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Segmentation of Multivariate Mixed Data via

Lossy Data Coding and Compression

Yi Ma, Member, IEEE, Harm Derksen, Wei Hong, John Wright

Abstract

In this paper, based on ideas from lossy data coding and compression, we present a simple but

effective technique for segmenting multivariate mixed data that are drawn from a mixture of Gaussian

distributions, which are allowed to be almost degenerate. The goal is to find the optimal segmentation that

minimizes the overall coding length of the segmented data, subject to a given distortion. By analyzing the

coding length/rate of mixed data, we formally establish some strong connections of data segmentation

to many fundamental concepts in lossy data compression, rate distortion theory, and multiple-channel

communications. We show that a deterministic segmentation is the (asymptotically) optimal solution

for compressing mixed data. We propose a very simple and effective algorithm to find the optimal

segmentation, which does not require any prior knowledge of the number or dimension of the groups, nor

does it involve any parameter estimation. Simulation results reveal intriguing phase-transition behaviors

of the number of segments when changing the level of distortion or the amount of outliers. Finally, we

demonstrate how this technique can be readily applied to segment real imagery and bioinformatic data.

Index Terms

multivariate mixed data, data segmentation, rate distortion, lossy data coding, data compression,

image segmentation, microarray data clustering.
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I. I NTRODUCTION

Data that arise from practical problems in such diverse fields as image/signal processing,

pattern recognition, computer vision, and bioinformatics, are often characterized by complicated

multi-modal, multivariate distributions. Segmentation (or clustering) is widely recognized as an

important step in representing, analyzing, interpreting or compressing such mixed data.

Now the intriguing questions are: What does “segmentation” really mean and how to

define it mathematically? What should the proper criterion for segmentation be and what do

the segmentation results depend on? How should we measure the “gain” or “loss” of the

segmentation? Last but not the least, why is segmentation the right thing to do? Answers to

these questions to some extent have been complicated by the many approaches and solutions

proposed in the literature for segmenting or modeling various types of mixed data (see [1], [2]

and references therein for a review).

A somewhat traditional way of defining segmentation is to first choose a simple class of

models which each subset is supposed to fit. Some of the popular models are either probabilistic

distributions (e.g., Gaussian distributions) or geometric/algebraic sets (e.g., linear subspaces).

Then the whole mixed data are assumed to be samples drawn from a mixture of such probabilistic

distributions [3], [4] or geometric/algebraic sets [5]. The typical approach to segmenting the

data then entails estimating the mixture of all the models and simultaneously or subsequently

decomposing them into individual ones. In this way, data segmentation is essentially identified

with a (mixture) model estimation problem. Segmenting the data and estimating the model

are therefore strongly coupled together. Various approaches have been proposed to resolve the

coupling in the literature:

• Iterate between the data segmentation and model estimation. Representative methods include

the K-means algorithm [6]–[9] (or its variants [10]–[12]) and the Expectation Maximization

(EM) algorithm [13], [14], which is essentially a greedy descent algorithm to find the

maximum-likelihood (ML) estimate of a mixture of probabilistic (Gaussian) distributions

[3], [4], [15].

• Resolve the coupling between data segmentation and model estimation by first estimating a

mixture model that does not depend on the segmentation of the data and then decompose the

mixture into individual components. Representative methods include Generalized Principal
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Component Analysis (GPCA), in which the mixture model is assumed to be an arrangement

of subspaces [5].

A common assumption behind all these approaches is that a good estimate of the underlying

mixture model(s) is necessary for the segmentation of the data. In a sense, the goodness

of the segmentation relies on how good the estimate is. For instance, the given dataW =

(w1, w2, . . . , wm) are commonly assumed to be drawn from a mixture of distributions:p(x|θ, π)
.
=∑k

j=1 πjpj(x|θj). When trying to obtain the optimal estimate of the mixture model, one usually

chooses any of the model estimation criteria, e.g., the maximum likelihood (ML) estimate:

(θ̂, π̂)ML = argmax
θ,π

m∑
i=1

log p(wi|θ, π), (1)

where θ is the parameter of certain class of (mixture) distributions of interest. The EM

algorithm [13] (or its variants [16]) is often used to optimize the likelihood function of such

a mixture model. The ML criterion is equivalent to minimizing the negated log-likelihood:∑
i− log p(wi|θ, π), which is approximately the expected coding length, Length(W |θ̂, π̂), re-

quired to store the data using the optimal coding scheme for the distributionp(x|θ̂, π̂) [17].

When the number of component models,k, is not givena priori, we must estimate it from

the data, a difficult task that is further complicated when the data are corrupted by a significant

amount of outliers. To some extent, almost all model selection criteria used to determine the

number of component models are equivalent to minimizing the coding length needed to describe

both the data and the model, i.e., the minimum description length (MDL) criterion [4], [18]–[20]:

(θ̂, π̂)MDL = argmin
θ,π

L(W, θ, π) = L(W |θ, π) + L(θ, π), (2)

where the parametersθ, π are assumed to have certain distributionp(θ, π). In general, the length

functionL(·) is chosen according to the optimal Shannon coding [17]:− log p(W |θ, π) for W

and − log p(θ, π) for θ, π. Incidentally, this objective function coincides with the maximum-

likelihood estimate and hence the EM algorithm again becomes the method of choice [4].

However, ML and MDL only truly correspond to minimum coding lengths when the random

variables to be encoded are discrete1. For (multivariate) real-valued data, a finite coding length

can only be be obtained if we encode the data and model parameterssubject to a certain

1or for continuous random variables, in the limit as the quantization error goes to zero.
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distortion ε > 0. To this end, [21] has studied the properties oflossy maximum likelihood

(LML) and lossy minimum description length(LMDL) criteria. There, it is shown that (to first

order, asymptotically) minimizing the coding rate of the data subject to the distortionε:

(θ̂, π̂)LML = argmin
θ,π

R(p̂(W ), θ, π, ε), (3)

(θ̂, π̂)LMDL = argmin
θ,π

R(p̂(W ), θ, π, ε) + L(θ, π), (4)

where p̂(W ) is the empirical estimate of the probabilistic distribution from the dataW , is

equivalent to computing the LML or LMDL estimate, with desirable properties such as (strong)

consistency as an estimator. In our context, the coding rate (subject to a distortion) provides a

natural measure of the goodness of segmentation for real-valued mixed data. In fact, the goal

of modeling and segmentation of mixed data should indeed be consistent with that of data

coding/compression: If the data can be fit with better models after segmentation, the data should

be represented or encoded more efficiently with respect to such models.

A. Contributions of This Paper

In this paper, we do not consider modeling and segmenting data that have arbitrary mixture

distributions. We are only interested in data that consist of multiple Gaussian-like groups, which

may have significantly different and anisotropic covariances. The covariances of the groups

may be even nearly degenerate, in which case we essentially want to fit the data withmultiple

subspaces, possibly of different dimensions. In this context, vector quantization (VQ) can be

viewed as the special case of fitting the data with zero-dimensional (affine) subspaces [10].

Our approach to segmenting such mixed data follows the spirit of (lossy) ML and MDL.

Our goal is tofind the optimal segmentation of the mixed data which results in the shortest

coding length subject to a given distortion of the data.Our method however offers the following

improvements over existing methods:

1) All of the estimates discussed above (ML,MDL,LML,LMDL) are optimal only in an

aymptotical sense, i.e., for an infinite sequence of i.i.d. samples from the class of

distributions of interest. In practice, however, we are often dealing with a finite (and often

small) set of samples. Thus, we introduce a measure of coding length for each group that

not only closely approximates the optimal rate-distortion function for a Gaussian source

[17] but also gives a tight upper bound for any finite number of samples.
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2) We will prove that with this choice of coding length/rate, the (asymptotically) optimal

segmentation isdeterministic– no probabilistic (or fuzzy) segmentation can further reduce

the overall coding length. This provides a theoretical justification that (deterministic)

segmentation is not only useful for pragmatic purposes, but also the optimal solution

for compressing data that are mixture of Gaussians or subspaces.

