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ESTIMATION OF SUBSPACE ARRANGEMENTS WITH
APPLICATIONS IN MODELING AND SEGMENTING MIXED DATA∗

YI MA† , ALLEN Y. YANG‡ , HARM DERKSEN§ , AND ROBERT FOSSUM¶

Abstract. In recent years, subspace arrangements have become an increasingly popular class of
mathematical objects to be used for modeling a multivariate mixed data set that is (approximately)
piecewise linear. A subspace arrangement is a union of multiple subspaces. Each subspace can be
conveniently used to model a homogeneous subset of the data. Hence, all the subspaces together
can capture the heterogeneous structures within the data set. In this paper, we give a comprehen-
sive introduction to one new approach for the estimation of subspace arrangements, also known as
generalized principal component analysis. In particular, we provide a comprehensive summary of
important algebraic properties and statistical facts that are crucial for making the inference of sub-
space arrangements both efficient and robust, even when the given data are corrupted with noise or
contaminated by outliers. This new method in many ways improves and generalizes extant methods
for modeling or clustering mixed data. There have been successful applications of this new method
to many real-world problems in computer vision, image processing, and system identification. In this
paper, we will examine a couple of those representative applications. Although this paper is intended
to be expository, we take liberty in filling in many gaps between the theory and the practice in the
existing literature so that this paper will be a more complete reference for both theoreticians and
practitioners.

Key words. Subspace arrangement, Hilbert function, generalized principal component analysis,
model selection, minimum effective dimension, outlier detection.

AMS subject classifications. 52C35, 62H30, 68T45, 62H35.

1. Introduction. In scientific and engineering studies, one of the most common
tasks is to find a parametric model for a given set of data. Depending on the purpose
and the nature of the data, the model can either be a probabilistic distribution (e.g.,
a Gaussian distribution, a hidden Markov chain) or a geometric structure (e.g., a line,
a curve, or a manifold). Nevertheless, among all the models, linear models such as
a straight line and a subspace are possibly the most popular choice mainly because
they are simple to understand and easy to represent and compute. Very often in the
practice of data modeling, however, a given data set is not homogeneous and cannot
be described well by a single linear model. This is especially the case of imagery
data. For instance, a natural image typically contains multiple regions, which are
significantly different in the complexity of texture. While it is generally true that
each region can be modeled well by a simple linear model, the same model unlikely
applies to other regions. It is therefore reasonable to use multiple models to describe
different regions of the image.

The above example about images reveals a challenging problem that permeates
many research areas such as image processing, computer vision, pattern recognition,
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Z = V1 ∪ V2 ∪ V3 ⊂ R3

b) noisy samples c) noisy samples with outliers

o

V2 V3

V1

a) sample points

Fig. 1.1. Inferring a hybrid linear model Z, consisting of one plane (V1) and two lines (V2, V3),
from a set of mixed data, which can be: a) noiseless samples from the plane and lines; b) noisy
samples; c) noisy samples with outliers.

and system identification: How to segment a given set of data into multiple subsets
and find the best model for each subset? In different contexts, such a data set, as
well as the associated model, has been called “mixed,” or “multi-modal,” or “multi-
model,” or “piecewise,” or “heterogeneous,” or “hybrid.” For simplicity, in this paper,
we refer to the data as “mixed” and the model as “hybrid.” We are particularly in-
terested in the hybrid linear model : one linear model for every homogeneous subset of
the data. Figure 1.1 shows a simple example. The importance of hybrid linear mod-
els is multi-fold: 1. They are the natural generalizations to single linear models; 2.
They are sufficiently expressive for representing or approximating arbitrary complex
data structures; 3. The understanding of hybrid linear models has been significantly
advanced in recent years and many efficient solutions have been developed. The goal
of this paper is to give a comprehensive introduction to some of these new develop-
ments, and to put many sporadic results in the literature in a coherent and complete
mathematical and computational framework.

A fundamental challenge in estimating such a hybrid model for mixed data is
the “chicken-and-egg” problem. If the data were already segmented properly into
homogeneous subsets, estimating a model for each subset would be easy. Or, if the
hybrid model were already known, segmenting the data into multiple subsets would be
straightforward. For instance, in Figure 1.1, if a correct segmentation is given, finding
an optimal linear subspace for each subset of sample points has a well-established
solution known as principal component analysis (PCA) [25]. Or, given the three linear
subspaces, one can easily segment the samples to their closest subspaces, respectively.
The problem becomes much more involved if neither the model nor the segmentation
is known a priori and we have only the unsegmented sample points, which sometimes
are also corrupted with noise and outliers (see Figure 1.1 b) and c)). So at the heart
of modeling such mixed data is the question of how to resolve effectively the coupling
between data segmentation and model estimation.

In statistical learning, mixed data are typically modeled as a set of indepen-
dent samples {z1,z2, . . . ,zN} ⊂ RD drawn from a mixture of probabilistic distribu-
tions {p(z, θj)}nj=1, which is typically a weighted sum p(z,Θ) =

∑
j πjp(z, θj) with∑

j πj = 1. Then the problem of segmenting mixed data is often converted to a sta-
tistical model-estimation problem. Depending on the purpose, the estimated model
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parameters can take either the maximum-likelihood estimate, which maximizes the
log-likelihood: maxΘ,π

∑
i log

( ∑
j πjp(zi, θj)

)
, or the minimax estimate, which op-

timizes the objective: minΘ

∑
i[minj(− log p(zi, θj))]. However, even for simple dis-

tributions such as Gaussian distributions, there is no simple closed-form solution to
the estimate. One needs to resort to iterative schemes to find the optimal estimate.
For the maximum-likelihood estimate, one can view the event that a sample is drawn
from the jth distribution as a hidden random variable and it has an expectation of
πj . Then the classical expectation-maximization (EM) algorithm [11,34] can be called
upon to maximize the likelihood in a “hill-climbing” fashion. The algorithm iterates
between estimating the membership of the samples with the model parameters fixed
(the expectation step) and estimating the model with the membership of the samples
fixed (the maximization step). The minimax estimate leads to an iterative algorithm,
known as the K-means algorithm [16, 24, 30, 32] (or its variation for subspaces, K-
Subspaces [20]), which in many aspects resembles the EM algorithm.1 In a sense,
both the EM algorithm and the K-means algorithm have reinforced the belief that
the “chicken-and-egg” coupling between model estimation and data segmentation can
only be dealt with through such an iteration between the two.

Iterative statistical methods have several drawbacks that limit their applicability
in estimating hybrid models. First, the log-likelihood method typically has multiple
extrema. If the algorithm is not properly initialized, the iterative process may con-
verge to a local extremum that gives an invalid estimate of the model. In practice,
to increase the chance of finding the global extremum, one often needs to run the
algorithm multiple times with random initialization, which obviously reduces the effi-
ciency of the algorithm. Second, the statistical formulation typically relies on explicit
assumptions about the mixture distribution: the number of component distributions,
the parametric models of the distributions, and the dimension or complexity of each
model, etc. However, in many practical applications, such information is not readily
available and needs to be inferred from the given data. Finally, statistical methods
such as maximum likelihood are known to be less effective when dealing with situa-
tions in which the distributions are degenerate [51]. These situations arise very often
for mixed data with a hybrid model.

Thus, there is a need for alternative methods for mixed data modeling that may
remedy the limitations mentioned above. More particularly, we are interested in a
non-iterative method not requiring initialization. Although it is not known whether
a general solution exists for arbitrary hybrid models, many effective methods have
been developed in the past few years for the class of hybrid linear models. The goal of
this paper is to provide a comprehensive review of some of these methods. However,
to make this review more rigorous and complete, we also take the liberty of filling in
some gaps between the theory and the practice. Thus, although this paper is mainly
expository, many results presented here are actually new.

1.1. Problem Statement. More precisely, this paper addresses the following
problem.

Problem 1.1. Given a set of sufficiently dense sample points drawn from a
union of n linear subspaces V1, V2, . . . , Vn of dimensions d1, d2, . . . , dn, respectively,
in a D-dimensional space FD, where the base field F is typically R or C, estimate a
basis for each subspace, and segment all sample points into their respective subspaces.

1The only difference is that in the expectation step, instead of estimate the probability of each
sample belonging to each model, the sample is assigned to the most probable model.
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We consider the problem under three assumptions with increasing practicality
and difficulty:

Assumption 1: The samples are noiseless samples from the subspaces, see Figure
1.1 a);

Assumption 2: The samples are corrupted by (typically Gaussian) noise, see Fig-
ure 1.1 b);

Assumption 3: The samples are corrupted by both noise and outliers, see Figure
1.1 c).

In what follows we develop the solution under the above assumptions. We will also
consider situations in which the number of subspaces or their dimensions is either
known or unknown.

The technical conditions under which a set of sample points is considered to be
“sufficiently dense” will become clear in the context. Furthermore, there is no loss of
generality in assuming the affine subsets are linear subspaces. If the affine subspaces
do not contain the origin, we can always increase the dimension of the ambient space
by one and identify each affine space with the linear subspace that it spans.

In mathematics, a union of multiple subspaces is called a subspace arrangement.
Subspace arrangements, and their topological complements, are very important classes
of objects that have been studied in mathematics for centuries. The importance as
well as the difficulty of studying subspace arrangements can hardly be exaggerated.
Different aspects of their properties have been and are still being investigated and ex-
ploited in many mathematical fields, including algebraic geometry, algebraic topology,
combinatorics and complexity theory, and graph and lattice theory, etc. See [6, 7, 35]
for a general review.

In the context of modeling mixed data, subspace arrangements are of immediate
interest because they are the natural generalizations of single subspaces—the linear
models. As an underlying model for mixed data, subspace arrangements are suffi-
ciently flexible and expressive: They may contain subspaces of different dimensions.
They can approximate with arbitrary accuracy any nonlinear geometric or topolog-
ical structures. In addition, as we will see shortly, a subspace arrangement as an
algebraic sets can be effectively estimated and segmented from a set of samples in a
non-iterative way.

1.2. Organization of This Paper. In this paper we review the solutions to
Problem 1.1 under each of the three assumptions. As a result, the scope of subjects
to be covered are rather broad: They range from theory to practice, from algebra
to statistics, and from simulations to real-world applications. Nevertheless, we hope
to convince the reader that these subjects are strongly related to each other and are
crucial for investigators who want to gain a deep and complete understanding about
the problem.

If the sample points are noiseless, the problem is mostly an algebraic problem.
Section 2 reviews the basic algebraic properties of subspace arrangements. As an
algebraic set, the set of polynomials that vanish on a subspace arrangement form an
ideal and the subspace arrangement is uniquely determined by this ideal. We give
a complete characterization of the dimension of each graded component of the ideal,
also known as the Hilbert function. We show how the dimensions of the subspaces can
be uniquely determined from the values of the Hilbert function. We further show how
the vanishing ideal can be determined from a sufficiently dense (nevertheless finite) set
of sample points on the arrangement; and how the subspaces can be subsequently de-
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z2

o

V1

V2

V3

individual subspacesZ = V1 ∪ V2 ∪ V3
I(Z) = I(V1) ∩ I(V2) ∩ I(V3)

sample points {zi}

z1

z3

Fig. 2.1. Inferring a subspace arrangement of three subspaces: Z = V1 ∪ V2 ∪ V3 from a set of
sample points {zi}.

duced from the vanishing polynomials. This process is known as generalized principal
component analysis (GPCA).

In Section 3, we review some statistical techniques that allow us to estimate
the vanishing polynomials and the subspaces from sample points that are corrupted
by noise. When the number of subspaces and their dimensions are not known, we
introduce some relevant model-selection criteria for subspace arrangements that strike
a good balance between the complexity of the chosen model and the fidelity of the data
(w.r.t. the model). In Section 4, we study the problem under the assumption that
the given sample points are contaminated with outliers. We introduce certain robust
statistical techniques that can detect or diminish the effect of outliers, especially for
subspace arrangements. Finally, we demonstrate how these methods can be applied
to several real-world applications in Section 5.2

2. Inference of Subspace Arrangements via Algebraic Techniques. Be-
fore we can introduce subspace arrangements as a useful class of models for data
modeling and segmentation, we need to understand their properties as an important
class of algebraic sets. In this section we review the necessary mathematical facts that
allow us to infer a subspace arrangement from a finite number of samples and subse-
quently to decompose the arrangement into separate subspaces, as shown in Figure
2.1. The algebraic facts presented in this section serve as the theoretical foundation
for an effective method to model and segment mixed data known as generalized prin-
cipal component analysis (GPCA). In the sections that follow this one, we will show
how this algebraic method should be modified when the samples are corrupted by
noise or contaminated with outliers.

2.1. Basic Notation and Definitions. In this section, we assume that the
reader has basic knowledge of abstract algebra that is covered in any graduate-level
algebra course. Details may be found in most texts, for example [13, 29]. In what
follows, the ambient space is a D-dimensional vector space over an infinite field F
(which is usually either R or C). We immediately identify our vector space with FD.
If V is a d-dimensional subspace, then its codimension is c

.= D − d.
Definition 2.1 (Subspace Arrangement). A subspace arrangement in FD is

a union

A .= V1 ∪ V2 ∪ · · · ∪ Vn (2.1)

of n subspaces V1, V2, . . . , Vn of FD.

2The source code for all the algorithms, as well as more applications, are available on-line at
http://perception.csl.uiuc.edu/gpca/Hidden/sample code.
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For a nonempty subset S of the index set {1, 2, . . . , n}, we define the intersection

VS
.= ∩s∈SVs

with dimension dS
.= dim VS and codimension cS

.= D − dS .
Definition 2.2 (Transversal Subspace Arrangement). A subspace arrangement

A = V1 ∪ V2 ∪ . . . ∪ Vn

is called transversal if

cS = min
(
D,

∑
i∈S

ci

)
for all nonempty S ⊆ {1, 2, . . . , n}.

