
c� 2018 Peiyuan Zhao

COMPARING MODULE- AND CLASS-LEVEL REGRESSION TEST SELECTION IN

CONTINUOUS INTEGRATION

BY

PEIYUAN ZHAO

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Professor Darko Marinov

ABSTRACT

Developers rely on regression testing in their continuous integration (CI) environment to

find if their changes introduce faults. While regression testing is widely practiced, it is very

costly. Regression test selection (RTS) reduces the cost of regression testing by running

only the tests that are a↵ected by the changes. Industry has adopted module-level RTS

running in a CI environment. Researchers have recently proposed class-level RTS but did

not evaluate it in a CI environment.

In this work, we compare module-level and class-level RTS techniques in a CI environment.

Specifically, we evaluate GIB, a module-level RTS technique, and Ekstazi, a class-level RTS

technique, on Travis CI, a popular CI service for open-source projects. We also propose a

hybrid RTS technique, GIBstazi, that combines aspects of the module-level and class-level

RTS techniques. GIBstazi is safer than Ekstazi because GIBstazi tracks non-source-code

changes while Ekstazi does not. We evaluate all the techniques on Travis CI using real,

historical commits that were built on Travis CI.

Our results show that all the RTS techniques do save testing time compared to running all

tests (RetestAll) in a CI environment, but the savings in the end-to-end time for a full build

is not as high as shown in previous work in a local environment running with a dedicated

machine due to the extra overhead in a CI environment. Moreover, we are the first to inspect

test failures from RetestAll builds. We find that these failures are often not selected by the

RTS techniques, but almost all test failures missed by the RTS techniques are from so called

flaky tests, which can pass or fail nondeterministically regardless of the code changes. The

overall results show that RTS can be beneficial for the developers, hybrid GIBstazi gives the

best trade-o↵, and RTS not only saves time but also avoids misleading developers by flaky

test failures.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Darko Marinov, for his guidance

and advice. I am very fortunate to get a chance to learn from Darko.

I would also like to thank the colleagues from Mir group, including August Shi, Alex

Gyori, and Muhammad Suleman Mahmood, for the collaboration.

Last, I would like to thank my friends at Daya Tech for the encouragement and support.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 4

CHAPTER 3 EXPERIMENTAL SETUP . 12

CHAPTER 4 RESULTS . 17

CHAPTER 5 LIMITATION . 29

CHAPTER 6 THREATS TO VALIDITY . 31

CHAPTER 7 RELATED WORK . 32

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 34

REFERENCES . 35

v

CHAPTER 1: INTRODUCTION

1.1 REGRESSION TESTING

Regression testing is a type of software testing that retests the software that has been

modified. The main idea is to run the regression test suite after every change to quickly

detect regression faults introduced by the code changes. If a test fails while it was passing

before, the test failure should indicate a fault introduced by the change that the developer

should debug. Regression testing is commonly automated by running the regression test

suite in a continuous integration (CI) environment. After every change made to the code

repository, a CI server, typically in the cloud, builds and tests the code [17]. While regression

testing is important and well-practiced, the process can be time-consuming due to the large

size of the regression test suite, and due to the potentially frequent code changes [24].

Furthermore, as regression testing is run on CI servers in the cloud, there is also a huge

monetary cost for using the cloud resources [16].

1.2 REGRESSION TEST SELECTION (RTS)

Regression test selection (RTS) can reduce the cost of regression testing. The goal of RTS

is to run fewer tests, speeding up the regression testing process. RTS aims to only select

a subset of the tests in the regression test suite that are a↵ected by the change [31] and

thus the tests that are not a↵ected by the change will not be run. A RTS technique tracks

the dependencies between the tests and code entities (e.g., methods, classes, or modules)

and selects to run the tests whose dependencies changed. Researchers have proposed many

di↵erent RTS techniques that perform test selection at di↵erent granularity levels of depen-

dencies [13–15,21,25–27,30–32]. Researchers have found RTS to be quite e↵ective, in terms

of both percentage of tests selected and time saved. Furthermore, industry has also adopted

the use of RTS to speed up their regression testing e↵orts [11, 12, 24].

While both the industry and the academia use and study RTS techniques, there is a divide

in the level of granularity of RTS used between the two. In industry, it is common to use

a coarse-grained granularity of dependencies by tracking modules in the project, selecting

to run all tests within the modules that are a↵ected by the changes [12, 24]. Module-level

RTS has been shown to be e↵ective in industry, which relies on CI. The reason for the

e↵ectiveness is mainly due to the small overhead necessary in figuring out what modules

are actually a↵ected by the changes. However, the coarse-grained dependency tracking and

1

coarse-grained level of tests being selected (all tests within an a↵ected module) can lead to

a much larger number of tests selected to run than those selected to run by class-level RTS.

In academia, researchers have traditionally studied finer-grained levels of dependencies, such

as statements or methods [32]. Recent work has found class-level dependencies to be the

most e↵ective in terms of time savings [14, 21]. While class-level RTS can select to run

fewer tests than module-level RTS, by tracking dependencies to only classes, class-level RTS

can potentially be unsafe, failing to select tests that are a↵ected by changes to non-class

files, missing to run tests that reveal regression faults. Furthermore, researchers evaluated

the e↵ectiveness of class-level RTS using a dedicated machine, where testing is done on the

same machine over many revisions, as opposed to building and testing on a CI service that

performs testing on di↵erent machines in the cloud.

1.3 OVERVIEW OF WORK

We evaluate and compare module-level and class-level RTS techniques in a CI environ-

ment. To the best of our knowledge, no prior work has studied how these two types of RTS

techniques compare against each another in a CI environment for regression testing. Evalu-

ating RTS techniques in a CI environment also allows us to use the RTS tools along with the

actual build commands used by the developers. By doing this evaluation, our work better

simulates the usage of the tools in real world than the prior studies. As representatives

of the two RTS techniques, we use GIB [19], a module-level RTS tool, and Ekstazi [14], a

class-level RTS tool, for our evaluation.

Furthermore, we implement a RTS tool, called GIBstazi, that combines both module-level

and class-level RTS. The idea of GIBstazi is to use GIB to first quickly filter out what

modules are a↵ected by the changes, and then only apply Ekstazi on the a↵ected modules

to determine what tests need to be run. If any of the changes are made to non-source-code

files that cannot be tracked by class-level RTS, GIBstazi defaults to GIB behavior and runs

all the tests within the a↵ected modules. With this combination, GIBstazi aims to run

fewer tests than GIB, leading to faster testing, though not necessarily faster than Ekstazi.

However, because GIBstazi defaults to GIB behavior due to non-source-code changes that

are not tracked by Ekstazi, GIBstazi can be safer than Ekstazi.

We utilize Travis CI [4], a CI service available for open-source projects, as the common

environment for our evaluation of the three RTS techniques. We evaluate on open-source

Java projects that build using Travis CI; we replay their historical builds both by running all

their tests, called RetestAll, and while using the three RTS tools. We measure the percentage

of tests selected by the RTS techniques as well as the percentage of time it takes to select

2

and run the selected tests, all with respect to RetestAll. We choose 22 open-source projects

and their 1444 historical jobs for our evaluation, but RetestAll and all three RTS tools pass

on 980 jobs. On these 22 projects and 980 jobs, we found that all three RTS techniques, on

average, provide savings in time over RetestAll, with GIB running 79.15%, Ekstazi running

76.38%, and GIBstazi running 78.76% of RetestAll time.

An important question in RTS is whether selection misses some real test failure. After all,

it is trivial to have a super fast RTS technique by not running any test, but it would miss all

potential failures. When we replayed historical builds for RetestAll, we found builds with

test failures. Ideally, testing should run all tests that fail to signal to the developers that

there is a fault in the code due to the changes. We found that the RTS techniques actually

fail to select many of these failed tests from RetestAll runs, with up to 32.29% of the failed

tests not selected to run by GIBstazi! Missing to select these failing tests is seemingly

bad. However, our inspection of the test failures showed that almost all the test failures

from RetestAll are from so called flaky tests, which can pass or fail nondeterministically

regardless of the code changes. As such, it can be beneficial that a RTS technique does not

run these tests and does not give false alarms to developers about having to debug the faults

that are not due to the code changes.

In summary, the contributions in this work are:

• Implementing GIBstazi: We implement a hybrid, module- and class-level, RTS

technique as a Maven extension.

• Deploying RTS on Travis CI: We describe how to deploy three types of RTS

techniques in a cloud CI environment, on Travis CI.

• Empirical Evaluation: We empirically evaluate module-level, class-level, and a hy-

brid RTS technique with real-world setup in CI.

• Failure Analysis: We analyze failed tests from RetestAll runs and evaluate how well

RTS techniques select to run such failed tests.

Overall results show several important findings about RTS. First, RTS can be beneficial

for the developers, providing better results than the default RetestAll, in CI environments.

Second, hybrid GIBstazi gives the best trade-o↵, because it works faster than GIB and only

somewhat slower than Ekstazi, but it is safer than Ekstazi. Third, RTS not only saves time

but also avoids misleading developers by flaky test failures.

3

CHAPTER 2: BACKGROUND

In this chapter, we first introduce Maven, the build system that the RTS tools integrate

with. We then introduce Travis CI, the CI service used in this study. We finally describe

the RTS techniques evaluated in this study.

2.1 MAVEN

Maven is a build automation tool used primarily for Java projects [3]. Maven allows a

project to build using its project object model (POM) and a set of plugins that are shared by

all projects using Maven, providing a uniform build system. POM is an XML representation

of a Maven project held in a file named pom.xml. Developers can add dependencies, plugins,

and extensions to the project by modifying the corresponding sections in the pom.xml file.

In Maven, a multi-module project is defined by a parent POM referencing multiple mod-

ules. A module in Maven is simply a collection of source code, tests, necessary resources, and

POM that represents a substantial component of a larger system, defined by the developer.

Each module in a multi-module project has its own POM, and there is a root POM that

represents the whole project. When a module is built, the classes are compiled and tests are

run. By default, Maven builds the modules sequentially and the build order of the modules

in a project is determined based on the dependency relationships among the modules, which

are declared in the POM files. By default, Maven stops the entire build execution immedi-

ately if any error occurs while building a particular module, i.e., the later modules are not

run at all. Such default “fail fast” behavior provides faster feedback to developers if any

failure or error occurs, but it can miss to run some failures from later modules.

