-sensitive OCT 

Image contrast in standard OCT is due to variations in backscattering intensity. However, light is 

a transverse wave and is more completely described by its polarization. Polarization-sensitive 

optical coherence tomography (PS-OCT) is a functional extension of OCT developed for probing 

the birefringence of materials and biological tissue [49,58]. In addition to 3D scattering structure, 
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PS-OCT measures the polarization state of the backscattered light. Imaging samples that exhibit 

birefringence (polarization-dependent refractive index) will cause a change in polarization.  

Polarized light may be decomposed into two orthogonal linear polarization states, referred to as 

horizontal and vertical. The biological tissue is assumed to behave as a linear retarder, similarly to 

a birefringent crystal, introducing a polarization dependent delay that can be detected by 

decomposing the interference pattern into two orthogonal polarization states.  

 

Figure 2.3. Time-domain polarization-sensitive OCT imaging system. Jones calculus is used to represent the 

polarization state of the light and the optical components. The resulting signal provides a measurement of the 

change in polarization state caused by the sample. LP: polarizer, BS: beam splitter, QWP: quarter wave plate, 

PBS: polarizing beam splitter. 

A standard free space PS-OCT system is illustrated Figure 2.3. Light from the source is 

horizontally polarized and split into the reference and sample arms. A quarter-wave plate (QWP) 

is placed in the reference arm with optic axis at 22.5° relative to the linearly polarized source light, 

resulting in 45° linearly polarized light exiting the reference arm. This provides equal intensity 

reference light in both horizontal and vertical polarization states. Sample arm light passes through 

a QWP at 45° resulting in circularly polarized light incident upon the sample. Circularly polarized 
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light is desired so that birefringent interaction is guaranteed. If linearly polarized illumination is 

used, the optic axis of the tissue may match the axis of polarization, giving no useful information. 

The interference pattern is split into horizontal and vertical polarization states by a polarizing beam 

splitter (PBS), and each channel is detected separately. Equation (2.1) then becomes 

 

*

, ,* *

*

, ,

2Re
R H S H

R R S S

R V S V

E E
S E E E E

E E

 
 

    
  

, (2.11) 

where subscripts H and V denote horizontal and vertical polarizations respectively. To determine 

the relationship between the sample birefringence and the detected signal, PS-OCT makes use of 

the Jones vector representation to model the imaging system [59]. This formalism describes each 

polarization component of the optical system as a Jones matrix, J, which operates upon the electric 

field Jones vector, E. The resulting signals are given by 

 
0

0

( ) ( ) sin( )

( ) ( ) cos( ),

H

V
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S z R z k z n
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 
 (2.12) 

where R(z) is the reflectivity and Δn is the difference in refractive index between the horizontal 

and vertical channels. The reflectivity may be easily recovered by 

 
2 2

( ) ( ) ( )H VR z S z S z  , (2.13) 

while the cumulative phase retardation between the polarization channels is 
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In biological tissues, form birefringence arises due to the organization of the tissue 

microenvironment which provides insight into various biological processes. PS-OCT has been 

particularly valuable for imaging disease in birefringent tissues such as muscle, skin, the retina, 
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arterial plaque, and collagen in the breast [50,60–64]. PS-OCT is also well-suited for the imaging 

of birefringent materials such as polymers [65]. 

The additional information provided by PS-OCT allows for improved contrast in breast cancer 

imaging. During surgical resection of the breast tumor, it is important to have a negative surgical 

margin, meaning that there are no tumor cells near the surface of the resected tissue. This is 

illustrated in Figure 2.4. 

 

Figure 2.4. Surgically resected tissue specimen containing tumor cells (red) embedded within healthy tissue. 

Depending upon the thickness of healthy tissue bordering the tumor, the surgical margin is classified as 

positive, close, or negative. A negative margin gives confidence that the entire tumor has been resected. 

OCT has proven useful for looking beneath the tissue surface to determine the status of the surgical 

margin [9]. However, it is often difficult to distinguish between the dense stroma tissue, which is 

not cancerous, and solid tumor. Because the stroma is composed mostly of collagen, it is highly 

anisotropic and birefringent. Therefore, PS-OCT can help distinguish between healthy and 

cancerous breast tissue by imaging the phase retardation caused by the birefringence of collagen. 

This is demonstrated in Figure 2.5, where the tissue has been stained for collagen. The presence 

of collagen causes a change in the polarization state, indicated by color change in the PS-OCT 

phase retardation image.  
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Figure 2.5. OCT and PS-OCT data of healthy and cancerous human breast tissue. Corresponding histology is 

shown stained with hematoxylin and eosin (H&E) to show cellular composition, and also with picrosirius red 

which stains collagen. Changes in the PS-OCT signal correspond to changes in polarization state due to tissue 

birefringence. The dense collagen of the healthy tissue, as seen in the picrosirius red stain, causes strong 

birefringence. In comparison, the cancerous tissue is devoid of collagen and does not show a change in 

polarization state. Scale bar represents 500 μm. Adapted from [50]. 

2.3 Adaptive optics OCT 

Measurement and correction of aberrations is often an important step in obtaining high-resolution 

images in optical microscopy [27]. In some cases, the imaging optics may be imperfect due to 

physical limitations or design constraints. Additionally, imaging below the surface of biological 

tissue is complicated by sample-induced aberrations, which arise from the spatially varying 

refractive index of the tissue. In the case of living or dynamic samples, these aberrations can also 

be time varying. This is especially important in the human eye, which is highly aberrated at larger 

pupil diameters and constantly changing [66]. Therefore, it is necessary to somehow determine 

and compensate for the wavefront aberrations to obtain a diffraction-limited image. 

Adaptive optics (AO) involves the use of optical elements which can be dynamically adjusted to 

compensate for aberrations. This includes the use of a wavefront sensor to determine the 

aberrations, and a deformable mirror to correct the aberrations based upon this measurement. An 

illustration of the adaptive optics concept in retinal imaging is given in Figure 2.6.  
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Figure 2.6. The concepts of Shack-Hartmann wavefront sensing (SHWS) and closed-loop AO correction with 

a deformable mirror. A SHWS works by sampling a wavefront with an array of small lenses (lenslets) such 

that local wavefront slope—due to aberration—manifests as displacement of the resulting focal spot (left). 

These displacements can be used directly to drive a corrector such as a deformable mirror (right), or to 

reconstruct the wavefront. Reproduced from [66]. 

The most commonly used wavefront sensor is the Shack-Hartmann, which consists of an array of 

small lenses focused upon a CCD array. A flat wavefront incident on a lenslet will focus to a point 

at the center of the lenslet, while a tilted wavefront will displace the focal point. In this way, the 

local tilt of the wavefront can be determined for each lenslet to give the overall shape of the 

aberrated wavefront. The deformable mirror consists of a metallic membrane suspended over many 

adjustable pistons, allowing the surface of the mirror to take on arbitrary shapes. Using a closed-

loop feedback system, the wavefront sensor measurement can be used to update the deformable 

mirror shape such that the sensor measures a flat wavefront.  

The deformable mirror may also be operated without the wavefront sensor. This method is termed 

sensorless AO [67]. The shape of the mirror is adjusted to maximize a metric which is associated 

with the beam quality, such as signal intensity. This method is suitable for decreasing the overall 

cost and complexity of the AO system, but increases the imaging acquisition time. This is because 

a search must be performed over various mirror shapes to find the optimal aberration correction. 

In contrast, standard AO provides aberration correction in a single step. 
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Although not indicated in Figure 2.6, the pupil plane of the eye, deformable mirror surface, and 

wavefront sensor pupil must all be imaged to one another using a series of “4f” optical systems. 

This adds significant pathlength to the sample arm, which must be matched in the OCT reference 

arm. As a result, the system is quite bulky and more susceptible to motion. Maintaining accurate 

alignment of the 4f system is also quite challenging. For these reasons, AO retinal imaging systems 

are primarily used in research laboratories.  

The wavefront is often represented using Zernike polynomials, which form a basis set over the 

unit circle [68]. These functions correspond to familiar optical aberrations, and can also be used to 

generate more exotic wavefront errors. The first ten orders of Zernike polynomials are illustrated 

in Figure 2.7. 

  

Figure 2.7. Surface plots of the Zernike polynomial sequence up to 10 orders. The name of the classical 

aberration associated with some of them is also provided. Reproduced from [69]. 
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The cellular composition of the retina is shown in Figure 2.8(a). OCT measures reflections from 

within and between the cells caused by variations in refractive index. Particularly bright reflections 

come from the boundaries between certain cell layers, particularly the photoreceptor layer. Labeled 

retinal OCT layers are shown in Figure 2.8(b), corresponding to the histological layers.  Because 

of the low NA required to image without aberrations, individual cells cannot be resolved. Instead, 

each layer is identified by a general intensity level and perhaps a unique texture. In contrast, AO-

OCT can use a high NA and resolve individual cells throughout the retina, as exemplified in Figure 

2.9. 

 

Figure 2.8. (a) Histologic cross section of the human retina relative to OCT imaging beam. GCL, ganglion cell 

layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear 

layer; PL, photoreceptor layer; RNFL, retinal nerve fiber layer. (b) Automatically segmented cell layers in an 

OCT cross-sectional image. The varying intensities and textures correspond to the various cell layers. Without 

adaptive optics, single cells are not resolved. The transverse field-of-view is 6.7 mm. Adapted from [66,70]. 

100 µm 

(a) 

(b) 
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Figure 2.9. Adaptive optics OCT volumes acquired with different focal depths to highlight various cell layers 

in the retina. Single cells are visible that would otherwise be obscured by aberrations. Reproduced from [66]. 

2.4 Computational OCT 

2.4.1 Coherence and the axial PSF 

In FD-OCT, point scanning in the transverse dimension provides a 3D complex dataset  , ;S x y k  

which is a function of transverse position (x, y) and wavenumber k. Under the first Born 

approximation, the measured signal is given by the convolution of the sample scattering potential 

 , ,x y z  with the system point spread function  , , ;h x y z k  as 

 
 

   

, ;

, , ; , , .

S x y k

h x x y y z k x y z dx dy dz



         
  (2.15) 

The point spread function of the system is defined as  
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      
22 2, , ; , , ; ,rh x y z k k P k g x y z k  (2.16) 

where 
r  is the interferometric power splitting ratio,  

2

P k  is the power spectral density, and 

 2 , , ;g x y z k  is the product of the identical Gaussian illumination and detection beams. The axial 

origin of the coordinate system is set as the focal plane 0z   without loss of generality. Using this 

more complete model of OCT data acquisition, more accurate representations of the scattering 

sample can be reconstructed. 

For interference to take place, the illumination must be spatially and temporally coherent. Nearly 

all laser sources used in OCT are fiber-coupled using a single-mode fiber. This enforces spatial 

coherence on the illumination beam, g. The temporal coherence time (or length) is inversely 

proportional to the width of the power spectral density,  
2

P k . Therefore, a broad bandwidth will 

give a short coherence length and accurate depth localization, as discussed in Section 2.1. 

There are multiple factors that negatively influence the shape of the coherence function, and 

therefore the axial PSF. Dispersion mismatch between the sample and reference arms leads to a 

broadening of the coherence function. Because each wavenumber is measured coherently, the 

phase is measured and can be computationally adjusted to compensate for the wavelength-

dependent path length difference [71,72].  

Additionally, the shape of the laser spectrum is often non-Gaussian with multiple peaks [54]. This 

gives a very poor axial PSF. The spectrum can be apodized, or windowed, prior to Fourier 

transforming to the spatial domain to smooth the variations in the PSF [73]. Both computational 

dispersion compensation and spectrum apodization are computational techniques commonly used 

in standard OCT processing. 
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2.4.2 Interferometric synthetic aperture microscopy 

The solution to the OCT inverse problem, termed interferometric synthetic aperture microscopy 

(ISAM), uses the information inherent in the OCT data to remove defocus. Using the convolution 

theorem, Eq. (2.15)  can be rewritten in the spatial frequency domain as 

      , ; , , ; , ,x y x y x yS Q Q k H Q Q z k Q Q z dz     , (2.17) 

where ( )  represents the 2D Fourier transform and Q denotes spatial frequency. 

In general, the frequency domain response is depth-dependent. However, using asymptotic 

approximations for both the near-focus and far-from-focus cases, Eq. (2.17) can be simplified to 

the forward model 

      , ; , ; , ,x y x y x y zS Q Q k H Q Q k Q Q Q  , (2.18) 

where ( )  represents the 3D Fourier transform and 

 
2 2 24z x yQ k Q Q    . (2.19) 

The system response  , ;x yH Q Q k  takes slightly different forms for the near- and far-from-focus 

cases, and in theory, it must be inverted to fully recover the scattering potential (a detailed 

treatment of the system response function can be found in [42]). However, the system response is 

generally slowly varying within the pass-band and does not introduce significant image 

distortions [44]. Therefore, Eq. (2.18) can be inverted through a Fourier domain resampling of the 

data according to the relationship  

 
2 2 21

2
x y zk Q Q Q    . (2.20) 

This recovers the unfiltered solution of the scattering potential in the frequency domain 
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    
1 2 2 2

2

, , , ;x y z x y
k Q Q Qx y z

Q Q Q S Q Q k 

  

  , (2.21) 

which can be returned to the spatial domain by the 3D inverse Fourier transform 

     1, , z , ,x y zx y F Q Q Q     . (2.22) 

The coordinate resampling step in Eq. (2.21) represents the re-phasing of the 3D spatial frequency 

content, and is comparable to Stolt mapping in synthetic aperture radar [74]. In addition, a helpful 

analogy can be drawn between ISAM and diffraction tomography [42]. The measured spatial 

frequency vector Q is given by the difference of the output and input wave vectors 
outk  and 

ink ,  

 
out in Q k k  . (2.23) 

In the far-from-focus approximation, 
out in k k and therefore 2 in Q k . Considering the entire 

range of illumination angles within the imaging beam, the measured spatial frequencies trace out 

a wedge of radius 2k on the Ewald sphere [75]. Calculation of the square magnitude of Q gives 

the relationship 

 
2 2 2 24x y zQ Q Q k    , (2.24) 

which simplifies immediately to the ISAM coordinate resampling as in Eq. (2.20). 

The ISAM imaging system is essentially identical to that used in OCT imaging, achieving 

resolutions of 1-10 µm and imaging depths of 1-3 mm in tissue. The key difference is that the 

numerical aperture (NA) may be increased without sacrificing depth-of-field, and further, a higher 

NA is often used to achieve higher transverse resolution. The NA used in ISAM typically ranges 

from 0.05 to 0.1 [17,35]. Recently, ISAM was demonstrated at 0.6 NA for optical coherence 

microscopy, removing the need for z-stacking [76]. 