3) An explicit formula for the coding length/rate function2 allows one to directly evaluate

goodness of the segmentation. The tightness of the formula for small data sets leads to an

efficient3 “bottom-up” algorithm that minimizes the overall coding length by repeatedly

merging small subsets, starting from individual data points. As we will show with extensive

simulations and experiments, this approach resolves the difficult model selection issue [4]

in an effective way, especially whenthe number of groups is unknown or there is a

significant amount of outliers.

4) When the level of distortion (or the density of outliers) varies continuously, the number of

groups typically exhibits aphase transitionbehavior similar to that in statistical physics,

with the “correct” segmentation corresponding to one of the stable phases. Our simulations

show that the number of segments need not be a monotonic function of the distortion.4

B. Organization of This Paper

We provide a summary of the basic ideas and the resulting algorithm of our approach in

Section II. In Section III, based on ideas from the rate distortion theory in information theory,

we introduce a formula for the coding rate/length needed to encode a set of vectors subject to a

given distortion. An alternative verification of the formula is given in Appendix I, and Appendix

II shows how the formula should be modified when the data is nonzero mean. In Section IV,

we study properties of the overall coding rate/length of mixed data after being segmented into

multiple groups. Extensive simulation and experimental results of the proposed algorithm on

synthetic and real data are given in Section V.

2This is the case for Gaussian sources. In general computing the rate-distortion function for an arbitrary distribution is a

difficult problem although many numerical methods exist in the literature (see [22] and references therein).

3The complexity of the proposed algorithm is polynomial in both the size and dimension of the data.

4A different phase transition has been noticed in vector quantization using deterministic annealing, where the number of

clusters increases monotonically when the annealing temperature decreases [10].
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II. BASIC IDEAS AND ALGORITHM

In this section, we give a self-contained summary of the main ideas and algorithm of this paper

and leave more detailed mathematical analysis and justification to Section III and IV. Readers

who are interested only in the algorithm and experiments may bypass the next two sections and

skip to Section V without any loss of continuity.

A. Lossy Coding of Multivariate Data

A lossy coding scheme maps a set of vectorsV = (v1, v2, . . . , vm) ∈ Rn×m to a sequence

of binary bits, such that the original vectors can be recovered up to an allowable distortion

E[‖vi − v̂i‖2] ≤ ε2. The length of the encoded sequence is denoted as the functionL(V ) :

Rn×m → Z+.

In general, the coding scheme and the associatedL(·) function can be chosen to be optimal

for any family of distributions of interest. In the case where the data are i.i.d. samples from a

zero-mean5 multivariate Gaussian distributionN (0,Σ), the functionR = 1
2
log2 det(I + n

ε2 Σ)

provides a good approximation to the optimal rate-distortion function [17].6 As Σ̂ = 1
m
V V T is

an estimate of the covarianceΣ, the average number of bits needed per vector is:

R(V )
.
=

1

2
log2 det

(
I +

n

ε2m
V V T

)
. (5)

For readers who are less familiar with the rate-distortion theory, we will give an intuitive

explanation of this formula in Section III.

Representing them vectors ofV therefore requiresmR(V ) bits. Since the optimal codebook

is adaptive to the dataV , we must also represent it with an additionalnR(V ) bits7, yielding an

5For simplicity, in the main text, we will derive and present our main results with the zero-mean assumption. However, all

the formulae, results, and algorithms can be readily extended to the nonzero mean case, as shown in Appendix II.

6Strictly speaking, the rate-distortion function for the Gaussian sourceN (0, Σ) is R = 1
2

log2 det
�

n
ε2 Σ

�
when ε2

n
is smaller

than the smallest eigenvalue ofΣ. Thus the approximation is good only when the distortionε is relatively small. However,

when ε2

n
is larger than some eigenvalues ofΣ, the rate distortion function becomes more complicated [17]. Nevertheless, the

approximate formulaR = 1
2

log2 det(I + n
ε2 Σ) can be viewed as the rate-distortion of the “regularized” source that works for

all range ofε. Furthermore, as we will show in Appendix I, the same formula gives a tight upper bound of the coding rate for

any finite number of samples.

7This can be viewed as the cost of coding then principal axes of the data covariance1
m

V V T . A more detailed explanation

of L(V ) is given in Section III.
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overall coding length of

L(V )
.
= (m+ n)R(V ) =

m+ n

2
log2 det

(
I +

n

ε2m
V V T

)
. (6)

We will study the properties of this function in Section III. For purposes of segmentation, it

suffices to note that in addition to being (approximately) asymptotically optimal for Gaussian

data,L(V ) also provides a tight bound on the number of bits needed to code a finite number of

vectors (that span a subspace), regardless of the underlying probability distribution (see Appendix

I for a proof).

B. Segmentation via Data Compression

Given a set of samples,W = (w1, w2, . . . , wm) ∈ Rn×m, one can always view them as drawn

from a single Gaussian source and codeW subject to distortionε2 usingL(W ) bits. However,

if the samples are drawn from a mixture of Gaussian distributions or subspaces, it may be more

efficient to codeW as the union of multiple (disjoint) groups:W = W1 ∪W2 ∪ · · · ∪Wk. If

each group is coded separately, the total number of bits needed is

Ls(W1,W2, . . . ,Wk)
.
=

k∑
i=1

L(Wi) + |Wi|
(
− log2(|Wi|/m)

)
, (7)

where |Wi| indicates the cardinality (i.e. number of vectors) of the groupWi. In the above

expression, the term
∑k

i=1 |Wi|
(
−log2(|Wi|/m)

)
is the number of bits needed to code (losslessly)

the membership of them samples in thek groups (e.g. using the Huffman coding [17]).8

Then, given a fixed coding scheme with its associated coding length functionL(·), an optimal

segmentation is one which minimizes the segmented coding length,Ls(·), over all possible

partitions ofW . Moreover, we will see that due to the properties of the rate-distortion function

(5) for Gaussian data, softening the objective function (7) by allowing probabilistic (or fuzzy)

segmentation doesnot further reduce the (expected) overall coding length (see Theorem 3 of

Section IV).

Notice that the above objective (7) is a function of the distortionε. In principle, one may add

a “penalty” term,9 so as to determine the optimal distortionε∗. The resulting objective will then

8Here we assume that the ordering of the samples is random and entropy coding is the best we can do to code the membership.

However, if the samples are ordered such that nearby samples more likely belong to the same group (e.g., in segmenting pixels

of an image), the second term can and should be replaced by a tighter estimate.

9For instance, we may add the termmn log ε to the overall coding lengthLs.
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corresponds to an optimal coding length that only depends on the data. However, we here leave

ε as a free parameter to be set by the user. In practice, this allows the user to obtain potentially

hierarchical segmentation of the data at different scales of quantization. We will thoroughly

examine how the value ofε affects the final segmentation through experiments in Section V.

C. Minimizing the Coding Length

Finding the global minimum of the overall coding lengthLs over all partitions of the dataset is

a daunting combinatorial optimization problem, intractable for large data sets. Nevertheless, the

coding length can be effectively minimized in a steepest descent fashion, as outlined in Algorithm

1. The minimization proceeds in a “bottom-up” fashion: initially, every sample is treated as its

own group. At each iteration, two groupsS1 and S2 are chosen so that merging them results

in the greatest decrease in the coding length. The algorithm terminates when the coding length

cannot be further reduced by merging any pair of groups.10 A simple implementation which

maintains a table containingLs(Si ∪ Sj) for all i, j requiresO(m3 + m2n3) time, wherem is

the number of samples andn the dimension of the space.

Algorithm 1 (Pairwise Steepest Descent of Coding Length).
1: input: the dataW = (w1, w2, . . . , wm) ∈ Rn×m and a distortionε2 > 0.

2: initialize S := {S = {w} | w ∈ W}.

3: while |S| > 1 do

4: choose distinct setsS1, S2 ∈ S such thatLs(S1 ∪ S2)− Ls(S1, S2) is minimal.

5: if Ls(S1 ∪ S2)− Ls(S1, S2) ≥ 0 then break;

6: elseS :=
(
S \ {S1, S2}

)
∪ {S1 ∪ S2}.