2.2 TRAVIS CI

Continuous integration (CI) is the development practice of merging in small code changes

frequently. The goal of CI is to provide rapid feedback on changes made by developers.

Travis CI is a CI platform that supports software development by automatically building

and testing code changes, providing immediate feedback on the changes. Travis CI is the

most widely used CI service for open-source projects [18]. Travis CI is closely integrated

with GitHub, the most popular web-based hosting service for open-source projects [5,8–10].

4

2.2.1 Builds and Jobs

Whenever a code push or pull request happens to a code repository in GitHub that is

configured to build on Travis CI, Travis CI will start a Travis build. A Travis build is simply

a group of Travis jobs. A Travis job is an automated process that clones the code repository,

checks out the corresponding commit, builds and tests the project in a configurable virtual

environment, and potentially deploys the software. By default, one Travis build has one

Travis job, and Travis CI provides a default build environment and a default set of commands

to build and test the software. Developers can configure Travis CI to create multiple Travis

jobs to run di↵erent commands in di↵erent environments by configuring the job matrix in

the .travis.yml file, the configuration file for Travis CI in the code repository. For example,

the developers may want to build and test the software on di↵erent operating systems, e.g.,

Linux and Mac OS X, with di↵erent versions of Java, e.g., Java 8 and Java 9. All the Travis

jobs in the same Travis build run with the same commit of the code.

2.2.2 Phases

A Travis job can be further divided into multiple phases that are executed sequentially.

The two most important phases are the install phase and the script phase. The purpose

of the install phase is to download necessary dependencies, compile the project code, and

create executable artifacts. For example, the default command in the install phase for

building a Java Maven project is mvn install -DskipTests=true -Dmaven.javadoc.skip=true -B

-V, which purposely skips testing but installs all the compiled artifacts. The script phase

is executed after (but not immediately after) the install phase. As the script phase occurs

after the install phase and all necessary artifacts should be compiled, it is not necessary

for the script phase commands to recompile the code. The purpose of the script phase is

to run tests. For example, the default command in the script phase for Maven-based Java

projects is mvn test -B.

The reason for having separate phases for compiling and testing is that when a Travis

job is started, the source code is cloned into a fresh virtual environment, without any of

the artifacts from the previous build. In fact, given the cloud nature of the Travis CI, it

is not guaranteed that even the same underlying hardware is used for every job. As such,

compilation is not incremental in a Travis CI setup and everything is usually compiled from

scratch for every single job.

5

2.2.3 Caching

Travis CI can cache contents in between builds to speed up the build process. Travis

CI fetches the cache for every build, including builds for branches and pull requests. If a

branch does not have its own cache, Travis CI fetches the cache of the repository’s default

branch. When a Travis build has multiple Travis jobs, multiple caches are created, one for

each job, if di↵erent jobs are using di↵erent operating systems, language runtime versions,

and environment variables.

Developers can specify the directories to cache in between builds in the cache section of the

.travis.yml. Such artifacts are copied into the virtual environment before the install phase

starts, and they are uploaded onto a separate, persistent server during the cache phase, which

happens after the script phase. Travis CI also has the before cache phase if developers would

want to run commands before uploading the new cache archive. For example, the dependency

management utility may write log files into the directory developers are caching. Developers

may not want these log files to a↵ect the cache so they can run commands to delete these

log files in the before cache phase.

2.2.4 Build Results

Travis CI determines the build result of a Travis job based on the execution result of the

script phase. A Travis job is marked as ‘passed’ if all the commands in the script phase

succeeded and is marked as ‘failed’ if any command in the script phase failed. Typically, a

‘failed’ result indicates certain test failures. A Travis job is marked as ‘errored’ if the script

phase is not executed due to a failure in an earlier phase or due to a system crash or timeout.

Often, an ‘errored’ result indicates an issue during the install phase, suggesting that the

compilation failed. Travis CI then assigns a result to the entire Travis build based on the

build results of all the Travis jobs in the Travis build. A Travis build is marked as ‘passed’ if

all the Travis jobs are ‘passed’, ‘errored’ if any Travis job is ‘errored‘, and ‘failed’ otherwise.

2.3 RTS TECHNIQUES

As mentioned earlier, a RTS technique tracks the dependencies between tests and the code

under test. The entities in the code under test that the tests depend on can be tracked at

di↵erent levels of granularity, e.g., statements, methods, or classes, depending on the RTS

technique. When developers make changes to some code under test, a RTS technique maps

the change to the entities that it tracks and finds the tests that depend on those changed

6

Figure 2.1: An example to illustrate RTS at di↵erent levels of granularities

entities. Di↵erent RTS techniques perform selection at di↵erent levels of granularities with

respect to the tracked dependencies. A RTS technique is safe if it selects all the tests that

are a↵ected by the change.

In this section, we describe the three RTS techniques that we evaluate. We consider

(1) GIB, which operates at the granularity of modules, (2) Ekstazi, which operates at the

granularity of classes, and (3) GIBstazi, a hybrid of both GIB and Ekstazi. While Ekstazi

was evaluated in prior research [14,21], it was done only on dedicated servers and not using

CI services, which means the experiment targets may not be built and tested in a way how

the developers using CI would build and test. To the best of our knowledge, GIB was not

previously evaluated on any platform, and GIBstazi is our original contribution. For each

technique, we point out how to set it up in Travis CI.

2.3.1 Example

Figure 2.1 is a simple example to illustrate the di↵erent selections at di↵erent levels of

granularities. In this example project, there are three modules (M1, M2, M3), five classes

(C1, C2, C3, C4, C5), and five tests (T1, T2, T3, T4, T5). Classes and tests are displayed

to be contained within the modules they belong in. Arrows with solid lines denote the

dependencies between tests and classes. Arrows with dotted lines denote the dependencies

between modules. For example, M2 depends on M1 because T2 depends on C1, and T2 is

in M2, while C1 is in M1. In this example, consider that the developer made a change to C4

(highlighted in red). By default, without any RTS, RetestAll runs all five tests. We show

the selection result of di↵erent techniques in the following subsections.

7

2.3.2 GIB

Gitflow Incremental Builder (GIB) is an open-source tool for performing module-level

RTS [19]. GIB is a Maven extension that can be integrated into any Java project that uses

Maven as the build system. GIB relies on Git to determine the code changes. Given two

commits, GIB performs the di↵ to determine what files changed between the two commits.

GIB then maps the files back to the modules they belong to through the directory structure

and determines that those are changed modules. In addition to those changed modules, GIB

analyzes the POM of the project to determine the modules in the upwards transitive closure

of the changed modules. All these modules in the closure are selected by GIB as the a↵ected

modules. GIB then applies the specified test commands to the a↵ected modules selected by

GIB to run the tests in these a↵ected modules. As we can see, GIB can also be used for

incremental building, as long as we run build commands on the a↵ected modules.

In Figure 2.1, GIB selects four tests to run. Because C4 is changed, M3 is a changed

module and selected first, and then M2 is selected because M2 depends on M3 (a↵ected

modules are highlighted in green). Thus all the tests in M2 and M3 (T2, T3, T4, T5) are

selected to run, while T1 is skipped.

When using GIB on Travis CI, it is necessary to configure GIB to compare against the

commit of the previous build to determine the code changes. Travis CI does provide this

information in the TRAVIS COMMIT RANGE environment variable. Another important point to

consider is how compilation interacts with using GIB for RTS. When GIB determines what

modules should be selected, it inherently assumes that the dependencies of those modules

have already been built and are available. If not, compilation would fail due to missing

dependencies. When using a dedicated machine for building the project, this is not an

issue because it is expected that the previous builds are built on the same machine and the

artifacts are kept around. On Travis CI, though, each build starts in a fresh environment

and any compiled artifacts from the previous build are not available. However, Travis CI

operates with a separate phase, the install phase, that is meant to perform compilation.

For GIB to perform RTS on Travis, the install phase must run to completion, without using

GIB. (Other build systems such as Bazel [1] can cache and reuse the compiled artifacts but

require a di↵erent setup from the default Travis CI.) After all the code is compiled, GIB can

be used in the later script phase for testing to actually perform module-level RTS.

8

Enhancing GIB

For our experiments, we have (1) configured GIB in a reasonable way for RTS and (2) ex-

tended GIB with a new feature. GIB uses Git to track file changes and what modules are

a↵ected by those changes, but not all file changes actually a↵ect Java test behaviors. For

example, if the only change made is to the top-level README file, GIB would assume that

a change to a file in the root of the project a↵ects all the modules, thereby running all tests,

even though it is extremely unlikely any change to a README file would actually result in

changes to test behavior. To avoid such over-selection of tests, we configure GIB to exclude

certain file patterns that are unlikely to a↵ect test behavior by using the following regex:

.*\.apt$|.*\.txt$|.*\.md$.|*\.html$|.*\.rst$|.*\.scss$|.*\.css$|.*\.png$|.*\.py$|

|.*README.*|.*\.jpg$|.*\.jpeg$|.*NOTICE$|.*\.git.*|site.xml|index.xml|checkstyle.xml

We construct these filters based on our best knowledge of what files will not a↵ect test

behaviors in the general case. Developers using GIB for their projects would want to create

more specific filters, e.g., they would not ignore changes to the files that are used as test

resources, even if those files match some of the general ignorable extensions.

While these exclusions filter out many cases where file changes can lead to unnecessary

test runs, we found that there were still many cases where changes to the pom.xml files, the

POM for a Maven project, lead to a large number of test runs. While it is necessary to

track changes to pom.xml, where a change can lead to true changes in dependencies in the

project, we observed that often the only change to pom.xml files in a project did not a↵ect

the dependencies. For example, some changes would simply update the developer’s email

address, which should not a↵ect test behavior. Indeed, anytime any external dependencies

do not change, then test behavior is unlikely to change as well, and so changes to pom.xml

that do not change external dependencies should be fine to ignore. We added the logic that

checks if any dependency of any module within the project changed between runs to GIB. If

there is no change to dependencies, then GIB ignores changes to pom.xml (by adding pom.xml

to the list of files to exclude). Furthermore, we ignore version changes if there is an intra-

project dependency between the project’s own modules, as a common change is an update

of the version number of all modules within the same project.