24 

 

Detailed steps for the implementation of the ISAM reconstruction are listed in Table 2.1. The 

ISAM simulation for a point-scattering sample shown in Figure 2.10 illustrates the data resampling 

process. The initial curvature of the data in the spatial frequency domain is corrected through 

appropriate resampling, resulting in a reconstruction with depth-independent resolution. Note that 

ISAM processing is in addition to any spectral-domain OCT processing steps such as k-

linearization, apodization, and dispersion correction. 

TABLE 2.1 

3D ISAM PROCESSING STEPS 

1. Begin with the dataset  , ;S x y k . 

2. Calculate the 1D inverse Fourier transform to retrieve the complex dataset  , ,S x y z , keeping only the positive depths 0z  . 

3. If desired, zero-pad the signal along depth z to improve the subsequent frequency-domain resampling. 

4. Circularly shift along depth z to place the focal plane at 0z  . 

5. Calculate the 3D Fourier transform to retrieve  , ;x yS Q Q k . 

6. Resample  , ;x yS Q Q k  along k according to Eq. (2.20) to retrieve the frequency-domain scattering potential  , ,x y zQ Q Q .  

7. Calculate the 3D inverse Fourier transform of  , ,x y zQ Q Q  to retrieve the reconstructed scattering potential  , ,x y z  . 

 

 

Figure 2.10. Simulation of in focus and far-from-focus scattering particles. (a) Cross section of the standard 

OCT reconstruction showing strong defocus. (b) ISAM reconstruction showing high resolution throughout 

depth. (c) Frequency-domain representation of original dataset. Black line illustrates ISAM resampling curve. 

(d) Resampled frequency-domain data. Adapted from [38]. 
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Alternatively, ISAM can be decomposed into two orthogonal 2D reconstructions for improved 

processing speed, which enables real-time reconstruction using a graphics processing unit [17,44]. 

In this scenario, each cross-sectional frame along the fast scanning axis is immediately 

reconstructed when acquired. Following acquisition of the entire volume, the cross-sectional 

frames are processed along the slow scanning axis for a complete 3D reconstruction. 

 

Figure 2.11. Comparison of OCT and ISAM reconstructions of TiO2 scattering phantom imaged with an 

800 nm, 0.05 NA OCT system. Transverse dimensions of the rendered volume are 360 µm by 360 µm. (a) 3D 

OCT reconstruction. (b) 3D ISAM reconstruction. (c) Transverse resolution throughout depth for OCT and 

ISAM experimentally demonstrating that ISAM achieves extended depth-of-field. Adapted from [35,77]. 

ISAM has been validated in both scattering phantoms and biological tissue. OCT and ISAM 

reconstructions of a TiO2 scattering phantom are shown in Figure 2.11. The limited depth-of-field 

is clear in the OCT rendering, while ISAM shows high resolution throughout the volume. A plot 

of measured transverse resolution over depth is shown in Figure 2.11(c). An en face plane 

approximately eight Rayleigh ranges (450 µm) above the focus was selected for comparison. The 

beam focus was then moved to the plane of interest and an additional OCT dataset was acquired. 
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The ISAM reconstruction of the out-of-focus plane was shown to match the structure of the in-

focus OCT measurement [77]. 

ISAM also provides an accurate reconstruction of biological tissue structure.  This was 

demonstrated in ex vivo human breast tissue where OCT and ISAM reconstructions were compared 

to the corresponding histology. Because of the high transverse resolution throughout the entire 

imaging depth, ISAM showed a stronger correspondence to histology. These results illustrate the 

improved capability of ISAM to perform volumetric high-resolution imaging in biological 

tissue [35]. 

2.4.3 Computational adaptive optics 

Aberrations may be modeled as a phase-only linear filter which modifies the objective lens pupil 

function [38]. Within the volume of stationarity  0 0 0, ,V x y z  centered at position  0 0 0, ,x y z , a 

particular wavefront description is valid. The corresponding aberration phase filter can be written 

as  
 0 0 0, ,

, ;x y
V x y z

H Q Q k . This filter can be applied to the previously derived ISAM model, and 

Eq. (2.18) can be modified to 

  
 

 
 

   
0 0 0 0 0 0

A A
, , , ,

, ; , ; , ; , , .x y x y x y x y z
V x y z V x y z

S Q Q k H Q Q k H Q Q k Q Q Q    (2.25) 

The aberration effects can be inverted through phase conjugation using the inverse filter 

  
 

 
 0 0 0 0 0 0

*

AC A
, , , ,

, ; , ;x y x y
V x y z V x y z

H Q Q k H Q Q k  , (2.26) 

which results in the aberration-free signal 

    
 

 
0 0 0 0 0 0 0 0 0

AC AC A
( , , ) , , ( , , )

, ; , ; , ;x y x y x y
V x y z V x y z V x y z

S Q Q k H Q Q k S Q Q k  . (2.27) 
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If the aberrations can be considered invariant over the transverse field-of-view, the aberration and 

correction filters can be simplified to  
 0

A , ;x y
V z

H Q Q k and  
 0

AC , ;x y
V z

H Q Q k , respectively. 

The aberration correction filter  
 0

AC , ;x y
V z

H Q Q k  is related to both the spatial frequency and 

spectral domains, so it can correct both monochromatic as well as chromatic aberrations [38,42]. 

Under the assumption of an achromatic system, the k-dependence of the 3D aberration correction 

filter can be simplified to the monochromatic aberration function,  
 0

AC ,x y
V z

H Q Q .  

The steps for applying CAO processing are summarized in Table 2.2. It is noted that if the 

aberrations vary considerably within the transverse field-of-view at a given depth, one can divide 

the image field into sub-regions and implement processing Steps 2-5 on each sub-region. The 

aberration corrected sub-regions can then be recombined to retrieve the composite image for each 

depth [46]. In cases where the dominant aberrations are space-invariant along depth, the same 

aberration correction filter can be applied to the entire 3D volume to speed up the computation. 

TABLE 2.2 

CAO PROCESSING STEPS 

1. Begin with the complex OCT or ISAM dataset  A , ,S x y z . 

2. Calculate the 2D Fourier transform of en face image fields at each depth zi,  A , ,x y iS Q Q z . 

3. Calculate the aberration correction filter  AC ,
i

x y
z

H Q Q for the image field. 

4. Apply the aberration correction in the Fourier plane by complex multiplication at each depth 

     AC AC A, , , , ,
i

x y i x y x y i
z

S Q Q z H Q Q S Q Q z  . 

5. Calculate the 2D inverse Fourier transform of  AC , ,x y iS Q Q z to retrieve the aberration-free image field,  AC , , iS x y z . 

6. Stack the en face image fields along the depth to obtain the aberration-free volume  AC , ,S x y z . 
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Figure 2.12. Demonstration of aberration correction in a scattering phantom using CAO. Images acquired on a 1300 nm, 

0.1 NA OCT system. Select en face planes have been rendered to highlight the strong astigmatism. CAO restores the focal 

plane while ISAM improves the depth-of-field. Transverse dimensions of the rendered volume are 256 µm x 256 µm. 

Reproduced from [38]. 

Figure 2.12 demonstrates aberration correction by applying CAO. The dataset was measured from 

a silicone phantom with subresolution TiO2 microparticles illuminated by a highly astigmatic 

beam. En face planes using standard OCT processing show the presence of two orthogonal line 

foci associated with astigmatism, as well as the plane of least confusion located halfway in 

between. After correcting the astigmatism, the plane of least confusion was restored as the focal 

plane and the line foci showed a Gaussian-like point spread function (PSF). ISAM was then 

applied, reconstructing the entire volume with high-resolution. Imaging with the astigmatic beam 

also gave improved SNR far-from-focus as a result of the dual line foci. This suggests that imaging 

with an aberrated beam may actually be beneficial when the PSF can be computationally corrected.  

Many biological samples have been successfully imaged using CAO such as ex vivo human breast 

tissue, in vitro 3D cell cultures, and various ex vivo animal tissues. As with ISAM, CAO can also 

be applied to in vivo imaging when stability concerns are considered. Figure 2.13 demonstrates 

this capability for 3D in vivo imaging of human skin. Together, the ISAM and CAO methods 
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complement one another to provide 3D high-resolution images of biological tissue without the 

need for depth scanning or additional imaging hardware.  

 

Figure 2.13 High-resolution imaging of in vivo human skin acquired using an 860 nm, 0.6 NA OCM system. Arrows 

indicate (a, f) boundary of the stratum corneum and epidermis, (b, g) granular cell nuclei, (c, h) dermal papillae, (d, i) basal 

cells, and (e, j) connective tissue. Scale bar indicates 40 µm and applies to all images. Reproduced from [76]. 

Because the optical aberrations of a particular imaging system are generally unknown, it can be a 

significant challenge to determine the appropriate correction filter. One solution is similar to 

sensorless HAO techniques [78]. In sensorless HAO, a sequence of aberration corrections 

beginning with an initial guess are applied using a deformable mirror. Image metrics are then used 

to assess the subsequent change of the signal or image quality. Instead of physically altering the 

wavefront, CAO applies a sequence of computational aberration correction filters which are 

digitally applied to the complex image. The correction filter  AC ,x y
z

H Q Q  can be expressed as a 

modal term as in Zernike polynomial decomposition, or as a zonal-based wavefront. Several image 

metrics such as peak intensity, spatial frequency content, and image sharpness have been proposed 

and demonstrated for use in coherent imaging [79].  
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A technique termed subaperture correlation has also been proposed to digitally correct the 

aberrations in OCT data [39]. While CAO mimics the behavior of a deformable mirror, the 

subaperture technique simulates the operation of the Shack-Harman wavefront sensor by dividing 

the Fourier plane into several subapertures. The wavefront slopes of each subaperture are 

calculated from the cross-correlation of the reconstructed subaperture images to the center 

subaperture reference image. This method has shown image improvement for scattering samples 

that have a uniform Fourier spectrum, although only low-order aberrations can be corrected. 

If the sample contains point-like structures, the so-called “guide-star” method can be used in CAO 

to correct not only the high-order monochromatic aberrations, but also the chromatic 

aberrations [45]. A spatial window is used to capture the entire aberrated PSF of the guide-star, 

and a sub-resolution window is used to crop the guide-star to the desired target PSF. By isolating 

the signal from a guide-star, the aberrations can be sensed from the phase difference of the 

measured and desired wavefront in the Fourier domain. The aberration correction filter can then 

be digitally conjugated in the Fourier domain and applied to the whole image or 3D volume of 

stationarity containing the guide-star. Finally, after the inverse Fourier transform, the aberration-

free data can be retrieved.  

2.4.4 Phase stability 

Both ISAM and CAO are phase-sensitive techniques and require a certain level of phase stability 

for the reconstruction to succeed [80]. To ensure phase stable data, it is necessary to both measure 

and correct the phase instabilities [81,82]. 
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Figure 2.14. ISAM reconstructions of en face planes and corresponding stability analysis at various imaging speeds for 

ex vivo tissue and a scattering phantom. Images acquired on an 860 nm, 0.6 NA OCT system. Graphs on the right show 

calculated stability for each imaging speed (horizontal lines) in comparison to previously determined stability requirements 

(black squares). The approximate interrogation length is indicated by the vertical black line. The axial motion at 2.6 FPS is 
above the required threshold, and therefore the corresponding ISAM reconstruction fails. Scale bars represent 85 µm for the 

tissue and 10 µm for the phantom. Reproduced from [81]. 

Phase instabilities can be caused by motion of the sample or instability of the imaging system 

itself. Mechanical instability of the reference arm or scanning mirrors can introduce motion 

artifacts, and sample motion is often unavoidable in living tissues. In either case, it is necessary 

that the phase be stable over the interrogation time or interrogation length. The interrogation time 

is the duration for which the scanning Gaussian beam illuminates or “interrogates” a scattering 

particle. The interrogation time will be greater for particles far-from-focus, as the beam diameter 

is larger than at the focus. Therefore, phase stability requirements become stricter farther from 

focus. 
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Motion can occur along both the axial and transverse directions. The requirements for the axial 

dimension are defined in terms of the standard deviation of the phase in units of radians per frame. 

Requirements in the transverse dimension are defined in terms of transverse resolution elements 

per frame. The effect of phase instability on computational reconstruction is shown in Figure 2.14 

for both ex vivo tissue and scattering phantom data. For high scanning speeds, the phase variation 

is well below the threshold of approximately 0.3 radians per second. However, at the slowest 

scanning speed, the axial phase instability is too large to achieve an accurate reconstruction. This 

demonstrates that motion can be largely mitigated using high scanning speeds. 

TABLE 2.3 

AXIAL MOTION CORRECTION PROCESSING STEPS 

1. Begin with the complex OCT dataset  , ,S x y z . 

2. Calculate the axial phase shift across the slow axis (y) by complex conjugate multiplication of adjacent frames    *

1, , , ,i iS x y z S x y z . 

3. Depth-average the resulting complex signal over the depth (z) containing the imaging sample, resulting in a two-dimensional axial motion 

map  ,A x y . 

4. Set the phase difference to zero for the first frame. Calculate the cumulative sum along the slow axis (y) to convert incremental phase 

changes to cumulate phase changes. 

5. Smooth the axial phase map using a mean filter along the fast axis (x). 

6. Apply the motion map correction by complex conjugate multiplication at each depth    * , , , iA x y S x y z .  

 

Both simulation and experiment have demonstrated that computational techniques are most 

sensitive to phase fluctuations along the axial dimension. The steps for measurement and 

correction of axial motion are described in Table 2.3 (see [82] for a detailed discussion of 

transverse motion correction). Calculation of an en face axial motion phase map  ,A x y  is used 

to negate the axial motion through complex conjugate multiplication with the complex data 

 , ,S x y z . The result is phase stable data to which various computed imaging techniques can be 

applied. A representative motion map is shown in Figure 2.15. 
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Figure 2.15. Axial motion map resulting from the steps outlined in Table 2.3, showing smoothed cumulative phase 

variations. Adapted from [82]. 

2.4.5 In vivo retinal imaging 

Imaging the living human eye is an application where computational OCT could have great impact, 

but is very difficult in practice. Imaging of the photoreceptors aids the diagnosis and understanding 

of diseases such as macular degeneration [83,84]. Although it is possible to image the 

photoreceptors without adaptive optics provided the subject’s eye has very low 

aberrations [25,85], in general this is not the case [86]. As the numerical aperture of the imaging 

beam is increased, aberrations play an increased role and distort the point spread function [87,88]. 