7: end

8: output: S

Extensive simulations and experiments demonstrate that this algorithm is consistently and

remarkably effective in segmenting data that are a mixture of Gaussians or subspaces (see Section

V). It tolerates significant amounts of outliers, and requires no prior knowledge of the number

10In the supplementary material, we have included a video showing the convergence of this algorithm on data drawn from

mixtures of subspaces inR3.
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of groups. As a greedy descent scheme, the algorithm does not guarantee to always find the

globally optimal segmentation for any given(W, ε).11 From our experience, we found that the

main factor affecting the global convergence of the algorithm seems to be the density of the

samples relative to the distortionε2. In Section V we will give strong empirical evidences for

the convergence of the algorithm over a wide range ofε.

III. L OSSYCODING OF MULTIVARIATE DATA

In this section, we give a more detailed justification and analysis of the coding rate/length

functions introduced in the previous section. In the next section, we provide a more thorough

justification of the compression-based approach to data segmentation. Readers who are less

concerned with such technical details may skip these two sections at first read, without much

loss of continuity.

If the given datawi ∈ Rn are i.i.d. samples of a random vectorw with the probabilistic

distributionp(w), the optimal coding scheme and the optimal coding rate of such a random vector

w have been well studied ininformation theory(see [17] and references therein). However, here

we are dealing with a finite set of vectorsW = (w1, w2, . . . , wm). Such a data set can be viewed

as a non-parametric distribution itself – each vectorwi in W occurs with an equal probability

1/m. The optimal coding scheme for the distributionp(w) is no longer optimal forW and

the formula for the coding length no longer accurate. Nevertheless, some of the basic ideas

of deriving the optimal coding rate can still be extended to the non-parametric setting. In this

section, borrowing ideas from information theory, we derive a tight bound of the coding length

or rate for the given dataW . In Appendix I, we give an alternative derivation of the bound.

Although both approaches essentially arrive at the same estimate, they together reveal that the

derived coding length/rate function holds under different conditions:

1) The derivation in this section shows that for smallε the formula forR(W ) gives a good

approximation to the (asymptotically) optimal rate-distortion function of a Gaussian source.

2) The derivation in Appendix I shows that the same coding length/rate formula works for

any finite set of vectorsW that span a subspace.

11However, it may be possible to improve the convergence by using more complicated split-and-merge strategies [16]. In

addition, due to Theorem 1 of Section IV, the globally (asymptotically) optimal segmentation can also be computed via concave

optimization [23], at the cost of potentially exponential computation time.
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A. The Rate Distortion Function

For simplicity, we here assume that the given data are zero mean, i.e.µ
.
= 1

m

∑
iwi = 0.

The reader may refer to Appendix II for the case in which the mean is not zero. Letε2 be the

squared error allowable for encoding every vectorwi. That is, if ŵi is an approximation ofwi,

we allow E[‖wi − ŵi‖2] ≤ ε2. In other words, on average, the allowable squared error for each

entry ofwi is ε2/n.

The solution to coding the vectors inW , subject to the mean squared errorε2, can be explained

by sphere packing, which is normally adopted in information theory [17]. Here we are allowed

to perturb each vectorwi ∈ W within a sphere of radiusε in Rn. In other words, we are allowed

to distort each entry ofwi with an (independent) random variable of varianceε2/n. Without loss

of generality, we may model the error as an independent additive Gaussian noise:

ŵi = wi + zi, with zi ∼ N
(
0,
ε2

n
I
)
. (8)

Then the covariance matrix of the vectorsŵi is:

Σ̂
.
= E

[ 1

m

m∑
i=1

ŵiŵ
T
i

]
=
ε2

n
I +

1

m
WW T ∈ Rn×n. (9)

The volume of the region spanned by these vectors is proportional to (the square root of the

determinant of the covariance matrix): vol(Ŵ ) ∝
√

det
(

ε2

n
I + 1

m
WW T

)
. Similarly, the volume

spanned by each random vectorzi is proportional to vol(z) ∝
√

det
(

ε2

n
I
)
.

In order to encode each vector, we can partition the region spanned by all the vectors into

non-overlapping spheres of radiusε. When the volume of the region vol(Ŵ ) is significantly

larger than the volume of the sphere, the total number of spheres that we can pack into the

region is approximately equal to

#of spheres= vol(Ŵ )/vol(z). (10)

Thus, to know each vectorwi with an accuracy up toε2, we only need to specify which sphere

wi is in (see Figure 1). If we use binary numbers to label all the spheres in the region of interest,

the number of bits needed is

R(W )
.
= log2(#of spheres) = log2

(
vol(Ŵ )/vol(z)

)
=

1

2
log2 det

(
I +

n

mε2
WW T

)
, (11)

where the last equality uses the factdet(A)/ det(B) = det(B−1A).
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2ε

vol(Ŵ )wi

σ1e1

σ2e2

Fig. 1. Coding of a set of vectors in a region inRn with an accuracy up toε2. To know the vectorwi, we only need to know

the label of the corresponding sphere.e1, e2 represent the singular vectors of the matrixŴ andσ1, σ2 the singular values.

If the sampleswi are drawn from a Gaussian sourceN (0,Σ), then 1
m
WW T converges to

the covarianceΣ of the Gaussian source. Thus, we haveR(W ) → 1
2
log2 det

(
I + n

ε2 Σ
)

as

m → ∞. When ε2

n
≤ λmin(Σ), the optimal rate-distortion for a parallel i.i.d.N (0,Σ) source

is 1
2
log2 det

(
n
ε2 Σ

)
, to which (11) provides a good approximation. In general, the optimal rate-

distortion is a complicated formula given by reverse-waterfilling on the eigenvalues ofΣ (see

Theorem 13.3.3 of [17]). The approximation (11) provides an upper bound which holds for all

ε, and is tight whenε is small relative to the eigenvalues of the covariance.

The formula forR(W ) can also be viewed as the rate-distortion of the sourceW regularized

by a noise of varianceε
2

n
as in equation (8). The covariancêΣ of the perturbed vectorŝwi

always satisfiesε
2

n
≤ λmin(Σ̂), allowing for a simple, analytic expression for the rate distortion

for all range ofε. This regularized rate-distortion has the further advantage of agreeing with the

bound for the coding length of finitely many vectors that span a subspace, derived in Appendix

I. In addition, this formula resembles the channel capacity of an MIMO Gaussian channel. The

interested reader may refer to Appendix III.

Notice that the formula forR(W ) is accurate only in the asymptotical sense, i.e., when we

are dealing with a large number of samples and the errorε is small (relative to the magnitude

of the dataW ). We want to emphasize that the above derivation of the coding rate does not

give an actual coding scheme. The construction of efficient coding schemes which achieve the

optimal rate-distortion bound is itself a difficult problem (see, for example, [24] and references
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therein). However, for the purpose of measuring the quality of segmentation and compression,

all that matters is thatin principle a scheme attaining the optimal rateR(W ) exists.

B. The Coding Length Function

Given the coding rateR(W ), the total number of bits needed to encode them vectors inW

is

mR(W ) =
m

2
log2 det

(
I +

n

mε2
WW T

)
. (12)

From the communication point of view,mR(W ) bits are already sufficient as both the transmitter

and the receiver share the same code book – that is they both know the region spanned byW

in Rn. However, from the data representation or compression point of view, we need more bits

to represent the code book itself. This is equivalent to specifying all the principal axes of the

region spanned by the data, i.e. the singular values/vectors ofW , see Figure 1. As the number of

principal axes isn, we neednR(W ) additional bits to encode them. Therefore, the total number

of bits needed to encode them vectors inW ⊂ Rn subject to the squared errorε2 is12

L(W )
.
= (m+ n)R(W ) =

m+ n

2
log2 det

(
I +

n

mε2
WW T

)
. (13)

Appendix I provides an alternative derivation of the same coding length functionL(W ), as

an upper bound for a finite number of samples. If the dataW have a non-zero mean, we need

more bits to encode the mean too. See in Appendix II how the coding length function should

be properly modified in that case.

C. Properties of the Coding Length Function

1) Commutative Property:SinceWW T ∈ Rn×n andW TW ∈ Rm×m have the same non-zero

eigenvalues, the coding length function can also be expressed as:

L(W ) =
m+ n

2
log2 det

(
I +

n

mε2
WW T

)
=
m+ n

2
log2 det

(
I +

n

mε2
W TW

)
.

Thus, if n � m, the second expression will be less costly for computing the coding length.