For tracking dependency changes among modules, GIB parses the Maven project to de-

termine the dependencies of each module. It encodes this information into a separate file

called classpathfile. Before each run, if such a file exists, GIB compares the contents of the

file with the dependencies of each module to see if any of the dependencies changed. If not,

pom.xml can be filtered out. For this feature to work on Travis CI, classpathfile file has to

be preserved across builds and restored at the start of the script phase. This storing and

9

restoring of the file is achieved by the caching feature in Travis CI described in 2.2.2.

2.3.3 Ekstazi

Ekstazi implements a class-level RTS technique [13, 14]. Ekstazi is a Maven plugin that

can be integrated into any Java project that builds using Maven. Ekstazi instruments the

code under test to obtain which classes each test depends on.

1

In Figure 2.1, Ekstazi selects two tests to run. Because C4 is changed, Ekstazi iterates

through all the tests in this project and selects tests that depend on C4. In the end, only

T3 and T4 are selected to run by Ekstazi (framed in red); note that these two tests come

from di↵erent modules.

Prior work [14] has shown that Ekstazi is quite e↵ective compared to using a finer granu-

larity, such as methods. The trade-o↵ of tracking fewer dependencies, in both analysis time

to find what tests to run and in the overhead from running instrumented code under test, is

beneficial when considering the overall time of RTS, even if a greater number of tests is being

selected. In addition to the dependency mapping from test to classes, Ekstazi also tracks

checksum values for each .class file (the compiled file form for a source Java file, represent-

ing a Java class). When a change is made, after all the source files have been compiled to

.class files, Ekstazi uses the stored checksum to determine which classes actually changed.

Once Ekstazi knows what classes changed, it selects for running the tests that depend on

those changed classes, found from the stored dependency mapping. Both the mapping from

tests to dependencies and the checksum of the classes are stored within .ekstazi directories,

one for each Maven module in the project. Ekstazi relies on the files within the .ekstazi

directories to determine what tests to select.

On Travis, the artifacts from the previous build are not by default preserved in the virtual

environments used for Travis CI. As such, for Ekstazi to work on Travis CI, .ekstazi direc-

tories must be preserved across builds and restored before testing is performed in the script

phase. Caching and restoring these .ekstazi directories is an extra overhead necessary for

Ekstazi to work in a CI environment.

2.3.4 GIBstazi

As we can see, GIB can select to run a large number of tests, often much larger than the

number of tests selected by Ekstazi. Many tests selected by GIB may be actually una↵ected

1When we write “test”, we mean “test class” not “test method”. Ekstazi selects to run test classes, and
a test class can contain several test methods. In this work, we count tests at the level of test classes as well.

10

by the changes and do not need to be run. We implement GIBstazi, a combination of GIB

and Ekstazi, to improve on GIB in selecting fewer tests, and to improve on the safety of

Ekstazi in selecting more tests when non-Java files change. GIBstazi first relies on GIB to

determine what modules are a↵ected by the change. For those a↵ected modules, GIBstazi

applies Ekstazi to determine what tests within each module need to be run.

In Figure 2.1, GIBstazi also selects two tests to run. Since C4 is changed, GIBstazi selects

two modules, M2 and M3, as the a↵ected modules. GIBstazi then iterates through the tests

in M2 and M3 and selects tests that depend on C4. Thus only T3 and T4 are selected to run

by GIBstazi. Comparing with Ekstazi, which iterates through all the tests in the project,

GIBstazi does not check if T1 depends on the change.

Comparing with GIB, GIBstazi should select fewer tests due to the use of Ekstazi. Com-

paring with Ekstazi, Ekstazi can be unsafe in its selection as it does not track files outside

of the compiled class files from source code. For example, if a developer updated a .json file

that is used as test input, Ekstazi would not select any tests to run since it does not track

what tests depend on such non-source-code file, even though the change could potentially

a↵ect test behavior. As such, we implement GIBstazi to check if the changed files are source

code files only. If all the changes are to source code files, GIBstazi uses Ekstazi to perform

selection safely on the modules selected by GIB. If some changes are to non-source-code files,

GIBstazi defaults back to GIB module-level RTS and selects to run all the tests within the

a↵ected modules. For a given module, GIBstazi can either select no tests (if the module is

not a↵ected), all the tests (if non-source-code files changed), or the same tests as Ekstazi.

We expect GIBstazi to select some number of tests that is between the number selected by

GIB and Ekstazi, and the time savings for regression testing from using GIBstazi should

also fall in between GIB and Ekstazi.

As GIBstazi is a combination of both GIB and Ekstazi, for one to use GIBstazi on Travis

CI, it requires all the necessary components from GIB and Ekstazi. GIBstazi needs to

preserve the classpathfile file for the purpose of the enhancements we applied for GIB

across builds. GIBstazi also needs to preserve the .ekstazi directories across builds since

Ekstazi requires such files for selection.

11

CHAPTER 3: EXPERIMENTAL SETUP

In this chapter, we describe our experimental setup. We describe how we selected the

target projects used in our experiments along with the commits used for each project. We

then describe how we configured to run the di↵erent RTS techniques for each project’s

commits on Travis CI. We also describe how we shadowed the project’s current commits

with GIBstazi on Travis CI.

3.1 PROJECTS

To determine what projects to use in our evaluation, we start by querying GitHub for

the projects that use Java as the primary programming language. We obtain the top 1000

Java projects on GitHub ranked by stars, a measurement of popularity. We then further

filter out the projects that use Maven as the build system because the RTS tools that we

evaluate are for the Maven build system. In addition, given that GIB and GIBstazi perform

selection at the granularity of module-level, we need the target projects to be multi-module.

Furthermore, we need the projects that are using Travis CI. In total, we get 105 Java Maven

multi-module projects that build on Travis CI.

Further, we want to evaluate these RTS tools on the projects with su�ciently long-running

builds such that a developer may want to use RTS in the first place to save some test time.

For each of the 105 projects, we query Travis CI for the latest 20 builds, average the build

times, and select projects that took on average longer than 10 minutes to build. Such

filtering results in 46 projects. The build times reported by Travis CI represent the overall

time the project takes to build and not just the times for testing. In particular, some of

these projects only compile the code on Travis CI and intentionally skip tests. As we are

evaluating RTS techniques, we want the projects that run tests on Travis CI. We further

keep only the projects that are compliant with all three RTS tools (e.g., GIB requires the

projects to use Java 8). We finally get 22 projects for our evaluation.

Java Maven multi-module projects using Travis CI 105

Projects with build time longer than 10 min 46

Projects with tests and replayable with RTS tools 22

Table 3.1: Filtering of Projects

12

3.2 COMMITS

After we selected the target projects, we need to collect the revisions for each of them for

rerunning on Travis CI. Recent studies on RTS [14,21] selected the revisions as all sequential

commits from the master branch of each project. However, not all these commits are built

on Travis CI because a single Travis build corresponds to a push from the developer, and a

single push may include several commits. As such, the size of the changes between builds

on Travis CI can be generally larger than the size of changes between sequential commits,

as used in prior studies. Due to our focus on evaluating RTS on Travis CI, we collect the

revisions for our experiments by querying Travis CI for the commits that triggered the builds

on Travis CI. For each project, we collect the commit SHAs associated with the latest 20

push builds on the master branch. We collect these SHAs in the order in which they actually

happened on Travis CI such that replaying these historical commits later on gives the same

code changes between each build as observed by the developers when using Travis CI for

these builds.

3.3 REPLAYING WITH RTS TOOLS

We replay the commits we collected for each project on Travis CI for RetestAll and all

RTS techniques. For each technique and RetestAll, we create a new GitHub account and

fork the projects into the account. Next, for each commit of each project, we checkout the

commit, make necessary modifications to the .travis.yml and pom.xml files in order to run

the appropriate RTS technique when building on Travis CI, and finally recommit the state

of the code as a new commit and push to GitHub, triggering the build on Travis CI for our

own forked repository.

For each RTS technique, we aim to make the smallest amount of changes necessary to the

.travis.yml and pom.xml files. We describe the general modifications made to .travis.yml

here and describe the tool-specific modifications of .travis.yml and pom.xml in the following

subsections.

We modify the .travis.yml file as follows. At the end of the script phase, we add extra

commands to count how many tests are run during the build process, by counting the

number of Surefire report files generated

1
, where each file represents a test run. We also

add steps in the script phase to record how much time the script phase takes to run. By

timing this phase, where testing is meant to be performed, we can simulate a “local” build

1We have since discovered that this is not a reliable way to count the number of tests actually run because
Surefire can generate some report files even if a test class did not run any test method.

13

using RTS, where times for downloading dependencies and compiling code are not included.

We next remove altogether the notifications section from the .travis.yml. This section

is used to notify developers of the status of the build, and we do not want to notify the

developers when replaying historical builds. Removing notifications should not disrupt the

compiling and testing process in the previous install phase and script phase. Because

we uniformly remove the notifications section from all techniques, including RetestAll, the

timing comparison should be consistent as well. Finally, we modify the .travis.yml to not run

any jobs with Java versions below Java 8, because GIB requires Java 8. These modifications

should not disrupt the building and testing behavior in the install and script phase needed

for evaluating RTS, and because we uniformly make these modifications for all techniques,

including RetestAll, our comparison between these techniques should be consistent as well.

3.3.1 GIB

For GIB, we first modify the pom.xml file of the project to add the GIB as a Maven ex-

tension. We configure the extension to compare the di↵erences between two Git commit

SHAs, where the first is the commit SHA of the previous build and the second is the cur-

rent SHA. The two commit SHAs can be obtained using the Travis environment variable

TRAVIS COMMIT RANGE. Furthermore, we apply the exclude regex as described in Section 2.3.2.

Besides modifying the pom.xml file, we have to make additional modifications to the

.travis.yml file. Recall from Section 2.3.2 that we use the classpathfile file to track these

dependencies to help decide when it is unnecessary to consider changes to a project’s pom.xml,

which can trigger all tests in the project to run. We configure the .travis.yml to cache the

classpathfile for the project across builds. Also, we configure the .travis.yml to not use

GIB during the install phase, as the code must build from scratch, and we do not want

GIB to to prevent certain modules from being compiled in this phase. We disable GIB at

the beginning of the before install phase (the phase Travis executes right before the install

phase) and then enable GIB at the end of the before script phase (the phase Travis executes

right before the script phase).