Because of this, HAO solutions have been used to achieve diffraction-limited imaging of the 

retina [66]. However, the cost and complexity of HAO has restricted its wide-spread clinical 

application. A computational alternative, therefore, is highly desirable. 

The eye exhibits frequent and unavoidable motion [89]. This motion poses a significant challenge 

for computational techniques and must be carefully considered. Unlike the skin, direct physical 

contact of the imaging hardware with the eye is not clinically feasible. Therefore, high scanning 

speeds and motion correction techniques must be implemented. Transverse motion correction can 

be avoided by imaging at cross-sectional frame rates greater than 2.5 kHz [90]. 
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The first CAO images of the living human retina were recently reported using an en face OCT 

imaging system [18]. The use of en face OCT allowed for a higher effective frame rate in 

comparison to typical spectral-domain methods. The system operated at 4,000 en face lines per 

second, which for stability purposes is equivalent to a spectral-domain OCT system operating at a 

frame rate of 4 kHz. Even at this high imaging speed, axial motion correction was required due to 

phase instabilities from the acoustic optic modulators and sample motion. The axial motion 

correction algorithm outlined in Table 2.3 was used, slightly modified to work with en face data. 

 

Figure 2.16. Aberration correction in the living human retina using computational adaptive optics. (a) Scanning laser 

ophthalmoscope image of the retinal surface. N: nasal, S: superior. OCT images taken in the boxed region. (b) Uncorrected 

en face OCT data shows no recognizable features. (c) Aberration corrected data showing individual photoreceptors. 
(d) Simultaneously acquired cross-sectional OCT data showing the various retinal layers. The en face photoreceptor mosaic 

was acquired at the IS/OS junction. RNFL: retinal nerve fiber layer, GCL/IPL: ganglion cell layer/inner plexiform layer, 

INL: inner nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer, IS/OS: inner segment/outer segment, RPE: 
retinal pigment epithelium. Colored boxes correspond to the matching zoomed regions. Scale bar represents 1° in (a) and 

0.25° in (b-d). Reproduced from [18]. 

The subaperture and guide-star methods were implemented sequentially to determine the 

appropriate aberration correction filter for imaging the photoreceptor layer. The subaperture 

method was used to determine a bulk correction and the individual photoreceptors served as natural 

guide-stars to fine-tune the correction, modifying the Zernike polynomial terms of the bulk 

correction by up to 40%. The resulting photoreceptor mosaic is shown in Figure 2.16. The CAO 
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result clearly resolves the individual photoreceptors, gleaning valuable biological information 

from previously unintelligible data. 

Visualization of other retinal layers also benefits from improved resolution. The health of the 

retinal nerve fiber layer (RNFL) is an important marker for diseases such as glaucoma [91,92] and 

multiple sclerosis [93,94]. These fibers are densely packed and difficult to resolve without 

aberration correction. CAO imaging of retinal fiber structure is shown in Figure 2.17, acquired 

using the same en face imaging system. The aberration correction was manually adjusted to 

maximize the anisotropy image metric, and the previously hidden structure was clearly resolved.  

 

Figure 2.17. Computational adaptive optics of retinal fiber structure. (a) Scanning laser ophthalmoscope image of the 

retinal surface. The boxed region indicates the approximate OCT imaging location. (b) Uncorrected en face OCT data. 

(c)  Data corrected using CAO showing improved resolution of the fiber structure. Scale bar represents approximately 2° in 

(a) and 0.2° in (b, c). Reproduced from [95]. 
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3 POLARIZATION-SENSITIVE ISAM 

3.1 Motivation 

Various extensions of OCT have been developed to provide enhanced contrast between tissue 

types. One such extension is polarization-sensitive OCT (see Section 2.2). Like standard OCT 

imaging, PS-OCT suffers from limited depth-of-field. This is solved in OCT through the ISAM 

reconstruction (see Section 2.4.12). The ISAM solution can be expanded to include the vector field 

to account for polarization [42]. However, complications arise when comparing the ISAM and PS-

OCT models.  

This chapter highlights and resolves these complications, and demonstrates the extension of ISAM 

to polarization sensitive imaging, termed polarization-sensitive interferometric synthetic aperture 

microscopy (PS-ISAM). This technique is the first functionalization of the ISAM method and 

provides improved depth-of-field for polarization-sensitive imaging. The basic assumptions of 

polarization-sensitive imaging are explored, and refocusing of birefringent structures is 

experimentally demonstrated. 

3.2 PS-ISAM hybrid model 

PS-OCT makes use of the Jones vector representation to model the imaging system [58,59]. This 

formalism describes each polarization component of the optical system as a Jones matrix, J, which 

operates upon the electric field Jones vector, E. The Jones vector is composed of the horizontal 

(H) and vertical (V) polarized fields, 

 .
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V

E
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The sample is modeled as a waveplate with arbitrary fast-axis orientation, α, which introduces a 

phase delay via the Jones matrix 
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where R is the rotation matrix 
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The delay introduced by the waveplate is termed the phase retardation, 

 .kz n     (3.4) 

The form birefringence of the sample introduces a phase retardation between the two components 

of the Jones vector, and is the primary source of contrast in PS-OCT. 

 

Figure 3.1. Electric field polarization for a collimated beam (a), and a focused beam (b). The direction of wave 

propagation is indicated by k and the electric field by E. The ratio between the total power in the longitudinal, 

z, and transverse, xy, dimensions is shown for a circularly polarized beam (c). The power in the longitudinal 

direction increases with numerical aperture. 

The use of the Jones calculus assumes the propagation of a collimated, or pencil, beam along the 

optic axis with the polarization restricted to the transverse plane, as in Figure 3.1(a). In practice, 

the sample is illuminated with a focused beam. This is taken into account by the ISAM model to 
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provide high-resolution throughout depth. However, the field polarization of a focusing beam is 

no longer restricted to the transverse plane, as shown in Figure 3.1(b). At least some of the imaging 

beam power is along the optic axis. This contradicts the assumptions of the Jones matrix math. 

The power ratio between the transverse and longitudinal polarization components of the focused 

Gaussian beam is shown in Figure 3.1(c). The focused vector beams were simulated for circularly 

polarized incident light for increasing NA, and the total power was calculated for each 

dimension [96]. Initially the power is confined to the transverse dimension, as is expected for a 

collimated beam. As the NA increases, more power is transferred to the longitudinal dimension. 

However, only at very high numerical aperture is the longitudinal polarization strong enough to 

allow calculation of the longitudinal susceptibility component of the sample [97]. In the low-NA 

regime where OCT imaging is typically performed (0.1 NA or lower, see [17] and [35]), the 

longitudinal polarization is greatly overwhelmed by the power in the transverse polarization. This 

supports the use of the Jones vector representation at low-NA as in the standard PS-OCT model. 

The proposed PS-ISAM method uses a hybrid model, valid in the low-NA regime, which abandons 

the pencil beam approximation while retaining the transverse polarization approximation. By 

doing so, both the ISAM resampling equation and the Jones matrix math can be used in the image 

reconstruction. The ISAM reconstruction is applied to each component of the measured Jones 

vector through a Fourier domain coordinate resampling of the data according to the relationship of 

Eq. (2.20). The resampling equation, reproduced here, is 

 
2 2 2 1/21

( ) ,
2

x y zk Q Q Q     (3.5) 
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for wavenumbers 2 /k n   and spatial frequencies Q, where n is refractive index and λ is 

wavelength. Following this step, the sample reflectivity R and phase retardation δ are calculated 

for each position in the 3D volume as 

 
2 2

(ISAM) (ISAM)

H V( , , ) ( , , ) ( , , )R x y z S x y z S x y z    (3.6) 
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where H and V are the horizontal and vertical components of the measured Jones vector, 

respectively. Note that Eqs. (3.6) and (3.7) are similar to the PS-OCT calculations of Eqs. (2.13) 

and (2.14). However, the PS-ISAM equations operate upon the ISAM reconstructed Jones vectors 

and explicitly reference the 3D coordinate system. This emphasizes the use of a focused imaging 

beam, as opposed to simply a ranging experiment with a collimated beam. 

3.3 PS-ISAM imaging system design and protocol 

To demonstrate the PS-ISAM method, a custom spectral domain PS-OCT system was built in 

collaboration with Thorlabs GmbH. In general, ISAM imaging systems are identical to those used 

in OCT, with the exception that a higher NA may be used without sacrificing depth-of-field. The 

system used a traditional free-space PS-OCT design [47,48,62], which built upon the free-space 

interferometer of the standard Fourier-domain Thorlabs OCT system.  An illustration of the system 

design is given in Figure 3.2. 
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Figure 3.2. Fourier-domain PS-ISAM system. Light is coupled into polarization-maintaining fiber for delivery 

and collection from the free-space PS-OCT interferometer. The two components of the OCT Jones vector are 

measured at the spectrometers. SMF: single mode fiber. PMF: polarization-maintaining fiber. SLD: 

superluminescent diode. LP: linear polarizer. OC: optical circulator. PBS: polarizing beam splitter. FC: fiber 

collimator. BS: beam splitter. QWP: quarter-wave plate. SC: scanning mirror. L: lens. 

The optical source used two Thorlabs superluminescent diodes, coupled together to give a central 

wavelength of 1300 nm with 100 nm bandwidth (3 dB). Polarization-maintaining (PM) fiber was 

used to deliver light to and from the free-space PS-OCT interferometer through an in-line linear 

polarizer (Thorlabs ILP13010PM-APC) and optical circulator (AFW Technologies PMP-13-R-

C3N-45-22). An additional 45 meter of PM fiber which was included between the circulator and 

fiber collimator to displace the ghost images out of the imaging range (see further discussion 

below). The collected interference signal returned through the circulator to a PM fiber polarizing 

beam splitter (AC Photonics PBS-13-P-2-2-1-1) for polarization diverse detection. The two 

polarization components of the Jones vector were measured with two identical spectrometers, each 

using a 2048-pixel line scan camera (Sensors Unlimited GL2048L). Both the axial and transverse 

resolution of the system were approximately 7.65 µm full-width-half-maximum (FWHM), or 

13 µm ( 21/ e ), giving an NA of 0.065. This was slightly greater than the 0.05 NA of the initial 

ISAM demonstrations [35]. Three-dimensional datasets were acquired by scanning 512 x 256 
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transverse points with an isotropic transverse sampling of 3.4 µm to meet the Nyquist sampling 

requirement.  

The additional PM fiber patch cable prior to the PS-OCT interferometer was included to mitigate 

the effects of cross-talk within the PM fiber [98]. The fast-axis and slow-axis of the PM fiber have 

different group velocities. In the absence of cross-talk, the fast-axis and slow-axis polarizations 

travel independently to the spectrometers and the slight difference in arrival time is not an issue. 

However, cross-talk between the two axes will cause the signals to interfere. This creates copies 

of the OCT image at a pathlength equal to the difference in optical paths within the PM fiber. The 

45 meter patch cable ensured that the optical pathlength mismatch between the fast and slow axes 

of the PM fiber was well outside the OCT imaging range when the signal reached the optical 

circulator, where cross-talk occurred. Images acquired with and without the patch cable are shown 

in Figure 3.3. 

 

Figure 3.3. Ghost images resulting from PMF cross-talk. (a) Image of a scattering phantom acquired without 

patch cable, showing several ghost images. (b) Image acquired with the patch cable. Ghost images are no longer 

visible. 

While this mitigated the most severe ghost images, some ghost images remained due to cross-talk 

at the fiber couplers and within the polarizing beam splitter. These ghost images were only visible 

for strong signals, such as reflections from the sample surface. These bright reflections were 

minimized by placing the focus deep into the sample. Coincidentally, this is the ideal scenario for 
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ISAM imaging. Since depth-of-field is not an issue, the focus can be placed deep within the sample 

to counteract attenuation and increase signal collection [17]. 

The quarter-wave plate in the sample arm was adjusted such that circularly polarized light was 

incident on the sample. Circularly polarized light can be decomposed into two orthogonal linear 

states with arbitrary orientation, guaranteeing that there will be interactions with both the fast and 

slow axes of the tissue, regardless of the sample orientation. To calibrate the sample arm 

waveplate, the reference arm was blocked and a mirror was placed near the focus. When the 

quarter-wave plate was oriented properly, the linearly polarized light entering the free-space 

interferometer became circularly polarized after the waveplate. The handedness of the circular 

polarization will change upon reflection with the mirror at the focus. After returning through the 

waveplate, the light will be linearly polarized at 90° to the input polarization. In the absence of the 

waveplate, all reflected power will be in spectrometer H, associated with the input polarization. 

Therefore, with the waveplate properly oriented, all reflected power will be in spectrometer V.  

The quarter-wave plate in the reference arm was adjusted to provide equal power in each 

spectrometer. This was done by blocking the sample arm and rotating the quarter-wave plate mount 

until the difference between the spectrometer signals was minimized. 

Data from the two spectrometers was processed according to Eqs. (3.6) and (3.7). The OCT and 

ISAM structural images were generated from the reflectivity, and the PS-OCT and PS-ISAM 

images from the phase retardation. A two-dimensional median filter of approximately two 

resolution elements was applied to the phase retardation data to remove random fluctuations for 

improved visualization. 
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3.4 Imaging results 

3.4.1 Phantom imaging 

To demonstrate the capabilities of the PS-ISAM reconstruction, a scattering tissue phantom was 

imaged consisting of TiO2 particles, approximately 5 µm in size, suspended in a silicone gel. The 

results are shown in Figure 3.4. The OCT and ISAM images for an en face plane taken from far 

above focus are shown in Figure 3.4(b) and Figure 3.4(c). The OCT image shows strong blurring 

caused by the limited depth-of-field, while the corresponding ISAM reconstruction shows clear 

improvement in the transverse resolution. PS-OCT and PS-ISAM phase retardation images are 

shown in Figure 3.4(d) and Figure 3.4(e). The valid polarization information is localized to areas 

with sufficient signal corresponding to the scattering particles in the intensity images, which have 

phase retardation values near the extremes of the scale corresponding to right-handed and left-

handed polarization states [99]. Comparison of the PS-OCT and PS-ISAM images reveals 

improved localization of the phase retardation information in the PS-ISAM reconstruction due to 

the improved transverse resolution.  