That is, the dimensions of all intersections are as small as possible.
Notice that transversality is a weaker condition than the typical notion of general

position. For instance, three coplanar lines through the origin are transversal in R3,
but usually they are not regarded to be in general position. Transversality is an
appropriate assumption for most real applications. Moderate data noise and machine
round off should guarantee that the subspace structures of the data are transversal.

The ring of polynomial functions on our ambient space FD is denoted by

F[D] .= F[X1, X2, . . . , XD].

It is the ring of polynomials in the functions {X1, X2, . . . , XD}, where Xj is the
function that assigns the jth coordinate to a point in FD. Any polynomial f ∈ F[D]

can be written as a unique sum

f = f0 + f1 + · · ·+ fT ,

where the fi are homogeneous polynomials of degree i. Let F[D]
h denote the vector

space of all polynomials homogeneous of degree h. Then there is a decomposition

F[D] = F⊕ F[D]
1 ⊕ F[D]

2 ⊕ · · · (2.2)

of F[D] into the direct sum of its homogeneous components. Clearly F[D]
h F[D]

k ⊆ F[D]
h+k.

Each homogeneous component F[D]
h is a finite dimensional vector space over F of

dimension

M
[D]
h

.=
(

h + D − 1
D − 1

)
. (2.3)

One can verify this by observing that the monomials

{Xh
1 , Xh−1

1 X2, X
h−1
1 X3, . . . , X

h
D}

form a basis of F[D]
h .

We end this subsection with one more definition.
Definition 2.3 (Veronese Map). The Veronese Map of order h is the map

νh : FD → FM
[D]
h

given by

νh


x1

x2

...
xD

 =


xh

1

xh−1
1 x2

...
xh

D

 . (2.4)
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2.2. Vanishing Ideals and Hilbert Functions of Subspace Arrangements.
We will discuss the correspondence between ideals in the polynomial ring F[D] and
subsets in FD.

Definition 2.4 (Vanishing Ideal). The vanishing ideal I(W ) of a subset W ⊆
FD is defined by

I(W ) .= {f ∈ F[D] : f(z) = 0,∀z ∈W}.

One easily checks that I(W ) is indeed an ideal of the polynomial ring F[D]. Before
dealing with a general subspace arrangement, consider first the situation of a single
subspace V . The homogeneous component F[D]

1 is the vector space of linear functions
from FD to F. Denote by V ⊥ those linear functions on FD that vanish on V . Any
linear function that vanishes on V can be written as:

f(X) = b1X1 + b2X2 + · · ·+ bDXD,

where b = (b1, b2, . . . , bD)T ∈ FD is a vector that satisfies

b1x1 + b2x2 + · · ·+ bDxD = 0 for all (x1, x2, . . . , xD)T ∈ V. (2.5)

One can show that if the dimension of V is d, then V ⊥ has dimension c = D − d.
That is, V ⊥ is spanned by c linearly independent linear functions

V ⊥ = span{g1, g2, . . . , gc}, (2.6)

where each gi ∈ F[D]
1 .

All the ideals that we work with turn out to be homogeneous.
Definition 2.5 (Homogeneous Ideal). An ideal I in F[D] is homogeneous if

the homogeneous components of elements in I are also in I.
It is well-known, and easy to see, that an ideal is homogeneous if and only if it is

generated by homogeneous elements. The vanishing ideal I(V ) of a subspace V ⊆ FD

is obviously generated by the linear functions in V ⊥, in fact by a basis of V ⊥, and
hence is a homogeneous ideal generated by finitely many homogeneous elements.

It is easy to see that the vanishing ideal I(A) of a subspace arrangement A is the
intersection of the vanishing ideals of the individual subspaces:

I(A) = I(V1 ∪ V2 ∪ · · · ∪ Vn) = I(V1) ∩ I(V2) ∩ · · · ∩ I(Vn). (2.7)

Since each of the constituents is homogeneous, the ideal I(A) itself is homogeneous
and hence

I(A) = I0 ⊕ I1 ⊕ I2 ⊕ · · ·

where Ih = I(A) ∩ F[D]
h is the homogeneous part of degree h (for small h this may

be the trivial vector space). Let m be the smallest nonnegative integer such that
Im 6= {0}. Then m ≤ n and we can write

I(A) = Im ⊕ Im+1 ⊕ · · · ⊕ In ⊕ In+1 ⊕ · · · . (2.8)

Notice that polynomials that vanish on A may have degree strictly lower than
n, the number of subspaces in the arrangement. One example is a transversal ar-
rangement of two lines and one plane in R3. Since any two lines lie on a plane, this
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arrangement can be embedded in a hyperplane arrangement of two planes, and there
exist homogeneous polynomials of degree two that vanish on the arrangement.

Let us introduce an ideal related to the vanishing ideal I(A), called the product
ideal J(A) = I(V1)I(V2) · · · I(Vn). That is, J(A) is the ideal generated by the prod-
ucts g1g2 · · · gn where gj ∈ I(Vj) for each j. The ideal J(A) is also homogeneous.
So

J(A) = Jn ⊕ Jn+1 ⊕ · · · . (2.9)

It is clear the the first non-zero graded component of J(A) is Jn and that

Jn = V ⊥
1 V ⊥

2 · · ·V ⊥
n = I1(V1)I1(V2) · · · I1(Vn). (2.10)

Definition 2.6 (Zero Set). Given a set of polynomials I ⊆ F[D], the zero set
of I is defined to be

Z(I) .= {z ∈ FD : g(z) = 0 for all g ∈ I} ⊆ FD.

Lemma 2.7. The subspace arrangement A is the zero set of the homogeneous
component In and also the zero set of the homogeneous component Jn. That is,

Z(In) = Z(Jn) = Z(I(A)) = Z(J(A)) = A.

Proof. Since Jn ⊆ In ⊂ I(A) and elements of I(A) vanish on the set A by
definition, we have

A ⊆ Z(I(A)) ⊆ Z(In) ⊆ Z(Jn). (2.11)

For the other direction, suppose z 6∈ A. Then z 6∈ Vi for all i = 1, 2, . . . , n. Hence for
each i, there exists a linear function gi ∈ V ⊥

i such that gi(z) 6= 0. Let g = g1g2 · · · gn.
Then g(z) 6= 0. Obviously g ∈ Jn. It then follows that z 6∈ Z(Jn). Therefore
Z(Jn) ⊆ A. Using (2.11), we obtain

A = Z(I(A)) = Z(In) = Z(Jn).

Also Z(J(A)) = Z(Jn) = A because J(A) is generated by Jn.
A consequence of Lemma 2.7 is that that in order to recover an arrangement A

of n subspaces, one needs only to know the set of polynomials of degree n that vanish
on A. As we will soon see: to estimate a subspace arrangement A, it is very useful
to know first the number of linearly independent polynomials of degree n that vanish
on A. This is related to the Hilbert function of the vanishing ideal I(A).

Definition 2.8 (Hilbert Function). The Hilbert Function of a homogeneous
ideal K is the function hK : N→ N defined by

hK(j) .= dim(Kj), (2.12)

where Ki is the ith homogeneous component of K and N denotes the nonnegative
integers.3

3Be aware that in the literature, the Hilbert function is sometimes defined as the codimension of

Ki in F[D]
i : M

[D]
i − dim(Ki).
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The remainder of this section is devoted to providing a closed-form formula for
the Hilbert function hI(i) of subspace arrangements that is valid for i ≥ n. A more
complete development is given in [12].

The ideal J = J(A) has its associated Hilbert function hJ(i) .= dim(Ji). We
claim there is a closed-form formula for hJ(i). In addition when the arrangement is
transversal, then hI(i) = hJ(i) for all i ≥ n.

Definition 2.9 (Hilbert Series). The Hilbert Series of a homogeneous ideal K
is defined to be

H(K, t) .=
∑
i∈N

hK(i)ti. (2.13)

Example 2.10. The Hilbert series of the polynomial ring F[D] is

H(F[D], t) =
∑
i∈Z

dim(F[D]
i )ti =

∑
i∈Z

(
i+D−1
D−1

)
ti =

1
(1− t)D

.

Example 2.11. Suppose I(V ) is the vanishing ideal of a subspace V of dimen-
sion d in FD. Then I(V ) is generated by c = D − d linear polynomials g1, g2, . . . , gc.
The quotient ring F[D]/I(V ) can be identified with the ring of polynomial functions
on V ∼= Fd, so F[D]/I(V ) ∼= F[d]. Hence,

H(I(V ), t) = H(F[D], t)−H(F[d], t) =
1

(1− t)D
− 1

(1− t)d
=

1− (1− t)c

(1− t)D
.

A recursive formula for the Hilbert series of J(A) was given in [12]. Surprisingly, this
formula depends only on the codimensions of the intersections (cS , S ⊆ {1, 2, . . . , n})
and D, the dimension of the ambient vector space. This means that the Hilbert series
H(J(A), t) is a combinatorial invariant of the arrangement A. Combinatorial invari-
ants play an important role in the study of subspace arrangements and hyperplane
arrangements. In general, the Hilbert series of I(A) is not a combinatorial invariant.
This means the series H(I(A), t) depends more delicately on the geometry of the ar-
rangement. For example, suppose that A is the union of three distinct lines (through
the origin) in F3. Regardless whether the three lines are coplanar or not, we have

H(J(A), t) =
7t3 − 9t4 + 3t5

(1− t)3
= 7t3 + 12t4 + 18t5 + · · ·

(for a derivation of this formula and the formulas below, see [12]). However, one has

H(I(A), t) =
t + t3 − t4

(1− t)3
= t + 3t2 + 7t3 + 12t4 + 18t5 + · · ·

if the lines are coplanar, and

H(I(A), t) =
3t2 − 2t3

(1− t)3
= 3t2 + 7t3 + 12t4 + 18t5 + · · ·

if the three lines are not coplanar. In these examples, the subspace arrangements are
transversal. The situation is still quite nice for transversal arrangements. In that
case, the Hilbert series of J(A) has a particularly nice form, which we will describe
now.
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Suppose

A = V1 ∪ V2 ∪ · · · ∪ Vn

is a subspace arrangement and that (c1, c2, . . . , cn) is the vector of codimensions.
Define the power series FA(t) by

FA(t) .=
∏n

i=1(1− (1− t)ci)
(1− t)D

. (2.14)

We can decompose FA(t) in a unique way as

FA(t) = PA(t) + GA(t)

where PA(t) is a polynomial, and

GA(t) =
QA(t)

(1− t)D
= g(0) + g(1)t + g(2)t2 + · · ·

such that QA(t) is a polynomial of degree < D.
Theorem 2.12 ( [12]). Suppose A = V1 ∪ V2 ∪ · · · ∪ Vn is a transversal arrange-

ment. Then

hI(i) = hJ(i) = g(i)

for i ≥ n. In other words, H(I(A), t)−GA(t) and H(J(A), t)−GA(t) are polynomials
of degree < n.

From (2.14) we deduce that

GA(t) =
∑
S

(−1)|S|
1

(1− t)D−cS

where cS =
∑

j∈S cj and the sum is over all S ⊆ {1, 2, . . . , n} for which cS < D.
Corollary 2.13. If A = V1 ∪ V2 ∪ · · · ∪ Vn is transversal, then for all i ≥ n,

hI(i) = hJ(i) = g(i) =
∑
S

(−1)|S|
(

i + D − 1− cS

D − 1− cS

)
, (2.15)

where cS =
∑

j∈S cj and the sum is over all S ⊆ {1, 2, . . . , n} (including the empty
set) for which cS < D.

The formula in Corollary 2.13 is not particularly efficient to evaluate: the number
of terms may depend exponentially on n. Directly evaluating FA(t) and GA(t) as
quotients of expanded polynomials, and then evaluating the power series of GA(t) is
a more efficient way to determine the values g(i), i = n, n + 1, n + 2, . . ..

Example 2.14. Suppose that A = V1 ∪ V2 ∪ V3 is a transversal arrangement in
F4. Let d1, d2, d3 (respectively c1, c2, c3) be the dimensions (resp. codimensions) of
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V1, V2, V3. We make a table of hI(n) for n = 3, 4, 5.

c1, c2, c3 d1, d2, d3 hI(3) hI(4) hI(5)
1, 1, 1 3, 3, 3 1 4 10
1, 1, 2 3, 3, 2 2 7 16
1, 1, 3 3, 3, 1 3 9 19
1, 2, 2 3, 3, 2 4 12 25
1, 2, 3 3, 2, 1 6 15 29
1, 3, 3 3, 1, 1 8 18 33
2, 2, 2 2, 2, 2 8 20 38
2, 2, 3 2, 2, 1 11 24 43
2, 3, 3 2, 1, 1 14 28 48
3, 3, 3 1, 1, 1 17 32 53

Note that the codimensions c1, c2, c3 are almost determined by hI(3). They are
uniquely determined hI(3) and hI(4). Corollary 2.15 below is a general result that
implies that c1, c2, c3 are determined by hI(3), hI(4), hI(5) in this particular example.

Corollary 2.15. Consider a transversal arrangement of n subspaces. The
codimensions c1, . . . , cn (and hence the dimensions) of the subspaces are uniquely de-
termined by the values of the Hilbert function hI(i) for i = n, n + 1, . . . , n + D − 1.

We will explain how c1, c2, . . . , cn can be determined from the values

hI(n), hI(n + 1), . . . , hI(n + D − 1).

Let us assume that 0 < c1 ≤ c2 ≤ · · · ≤ cn ≤ D. First of all g(i) = hI(i) for
i = n, n+1, . . . , n+D− 1. Corollary 2.13 shows us that g is a polynomial function of
degree ≤ D−1. This implies that the values g(n), g(n+1), . . . , g(n+D−1) uniquely
determine g and hence GA(t). In fact GA(t) = QA(t)/(1 − t)D can be determined
as follows. Let us write QA(t) = q0 + q1t + · · ·+ qD−1t

D−1 were q0, q1, . . . , qD−1 are
indeterminates. We expand the power series of GA(t). Equating the coefficient of ti

to g(i) for i = n, n+1, . . . , n+D− 1 gives a system of D linear equations from which
q0, q1, . . . , qD−1 can be solved.