3.3.2 Ekstazi

For Ekstazi, we first configure the pom.xml file to include the Ekstazi Maven plugin; we

use version 4.6.3 [2] in our evaluation. We also configure the .travis.yml to cache the

.ekstazi directories that Ekstazi generates to track the test dependencies. We then add in

the before script phase the commands to copy in the cached .ekstazi directories into their

14

Figure 3.1: An example of changes made to pom.xml to enable GIBstazi

desired places in the project directory for the script phase to use for testing, and we add in

the before cache phase the commands to save the updated .ekstazi directories to the cache

after the tests finish.

3.3.3 GIBstazi

For GIBstazi, the modifications we make to the pom.xml and .travis.yml files are a com-

bination of those we make for GIB and Ekstazi. In Figure 3.1, we show an example of

modifications made to pom.xml to enable GIBstazi. We modify the pom.xml file to use the

GIBstazi extension, configured similarly as with GIB but also to use Ekstazi in the a↵ected

modules. We modify the .travis.yml to cache both the classpathfile and the .ekstazi di-

rectories, along with the same extra steps for restoring and updating the files for the script

phase.

15

3.4 COLLECTING JOB LOGS

Replaying historical commits with our modifications results in new Travis jobs run on

Travis CI. After these jobs finish, we download the job logs from Travis CI for analysis. As

a basic sanity check, we only consider the jobs where we could parse the logs successfully

for indication of the number of tests run and the time the testing in the script phase took.

It is possible for jobs to not finish properly, such as due to compilation errors (so tests are

not even run) or due to strict timeout limits by Travis CI. We cannot properly compare any

numbers pertaining to tests selected or testing time in such cases. In total, across all 22

projects, we collected 1444 jobs for our evaluation.

3.5 SHADOWING WITH GIBSTAZI

We also shadow the recent commits from the projects, replaying the current builds with

GIBstazi. We track the builds on the master branch from the projects as they are triggered

by developers, and we replay those new builds when they are triggered. First, we fork each

project into a new account for shadowing. We set up a cron job scheduled to run once an

hour. When the cron job is scheduled to run, it queries Travis CI for each project for any

new builds that occurred since the last time the cron job was run. If there were any new

builds for a project, the cron job pulls the commits corresponding to those builds into the

shadowing fork of the project and replays them like we do for the historical builds. We

perform these runs only for GIBstazi, because GIBstazi strikes a good balance among all

three RTS techniques: it provides better time savings over GIB and is designed to be safer

than Ekstazi.

16

CHAPTER 4: RESULTS

In this chapter, we first show the results from our replay of historical builds with RTS.

We compare the number of tests selected and the time for testing with the RTS techniques

against RetestAll. We also analyze the test failures from RetestAll and inspect whether the

RTS techniques select to run the failed tests. We finally show the results from our shadow

runs of ongoing Travis CI builds (in contrast to replay runs of historical builds).

4.1 STATISTICS OF JOBS

Table 4.1 shows the distribution of jobs that we collected across the 22 projects used in

our evaluation. We label each project with an ID that we use in later tables and show the

project’s slug name from GitHub. The jobs are sorted by the total build time, shown later.

We also show the number of jobs we analyzed for each project and the percentage of those

jobs classified as ‘passed’, ‘failed’, or ‘errored’, based on the job status reported by Travis

CI for RetestAll. The overall number of jobs with status ‘passed’, ‘failed’, and ‘errored’ are

1308 (89.87%), 134 (9.97%), and 2 (0.15%), respectively.

We have almost no ‘errored’ jobs; such status typically means compilation failed in the

install phase, so no testing would have been done, and we could not collect any information

about tests. However, in the two ‘errored’ jobs, we find that the jobs errored in the deploy

phase that occurs after the script phase, i.e., after tests have run. In such cases, we are

still able to collect information about the tests selected to run and the time for testing. (In

retrospect, we could have changed .travis.yml to not try the deployment.)

Another point to note is that jobs having status ‘failed’ does not necessarily mean that

tests failed. In Travis CI, status ‘failed’ means that the script phase failed, which may

not be due to test failures. For example, project apache/rocketmq (P3) has all of its jobs

with status ‘failed’, but we found that the reason is due to the developers including in their

Maven build command run in their script phase a step that tries to deploy artifacts to

another server, which we do not have access to. Tests can be passing before this step, but

because the deploy step is in the script phase, the entire job is marked as ‘failed’.

17

ID Project Jobs Passed Failed Errored
P1 SonarSource/sonarqube 40 20 20 0
P2 elasticjob/elastic-job-lite 20 20 0 0
P3 apache/rocketmq 19 0 19 0
P4 alibaba/dubbo 19 19 0 0
P5 aws/aws-sdk-java 20 19 1 0
P6 brianfrankcooper/YCSB 20 18 2 0
P7 apache/incubator-skywalking 20 20 0 0
P8 antlr/antlr4 179 178 1 0
P9 vavr-io/vavr 5 5 0 0
P10 Graylog2/graylog2-server 2 2 0 0
P11 javaparser/javaparser 20 20 0 0
P12 languagetool-org/languagetool 19 18 1 0
P13 druid-io/druid 88 73 15 0
P14 killbill/killbill 47 0 47 0
P15 apache/storm 89 81 8 0
P16 iluwatar/java-design-patterns 20 15 5 0
P17 google/guava 37 37 0 0
P18 javaee-samples/javaee7-samples 352 351 1 0
P19 prestodb/presto 179 178 1 0
P20 apache/incubator-pulsar 13 7 4 2
P21 apache/flink 221 219 2 0
P22 Tencent/angel 15 8 7 0

SUM 1444 1308 134 2

Table 4.1: Basic statistics about projects used in evaluation, including distribution of

passed/failed/errored jobs for RetestAll

18

ID
R
et
es
tA

ll
G
IB

E
k
st
a
zi

G
IB

st
a
zi

T
es
ts

T
es
t

T
ot
al

T
es
ts

T
es
t

T
o
ta
l

T
es
ts

T
es
t

T
o
ta
l

T
es
ts

T
es
t

T
o
ta
l

(#
)