The traces for a single particle shown in Figure 3.4(f) and Figure 3.4(g) highlight the improvement 

of the PS-ISAM reconstruction over the standard technique. There is a dramatic improvement in 

the point spread function for ISAM, as expected. The FWHM of the OCT and ISAM point spread 

functions are overlaid onto the phase retardation trace. This indicates the locations where the phase 

retardation measurement originates from the point scatterer. Note that although the phase 

retardation value for the point scatterer is the same for both PS-OCT and PS-ISAM, the 

measurement is better localized by PS-ISAM. This corresponds to enhanced sharpness in the PS-

ISAM phase retardation images. 
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Figure 3.4. PS-ISAM imaging of a scattering tissue phantom. (a) An illustration of the imaging setup which 

shows the silicone phantom containing sub-resolution microparticles, imaged by a point-scanned focusing 

beam. En face planes are shown from 1502 µm optical distance above focus (10.5 Rayleigh ranges). (b) OCT 

intensity image. (c) ISAM intensity image. (d) PS-OCT phase retardation image. (e) PS-ISAM phase 

retardation image. (f) Trace of the OCT and ISAM intensities for a single particle (white arrow) showing the 

FWHM resolution. (g) Trace of the PS-OCT and PS-ISAM phase retardation for the same particle as in (f). 

Shaded cyan and magenta areas indicate regions of valid signal from OCT and ISAM intensity measurements 

respectively, determined from the FWHM measurements in (f). The scale bar indicates 200 µm. 

3.4.2 Materials and tissue imaging 

Figure 3.5 demonstrates PS-ISAM imaging in a birefringent material. The phantom consisted of 

small molded plastic pieces suspended in an agarose gel. In more dense scattering samples such as 

this, the improvement from OCT to ISAM may not be as dramatic due to the relatively uniform 

scattering structure, as seen in Figure 3.5(b) and Figure 3.5(c). However, the birefringence of the 

sample causes changes in the polarization state seen as variations in the phase retardation images,  

Figure 3.5(d) and Figure 3.5(e). This highlights the usefulness of polarization-sensitive imaging 

as an additional form of contrast. Due to the strong defocus, the phase retardation information in 



45 

 

the PS-OCT image is somewhat indistinct. In contrast, the PS-ISAM reconstruction clearly 

resolves the polarization patterns throughout the material. 

To demonstrate the PS-ISAM technique in biological samples, healthy human breast tissue from 

a 24-year-old female was imaged ex vivo. The focus was placed far below the tissue surface to 

increase signal collection from deep within the sample. The resulting cross-sectional images are 

shown in Figure 3.6. Changes in polarization state indicated by the phase retardation measurement 

in Figure 3.6(d) and Figure 3.6(e) arise due to the aligned collagen fibers in the human breast (see 

Figure 2.5). These features are more clearly resolved in the PS-ISAM reconstruction, showing fine 

structure not visible in the PS-OCT data. 

To quantitatively demonstrate the improvement in image quality, image metrics were used to 

assess the sharpness of the phase retardation images. The metrics were calculated for a region of 

interest in the breast tissue, marked in Figure 3.6(d) and Figure 3.6(e), which contained the changes 

in polarization state due to sample birefringence. The entire field-of-view was included for 

assessing the birefringent plastic in Figure 3.5. The PS-ISAM images for both the birefringent 

phantom and human tissue samples showed improvement over the PS-OCT images in the 

anisotropy [17,76,100]  and Sobel [101] image metrics of greater than 50% and 6.7%, respectively. 

This improved image quality could potentially benefit the detection of residual cancer in breast 

tumor margins, where the polarization information can aid in the differentiation between normal 

and diseased tissue by identifying birefringent regions as collagenous stroma. 
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Figure 3.5. PS-ISAM imaging of molded plastic pieces suspended in agarose gel. (a) An illustration of the 

imaging setup which shows the plastic (green) suspended in the agarose gel, imaged by a point-scanning 

focused beam. En face planes are shown from 1000 µm optical distance above focus (7 Rayleigh ranges). 

(b) OCT intensity image. (c) ISAM intensity image. (c) PS-OCT phase retardation image. (d) PS-ISAM phase 

retardation image. The clarity of the phase retardation image is improved (highlighted by arrows). Scale bar 

indicates 200 µm. 

 

 

Figure 3.6. PS-ISAM imaging of ex vivo human breast tissue. (a) An illustration of the imaging setup which 

shows the excised tissue sample imaged by a point-scanning focused beam. Cross-sectional planes are shown 

with the focus placed 1253 µm optical distance below the surface (8.8 Rayleigh ranges). (b) OCT intensity 

image. (c) ISAM intensity image. (d) PS-OCT phase retardation image. (e) PS-ISAM phase retardation image. 

Image metrics were calculated over the boxed region in (d,e). The clarity of the phase retardation image is 

improved (highlighted by arrows). Scale bar indicates 200 µm. 
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4 COMBINED HARDWARE AND COMPUTATIONAL 

ADAPTIVE OPTICS 

 

4.1 Motivation 

As discussed in Section 2.3, imaging the living human retina requires imaging through the optics 

of the eye itself, which are highly aberrated when the pupil of the eye is large. By compensating 

for these aberrations using adaptive optics, it is possible to achieve cellular level resolution. 

Conventionally, this has been achieved using a wavefront sensor and deformable mirror to measure 

and correct the aberrated optical wavefront [51]. This method is termed hardware adaptive optics 

(HAO). When combined with optical coherence tomography (OCT), this enables high-resolution, 

3D imaging of various cell layers in the retina [26]. 

However, the HAO correction is optimized for a single depth within the retina. Thus, image quality 

is not optimal for other depth locations. The wavefront correction may also suffer from limited 

temporal sampling and inherent measurement or fitting errors. Lastly, successful operation of the 

HAO system depends upon optimal alignment at the time of imaging. This can be challenging to 

maintain when acquiring data from human subjects that are not stable, or during an extended 

imaging session requiring frequent head alignment. 

With CAO, the image formation process can continue after data acquisition. This reduces the 

burden on HAO to provide optimal correction at the time of imaging and the need to maintain 

optimal subject alignment. Additionally, the aberration correction can be fine-tuned to each depth 

layer, field position, and time point of acquisition. However, because CAO does not physically 

modify the wavefront, any photons lost due to the presence of aberrations are not recovered using 
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CAO. This is particularly true at large pupil diameters, where aberrations are most severe [102]. 

Previous demonstrations of in vivo CAO-only imaging were either performed on undilated 

subjects [18,90,103], or with large pupil diameters on dilated subjects requiring averaging over 

tens of datasets to obtain high SNR [104]. 

This chapter demonstrates the use of HAO and CAO together to address the shortcomings of each 

method, and to demonstrate how their strengths can be integrated to provide more complete 

correction of ocular aberrations for in vivo retinal imaging. 

4.2 HAO+CAO imaging system and protocol 

A high-speed HAO-OCT system designed by our collaborator, Prof. Donald Miller, and located at 

Indiana University, was used to physically correct aberrations and acquire retinal OCT data. Like 

most HAO systems, the sample arm used mirrors instead of lenses to eliminate back reflections 

that may interfere with the wavefront measurement. Unfortunately, the use of spherical mirrors 

introduced strong astigmatism that need to be compensated by placing some mirrors out-of-plane. 

The Indiana University system was a unique design which used toroidal mirrors to allow for in-

the-plane alignment without strong system aberrations [105]. The updated version of the system 

which was used for these experiments is shown in Figure 4.1. Key differences from the original 

design include the use of a single deformable mirror and four interleaved spectrometers [106].  

A superluminescent diode centered at 790 nm with 47 nm bandwidth was used for both imaging 

and wavefront sensing, giving an axial resolution in tissue ( 1.38n  ) of 4.2 µm. The pupil size 

was 6.67 mm at the eye, resulting in a theoretical diffraction limited transverse resolution 

of 2.4 µm. The spectral domain OCT system used four interleaved spectrometers operating at line 

rates of 250 kHz each, for an effective line rate of 1 MHz [106]. The HAO system consisted of a 
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deformable mirror (DM 97, ALPAO) and a custom Shack-Hartmann wavefront sensor, 

constructed with a 20 x 20 lenslet array in front of a sCMOS camera (Neo, Andor). 

 

Figure 4.1. Schematic of the MHz HAO-OCT system (located at Indiana University) used in these studies. 

Key: ACL, achromatizing lens; BS, beam splitter; C, collimator; CMOS, Basler Sprint camera; DG, diffraction 

grating; DM, deformable mirror; FT, fixation target; GS, glass slide; L, lens; OS, optical switch; PC, 

polarization controller; PM, planar mirror; P, pupil conjugate plane; R, retinal conjugate plane; S, scanner; SM, 

spherical mirror; TM, toroidal mirror; WS, wavefront sensor; WV, water vial. Reproduced from [106]. 

An imaging protocol was developed and tested to achieve both high frame rate and system stability, 

enabled by the 1 MHz A-line rate. As described in Section 2.4, computational aberration correction 

requires phase stability within the OCT volume, and it is necessary to image at B-scan frame rates 

greater than 2.5 kHz due to the rapid involuntary motion of the eye. The imaging protocol operated 

at a 3.125 kHz frame rate covering a 0.4° x 0.5° field-of-view on the retina (120 µm x 150 µm 

with transverse step size of 0.5 µm). 



50 

 

Although the scan speed was sufficient to overcome eye motion, it was important to measure the 

system stability due to the use of galvanometer scanning mirrors at such high frame rates and the 

fluctuations of the deformable mirror. This was analyzed using a model eye with the HAO system 

operating with and without closed-loop feedback. Repeated frames were acquired at the same 

location by fixing the position of the slow-axis scanning mirror. Complex conjugate multiplication 

was performed between consecutively acquired frames (along the temporal axis), and the result 

was averaged along both depth and the fast-scanning axis. This canceled out any transverse motion 

and measured purely axial motion, to which computational OCT is most sensitive. The stability 

measurement for closed-loop operation is shown in Figure 4.2(a). Following volume phase 

stabilization (see Table 2.3), the standard deviation of the phase motion was 0.06 radians, well 

below the previously determined threshold of 0.3 radians. 

 

Figure 4.2. (a) Phase stability of the high-speed HAO-OCT scanning protocol acquired from B-M mode data 

of a model eye. Stabilized data is below the previously determined stability threshold. (b) Illustration of the 

CAO processing method on a human subject. Each depth plane is optimized independently using an aberration 

phase filter in the spatial frequency domain. (c) The rod and cone mosaics are extracted from the HAO and 

HAO+CAO volumes for comparison. The cross-sectional images and depth profiles shown are projections 

throughout the 3D volume. IS/OS: Inner segment/outer segment junction. COST: Cone outer segment tips. 

ROST: Rod outer segment tips. 
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Data was acquired from the right eyes of two healthy male subjects, ages 27 years and 26 years. 

These are referred to as Subject A and Subject B, respectively. The left eye was covered by a patch, 

and the right eye was dilated using 0.5% tropicamide. The OCT data was acquired with the HAO 

system running in closed-loop feedback, and a real-time display was used to place the focus near 

the cone photoreceptors prior to data acquisition [107]. Imaging was performed at 0.5°, 1°, 3.5°, 

7.5°, and 12.5° temporal (T) to the foveal center. All procedures on the subjects adhered to the 

tenets of the Declaration of Helsinki and were approved by the Institutional Review Board of 

Indiana University. 

Residual aberrations in the HAO-OCT data were corrected using CAO in post-processing. CAO 

was used to correct each depth layer independently using a phase-only filter in the spatial 

frequency domain, as illustrated in Figure 4.2(b). Depth layers corresponding to reflections from 

the photoreceptors were extracted from the HAO and HAO+CAO datasets for direct comparison, 

as illustrated in Figure 4.2(c). Prior to extracting individual cell layers, the HAO and HAO+CAO 

data were co-registered to remove any translation introduced by CAO processing, and flattened to 

remove tip, tilt, and slowly-varying axial eye motion [108,109].  

An illustration of the cone and rod photoreceptor cells is shown in Figure 4.3 for reference, 

corresponding to the cross-sectional images and depth profiles in Figure 4.2(c). OCT measures 

bright reflections from the cone inner segment/outer segment junction (IS/OS), cone outer segment 

tips (COST), and rod outer segment tips (ROST). As the IS/OS and COST reflections both 

originate in the cone photoreceptors, these layers were combined to form a single cone mosaic. 
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Figure 4.3. Illustration of the cone and rod photoreceptors. OCT reflections originate from the junction of the 

inner and outer segments of the cone photoreceptor, and the outer segment tips of both the cone and rod 

photoreceptors. The reflections from the cone IS/OS and COST were combined into a single cone mosaic 

representing the cone photoreceptor. Modified from [110]. 

Phase motion in the HAO-OCT dataset was corrected using the axial motion stabilization method 

outlined in Section 2.4.4, with the modification that the mean is taken along the entire length of 

the fast-axis. This gives a single phase correction for each fast-axis B-scan. Each depth then 

underwent additional preprocessing prior to CAO optimization. The Fourier spectrum was 

centered to remove any linear phase ramp across the en face image. This was done by calculating 

the centroid of the Fourier spectrum. The final preprocessing step was to filter out the remaining 

phase noise. This was performed sequentially along each dimension by modifying the phase, 
i , 

at each pixel according to the algorithm 
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The result is a smooth phase profile suitable for CAO processing. The impact of each processing 

step is demonstrated in Figure 4.4. 
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Figure 4.4. Phase of the OCT depth frame for the COST layer at 3.5°T, Subject B, at each of the three CAO 

preprocessing steps. The original phase data is corrupted by motion and noise. Following the preprocessing 

steps, motion and noise are corrected to provide phase data suitable for CAO. 

The optimal aberration correction filter was determined via stochastic optimization of the image 

sharpness using the resilient backpropagation procedure outlined in [111]. The CAO phase filter 

extended to the maximum theoretical cutoff frequency of the confocal system, defined as two times 

the spatial frequency coverage of the 6.67 mm pupil at the eye [112]. A single correction was used 

for the entire field-of-view, which is roughly half the size of the expected isoplanatic patch on the 

retina [113]. The image sharpness metric was calculated from the OCT signal as the sum of the 

squared intensity, 
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The procedure was tested on the COST layer at 12.5°T in Subject B to determine the run time and 

image improvement for an increasing number of Zernike modes. The maximum Zernike mode was 

increased from 2nd to 10th order (excluding piston, tip, and tilt), and the optimization was run 10 
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times at each step. The mean and standard deviation of the run time and image sharpness 

improvement are shown in Figure 4.5. The optimization was performed on the 300 x 300 pixel 

image using MATLAB 2015b on an Intel Core i7-6950X processor. Optimization up to 5th order 

was determined to be a good balance between optimization time and image improvement, and was 

used as the default setting for processing other retinal datasets. 

 

Figure 4.5. Optimization time and image sharpness improvement for different maximum Zernike modes. The 

mean and standard deviation are shown for 10 trials at each setting. 

