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ABSTRACT  

Objective: To investigate the relationship between retinal morphometric measures and intellectual 

abilities among adults with overweight and obesity. 

Methods: Adults between 25-45 years (N=55, 38 females) with overweight or obesity (BMI ≥25.0 

kg/m2) underwent an optical coherence tomography (OCT) scan to assess retinal nerve fiber layer 

(RNFL) volume, ganglion cell layer (GCL) volume, total macular volume, and central foveal 

thickness. Dual-Energy X-ray Absorptiometry was used to assess whole-body adiposity (%Fat). 

The Kaufman Brief Intelligence Test-2 was used to assess general intelligence (IQ), fluid, and 

crystallized intelligence. Hierarchical linear regression analyses were performed to examine 

relationships between adiposity and intelligence measures following adjustment of relevant 

demographic characteristics and degree of adiposity.  

Results: Although initial bivariate correlations indicated that %Fat was inversely related to fluid 

intelligence, this relationship was mitigated by inclusion of other demographic factors, including 

age, sex, and education level. Regression analyses for primary outcomes revealed that RNFL was 

positively related to IQ and fluid intelligence. However, only GCL was positively related to 

crystallized intelligence.  

Conclusion: This work represents the first study to demonstrate that specific retinal morphometric 

measures – assessed using OCT – can be utilized to study intellectual abilities among adults with 

overweight and obesity. 
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CHAPTER 1: INTRODUCTION 

Obesity prevalence is a growing global public health issue (Swinburn, Sacks, Hall, et al., 

2011). In 2015, there were 604 million adults with obesity worldwide, representing a greater than 

two-fold increase in prevalence since the 1980’s (Afshin, et al., 2017). In the United States, obesity 

is estimated to affect approximately 40% of the adult population (Hales, et al., 2017). Excess fat 

mass or adiposity is known to directly contribute to a wide range of metabolic disorders and 

chronic diseases including type 2 diabetes and cardiovascular disease (Malnick & Knobler, 2006). 

However, overweight and obesity are also related to mood disorders including anxiety and 

depression and increasing evidence suggests that the detrimental consequences of obesity also 

extend to cognitive function and brain health (Romain, Marleu, & Baillot, 2018) including greater 

risk for dementia in older age (Luchsinge & Gustafson, 2009; Gustafson, 2006). 

While the underlying mechanisms remain unclear, evidence from magnetic resonance 

imaging (MRI) studies  indicates that obesity is predictive of variations in brain structure and 

function that often accompany cognitive deficits including reduced synaptic plasticity (Erion, et 

al., 2014), reduced processing speed (Sanz, Ruidavets, & Bongard, 2012), and lower gray matter 

volume (Walther, et al., 2009). Population-based studies have revealed that, akin to aging, 

increasing Body Mass Index (BMI) is longitudinally associated with declining gray matter volume 

(13 to 16% reduction per unit increase in BMI) in the temporal lobe (Gustafon, et al., 2004). 

Similarly, obesity has also been linked to MRI measures of white matter including hyperintensities 

(Jagust, Harvey, & Mangus, 2005; Gustafson, Steen, & Stoog, 2004; Stanek, et al., 2011) . 

Therefore, conventional neuroimaging techniques, primarily MRI, have revealed links between 

gray matter and white matter outcomes and obesity. However, the use of MRI presents many 

practical challenges including high financial costs, contraindications, susceptibility to movement 
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artifacts, technical expertise necessary for scan acquisition and analyses, and limited mobility or 

accessibility for populations. Therefore, there is increasing need for determining the efficacy of 

alternative neuroimaging techniques with the requisite sensitivity to cognitive abilities and brain 

health, particularly among individuals with overweight or obesity. 

 Recent evidence indicates the morphometric measures of the human retina, studied using 

optical coherence tomography (OCT), have the potential to be utilized as markers of gray and 

white matter in the brain (Mutlu, et al, 2017). Since the human retina is formed embryonically 

from neural tissue and is integrated into the neural system via the optic nerve, it is possible that 

structural abnormalities in brain tissue may be reflected in the retina (Mutlu, et al, 2017; Chang, 

et al., 2014). Additionally, imaging the retina, as proxy for brain, provides unique advantages since 

it can be visualized noninvasively at the cellular level due to its transparent nature, allowing for 

inexpensive testing of neurological biomarkers in clinical settings (Chang, et al., 2014). OCT is a 

3-dimensional retinal imaging technique that relies on low-coherence near infrared interferometry 

(Huang, et al., 1991) to segment the various structural components of the retina including, but not 

limited to, the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), and macular volume 

and thickness. Although OCT is often used in clinical settings to detect abnormalities in the eye 

and monitor the progression of ocular diseases, retinal neurodegeneration has been recently 

correlated with cerebral atrophy suggesting that neuronal damage may occur simultaneously in the 

retina and throughout the brain (Ong, et al., 2015). Additionally, the thickness of different layers 

of the retina are related to specific brain subcomponents of brain matter. For example, RNFL is 

composed of axons and RNFL thickness has been related to cerebral white matter. On the other 

hand, neuronal cell bodies comprise the GCL and may be reflective of cerebral gray matter (Mutlu, 

et al, 2017). The RNFL relationship to white matter has received further support from studies 
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among patients with Multiple Sclerosis demonstrating that RNFL is correlated with white matter 

tracts that are functionally separated from the visual system (Scheel et al., 2014). Several studies 

involving adults with Alzheimer’s have shown that these patients have reduced RNFL and GCL 