The matrixW TW , which depends only on the inner products between pairs of data vectors, is

12Compared to the MDL criterion (2), if the termmR(W ) corresponds to the coding length for the data, the termnR(W )

then corresponds to the coding length for the model parameterθ.
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known in the statistical learning literature as thekernel matrix. This property suggests that the

ideas and the algorithm presented in Section II can be readily extended to segment data sets that

havenonlinearstructures, by choosing a proper kernel function.

2) Invariant Property:Notice that in the zero-mean case, the coding length functionL(W ) is

invariant under an orthogonal transformation of the dataW . That is, for any orthogonal matrix

U ∈ O(n) or V ∈ O(m), we have

L(UW ) = L(W ) = L(WV ). (14)

In other words, the length function depends only on the singular values ofW (or eigenvalues

of WW T ). This equality suggests that one may choose any orthonormal basis (e.g., Fourier,

wavelets) to represent and encode the data and the number of bits needed should always be the

same. This agrees with the fact that the chosen coding length (or rate) is optimal for a Gaussian

source. However, if the data are non-Gaussian or nonlinear, a proper transformation can still be

useful for compressing the data.13 In this paper we are essentially seeking a partition, rather than

a transformation, of the non-Gaussian (or nonlinear) data set, such that each subset is sufficiently

Gaussian (or subspace-like) and hence cannot be compressed any further, either by (orthogonal)

transformation or segmentation.

IV. CODING LENGTH OFSEGMENTED DATA

Now suppose we have partitioned the set ofm vectorsW = (w1, w2, . . . , wm) into k non-

overlapping groupsW = W1 ∪W2 ∪ · · · ∪Wk. Then the total number of bits needed to encode

the segmented data isLs(W1,W2, . . . ,Wk) =
∑k

i=1 L(Wi) + |Wi|
(
− log2(|Wi|/m)

)
. Here the

superscript “s” is used to indicate the coding length after segmentation.

A. Segmentation and Compression

To better understand under what conditions a set of data should or should not be segmented so

that the overall coding length/rate becomes smaller, we here provide two representative examples.

In the examples, we want to study whether a data set should be partitioned into two subsets of

13For a more thorough discussion on why some transformations (such as wavelets) are useful for data compression, the reader

may refer to [25].
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an equal number of vectors:W1,W2 ∈ Rn×m. To simplify the analysis, we assumem � n so

that we can ignore the asymptotically insignificant terms in the coding length/rate function.

Example 1 (Uncorrelated Subsets):Notice that in general, we have

L(W1) + L(W2) =
m

2
log2 det

(
I +

n

mε2
W1W

T
1

)
+
m

2
log2 det

(
I +

n

mε2
W2W

T
2

)
≤ 2m

2
log2 det

(
I +

n

2mε2
(W1W

T
1 +W2W

T
2 )

)
= L(W1 ∪W2),

where the inequality is from the concavity of the functionlog2 det(·) (see Theorem 7.6.7 of

[26]). Thus, if the differenceL(W1 ∪W2)−
(
L(W1) +L(W2)

)
is large, the overhead needed to

encode the membership of the segmented data (here one bit per vector) becomes insignificant. If

we further assume thatW2 is a rotated version ofW1, i.e.W2 = UW1 for someU ∈ O(n), one

can show that the differenceL(W1 ∪W2) −
(
L(W1) + L(W2)

)
is (approximately) maximized

whenW2 becomes orthogonal toW1. We call two groupsW1,W2 uncorrelatedif W T
1 W2 = 0.

Thus, segmenting the data into uncorrelated groups typically reduces the overall coding length.

From the viewpoint of sphere packing, Figure 2 explains the reason.

w1

2ε

w1

w2w2

Fig. 2. The number of spheres (code words) of two different schemes for coding two orthogonal vectors. Left: encoding the

two vectors separately; Right: encoding the two vectors together.

Example 2 (Strongly Correlated Subsets):We say two groupsW1,W2 are strongly correlated

if they span the same subspace inRn. Or somewhat equivalently, we may assume thatW1 and

W2 have approximately the same covarianceW2W
T
2 ≈ W1W1. Thus we have

L(W1) + L(W2) =
m

2
log2 det

(
I +

n

mε2
W1W

T
1

)
+
m

2
log2 det

(
I +

n

mε2
W2W

T
2

)
≈ 2m

2
log2 det

(
I +

n

2mε2
(W1W

T
1 +W2W

T
2 )

)
= L(W1 ∪W2).

SinceLs(W1,W2) = L(W1) + L(W2) + H(|W1|, |W2|), the overhead needed to encode the

membership becomes significant and the segmented data require more bits than the unsegmented.
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B. Optimality of Deterministic Segmentation

So far, we have considered only partitioning the dataW into k non-overlapping groups. That

is, each vector is assigned to a group of probability either 0 or 1. We call such a segmentation

“deterministic.” In this section, we examine an important question:Is there a probabilistic

segmentation of the data that can achieve an even lower coding rate?That is, we consider a

more general class of segmentations in which we assign each vectorwi to the groupj according

to a probabilityπij ∈ [0, 1], with
∑k

j=1 πij = 1 for all i = 1, 2, . . . ,m.

To facilitate counting the expected coding length of such (probabilistically) segmented data,

we introduce a matrixΠj that collects the membership of them vectors in groupj:

Πj
.
=


π1j 0 · · · 0

0 π2j
. ..

...
...

... . .. 0

0 · · · 0 πmj

 ∈ Rm×m. (15)

These matrices satisfy the constraint:
∑k

j=1 Πj = Im×m,Πj � 0.

Obviously, the jth group has an expected number oftr (Πj) vectors and the expected

covariance is 1

tr (Πj)
WΠjW

T . If viewed as a Gaussian source, the coding rate of thejth group

is bounded by:R(Wj)
.
= 1

2
log2 det

(
I + n

tr (Πj)ε2
WΠjW

T
)
. If for each vectorwi, we code it

using the coding scheme for thejth group with probabilityπij, then the expected total number

of bits required to encode the dataW according to the segmentationΠ = {Πj} is bounded by14

Ls(W,Π)
.
=

k∑
j=1

tr (Πj) + n

2
log2 det

(
I +

n

tr (Πj)ε2
WΠjW

T
)

+ tr (Πj)
(
− log2

tr (Πj)

m

)
. (16)

Similarly, the expected number of bits needed to encode each vector is bounded by

Rs(W,Π)
.
=

1

m
Ls(W,Π) =

k∑
j=1

tr (Πj)

m

(
R(Wj)− log2

tr (Πj)

m

)
+
n

m
R(Wj). (17)

Thus, one may consider that the optimal segmentationΠ∗ is the global minimum of the

expected overall coding lengthLs(W,Π), or equivalently the average coding rateRs(W,Π). To

14Strictly speaking, the formula is an upper bound for the expected coding length becauseLs(W, Π) is essentially a concave

function of the group assignmentΠ (see the proof of Theorem 3). Hence,Ls(W, E[Π]) ≥ E[Ls(W, Π)] (using thatf(E[x]) ≥

E[f(x)] for concave functions).
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some extent, one can view the minimum value ofRs(W,Π) as a good approximation to the

actual entropy of the given data setW .15

Notice that the second term in the expression ofRs(W,Π), n
m
R(Wj), is insignificant when

the number of samples is largem� n. Nevertheless, this term, as well as the term that encodes

the membership of the vectors, gives atight bound on the coding length even for small sets

of samples. This essentially allows us to find the optimal segmentation in a bottom-up manner

by merging small subsets of samples, which is effectively harnessed by the greedy algorithm

introduced in Section II. That said, for the rest of this section, we examine more carefully the

asymptotic properties of the coding length/rate function.

The first term in the expression ofRs(W,Π) is the only part that matters asymptotically (i.e.

when the number of vectors in each group goes to infinity) and we denote it as:

Rs,∞(W,Π)
.
=

k∑
j=1

tr (Πj)

2m
log2 det

(
I +

n

ε2 tr (Πj)
WΠjW

T
)
− tr (Πj)

m
log2

( tr (Πj)

m

)
.

Thus, the global minimum ofRs,∞(W,Π) determines the optimal segmentation when the sample

size is large.