T
im

e
(m

)
T
im

e
(m

)
(%

)
T
im

e
(%

)
T
im

e
(%

)
(%

)
T
im

e
(%

)
T
im

e
(%

)
(%

)
T
im

e
(%

)
T
im

e
(%

)
P
1

2.
00

2.
52

3.
62

10
0
.0
0

9
8
.7
9

1
0
0
.7
8

1
0
0
.0
0

9
9
.9
8

9
9
.9
7

1
0
0
.0
0

9
3
.2
9

9
3
.7
3

P
2

15
8.
25

1.
43

6.
57

28
.1
5

4
1
.7
1

7
8
.5
2

1
1
.6
6

6
6
.4
1

9
8
.4
3

2
8
.1
5

4
6
.5
5

7
3
.1
7

P
3

55
.7
9

6.
67

8.
34

24
.5
3

2
7
.0
2

3
9
.4
6

2
2
.6
4

4
6
.1
3

6
7
.0
0

2
4
.5
3

3
4
.8
0

5
2
.0
6

P
4

16
2.
05

5.
60

8.
81

59
.7
6

6
0
.4
1

7
3
.4
8

1
4
.2
6

9
4
.9
1

1
2
3
.1
2

3
2
.8
7

5
8
.5
5

8
1
.2
3

P
5

17
7.
45

7.
20

9.
19

94
.0
8

9
7
.3
2

9
7
.3
6

1
8
.7
1

5
2
.8
0

6
3
.6
8

8
6
.0
0

9
9
.0
7

1
0
0
.1
8

P
6

30
.6
0

6.
73

10
.4
2

60
.6
2

5
8
.2
3

6
7
.7
0

4
7
.8
8

3
1
.5
5

6
5
.4
8

4
4
.2
8

5
3
.2
4

7
2
.6
3

P
7

98
.6
0

4.
10

10
.8
2

21
.6
0

3
2
.6
1

8
0
.7
8

7
.3
5

4
2
.1
5

6
0
.0
0

1
7
.8
5

3
6
.6
8

8
0
.5
1

P
8

12
.8
5

9.
92

11
.7
9

15
.8
6

1
8
.8
7

3
0
.4
2

2
4
.3
8

3
5
.1
0

4
6
.5
1

1
5
.9
9

2
1
.5
0

3
3
.6
0

P
9

14
0.
00

10
.9
1

11
.8
0

10
0
.0
0

8
0
.7
9

9
4
.0
7

3
8
.7
1

6
8
.2
3

7
2
.2
0

5
9
.0
0

7
1
.6
9

9
2
.2
9

P
10

17
7.
00

7.
37

13
.2
6

10
0
.0
0

1
0
6
.0
0

1
0
8
.9
3

5
0
.0
0

8
8
.1
2

9
4
.9
1

1
0
0
.0
0

1
4
6
.4
9

1
2
5
.9
6

P
11

17
6.
90

6.
94

15
.0
1

91
.5
8

8
2
.0
3

7
4
.1
9

2
7
.8
7

5
3
.3
1

4
3
.7
3

3
0
.1
6

5
4
.6
5

4
0
.8
2

P
12

39
9.
47

12
.5
2

15
.5
8

26
.0
2

3
6
.2
0

4
5
.6
9

6
.9
2

1
6
.7
7

3
3
.4
1

1
2
.6
6

1
4
.5
5

3
2
.1
1

P
13

17
3.
40

10
.1
3

17
.3
0

50
.6
0

5
2
.0
3

7
1
.7
2

1
6
.5
0

6
8
.6
4

7
8
.0
3

1
5
.3
2

3
1
.4
1

6
1
.0
2

P
14

15
9.
87

10
.6
9

18
.0
9

11
0
.8
7

3
8
6
.8
3

1
0
1
.7
3

8
0
.1
0

7
6
.8
7

8
7
.3
3

1
2
8
.0
5

1
2
0
.1
7

1
1
3
.8
6

P
15

44
.2
8

9.
12

19
.0
3

60
.1
6

4
1
.8
4

7
2
.7
8

1
9
.7
4

8
7
.8
5

9
4
.7
0

3
5
.4
5

4
0
.9
4

7
3
.0
7

P
16

31
5.
05

6.
60

19
.5
5

26
.2
2

3
1
.5
2

4
9
.0
6

5
7
.4
8

9
0
.0
7

9
6
.1
7

2
1
.1
7

3
1
.8
8

5
2
.3
9

P
17

49
4.
08

16
.7
3

20
.1
4

10
0
.0
0

9
5
.7
6

9
6
.3
4

5
5
.4
0

5
8
.8
1

7
9
.9
3

5
5
.6
3

5
7
.1
3

6
4
.5
6

P
18

8.
89

3.
67

22
.2
3

35
.9
9

4
4
.0
6

9
8
.6
2

2
3
.7
1

3
3
.4
7

8
8
.9
6

3
5
.4
1

4
7
.6
5

9
8
.6
5

P
19

71
.2
7

24
.9
3

27
.7
9

63
.6
3

7
9
.0
0

8
1
.7
3

3
.8
3

3
0
.8
8

3
8
.1
6

3
.8
3

2
6
.3
6

3
4
.5
6

P
20

15
7.
85

30
.2
0

32
.4
2

61
.3
5

7
0
.6
6

7
2
.2
9

1
0
3
.4
6

9
5
.4
1

9
5
.8
3

5
7
.2
6

5
1
.7
7

5
4
.2
3

P
21

35
9.
53

32
.6
6

34
.0
4

50
.7
7

6
1
.5
2

6
3
.2
7

1
6
.5
3

6
9
.0
7

7
1
.2
8

3
9
.8
4

6
3
.2
2

6
5
.4
8

P
22

79
.5
3

36
.5
1

39
.6
5

31
.4
3

3
3
.8
6

3
8
.9
5

0
.0
0

3
.7
9

1
2
.3
5

0
.0
0

1
.7
8

1
0
.1
2

A
V
G

12
3.
19

13
.7
2

21
.1
5

58
.1
4

6
7
.7
8

7
5
.9
3

2
4
.9
0

5
3
.5
2

7
0
.2
4

3
8
.4
3

4
6
.3
9

6
6
.9
5

T
a
b
l
e
4
.
2
:
T
e
s
t
s
s
e
l
e
c
t
e
d
a
n
d
t
i
m
e
s
a
v
i
n
g
s
f
r
o
m

u
s
i
n
g
R
T
S
a
c
r
o
s
s
al
l
j
o
b
s

19

4.2 TESTS SELECTED AND TESTING TIME

Table 4.2 shows the results of replaying with RTS per project, where each project is

referenced by ID. The columns under ‘RetestAll’ show, for each project, the average number

of tests across all jobs, the average number of minutes the script phase took (testing time)

across all jobs, and the average number of minutes each job took overall (total build time).

The columns under ‘GIB’, ‘Ekstazi’, and ‘GIBstazi’ show, for each project and respective

RTS technique, the average percentage of tests run, the percentage of the script phase time

the technique took to run, and the percentage of the overall time the technique took to run,

all normalized with respect to RetestAll. The final ‘AVG’ row is the weighted average of

each column, computed using all jobs across all projects at once.

From the results, we see that the weighted average testing time for all three RTS techniques

is lower than the testing time for RetestAll, with 67.78% for GIB, 53.52% for Ekstazi, and

46.39% for GIBstazi. We see that RTS can significantly improve testing time for the commits

that are pushed in a CI environment. Moreover, we see that RTS helps improve the total

build time as well, where GIB takes 75.93%, Ekstazi takes 70.24%, and GIBstazi takes

66.95% of the RetestAll total time. We observe that GIBstazi outperforms the other two

RTS techniques in terms of time savings for both testing time and total time, but we discuss

why the time measurements across all jobs are not reliable. We still show these times because

they give an indication of what a developer may observe in practice.

When we consider the averages of number of tests selected across the RTS techniques, we

see that Ekstazi ends up selecting the fewest percentage of tests. This observation makes

sense, as Ekstazi operates at a finer granularity than GIB and GIBstazi. However, the time

for Ekstazi is still larger than for GIBstazi despite selecting to run fewer tests.

It is important to note that Table 4.2 includes all jobs, some of which may be ‘passed’

for some technique and ‘failed’ for another. For example, we see some projects where the

percentage of tests run by a RTS technique exceeds 100%, suggesting that RTS may be

somehow running more tests than available! However, the reason for this anomaly, that

RetestAll seemingly ran fewer tests than a RTS technique, is the test failures in the middle

of the build execution in RetestAll, as we are using RetestAll as the baseline for comparison.

(Most of these failures are flaky tests as we discuss in Section 4.5.) Generally, as mentioned

in Section 2.1, when a test fails in a multi-module Maven project, the build fails early, and

the tests in later modules that should have been run are not actually run. Our tooling counts

the number of tests based on what was actually run, so we can end up not counting all the

tests in the test suite for a project during a RetestAll run with a test failure.

20

ID
#

J
o
b
s

R
et
es
tA

ll
G
IB

E
k
st
a
zi

G
IB

st
az
i

T
es
ts

T
es
t

T
o
ta
l

T
es
ts

T
es
t

T
o
ta
l

T
es
ts

T
es
t

T
ot
a
l

T
es
ts

T
es
t

T
ot
a
l

(#
)

T
im

e
(m

)
T
im

e
(m

)
(%

)
T
im

e
(%

)
T
im

e
(%

)
(%

)
T
im

e
(%

)
T
im

e
(%

)
(%

)
T
im

e
(%

)
T
im

e
(%

)
P
1

2
0

2
.0
0

3
.9
7

5
.1
0

1
0
0.
0
0

10
0
.7
1

99
.7
5

10
0
.0
0

10
0
.0
8

9
6
.4
9

1
0
0.
00

9
7.
5
0

9
6
.1
4

P
2

2
0

1
5
8
.2
5

1
.4
3

6
.5
7

2
8
.1
5

4
1
.7
1

78
.5
2

1
1.
6
6

66
.4
1

9
8
.4
3

2
8
.1
5

4
6.
5
5

7
3
.1
7

P
3

0
N
/A

N
/
A

N
/
A

N
/A

N
/
A

N
/
A

N
/
A

N
/A

N
/
A

N
/A

N
/
A

N
/
A

P
4

1
8

1
6
1
.8
9

5
.6
1

8
.7
0

5
7
.4
8

5
9
.0
0

72
.4
0

1
1.
5
6

93
.4
8

1
1
9
.3
1

2
9
.0
7

5
5.
6
8

8
0
.3
6

P
5

1
6

1
7
9
.0
0

7
.3
6

9
.3
5

1
0
0.
0
0

10
4
.9
7

1
0
3.
7
6

2
1.
7
9

53
.4
7

6
3
.1
5

1
0
0.
00

11
3
.0
3

1
1
1
.5
2

P
6

1
8

3
1.
1
1

6
.9
8

1
0.
6
8

6
1
.6
1

5
9
.2
3

67
.7
8

4
4.
8
2

25
.6
6

6
1
.0
5

4
3
.7
5

5
3.
0
0

7
1
.8
6

P
7

2
0

9
8.
6
0

4
.1
0

1
0.
8
2

2
1
.6
0

3
2
.6
1

80
.7
8

7.
3
5

42
.1
5

6
0
.0
0

1
7
.8
5

3
6.
6
8

8
0
.5
1

P
8

1
78

1
2.
9
1

9
.9
2

1
1.
7
9

1
5
.8
8

1
8
.8
9

30
.4
7

2
4.
4
1

35
.2
0

4
6
.6
4

1
6
.0
1

2
1.
5
4

3
3
.6
6

P
9

5
1
4
0
.0
0

1
0
.9
1

1
1.
8
0

1
0
0.
0
0

8
0
.7
9

94
.0
7

3
8.
7
1

68
.2
3

7
2
.2
0

5
9
.0
0

7
1.
6
9

9
2
.2
9

P
1
0

2
1
7
7
.0
0

7
.3
7

1
3.
2
6

1
0
0.
0
0

10
6
.0
0

1
0
8.
9
3

5
0.
0
0

88
.1
2

9
4
.9
1

1
0
0.
00

14
6
.4
9

1
2
5
.9
6

P
1
1

2
0

1
7
6
.9
0

6
.9
4

1
5.
0
1

9
1
.5
8

8
2
.0
3

74
.1
9

2
7.
8
7

53
.3
1

4
3
.7
3

3
0
.1
6

5
4.
6
5

4
0
.8
2

P
1
2

1
1

4
0
0
.0
9

1
2
.7
3

1
6.
2
4

7
.7
0

8
.6
7

21
.3
5

0.
8
0

4
.9
1

2
1
.1
1

7
.7
0

1
2.
7
5

2
7
.9
5

P
1
3

4
0

1
9
2
.9
0

1
2
.5
8

2
0.
7
7

3
6
.2
8

3
8
.0
9

62
.1
9

1
2.
0
8

62
.4
1

7
4
.1
9

9
.8
6

2
2.
2
1

5
6
.9
4

P
1
4

0
N
/A

N
/
A

N
/
A

N
/A

N
/
A

N
/
A

N
/
A

N
/A

N
/
A

N
/A

N
/
A

N
/
A

P
1
5

5
0

5
3.
7
2

5
.0
9

1
4.
8
9

5
2
.5
3

6
5
.2
9

89
.7
2

1
5.
5
2

76
.6
9

9
3
.1
7

3
1
.0
9

6
4.
3
1

9
0
.5
0

P
1
6

1
3

3
1
9
.2
3

6
.7
3

2
2.
0
2

3
1
.5
9

3
6
.4
9

45
.4
7

5
9.
0
4

94
.0
4

9
4
.5
9

2
3
.9
3

3
5.
3
6

4
7
.8
1

P
1
7

3
6

4
9
4
.0
0

1
6
.7
2

2
0.
1
1

1
0
0.
0
0

9
5
.5
3

96
.1
7

5
6.
7
8

59
.6
8

8
0
.9
2

5
7
.0
1

5
8.
0
8

6
5
.3
9

P
1
8

3
47

8
.8
5

3
.6
7

2
2.
2
3

3
5
.1
8

4
3
.3
5

98
.4
1

2
3.
0
9

33
.1
4

8
9
.0
6

3
4
.5
9

4
7.
1
8

9
8
.4
9

P
1
9

2
5

1
1.
8
8

2
4
.6
9

2
8.
9
4

1
0
0.
0
0

9
9
.4
3

99
.8
8

10
0
.0
0

10
1
.1
7

1
0
1
.3
5

1
0
0.
00

10
0
.5
6

1
0
0
.9
7

P
2
0

0
N
/A

N
/
A

N
/
A

N
/A

N
/
A

N
/
A

N
/
A

N
/A

N
/
A

N
/A

N
/
A

N
/
A

P
2
1

1
41

3
6
6
.1
8

3
0
.8
6

3
2.
1
9

4
2
.4
3

6
6
.2
5

68
.0
1

1
4.
7
1

61
.5
0

6
3
.9
4

3
5
.4
1

6
9.
6
5

7
1
.6
1

P
2
2

0
N
/A

N
/
A

N
/
A

N
/A

N
/
A

N
/
A

N
/
A

N
/A

N
/
A

N
/A

N
/
A

N
/
A

S
U
M
/A

V
G

9
80

1
1
2
.3
9

1
0
.5
5

1
9.
5
6

5
2
.5
0

5
7
.1
6

79
.1
5

2
3.
8
7

55
.6
1

7
6
.3
8

3
6
.4
5

5
6.
2
9

7
8
.7
6

T
a
b
l
e
4
.
3
:
T
e
s
t
s
s
e
l
e
c
t
e
d
a
n
d
t
i
m
e
s
a
v
i
n
g
s
f
r
o
m

u
s
i
n
g
R
T
S
a
c
r
o
s
s
on

ly
pa
ss
ed

j
o
b
s

21

4.3 COMPARING WITH ONLY PASSED BUILDS

To provide a fairer comparison between the e↵ectiveness of the RTS technique with re-

spect to RetestAll, we apply stricter filtering on the jobs. We only consider the jobs where

RetestAll and all three RTS techniques are ‘passed’. By looking at only ‘passed’ jobs, we get

a better measure of time, ensuring that these are jobs without any test failures that could

lead to early failing, skipping later tests that might actually be selected to run.