(Cheung et al., 2015; Thomson, et al., 2015). Interestingly, thinner RNFL and GCL have also been 

associated with smaller temporal lobe structures including the hippocampus which is vital for 

memory and learning across the lifespan (Mutlu, et al, 2017). Although emerging evidence points 

to the utility of OCT as a neuroimaging technique, data relating retinal morphometric measures 

and cognitive function remain limited. Pertinent to the work presented in the current study, the 

extent to which different retinal layers correspond to aspects of intellectual abilities among 

individuals with overweight and obesity has not been directly examined.  

 Intelligence represents a critical cognitive ability known to support vital cognitive 

processes such as executive function and the acquisition of knowledge and learning (Colom, et al., 

2010). Intelligence can be conceptualized as general intelligence (i.e., intelligence quotient [IQ]) 

or its separable components of crystallized intelligence and fluid intelligence. Studying specific 

constructs of intelligence is important given that fluid and crystallized intelligence exhibit 

differential susceptibility to factors such as aging (Craik & Bialystok, 2006; Park & Reuter-Lorenz, 

2009). Crystallized intelligence reflects the ability to use previously acquired knowledge and is 

therefore amenable to learning while fluid intelligence is thought to represent the ability to adapt 

to new situations (Cattell, 1963). In the context of obesity, studying these different measures of 

intelligence may provide insights into components of cognitive function that exhibit sensitivity to 

obesity-related cognitive impairments. However, to our knowledge, the relationship between 

retinal morphometric measures and intellectual ability among adults with overweight and obesity 

has not been previously studied.  
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Accordingly, the present work aimed to utilize OCT to assess the relationship between 

retinal morphometric measures and different constructs of intelligence among adults with 

overweight or obesity. Given prior evidence indicating that thicker RNFL and GCL are related to 

greater gray matter and white matter volumes among older adults, we hypothesized lower 

thickness in RNFL and GCL will be associated with poorer performance across all measures of 

intelligence (i.e. IQ, fluid, and crystallized).  

1.1. PURPOSE 

The purpose of the proposed study was to investigate the relationship between retinal 

measures and intelligence in healthy adults with overweight or obesity. 

1.2. HYPOTHESES 

It was hypothesized that specific layers of the retina would be correlated to general 

intelligence, fluid intelligence and crystallized, specifically the Ganglion Cell Layer (GCL) 

and the Retinal Nerve Fiber Layer (RNFL).   
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CHAPTER 2: LITERATURE REVIEW 

2.1. OBESITY 

The prevalence of obesity, defined a body mass index (BMI) ≥30kg/m2, continues to be a 

public health concern in the United States with 39% of adults classified as obese in 2015-

2016 (Hales, et al., 2017). Obesity has over 20 co-morbidities, including diabetes mellitus, 

hypertension, coronary heart disease, high serum cholesterol, increased risk for certain 

cancers, sleep apnea, osteoarthritis, and stroke (Kopelman, 2000; Ogden, et al., 2010; 

Ebbeling, Pawlek, Ludwig, 2002), making obesity one of the leading causes of preventable 

deaths (Biro, 2010). Additionally, as obesity increases the disease burden of obesity 

increases simultaneously (Paeratakul, et al., 2002). Furthermore, obesity has been shown to 

reduce life expectancy by up to nine years in Caucasians and six years in African-Americans 

(Fontaine, et al., 2003). BMI is the most widely used classification system for measuring 

obesity which is a height to weight ratio (kg/m2) and therefore is a convenient and non-

invasive way to assess the risk of obesity. However, since BMI is only a ratio, it does not 

adequately characterize body composition including bone mass, lean tissue mass, and 

adiposity.  Alternatively, Dual-energy X-ray absorptiometry (DXA) can accurately measure 

bone mass, lean tissue mass, and fat mass (Flegal, 2010). Fat, bone mineral, and lean tissue 

are analyzed using low- and high-energy photons and the amount of each composition is 

measured on a pixel basis.  Currently, there is no widely accepted clinical obesity ranges of 

body fat percentages. However, Kelly, Wilson, and Heymsfield (2009) analyzed n=9304 

(female n=4666) DXA scans from the 1999-2004 NHANES research, with participants 

starting at age of 8 and continuing along the life span to 85 years and over.  Utilizing the 

BMI classification system - underweight <18.5 kg/m2, normal weight 18.5-24.9 kg/m2, 
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obesity class I 30.0-34.9 kg/m2, obesity class II 35.0-39.9 kg/m2, and obesity class III ≥40.0 

kg/m2 - similar thresholds were generated for Fat Mass Index (FMI; fat mass/height2).  They 

found that in adult males > 6 FMI and in adult females > 9 FMI related to the BMI 

classifications of overweight and obesity.  Since this measure is gender specific, lean tissue 

does not impact the classification.  More research will need to be conducted to have a widely 

accepted body fat percentage range for adults. 