4.3 Photoreceptor imaging 

A representative HAO+CAO dataset is shown in Figure 4.6 which includes all three photoreceptor 

layers. Because the aberrations of the eye have been corrected, there is both high signal and high 

resolution throughout the volume.  

 

Figure 4.6. Representative HAO+CAO dataset. (a) Volume rendering of the 3D dataset from which the cone 

inner segment/outer segment junction (b), cone end tip (c), and rod end tip (d) images are extracted. 
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One of the major benefits of combining HAO+CAO was that the number of collected photons was 

greatly increased by first physically compensating for aberrations using HAO. Representative 

images for each variation of HAO and CAO are given in Figure 4.7, showing data at 12.5°T from 

Subject B, along with the peak SNR in each case. The no-AO image corresponds to a fixed defocus 

applied to the deformable mirror based upon the subject's glasses prescription (-2 diopter). All 

images are displayed on a common grayscale to highlight differences in signal level.  

 

Figure 4.7. Cone mosaic at 12.5°T imaged without adaptive optics, CAO-only, HAO-only, and combined 

HAO+CAO. All images are displayed on a common grayscale. The peak SNR of each image is given in 

decibels. 

The greatest improvement in SNR came from the addition of HAO, which increased the collected 

signal by nearly an order of magnitude over the no-AO case. The peak SNR of the CAO and 

HAO+CAO images was also improved over the no-AO and HAO-only images, respectively, as 

the computational correction improved the point spread-function (and therefore increased the peak 

signal). However, the total signal collected remained constant before and after computational 

correction. While the CAO-only image shows improved resolution, the HAO+CAO image shows 

both improved resolution and the greatest increase in SNR when compared to the no-AO image, a 
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12.7 dB increase. Note that in some subjects, the SNR without adaptive optics may be so low that 

no photoreceptors are visible. In such cases, HAO would be required regardless of CAO use. 

 

Figure 4.8. HAO+CAO cone photoreceptor mosaic over 0.4° x 0.5° field-of-view at multiple retinal 

eccentricities from Subject A. The top of each image is toward the fovea (nasal direction), and the fast-scanning 

axis is along the vertical dimension. Zoomed images correspond to the boxed areas in the cone mosaics. Signal 

traces are taken through the red lines in the zoomed images. Plots indicate the corresponding HAO (blue) and 

HAO+CAO (red) signals. 

Representative HAO+CAO cone photoreceptor mosaics are shown in Figure 4.8 for each retinal 

eccentricity, acquired from Subject A. The orientation of the figure is such that top of each image 

is toward the fovea (nasal direction).  Improvement in the visualization of the cones is seen 

following CAO residual aberration correction. Cones are smallest and most densely packed near 

the fovea. A signal trace taken through adjacent cones at 0.5°T shows improved resolution with an 

increase in the peak signal of each cone and a lower minimum between the two cones, a result of 

improvement in the point spread function and image sharpness. Cones at 1°T, 3.5°T, and 7.5°T 

show similar improvement, with narrow and symmetric intensity profiles. At greater retinal 

eccentricities, the IS/OS reflection supports higher-order optical modes [114]. An example of this 

can be seen in the 12.5°T mosaic, where the higher mode reflection is only revealed following 

CAO optimization. 
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Figure 4.9. (a) HAO+CAO rod photoreceptor mosaic taken at 12.5° temporal to the fovea from Subject A. 

Zoomed images correspond to boxed areas of corresponding color in the mosaic. Multiple individual rod 

photoreceptors can be resolved in the HAO+CAO data. (b) Dark patches in the rod mosaic correspond to 

pseudo-shadows of the cone photoreceptors, demonstrated by presenting the COST in magenta overlay. 

(c) Trace through the rod photoreceptors indicated by the white arrows in (a). 

Because rods are absent near the foveal center and have a density that increases sharply with retinal 

eccentricity out to between 10° to 20°, these cells were examined at the largest eccentricity 

imaged (12.5°T). A representative HAO+CAO rod mosaic taken at 12.5°T is shown in Figure 

4.9(a), also acquired from Subject A. Following CAO residual aberration correction, multiple 

individual rods appear resolved as seen in the zoomed region. In addition to the rods themselves, 

a repeating pattern of dark areas emerges which corresponds to pseudo-shadows of the cone 

photoreceptors [115,116]. This is confirmed by overlaying the COST layer onto the ROST, shown 

in Figure 4.9(b), where the COST layer is overlaid in magenta. The trace in Figure 4.9(c) 

corresponds to the rods highlighted by the white arrows in Figure 4.9(a), indicating that resolution 

of the rod photoreceptors is improved following CAO. The expected size of the rod photoreceptors 

is approximately 2 µm, which is slightly below the theoretical diffraction-limited resolution of the 

imaging system. When imaging objects near the resolution limit with coherent light, interference 

effects dominate [117]. Consequently, many rods remain obscured by speckle. However, rods 

which are sufficiently separated appear to be resolved.  
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Figure 4.10. Differential interference contrast microscopy photographs of the resected human photoreceptor 

mosaic at (a) 0.5° from the fovea, (b) 1.5° from the fovea, and (c) far from the fovea. As the eccentricity 

increases, the size of the cone photoreceptors increases. Rods are more prevalent far from the fovea. The 

horizontal field of view is 0.125°. Adapted from [118]. 

Histological sections taken from an excised human retina are shown in Figure 4.10 [113], showing 

the cones arranged in a densely packed mosaic comparable to the OCT images. As the distance 

from the fovea increases, the size of the cones also increases as seen in Figure 4.10(a) and Figure 

4.10(b). This corresponds to the trend seen in the in vivo OCT data of Figure 4.8. Rods are present 

far from the fovea and fill in gaps in the cone mosaic. There is a strong correspondence between 

the in vivo OCT measurements of Figure 4.9 and the histological images of Figure 4.10(c).  

The cone and rod photoreceptor mosaics for Subject B, which are shown in Figure 4.11 and Figure 

4.12 for completeness, also follow these trends. 

 

Figure 4.11. HAO+CAO cone photoreceptor mosaic over 0.4° x 0.5° field-of-view at multiple retinal 

eccentricities from Subject B. The top of each image is toward the fovea (nasal direction), and the fast-scanning 

axis is along the vertical dimension. Zoomed images correspond to the boxed areas in the cone mosaics. Signal 

traces are taken through the red lines in the zoomed images. Plots indicate the corresponding HAO (blue) and 

HAO+CAO (red) signals. 
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Figure 4.12. (a) HAO+CAO rod photoreceptor mosaic taken at 12.5° temporal to the fovea from Subject B. 

Zoomed images correspond to boxed areas of corresponding color in the mosaic. Multiple individual rod 

photoreceptors can be resolved in the HAO+CAO data. (b) Dark patches in the rod mosaic correspond to 

pseudo-shadows of the cone photoreceptors, demonstrated by presenting the COST in magenta overlay. 

(c) Trace through the rod photoreceptors indicated by the white arrows in (a). 

In addition to being optimized for each eccentricity and depth layer, the CAO correction was also 

optimized for each time point. Figure 4.13 shows a time sequence of the CAO residual wavefront 

correction for the peak COST depth layer at 3.5°T, acquired at a volume rate of 10 Hz from 

Subject B.  

 

Figure 4.13. Cone photoreceptors at the same location imaged across multiple time-points and the 

corresponding CAO residual aberration corrections. The optimized CAO Zernike weights (numbered per the 

ANSI Z80.28 standard [119]) are shown for each time-point, along with the CAO phase filter (without defocus 

for improved visualization). A single photoreceptor is encircled to aid the reader in tracking the photoreceptor 

mosaic over time. 
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The optimized Zernike coefficients reveal temporal dynamics that were left uncorrected by HAO, 

but corrected with CAO. The residual wavefront corrections appear to vary around a general 

profile over time. For example, positive defocus (Z4), negative astigmatism (Z5), and positive 

spherical aberration (Z12) are present at each time point. However, the weights vary quite 

significantly, with many of the other aberrations changing sign as well as strength. The temporal 

variation in the residual aberration correction is likely due to the temporal dynamics of ocular 

aberrations [120], which interact with the varying state of the deformable mirror, resulting in a 

new residual aberration at each time point. Although the exact origin of the dynamic aberrations 

is uncertain, the magnitude of this variation is dependent on several factors including 

accommodation and pupil diameter. 

The root mean square (RMS) strength of the residual aberrations and the corresponding image 

sharpness improvement for Figure 4.8 are shown in Table 4.1, corresponding to the peak IS/OS 

and COST depth layers. The RMS variation was calculated over the spatial frequencies 

corresponding to the 6.67 mm physical pupil, and is given as a fraction of the central 

wavelength, λ. Note that there is a non-trivial relationship between residual aberration RMS and 

sharpness improvement, as each aberration mode has a unique influence upon the value of the 

metric [121].  

TABLE 4.1 

RESIDUAL WAVEFRONT RMS AND IMAGE SHARPNESS IMPROVEMENT 

 0.5°T 1°T 3.5°T 7.5°T 12.5°T 

IS/OS 0.16 λ 0.11 λ 0.27 λ 0.17 λ 0.17 λ 

(9.7%) (28.3%) 36.6% 45.3% 45.5% 

COST 0.14 λ 0.12 λ 0.16 λ 0.12 λ 0.14 λ 

(6.2%) (17.4%) 36.7% 23.5% 41.2% 
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The impact of ocular aberrations typically increases with eccentricity, placing a greater burden on 

the HAO system, which could be shared by CAO. These results follow that general trend, showing 

more improvement in the image sharpness metric with increasing eccentricity. Another possible 

influence is the increased difficultly of obtaining optimal alignment of the subject pupil with the 

HAO system at larger eccentricities. 

Improvement in resolution and image sharpness following CAO is not only beneficial for 

interpretation by human users, but also for automated image analysis. For example, image blur is 

the primary source of error in automated cone detection algorithms [122]. This is because multiple 

cones may appear as one due to the broad PSF. Therefore, it was expected that the performance of 

such algorithms will improve with residual aberration correction. This was tested on the 0.5°T and 

1°T cone mosaics from Figure 4.8 using the algorithm of Li and Roorda [123]. The density of 

cones detected by the automated algorithm increased by 10% and 6.8% at 0.5°T and 1°T from the 

fovea, respectively. As expected, the increase in detected cones was greatest near the fovea where 

the cones are most dense. 

4.4 Hardware vs. computational actuation 

These results were achieved by computationally correcting up to the 20th Zernike mode, while the 

HAO system corrected up to 70 singular-value modes. Therefore, the residual aberrations do not 

result from a limited number of modes corrected by HAO but from the accuracy with which the 

modes are measured and corrected. Calibration error, fitting error, measurement error, and 

bandwidth error all contribute to the presence of residual aberrations [124]. The computed pupil 

also has many more adjustable elements, or actuators, than the deformable mirror used in this 

study, which may partially explain the improvement gained from CAO. 



62 

 

The computed pupil is the spatial frequency domain phase filter used to compensate for aberrations 

in the OCT data. The number of pixels across the computed pupil is termed the number of 

computational actuators. The phase of each pixel can be digitally modified using double-precision 

floating-point numbers, making them equivalent to piston-only actuators with nearly infinite 

stroke. The computed pupil is circular and extends to the cutoff frequency of the imaging system. 

Outside this range the CAO filter value is set to one. For the imaging protocol used here, the en face 

image size is 300 x 300 pixels originally acquired with 0.4 x 0.5 µm spacing and 6.67 mm physical 

pupil. This gives 14,111 piston-only actuators within the computed pupil. For comparison, the 

Alpao DM 97 used in this study has 97 discrete actuators with approximately Gaussian influence 

functions, and an inter-actuator stroke of 5 µm. 

To achieve equivalent performance using a piston-only corrector, the required number of actuators 

has been reported to increase by a factor of 10 to 40 depending on pupil size (6 to 7.5 mm) and the 

extent to which second-order aberrations need correcting [102]. This can be seen in Figure 4.14. 

The computed pupil has approximately 150 times more actuators than the DM, which is 3.75 to 

15 times above what is needed for comparable performance. This suggests the computed pupil will 

have superior correction performance. However, this should be confirmed in a future study with a 

direct comparison between HAO and CAO in a controlled setting. 
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Figure 4.14. Comparison between discrete actuator and piston-only phase correction. (a) Corrected Strehl ratio 

for discrete actuator deformable mirrors as a function of actuator number across the pupil diameter. 

(b) Corrected Strehl ratio for piston-only deformable mirrors as a function of actuator number across the pupil 

diameter. Black curves correspond to data acquired at the University of Rochester. Gray curves correspond to 

data acquired at Indiana University. The Strehl ratio is a measure of PSF quality, and is equal to 1 for an 

unaberrated beam. Adapted from [102]. 
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5 COMPUTAIONAL WAVEFRONT MEASUREMENT 

5.1 Motivation 

In addition to correcting aberrations for improved image resolution, it may also be desirable to 

measure the aberrations in an image. For example, aberration measurements can be used to 

determine the flaws in an imaging system design, and 3D mapping of aberrations in biological 

tissue can be used to optimize system parameters [125]. Wavefront measurement can also be 

medically relevant, as in aberrometry of the human eye [124], and sample-induced aberrations may 

prove to be a source of contrast for various tissue types. If the wavefront measurement can be 

performed computationally, this once again removes the need for a deformable mirror or wavefront 

sensor. 

CAO acts on OCT data in the Fourier domain by a phase-only filter (see Section 2.4.3). However, 

due to the double-pass nature of the OCT imaging experiment, this CAO correction filter does not 

directly correspond to the aberrations of the imaging pupil. Previous work has attempted to directly 

compare the CAO correction filter with the true wavefront measurement acquired with a Shack-

Hartmann wavefront sensor [103]. However, the complicated relationship between the pupil 

wavefront and the CAO correction filter was only explored for defocus, leaving aberrations 

unaddressed. 

This chapter develops and demonstrates new methods for recovering the wavefront aberrations 

directly from the OCT data itself. These methods have been tested in simulation and experiment 

to determine sensitivity to induced aberrations, as well as with cross-talk between aberrations. The 

results are shown to compare favorably with previously published HAO wavefront sensing 

measurements. 
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5.2 Computational adaptive optics model 

The OCT signal is obtained through interference of backscattered light from the sample with a 

coherent reference beam, providing complex-valued data for each point within the imaging 

volume. Detailed derivations can be found in Refs. [42,74], and are followed closely here. Note 

that the derivation differs slightly from that in Section 2.4, as no asymptotic approximations are 

yet taken. The complex-valued spectral domain OCT signal is acquired as a function of 

wavenumber, k, at each transverse scan location, ( , ) ( )x y  r . The focus remains fixed at a certain 

depth, 
0z . The signal ( , )S kr  can then be written as 

 
2

0( , ) ( , , ) ( , ) ,S k h z z k z d r dz       r r r r   (5.1) 

which is the convolution of the system point spread function, ( , , )h z kr , with the sample 

susceptibility, ( , )z r . 