Table 4.3 shows the results for these passed jobs. The table format is similar to Table 4.2,

but we add the number of jobs considered for each project. We now consider 980 jobs

across all projects (‘SUM/AVG’ shows this total number for jobs). Some projects result in

no jobs after this filtering, indicating that there are no jobs where RetestAll and all three

RTS techniques pass; these are indicated by 0’s under ‘# jobs’ and N/A’s in the remaining

columns. With this filtering, we see the weighted average for the total time for RetestAll

has dropped somewhat, from 21.15 minutes to 19.56 minutes. This drop can be expected

because longer-running builds are more likely expected to fail.

We see from the summary row that the average testing and total time percentages are

higher than in Table 4.2. Moreover, we see that Ekstazi now outperforms both GIB and

GIBstazi in terms of both testing time and the total time, at 55.61% and 76.38%, respectively.

This di↵erence in time is somewhat expected, as Ekstazi also selects the fewest tests, on

average 23.87% of RetestAll tests run. GIBstazi, on the other hand, outperforms GIB in

terms of percentage of tests selected, testing time, and total time. The trend between GIB,

Ekstazi, and GIBstazi now matches our initial expectations, laid out in Section 1.2.

4.4 COMPARISON BETWEEN EKSTAZI AND GIBSTAZI

While Ekstazi compared against GIBstazi has smaller average percentages of both testing

time and total time, we do observe individual jobs where Ekstazi surprisingly selects to run

more tests than GIBstazi. We inspected these jobs to determine why Ekstazi selected more

tests than GIBstazi.

These jobs came from eight projects. We sampled a job from each of these projects, as

it is likely a characteristic of the project that leads to Ekstazi selecting more tests. We

checked out the corresponding commit for the sampled job and attempted to run Ekstazi on

the same commit twice, without making any changes. Ideally, when no change was made,

Ekstazi should always select to run no tests. For four of the projects we could no longer

rebuild the project and reproduce Ekstazi selecting more tests. For the remaining projects,

when we ran Ekstazi twice, Ekstazi would always run some tests.

22

In two of the projects (P6 and P16), we found that the test suite uses a test runner other

than the standard JUnit4, e.g., TestNG or JUnit Jupiter (new in JUnit5). When such test

runners are used, Ekstazi selects to run all the tests regardless of changes

1
. In contrast,

GIBstazi can (correctly) find that a module is una↵ected and would not run any test. In

another project (P13), we found that even if Ekstazi determines not to run some tests,

Surefire still generates the log files indicating the test was (attempted to) run, so we count

such log files. An example is when some test classes have no test methods to run (e.g., an

abstract test class). However, in such cases, while the number of tests actually run may be

incorrect (one test class may be run with zero test methods, so it should be more precisely

counted as zero test classes), the overall timing is not largely a↵ected, because there is no

actual test to run and take time.

For the remaining project (P18), we found that compiling the same commit twice in a row

results in di↵erent compiled class files. Further inspection showed that some source files are

automatically generated as part of the build process and then later compiled into class files.

The automatic source generation is nondeterministic. Specifically, the order of the methods

in the generated source files can di↵er between builds, resulting in a di↵erent generated

source each time, which in turn results in a di↵erent compiled class file for that source, which

eventually triggers Ekstazi to select the tests that depend on these automatically generated

classes. So even if there is no change to any non-generated source file, the compiled class file

can di↵er. Ekstazi inherently relies on the compiled classes to not change if the developer

makes no changes to source code; an argument is made that comparing class files is more

robust than comparing source files [13]. However, if the compiled classes do change even

if there are no changes to the non-generated source files, then Ekstazi would find spurious

changes and run more tests than necessary.

For all of these projects, the reason that GIBstazi ran fewer tests than Ekstazi is due to

GIB first selecting a↵ected modules. If the tests that Ekstazi selects and runs spuriously are

not from one of the a↵ected modules, the tests would not be selected by GIBstazi because

their module would not be considered in the first place. As such, GIBstazi can actually

provide faster regression testing time than Ekstazi, in addition to being safer in some cases.

Aside from GIBstazi being faster than Ekstazi in the cases where GIBstazi selects to run

fewer tests, we find that GIBstazi can be faster even when the two select the same number

of tests due once again to the module selection that happens first. For example, in P13,

we found a job where both Ekstazi and GIBstazi select to run no tests. For GIBstazi, the

(selection and) testing process is rather fast, because first no modules are selected, and in

1We confirmed this via private communication with Milos Gligoric, the main developer of Ekstazi.

23

ID # Failed GIB Ekstazi GIBstazi
Tests Selected Not Selected Unknown Selected Not Selected Unknown Selected Not Selected Unknown

P5 1 100.00 0.00 0.00 0.00 100.00 0.00 100.00 0.00 0.00
P6 2 50.00 50.00 0.00 50.00 50.00 0.00 50.00 50.00 0.00
P12 1 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
P13 10 70.00 30.00 0.00 20.00 70.00 10.00 20.00 70.00 10.00
P14 47 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00
P15 7 71.43 28.57 0.00 57.14 42.86 0.00 71.43 28.57 0.00
P16 5 0.00 100.00 0.00 20.00 60.00 20.00 0.00 100.00 0.00
P18 7 0.00 100.00 0.00 0.00 14.29 85.71 0.00 100.00 0.00
P19 1 0.00 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
P20 13 53.85 46.15 0.00 84.62 0.00 15.38 38.46 46.15 15.38
P21 2 100.00 0.00 0.00 50.00 50.00 0.00 50.00 50.00 0.00
SUM/AVG 96 72.92 27.08 0.00 69.79 19.79 10.42 64.58 32.29 3.12

Table 4.4: Percentage of test failures selected or not selected by RTS

turn no tests are run. However, Ekstazi has to analyze every module to determine that no

tests should be run in any of the modules. While usually this analysis is rather fast, on the

order of 3–4 seconds per module, P13 is a project with over 20 modules, such that GIBstazi

skipping all modules first leads to significant speedup compared against Ekstazi analyzing

each and every module, for a total of over 60-80 seconds.

4.5 TEST FAILURES

RTS aims to select to run only the tests that are a↵ected by changes. However, a crucial

question is whether RTS is safe, i.e., whether it can potentially miss to select tests that are

actually a↵ected by changes. If a test that should have been selected due to the change

is missed, the developer could miss a regression fault, defeating the purpose of regression

testing in the first place. In our study, we found several test failures from RetestAll, and we

looked into whether or not the RTS techniques miss to select to run those tests.

Table 4.4 shows the number of test failures we find from RetestAll and the breakdown

of what percentage of those tests are selected to run by the di↵erent RTS techniques. We

obtained the test failures by parsing the job logs using tools provided by TravisTorrent [7].

Unfortunately, the parsing could not successfully parse out test failures for all ‘failed’ job logs

due to project-specific “noise”. For example, some projects run tests with the “quiet” option.

Furthermore, looking at just the Travis CI status of the job actually does not necessarily

indicate there were test failures, as other issues could have caused the job to be marked as

‘failed’, so such jobs have no failed tests to parse. In total, we found 11 projects with test

failures we could parse out, leading to a total of 96 test failures. We categorize those test

failures for each RTS technique for each project into three categories: selected, not selected,

or unknown. We categorize a test failure as unknown if we cannot tell from the logs whether

24

the test would have been selected to run or not; such a case can happen if another test in

a module before the module with the relevant test fails in the RTS run, leading to an early

failure of the entire run that skips running the tests in the later modules. As such, we cannot

tell if the RTS technique would have selected to run the test since it is skipped due to early

failure.

From the table, we see that all the RTS techniques do not select to run many tests that fail

when run with RetestAll, which is seemingly bad. On average, the RTS techniques do not

select a rather large percentage of the failed tests, e.g., GIBstazi does not select on average

32.29%. This percentage is rather high, considering that by not selecting to run these tests,

the developer would not see the failure and not know if there are regression faults in the

most recent code changes.

We inspected all 96 test failures from RetestAll. As a first step, we found that for 29 of

the test failures, the job with those test failures was immediately preceded by a job that had

the same test failures. From a RTS perspective, even if RTS does not select to run some

tests, the outcome of the not selected tests is not deemed to pass; instead, the outcome

of the not selected tests is copied from the prior runs. In other words, the failed status of

the test is still known from before. For example, if the developer does not make a change

related to fixing the test failure, there is no need to run the una↵ected test again to reveal

the same known failure. A RTS tool could even literally copy the same outcome of the tests

from a previous job if the tests are not run, allowing the developer to consistently see the

test failure when the developer has not yet fixed it, but there is no need to actually spend

resources to run such tests. (Ekstazi has an option forcefail to run all failing tests from

prior runs, even if they are una↵ected by the change.)