 One of the co-morbidities of obesity is diabetes mellitus, which can have additional 

complications including diabetes retinopathy which is a leading cause of blindness in adults 

(Barber, 2003). In the Wisconsin Epidemiologic Study of Diabetic Retinopathy, up to 21% 

of diabetic patients with type 2 diabetes had Diabetic Retinopathy at the time of diabetes 

diagnosis and most patients developed retinopathy throughout disease progression. 

Additionally, throughout the study 1.6% of these patients were legally blind (Fong, et al., 

2004).  Another complication that may come from diabetes mellitus is the increased risk of 

dementia (Biessels, et al., 2006) and other factors of brain health. 

 Research has found that the impact of obesity may reach beyond metabolic 

diseases and impact brain health. Increasing total body fat appears to be related to 

deterioration of cognitive function (Naderali, Ratcliffe, & Dale, 2009).  Insulin resistance is 

another co-morbidity of obesity (Lloyd, Langley-Evan, & McMullen, 2010), and insulin 

plays a significant role in synaptic plasticity and memory (Watson & Craft, 2004). This may 

be due to the central nervous system’s role in insulin receptor signaling.  Decreased insulin 

receptors in the brain has been associated with degenerative dementia (Zhao et al., 2004). In 

a prospective study of 2,798 adults, without dementia, those with a BMI > 30 kg/m2 were at 

a higher risk of developing dementia five years later compared to those with a normal 
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weight BMI of 20-25 kg/m2 (Fitzpatrick et al., 2009). Interestingly, Miller and colleagues 

(2006), found that participants with non-early onset morbid obesity (n=18) performed 

significantly lower in their General Intelligence Ability and their total achievement tests 

compared to their Early onset morbid obesity (EMO) siblings (n=21). Within the context of 

this study, EMO was defined as participants who exceeded 150% of their Ideal Body Weight 

or had a BMI of greater than 97% before the age of 4 years. Additionally, MRI results 

showed that five of the EMO participants had white matter lesions while no control 

participants had lesions (Miller, et al., 2006).  Obesity’s impact on white matter was further 

supported by Stanek et al., (2011) (n=103), who found that adults with a BMI of 30 or 

greater had significantly reduced white matter integrity. Obesity has been related to 

cognitive deficits throughout multiple studies (Smith, et al., 2011, Prickett, Brannan, & 

Stolwyk, 2015) starting in childhood (Khan, et al., 2015; Li, et al., 2008) and continuing 

through older adulthood (Nguyen, et al., 2014). Importantly, obesity has also been 

associated with deficits in prefrontal (Kamijo, et al. 2012), orbitofrontal cortexes (Reinert, 

Po’e, & Barkin, 2013) reduced synaptic plasticity (Erion et al., 2014), and lower grey matter 

volume (Walther et al., 2009). Additionally, in animal models, diet-induced obesity has also 

been shown to have a relationship with retinal degeneration (Marcal et al., 2012). 

2.2. RETINAL MORPHOLOGY 

The retina is developed embryonically along with other neural tissues and is connected to 

the brain by the optic nerve. OCT advancements since the 1990’s have enabled clinicians to 

assess neurodegeneration in the retina noninvasively with biopsy-like precision (London, 

Behnhar, & Schwartz, 2012; Mutlu, 2017). While OCT is a comparatively recent 

technological innovation, the equipment and software has made significant advancements in 
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the previous decade.  In 1991, OCT used 2-dimensional cross-sectional images of the retina 

using Time-domain. However, in 2004, OCT began to use 3-dimensional images using 

Spectral-domain (SD-OCT, also known as Fourier domain OCT) (Yanni, et al., 2013). The 

SD-OCT added ultrahigh speed imaging to the Time-Domain’s ultrahigh resolution (Yi, 

Chen & de Boer, 2006).  The Time-Domain OCT required a physically moving reference 

mirror, while SD-OCT utilized a reference beam and sample beam to assess the spectral 

interference pattern obtained from a spectrometer and an array detector (Neto & Rebhun, 

2018). With these advancements, the SD-OCT images are higher quality, with a resolution 

of 5 µm, than the Time-Domain OCT and acquisition of the images was faster with SD-OCT 

taking 20,000 scans per second, while the Time-Domain OCT was only capable of 500 

scans per second.  (Pierro & Gagliardi, 2014).   

 The retina has ten layers (Figure 1; Know Your Retinal Layers, 2016) , the internal 

limiting membrane, retinal nerve fiber layer (RNFL), ganglion cell layer (GCL), inner 

plexiform layer (IPL), inner nuclear layer, outer plexiform layer, Henle fiber layer, outer 

nuclear layer, external limiting membrane, photoreceptor layers.  Each layer is visible 

through the OCT by segmenting the layers according to their edges with the OCT software. 

The inner three layers of the retina, RNFL, GCL, and IPL, can be grouped into the Ganglion 

Cell Complex which represents 30% of retinal thickness. The RNFL contains the axons of 

the Retinal Ganglion Cells (RGC), the GCL is composed of the bodies of the RGCs, and the 

IPL is the dendrites of the RGCs. The RGCs are important to visual function as they send 

neural messages from all visual information to optic nerve which connects with the central 

nervous system (Skalicky, 2016). The RNFL has been heavily studied in glaucoma research 

as the decreasing in RNFL thickness correlate with the loss of the RGC axon bundles (Hoyt 
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& Newman, 1972; Hoyt, Frisen, & Newman, 1973; Sommer et al., 1991). The IPL is the 

beginning of several functions in the visual system, motion detection, contrast, hue, and 

brightness (Remington, 2012).  