The system point spread function is given as  

 
2 2( , , ) | ( ) | ( , , ) ( , , )h z k k P k f z k g z k  r r r , (5.2) 

which is the multiplication of the input and output beam profiles, ( , , )f z kr  and ( , , )g z kr , along 

with the power spectrum of the laser source, 2| ( ) |P k . In a standard OCT imaging system, the input 

and output imaging pupils are the same. The beam profile can be described by a plane wave 

representation, ( , )G kq . Therefore, both the input and output beam profiles are given by 

 
( , ) 2( , , ) ( , ) ,zi ik k z

g z k G k e e d q


 
q r q

r q   (5.3) 

where 
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2( , )zk k k q q  . (5.4) 

At the focus (z = 0), the beam profile is given by ( , )G kq , the Fourier transform of the imaging 

pupil. 

The signal representation in Eq. (5.1) can be simplified by transforming to the spatial frequency 

domain 

 0( , ) ( , , ) ( , ) ,S k h z z k z dz   q q q   (5.5) 

where the (~) denotes the two-dimensional Fourier transform over the lateral scanning dimension. 

The transfer function is then given as the transverse convolution, denoted as *  , of the input and 

output pupil functions in the spatial frequency domain 

 
2 2( , , ) | ( ) | ( , , ) ( , , ).h z k k P k g z k g z k   q q q   (5.6) 

The spatial frequency domain representation of the pupil function is  

 
( , )

( , , ) ( , ) ,zik k z
g z k G k e

q
q q   (5.7) 

which is the imaging pupil ( , )G kq  propagated a distance z away from the focus. Aberrations are 

modeled as phase variations in the imaging pupil, ( , )G kq . This leads to an aberrated system 

transfer function via the auto-convolution operation, as indicated in Eq. (5.6). 

In computational adaptive optics, the aberrated system transfer function is corrected by 

multiplication with a phase-only filter in the spatial frequency domain 

 AC AC A( , ) ( , ) ( , ),S k H k S kq q q   (5.8) 

where 
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( , )

AC( , ) ,hi k
H k e




q
q   (5.9) 

and where subscript “A” indicates the aberrated data, and subscript “AC” indicates the aberration 

correction filter and aberration corrected data. The phase term ( , )h k q  corresponds to the phase 

of the aberrated system transfer function. Under the assumption that the deviation from the central 

wavenumber is not too large, meaning 2( / )ck k  is negligible, the aberration correction filter can 

be evaluated at the central wavelength and applied at each depth plane, 
iz , as 

 AC AC A( , ) ( , ) ( , ),i i iS z H z S zq q q   (5.10) 

where 

 
( , )

AC( , ) .h ii z

iH z e



q

q   (5.11) 

This filter can be determined through a variety of procedures including image sharpness 

optimization, the guide-star method, and the split-aperture method [38,39,45]. These are analogous 

to sensorless AO, guide-star optimization, and the Shack-Hartmann wavefront sensor in hardware 

adaptive optics. In any case, the CAO filter corresponds to the double-pass system transfer 

function. 

Through the CAO aberration correction procedure, the phase 
h  is obtained. The goal of wavefront 

measurement is to determine the phase aberrations of the imaging pupil, 
g . The relationship 

between the pupil and system transfer function is, to within a constant,  

 ( , ) ( , ) ( , ),i i iH z G z G z q q q   (5.12) 
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where the propagation away from focus in Eq. (5.7) has been absorbed into the single-pass pupil 

function ( , )iG zq . The following section outlines methods for estimating the aberrations of the 

pupil phase. 

5.3 Methods for wavefront measurement 

5.3.1 Asymptotic method 

A computational method termed interferometric synthetic aperture microscopy (ISAM) solves the 

OCT inverse problem through asymptotic approximations taken near- and far-from-focus [35,42]. 

Although these approximations were performed with an unaberrated imaging pupil, it is 

anticipated that they may hold for small wavefront aberrations. The asymptotic approximations 

taken in ISAM allow the complex autoconvolution to be represented as a multiplication of 

stretched pupil functions, 

    ( , ) / 2, / 2, .i i iH z G z G z q q q   (5.13) 

For a generic pupil function 

 
( , )

( , ) ( , ) ,g ii z

i iG z G z e



q

q q   (5.14) 

the corresponding transfer function under the asymptotic approximation is 

  
2 2 ( /2, )

( , ) / 2, .g ii z

i iH z G z e



q

q q   (5.15) 

The relationship between the strength of aberrations is then simply a factor of two.  

The phase aberrations are often represented as a weighted sum of Zernike polynomials [68]. The 

pupil phase can then be represented by 
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 ( , ) ( ) Z ( ),g i n i n

n

z c z q s   (5.16) 

where 
nc  is the root-mean-square (RMS) variation of each corresponding Zernike aberration at 

depth 
iz . Note that for the current model, the pupil aberrations are depth independent, and the 

propagation away from focus can be approximated using the defocus term Z4. Therefore, the depth 

dependence of 
nc  will be left unnoted for convenience. Also note that the Zernike polynomials 

exist over the unit circle. Therefore, the coordinates are normalized to extend over the limiting 

pupil defined by the numerical aperture (NA), 

 .
NAck

 
  
 

q
s   (5.17) 

The transfer function phase determined using CAO with Zernike weights 
nd  can be similarly 

represented as 

    ( , ) / 2 2 / 2 .h i n n n n

n n

z d Z c Z   q s s   (5.18) 

An estimate of the Zernike weights for the pupil aberrations can then be easily obtained as 

 ˆ .
2

n
n

d
c    (5.19) 

This provides a simple relationship between the Zernike weights of the CAO phase filter and 

imaging pupil. 

5.3.2 Autoconvolution method 

Instead of relying upon the asymptotic approximations of ISAM, it is possible to retrieve the pupil 

phase via inverse autoconvolution. In this case, the autoconvolution relationship of Eq. (5.12) still 

holds. However, the inverse autoconvolution is complicated by the fact that 
h  is influenced by 
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both the amplitude and phase of ( )G q . Therefore, it is necessary include the pupil function 

amplitude. Gaussian beam illumination is typical for a point scanned OCT system and will be 

assumed here, although other amplitude profiles could be used. Passing a Gaussian beam through 

a limiting circular aperture results in the complex pupil function 

 
2( ) circ( )exp ( ) .n n

n

G i c Z
 

   
 

q s s s   (5.20) 

Given the phase 
h  from the CAO correction and a model for ( )G q  an optimization procedure 

can be performed to search for the corresponding pupil phase [126]. The estimated Zernike 

polynomial weights are calculated by 

 

2

2

( ) ( ) ( ) ( )
ˆ argmin .

( ) ( )

h

g n n

n

i

n
c Z

G G G G e
c

G G



 

  


 

q q q q

q q
  (5.21) 

This finds a pupil function whose autoconvolution has a phase profile that matches the CAO filter. 

5.3.3 Forward model method 

The above two methods estimate the pupil aberrations from the phase obtained by the CAO image 

correction. Alternatively, the pupil aberrations can be estimated directly by incorporating the 

forward model into the CAO procedure. In the absence of aberrations, a group of image metrics 

known as image sharpness are maximized [79,127,128]. Stated another way, aberrations can only 

decrease the image sharpness. Therefore, it is possible to determine the appropriate CAO phase 

filter by maximizing the image sharpness. Here the image sharpness operator is defined as 

  
2

*

,

( , ) ( , ) ( , ) ,
x y

S x y S x y S x y      (5.22) 
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where (*) indicates the complex conjugate. This operator calculates the sum of the intensity 

squared across the image. 

Typically, the image sharpness is optimized by searching over possible phases 
h , in accordance 

with Eqs. (5.10) and (5.11). However, it is possible to generate the CAO phase filter via the forward 

model as 

  AC ( ) exp arg[ ( ) ( )] .H i G G  q q q   (5.23) 

The image sharpness optimization can then be performed by searching over possible phases 
g , 

providing a direct estimate of the imaging pupil phase 

  1

AC
ˆ argmax [ ( )] .

g n n

n

n
c Z

c S









q   (5.24) 

where 1  indicates the inverse Fourier transform to the spatial domain. 

5.4 Sensitivity and cross-talk 

To determine the effectiveness of each method, OCT data was simulated allowing for the 

introduction of arbitrary aberrations into the imaging pupil. The data used here was generated 

using the more exact model of Eqs. (21) and (29) from [42]. Simulated data were generated on a 

densely spaced 3D grid, then resampled by a non-integer multiple to a coarser grid to mimic data 

acquisition. 

The simulated OCT experiments used a Gaussian spectrum with 1 µm central wavelength and 

100 nm bandwidth, and the transverse imaging area was 128 x 128 µm acquired with a 1 µm step 

size. The numerical aperture was 0.1, matching that of previous computational OCT 
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experiments [17,38]. The imaging pupil was constructed following Eq. (5.20), with aberrations 

introduced into the pupil phase using weighted Zernike polynomial functions  

  (μm)( , ) / ( NA) .g n n

n

k k c Z k  q q   (5.25) 

Here 
nc  was defined in units of micrometers (µm), corresponding to optical path length, and the 

variation in wavenumber was explicitly accounted for in the simulation. The image sharpness 

optimization and inverse autoconvolution procedures were performed in MATLAB using the 

Optimization Toolbox. 

To determine the sensitivity to each aberration term, as well as the cross-talk between terms, single 

aberrations were applied in the imaging pupil with increasing RMS. The imaging sample consisted 

of in-focus unit-amplitude point scatterers, and aberrations up to 4th order were applied (excluding 

tip/tilt and defocus) with RMS increasing from zero to 0.6 radians at the central wavelength. The 

applied aberrations were then estimated from the OCT data using each of the three methods.  

For the asymptotic and forward model methods, the wavefront was estimated by correcting up to 

4th order Zernike terms (excluding tip/tilt). However, as a result of the autoconvolution operation, 

the phase of the system transfer function is more rapidly varying than that of the imaging pupil. 

This means that while g  is described accurately by Zernike terms up to 4th order, 
h  may not be. 

The transfer function phase is represented more accurately as more Zernike modes are used. It was 

experimentally determined that the CAO optimization performed as the first step in the 

autoconvolution method must include up to at least 6th order Zernike modes. This provides an 

approximation of 
h  that is sufficiently accurate for performing the inverse autoconvolution 

operation to 4th order imaging pupil aberrations, and was used for the results presented here. 
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The sensitivity was defined as the slope of the linear least-squares fit between the estimated 

weights, 
nc corresponding to applied weights, 

nc . The cross-talk was defined as the normalized 

RMS variation in all aberration terms other than the applied term, 

 

1/2

2ˆ

,

m n

m

n

c

c



 
 
 


  (5.26) 

evaluated at the maximum applied aberration. A perfect estimate would result in sensitivity equal 

to one and cross-talk equal to zero [52]. 

 

Figure 5.1. Measurement of single aberrations using the asymptotic method. The applied and estimated Zernike 

weights are shown for 2nd, 3rd, and 4th order aberrations (a-c). The dotted line corresponds to a perfect estimate. 

All Zernike weights are in radians. The sensitivity and cross-talk were calculated for each applied Zernike 

term (d). 

Aberration estimates obtained using the asymptotic approximation are shown in Figure 5.1. In 

Figure 5.1(a)-(c), the estimated weights are given for 2nd, 3rd, and 4th order, respectively. An ideal 

estimate is indicated by the dashed line for reference. Notice that certain Zernike modes are nearly 
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identical, differing only in their rotation (for example astigmatism terms n = 3, 5). Therefore, the 

estimates for these terms are very close to one another. The sensitivity and cross-talk for each 

applied term are shown in Figure 5.1(d). There is reasonable performance only for 2nd order 

aberrations, indicating that the asymptotic approximation is not valid at higher orders. 

 

Figure 5.2. Measurement of single aberrations using the autoconvolution method. The applied and estimated 

Zernike weights are shown for 2nd, 3rd, and 4th order aberrations (a-c). The dotted line corresponds to a perfect 

estimate. All Zernike weights are in radians. The sensitivity and cross-talk were calculated for each applied 

Zernike term (d). 

The inverse autoconvolution method showed superior sensitivity at all orders when compared with 

the asymptotic method. The aberration estimates and corresponding metrics are given in Figure 

5.2. The sensitivity at 2nd order was 0.95, and remained greater than 0.5 through 4th order. For 

coma (terms n = 7, 8), the method overestimated the applied aberration, but the sensitivity 

remained within 0.25 of the ideal case. 
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Figure 5.3. Measurement of single aberrations using the forward model method. The applied and estimated 

Zernike weights are shown for 2nd, 3rd, and 4th order aberrations (a-c). The dotted line corresponds to a perfect 

estimate. All Zernike weights are in radians. The sensitivity and cross-talk were calculated for each applied 

Zernike term (d). 

Of the three proposed methods, the forward model method had the most consistent performance 

across all orders as demonstrated in Figure 5.3. Additionally, the method did not overestimate any 

aberrations. The average sensitivity across all terms was 0.81, while the average cross-talk was 

equal to 0.04. 

The imperfection of the CAO measurement can be partially explained by the fact that it is a phase-

only filter. Although the pupil aberrations are phase-only, the autoconvolution of Eq. (5.12) causes 

the pupil phase to couple into the amplitude of the system transfer function. As a result, the system 

transfer function cannot be completely corrected using a phase-only CAO filter. In some cases, the 

amplitude of the system transfer function will have zero values, meaning certain spatial 

frequencies are not measured.  
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Figure 5.4. Corrected point spread function and measured Zernike weights using the forward model method 

for applied 0.6 radians RMS. Note that as the aberration order increases, the corrected point spread function 

retains some sidelobes, and the measurement is less accurate. Image contrast is exaggerated to increase sidelobe 

visibility. 

The corrected point spread function using the forward model method is shown in Figure 5.4. For 

each Zernike term, the computational correction is imperfect. As the complexity of the aberrations 

increases, the sidelobes in the corrected PSF are more prominent. This is most severe for Zernike 

terms 11, 12, and 13, which also have the poorest aberration measurement performance for all 

three of the proposed method (see Figures 5.1, 5.2, and 5.3). Despite this limitation, phase-only 

correction is still preferable as it is simpler and does not amplify the noise power. Amplitude 

correction is significantly more complicated and is only expected to give moderate improvement, 

as the band-stop effect of the double-pass transfer function cannot be undone even with a 

regularized inverse. 