Of the remaining 67 test failures where the test passed in the immediately preceding job,

we found that all but one of them are due to flaky tests. Flaky tests are tests that can pass or

fail nondeterministically on the same code [6,23]. As such, flaky test failures are not related

to code changes and do not reveal real faults necessarily due to code changes. We confirmed

that these tests are flaky in two ways. For some of the tests, we confirmed by finding that

one of the RTS techniques did run the test and yet the test passed. For the remaining tests,

we reran the same job for RetestAll up to five times and found one of those times the test

passes. Only one of these test failures, from P6, consistently occurred in those five reruns.

From examining the test logs, we believe that this test failure does represent a real fault,

but we found that all the RTS techniques selected to run this test, so the regression fault

would not have been missed.

From our inspection, we find then that all tests with failures that are not selected to run

by any RTS technique were either failing before and are not a↵ected by the changes, so the

25

(fail) result is already known without running, or were due to flaky tests, which do not reveal

real faults due to code changes. As such, it is actually beneficial for RTS to not select to

run these flaky tests found to have failed with RetestAll. From this perspective, the higher

the percentage of failed tests not selected is actually better. We see that GIBstazi does not

select such tests at a percentage of 32.29%, higher than the other techniques.

4.6 SHADOWING PROJECTS

In our experiments, we failed to replay many of the historical builds due to significant

di↵erences between the environment used for the builds back when they were originally

built and the current environment on Travis CI. One particular reason is that Travis CI

keeps updating the default build environment. For example, goldmansachs/gs-collections

relies an older version of Maven to build while the default Maven version in the virtual

environment provided by Travis CI has been updated through the years; as such this project

is excluded from the evaluation. Another reason is the di↵erences in external dependencies a

project needs. For example, one of the projects we originally tried to replay is google/error-

prone, which has a dependency on a SNAPSHOT version of JUnit. The JUnit developers

can overwrite the SNAPSHOT version with the new changes, so the name of the dependency

does not uniquely determine its content. One such change they made was to change the API

of certain methods that the google/error-prone code relies on. Since the SNAPSHOT version

in the central repository was overwritten with these new changes, our replay would end up

using this latest SNAPSHOT version, which does not have the same content as what the

historical build used, leading to compilation errors. As such, google/error-prone was not one

of the projects we could use in our evaluation of historical builds.

To better observe how well RTS performs on the actual builds, we shadow the builds,

replaying the current builds much closer to when they are actually triggered (as described

in Section 3.5). One advantage of shadowing current builds over the historical replaying is

that we evaluate the build in an environment close to when they are actually built (e.g., less

of a chance of there being issues with out-of-date dependencies). Another advantage is that

we can observe how well RTS could help the developers for the current state of their project,

which may have had di↵erent characteristics from the project state in the historical builds

we replayed.

We shadowed the projects for 20 days and obtained results from nine projects, resulting in

a total of 217 jobs (but not all passed). Some of the projects we have results for shadowing,

namely google/error-prone and linkedin/pinot, are projects for which we have no historical

build results due to the issues with replaying we mentioned earlier.

26

Project # Jobs Original Shadowed
Time (m) Time (%)

alibaba/dubbo 4 18.17 56.39
aws/aws-sdk-java 8 8.85 114.00
apache/incubator-skywalking 15 11.76 72.40
javaparser/javaparser 6 16.20 52.88
languagetool-org/languagetool 93 15.97 53.90
iluwatar/java-design-patterns 2 25.92 83.52
google/guava 5 24.29 75.36
google/error-prone 4 15.73 70.49
linkedin/pinot 36 18.32 42.13
SUM/AVG 173 16.17 57.20

Table 4.5: Time savings from RTS on shadowed jobs

Table 4.5 shows a comparison between the original Travis CI jobs and our shadowed jobs

with GIBstazi. In the table, we show for each project the number of those jobs where both

the original job and our shadowed version of the job passed, as we want to make a fair

comparison as we did in Section 4.3. As such, we analyze a total of 173 jobs. We show

the total, end-to-end time (not just testing time), because this time is most relevant to the

developers that directly observe it, for the original job as reported by Travis CI, and we

show what percentage of that time did the shadowed version with GIBstazi take. We find

that GIBstazi still provides time savings over original build times, with a weighted average

of 57.20% of the original time.

We also inspected the original jobs that failed where we could parse the logs for test

failures using TravisTorrent [7]. We parsed out 24 test failures from those original jobs,

all from languagetool-org/languagetool, google/guava, and iluwatar/java-design-patterns.

GIBstazi selected to run 17 of the failed tests (70.83%), and GIBstazi did not select to run

six of the failed tests (25.00%). We could not tell for one of them if GIBstazi would have

selected the test or not, due to a (flaky) test failure from an earlier module.

We inspected these 24 test failures the same way we inspected test failures from the

historical replayed builds. For 15 test failures, we found the same test failed in the prior

job, so the status remains the same even if GIBstazi did not select to run that test. We

also confirmed that GIBstazi did run the failed test in the prior job, so the status would

have been known. Of the remaining test failures, we confirmed four to be flaky from either

GIBstazi running the test and passing, or from our replaying the original build and observing

the test passing. Of the remaining four test failures (not including the unknown one), we

believe they are all real test failures. GIBstazi selected to run three of those failed tests, so

the developers would have noticed the failures.

27

However, GIBstazi did not select to run one remaining failed test. This test failure is

from languagetool-org/languagetool, and further inspection showed that the change made

was to a .txt file. Due to the regex we used, we ignored changes made to all .txt files, but

for a project like languagetool-org/languagetool, their .txt files are an integral part of their

code and tests. As such, there is a misconfiguration in GIBstazi because we applied general

filtering that works for many but not all projects. The actual developers of languagetool-

org/languagetool should apply project-specific filtering to ensure such test failures do not

get missed. Note that Ekstazi, as it tracks only class files, would also have missed to select

this failed test as well.

28

CHAPTER 5: LIMITATION

While GIB and GIBstazi showed positive results in terms of time savings, there is a

limitation in these module-level RTS tools. By default, as mentioned in Section 2.1, Maven

builds the modules sequentially and stops the project build execution if any module failed.

However, when developers introduce multiple regression faults across modules, this “fail

fast” feature of Maven may lead to di↵erent build results when using di↵erent RTS tools.

In Figure 5.1, we show four versions of an example project representing the evolution of

the project and how di↵erent RTS tools and RetestAll give di↵erent build results at version

4. There are three modules (A, B, C) in this example project. The Maven build order of

these modules is A, B, C because B and C depend on A (denoted with arrows). We highlight

a module in green if there are tests selected by the RTS tool in the module and all these

tests passed. We highlight a module in red if there are tests selected by the RTS tool in

the module but some of these tests failed. We do not highlight a module if there is no

test executed in the module (no test is selected by the RTS tool or the module is not built

because earlier modules failed).

At version 1, developers made changes to all three modules and the changes did not

introduce any fault to the project. Thus, regardless of the RTS tool the developers are

using, all the tests that are selected to run in these modules passed. Version 1 of this project

is in a stable state where no test failed. At version 2, developers made changes to all three

modules again and the changes introduced a fault to each of the three modules. Tests in

module A are run first and some of them failed. Maven stopped the build process and thus

the builds of later modules (B and C) are not executed. At version 3, developers changed

module A again to fix the fault found in version 2. Now, tests in module A passed but tests

in module B failed and module C is again not built since Maven stopped the build process.

As we can see, GIB, GIBstazi, Ekstazi, and RetestAll give the same build results for each

of versions 1, 2, and 3.

At version 4, developers changed module B to fix the fault found in version 3 (though

the fault was actually introduced in version 2). RetestAll simply selects all the tests in each

module to run. Tests in module A and B passed but tests in module C failed. Ekstazi

iterates through all the modules to determine what tests to select. No test in module A is

selected because no change has been made in module A since the last execution of Ekstazi

in module A. Some tests in module B are selected by Ekstazi and those tests passed. Some

tests in module C are selected by Ekstazi but those tests failed. RetestAll and Ekstazi give

‘failed’ build results because the fault in module C introduced in version 2 is discovered by

29

Figure 5.1: An example of di↵erent build results when using di↵erent RTS tools

running some tests in module C.

However, GIB and GIBstazi give ‘passed’ build results because they use Git to deter-

mine changed modules and then use Maven dependency information to determine a↵ected

modules. At version 4, module B is the only a↵ected module because only module B was

changed between version 3 and version 4 and no other module depends on module B. GIB

then selects all tests in module B while GIBstazi applies Ekstazi in module B and selects

some tests in module B. No test in module A or C is selected to run when using GIB or

GIBstazi and developers get a ‘passed’ build result.

As we can see, due to the “fail fast” feature of Maven, tests in a module are executed only

if the tests are selected by the RTS tool and all other modules built earlier passed. RetestAll

and Ekstazi can progressively find faults introduced by changes when Maven skipped the

build of later modules due to test failures in an earlier module because RetestAll and Ekstazi

always try to process all the modules in each build. GIB and GIBstazi however, only process

the modules a↵ected by the most recent change. If an a↵ected module failed, other a↵ected

modules are not tested right away, and they will only be tested when they are selected

as a↵ected modules in future versions. This limitation of GIB and GIBstazi may lead to

di↵erent build results compared with RetestAll and Ekstazi.

30

CHAPTER 6: THREATS TO VALIDITY

Our conclusions about the benefits of RTS may not generalize beyond the projects used in

our study. However, we use a diverse set of projects from GitHub, which is the most popular

service for hosting open-source projects. We chose as many projects as we found to satisfy

our filtering requirements. We focus on projects that take relatively long time to build and

test, because we are concerned with projects that represent those where developers would

want to use RTS to save regression testing time. We believe that our eventual choice of 22

projects used in our study are fairly representative of such projects.

While we replay historical builds from the projects in our study, the replays are not exactly

the same as if they were run when the developers actually started the build in the past. One

problem in particular would be if any external dependencies the developers relied on at

the time of the build are now no longer available, or even worse changed the content and

behavior while they still use the same name (e.g., the SNAPSHOT dependencies in Maven).

When we replay such builds, they would fail although they would have passed back when

the developers built. To alleviate this issue, we replay not just using the RTS techniques

but also RetestAll, so we do not compare against the result of the build that potentially

happened a long time ago with a drastically di↵erent setup. Furthermore, we do all the

replaying and shadowing on Travis CI, the same environment that the developers build their

code, as to more closely imitate how the developers build their code using CI services.

We enhance GIB and GIBstazi with filters to ignore files that should not a↵ect test

behaviors. It is possible that our filters may be ignoring too many files, i.e., some files that

tests could potentially depend on. We constructed such filters based on our own experience

and best knowledge of what types of files that we believe would generally not a↵ect test

behaviors.