With the advances in OCT, clinicians can utilize this imaging technique to assess disease 

progression of the clinical macula which is the 3.45 mm circle surrounding the fovea.  The 

center of the clinical macula is the fovea, which is a depression which has no vessels.  

Without the vessels, the fovea has minimal light scattering allowing for high visual acuity 

(Dubis, et al., 2012).  Surrounding the fovea, is the parafovea which has the thickest GCL, 

IPL, and inner nuclear layers.  These layers are responsible for processing signals from both 

foveal and parafoveal photoreceptors (Knighton & Gregori, 2012). The parafovea is 

surrounded by the perifovea, which is primarily composed of the axons of the 

photoreceptors (Skalicky, 2016). Unlike MRI, OCT allows for measurements of isolated 

axons as the axons within the RNFL are not myelinated (Fisher, et al., 2006). Therefore, 

RNFL is commonly used to measure disease progress in multiple sclerosis (Fisher, et al., 

2006), retinitis pigmentosa (Walia, et al., 2007), and diabetic retinopathy (Dhasmana, Sah & 

Gupta, 2016). 

As an extension of the Central Nervous System, the retina has numerous similarities to 

the brain and spinal cord.  This is one of the key benefits of using an OCT, as it is a non-

invasive means as a proxy to the brain. Due to the transparent nature of the retina, the OCT 

allows for information at the cellular level of retina.  Although the OCT was intended to 

detect abnormalities and monitor the progression of ocular diseases, increasingly the OCT 

has been used to study the neurodegeneration of the brain. Mutlu et al. (2017) found that 

some layers of retinal morphology may be makers of gray and white matter volume in the 
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brain. RNFL thickness is correlated to cerebral white matter, while the GCL is related to 

cerebral gray matter. Some literature has explored the use of OCT to measure the 

relationship between RNFL neurodegeneration and the neurodegeneration of the white 

matter in patients with Multiple Sclerosis (Scheel, et al., 2014).  Gordon-Lipkin and 

colleagues (2007) found that the RNFL is associated with brain atrophy, but not specifically 

to gray or white matter of the brain.  Cross-sectional studies involving patients with 

Alzheimer’s or cognitive impairment have also found reduced RNFL, additionally the GCL 

and IPL were significantly reduced in these populations (Cheung et al., 2015; Coppola et al., 

2015; Thomson et al., 2015).  

 

2.3. INTELLIGENCE 

Intelligence is a critical component of cognitive ability due to its supportive nature of 

learning and executive function across the lifespan. Executive control (also called cognitive 

control), is the set of cognitive processes that are a part of the regulation of goal-directed 

behavior (Botvinick, 2001; Norman & Shallice, 1986). Executive function has three 

components, shifting between tasks or mental sets, updating and monitoring of working 

memory representation, and inhibition of prepotent responses (Miyake, et al., 2000).  

Spearman, (1946) developed the theory of g, modernly known as general intelligence.  The 

theory of g is that when a person does well on one test of intelligence, they should do well 

on other tests of intelligence. Due to this theory, Spearman was able to create a statistical 

analysis of general intelligence, where the higher the score, the more intelligence the person 

has.  General intelligence has two subcomponents, crystallized and fluid intelligence.  Fluid 

intelligence can be described as problem solving in novel situations relying on the ability to 
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react creatively and flexibly to the challenge when prior knowledge of the situation is not 

beneficial (Horn & Cattell, 1967) and rapidly declines after early adult (Wang & Kaufman, 

1993). Alternatively, crystallized fluid intelligence is the ability to gain and utilize 

knowledge and information throughout the lifespan (Horn & Cattell, 1966).  This concept of 

intelligence is derived from the Cattell-Horn-Carroll (CHC) Theory. The CHC theory 

includes the work of Raymond Cattell, John Horn, and John Carroll making this theory one 

of the most comprehensive and empirically supported psychometric theory (Alfonso, 

Flanagan, & Radwan, 2005).  Cattell’s original theory of fluid intelligence and crystallized 

intelligence was developed in the early 1940’s and is considered the first precursor of the 

CHC theory.  In the early 1990’s Horn built upon Cattell’s theory, adding speed, quantitative 

ability, and a broad reading and writing ability to the theory. Carroll developed his own 

theory in 1993 called the Three-Stratum Theory which is considered to be the second 

precursor to the CHC theory.  There are four key differences between Cattell-Horn theory 

and Carroll’s theory.  The first is Carroll’s addition of general ability factor which was not 

included in Cattell’s theory.  Secondly, the Cattell-Horn theory separates the concepts of 

quantitative reasoning and quantitative knowledge.  Third, the Cattell-Horn theory included 

the broad reading and writing ability factor. Finally, Carroll’s theory included additional 

memory factors including short-term, associative, meaningful and free-recall memory 

abilities (Alfonso, Flanagan, & Radwan, 2005).  In the late 1990’s, McGrew (1997) 

attempted to bridge the two models of intelligence into one theory.  This combined theory 

includes 10 broad cognitive abilities, including fluid intelligence, crystallized intelligence, 

and short-term memory, and 70 narrow abilities. For example, the broad cognitive ability 

has several narrow abilities including general sequencing reasoning, induction, and speed of 



12 
 

reasoning. Another example of the broad concept of crystallized intelligence includes 

language development, listening ability, and grammatical sensitivity as some of the narrow 

abilities.   