The polynomials tDGA(1− t) and

tDFA(1− t) =
n∏

i=1

(1− tci)

coincide in degree < D. From this we can determine the value of c1, because c1 is
the smallest positive integer such that the coefficient of tc1 in tDGA(1− t) is nonzero.
The power series of

tDGA(1− t)
1− tc1

and the polynomial

n∏
i=2

(1− tci)
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coincide in degree < D. From this follows that c2 is the smallest positive integer such
that the coefficient of tc2 in the power series of

tDGA(1− t)
1− tc1

is nonzero. Continuing like this we see that ci is the smallest positive integer such
that the coefficient of tci in the power series of

tDGA(t)∏i−1
j=1 (1− tcj )

is nonzero. This way, we can determinate c1, c2, . . . , cn.
Example 2.16. Suppose A = V1 ∪ V2 ∪ V3 ∪ V4 is a transversal arrangement in

F4. We would like to find the codimensions c1, c2, c3, c4. Suppose that we know that

hI(4) = 11, hI(5) = 24, hI(6) = 43, hI(7) = 69.

Let us write

GA(t) =
q0 + q1t + q2t

2 + q3t
3

(1− t)4
.

We expand the power series of G(t):

GA(t) = · · ·+ (35q0 + 20q1 + 10q2 + 4q3)t4 + (56q0 + 35q1 + 20q2 + 10q3)t5+

+(84q0 + 56q1 + 35q2 + 20q3)t6 + (120q0 + 84q1 + 56q2 + 35q3)t7 + · · ·

This should be equal to

· · ·+ 11t4 + 24t5 + 43t6 + 69t7 + · · · .

We solve the system of equations
35q0 + 20q1 + 10q2 + 4q3 = 11
56q0 + 35q1 + 20q2 + 10q3 = 24
84q0 + 56q1 + 35q2 + 20q3 = 43

120q0 + 84q1 + 56q2 + 35q3 = 69.

The unique solution is

q0 = −1, q1 = 2, q2 = 1, q3 = −1.

This implies that

GA(t) =
−1 + 2t + t2 − t3

(1− t)4
.

We compute

t4GA(1− t) = 1− t− 2t2 + t3.
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The first nonzero coefficient (apart from t0) is the coefficient of t1. Therefore, c1 = 1.
We compute

t4GA(1− t)
1− t

=
1− t− 2t2 + t3

1− t
= 1− 2t2 − t3 + · · ·

The first nonzero coefficient is the coefficient of t2. Therefore, c2 = 2. (In fact the
coefficient −2 implies that 2 subspaces have codimension 2.) We divide by 1− t2:

t4GA(1− t)
(1− t)(1− t2)

=
1− 2t2 − t3 + · · ·

1− t2
= 1− t2 − t3 + · · ·

Again, the coefficient of t2 is nonzero, so c3 = 2 as well. We divide by 1− t2 again:

t4GA(1− t)
(1− t)(1− t2)2

=
1− 2t2 − t3 + · · ·

1− t2
= 1− t3 + · · ·

The first nonzero coefficient is the coefficient of t3. Therefore, c4 = 3.
These results are very important for the development and improvement of the

algorithm for estimating a subspace arrangement from a data set. This algorithm is
known as generalized principal component analysis (GPCA):

1. The equality hI(i) = hJ(i) for i ≥ n implies that Ii = Ji for i ≥ n and in
particular In = Jn. That is, the homogeneous component In of the vanishing
ideal of a transversal subspace arrangement is always generated by products
of linear forms. (This is called pl-generated in [7].). This fact was used (but
not established at the time) in the early development of the GPCA algorithm
because the algorithm would be much easier to explain (to engineers) by using
products of linear forms.

2. The values of the Hilbert function give a rich class of invariants for subspace
arrangements. Knowing those values may greatly facilitate the task of finding
the correct subspace arrangement model for a given set of (noisy) data. On
the one hand, given a data set, if we know the number of subspaces and
their dimensions, the value of the Hilbert function will tell us exactly how
many linearly independent polynomials of a certain degree to use to fit the
data set. This information becomes particularly important when the data
are noisy and the number of fitting polynomials is difficult to be determined
from the data themselves. On the other hand, if the dimensions (or number)
of the subspaces are not given but we are able to obtain the set of vanishing
polynomials (up to certain degree), then the dimensions (or number) of the
subspaces can be uniquely determined from the values of the Hilbert function
(even without segmenting the data first).

The reader needs to be aware that formula (2.15) for hI(i) is valid only for i ≥
n. For i < n there is no known closed-form formula for hI(i). One must resort
to symbolic or numerical computation to find those values. Fortunately, for most
practical applications that we have seen so far, it is typically good enough to know
the values of hI(i) for fewer than 10 subspaces in an ambient space of dimension less
than 15.4

4Source codes of both symbolic and numerical computation are available from the authors. We
have also computed the table of values of hI(i) for up to six subspaces in R12.
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2.3. Sampling of an Algebraic Set. Before we introduce an algebraic algo-
rithm to estimate an arrangement of N subspaces, we want to prove that in theory
one can always recover an algebraic set Z from a finite number of sample points. This
is the goal of this section.

From an algebraic point of view, an algebraic set Z, such as a subspace arrange-
ment, is rather different from a finite number of discrete sample points on Z. In fact,
suppose mi is the set of polynomials that vanish on just one point zi, then the set of
polynomials that vanish on the finite set F = {z1,z2, . . . ,zN} is the intersection

I(F ) = m1 ∩m2 ∩ · · · ∩mN . (2.16)

It should be noted that the quotient F[D]/I(F ) is always a finite dimensional vector
space over F, regardless of the number of points N .

We want to find the ideal I(Z) by sampling a finite set F . In general, the ideal
I(Z) is always a proper subideal of I(F ), regardless of how many points one samples.
However, the information about I(Z) can still be retrieved from I(F ) as we show in
the theorem below. A further bit of notation is required. For the graded ring F[D],
let

F[D]
≤n = F⊕ F[D]

1 ⊕ · · · ⊕ F[D]
n . (2.17)

It is important to note that this is a finite dimensional vector space.
Theorem 2.17 (Sampling of an Algebraic Set). Consider a nonempty set Z ⊆

FD whose vanishing ideal I(Z) is generated by polynomials in F[D]
≤n. Then there is a

finite sequence F = {z1,z2, . . . ,zN} such that I(F ) ∩ F[D]
≤n generates I(Z).

Proof. Let In = I(Z) ∩ F[D]
≤n. This vector space generates I(Z). Let a0 = F[D] =

I(∅). Let b0 = a0 ∩ F[D]
≤n and let A0 = (b0), the ideal generated by the polynomials

in a0 of degree less than or equal to n. Since 1 ∈ F[D] ∩ F[D]
≤n is the generator of this

ideal, we have A0 = F[D]. Since Z 6= ∅, then A0 6= I(Z). Set N = 1 and pick a point
z1 ∈ Z. Then 1(z1) 6= 0 (1 is the function that assigns 1 to every point of Z.). Let a1

be the ideal that vanishes on {z1} and define b1 = a1 ∩ F[D]
≤n. Further let A1 = (b1).5

Since I(Z) ⊆ a1, it follows that In ⊆ b1. If A1 = I(Z), then we are done. Suppose
then that I(Z) ⊂ A1.

Let us do the induction at this point. Suppose we have found a finite sequence
FN = {z1,z2, . . . ,zN} ⊂ Z with

I(FN ) = aN (2.18)

bN = aN ∩ F[D]
≤n (2.19)

AN = (bN ) (2.20)
b0 ⊃ b1 ⊃ · · ·⊃ bN ⊇ In. (2.21)

It follows that In ⊆ bN and that I(Z) ⊆ AN . If equality holds here, then we are done.
If not, then there is a function g ∈ bN not in I(Z) and an element zN+1 ∈ Z for which
g(zN+1) 6= 0. Set FN+1 = {z1, . . . ,zN ,zN+1}. Then one gets aN+1, bN+1, AN+1 as
above with

b0 ⊃ b1 ⊃ · · · ⊃ bN ⊃ bN+1 ⊇ In. (2.22)

5Here we are using the convention that (S) is the ideal generated by the set S. Recall also that
the ring F[D] is noetherian by the Hilbert basis theorem and so all ideals in the ring are finitely
generated [13].
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We obtain a descending chain of subspaces of the vector space F[D]
≤n. This chain must

stabilize, since the vector space is finite dimensional. Hence there is an N for which
bN = In and we are done.

We point out that no clear bound on the total number N of points needed is given
in the proof above. Nevertheless, from the proof of the theorem it is seen that the set
of finite sequences of samples that satisfy the theorem is an open set. This is of great
practical importance for it implies that the vanishing ideal can be determined from a
randomly chosen sequence of samples with probability one.

Example 2.18. [A Hyperplane in R3] Consider a plane P = {z ∈ R3 : f(z) =
ax1 + bx2 + cx3 = 0}. The polynomial , f(z) = ax1 + bx2 + cx3 will be the only
(homogeneous) polynomial of degree 1 that fits any two points in general position in
P . In terms of the language introduced above, the ideal I(P ) =

(
a2 ∩ R[3]

≤1

)
.

2.4. Generalized Principal Component Analysis. In the previous subsec-
tions we considered the correspondence between a transversal subspace arrangement
A and its vanishing ideal (Section 2.2). Then we showed how we are able, in principal,
to recover the ideal from a large enough number of samples on the arrangement (Sec-
tion 2.3). In this subsection, we introduce an efficient algebraic algorithm to retrieve a
subspace arrangement and its individual subspaces from a given set of samples. This
process is known as generalized principal component analysis (GPCA). In this section,
we assume the samples to be noise-free. We will discuss samples corrupted by noise
in Section 3 and samples contaminated by outliers in Section 4.

The first version of the algebraic GPCA algorithm was proposed in [53]. Several
different variations have been proposed since then. All variants consist of three steps.
First, a set of polynomials that vanish on the given data samples is retrieved. Sec-
ond, the vectors normal to the subspaces are estimated from the derivatives of these
polynomials. Third, the samples are segmented into their respective subspaces based
on the normals. We give a brief description of each step.

2.4.1. Retrieving the Vanishing Polynomials. We are given a set of samples
{z1,z2, . . . ,zN} that we know lies in a subspace arrangement. Typically, we are
dealing with real data sets. Thus unless otherwise stated, for the rest of the paper,
we will assume the field F to be the real field R. Suppose that we know the number
n and the dimensions of the subspaces in the subspace arrangement A ⊆ RD. We
then know the number of linearly independent vanishing polynomials of degree n is
equal to the value of the Hilbert Function of I(A) at n. Suppose m = hI(n). We then
embed the samples in RM [D]

n via the veronese map νn (see Definition 2.3) obtaining
the matrix

Ln
.=

(
νn(z1), νn(z2), . . . , νn(zN )

)
∈ RM [D]

n ×N . (2.23)

Obviously, if q(X) = cT νn(X) is a polynomial that vanishes on A, then we have
q(zi) = cT νn(zi) = 0 for all i = 1, 2, . . . , N . Therefore the column of coefficients c
must be in the (left) null space of Ln: cT Ln = 0. If the sample set is large enough,
according to the algebraic sampling theorem 2.17, the dimension of the null space of
Ln is exactly m = hI(n). Thus, a basis C =

(
c1, c2, . . . , cm

)
of the null space of Ln

gives a basis of In(A):

Q(X) .=
(
q1(X), q2(X), . . . , qm(X)

)T
, (2.24)

where qi(X) = cT
i νn(X), i = 1, 2, . . . ,m.
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The matrix C can be computed from the eigenvectors of the matrix

W
.=

1
N

LnLT
n ∈ RM [D]

n ×M [D]
n

that correspond to its m eigenvalues with eigenvalue 0. In the case of small noise
or numerical round-off errors, we can take the m eigenvectors associated with the m
smallest eigenvalues. Numerically, this can be done via singular value decomposition
(SVD) of Ln. Statistically, this the same as principal component analysis (PCA). In
the next section, we will see how the estimate of C can be further improved when the
samples are noisy.

This will be facilitated by using the Jacobian of the polynomials generating the
vanishing ideal.

Definition 2.19 (Jacobian Matrix). The Jacobian Matrix of the polynomials
Q(X) =

(
q1(X), q2(X), . . . , qm(X)

)T is the m×D matrix

J (Q)(X) .=


∂q1
∂X1

· · · ∂q1
∂XD

...
. . .

...
∂qm

∂X1
· · · ∂qm

∂XD

 ∈ Rm×D. (2.25)

2.4.2. Retrieving the Normal Vectors and Bases of the Subspaces. Hav-
ing found the vanishing polynomials Q(X), we can, in principle, obtain the subspace
arrangement A as their zero set. In practice, we are more interested in the individual
subspaces of the arrangement rather than their union, particularly, we want to seg-
ment the data into their respective subspaces. Thus, the problem that arises is how
to retrieve the subspaces from the vanishing polynomials. Fortunately, in addition
to the polynomials generating the vanishing ideal, we also have sample points from
their zero set. This turns out to simplify greatly the identification of the individual
consituent subspaces in the arrangement.

Pick one sample zi per subspace Vi (not in any of the other subspaces).6 Evaluate
the Jacobian matrix zi and we obtain the m×D matrix J (Q)(zi).

It is easy to verify that the rows of J (Q)(zi) span the orthogonal complement
V ⊥

i of Vi. Figure 2.1 illustrates this concept with a simple example. Thus, a basis
of Vi can be computed from the (right) null space of J (Q)(zi), say from the SVD of
J (Q)(zi), in a manner similar to the computation of C.