31

CHAPTER 7: RELATED WORK

7.1 RTS

Regression test selection has been studied for several decades [13–15, 21, 25–27, 30–32].

Researchers have proposed various RTS techniques, selecting tests by tracking dependencies

at di↵erent levels of granularities, ranging from precise control-flow edges [15, 27] to meth-

ods [32] to classes [14, 21]. Most of the early work on RTS focused on techniques that can

select as few tests as possible from the regression test suite, but recent work has emphasized

the need for RTS to provide time savings in end-to-end regression testing, not just in test

numbers. For example, Gligoric et al. proposed Ekstazi [14], which tracks dependencies at

the class level and selects test classes as opposed to test methods, leading to a larger number

of tests actually being run compared to tracking at a finer granularity. However, the de-

pendency analysis at the class level is very quick, eventually leading to better time savings

despite running more tests. Companies such as Google and Microsoft rely on even coarser-

grained dependency tracking, at the module level, due to the even quicker analysis time to

determine what tests need to be run [11,12,28]. In our work, we compare module-level and

class-level RTS in a CI environment.

Our work is most similar to recent work by Vasic et al. [29]. Vasic et al. created Ekstazi#,

a tool that performs class-level RTS like Ekstazi for the .NET framework. Vasic et al. also

evaluated running Ekstazi# on top of an incremental build system Concord, which inherently

performs module-level RTS. As such, our hybrid RTS technique GIBstazi follows the ideas

introduced by Ekstazi# and Concord. However, GIBstazi di↵ers from their combination

in that when changes are not source-code related, GIBstazi defaults back to GIB behavior,

running all tests within a↵ected modules, thereby being safer than just running Ekstazi (or

Ekstazi#), which does not track those changes, running no tests within a↵ected modules.

Furthermore, in our work, we compare both module-level RTS and class-level RTS, as well

as against GIBstazi, in a CI environment, where every build starts with a clean slate on

a separate, non-dedicated machine. In contrast, Vasic et al. evaluate Ekstazi# using a

dedicated machine with incremental builds.

7.2 CI

Continuous integration is widely used in industry and studied in research. Recent work has

studied why developers use CI and the benefits they experience [17,18,33]. One main reason

32

for the rise in research on CI is the increased usage of CI, particularly with services such as

Travis CI, which provides free CI service for open-source projects on GitHub. Furthermore,

Travis CI exposes the build logs, allowing ease of access to information concerning building

and testing results after developers push changes to their projects. TravisTorrent [7] provides

a dataset of build logs from Travis CI, and it also provides the tooling for parsing the logs.

We utilize Travis CI to replay historical builds of projects, and we also use TravisTorrent

tooling to parse the logs for our analysis of failed tests.

There has been more work studying test failures on Travis CI (but not in combination

with RTS as we do). Labuschagne et al. [20] studied how often regression testing on Travis

CI reveals faults that developers fix. They query Travis CI for the results of builds and

focused on patterns of builds that toggle ‘passed’ and ‘failed’ outcomes, indicating where a

change caused an originally passing build to start to fail, followed by changes that lead to

the build passing again. They found that 74% of the non-flaky failed builds were caused by

a fault in the code under test, while the remaining are due to incorrect or obsolete tests.

They also found flaky tests to a↵ect 13% of the failed builds they studied. We also find flaky

tests in our study, although we find that almost all the test failures from RetestAll in our

study are flaky test failures, which are safe, and even preferable, to not select for RTS. One

reason for the di↵erent percentage of flaky tests is that they study all builds (from master

branch and other branches, as well as push builds and pull-request builds) whereas we study

builds only from the master branch because many other builds cannot be replayed as the

branches/commits are not available, especially for pull requests.

33

CHAPTER 8: CONCLUSIONS AND FUTURE WORK

Regression testing is widely practiced, particularly in continuous integration environments,

but it can be quite costly. Regression test selection (RTS) is a way to reduce the cost of

regression testing. Industry has adopted module-level RTS, while research has found class-

level RTS to be very e↵ective. In this work, we compare module-level RTS and class-level

RTS in a continuous integration environment. We find that RTS techniques improve testing

time over RetestAll, and the hybrid module-level and class-level RTS technique, which we

call GIBstazi, o↵ers a good trade-o↵. The savings from RTS on the end-to-end time for the

entire build in a continuous integration service are not as high as shown in previous work

that evaluated using a dedicated server. We also investigated test failures from RetestAll

and found that the RTS techniques often do not select to run failed tests; however, our closer

inspection revealed that most of these tests are flaky and not indicative of faults introduced

by code changes. The results show that RTS o↵ers benefits to developers not only to reduce

machine time but also to avoid false alarms from flaky tests and wasting time debugging

non-existent problems in the code changes.

In the future, we plan to improve GIBstazi to resolve the issue discussed in Chapter 5.

GIBstazi should provide the option to forcefully run the modules that are selected but

skipped in previous builds even if these modules are not a↵ected by new changes. We

also plan to fix the Surefire report counting issue discussed in Section 3.3. We also plan

to evaluate more RTS techniques, such as STARTS [22], a static class-level RTS tool. In

addition, we plan to replay more jobs multiple times to get more valid data and minimize

flakiness, and we also plan to shadow more projects in order to promote the adoption of

GIBstazi.

34

REFERENCES

[1] Bazel. https://bazel.build/.

[2] Ekstazi. http://ekstazi.org/.

[3] Maven. http://maven.apache.org/.

[4] Travis-CI. https://travis-ci.org/.

[5] Alali, A., Kagdi, H., and Maletic, J. I. What’s a typical commit? A character-

ization of open source software repositories. In ICPC (2008).

[6] Bell, J., Legunsen, O., Hilton, M., Eloussi, L., Yung, T., and Marinov,
D. DeFlaker: Automatically detecting flaky tests. In ICSE (2018).

[7] Beller, M., Gousios, G., and Zaidman, A. TravisTorrent: Synthesizing Travis

CI and GitHub for full-stack research on continuous integration. In MSR (2017).

[8] Bird, C., Rigby, P. C., Barr, E. T., Hamilton, D. J., German, D. M., and
Devanbu, P. The promises and perils of mining Git. In MSR (2009).

[9] Borges, H., Hora, A., and Valente, M. T. Predicting the popularity of GitHub

repositories. In PROMISE (2016).

[10] Brindescu, C., Codoban, M., Shmarkatiuk, S., and Dig, D. How do centralized

and distributed version control systems impact software changes? In ICSE (2014).

[11] Elbaum, S., Rothermel, G., and Penix, J. Techniques for improving regression

testing in continuous integration development environments. In FSE (2014).

[12] Esfahani, H., Fietz, J., Ke, Q., Kolomiets, A., Lan, E., Mavrinac, E.,
Schulte, W., Sanches, N., and Kandula, S. CloudBuild: Microsoft’s distributed

and caching build service. In ICSE (2016).

[13] Gligoric, M., Eloussi, L., and Marinov, D. Ekstazi: Lightweight test selection.
In ICSE Demo (2015).

[14] Gligoric, M., Eloussi, L., and Marinov, D. Practical regression test selection

with dynamic file dependencies. In ISSTA (2015).

[15] Harrold, M. J., Jones, J. A., Li, T., Liang, D., Orso, A., Pennings, M.,
Sinha, S., Spoon, S. A., and Gujarathi, A. Regression test selection for Java

software. In OOPSLA (2001).

[16] Herzig, K., Greiler, M., Czerwonka, J., and Murphy, B. The art of testing

less without sacrificing quality. In ICSE (2015).

35

[17] Hilton, M., Nelson, N., Tunnell, T., Marinov, D., and Dig, D. Trade-o↵s

in continuous integration: Assurance, security, and flexibility. In ESEC/FSE (2017).

[18] Hilton, M., Tunnell, T., Huang, K., Marinov, D., and Dig, D. Usage, costs,
and benefits of continuous integration in open-source projects. In ASE (2016).

[19] Kosar, V. gitflow-incremental-builder. https://github.com/vackosar/

gitflow-incremental-builder.

[20] Labuschagne, A., Inozemtseva, L., and Holmes, R. Measuring the cost of

regression testing in practice: A study of Java projects using continuous integration. In

ESEC/FSE (2017).

[21] Legunsen, O., Hariri, F., Shi, A., Lu, Y., Zhang, L., and Marinov, D. An

extensive study of static regression test selection in modern software evolution. In FSE
(2016).

[22] Legunsen, O., Shi, A., and Marinov, D. STARTS: STAtic Regression Test Selec-

tion. In ASE Demo (2017).

[23] Luo, Q., Hariri, F., Eloussi, L., and Marinov, D. An empirical analysis of flaky

tests. In FSE (2014).

[24] Memon, A., Gao, Z., Nguyen, B., Dhanda, S., Nickell, E., Siemborski, R.,
and Micco, J. Taming Google-scale continuous testing. In ICSE-SEIP (2017).

[25] Orso, A., Shi, N., and Harrold, M. J. Scaling regression testing to large software

systems. In FSE (2004).

[26] Rothermel, G., Elbaum, S., Malishevsky, A., Kallakuri, P., and Davia,
B. The impact of test suite granularity on the cost-e↵ectiveness of regression testing.

In ICSE (2002).

[27] Rothermel, G., and Harrold, M. J. A safe, e�cient regression test selection

technique. TOSEM (1997).

[28] Shi, A., Thummalapenta, S., Lahiri, S. K., Bjorner, N., and Czerwonka,
J. Optimizing test placement for module-level regression testing. In ICSE (2017).

[29] Vasic, M., Parvez, Z., Milicevic, A., and Gligoric, M. File-level vs. module-

level regression test selection for .NET. In ESEC/FSE (2017).

[30] Xu, G., and Rountev, A. Regression test selection for AspectJ software. In ICSE
(2007).

[31] Yoo, S., and Harman, M. Regression testing minimization, selection and prioriti-

zation: A survey. STVR (2012).

[32] Zhang, L., Kim, M., and Khurshid, S. FaultTracer: A change impact and regres-

sion fault analysis tool for evolving Java programs. In FSE (2012).

36

[33] Zhao, Y., Serebrenik, A., Zhou, Y., Filkov, V., and Vasilescu, B. The

impact of continuous integration on other software development practices: A large-scale

empirical study. In ASE (2017).

37