In Horn’s advancements of his theory, he further compared fluid and crystallized 

intelligence. Crystallized intelligence’s subcomponents included the subcomponents of 

verbal comprehension, mechanical knowledge, experimental evaluation, ideational fluency, 

and associational fluency.  Alternatively, fluid intelligence’s subcomponents included 

inductive reasoning, figural relations, associative memory, intellectual speed, and 

intellectual level (Horn & Cattell, 1967). These subcomponents were found to be 

systematically higher for older adults compared to their younger counterparts, due to the 

nature of educational and acculturation of crystallized intelligence. The temporal cortex 

appears to play a key role in crystallized intelligence (Colom et al., 2009; Barbey et al., 

2012) as well as the dorsolateral prefrontal cortex (Kane & Engle, 2002; Ramnani & Owen, 

2004; Wager & Smith, 2003, Colom et al., 2009). However, the scores of fluid intelligence 

tests were systematically higher for younger adults compared to their older counterparts 

(Horn & Cattell, 1967). The reasons for fluid intelligence increases until young adulthood 

are more complex.  Horn and Cattell (1967) had several theories, the first being that the 

neural and physiological structures associated with fluid intelligence reach maturation in 

young adulthood at which point the adequacy of the physiological structure cannot increase 

to improve learning at a higher rate. The second theory was that the build-up of small 

childhood injuries is masked by the rapid neural growth and once these physiological 

structures reach maturation the long-term limiting influence of these smaller injuries can be 

seen.  Third, older adults are more likely to have large injuries to these structures and these 
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large injuries are the limiting factor.  The final theory is that older adults are not exposed to 

as much learning as children are at school, however the focus of older adults educating the 

children which requires them to acquire more collective intelligence of their culture (Horn & 

Cattell, 1967). Prefrontal cortex (Kane & Engle, 2002) and parietal cortex (Gray, Chabris & 

Braver, 2003) appear to impact fluid intelligence. The relationship between the prefrontal 

cortex and the decreased fluid intelligence in older adults may be due to the age-related 

decline of gray matter volume of the prefrontal cortex (Raz, et al., 1997). Interestingly, 

Ritchie et al., (2015) found that longitudinal changes in white microstructure were related to 

the changes in fluid intelligence in older adults.  

In sum, there is evidence that obesity impacts both retinal degeneration and intelligence 

in adults. In addition, there is evidence that different neural tissues are associated with 

intelligence. However, there is a paucity in the literature regarding the relationship between 

retinal morphology and intelligence among adults with overweight and obesity.  
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CHAPTER 3: METHODOLOGY 

3.1. PARTICIPANTS 

Middle-aged adults (25-45) with overweight or obesity (BMI ≥ 25.0 kg/m2) were 

recruited from an ongoing dietary intervention.  Participants were recruited from the East-

Central region of Illinois through the use of flyers posted in public buildings as well as 

through e-mail listservs. Participants were screened via telephone interview and were 

excluded if they had a BMI of below 25.0 kg/m2, had a history of ocular disease (e.g., age-

related macular degeneration), neurological diseases (e.g., Attention Deficit Disorder, 

Attention Deficit Hyperactivity Disorder) , and/or chronic metabolic disease (e.g., Crohn’s 

disease, Ulcerative colitis). If participants were not excluded during the telephone interview, 

each participant completed an informed consent in accordance with the University of Illinois 

Institutional Review Board.  Following informed consent, participants completed medical 

and demographic questionnaires. Information from these questionnaires was assessed to 

ensure participants met the inclusion criteria for the study.   
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Table 3.1 Inclusion-Exclusion Criteria for Participants 
 

   Inclusion Exclusion 

1. 25-45 years of age Below 25 or above 45 years of age 

2. No history of neurological, chronic 

metabolic, or ocular disease/disorders 

Any reported neurological, chronic 

metabolic, or ocular diseases/disorders 

3. Complete body composition scan Unable to complete DXA scan  

4. Complete OCT scan Unable to complete OCT scan 

  

3.2.  PROCEDURES 

Participants completed the procedures over two visits to the laboratory.  After informed 

consent and confirming eligibility in the study, trained researchers administered the 

Kaufman Brief Intelligence Test Second Edition (KBIT-2) and administered OCT 

assessment in both eyes.  During the second visit, participants underwent a whole body 

Dual-Energy X-ray Absorptiometry (DXA) following a 10-hour fast.   