Theorem 3:The asymptotic partRs,∞(W,Π) of the rate distortion functionRs(W,Π) is a

concave function ofΠ in the convex domainΩ
.
= {Π :

∑k
j=1 Πj = I,Πj � 0}.

Proof: Let S be the set of allm ×m non-negative definite symmetric matrices. We will

show thatRs,∞(W,Π) is concave as a function fromSk → R, and so is it when restricted to

the domain of interest,Ω ⊂ Sk.

First consider the second term ofRs,∞(W,Π). Notice that
∑k

j=1 tr (Πj) = m is a constant.

So we only need to show the concavity of the functiong(P )
.
= − tr (P ) log2 tr (P ) for P ∈ S.

The function,f(x) = −x log2 x is concave, andg(P ) = f( tr (P )). So forλ ∈ [0, 1],

g(λP1 + (1− λ)P2) = f(λ tr (P1) + (1− λ) tr (P2))

≥ λf( tr (P1)) + (1− λ)f( tr (P2)) = λg(P1) + (1− λ)g(P2).

Thus,g(P ) is concave inP .

15Especially when the dataW indeed consist of a mixture of subsets and each group is a typical set of samples from a (almost

degenerate) Gaussian distribution.
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Now consider the first term ofRs,∞(W,Π). Let

h(Πj)
.
= tr (Πj) log2 det

(
I +

n

ε2 tr (Πj)
WΠjW

T
)
.

It is well-known in information theory that the functionq(P )
.
= log2 det(P ) is concave for

P ∈ S andP � 0 (see Theorem 7.6.7 of [26]). Now definer : S → R to be

r(Πj)
.
= log2 det(I + αWΠjW

T ) = q(I + αWΠjW
T ).

Since r is just the concave functionq composed with an affine transformationΠj 7→ I +

αWΠjW
T , r is concave (see Section 3.2.3 of [27]). Letψ : S × R+ → R as

ψ(Πj, t)
.
= t · log2 det

(
I +

n

ε2t
WΠjW

T
)

= t · r
(1

t
Πj

)
.

According to Theorem 3.2.6 of [27],ψ is concave. Notice thatH
.
= {(Πj, t) : t = tr (Πj)}

is a linear subspace in the product space ofR and the space of all symmetric matrices. So,

H ∩ (S × R+) is a convex set, and the desired function,h(Πj) = ψ(Πj, tr (Πj)), is just the

restriction ofψ to this convex set. Thus,h is concave.

SinceRs,∞(W,Π) is a sum of concave functions inΠj, it is concave as a function fromSk

to R, and so is its restriction to the convex setΩ in Sk.

SinceRs,∞(W,Π) is concave, its global minimumΠ∗ is always reached at the boundary, or

more precisely, at a vertex of the convex domainΩ, as shown in Figure 3. At the vertex ofΩ,

the entriesπij of Π∗ are either 0s or 1s. It means that even if we allow soft assignment of each

point to thek groups according to any probabilistic distribution, the optimal solution with the

minimal coding length can always be achieved by assigning each point to one of the groups

with probability one! This is the reason why Algorithm 1 does not consider any probabilistic

segmentation and is still able to produce (approximately) optimal segmentation.

Another implication of the above theorem is that the problem of minimizing the coding length

is essentially a concave optimization problem. Many effective concave optimization algorithms

can be adopted to find the globally optimal segmentation, such as the simplex algorithm

[23]. However, such generic concave optimization algorithms typically have high (potentially

exponential) complexity. In the next section, we will show with extensive simulations and

experiments that the greedy algorithm proposed in Section II is already effective in minimizing

the coding length.
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Rs,∞(Π)

Π∗

Ω

Fig. 3. The functionRs,∞(W, Π) is a concave function ofΠ over a convex domainΩ, which is in fact a polytope in the

spaceRmk. The minimal coding length is achieved at a vertexΠ∗ of the polytope.

Interestingly, in multiple-channel communications, the goal is instead tomaximizethe channel

capacity, which has very much the same formula as the coding rate function. See Appendix III for

more detail. The above theorem suggests that a higher channel capacity may be achieved inside

the convex domainΩ, i.e. by probabilistically assigning the transmitters into certain number of

groups. As the coding rate function is concave, the maximal channel capacity can be very easily

computed via convex optimization [27].

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we conduct simulations on a variety of challenging data sets to examine the

effectiveness of the proposed coding length function as well the performance of the steepest

descent algorithm. In the end, we will also demonstrate some experimental results of applying

the algorithm to segment imagery and bioinformatic data.

A. Simulations

1) Segmentation of Linear Subspaces of Different Dimensions:We first demonstrate the ability

of the algorithm to segment noisy samples drawn from a mixture of linear subspaces of different

dimensions. Figure 4 summarizes the configurations tested. For everyd-dimensional subspace,

d × 100 samples are drawn uniformly from a ball of diameter 1 lying on the subspace. Each
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sample is corrupted with independent Gaussian noise of standard deviationε0 = 0.04. The

segmentation is computed using Algorithm 1, withε = ε0.

Subspace Identified Classification (%) Classification (%)

dimensions dimensions (Algorithm 1) (E-M)

(2, 1, 1) in R3 2, 1, 1 96.62 39.33

(2, 2, 1) in R3 2, 2, 1 90.00 68.98

(4, 2, 2, 1) in R5 4, 2, 2, 1 98.53 43.36

(6, 3, 1) in R7 6, 3, 1 99.77 66.16

(7, 5, 2, 1, 1) in R8 7, 5, 2, 1, 1 98.04 42.29 !!"#
!!"$

!
!"$

!"#

!!"$

!

!"$

!"#

!!"#

!!"$

!

!"$

!"#

Fig. 4. Left: Simulation results for data drawn from mixtures of noisy linear subspaces. Classification percentages

are averaged over 25 trials. Our algorithm correctly identifies the number and dimension of the subspaces in all 25

trials, for all configurations. Far right column: results using Expectation-Maximization with random initialization.

Right: the computed segmentation for(2, 1, 1) in R3 is displayed.

In each case, the algorithm stops at the correct number of groups, and the dimensions of the

segmentsWi match those of the generating subspaces.16 The correctness of the segmentation

is further corroborated by the high percentage of points correctly classified (by comparing the

segments with thea priori groups). For all five configurations, the average percentage of samples

assigned to the correct group was at least 90.0%. The main cause of classification error is

points which lie near the intersection of multiple subspaces. Due to noise, it may actually

be more efficient to code such points according to the optimal coding scheme for one of the

other subspaces. We compare our method to Expectation-Maximization, seeded with a random

initialization. In all cases, Algorithm 1 dramatically outperforms EM in terms of classification

error, despite requiring less prior knowledge.

Since in practice,ε0 is not known, it is important to investigate the sensitivity of the results

to the choice ofε. for each of the examples in Figure 4, Figure 5 gives the range ofε for

which Algorithm 1 converges to the a-priori number and dimension of subspaces. Notice that

for each of the configurations considered, there exists a significant range ofε for which the

greedy algorithm converges.

16The dimension of each segmentWi is identified using principal component analysis (PCA) by thresholding the singular

values ofWi with respect toε.
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Subspace dimensions (2, 1, 1) (2, 2, 1) (4, 2, 2, 1) (6, 3, 1) (7, 5, 2, 1, 1)

in R3 in R3 in R5 in R7 in R8

log10 εmax − log10 εmin 2.5 1.75 2.0 2.0 .75

Fig. 5. The size of the range oflog ε for which the greedy algorithm converges to the correct number and dimension

of groups, for each of the arrangements considered in Figure 4.

2) Global Convergence:Empirically, we find that Algorithm 1 does not suffer many of

the difficulties with local minima that plague other clustering algorithms such as EM. The

convergence appears to depend mostly on the density of the samples relative to the distortionε.

For example, if the number of samples is fixed atm = 1200, and the data are drawn from three

dn
2
e-dimensional subspaces inRn, the algorithm converges to the correct solution forn = 2 upto

n = 56. Here, we chooseε = ε0 = 0.008. Beyondn = 56, the algorithm fails to converge to

the threea priori subspaces as the samples have become too sparse. Forn > 56, the computed

segmentation gives a higher coding length than thea priori segmentation.