2.4.3. The Algebraic GPCA Algorithm and Its Variations. For future
reference, we summarize the above process as an algorithm below.

Algorithm 1 applies to the very idealistic situation in which the samples have no
noise and the number and dimensions of the subspaces are all known. If any of those
conditions are changed, the algorithm needs to be modified accordingly.

For instance, we know that the lowest degree of the polynomials that vanish on
the given data set can be strictly lower than the number of subspaces. If the number of
subspaces is not known, the derivatives of these polynomials of the lowest degree lead
to a super subspace arrangement A′ that contains the original arrangement: A ⊆ A′.
Thus, we can recursively apply GPCA to samples in each subspace of A′. In principle,
the process will stop when all the subspaces in the original arrangement are found. In

6The literature is full of many proposals for picking such a point when the samples are noisy. In
the next section, we will provide a scheme that does not rely on the choice of the point.
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Algorithm 1 (Generalized Principal Component Analysis).
Given a set of samples {z1, z2, . . . , zN} from n linear subspaces of dimensions d1, d2, . . . , dn

in RD:

1: Construct the matrix Ln =
`
νn(z1), νn(z2), . . . , νn(zN )

´
.

2: Compute the singular value decomposition (SVD) of Ln and let C be the singular vectors
associated with the m = hI(n) smallest singular values.

3: Construct the polynomials Q(X) = CT νn(X).
4: for all 1 ≤ i ≤ n do
5: Pick one point zi per subspace, and compute the Jacobian J (Q)(zi).
6: Compute a basis Bi =

`
b1, b2, . . . , bdi

´
of Vi from the right null space of J (Q)(zi) via

the singular value decomposition of J (Q)(zi).
7: Assign samples zj that satisfy BT

i zj = 0 to the subspace Vi.
8: end for

the literature, this is known as Recursive GPCA. However, if the samples are noisy,
the stopping criterion becomes much more elusive.

There are many more variations to the GPCA algorithm when the samples are
corrupted by noise or contaminated with outliers. We will discuss some of the impor-
tant variations in the next two sections.

3. Estimation of Subspace Arrangements from Noisy Samples. When
the samples from a subspace arrangement are corrupted by noise, estimating the van-
ishing polynomials and subsequently retrieving the subspaces become a statistical
problem. In this case, the embedded data matrix will be of full rank and the vanish-
ing polynomials can no longer be retrieved directly from its null space. We discuss
how to estimate the vanishing polynomials from noisy samples in Section 3.1, which
is inspired by the work of [45] with special treatment given to homogeneous polyno-
mials. Likewise, the derivatives of the vanishing polynomials at a noisy sample point
no longer span the orthogonal complement to the underlying subspace. Thus, neither
the dimension nor the basis of the subspace can be obtained directly from the deriva-
tives. In Section 3.2, we show how to modify the algebraic GPCA algorithm with
a multiple-hypotheses voting scheme to estimate the subspaces. This voting-based
GPCA algorithm has been shown to outperform other extant variations. When nei-
ther the number of subspaces nor their dimensions are known, we introduce relevant
model-selection criteria for choosing the optimal subspace arrangement for a given set
of noisy samples in Section 3.3.

3.1. Estimation of Vanishing Polynomials. From the previous section, we
know that GPCA is based on the concept that we are able to identify correctly a set
of (linearly independent) polynomials Q(X) =

(
q1(X), q2(X), . . . , qm(X)

)T , say of
degree n, whose zero set is exactly the subspace arrangement

A = V1 ∪ V2 ∪ · · · ∪ Vn = {z ∈ RD : Q(z) = 0}. (3.1)

For noisy samples, the algebraic GPCA algorithm is modified by replacing the null
space of the embedded data matrix Ln by the eigenspace associated to the smallest
eigenvalues. In order for such a least-square fitting

min
c
‖νn(z)T c‖2 (3.2)

to be statistically optimal, one needs to assume that the embedded data vector νn(z)
has an isotropic Gaussian distribution. In practice, it is often more natural and mean-
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ingful to assume instead that the samples zi themselves are corrupted by (isotropic)
Gaussian noise. That is, we assume that for each sample point zi,

zi = ẑi(c) + ni, i = 1, 2, . . . , N, (3.3)

where ẑi(c) is a point on the subspace arrangement determined by c and ni is an
independent isotropic Gaussian random noise added to ẑi(c). If the arrangement is
clearly indicated from the context, we also write ẑi(c) as ẑ. It is easy to verify that
with respect to this noise model, the embedded data vector νn(zi) no longer has a
Gaussian distribution and subsequently the least-square fitting no longer gives the
optimal estimate of the vanishing polynomials. In fact, under the Gaussian noise
model, the maximum-likelihood estimate minimizes the mean square distance:

min
c

1
N

N∑
i=1

‖zi − ẑi(c)‖2. (3.4)

However, it is difficult to minimize (3.4), because the closest point ẑi(c) to zi is a
complicated function of the polynomial coefficients c. To resolve this difficulty, in
practice we often use the first order approximation of zi− ẑi as a replacement for the
mean square distance. This leads to the Sampson distance that we now introduce.

3.1.1. Sampson Distance. We assume that the polynomials in Q(X) are lin-
early independent. Given a point z close to the zero set of Q(X), i.e. the subspace
arrangement A, we let ẑ denote the point closest to z on A. Using the Taylor series
of Q(X) expanded at z, the value of Q(X) at ẑ is then given by

Q(ẑ) = Q(z) + J (Q)(z)(ẑ − z) + O(‖ẑ − z‖2). (3.5)

After ignoring the higher order terms and noting that Q(ẑ) = 0, we have

z − ẑ ≈
(
J (Q)(z)TJ (Q)(z)

)†J (Q)(z)T Q(z) ∈ RD, (3.6)

where
(
J (Q)(z)TJ (Q)(z)

)† is the pseudo inverse of the matrix J (Q)(z)TJ (Q)(z).
Thus, the approximate square distance from z to A is given by

‖z − ẑ‖2 ≈ Q(z)T
(
J (Q)(z)J (Q)(z)T

)†
Q(z) ∈ R. (3.7)

The expression on the right-hand side is known as the Sampson distance [41]. Thus,
the average Sampson distance

1
N

N∑
i=1

Q(zi)T
(
J (Q)(zi)J (Q)(zi)T

)†
Q(zi) (3.8)

is an approximation of the mean square distance (3.4). Minimizing the Sampson
distance typically leads to a good approximation to the maximum-likelihood estimate
that minimizes the mean square distance.

There is however a certain redundancy in the expression of Sampson distance. If
A is the zero set of Q(X), it is also the zero set of the polynomials Q̃(X) = MQ(X)
for any non-singular matrix M ∈ Rm×m. It is easy to check that the Sampson distance
(3.7) is invariant under the non-singular linear transformation M . Thus, the estimate
of polynomials in Q that minimize the average Sampson distance (or the mean square
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error) is not unique, at least not in terms of the coefficients of the polynomials in
Q(X).

One way to reduce the redundancy is to impose some constraints on the coeffi-
cients of the polynomials in Q(X). Notice that

J (Q̃)(zi)J (Q̃)(zi)T = MJ (Q)(zi)J (Q)(zi)T MT

and if there is no polynomial of lower degree (than those in Q(X)) that vanishes on
A, the matrix

1
N

N∑
i=1

J (Q)(zi)J (Q)(zi)T ∈ Rm×m

is a positive-definite symmetric matrix. Therefore, we can choose the matrix M such
that the matrix below is the identity:

1
N

N∑
i=1

J (Q)(zi)J (Q)(zi)T = Im×m. (3.9)

Thus, the problem of minimizing the average Sampson distance now becomes a
constrained nonlinear optimization problem:

Q∗ = arg minP
1
N

∑N
i=1 Q(zi)T

(
J (Q)(zi)J (Q)(zi)T

)†
Q(zi),

subject to 1
N

∑N
i=1 J (Q)(zi)J (Q)(zi)T = Im×m.

(3.10)

Many nonlinear optimization algorithms can be employed here to minimize the above
objective function via iterative gradient-descent techniques. However, in order for the
iterative process to converge quickly to the global minimum, a good initialization is
needed. Below we discuss one such method.

3.1.2. Generalized Eigenvector Fit. Notice that the linear transformations
that preserve the identity (3.9) are unitary transformations, the group of which is
denoted by O(m) = {R ∈ Rm×m : RT R = Im×m}. Obviously, the least-square fitting
error is invariant under unitary transformations: ‖RQ(z)‖2 = ‖Q(z)‖2. In addition,
as the identity matrix Im×m is the average of the matrices J (Q)(zi)J (Q)(zi)T , we
can use the identity matrix to approximate each J (Q)(zi)J (Q)(zi)T . With this
approximation, the Sampson distance (3.7) becomes the least-square fitting error:

Q(z)T
(
J (Q)(z)J (Q)(z)T

)†
Q(z) ≈ Q(z)T Q(z) = ‖Q(z)‖2. (3.11)

This leads to the following constrained optimization problem:

Q∗ = arg minQ
1
N

∑N
i=1 ‖Q(zi)‖2,

subject to 1
N

∑N
i=1 J (Q)(zi)J (Q)(zi)T = Im×m.

(3.12)

This problem has a simple linear algebraic solution. Without loss of generality, we
assume that all the polynomials in Q(X) are of degree n and there is no polynomial
of degree strictly less than n that vanishes on the subspace arrangement A of interest.
Homogeneous polynomials of degree n have the form:

qi(X) = νn(X)T ci, i = 1, 2, . . . ,m. (3.13)
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Let C
.=

(
c1, c2, . . . , cm

)
. Then we have Q(X) = CT νn(X) and J (Q)(X) =

CT∇νn(X). Define two matrices

Σ .=
1
N

N∑
i=1

νn(zi)νn(zi)T , Γ .=
1
N

N∑
i=1

∇νn(zi)∇νn(zi)T . (3.14)

Using these notations, we rewrite the above optimization problem (3.12) as

C∗ = arg min
C

Trace(CT ΣC), subject to CT ΓC = Im×m. (3.15)

In comparison, the naive least-square fitting (3.2) minimizes the same objective func-
tion but subject to a different constraint: CT C = Im×m.

Using Lagrange multipliers and the necessary conditions for minima, one can
show that the optimal solution C∗ is such that its ith column c∗i is the ith generalized
eigenvector of the matrix pair (Σ,Γ):

Σc∗i = λiΓc∗i , i = 1, 2, . . . ,m, (3.16)

where 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λm are the m smallest generalized eigenvalues of (Σ,Γ).
Furthermore, as Γ is non-singular,7 c∗i is also the eigenvector associated with the ith
smallest eigenvalue of the matrix Γ−1Σ:

Γ−1Σc∗i = λic
∗
i , i = 1, 2, . . . ,m. (3.17)

As the optimal solution to the problem (3.12), the polynomials qi(X) = νn(X)T c∗i
usually give a good initialization to the problem (3.10). It usually takes only a few
more iterations for any reasonable gradient-descent method (such as the Levenberg-
Marquardt) to converge to the (global) minimum.

The generalized eigenvector fit has yet another statistical explanation from the
viewpoint of (Fisher) discriminant analysis. The matrix Σ can be viewed as a measure
of the intra-class distance – the closer a point is to one of the subspaces, the smaller the
(absolute) value of a fitting polynomial; and the matrix Γ can be viewed as a measure
of the inter-class distance – the norm of the derivative at a point in a subspace is
roughly proportional to its distance to other subspaces.8 According to discriminant
analysis, the optimal polynomial q(X) = νn(X)T c∗ for discriminating the subspaces
minimizes the Rayleigh quotient:

c∗ = arg min
c

cT Σc

cT Γc
. (3.18)

It is then easy to show that the optimal solution c∗ is exactly the generalized eigen-
vector of the matrix pair (Σ,Γ). Therefore, the fitting polynomials found via the
generalized eigenvector fit are the ones that are in a sense optimal for segmenting the
multiple subspaces.

3.1.3. Simulation Results. In this subsection, we demonstrate by simulation
how the normalization by Γ may significantly improve the eigenvalue spectrum of Σ.
That is, the generalized eigenvectors of (Σ,Γ) are less sensitive to the corruption of

7Otherwise there would be polynomial of degree less than n that fits the data, which contradicts
our assumptions.

8This is easy to see from an arrangement of hyperplanes.
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noise than the null space of Σ, which makes the estimation of the fitting polynomials
a more well conditioned problem. To see this, let us consider a set of points drawn
from two lines and one plane in R3 (see Figure 1.1) – 1000 points from the plane and
200 points from each line – with 5% Gaussian noise added.9 As Figure 3.1 illustrates,
the generalized eigenvalues of (Σ,Γ) provide a much sharper “knee point” than the
eigenvalues of Σ. With the new spectrum, one can more easily estimate the correct
number of polynomials that fit the data (in this case four polynomials).

Fig. 3.1. Top: Plot of the eigenvalues of the matrix Σ. Bottom: Plot of the eigenvalues
of the matrix Γ−1Σ.

3.2. Estimation of Subspace Arrangements via a Voting Scheme. In the
algebraic GPCA algorithm, the basis of each subspace is computed as the orthogonal
complement to the derivatives of the fitting polynomials at a representative sample
point. However, if the chosen point is noisy, it may cause a large error in the estimated
basis and subsequently cause a large error in the segmentation. From a statistical
point of view, more accurate estimates of the basis can be obtained only if we are
able to compute an average of the derivatives at many points in the same subspace.
However, a fundamental difficulty here is that we do not know which points belong
to the same subspace. There is yet another issue. In the algebraic GPCA algorithm,
the rank of the derivatives at each point is the codimension of the subspace to which
it belongs. In the presence of noise, one can determine the rank from the singular
values of the derivatives, i.e., using principal component analysis (PCA). However,
the rank can be erroneous if the chosen point is noisy. It is also difficult to find a
uniform threshold for PCA that works for points in different subspaces.