In a realistic imaging scenario, the data will be corrupted by noise. For OCT this can be modeled 

by additive complex white Gaussian noise [42,129]. The simulations and measurements of the 

previous section were repeated with peak signal-to-noise ratio (SNR) varying from 50 dB down to 

20 dB, where the peak SNR was defined as  
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The resulting sensitivity and cross-talk for the autoconvolution and forward model methods are 

shown in Figure 5.5. As the asymptotic method is not sensitive to higher orders, the results are not 

included. Although the computational wavefront measurement fails below a certain SNR 

threshold, it is important to note that the computational image correction still succeeds. This is in 

accordance with previous results [80]. 

At high SNR, both methods performed similarly to the noise-free case. However, as the SNR 

decreases, the tails and sidelobes of the point spread function become buried in the noise. 

Therefore, much of the point spread function shape can be obscured. The performance of the 

autoconvolution method began to suffer with peak SNR of 30 dB, where cross-talk approached 

the sensitivity for several aberration terms. At 20 dB peak SNR, the results became unstable with 

estimated RMS far beyond that which was applied.  

The performance of the forward model method remained strong down to 25 dB peak SNR. Here 

the average sensitivity was 0.81, and average cross-talk was 0.29. A comparable experiment was 

previously performed using a deformable mirror and Shack-Hartmann wavefront sensor [52]. The 

average sensitivity and cross-talk were 0.71 and 0.32, respectively, and only included aberrations 

up to 3rd order. Considering this, the performance of the forward model method was comparable 

or superior to that of direct hardware measurement. 
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Figure 5.5. Performance of the autoconvolution and forward model methods for decreasing peak SNR. The 

forward model method shows superior performance in noisy conditions. 
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5.5 Multiple simultaneous aberrations 

Additional simulated experiments were performed with multiple aberrations applied 

simultaneously in the pupil plane. The aberration weights were randomly generated to have a total 

wavefront RMS of zero, 0.2, 0.4, and 0.6 radians, with lower-order Zernike terms allowed to take 

on greater weights. The total wavefront RMS is defined as  
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A total of ten random wavefronts were generated at each RMS, and OCT data was simulated for 

each wavefront. The noise level was set to 50 dB peak SNR. Due to its consistent performance 

across all orders and resilience to noise, the forward model method was used to estimate the applied 

wavefronts.  

 

Figure 5.6. Measurement of multiple simultaneous aberrations using the forward model method. The applied 

and measured Zernike weights are shown for a randomly generated wavefront at 0.2, 0.4, and 0.6 radians 

RMS (a-c). The average wavefront RMS measured over ten randomly generated wavefronts is shown in (d). 

The corresponding sensitivity to total wavefront RMS was 0.85. 
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Example wavefronts and the corresponding computational measurements are shown in Figure 5.6. 

As seen in Figure 5.6(a)-(c), the measurement closely tracked the applied wavefront. For each 

wavefront, the total RMS of the measured aberrations was calculated. The average measured RMS 

across each set of ten wavefronts is shown in Figure 5.6(d). The sensitivity was 0.85, calculated 

as the least squares slope of the total measured RMS as a function of applied RMS. 

 

Figure 5.7. Measurement and correction of multiple aberrations in a 3D imaging volume. (a) Volume rendering 

of aberrated (OCT) and corrected (CAO) data. The dimensions of the volume are 128 x 128 x 640 µm. 

(b) En face images are taken from 150 µm below focus. (c) Applied and measured aberrations at each point 

scatterer throughout the volume. The error bars correspond to the standard deviation across all 50 

measurements. Zernike weights are in radians. 

As a demonstration of volumetric aberration measurement and correction, a 3D OCT dataset was 

generated with 50 randomly located point scatterers. The pupil aberrations were given by a 

randomly generated wavefront of 0.6 radians total RMS. The forward model method was used to 

estimate and correct the aberrations throughout the imaging volume. Volume renderings of the 

aberrated OCT data and CAO corrected data are shown in Figure 5.7(a), along with corresponding 

en face images taken 150 µm below focus. The CAO image demonstrates correction of the point 

spread function with increased signal amplitude and resolution, and a 3.9 times improvement in 

image sharpness (see Eq. (5.22)). In this case, the sharpness metric was normalized by the total 

intensity of each image. While only four points are resolved in this OCT image, a previously 

obscured fifth point is revealed following wavefront correction. The applied and measured 
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aberration weights are given in Figure 5.7(c), showing the mean and standard deviation of the 

wavefront measurement across all 50 scatterers. The average sensitivity to the total wavefront 

RMS was 0.89. 

5.6 Experimental demonstration 

5.6.1 Verification using hardware adaptive optics 

A hardware adaptive optics OCT system was used to experimentally verify the computational 

wavefront measurement. The system was previously used for CAO imaging [76], and was 

modified to include both a deformable mirror (mirao-52e, Imagine Optics) and wavefront sensor 

(HASO3 First, Imagine Optics). The DM consisted of 52 discrete elements to push and pull a 

reflective membrane. The wavefront sensor was a Shack-Hartmann design with 40 x 20 lenslets.  

 

Figure 5.8. Lens-based hardware adaptive optics OCT system. The sample arm includes a deformable mirror 

and wavefront sensor to measure and correct optical aberrations. A pinhole and polarization control are used 

to reject backreflections from the lens surfaces. 

The HAO-OCT system diagram is shown in Figure 5.8. Most HAO systems, including the system 

detailed in Section 4.2, are constructed using mirrors rather than lenses. This is because 

backreflections from lenses can cause a dynamic background signal on the wavefront sensor which 
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can overpower the weak signal from the sample. However, the disadvantage of a mirror-based 

system is its complexity. A mirror-based system requires out-of-plane alignment or custom 

manufactured mirrors to avoid introducing strong aberrations [105]. A lens-based system can be 

more easily aligned. 

Polarization-control was used to reject backreflections from the lenses. The input light was sent 

through a polarizer, and an orthogonal polarizer was placed immediately in front of the wavefront 

sensor. Backreflections were polarized identically to the input light, and therefore blocked from 

reaching the wavefront sensor. To allow sample backreflections to reach the sensor, a quarter-

wave plate was placed immediately before the objective lens, oriented at 45° to the input 

polarization. Assuming no sample birefringence, light reflected from the sample passed through 

the waveplate a second time and was polarized orthogonal to the input (see discussion in 

Section 3.3). The backscattered signal from the sample was then able to pass the polarizer at the 

wavefront sensor. 

Unfortunately, there is also a strong backreflection from the objective lens. The physical size of 

the quarter-wave plate requires that it be placed prior to the objective. Therefore, backreflections 

from the objective will also have a rotated polarization and be able to pass to the wavefront sensor. 

To help mitigate this problem, and to block any other reflections not sufficiently removed by 

polarization control, a pinhole was placed at the focus of the 4f system in the wavefront sensor 

path. This was adjusted to block as much of the backreflected signal as possible, without blocking 

the signal from the sample. Lastly, a background wavefront sensor image was taken and subtracted 

from future measurements. 
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White printer paper secured to a microscope slide was used as a highly scattering sample to 

calibrate the HAO system. Using the Imagine Optics control software, the interaction and 

command matrices describing the relationship between the DM actuators and wavefront sensor 

measurement were calculated. By using the strongest 75% of the eigenmodes, the HAO system 

achieved diffraction-limited performance (< λ/14 wavefront RMS) in closed-loop feedback. 

To test the forward model wavefront measurement method, a point-scattering tissue phantom was 

first imaged with a flat DM profile. The aberrations of this image were measured to provide a 

reference point for the inherent system and sample aberrations. Second and 3rd order aberrations 

were then introduced using the Imagine Optics control software with increasing RMS of 0.05 µm, 

0.10 µm, and 0.15 µm. The aberrations in each of these images were measured, and the change in 

Zernike weights from the reference image were calculated, with the exception of the 0.15 µm coma 

dataset which was excluded due to insufficient SNR. Because the coordinate systems of the HAO 

system and the OCT data may be rotated with respect to one another, the total RMS in each 

measured aberration “type” was calculated. For example, the measured astigmatism was calculated 

as the total RMS change in Zernike terms 3 and 5, corresponding to oblique and vertical 

astigmatism. This removed the effect of coordinate system rotation. 

The results are shown in Figure 5.9. The OCT reference image is shown, along with an example 

aberrated image. The sensitivity and cross-talk were calculated as defined in Section 5.4, with the 

exception that defocus was not included in the cross-talk calculation. This is due to the fact that 

undesired defocus was introduced by the DM. This can be seen in Figure 5.9(b) where defocus is 

added in addition to the intended 0.10 µm of coma. The difference between the intended and actual 

applied aberration is attributed to the non-common path relationship between the OCT signal and 

the wavefront sensor measurement. As shown in Figure 5.8, the wavefront sensor path contains an 
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additional 4f system not present in the OCT path. Therefore, a flat wavefront at the wavefront 

sensor does not correspond to a flat wavefront at the OCT sample fiber. While higher-order non-

common path aberrations are likely present, the strongest and most likely mismatch is defocus due 

to inaccuracy in the 4f system alignment. The average cross-talk was 0.53 including defocus and 

0.23 excluding defocus.  

 

Figure 5.9. Experimental verification of the forward model method. (a) OCT reference image acquired with a 

flat deformable mirror. (b) Example aberrated OCT image acquired with 0.10 µm of induced coma, showing 

both coma and defocus aberration. (c) Sensitivity and cross-talk of the aberration measurement using the 

forward model method. Change in defocus was excluded as a non-common path aberration. Field-of-view is 

75 x 75 µm in (a,b). 

In contrast with previous simulations, the sensitivity was greater than one, rather than less than 

one. This can be attributed to an overestimation of the pupil size. A larger pupil size will require 

larger Zernike weights to generate the same phase profile. Because the imaging sample was 

composed of subresolution point-scatterers, the NA could be estimated directly from the power 

spectrum of the image data. The double-pass cutoff frequency was estimated as the -20 dB point, 

excluding the peak DC value, and was assumed to be twice the single-pass cutoff frequency. This 

is the best-case scenario for confocal imaging. In reality, the double-pass cutoff may be less than 

twice the single-pass cutoff, leading to a slight overestimation of the pupil size. Using this method, 

the average sensitivity was 1.07.  
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5.6.2 Wavefront measurement in tissue 

The forward model wavefront measurement and correction method was then applied in biological 

tissues. Imaging was performed with a 1300 nm OCT system used in several previous studies [82]. 

As the sample structure may affect the power spectrum of the data, the nominal NA of 0.075 was 

used, rather than estimating the NA from the power spectrum.  

The local wavefront was estimated within a 200 x 200 µm window. The choice of window size 

was determined by two factors. First, the window size must be large enough to include the entire 

aberrated point spread function. Second, it must be large enough to include sufficient structural 

information such that the sharpness metric is not dominated by speckle nose [128]. A window of 

200 µm was experimentally determined to be appropriate for this imaging system across multiple 

samples of interest. Additionally, negative entropy was used as the image sharpness metric during 

optimization. A detailed definition and justification of this metric are presented below. 

 

Figure 5.10. Measurement and correction of aberrations in ex vivo mouse brain slice. (a) Corrected depth image 

when CAO is applied to the entire field-of-view. Inset shows the global wavefront. (b,f) Uncorrected OCT 

subimages 1 (top) and 2 (bottom) corresponding to the boxed regions in (a). Image intensities are normalized 

to the peak signal of the uncorrected OCT subimages. (c,g) Globally corrected subimages using the wavefront 

from (a). (d,h) Locally corrected subimages. (e,i) Local wavefront measurements corresponding to the two 

subimages. Scale bar and subregion widths are 200 µm. 
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To demonstrate the importance of local wavefront measurement, Figure 5.10 shows global and 

local aberration correction in the ex vivo mouse cortex. Because the aberrations vary across the 

field-of-view, a global CAO correction may improve one region while degrading another. With a 

local measurement, each region can be improved independently. This is quantified in Table 5.1, 

where the improvement in the intensity squared sharpness metric is given for the entire field-of-

view and the two subregions indicated in Figure 5.10. Subimage 1 (top), which corresponds to the 

edge of the hippocampus, is aberrated and out of focus. This biases the global correction to degrade 

subimage 2 (bottom), which corresponds to myelinated nerve bundles near focus and therefore 

relatively unaberrated. A local measurement takes this variation into account and achieves a better 

result for both subimages. 

TABLE 5.1 

IMAGE SHARPNESS IMPROVEMENT FOR GLOBAL AND LOCAL CORRECTION 

 Full FOV Subimage 1 Subimage 2 

Global correction 10.5% 30.0% -14.8% 

Local correction -- 83.0% 1.3% 

 

This local measurement can be performed across the entire imaging region to generate an 

aberration map. This provides insight into how the tissue itself impacts the optical wavefront, and 

therefore the image quality. Figure 5.11 shows the spatial variation of the local wavefront within 

ex vivo chicken breast. This was calculated using a 200 x 200 µm sliding window with 33.6 µm 

step size, totaling 55 x 55 wavefront measurements. The surface of the muscle tissue was uneven. 

As a result, the imaging beam at a given depth plane traveled through varying amounts of tissue 

across the field-of-view. The wavefront RMS is much greater where the beam traveled through 

more tissue. This can be seen in the gradient of the wavefront RMS in Figure 5.11(c).  This 

demonstrates that different paths through the same tissue type can cause variation in optical 

wavefront. 
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Figure 5.11. Wavefront measurement and correction in ex vivo chicken breast. (a) OCT cross-section showing 

uneven tissue surface. (b) Composite depth image of locally corrected subimages, taken at the depth plane 

indicated by the yellow line in (a). (c) Map of the local wavefront RMS across the depth image (b). The 

wavefront RMS is greater where the imaging beam has passed through more tissue. Scale bar is 200 µm. 

Wavefront variation can also be caused by differences in tissue type. For example, dense tissues 

may aberrate the imaging beam more strongly than transparent tissues. This is demonstrated in 

Figure 5.12, where adipose and muscle tissues are adjacent within the same imaging volume. Here 

the wavefront RMS is shown without defocus, as defocus is similar across the field-of-view due 

to the flat surface. Although the sample surface is flat, the wavefront RMS varies across the field-

of-view because the highly scattering muscle tissue distorts the imaging beam more than the 

weakly scattering adipose tissue. This is seen in Figure 5.12(c).  