The same observation occurs for subspaces with different dimensions. For example, we

randomly draw 800 noisy (ε0 = 0.14) samples from four subspaces of dimension 20, 15, 15,

10 in R40. The results of the greedy algorithm at different distortionε are shown in Figure 6.

As we see from the results, when the distortionε is very small, the greedy algorithm does not

necessarily converge to the optimal coding length. Nevertheless, the number of groups, 4, is still

identified correctly by the algorithm whenε becomes relatively large.

3) Robustness to Outliers:We test the robustness of Algorithm 1 to outliers on the easily

visualized example of two lines and a plane inR3. 158 samples are drawn uniformly from a

2-D disc of diameter1. 100 samples are drawn uniformly from each of the two line segments

of length1. The additive noise level isε0 = 0.03. The data set is contaminated withmo outliers,

whose three coordinates are uniformly distributed on[−0.5, 0.5].

As the number of outliers increases, the segmentation exhibits several distinct phases. For

mo ≤ 300 (45.6% outliers), the algorithm always finds the correct segmentation. The outliers

are merged into a single (three-dimensional) group. Frommo = 400 (52.8% outliers) upto

mo = 1100 (75.4% outliers), the two lines are correctly identified, but samples on the plane are

merged with the outliers. Formo = 1200 (77.4% outliers) and higher, all of the data samples
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Fig. 6. Left: the coding length found by the greedy algorithm (the red curve) compared to the ground truth (the blue curve)

for data drawn from four linear subspaces of dimension 20, 15, 15, 10 inR40. Right: the number of groups found by the greedy

algorithm – it converges to the correct number 4 when the distortion is relatively large.

(a) (b) (c) (d)

Fig. 7. Segmentation results for data drawn from three linear subspaces, corrupted with various numbers of outliers,

mo. (a)mo = 300 (45.6% outliers). (b)mo = 400 (52.8% outliers). (c)mo = 1100 (75.4% outliers). (d)mo = 1200

(77.0% outliers).

are merged into one group, as the distribution of data has become essentially random in the

ambient space. Figure 7 shows the results formo = 300, 400, 1100, 1200. Notice that the effect

of adding the outliers resembles the effect of ice (the lines and the plane) being melted away

by warm water. This suggests a similarity between the artificial process of data clustering and

the physical process of phase transition.

4) Number of Segments versus Distortion Level:Figure 8 shows how the number of segments

changes asε varies.m = 358 points are drawn from two lines and a plane, as in the previous
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Fig. 8. The effect of varyingε, with ε0 = 0.05. Left: number of groups,k, versuslog(ε). Center: detail ofk versus

log(ε) aroundlog(ε0). Right: the coding rate (bits per vector) versuslog(ε).

experiment, and then perturbed with noise of standard deviationε0 = 0.05. Notice that the number

of groups experiences distinct phases, with abrupt transitions around several critical values ofε.

For sufficiently smallε, each data point is grouped by itself. However, asε increases, the cost of

coding the group membership begins to dominate, and all the points are grouped together in a

single three-dimensional subspace (the ambient space). Around the true noise level,ε0, there is

another stable phase, corresponding to the threea priori subspaces. Finally, asε becomes large,

the number of segments reverts to 1, as it becomes most efficient to represent the points using

a single zero-dimensional subpsace (the origin).

This behavior contrasts with the phase transition discussed in [10]. There, the number of

segments increases monotonically throughout the simulated annealing process. Because our

formulation allows the dimension of the segments to vary, the number of segments does not

decrease monotonically withε. Notice, however, that the phase corresponding to the “correct”

(a priori) segmentation is stable over serveral orders of magnitude of the parameterε. This is

important since in practice the true noise levelε0 is usually unknown.

Another interesting thing to notice is that the coding rateRs(W ) in many regions is mostly

a linear function of− log10 ε:

Rs(W ) ≈ −β log10 ε+ α, (18)

for some constantsα, β > 0, which is a typical characteristic of the rate-distortion function of

Gaussians.

For this data set, the algorithm typically takes 11 seconds to run in Matlab on a 1.6GHz PC.



23

(a) (b) (c) (d)

Fig. 9. The segmentation results for data drawn from 3 affine subspaces at different noise levelε0. The ε in the algorithm is

chosen to beε = ε0. (a) ε0 = 0.01, (b) ε0 = 0.03, (c) ε0 = 0.05, (d) ε0 = 0.08.

5) Segmentation of Affine Subspaces:Appendix II shows how the coding length function

should be properly modified in the case when the data are not zero-mean. Here, we show how the

modified algorithm works for affine subspaces. A number of samples are drawn from three linear

subspaces inR3 and their centers are translated to[2.1, 2.2, 2]T , [2.4, 1.9, 2.1]T , [1.9, 2.5, 1.9]T ,

respectively.

Figure 9 shows the segmentation results at different noise level, with the distortion level chosen

asε = ε0. For 10−7 < ε < 0.1, the algorithm always identifies the correct number of subspaces

with ε = ε0. When ε ≤ 10−7, the density of the samples within the subspace becomes more

important than the distortion orthogonal to the subspace, and the algorithm no longer converges

with ε = ε0. However, for such small distortion, there always exists a large stable phase (with

respect to changingε) corresponding to the correct number of subspaces,k = 3. Whenε0 > 0.1,

the algorithm starts to fail and merge the data samples into one or two groups.

We now fix the Gaussian noise atε0 = 0.02, and addmo outliers whose three coordinates

are uniformly distributed in the range of[1.5, 2.5], which is the same as the range of the inliers.

When the number of outliers is≤ mo = 200 (35.8% outliers), the algorithm finds the correct

segmentation, and all the outlying samples are segmented into one group. Frommo = 300 (45.6%

outliers) tomo = 700 (66.2% outliers), the algorithm still identifies the two lines and one plane.

However, the outliers above and below the plane are clustered into two separate groups. For

more thanmo = 800 (69.1% outliers), the algorithm identifies the two lines, but samples from

the plane are merged with the outliers into one group. Figure 10 shows the segmentation results

for mo = 200, 300, 700, 800, respectively.
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(a) (b) (c) (d)

Fig. 10. The segmentation results for data drawn from 3 affine subspaces with different number of outliersmo. The ε in the

algorithm isε = ε0 = 0.02. (a) mo = 200 (35.8% outliers), (b)mo = 300 (45.6% outliers), (c)mo = 700 (66.2% outliers),

(d) mo = 800 (69.1% outliers).

In this example, the algorithm takes 18 seconds to 9 minutes to run the simulation for different

mo’s in Matlab on a 1.6GHz PC.

6) Model Selection for Affine Subspaces and Nonzero-Mean Gaussians:We compare the

performance of Algorithm 1 to that of [4] on mixed data drawn from affine subspaces and non-

zero mean Gaussians. We test the algorithms’ performance over multiple trials for three different

types of data distribution. The first is three affine subspaces: two lines and one plane, with noise

standard deviationε0 = 0.01 and no outliers. Samples are drawn as in the previous examples.

The means of the three groups are fixed (as in the previous examples), but the orientations

of the two lines are chosen randomly. The second distribution tested is three affine subspaces:

two planes and one line, with 158 points drawn from each plane and 100 from the line, again

with ε0 = 0.01. The orientations of one plane and of the line are chosen randomly. The final

distribution tested is a mixture ofK = 3 full-rank Gaussians inR2, with means[2, 0], [0, 0],

[0, 2] and covariance diag(2, 0.2) (this is Figure 3 of [4]).900 points are sampled (with uniform

probability) from the three Gaussians.

For the two subspace examples, we run Algorithm 1 withε = ε0 = 0.01. For the third example,

we setε = 0.2. We repeat each trial 50 times. Figure 11 shows a histogram of the number of

groups arrived at by the two algorithms. For both algorithms, all of the segmentations with

K = 3 are essentially correct (classification error< 4%). However, for degenerate, or subspace-

like data (Figure 11(a) and Figure 11(b)), Algorithm 1 is much more likely to converge to the

a-priori group number. For full-rank Gaussians (Figure 11(c)), Algorithm 1 performs quite well
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(a) (2, 1, 1) in R3 (b) (2, 2, 1) in R3 (c) 3 Gaussians inR2

Fig. 11. Frequency of occurance for variousK in 50 trials. Top row: Algorithm 1. Bottom row: [4]. The left and center

columns show results for randomly generated arrangements of affine subspaces. The right column shows results for datasets

generated from three full-rank Gaussians, as in [4]. For all cases, the correct number of groups isK = 3.