We assume below that the number of subspaces and their dimensions are known.
We show how to improve the estimates of the basis of each subspace by using col-
lectively the derivatives at all the sample points. The algorithm relies on a voting
method on the feature space of subspace basis parameters, which was inspired by
the classical Hough transform [2,47]. An important difference here is that we do not
quantize the feature space of basis vector parameters, since it is impossible to store

9The percentage is computed as the variance of the Gaussian relative to the diameter of the data
set.
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the whole quantized space in a computer when the dimensions of the subspaces are
high.

3.2.1. Arrays of Bases and Counters. Suppose the subspace arrangement is
a union of n subspaces: A = V1∪V2∪· · ·∪Vn. Let the dimensions of the subspaces be
d1, d2, . . . , dn and their codimensions be c1, c2, . . . , cn. Pick a sample point z1. The
Jacobian of the fitting polynomials Q(X) at z1 is J (Q)(z1). If there is no noise,
then rank(J (Q)(z1)) will be exactly the codimension of the subspace to which z1

belongs. When the samples are noisy, it is very difficult to determine the codimension
in this way. However, we know all the codimensions and the number of subspaces
having the same codimension. The idea is to calculate a basis under each codimension
assumption, and invoke a voting method to search for high consensus among all the
basis candidates over all samples.

Without loss of generality, we assume that c1, c2, . . . , cn have l distinct values
c′1 < c′2 < . . . < c′l. As we do not know the true codimension at the sample point z1,
we compute a set of candidate bases in column form:

Bi(z1) ∈ RD×c′i , i = 1, 2, . . . , l, (3.19)

as Bi(z1) collects the first c′i principal components of J (Q)(z1). Thus, each Bi(z1)
is a D × c′i orthogonal matrix.

To store the basis candidates B1(zj), B2(zj), . . . , Bl(zj) for all samples j =
1, 2, . . . , N , we create l arrays of bases U1, U2, . . . , Ul, where each Ui stores all can-
didate D × c′i matrices. Correspondingly, we create l arrays of voting counters
u1, u2, . . . , ul. Suppose Ui(j) ∈ RD×c′i stores a candidate basis, then ui(j) is an integer
that counts the number of sample points zk with Bi(zk) = Ui(j). Notice numerically
any other Bi(zk) cannot exactly be equal to Ui(j). We introduce a similarity measure
to compare two set of basis vectors in the next subsection.

3.2.2. Tally the Votes of the Subspaces. With the above definitions, we now
outline an algorithm that will select a set of bases for the n subspaces that achieves
the highest consensus on all the sample points. Suppose Ji is the size of the array
Ui and hence ui for all i = 1, 2, . . . , l. Initially, all Ji’s are equal to zero. For every
sample point zk,

1. we compute a set of basis candidates Bi(zk), i = 1, 2, . . . , l as in (3.19);
2. for each Bi(zk), we compare it with the bases already in the array Ui:

(a) if Bi(zk) = Ui(j) for some j, then increase the value of ui(j) by one;
(b) if Bi(zk) is different from any of the bases in Ui, then add Ui(Ji + 1) =

Bi(zk) as a new basis to Ui, and also add a new counter ui(Ji + 1) to
ui with the initial value ui(Ji + 1) = 1. Set Ji ← Ji + 1.

In the end, the bases of the n subspaces are chosen to be the n bases in the arrays
{U1, U2, . . . , Ul} that have the highest votes according to the corresponding counters
in {u1, u2, . . . , ul}. For instance, suppose the codimensions of 4 subspaces are 1, 3, 3, 4
in R5 and the distinct codimensions are c′1 = 1, c′2 = 3, and c′3 = 4. Then after the
bases are evaluated at all the samples, we select one basis candidate from U1 and one
from U3 with the largest numbers in u1 and u3, respectively, and two basis candidates
from U2 with the largest two numbers in u2.

In the above scheme, in order to compare Bi(zk) with bases in Ui when the data
are noisy, we need to set an error tolerance. This tolerance, denoted by τ , can be
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a small subspace angle chosen by the user.10 Thus, if the subspace angle difference
between Bi(zk) and Ui(j)

〈Bi(zk), Ui(j)〉 (3.20)

is less than τ , we set the new value of Ui(j) to be the average of its votes with Bi(zk)
added in:

Ui(j) ←
1

ui(j) + 1
(
ui(j)Ui(j) + Bi(zk)

)
, (3.21)

and increase the value of the counter ui(j) by one. Notice that the weighted sum may
no longer be an orthogonal matrix. If so, apply the Gram-Schmidt process to make
Ui(j) an orthogonal matrix again.

In case when subspaces have different dimensions, for the same sample point z, it
is possible more than one candidate basis Bi1(z), Bi2(z), . . . , Bij

(z) belongs to more
than one counter that has the highest vote. Our analysis shows that this ambiguity is
mainly caused by the fact that samples on a high-dimensional subspace may form a
low-dimensional subspace, e.g., sample points on a 2-D plane along the same direction
may result in high consensus as a line. To resolve this ambiguity, we choose highest
votes starting with the smallest codimension c′1. When a sample is grouped to a
subspace of smaller codimension, its votes in other counters will be removed and the
associated bases Ui(j) recalculated. We summarize the overall process as Algorithm
2.

Algorithm 2 (Generalized Principal Component Analysis with Voting).
Given a set of samples {z1, z2, . . . , zN} in RD and a parameter for angle tolerance τ , fit n
linear subspaces with codimensions c1, c2, . . . , cn:

1: Suppose there are l distinct codimensions, ordered as c′1 < c′2 < · · · < c′l. Allocate
u1, u2, . . . , ul to be l stacks of counters and U1, U2, . . . , Ul be l stacks of candidate bases.

2: Estimate the set of fitting polynomials Q(X), and compute their derivatives J (Q)(X)
for all zk.

3: for all sample zk do
4: for all 1 ≤ i ≤ l do
5: Assume zk is drawn from a subspace of codimension c′i. Find the first c′i principal

vectors of J (P )(zk) and stack them into the matrix Bi(zk) ∈ RD×c′i .
6: If 〈Bi(zk), Ui(j)〉 < τ for some j, increase ui(j) by one and reset Ui(j) to be the

weighted sum in (3.21). Otherwise, create a new candidate basis in Ui and a new
counter in ui with initial value one.

7: end for
8: end for
9: for all 1 ≤ i ≤ l do

10: Choose the highest vote(s) in ui with their corresponding basis/bases in Ui.
11: Assign the samples to their closest subspaces, and remove their votes in other counters

and bases of higher codimensions.
12: end for
13: Segment the remaining samples that are not in the stacks of the highest votes based on

the estimated bases.

10Please refer to [5] for numerical implementations of computing subspace angles. In MATLAB,
the built-in command is “subspace.”
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There are important features about the above voting scheme that are quite differ-
ent from the well-known statistical learning methods K-Subspaces [20] and EM [34] for
estimating subspace arrangements. The K-Subspaces and EM algorithms iteratively
update one basis for each subspace; while the voting scheme essentially keeps multiple
candidate bases per subspace through the process. Thus, the voting algorithm does
not have the same difficulty with local minima as K-subspaces and EM do.

There are other voting or random sampling methods developed in statistics and
machine learning, such as the least median estimate (LME) and random sampling
consensus (RANSAC). These methods are similar in nature as they compute multiple
candidate models from multiple down-sampled subsets of the data and then choose
the one which achieves the highest consensus (for RANSAC) or smallest median error
(for LME). The data that do not conform to the model are regarded as outliers. We
will discuss these methods in the context of dealing with outliers in Section 4.

3.2.3. Simulation Results. We provide a comparison of various algorithms for
the estimation and segmentation of subspace arrangements that we have mentioned
so far. They include: The EM algorithm, the K-Subspaces algorithm, the algebraic
GPCA algorithm, the GPCA algorithm with voting, as well as some combination of
them.

We randomly generate some subspace arrangements of some pre-chosen dimen-
sions. For instance, (2, 2, 1) indicates an arrangement of three subspaces of dimensions
2, 2, 1, respectively. We then randomly draw a set of samples from them. The sam-
ples are corrupted with Gaussian noises. Here we choose the level of noise to be 4%.
The error is measured in terms of the percentage of sample points that are wrong-
fully grouped.11 All cases are averaged over 100 trials. The performance of all the
algorithms are compared in Table 3.1. The reader can download the MATLAB codes
from our website.

Table 3.1
The percentage of sample points mis-grouped by different algorithms. The number of sub-

spaces and their dimensions are given to all algorithms. The EM and K-Subspaces algorithms
are randomly initialized. “GPCA-Voting+K-Subspaces” means the K-Subspaces method ini-
tialized with the GPCA-Voting algorithm. The sample number for each subspace is 200 times
its dimension.

Methods (2, 2, 1) ∈ R3 (2, 2, 2) ∈ R3 (4, 2, 2, 1) ∈ R5 (4, 4, 4, 4) ∈ R5

EM 29% 11% 53% 20%

K-Subspaces 27% 12% 57% 25%

Algebraic GPCA 10.3% 10.6% 39.8% 25.3%

GPCA-Voting 6.4% 9.2% 5.7% 17%

GPCA-Voting
5.4% 8.6% 5.7% 11 %

+ K-Subspaces

As we can see from this table, the voting scheme significantly improves the perfor-
mance of the (naive) algebraic GPCA algorithm. The performance is further improved
by running K-subspaces as a post-processing step, but not much.

3.3. Model Selection Criteria for Subspace Arrangements. The methods
that we have discussed so far for the estimation of subspace arrangements (e.g., EM,

11Notice that even with prior knowledge of the subspaces, due to the samples drawn at subspace
intersections and sample noises, the segmentation error cannot be zero.
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K-Subspaces, GPCA) assume that the number of subspaces and their dimensions are
known. If they are not given, the problem of fitting multiple subspaces to a set of
samples becomes much more elusive. For instance, sample points drawn from two
lines and one plane in R3 can also be fit by two planes, one of which is spanned by
the two lines. In Section 2, we have suggested that in this case one can apply the
algebraic GPCA algorithm in a recursive fashion to identify all the subspaces and
their dimensions.

However, when there is noise in the given data, the purely algebraic GPCA al-
gorithm may fail to return a meaningful solution. In fact, up till now, we have been
purposely avoiding a fundamental difficulty in our problem: it is inherently ambiguous
in fitting multiple subspaces for any given data set when the number of subspaces and
their dimensions are not given a priori. When the data are noisy or nonlinear, it is
unlikely that any model can fit the data perfectly except for the pathological cases:
1. All points are viewed as in a D-dimensional subspace – the ambient space; 2. Ev-
ery point is viewed as on an individual one-dimensional subspace through the origin.
In general, the more subspaces we use to overfit a data set, the higher accuracy we
may achieve. Thus, a fundamental question we address in this section is: Among the
class of subspace arrangements, what is the “optimal” model that fits a given data
set? From a practical point of view, we also need to know under what conditions
the optimal model exists and is unique, and more importantly, how to compute it
efficiently.

3.3.1. Model Selection Criteria for Subspaces. Many general-purpose model-
selection criteria have been developed in the statistics community and the algorithmic
complexity community for general classes of models. These criteria include

• Akaike Information Criterion (AIC) [1] (also known as the Cp statistic [33])
and Geometric AIC (G-AIC) [26].
• Bayesian Information Criterion (BIC) (also known as the Schwartz criterion,

see [19] and references therein).
• Minimum Description Length (MDL) [37] and Minimum Message Length

(MML) [55].
Although these criteria are originally motivated and derived from different points of
view (or in different contexts), they all share a common characteristic: The optimal
model should be the one that strikes a good balance between the model complexity
(typically depends on the dimension of the parameter space) and the data fidelity to
the chosen model (e.g., measured as the sum of squared errors assuming a Gaussian
noise model). In fact, some of the criteria are essentially equivalent despite their
different origins: Roughly speaking, BIC is equivalent to MDL; and AIC is equivalent
to the Cp statistic. It is not the intention to give a detailed review of all the model
selection criteria in this paper. In the following, we use AIC to illustrate some of the
key ideas behind model selection.

Given N independent sample points Z = {z1,z2, . . . ,zN} drawn from a distribu-
tion denoted by p(z, θ0), the maximum-likelihood estimate θ̂N of the parameter θ is
the one that maximizes the log-likelihood function L(θ, Z) =

∑N
i=1 log p(zi, θ). From

an information-theoretic point of view:

E[− log p(z, θ̂N )] =
∫ (
− log p(z, θ̂N )

)
p(z, θ0) dz (3.22)

corresponds to the expected code length that we use the optimal coding scheme of
p(z, θ̂N ) for a random variable with actual distribution p(z, θ0). Thus, for model
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selection, it is desirable to choose the model that minimizes the above expected log-
likelihood loss.

The Akaike information criterion (AIC) relies on an approximation to the above
expected log-likelihood loss that holds asymptotically as N →∞:

AIC .= − 2
N

L(θ̂N ,Z) + 2
d

N
≈ 2E[− log p(z, θ̂N )], (3.23)

where d is the number of free parameters for the class of models of interest. For an
(isotropic) Gaussian noise model with variance σ2, we have

L(θ̂N ,Z) = − 1
2σ2

N∑
i=1

‖zi − ẑi‖2,

where ẑi is the best estimate of zi given the model p(z, θ̂N ). Thus, if σ2 is known
(or approximated by the empirical sample variance), minimizing AIC is equivalent to
minimizing the Cp statistic: Cp = 1

N

∑N
i=1 ‖zi − ẑi‖2 + 2 d

N σ2, where the first term
is obviously the mean squared error (a measure of the data fidelity) and the second
term depends linearly on the dimension of the parameter space (a measure of the
complexity of the model).