3.3. MEASURES 

4. Retinal Morphometry Assessment 

Retinal morphometry assessment was completed with the Heidelberg Engineering 

Spectralis Optical Coherence Tomography (SD-OCT; Heidelberg Engineering, Heidelberg, 

Germany).  The SD-OCT uses a class one laser to emit infrared light at 870 nm through a 

superluminescent diode.  At a scan acquisition rate of 40 kHz, this noninvasive technology 

implements an eye-tracking system that adjusts for sudden eye movements.  Parameters of 
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the macular volume and thickness scan include a resolution mode of high speed, 30ºx25º, 

768x496 pixels, 61 B-Scans separated by 120 microns.  Results from the scan were obtained 

using central, inner, and outer rings centered around the fovea with respective diameters of 

1mm, 2.2mm, and 3.45mm, also known as the clinical macula (Figure 2, Figure 3). The 

retinal images had each layer segmented with Heidelberg software (version: 6.0.11.0), 

(Figure 4) then trained researchers confirmed segmentation and adjusted segmentation for 

blood vessels. Due to the high degree of correlation between the left eye and the right eye 

(r’s between 0.71-0.97 all P’s<0.01), only right eye data is presented for simplification. 

5. Intelligence Assessment 

6.  KBIT-2 is a nationally normed test to assess general intellectual abilities (IQ) for ages 4-

90 years old. KBIT-2 is divided into three subtests and takes between 25 and 30 minutes for 

adults to complete. The first subtest is Verbal Knowledge which consists of 60 questions.  

The participant sees six images and are asked to choose which image best explains the word, 

phrase, or question read by the trained researcher.  The second subtest is the Matrices, similar 

to the Verbal Knowledge subtest, participants see six images.  The participant is asked to 

choose which image is most associated with the single stimulus picture or best completes a 

2x2, 2x3, or 3x3 matrices.  The final subtest is Riddles which consists of 48 riddles read by 

the researcher.  The participant is instructed that each riddle can be answered with a single 

word answer.  For each of the subtests, correct answers are given a score of 1 and incorrect 

answers are given a score of 0.  The total scores of the subtests are converted into standard 

scores with a maximum of 100.  For each subsection, the assessment continues until the 

participant reaches the end of the subtest or after they have four incorrect answers in a row.  

7. Anthropometrics and Adiposity Assessment  
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8.  Participants were asked to complete a whole body DXA scan using a Hologic Horizon W 

bone densitometer (APEX Software version 5.6.0.6; Hologic, Bedford, MA).  Height (model 

240; SECA, Hamburg, Germany) and weight (WB-300 Plus; Tanita, Tokyo, Japan) were 

measured before the scan three times and the average of the measurements were used. All 

participants were asked to fast for 10 hours before their appointment and to remove all metal 

(i.e., remove jewelry, avoid clothing with metal, etc.) for the scan.  All scans were analyzed 

by one trained researcher. 

3.4. STATISTICAL ANALYSIS 

Pearson correlation analyses were conducted to determine the contribution of 

demographic and retinal morphometric measures to the intelligence outcomes. Stepwise 

hierarchical linear regression models were used to examine the contribution of retinal 

morphology measures to intelligence measures following adjustment for potential 

confounding variables. Age, sex, education, and %Fat were entered as step 1 control 

variables and morphometric measures were added at step 2 in the analyses. The significance 

of the change in the R2 value between the two steps was used to judge the improvement in 

the variance explained once retinal measures were included. The independent contribution 

of each retinal morphometric measure was assessed by studying the β weight and 

significance at step 2 when explaining variance in intelligence outcomes beyond that of the 

demographic variables and adiposity. Data were analyzed using SPSS (SPSS v. 24, Chicago, 

Illinois) with an a threshold of p = 0.05. 
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CHAPTER 4: RESULTS 

4.1. PARTICIPANT DEMOGRAPHICS 

This sample consisted of 55 participants, ages 25-45 (M=34.33±0.82 years) and was 

predominantly comprised of females (n=38).  Approximately half, (49%) of the sample had 

an overweight BMI classification (between 25.0-29.9 kg/m2) and the remaining sample 

(51%) had an obese BMI classification (≥30.0 kg/m2).  The majority of the sample was 

comprised of individuals who were in the process of completing or had completed higher 

education or advanced college degrees (62%). ] 

Preliminary Person Bivariate correlations (Table 2) were conducted to assess any 

dependent relationships in the sample. Sex (males coded as 1, females coded as 0) was 

negatively correlated with %Fat (r=-0.73, p≤0.01) and positively correlated with macular 

volume (r=0.36, p≤0.01), RNFL volume (r=0.29, p=0.04), IQ (r=0.34, p=0.10), and fluid 

intelligence (r=0.39, p≤0.01). Age was positively correlated with center foveal thickness (r= 

0.30, p=0.02) and trending for RNFL volume (r=.24, p=0.08).  %Fat was negatively 

correlated with fluid intelligence (r=-0.31, p=0.02) and approached statistical significance for 

macular volume (r=-0.25, p=0.07) and IQ (r=-0.25, p=0.07). 

A summary of the regression analyses for each measure of intelligence (Table 3) was 

conducted to assess the impact relationship of each measure. Step 1 in each of the models 

adjusted for age, sex, education level, and %Fat and was not statistically significant for IQ 

(ΔR2=0.13, p=0.13), crystallized intelligence (ΔR2=0.06, p=0.55), nor fluid intelligence 

(ΔR2=0.16, p=0.06). None of the variables in step 1 were independently predictive of any of 

the intelligence variables. However, sex approached statistical significance as a predictor of 
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fluid intelligence (β=0.38, p=0.06) though this relationship was mitigated in step 2 after retinal 

measures were included (β=0.20, p=0.31).  