(converging to the true group number in 49 out of 50 runs), but is slightly outperformed by [4],

which finds the correct segmentation in all 50 trials. The single failure of Algorithm 1 occurs

because the greedy descent converges to a local minimum of the coding length, rather than the

global minimum.

B. Experiments on Real Data

In this section, we test the proposed segmentation method and algorithm on real imagery and

bioinformatic data. Our goal here is to demonstrate that our method is capable of finding visually

appealing structures in real data. However, we emphasize that it does not provide a complete

solution to either of these practical problems. Such a solution usually entails a significant amount

of domain-specific knowledge and engineering. Nevertheless, from these preliminary results with

images and microarray data, we believe that the method presented in this paper provides a generic

solution for segmenting mixed data that is simple and effective enough to be easily customized
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Fig. 12. Image segmentation (via theL formula for nonzero-mean Gaussian data) withε = 1. Top row: original

images. Bottom row: computed segmentations. Each segment is painted with its mean color.

for a broad range of practical problems.17

1) Image Segmentation:Figure 12 shows the segmentation of several images from the

Berkeley image segmentation database via Algorithm 1 (usingL(·) for nonzero-mean Gaussian

data in Appendix II). The size of all the images is480× 320 pixels. We select an8× 8 window

around each pixel to use as a feature vector18 for segmentation. A random subset of 1,000 vectors

are selected. PCA is applied to these vectors, and they are projected onto their first 8 principal

components. Subsampling and projection are necessary here due to the sheer volume of data. For

a 480×320 color image, we are dealing with153, 600 vectors in an8×8×3 = 192 dimensional

space, beyond the computational power and memory of a personal computer. The subsampled

and projected vectors are clustered using Algorithm 1 withε = 1. The remaining vectors are

then grouped to the nearest segment. Figure 12 displays the results, without any further pre- or

post-processing.

The segmentation can be further improved by first breaking the image into many small,

homogeneous regions via a superpixel step. We compute the superpixel oversegmentation

using the publically available code of [30]. We use its grouping to initialize the steepest

descent procedure. To each pixel, we associate a8 × 8 Gaussian-weighted window as a

feature vector. Spatially adjacent groups are then repeatedly merged so as to achieve the

17At the time this paper is being prepared, we have also tested our algorithm on other mixed data such as speech and

handwritten digits. The results are equally encouraging.

18Raw pixel values provide a simple and intuitive feature for testing our approach on real data. More visually appealing

segmentations might be obtained with more sophisticated features (e.g. filterbanks [28], [29]). We leave this to future work.
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greatest decrease in the coding length at each step. Figure 13 shows some representative results

from the Berkeley segmentation database. The results for the entire database are available

online at http://perception.csl.uiuc.edu/∼jnwright/hidden2/berkeleyResult.html. A quantitiative

comparison of the performance of our method and several popular image segmentation algorithms

will appear in future work.

(a) Landscape (b) Animals

(c) Portraits (d) Urban

(e) Underwater (f) Objects

Fig. 13. Segmentation results for greedily merging adjacent segments to decrease the coding length. Here, the

merging process is initialized via a superpixel over-segmentation.ε = 0.02 for all images.

2) Clustering of Microarray Data:Figure 14 shows the result of applying Algorithm 1 to

gene expression data. The dataset19 consists of 13,872 vectors inR19, each of which describes

the expression level of a single gene at different time points during an experiment on anthrax

sporulation. A random subset of 600 vectors is visualized in figure 14(a). Here, rows correspond

to genes and columns to time points. We cluster these vectors without any preprocessing, using

Algorithm 1 with ε = 1. The algorithm finds three distinct clusters, which are displayed in figure

14(b) by reordering the rows.

19GDS930, available at http://www.ncbi.nlm.nih.gov/projects/geo.
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Fig. 14. Segmentation of microarray data. Left: raw data. Each row represents the expression level of a single gene. Right:

Three distinct clusters are found, visualized by reordering the rows.

Figure 15 shows clustering results on two additional gene expression datasets20. The first

consists of 8,448 vectors inR5, describing the expression levels of yeast genes at 5 different

time points during a heat shock experiment. Figure 15(a) shows expression levels for a randomly

selected subset of 1,200 genes. We cluster these vectors using Algorithm 1, withε = 0.1. Our

algorithm discovers a number of visually coherent clusters, shown in Figure 15(b). The second

dataset consists of 45,101 vectors inR10, each of which corresponds to the expression level

of a single gene under varying experimental conditions (this experiment investigated Down

Syndrome-related leukemias). We run Algorithm 1 withε = 1 on a subset of 800 of these

vectors (shown in Figure 15). Three large, distinct clusters emerge, visualized in Figure 15(d)

by reordering the rows of the data.

VI. CONCLUSIONS ANDDISCUSSIONS

In this paper, we have proposed a new approach to segment multivariate mixed data from

a lossy data coding/compression viewpoint. Unlike most conventional model-based top-down

approaches to segmenting the data, our work leads to a data-driven bottom-up approach to

obtain the optimal segmentation. In addition, this new approach allows us to examine explicitly

the effect of a varying distortion on the segmentation result. From our experience, we find the

lossy data compression based approach and the proposed greedy algorithm have the following

attractive features:

20GDS34 (left) and GDS1316 (right), also available at http://www.ncbi.nlm.nih.gov/projects/geo.



29

=⇒ =⇒

(a) (b) (c) (d)

Fig. 15. Results on two microarray datasets. (a) raw yeast data. (b) segmentation, visualized by reordering rows. The greedy

algorithm discovers a number of distinct clusters of varying size. (c) raw leukemia data. (d) segmentation. Three clusters are

found.

1) The minimum coding length objective and the proposed greedy algorithm together deal

with difficult issues such as outliers and model (number or dimension) selection. The

segmentation result is very stable with respect to the distortion and the noise, and is very

robust with respect to outliers.

2) The gain or loss of segmentation/merging is measured by aphysically meaningfulquantity

– binary bits, and the (simulation) results even resemble the physical phenomenon of phase

transition.

3) The greedy algorithm harnesses the tightness of the proposed coding length function for

small sets of samples and takes abottom-upapproach that starts from merging the data

one at a time. Thus it needs no initialization and the optimal segmentation is obtained

without knowing anything about the (underlying) subspace(s) or Gaussian model(s).

4) The greedy algorithm isscalable– its complexity is polynomial in both the number of

samples and the dimension of the data. The algorithm usually does converge to the optimal

solution as long as the distortion is not too small relative to the density of the samples in

each subspace.

Our analysis has shown connections of data segmentation with many fundamental concepts

and results in information theory. The simulations and experiments have suggested potential

connections with phase transition in statistical physics. From a theoretical standpoint, it would
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be highly desirable to obtain analytical conditions on the critical values of the distortion and the

sampling density of outliers that can explain and predict the phase transition of the number of

segments.

Moreover, we do not see any technical difficulty in extending this approach to supervised-

learning for purposes such as detection, classification, and recognition. It may also be extended to

segment other types of structures, such as non-Gaussian probabilistic distributions and nonlinear

manifolds. As we have mentioned earlier in the paper, there are many possible ways to

improve the efficiency or convergence of the greedy algorithm or even develop (or employ)

new optimization algorithms to minimize the coding length function. We will investigate such

possibilities in the future.
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APPENDIX I

LOSSYCODING OF SUBSPACE-L IKE DATA

In Section III, we have shown that in principle, one can construct a coding scheme for a given

set of dataW ∈ Rn×m such that the average number of bits needed to encode each vector is

bounded by

R(W ) =
1

2
log2 det

(
I +

n

mε2
WW T

)
, (19)

if W is drawn from a multivariate Gaussian distribution of covarianceΣ = 1
m
WW T . However,

we do not know in the non-parametric setting (i.e. with finite number of samples), whether the

above coding length is still of any good. In this appendix, we provide a constructive proof that

L(W ) = (m+n)R(W ) indeed gives a tight upper bound for the number of bits needed to encode

W . One interesting feature of the construction is that the coding scheme apparently relies on

coding the subspace spanned by the vectors (i.e., the singular vectors) and the coordinates of

the vectors with respect to the subspace. Thus geometrically, minimizing the coding length (via

segmentation) is essentially to reduce the “dimension” (of each subset) of the data.