Now consider multiple classes of models whose parameter spaces are of different
dimensions. Denote the dimension of model class m by d(m). Then AIC selects the
model class m∗ that minimizes the following objective function:

AIC(m) =
1
N

N∑
i=1

‖zi − ẑi‖2 + 2
d(m)
N

σ2. (3.24)

Although motivated by a different reason, the Bayesian information criterion
(BIC) results in a formula similar to AIC except that the factor 2 in front of the
second term in AIC is replaced by log(N) in BIC. Because normally log(N) � 2,
BIC penalizes complex models much more than AIC does. Thus, BIC tends to choose
simpler models. In general, no model selection criterion is always better than oth-
ers under all circumstances; the best criterion depends on the purpose of the model.
From our experience, AIC tends to provide more satisfactory results for estimation of
subspaces. That makes it more favorable in the context of PCA and GPCA.

We now discuss how to apply the above criterion to the problem of principal com-
ponent analysis (PCA) where we try to fit a subspace V of an unknown dimension d in
RD to a given set of data points Z = {z1,z2, . . . ,zN} ⊂ RD. Denote the projection
of each data point zi ∈ Z onto the subspace by ẑi and let Ẑ = {ẑ1, ẑ2, . . . , ẑN}.
Then, the sum of squared errors is ‖Z − Ẑ‖2 =

∑N
i=1 ‖zi − ẑi‖2.

The Grassmannian variety of dimension d subspaces of RD has dimension (D−d)d.
Therefore the Akaike information criterion (AIC) minimizes

AIC(d) .=
1
N
‖Z − Ẑ‖2 + 2

(Dd− d2)
N

σ2 (3.25)

for our model with parameter space of dimension Dd − d2 and Gaussian noise with
variance σ2, More recently, a geometric version of the Akaike information criterion
has been proposed by [26] which minimizes

GAIC(d) .=
1
N
‖Z − Ẑ‖2 + 2

(Dd− d2 + Nd)
N

σ2, (3.26)
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where the extra term Nd accounts for the number of coordinates needed to represent
(the closest projection of) the given N data points in the estimated d-dimensional
subspace. From the information-theoretic point of view, the additional Nd coordinates
are necessary if we are interested in encoding not only the model but also the given
data. This is often the case when we use PCA or GPCA for purposes such as data
compression and dimension reduction.

3.3.2. Effective Dimension of Samples on a Subspace Arrangement. If
we were to apply any of the model-selection criteria (or their concepts) to subspace
arrangements, at least two needs must be addressed::

1. We need to know how to measure the model complexity of arrangements of
subspaces (possibly of different dimensions).

2. We need to know how to balance properly the model complexity and the
modeling error for subspace arrangements, since the choice of a subspace
arrangement involves both continuous parameters (the subspace bases) and
discrete parameters (the number of subspaces and their dimensions),

Although model selection for subspace arrangements in its full generality is still an
open problem at this point, in the next two subsections, we introduce a few specific
approaches to attempt to solve the problem of model selection from slightly different
aspects. We hope the basic concepts introduced in this subsection and the next may
help the reader to appreciate better the subtlety and difficulty of the problem.

Definition 3.1 (Effective Dimension). Given an arrangement of n subspaces
A .= ∪n

j=1Vj in RD of dimension dj < D, and Nj sample points Zj drawn from each
subspace Vj, the effective dimension of the entire set of N =

∑n
j=1 Nj sample points,

Z = ∪n
j=1Zj, is

ED(Z,A) .=
1
N

( n∑
j=1

dj(D − dj) +
n∑

j=1

Njdj

)
. (3.27)

We contend that ED(Z,A) is the “average” number of (unquantized) real numbers
one needs to assign to Z per sample point in order to specify the configurations of the
n subspaces and the relative locations of the sample points in the subspaces.12 In the
first term of equation (3.27), dj(D−dj) is the total number of Grassmann coordinates
needed to specify a dj-dimensional subspace Vj in RD; in the second term of (3.27),
Njdj is the total number of real numbers needed to specify the dj coordinates of the
Nj sample points in the subspace Vj . In general, if there are more than one subspace
in A, ED(Z,A) can be a rational number, instead of an integer for the conventional
dimension.

Notice that in the above definition, the effective dimension of Z depends on the
subspace arrangement A. The reason is that in general there are many subspace
arrangements that can fit the same data set Z, as we have discussed in the beginning
of this section. Therefore, we define the minimum effective dimension of a given
sample set Z to be the minimum one among all possible subspace arrangements that
can fit the data set:13

MED(Z) .= min
A:Z⊂A

ED(Z,A). (3.28)

12We here choose real numbers as the basic “units” for measuring complexity in a similar fashion
to binary numbers, “bits,” traditionally used in algorithmic complexity or coding theory.

13The space of all subspace arrangements (with a bounded number of subspaces) is topologically
compact and closed, hence the minimum effective dimension is always achievable and hence well-
defined.
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Example 3.2. [Samples from One Plane and Two Lines] As shown in Figure
1.1, suppose that we have a set of samples drawn from one plane and two lines in
R3. Obviously, the points in the two lines can also be viewed as lying in the plane
that is spanned by the two lines. However, that interpretation would result in an
increase of the effective dimension since one would need two coordinates to specify
a point in a plane, as opposed to one in a line. For instance, suppose there are
fifteen points in each line; and thirty points in the plane. When we use two planes
to represent the data, the effective dimension is: 1

60 (2 × 2 × 3 − 2 × 22 + 60 × 2) =
2.07; when we use one plane and two lines, the effective dimension is reduced to:
1
60 (2× 2× 3− 22 − 2× 1 + 30× 1 + 30× 2) = 1.6. In general, if the number of points
N is arbitrarily large (say approaching to infinity), depending on the distribution of
the points on the lines or the plane, the effective dimension will be within 1 and 2,
the true dimensions of the subspaces.

As suggested by the above example, the subspace arrangement model that leads
to the minimum effective dimension normally corresponds to a “natural” and hence
“efficient” representation of the data in the sense that it achieves the best dimension
reduction among all possible subspace arrangements.

3.3.3. Minimum Effective Dimension of Noisy Samples. In practice, real
data are corrupted with noise, hence we normally do not expect a model to fit the data
perfectly. The conventional wisdom is to strike a good balance between the complexity
of the chosen model and the data fidelity. As all model-selection criteria exercise the
same rationale, we here adopt the geometric-AIC (GAIC) criterion (3.26)14 and it
leads to the following objective for selecting the optimal subspace arrangement model:

A∗ = arg min
A:Ẑ⊂A

{ 1
N
‖Z − Ẑ‖2 + 2σ2ED(Ẑ,A)

}
, (3.29)

where σ2 is the variance of the Gaussian noise model (3.3). However, this optimization
problem can be very difficult to solve: The variance σ2 might not be known a priori
and we need to search for the global minimum in the configuration space of all subspace
arrangements, which is not a smooth manifold and has very complicated topological
and geometric structures. The resulting computation can be prohibitive.

To alleviate some of the difficulties, in practice, we may instead minimize the
effective dimension subject to a maximum allowable error tolerance. That is, among
all the subspace arrangements that fit the data within a given error bound, we choose
the one with the smallest effective dimension. To this end, we define the minimum
effective dimension subject to an error tolerance τ as:

MED(Z, τ) .= min
A: ‖Z−Ẑ‖∞≤τ

ED(Ẑ,A), (3.30)

where Ẑ is the projection of Z onto the subspaces in A and the error norm ‖ · ‖∞
indicates the maximum norm: ‖Z− Ẑ‖∞ = max1≤i≤N ‖zi− ẑi‖. Based on the above
definition, the minimum effective dimension of a data set now becomes a notion that
depends on the error tolerance. In the extreme, if the error tolerance is arbitrarily
large, the “optimal” subspace arrangement for any data set can simply be the (zero-
dimensional) origin; if the error tolerance is zero instead, for data with random noise,

14We here adopt the GAIC criterion only to illustrate the basic ideas. In practice, depending on
the nature of the problem and its purpose, it is possible that other model selection criteria may be
more appropriate and effective.
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each sample point needs to be treated as a one-dimensional subspace in RD of its own
and that brings the minimum effective dimension up close to D.

In many applications, the notion of maximum allowable error tolerance is partic-
ularly relevant. For instance, in image representation and compression, the task is
often to find a linear or hybrid linear model to fit the imagery data subject to a given
peak signal to noise ratio (PSNR), where the noise becomes the different between the
original image and the approximate one. The resulting effective dimension directly
corresponds to the number of coefficients needed to store the resulting representation.
The smaller the effective dimension is, the more compact or compressed is the final
representation. In Section 5.2, we will see exactly how the minimum effective dimen-
sion principle is applied to image representation. The same principle can be applied
to any situation in which one tries to fit a piecewise linear model to a data set whose
structure is nonlinear or hybrid.

Unlike the geometric AIC (3.29), the MED objective (3.30) is relatively easy
to achieve. For instance, the recursive version of the GPCA algorithm discussed in
Section 2 can be easily modified to minimize the effective dimension subject to an
error tolerance: We allow the recursion to proceed only if the effective dimension
would decrease while the resulting subspaces still fit the data with the given error
bound.

3.3.4. Simulation Results. Figure 3.2 demonstrates the result of such a re-
cursive GPCA algorithm segmenting synthetic data drawn from two lines (100 points
each) and one plane (400 points) in R3 corrupted with 5% Gaussian noise. Given a
reasonable error tolerance, the algorithm stops after two levels of recursion (Figure
3.2 left). Note that the pink line is a “ghost” line at the (virtual) intersection of the
original plane and the plane spanned by the two lines.15 Figure 3.2 right is the plot
of the MED of the same data set subject to different levels of the error tolerance. As
we see, the effective dimension decreases monotonically with the increase of the error
tolerance.
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Fig. 3.2. Left: sample points drawn from two lines and a plane in R3 with 5% Gaussian
noise, are segmented recursively by the GPCA algorithm with an error tolerance τ = 0.05;
Right: plot of the MED versus the error tolerance.

15Points on the intersection of the two planes get assigned arbitrarily to either plane depending
on the random noise. If needed, the points on the ghost line can be merged with the plane by some
simple post-processing.
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Fig. 4.1. Results of GPCA (with voting) for samples drawn from two planes and one
line in R3, with 6% Gaussian noise as well as 6% outliers drawn from a uniform distribution
(marked as black asterisks “∗”). Left: the ground truth. Right: estimated subspaces and
segmentation result.

4. Estimation of Subspace Arrangements with Outliers. In many practi-
cal situations the sample points can be contaminated by some atypical samples known
as “outliers” in addition to the noise that we have discussed above. The application
of any of the GPCA algorithms to valid samples contaminated with such outliers can
lead to disastrous results. Both the estimated subspaces and the segmentation can
be far from the ground truth, as illustrated by the example in Figure 4.1. Thus, in
this section we introduce some relevant robust statistical techniques that can detect
or diminish the effect of outliers in estimating subspace arrangements.

Despite an extended history of interest and study, there is unfortunately no uni-
versally accepted definition of “outlier”.16 Most definitions (or tests) are based on
one of the following three guidelines:

1. Outliers form a set of small-probability samples with respect to the distri-
bution in question. The given data set is therefore an atypical set if such
samples constitute a significant portion of the data.

2. Outliers form a set of samples that are not consistent with (the model inferred
from) the remainder of the data. A measure of inconsistency is normally the
error residue of the sample in question with respect to the model.

3. Outliers form a set of samples that have relatively large influence on the
estimated model parameters. A measure of influence is normally the difference
between the model estimated with and without the sample in question.

Despite their dissimilarity, these guidelines result in essentially equivalent criteria for
testing for outliers. In different contexts, one of the guidelines may become more
natural or convenient to use than the others. In our context, as our goal is to obtain
the vanishing polynomials of the subspace arrangement, we assume that the “outliers”,
together with the valid samples, cannot be fit well by any polynomials.17

In the robust statistics literature, there have been extensive studies about outlier
detection and rejection [18,25,43,50]. Most of them are conducted with the assump-

16Earliest documented discussions among astronomers about outliers or “erroneous observations”
date back to mid 18th century. See [3,4,23] for a more thorough exposition of the studies of outliers
in statistics.

17In situations when a data set contains samples drawn from some nonlinear algebraic sets, e.g., a
quadratic surface, it is then no longer appropriate to view such data as outliers. One way to resolve
the problem is to view the linear and nonlinear structures together as an algebraic set and develop
solutions to this new class of hybrid models. The interested reader may refer to [36] for more detailed
discussion along this direction.
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tion that the valid samples points, i.e., the inliers, are drawn from a conventional
statistical (or geometric) model. In our case we need to examine how to apply the ba-
sic principals of robust statistics to subspace arrangements to determine which of the
existing techniques is the most relevant and efficient. In this section, we will discuss
first the simpler situation in which the percentage of outliers is known (Section 4.1).
Two methods, namely, the influence function and robust covariance estimator, both
can be adopted to robustify the GPCA algorithm. When the percentage of outliers is
not given, we propose a criterion to conveniently estimate the percentage in Section
4.2. Finally, in Section 4.3, we discuss several other common robust statistical tech-
niques such as the least median estimate (LME) [38] and random sampling consensus
(RANSAC) [15]. These techniques have been widely used in the areas of computer
vision, image processin, and pattern recognition. However, their own drawbacks have
limited them from being useful for subspace arrangements.

4.1. Robust Estimation of Vanishing Polynomials.

4.1.1. Influence Functions. When we try to estimate the parameter θ of the
distribution p(z, θ) from a set of samples {z1,z2, . . . ,zN}, every sample zi might have
uneven effect on the estimated parameter θ̂. The samples that have relatively large
effect are called influential samples and they can be regarded as outliers [8, 10,18].