Including retinal measures at step 2 revealed that RNFL volume was related to IQ 

(β=0.38, p=0.02), and central foveal thickness (β=0.25, p=0.08) approached statistical 

significance. GCL was the only independent contributor to the variability in crystallized 

intelligence (β=0.37, p=0.03) whereas central foveal thickness approached statistical 

significance (β=0.25, p=0.09). Finally, RNFL volume was the only independent contributor to 

variance in fluid intelligence (β=0.48, p<0.01). 

 

Table 4.1. Participant characteristics 

  All (N=55) 
Age, years 34.33 ± 0.82 
Sex (F, M) 38,17 
Body Mass Index, kg/m2 32.01  ± 0.78 

25.0-29.9 kg/m2, n (%) 27 (49) 
≥30.0, n (%) 28 (51) 

Whole body adiposity, % 39.08 ± 1.21 
Intelligence Quotient  106.13 ± 1.77 
Crystallized Intelligence 102.09 ± 2.10 
Fluid Intelligence 108.62 ± 1.63 
Education Level  

High School, n (%) 2 (4) 
Undergraduate College Degree, n (%) 19 (34) 

Advanced College Degree, n (%) 34 (62) 
Macular Volume (mm3) 3.11 ± 0.02 
RNFL Volume (mm3) 0.21 ± 0.00 
GCL Volume (mm3) 0.45 ± 0.01 
Center Foveal Thickness (µm) 222.24 ± 2.23 
Data presented as mean ± SEM wherever unless indicated otherwise 
RNFL, Retinal Nerve Fiber Layer; GCL, Ganglion Cell Layer  

 
 
 
 
 
 



20 
 

Table 4.2. Bivariate correlations between retinal morphology measures and participant 
characteristics 

  Age Sex %Fat Education 

Total Macular Volume 0.11  0.36**  -0.25† 0.06 

RNFL Volume 0.24† 0.29*  -0.11  0.29† 

GCL Volume 0.19 0.22 0.02 -0.02  

Center Foveal Thickness 0.30* 0.26† -0.16 -0.14 

Intelligence Quotient -0.05 0.34* -0.25† 0.10 

Crystallized Intelligence  <0.01 0.23 -0.15 0.08 

Fluid Intelligence -0.03 0.39** -0.31* 0.11 
5. RNFL, Retinal Nerve Fiber Layer; GCL, Ganglion Cell Layer 
6. †p<0.10 
7. *p<0.05 
8. **p<0.01 

 
 
Table 4.3. Summary of hierarchical regression analysis for intelligence measures 
 Intelligence Quotient Crystallized Intelligence Fluid Intelligence 
 β ΔR2 Model 

p 
β ΔR2 Model 

p 
β ΔR2 Model 

p 
Step 1          

Age -0.05 0.13 0.13 <0.01 0.06 0.55 -0.04 0.16 0.06 
Sex 0.38   0.27   0.38   

Education 0.10   0.08   0.10   
%Fat 0.04   0.06   -0.01   

Step 2  0.20 0.01  0.27 0.04  0.18 0.02 
TMV -0.21   -0.12   -0.26   

RNFL 0.38*   0.21   0.48**   
GCL 0.19   0.37*   -0.10   
CFT 0.25†   0.25†   0.16   

†p<0.10 
*p<0.05 
**p<0.01 
TMV, total macular volume; RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; CFT, 
central foveal thickness; %Fat; whole body adiposity.
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CHAPTER 5: DISCUSSION 

5.1. DISCUSSION 

This study aimed to determine the relationship between retinal morphometric measures 

and intellectual abilities among adults with overweight and obesity. Consistent with our a 

priori hypothesis, we observed that RNFL and GCL volume were significantly related to 

higher intellectual ability. Interestingly, these relationships were selective in that RNFL and 

GCL were related to fluid and crystallized intelligence, respectively.  However, we observed 

that great macular volume and CFT were not significant predictors of any of our measures of 

intelligence approached statistical significance. Overall, these data indicate that OCT-derived 

retinal measures are sensitive to intellectual abilities among adults with overweight and 

obesity. 

Obesity has been shown to be related to lower gray matter across several brain regions 

including prefrontal cortex, temporal, occipital cortex, amygdala, and cerebellum, even after 

adjusting for obesity-related comorbidities (Kharabian Masouleh, 2016).  Given that the 

retina shares developmental, physiological, and anatomical features with the brain, retinal 

imaging has emerged as an alternative approach to imaging the neural structures (Ong, 2015; 

Yau, J.W.Y. et al., 2012; London, 2012). The efficacy for using OCT for neural imaging has 

gained particular empirical support from studies in neurodegenerative diseases. For example, 

histopathological and clinical studies have shown that patients with Alzheimer's disease have 

reduced GCL and RNFL thickness compared to controls (Coppola, et al., 2015). However, 

recent work has related RNFL and GCL thinning to global and regional cerebral atrophy 

using MRI among neurologically healthy adults (Ong, 2015; Casaletto, et al., 2017). Ong and 

colleagues (2015) studied a sample of 60-80-year-olds (N=164) and observed that GCL 
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thinning was selectively related to reduction in occipital and temporal lobe gray matter 

volume, while no relationships were observed with white matter. Additionally, in a large 

population based study (N=2,124), Mutlu and colleagues (2017) observed that thinner RNFL 

and GCL were associated with poorer white-matter microstructure. The RNFL and GCL are 

thought to be components of the ganglion cell complex with the RNFL comprising axons and 

the GCL signifying cell bodies. Therefore, it is possible the RNFL may correspond to 

cerebral white matter while the GCL may reflect cerebral gray matter integrity (Mutlu, 

2017). However, to our knowledge, this is the first study to implicate thinner retinal 

morphometric measures in poorer intellectual ability among adults with overweight and 

obesity. 