Consider the singular value decomposition (SVD) of the data matrixW = UΣV T . Let B =

(bij) = ΣV T . The column vectors ofU = (uij) form a basis for the subspace spanned by vectors

in W , and the column vectors ofB are the coordinates of the vectors with respect to this basis.

For coding purpose, we store the approximated matricesU + δU andB+ δB. The matrixW

can be recovered as

W + δW
.
= (U + δU)(B + δB) = UB + δUB + UδB + δUδB. (20)

ThenδW ≈ δUB+UδB as entries ofδUδB are negligible whenε is small (relative to the data

W ). The squared error introduced to the entries ofW are

∑
i,j

δw2
ij = tr

(
δWδW T

)
≈ tr

(
UδBδBTUT + δUBBT δUT + δUBδBTUT + UδBBT δUT

)
.

We may further assume that the coding errorsδU and δB are zero-mean independent random

variables. Using the fact thattr (AB) = tr (BA), the expected squared error becomes

E(tr
(
δWδW T )

)
= E

(
tr (δBδBT )

)
+ E

(
tr (Σ2δUT δU)

)
.
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Now, let us encode each entrybij with a precisionε′ = ε√
n

anduij with a precisionε′′j = ε
√

m√
λjn

,

whereλj is the jth eigenvalue ofWW T .21 This is equivalent to assume that the errorδbij is

uniformly distributed in the interval
[
− ε√

n
, ε√

n

]
andδuij is uniformly distributed in the interval[

− ε
√

m√
λjn
, ε

√
m√

λjn

]
. Under such a coding precision, it is easy to verify that

E
(
tr (δWδW T )

)
≤ 2ε2m

3
< ε2m. (21)

Then the mean squared error per vector inW is

1

m
E

(
tr (δWδW T )

)
< ε2. (22)

The number of bits to store the coordinatesbij with precisionε′ = ε√
n

is

n∑
i=1

m∑
j=1

1

2
log2

(
1 +

(bij
ε′

)2
)

=
1

2

n∑
i=1

m∑
j=1

log2

(
1 +

b2ijn

ε2

)
≤ m

2

n∑
i=1

log2

(
1 +

n
∑m

j=1 b
2
ij

mε2

)
=
m

2

n∑
i=1

log2

(
1 +

nλi

mε2

)
.

In the above inequality, we have applied the following inequality:

log(1 + a1) + log(1 + a2) + · · ·+ log(1 + an)

n
≤ log

(
1 +

a1 + a2 + · · ·+ an

n

)
(23)

for nonnegative real numbersa1, a2, . . . , an ≥ 0.

Similarly, the number of bits to store the entries of the singular vectorsuij with precision

ε′′ = ε
√

m√
λin

is

n∑
i=1

n∑
j=1

1

2
log2

(
1 +

(uij

ε′′
)2

)
=

1

2

n∑
i=1

n∑
j=1

log2

(
1 +

u2
ijn

2λj

mε2

)
≤ n

2

n∑
j=1

log2

(
1 +

n2λj

∑n
i=1 u

2
ij

mε2

)
=
n

2

n∑
j=1

log2

(
1 +

nλj

mε2

)
.

Thus, forU andB together, we need a total of

L(W ) =
m+ n

2

n∑
i=1

log2

(
1 +

nλi

mε2

)
=
m+ n

2
log2 det

(
I +

n

mε2
WW T

)
. (24)

We thus have proved the statement given in the beginning of this section:L(W ) = (m+n)R(W )

gives a good upper bound on the number of bits needed to encodeW .

21Notice thatε′′j normally does not increase with the number of vectorsm, becauseλj increases proportionally tom.
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APPENDIX II

NON-ZERO MEAN DISTRIBUTION

In the above analysis, we have assumed that the given vectorsW = (w1, w2, . . . , wm) are

zero-mean. In general, these vectors may have a non-zero mean. In other words, the points

represented by these vectors may lie in an affine subspace, instead of a linear subspace.

In caseW is not zero mean, letµ
.
= 1

m

∑m
i=1wi ∈ Rn and define the matrix

V
.
= µ · 11×m = (µ, µ, . . . , µ) ∈ Rn×m. (25)

ThenW̄
.
= W − V is a matrix whose column vectors have zero mean. We may apply the same

coding scheme in the previous section toW̄ .

Let W̄ = UΣV T .
= UB be the singular value decomposition of̄W . Let δU, δB, δµ be the

error in codingU,B, µ, respectively. Then the error induced on the matrixW is

δW = δµ · 11×m + UδB + δUB. (26)

Assuming thatδU, δB, δµ are zero-mean independent random variables, the expected total

squared error is

E
(
tr (δWδW T )

)
= mE(δµT δµ) + E

(
tr (δBδBT )

)
+ E

(
tr (ΣδUT δU)

)
. (27)

We encode entries ofB and U with the same precision as before. We encode each entryµi

of the mean vectorµ with the precisionε′ = ε√
n

and assume that the errorδµi is a uniform

distribution in the interval
[
− ε√

n
, ε√

n

]
. Then we havemE(δµT δµ) = mε2

3
. Using equation (21)

for the zero-mean case, the total squared error satisfies

E
(
tr (δWδW T )

)
≤ mε2

3
+

2mε2

3
= mε2. (28)

Then the mean squared error per vector inW is still bounded byε2:

1

m
E

(
tr (δWδW T )

)
≤ ε2. (29)

Now in addition to theL(W̄ ) bits needed to encodeU andB, the number of bits needed to

encode the mean vectorµ with precisionε′ = ε√
n

is

n∑
i=1

1

2
log2

(
1 +

(µi

ε′
)2

)
=

1

2

n∑
i=1

log2

(
1 +

nµ2
i

ε2

)
≤ n

2
log2

(
1 +

µTµ

ε2

)
, (30)

where the last inequality is from the inequality (23).
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Thus, the total number bits needed to storeW is

L(W ) =
m+ n

2
log2 det

(
I +

n

mε2
W̄W̄ T

)
+
n

2
log2

(
1 +

µTµ

ε2

)
. (31)

Notice that ifW is actually zero-mean, we haveµ = 0, W̄ = W , and the above expression for

L(W ) is exactly the same as before.

APPENDIX III

RELATION TO MULTIPLE-CHANNEL CAPACITY

In wireless communication, the relationship betweenm transmitters andn receivers is often

modeled as a fading multiple-input-multiple-output (MIMO) channel:

y = Wx+ z, (32)

wherey, z ∈ Rn andx ∈ Rm. z is a random vector that models the (additive) channel noise. It

is often assumed thatz has a Gaussian distributionN (0, σ2I). Then the model is known as the

additive white Gaussian noise (AWGN) channel.

It is known in multiple-channel communications [31] that in the high signal-to-noise ratio

(SNR) regime, the channel capacity is given by

C(W )
.
=

1

2
log2 det

(
I +

P

mσ2
WW T

)
, (33)

whereP is the total transmission power of them transmitters [31]. The ratioP/σ2 is the common

SNR at each receiving antenna.

We could not help but notice a striking resemblance between the coding rateR(W ) in (11)

and the wireless channel capacityC(W ) in (33). Notice that the noise varianceσ2 corresponds

to the (entry-wise) mean squared errorε2/n, and the powerP is often assumed to be a constant

and we may normalize it to be 1. Then the capacity becomes exactly the coding rate ofW :

C(W ) = R(W ) =
1

2
log2 det

(
I +

n

mε2
WW T

)
.

Thus, the concavity of the coding rate functionRs,∞(W,Π) (Theorem 3 in Section IV)

suggests that an even higher channel capacity may be achieved by probabilistically assigning

the transmitters into multiple groups. The capacity of such a probabilistic transmitting channel

is a concave function inΠ:

C(W,Π)
.
=

k∑
j=1

tr (Πj)

2m
log2 det

(
I +

n

ε2 tr (Πj)
WΠjW

T
)
,

which has a unique maximum (for any givenk).
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