To measure the influence of a particular sample zi, we may compare the difference
between the parameter θ̂ estimated from all the N samples and the parameter θ̂(i)

estimated from all but the ith sample. We consider the maximum-likelihood estimate
as an example:

θ̂ = arg max
θ

N∑
j=1

log p(zj , θ), θ̂(i) = arg max
θ

∑
j 6=i

log p(zj , θ), (4.1)

and the influence of zi on the estimation of θ can be measured by the difference

I(zi; θ)
.= ‖θ̂ − θ̂(i)‖. (4.2)

The function I(zi; θ) is also called the sample influence function in the literature of
robust statistics.

If a set of sample points {z1,z2, . . . ,zN} is drawn from a subspace arrangement
A = ∪n

i=1Vi ⊂ RD, then GPCA relies on obtaining the set of polynomials Q(X) =
{q1(X), q2(X), . . . , qm(X)} of degree n that vanish on the subspace arrangement. As
we have discussed in Section 3, the coefficients C =

(
c1, c2, . . . , cm

)
of the polynomials

{qi(X) = νn(X)T ci} are estimated from the eigenvectors associated with the smallest
eigenvalues of the matrix Σ for least-square fitting or the generalized eigenvectors of
the matrix Γ−1Σ (see (3.17)). Regardless of the case, we denote the estimate as Ĉ.

The outliers affect the final results mainly by influencing the eigenvectors Ĉ, and
subsequently lead to erroneous estimate of the coefficients of the vanishing polynomi-
als. Therefore, to eliminate the effect of outliers, we seek a robust method to estimate
the eigenvectors in such a manner that they would be insensitive to the outliers, or to
reject the outliers before the eigenvectors are estimated. Such a robust modification
applies to all versions of GPCA introduced earlier.

Notice that for our problem, we are not interested in the individual vectors in Ĉ,
but rather the eigensubspace spanned by the eigenvectors: Ŝ = span(Ĉ). Therefore,
the influence of the sample zi on the estimate of the eigensubspace can be measured



32 Y. MA, A. Y. YANG, H. DERKSEN, AND R. FOSSUM

by:

I(zi;S) = 〈Ŝ, Ŝ(i)〉, (4.3)

where 〈·, ·〉 denotes the subspace angle between two subspaces [5], and Ŝ(i) is the
eigensubspace estimated with the ith sample omitted. All samples then can be sorted
by their influence values, and the ones with the highest values will be rejected as “out-
liers” and will not be used for the estimation of the eigensubspace (or the vanishing
polynomials).

Equation (4.3) is a precise expression in describing the influence of a sample
on the estimation of the vanishing polynomials Q(X). However, the complexity of
the resulting algorithm is rather high. Suppose we have N samples, then we need
to perform PCA N + 1 times in order to evaluate the influence values for the N
samples. In light of this drawback, some first order approximations of the influence
values were developed at roughly the same period as the sample influence function
was proposed [8,10], when the computational resource was scarcer than it is today. In
robust statistics, formulae that approximate a sample influence function are referred
to as theoretical influence functions.

While it is rather difficult to approximate the influence of each sample on the
estimated subspace S, it is relatively easier to approximate the sample’s influence on
the (coefficient) vectors {c1, c2, . . . , cm} as the eigenvectors of the sample covariance
matrix

Σ .=
1

N − 1

N∑
i=1

νn(zi)νn(zi)T . (4.4)

The basic idea here is to assume that each cj is a random vector with a cumulative
distribution function (c.d.f) F . The distribution can be perturbed by a change of the
weighting ε ∈ [0, 1] of the ith sample:

Fi(ε) = (1− ε)F + εδi, (4.5)

where δi indicates the c.d.f. of a random variable that takes the value zi with prob-
ability one. When F becomes Fi(ε), let cj(ε) be the new estimate of cj after the
change. Now we can define a theoretical influence function I(zi; cj) of the ith sample
on cj as the first-order approximation of the above sample influence:

cj(ε)− cj = I(zi; cj)ε + h.o.t.(ε). (4.6)

As derived in [10], the theoretical influence function I(zi; cj)=̇ limε→0
cj(ε)−cj

ε is given
by

I(zi; cj) = −zj

∑
h6=j

zhch(λh − λj)−1 ∈ RM [D]
n , (4.7)

where {λj , cj} are the eigenvalues and eigenvectors of the sample covariance matrix
Σ and zh is the hth principal component (PC) of the sample zi, i.e., the coordinate
value with respect to the hth eigenvector ch of the covariance matrix Σ. A further
discussion of this solution can be found in [25].

Notice that in order to compute the theoretical influence function (4.7), one needs
only to compute once the sample covariance matrix Σ and its eigenvalues and eigen-
vectors. Thus, computationally, it is much more efficient than the sample influence
function.
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4.1.2. Robust Covariance Estimators. As we noticed in the estimation of
the vanishing polynomials, if we view the vectors νn(zi) as the random samples, the
problem becomes how to estimate robustly the covariance matrix of the random vector
u = νn(z). It is shown in [14] that, if both the valid samples and the outliers are of
zero-mean Gaussian distribution and the covariance matrix of the outliers is a scaled
version of that of the valid samples, then the Mahalanobis distance:

di = uT
i Σ−1ui (4.8)

based on the empirical sample covariance Σ = 1
N−1

∑N
i=1 uiu

T
i is a sufficient statistic

for the optimal test that maximizes the probability of correct decision about the
outliers (in the class of tests that are invariant under linear transformations). Thus,
one can use di as a measure to down-weight or discard outlying samples while trying
to estimate the correct sample covariance Σ.

Depending on the choice of the down-weighting schemes, many robust covariance
estimators have been developed in the literature. Among them, two methods have
been widely adopted, namely, the M-estimator [23] and multivariate trimming (MVT)
[17] . A major constraint for robust covariance estimators is the maximal percentage of
outliers in a data set that an algorithm can effectively handle. This percentage is called
the breakdown point [18, 23]. Roughly speaking, for the M-estimator it is inversely
proportional to the dimension of the samples, and it usually becomes prohibitive
when the data dimension is higher than 20. For MVT, it is equal to the percentage
of samples trimmed from the data set, which can be very high. The convergence rate
of MVT is also the fastest among all methods of this kind. In the case of subspace
arrangements, the dimension of u = νn(z), i.e. M

[D]
n , is normally very high. Thus,

the M-estimator becomes impractical and MVT becomes the method of choice.
The MVT method proceeds as follows. As the random vector νn(z) is not nec-

essarily zero mean, we first obtain a robust estimate of the mean ū of the samples
{ui = νn(zi)} (using techniques such as in [17]). We then need to specify a trimming
parameter α, which is essentially equivalent to the outlier percentage. To initialize
the covariance matrix Σ0, all samples are sorted by their Euclidean distance ||ui−ū||,
and Σ0 is calculated as:

Σ0 =
1

|U | − 1

∑
h∈U

(uh − ū)(uh − ū)T , (4.9)

where U is the subset of first 100(1 − α)% samples with the smallest distance. In
the kth iteration, the Mahalanobis distance of each sample, (ui − ū)T Σ−1

k−1(ui − ū),
is calculated, and Σk is again calculated using the set of first 100(1 − α)% samples
with the smallest Mahalanobis distance. The iteration terminates when the difference
between Σk−1 and Σk is small enough.

To proceed with the rest of the GPCA algorithm, we treat the trimmed samples
in the final iteration as the outliers, and estimate Q(X) from the last m eigenvectors
of the resulting covariance matrix.

4.1.3. Performance Comparison. As we have mentioned before, in this sub-
section, we assume the outlier percentage is known, and the robust methods reject
the same amount of samples from a data set. We test and compare the performance
of the three robust methods discussed above. Two synthetic data sets are used for
the test. Data set one: three subspaces in R3 of dimensions 2, 2, 1, with 400, 400, 200
sample points drawn from the subspaces, respectively. Data set two: four subspaces
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in R5 of dimensions 4, 2, 2, 1, with 600, 400, 400, 300 sample points. For each data set,
we first add 6% Gaussian noise to all the valid samples, then generate an additional
set of outliers with percentages ranging from 0% to 48% of the total sample number,
and the rejection rate is set to be the same as the true outlier percentage. At each
percentage level, the simulation is repeated for 100 times.

Notice that because of randomness, some outliers may be very close to the sub-
spaces and are not rejected as such; some samples might be rejected as outliers because
of large noise. Thus, the segmentation error becomes a less accurate index for the
performance of the algorithms. Nevertheless, the average subspace angle difference
between the a priori model and the estimated one provides a reasonable measure of
the change of the subspace structures. Figure 4.2 shows the average subspace angle
difference (in degree). Table 4.1 summarizes the average running time of the MAT-
LAB codes for one trial on a dual 2.7GHz G5 Macintosh workstation. The reader can
download the MATLAB codes from our website.

(a) (2, 2, 1) in R3 (b) (4, 2, 2, 1) in R5

Fig. 4.2. Average space angle error of GPCA with vanishing polynomials estimated by
the three robust methods.

Table 4.1
Average time for solving (2, 2, 1) in R3 with sample numbers (400, 400, 200).

Outlier Percentage 0% 4% 8% 16% 24% 32% 48%

Data Size 1000 1042 1087 1190 1316 1470 1923

Sample Influence 5.4s 2.5m 2.8m 3.7m 5m 7.8m 18m

Theoretical Influence 5.4s 9s 9.2s 9.3s 9.3s 9.6s 10.8s

MVT 5.4s 5.4s 5.5s 5.6s 5.7s 5.7s 5.8s

To summarize, given a sample rejection rate that is close to the true outlier
percentage, the robust covariance estimator turns out to be the most accurate and
fastest method for subspace arrangements. In fact, the MVT algorithm usually only
takes less than 10 iterations to converge regardless of the outlier percentage, and
the estimate does not deteriorate when the outlier percentage increases. On the
other hand, the sample influence method and the theoretical influence method give
reasonable results only when the outliers are less than 15%. The performances of the
two methods are very close, but the sample influence method is significantly slower
than the theoretical influence method.

4.2. Estimating the Outlier Percentage. The above techniques did not com-
pletely solve the outlier issue, since usually we do not know the outlier percentage,
and hence the rejection rate, for a given data set. In this subsection, we propose a
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way to estimate the outlier percentage. The percentage will be so determined that
the GPCA algorithm returns a “good enough” subspace arrangement model from the
remaining sample points. The main idea is to conduct the outlier rejection process
multiple times under different rejection rates, and verify the “goodness” of the re-
sulting models. The MVT covariance estimator becomes the natural choice because,
besides its speed and accuracy comparing to the two influence function methods, it
has the outlier rejection rate built in the algorithm.

We first illustrate the basic ideas with an example. We randomly draw a set of
sample points from three subspaces of dimensions (2, 2, 1) in R3 with sample sizes
(200, 200, 100) and add 6% Gaussian noise. Then, the data are contaminated by
16% uniformly distributed outliers. We use MVT to trim out various percentages of
samples ranging from 0% to 54%, and compute the maximal residual of the remain-
ing samples with respect to the subspace arrangement given by the GPCA-Voting
algorithm. Figure 4.3 shows the plot of the maximal residual versus the rejection
rate. The maximal sample residual reaches a plateau right after 7% rejection rate,
and the residual decreases when the rejection rate increases. Figure 4.4 shows the
segmentation results at rejection rate 7% and 38%, respectively.

Fig. 4.3. Maximal sample residuals with various rejection rates on subspace arrangement
models estimated using the MVT covariance estimator. The data set is contaminated by 16%
uniformly distributed outliers.

Fig. 4.4. Subspace segmentation results. Left: a priori data (outliers are marked as black
asterisks “∗”). Middle: estimation result with 7% samples rejected. Right: estimation result
with 38% samples rejected.

In the experiment, although the 7% rejection rate is far less than the a priori 16%
outlier percentage, the remaining outliers in the sample set are nevertheless close to
the subspaces (in terms of their residuals w.r.t. the estimated subspace arrangement),
and the resulting subspace arrangement is close to the ground truth. We also see that
MVT is moderately stable when the rejection rate is higher than the actual percentage
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of outliers. In this case, when the rejection rate is 38%, MVT also trims out inlying
samples that have relatively larger noise, which results in even a smaller maximal
residual as shown in Figure 4.3.

Therefore, one does not have to reject the a priori outlier percentage in order to
obtain a good estimate of the arrangement. An estimate of the percentage will be the
rejection rate that results in small sample residuals of the remaining sample points.
These observations suggest two possible approaches for determining the rejection rate
from a plot of the maximal sample residual:

1. The rejection rate can be determined by finding the first “knee point,” or
equivalently the first “plateau,” in the residual plot (in the above example,
at 7%).

2. The rejection rate can be determined by a pre-specified maximal residual
threshold.

In practice, one may choose to use either approach based on the nature of the applica-
tion. However, for the first approach, it is commonly agreed in the pattern recognition
literature that a method that finds knee points and plateaus in a plot may not be
robust if the data are noisy, since they are both related to the first-order derivatives
of the residual curve. For example, in Figure 4.3, the rejection rate 3% is arguably a
knee point too. In addition, a well-shaped plateau may not exist in the residual plot
at all if the a priori outlier percentage is small. Two such examples will be shown in
Figure 5.2.

In this paper, we propose to determine the outlier percentage as the smallest
one such that the maximal sample residual is smaller than a given residual threshold
for several consecutive rejection rates (i.e., the residual “stabilizes.”) The residual
threshold can be seen as the variance of the noise of the valid data. It plays a similar
role as the error tolerance when we determine the minimum effective dimension of a
noisy sample set (see Section 3.3.3). The choice of a residual threshold also helps us
to conduct a fair comparison with other robust statistical techniques, in particular
the RANSAC algorithm, later in this section. Algorithm 3 gives an outline of the
resulting algorithm, which we refer to as Robust Generalized Principal Component
Analysis (RGPCA).