 

Figure 5.12. Wavefront measurement and correction in ex vivo chicken breast. (a) OCT cross-section showing 

the muscle and adipose tissue types. (b) Composite depth image of locally corrected subimages, taken at the 

depth plane indicated by the yellow line in (a). (c) Map of the local wavefront RMS across the depth image (b), 

excluding defocus. The wavefront RMS is greater in the muscle tissue when compared to the adipose tissue. 

Scale bar is 200 µm. 
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The choice of image sharpness metric is important when considering the optimization of various 

image types [79]. For example, the point-scatterer images used in both simulation and experiment 

in the previous sections have very different optimization characteristics than the dense tissue 

images presented here. A variety of image sharpness metrics have been proposed, where the 

intensity is raised to a particular power gamma,  

  
,

,
x y

I x y . (5.29) 

While each metric is maximized in the absence of aberrations, the performance of the metrics can 

vary quite dramatically depending on the characteristics of the image. Images which are expected 

to have bright point-like features are more easily optimized by image sharpness metrics with large 

powers, such as γ > 2. This emphasizes improvement in contrast at high intensities, and performs 

well for the point-like images of the photoreceptors and scattering phantom. However, images with 

dark features within a scattering background are better optimized by sharpness metrics with small 

powers, such as γ < 1. The negative entropy metric 
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behaves similarly to the power metric with γ = 1.1. 

Several metrics were tested as the optimization metric for the forward model method on the dataset 

presented in Figure 5.11. Improvement in the intensity squared metric of the composite image was 

used as a common standard. The optimization procedure was allowed 10N function evaluations, 

where N is the number of Zernike weights being optimized (N = 12 including 2nd, 3rd, and 4th order 

aberrations). Table 5.2 shows the improvement in sharpness and the percent of subimages which 

converged in the allotted number of function evaluations. The negative entropy metric showed the 

best performance across all metrics, and was therefore used for each tissue dataset. 
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TABLE 5.2 

IMAGE SHARPNESS IMPROVEMENT AND CONVERGENCE FOR SELECT METRICS 

 γ = 4 γ = 2 γ = 0.5 I ln(I) 

Sharpness improvement 40% 40% 41% 44% 

Convergence 75% 78% 71% 90% 

 

An additional consideration is the impact of speckle in highly scattering and homogenous tissues. 

With a coherent measurement, the image is corrupted by multiplicative speckle noise [128]. The 

intensity of the speckle noise can be modeled as a negative-exponential random variable. In a 

homogeneous tissue region, the sharpness of the underlying image structure will be approximately 

constant with respect to changing wavefront. Therefore, the image sharpness metric is dominated 

by the characteristics of the speckle noise. For fully developed speckle, the speckle contrast (and 

therefore image sharpness) are theoretically independent of phase aberrations [130,131]. This 

leads to a dramatic variation in the wavefront RMS as the optimization procedure unsuccessfully 

attempts to sharpen the speckle.  

 

Figure 5.13. Wavefront map for ex vivo mouse brain slice. (a) Composite depth image of locally corrected 

subimages. (b) Corresponding wavefront RMS, with brightness mapped to estimated image sharpness. 

(c) Equivalent number of looks (ENL), vs. computational wavefront RMS. Scale bars 200 µm. 
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To determine a level of trust for each subimage, the aberration-free image sharpness can be 

estimated from the autocorrelation of the subimage [79]. Here the variance of the autocorrelation 

is used, excluding the DC term and normalized by the total subimage intensity. The sharpness 

estimate can then be used to mask out areas without significant image features from the wavefront 

map. This was not necessary for chicken breast data, which had sufficient image structure 

throughout the dataset. However, the brain slice images contained large areas with low intrinsic 

sharpness. Such areas can be masked as shown in Figure 5.13. In Figure 5.13(b) the estimated 

image sharpness is mapped to brightness, and the wavefront RMS to color. 

Alternatively, the speckle content can be estimated using the equivalent number of looks (ENL) 

defined as 

 
2

2
ENL , (5.31) 

where μ is the mean and σ is the standard deviation of the image intensity [132]. The relation 

between the ENL and wavefront RMS for each subimage is shown in Figure 5.13(c). Subimages 

with higher ENL, and therefore greater speckle content, are associated with artificially high 

wavefront RMS. As such, the computational wavefront measurement for areas with low 

underlying sharpness or high speckle content should be treated with a healthy skepticism. 
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6 SUMMARY AND OUTLOOK 

6.1 Summary 

The work presented in Chapters 3 through 5 expanded both the theory and application of 

computational OCT. Optical models were developed to identify new image processing and 

reconstruction methods. Experimental systems were then designed, constructed, and tested to 

demonstrate the validity and useful application of each method. 

With these new computational imaging methods, high-resolution polarization-contrast was 

demonstrated in bulk biological tissue. Wavefront measurement was also demonstrated in bulk 

tissue, providing a new form of image contrast through spatial aberration mapping. The primary 

weakness of computational OCT, low signal strength, was addressed via integration with hardware 

wavefront correction, which achieved image quality beyond that of hardware or computational 

methods alone. Each result is simultaneously a significant step forward for optical science, and a 

starting point for new research. 

6.2 Continuing work 

6.2.1 Intraoperative PS-ISAM imaging 

The imaging system constructed for the demonstration of PS-ISAM (see Section 3.3) has been 

transferred to a portable cart, shown in Figure 6.1 for imaging of freshly resected breast tissue 

samples. It is presently being used to image tissue in the operating room and pathology lab at Carle 

Foundation Hospital in Urbana, IL. This will allow direct correlation between diagnosed histology 

and PS-ISAM images of various disease types. The numerical aperture of the system has also been 

increased from 0.1 NA to 0.2 NA. Because of the PS-ISAM reconstruction algorithm, the increase 
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in numerical aperture will provide higher resolution without loss of depth-of-field. This is expected 

to improve the ability of PS-ISAM to resolve important biological features, such as ducts, lobules, 

vessels, and tumors in breast tissue specimens.  

 

Figure 6.1. Intraoperative PS-OCT imaging cart. Designed and constructed by Darold Spillman and Kelly 

Mesa of the Biphotonics Imaging Laboratory. 

6.2.2 Polarization-sensitive CAO 

A natural next step is to extend the CAO method to polarization-sensitive imaging. In this thesis, 

aberrations were assumed to be polarization-independent. However, it is possible that the system 

optics or sample will introduce polarization-aberrations which may or may not be dependent upon 

the input polarization state [133]. Polarization-aberrations may arise from intrinsic birefringence 

of the imaging optics, stress birefringence of optical mounts, or from thin film coatings on the 

optics, and have the greatest impact at high NA due to large angle of incidence with the imaging 

optics or sample [134]. The optical system can be described via a polarization-aberration matrix, 

or Jones pupil, which describes the change in polarization state between each point in the input 
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and output object or pupil space. Alternatively, the polarized beam can be propagated in arbitrary 

optical systems using a matrix method [135]. 

A common OCT component is the beam splitter, which has a thin-film structure illuminated at a 

45° angle that can lead to significant polarization-aberration [136]. Therefore, it is likely that each 

channel in the PS-OCT system would have a unique CAO optimization even in the case of a non-

birefringent sample. As a biological example, the RNFL in the retina is known to be birefringent. 

Assuming the retina is perpendicular to the direction of beam propagation, the angle of incidence 

on the retina is limited by the pupil of the eye to approximately 11°, or 0.2 NA. Therefore, it is not 

anticipated that polarization-aberrations due to Fresnel or thin-film effects will play a significant 

role in this case. If the tissue is modeled as a waveplate, there may be polarization-dependent 

spherical aberration due to polarization-dependent optical path length.  

Polarization-aberrations are generally an order of magnitude less than the scalar wavefront 

aberrations. Therefore, detailed calculations should be performed to determine the expected impact 

of polarization-aberrations for a given imaging scenario before pursuing CAO for polarization-

aberration correction. 

6.2.3 Computational OCT of diseased eyes 

The computational OCT images of the retina presented in this thesis were acquired in healthy eyes. 

However, the combination of HAO and CAO is most promising for imaging in diseased eyes. 

Many eye pathologies are associated with age, making imaging of aged retinas a clinical priority. 

However, elderly subjects often have cataracts, which make it difficult to deliver and receive light 

from the retina, and ocular aberrations increase with age as well. Using HAO, the deformable 

mirror could focus the light through the scattering cataracts to obtain a high SNR image.  
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However, if the retina is diseased and has disorganized structures, such as diabetic macular edema 

or drusen, the Shack-Hartmann wavefront sensor will perform poorly. This is because the Shack-

Hartmann assumes a point-like scatterer, which is approximated in the healthy eye by the bright 

reflections from the photoreceptors. CAO could be used to overcome the reduced performance of 

the wavefront sensor. In this way, hardware and computational correction could work in tandem 

to image the eye in elderly subjects, and/or in diseased eyes. 

An example image taken from a diseased eye is shown in Figure 6.2. The dark area corresponds 

to the drusen caused by macular degeneration, where photoreceptors have been degraded and 

displaced. The cone photoreceptors are misshapen, indicating that the point spread function could 

be improved by CAO. However, there was significant subject motion making computational 

correction impossible. This seems to be a common issue when imaging elderly or diseased 

subjects, who are either unstable or have difficulty focusing on the fixation target. 

 

Figure 6.2. Retinal OCT image of drusen using (a) HAO and (b) HAO+CAO. Bright reflections correspond to 

photoreceptors, and the dark area corresponds to the drusen. Due to phase instability, motion artifacts appear 

in the HAO+CAO image as dark vertical lines. 

An obvious solution is to simply image faster. However, the current frame rate is limited by the 

scan speed of the galvanometer mirror. Instead, a resonant scanner could be used to image at a 

higher frame rate. For example, a 4 kHz resonant scanner could increase the frame rate by nearly 
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30%. The drawback is that the fixed speed of the resonant scanner limits the flexibility of the 

imaging system, which is used for many other experiments. Alternatively, a high-speed full-field 

approach can be used, assuming that HAO is integrated into the system to overcome the very low 

SNR typical of that method [104]. 

6.2.4 Aberration contrast imaging 

Using the methods developed in Chapter 5, it is possible to map the optical aberrations within a 

tissue sample. Just as PS-OCT provides enhanced contrast between certain tissues, the wavefront 

map may also serve as a useful source of contrast for diseased tissue. For this to be possible, CAO 

must demonstrate consistent performance across a wide range of image types, including sparse 

and dense features, and positive and negative intensity contrast. 

When performing CAO on a variety of image types, it is difficult to determine the optimal 

aberration correction. In an ideal case, one could imagine comparing the corrected image to a gold 

standard to maximize a measure of similarity between the image and the gold standard.  However, 

in many applications a one-to-one comparison to histology is impossible. For example, it is quite 

unreasonable to acquire histology from the living human retina for image comparison. There is 

also the added concern that the source of contrast is not the same between the histology and 

imaging method. This can sometimes be an advantage when identifying disease, but can make 

comparison with histology difficult. Representative histology or measures such as photoreceptor 

density also cannot be used as a gold standard, since there is large variation in photoreceptor 

density and size across the general population [137], and disease processes disrupt the typical 

tissue structure.  
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Alternatively, image metrics can be used to determine the optimal aberration correction. These 

metrics are known to be optimized in the case of no aberration. Multiple image sharpness metrics 

were explored in Section 5.6.2, showing that performance of the CAO optimization depends upon 

the chosen sharpness metric relative to the image features. For example, the standard intensity 

squared metric was outperformed by the negative entropy metric in the brain tissue image. A poor 

choice of sharpness metric leads to slow convergence and causes the algorithm to stop at  local 

maxima. This has led researchers to develop designer metrics for various image types [79]. The 

use of a customized sharpness metric would reduce the convergence time, helping achieve real-

time CAO. The metric would also be well behaved and more likely to find the global optimum.  

Choosing the appropriate metric is a time-consuming process, as many metrics must be manually 

tested for each tissue structure. Machine learning could be used to classify the image type to 

automatically choose the best image metric. For example, images and their best performing metric 

(determined manually) could be used to generate classes of image types appropriate for each image 

metric. New OCT images would then be corrected using the appropriate image sharpness metric 

based upon their classification. In this case, both the choice of image metric and optimization of 

the metric would be performed in an automated manner. 

Instead of choosing between several predetermined sharpness metrics, it is possible that machine 

learning could be used to create new sharpness metrics. Aberrated and corrected OCT images from 

a variety of known tissue types could be used as training data to find an optimal sharpness metric 

for each tissue type. Convergence speed and RMS variation from the known wavefront error could 

be used as performance measures when searching for a sharpness metric.  
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Aberration mapping can also be used to answer fundamental questions in optics. It is known that 

imaging with a higher numerical aperture reduces the useable imaging depth within tissue. 

Computational wavefront measurement could be used to visualize how the aberrations increase 

with NA, and to verify that it is in fact aberrations which limit the useful signal. Other limiting 

factors, such as multiple scattering, could be measured simultaneously using PS-OCT [138]. 

Perhaps an optimal NA could be determined which balances the impact of aberration and multiple 

scattering. 

6.3 New computational imaging methods 

The work in this thesis demonstrates the capability of computational imaging to increase the 

performance of OCT and expand it to new application areas. This was done by understanding the 

information content of the OCT signal via the physical model, and then creating new processing 

and reconstruction schemes to retrieve the desired information. Other optical imaging modalities 

may likewise be improved through a computational imaging approach. 

Alternatively, the computational imaging framework can be used to create entirely new imaging 

methods. Through an understanding of the underlying physics, an experiment can be designed 

such that the desired information is encoded in the acquired signal. In this case, directly mapping 

the signal to an image may not show any useful information. However, computational methods 

can be used to extract the desired information for sensing or imaging. 

An example workflow is suggested here. First, the application-critical information is identified 

through careful consideration of the imaging application. The imaging sample, either biological or 

material, interacts with and modifies the optical signal in some way. Intuitive sources of contrast 

in optics include scattering, absorption, polarization, and phase. The time scale over which this 
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contrast takes place must also be considered. Second, the application-critical information can be 

mapped to various dimensions as needed. Each of the sources of contrast mentioned above can be 

used for this. For example, information can be mapped to orthogonal polarizations, distinct 

wavelengths, timepoints, or physical locations. Lastly, the inverse problem can be solved to 

retrieve the desired information. This process results in custom imaging methods tailored to 

specific applications, which are likely to provide improved performance over more general 

methods. 

As the applications of optical imaging become both more diverse and specialized, the limitations 

of traditional methods become more apparent. It is anticipated that computational imaging will 

continue to provide key technological breakthroughs that enable new discoveries in biology and 

medicine. 
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