Although a considerable body of literature has examined the influence of obesity on 

brain structure and cognitive function (Smith, 2011; Pannacciciulli, 2006) the influence of 

obesity on measures of intelligence has received comparatively less attention. While a 

negative influence of obesity on IQ was indicated, this relationship appeared to be mitigated 

following adjustment of demographic factors (Sorensen, et al., 1982). Therefore, the 

influence of obesity on intellectual achievement may be driven by multiple health and 

demographic factors. Studying neuroimaging markers of intellectual abilities is important 

because intelligence supports higher-order mental processes such as executive function (also 

known as cognitive control) as well as the acquisition of knowledge and learning across the 

lifespan (Colom, 2010). Data from the present work indicated increasing adiposity was 

inversely related to fluid intelligence. However, this relationship was no longer significant 

once other demographic factors were included in step 1 of the regression models. 

Importantly, the retinal morphometric measure of RNFL was the primary predictive variable 
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for fluid intelligence. Previous neuroimaging work has shown that abnormalities in white 

matter such as hyperintensities influence a variety of cognitive functions, particularly under 

demyelinating diseases such as multiple sclerosis (Kail, 1998). White matter integrity, as 

indicated by fractional anisotropy, has also been shown to be related to general intellectual 

abilities and fluid intelligence (Yu, 2008; Haasz, 2013). If the RNFL is reflective of white 

matter integrity, the findings of the current study are consistent with these aforementioned 

studies since we also observed a significant positive relationship between RNFL and fluid 

intelligence. However, we observed that GCL volume was selectively related to crystallized 

intelligence. Crystalized intelligence is distinct from fluid intelligence because it refers to the 

ability to retrieve and use information that has been acquired throughout life (Horn & Cattell, 

1968). Unlike fluid intelligence, crystallized intelligence does not exhibit susceptibility to 

aging and may even improve with age (Craik, 2006; Park, 2009). The implication of the 

finding from the current study is that GCL reflects intellectual abilities that are acquired 

through learning across the lifespan. Future studies are needed to determine whether changes 

in obesity and fat distribution differentially compromise particular intellectual abilities during 

development and aging. 

While GCL and RNFL were found to be predictive of intellectual abilities, we did not 

observe significant correlations between measures of macular volume and central foveal 

thickness and intelligence. However, it is worth noting that the association among foveal 

thickness, IQ, and crystallized intelligence approached statistical significance. It is possible 

that the influence of foveal thickness on intellectual ability is comparatively smaller, relative 

to GCL and RNFL, and our sample was not adequately powered to detect the relationships. 

Nevertheless, the patterns observed (i.e., potential relationships among foveal thickness, IQ, 
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and crystallized intelligence) would be similar to those observed for GCL. Thus, greater 

foveal thickness may be protective of intellectual abilities thought to be acquired by learning 

through the lifespan. Given that previous work has shown that foveal thickness is associated 

with macular pigment optical density or the accumulation of macular carotenoids (Liew, 

2006).  

5.2. LIMITATIONS 

Although the present study provides novel data linking intellectual abilities to retinal 

morphometric measures assessed by OCT, there are several limitations worth considering. 

Longitudinal research studies are necessary to characterize changes in retinal measures and 

intellectual abilities over extended periods of time. Additionally, our study lacked a 

comparator group of individuals with a lower weight status. Improving the heterogeneity of 

the sample by including individuals with varying weight status would provide more 

comprehensive insights into the relationship between obesity, intellectual abilities, and 

retinal measures. Finally, we did not account for genetics or other lifestyle factors (e.g., diet 

and physical activity) that have the potential to contribute to IQ and/or retinal morphology. 

5.3. CONCLUSIONS  

 In conclusion, these findings provide cross-sectional evidence supporting the 

efficacy or utility of retinal morphometric measures – as measured by OCT – to study IQ 

among adults with overweight and obesity. Importantly, we were able to demonstrate these 

relationships in a sample of middle-aged adults since previous work has predominantly 

focused on older adults and individuals with dementia. Selective relationships were 

observed between particular retinal measures and different intellectual abilities, known to 

be differentially affected by aging. These data may set the stage to develop future 
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hypotheses regarding the interaction between aging and weight status and their influence 

on gray and white matter and different constructs of intelligence.  
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APPENDIX B: FIGURES AND TESTING FORMS 

Figure B.1: Retinal layers of OCT Scan.  
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Figure B.2 : Macular scan output Heidelberg Software (version : 6.0.11.0) 
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Figure B.3 : Macular scan image 

 

Figure B.4 : Retinal layer separation of RNFL and GCL 
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Figure B.5: Kaufman Brief Intelligence test forms 
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Figure B.5: Kaufman Brief Intelligence test forms (cont.) 

 