To demonstrate the performance of the algorithm, we conduct three simulated
experiments: 1. Three subspaces with dimensions (2, 2, 1) in R3 and sample sizes
(200, 200, 100). 2. Four subspaces with dimensions (4, 2, 2, 1) in R5 and sample sizes
(400, 200, 200, 100). 3. Three subspaces with dimensions (5, 5, 5) in R6 and sample
sizes (600, 600, 600). The maximal data magnitude is 1, and it is corrupted with 6%
Gaussian noise and uniformly distributed outliers of a series of percentages between 0%
to 48%. The experiment is repeated 100 times at each percentage. In the experiment,
the residual threshold is fixed at 0.05. Figure 4.5 shows the results of the average
angle error. Table 4.2 shows the average time of the algorithm on a dual 2.7G Hz
Macintosh workstation.

Table 4.2
Space angle errors and average time for estimating the three subspace arrangements with

20% uniform distributed outliers via RGPCA.

Arrangement (2, 2, 1) in R3 (4, 2, 2, 1) in R5 (5, 5, 5) in R6

Inlying Sample Size (200, 200, 100) (400, 200, 200, 100) (600, 600, 600)

Angle Error (degree) 1.8 1.7 8

Time Lapse 46s 23m 8m
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Algorithm 3 (Robust Generalized Principal Component Analysis).
Given a set of samples {z1, z2, . . . , zN} in RD, a parameter for angle tolerance τ ,
and a parameter for residual threshold σ, fit n linear subspaces with codimensions
c1, c2, . . . , cn:

1: Set a maximal possible outlier percentage M%.
2: Normalize the data such that the max vector magnitude is 1.
3: for all rejection rate 0 ≤ r ≤ M do
4: Remove r% samples using MVT.
5: Call GPCA-Voting (Algorithm 2) on the remaining sample points with parameters τ

and c1, c2, . . . , cn.
6: Calculate the maximal residual σmax w.r.t. the estimated subspace arrangement.
7: if σmax < σ for 3 consecutive rejection rates then
8: Break, and obtain the final estimate.
9: end if

10: end for
11: if σmax > σ then
12: ERROR: the given σ is too small.
13: else
14: Assign samples as inliers if their residuals w.r.t. the model are less than σ.
15: end if

(a) (2, 2, 1) in R3 (b) (4, 2, 2, 1) in R5 (c) (5, 5, 5, ) in R6

Fig. 4.5. Average space angle errors (in degree) of arrangements estimated by RGPCA.

In summary, assuming that the variance of the noise of inliers are somewhat
known, the RGPCA algorithm can successfully recover a subspace arrangement from
the data set contaminated by a large amount of outliers and noise. We will apply the
algorithm to solve some real-world problems in computer vision in Section 5.1.

4.3. Other Robust Statistical Techniques. The above robust techniques
have one thing in common: To begin with, they all somewhat rely on an estimate of
the model from all the samples. This to some extent puts a limit on the amount of
outliers that these techniques can deal with. Depending on the nature of the data
and the actual implementation of the algorithm, these techniques, particularly robust
covariance estimators, can only handle up to 50% outliers [39, 43]. There is yet an-
other category of robust statistical techniques that are based on random sampling,
including but not limited to the least median estimate (LME) [38], random sampling
consensus (RANSAC) [15], and the Hough transform [2] developed in the computer
vision literature. They typically start with certain estimates of the model from ran-
domly drawn subsets of the whole sample set and then select the best one in terms
of the resulting residual or consensus for the remaining samples. In principle, these
techniques can deal with larger than or equal to 50% outliers.

In the context of subspace segmentation, there are at least three possible ways to
estimate an arrangement model using the random sampling scheme. In the following,
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we briefly discuss their implementations and difficulties in being applied to subspace
arrangements.

1. Estimating Vanishing Polynomials. Similar to the previous methods, a ran-
dom sampling algorithm can be applied to the estimation of a set of polynomi-
als that consistently vanish on a subset of the sample data. In this approach,
the number of random samplings becomes prohibitive when the model dimen-
sion is high. For instance, in the context of GPCA, assume the dimension of
the vector νn(z) is 70 (which corresponds to the case of 4 subspaces in R5).
To estimate a hyperplane in R70 with 20% outliers, in order to have at least
one subset of 69 inliers with probability 0.95, on needs to sub-sample over 14
millions subsets, not to mention that we still need to use GPCA to calculate
the subspace bases using the resulting polynomials. This drawback makes
it impractical to apply random sampling techniques to the estimation of the
vanishing polynomials.

2. Estimating One Subspace at a Time. One can also consider to apply the
random sampling techniques to find one subspace at a time. The number
sub-samplings becomes relatively reasonable in this case. For instance, for
4 hyperplanes in R5 with 20% outliers, suppose the samples are somewhat
evenly distributed among the 4 hyperplanes. Then, with respect to each
hyperplane, the outliers are actually 80%. In order to get at least one subset
of 4 inliers with probability 0.95, we need to sub-sample about 1,900 subsets.
However, when an arrangement contains subspaces of different dimensions,
this approach leads to many complications that severely limit its performance:
1. If one tries to find higher-dimensional subspaces first, the model will over-
fit lower-dimensional subspaces or combinations of multiple subspaces, and
they are more likely to rank high in the consensus test. 2. If one tries to
estimate lower-dimensional subspaces first, subsets from higher-dimensional
subspaces or even intersections of these subspaces may likely win out first in
the consensus test.

3. Estimating Mixture Models. For a mixture model such as a subspace arrange-
ment, another natural sampling scheme is to sub-sample a set of inliers drawn
on all subspaces. For instance, to estimate an arrangement model of three
subspaces of dimensions (5, 5, 5) in R6, we sub-sample 15 samples each time,
and evenly partition the set into three subsets and estimate three individ-
ual subspace models. Although an arrangement model is directly obtained
from this approach, unfortunately, the number of samplings is still high even
for a relatively small number of subspaces. To estimate the above arrange-
ment model with 600 inliers drawn from each subspace and 20% outliers, one
needs to sub-sample over 1.2 billions subsets to have one subset of 15 inliers
with probability of 95%. To estimate the arrangement with four subspaces of
dimensions (4, 2, 2, 1) and sample sizes (400, 200, 200, 100), respectively, one
also needs to sub-sample more than 2 million times with 95% confidence. We
have implemented this method in MATLAB, and the results of three simu-
lations are shown in Table 4.3. The numbers of sub-samplings shown in the
table are the smallest ones to achieve reasonable segmentation results. Al-
though they are much smaller than the theoretical ones with 95% confidence,
the algorithm is significantly slower than RGPCA.

In the computer vision literature, RANSAC has shown good performance for
some special subspace arrangements. For instance, if all subspaces are of the same
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Table 4.3
Space angle errors and average time for estimating the three subspace arrangements with

20 percentage outliers via RANSAC. With similar segmentation performance given in Table
4.2, RANSAC is much more time-consuming.

Arrangement (2, 2, 1) in R3 (4, 2, 2, 1) in R5 (5, 5, 5) in R6

Inlying Sample Size (200, 200, 100) (400, 200, 200, 100) (600, 600, 600)

Number of Samplings 5,000 1,000,000 10,000,000

Angle Error (degree) 1.5 3.5 10.2

Time Lapse 27s 5 hours > 2 days

dimension, the second approach has been used to iteratively recover one subspace
model at a time [48]. If the subspace dimensions have different dimensions, a Monte
Carlo scheme can be applied to speed up the third approach for the estimation of a
hybrid model [42, 49]. However, none of the special cases seems to generalize well to
others. At the time this paper is written, we are not yet aware of any implementation
of robust techniques whose performance is competitive against the GPCA/RGPCA
methods discussed earlier, even in the range of less than 50% outliers for relatively
small number of subspaces (say 4) in a relatively low-dimensional ambient space (say
6). The authors would appreciate any information about any unified implementation
of these techniques that works well for general subspace arrangements.

5. Applications. There have been many successful applications of the algebraic
GPCA algorithm and its statistical variations in a wide range of research areas, includ-
ing computer vision, image processing, pattern recognition, and system identification.
In this section, we present a couple of representative examples that demonstrate the
basic reasons why subspaces arrangements may become the model of choice in many
real-world problems.

Roughly speaking, there are two categories of applications in which subspace
arrangements have proved useful. In the first category, the given mixed data are
known to have a piecewise-linear structure. That is, the data can be partitioned into
different subsets such that each subset is drawn from a linear subspace model. Then
we can apply GPCA to extract such hybrid linear structures. This is the case with
motion segmentation in computer vision (see Section 5.1). In the second category,
the exact structure of the given data is more complex, but known to be somewhat
heterogeneous or even nonlinear. Then we can apply GPCA to find a hybrid linear
model that can approximate the data. The resulting model provides a compact (lossy)
representation of the data as well as a partition of the data into homogeneous subsets.
This is the case with sparse image representation in image processing (see Section 5.2).

5.1. Motion Segmentation in Computer Vision. The observed scene of a
video sequence typically consists of multiple objects moving independently against
the background. Suppose multiple feature points are detected on the objects and the
background. These could be either corner points or other local texture patterns that
are invariant to camera motions. An important problem in computer vision is how
to group these feature points that belong to different moving objects. More precisely,
denote by {X1,X2, . . . ,XN} ⊂ R3 a set of points in the three-dimensional scene
that are attached either to the moving objects or to the background. Suppose the
video sequence contains F frames of images. The image of every Xj in the ith image
frame is denoted by zij ∈ R2, a point in the two-dimensional image plane. Then the
problem is how to group the images zij so that for each subset, their corresponding
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Xj ’s belong to the same moving object or the background in the 3-D scene.
Of course, the problem depends on how the 3-D points X1,X2, . . . XN are pro-

jected onto the image plane (i.e., the camera model) and what class of motions we
consider for Xj or for zij (i.e., the 3-D or 2-D motion models). Nevertheless, it has
been shown that the motion segmentation problem can be converted to a subspace-
segmentation problem for most motion models that have been considered in computer
vision [52]. Thus, the GPCA algorithm in this paper provides a unified solution to
all the possible cases. We present below one of those cases that has some practical
importance.

For feature points on one object, the projection can be modeled as an affine
camera model18 from R3 to R2:

zij = AiXj + bi ∈ R2 for all i = 1, 2, . . . , F, (5.1)

where Ai ∈ R2×3 and bi ∈ R2 are the affine camera parameters for the ith frame. If
we stack all the image measurements into a 2F ×N matrix W , we obtain

W
.=

z11 · · · z1N

...
...

zF1· · ·zFN


2F×N

=

A1 b1

...
...

AF bF


2F×4

[
X1 · · · XN

1 · · · 1

]
4×N

. (5.2)

Notice that the product of the two matrices on the right hand side of the equation
should result in a matrix of maximum rank 4. It follows that rank(W ) ≤ 4, hence the
2-D trajectories of the image points across multiple frames, i.e. the columns of W ,
live in a subspace of R2F of dimension less than 5.

For multiple moving objects, it can be shown under mild conditions that the
trajectories of their image points span different subspaces in R2F . Thus, if we view
the columns of W as the sample points, then these sample points belong to multiple
subspaces (of dimension less than 5) in R2F . In the computer vision literature, many
algorithms have been developed to solve the problem of segmenting the points to their
respective subspaces, see [9, 27,44] and references therein.

We first give the experimental results of GPCA-Voting (Algorithm 2) on two
outdoor sequences taken by a moving camera tracking a car moving in front of a
parking lot and a building (sequences A and B), and one indoor sequence taken
by a moving camera tracking a person moving his head (sequence C), as shown in
Figure 5.1. The data for these sequences are borrowed from [28], which consist of
outlier-free point correspondences in multiple views and are available at the website:
http://www.suri.it.okayama-u.ac.jp/data.html.

We apply GPCA on the three sequences. Given N feature points in F consecutive
frames, we first stack all points into 2F -dimensional vectors

zj = [zT
1j ,z

T
2j , . . . ,z

T
Fj ]

T ∈ R2F , j = 1, 2, . . . , N, (5.3)

and project the sample points to a 5-dimensional space by PCA. Then we use Algo-
rithm 2 to segment two hyperplanes of dimension 4 in the 5-dimensional space. For all
three cases, the angle tolerance is fixed at 0.3 rad. GPCA-Voting gives a percentage
of correct classification of 100.0% for all three sequences as shown in Table 5.1. The
table also shows results reported in [28] from other existing multiframe algorithms for
motion segmentation.

18A more precise model for conventional cameras is a perspective projection. However, when the
objects have a small depth variation relative to their distance to the camera, an affine projection is
a good approximation.
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Fig. 5.1. The first and last frames of sequences A (left), B (middle) and C (right) with point
correspondences superimposed.

Table 5.1
Classification rates given by various subspace segmentation algorithms for sequences A, B, C.

Sequence A B C
Number of points 136 63 73
Number of frames 30 17 100
Costeira-Kanade 60.3% 71.3% 58.8%
Ichimura 92.6% 80.1% 68.3%
Kanatani: subspace separation 59.3% 99.5% 98.9%
Kanatani: affine subspace separation 81.8% 99.7% 67.5%
Kanatani: multi-stage optimization 100.0% 100.0% 100.0%
GPCA-Voting 100.0% 100.0% 100.0%

Next, we demonstrate the performance of RGPCA (Algorithm 3) on sequence A
and C with original tracking outliers added in, as shown in Figure 5.2. The data are
borrowed from [44], which are also available at the website: http://www.suri.it.
okayama-u.ac.jp/e-program-separate.html. The reported outlier percentages in
[44] were 1.4% and 30%, respectively. We use Algorithm 3 to segment two hyperplanes
of dimension 4 in both sequences. For both cases, the angle tolerance is fixed at 0.3
rad, and the boundary tolerance is fixed at 0.065. The segmentation results are shown
in Figure 5.3. The RGPCA algorithm achieves perfect segmentation with the rejection
rate at 0% and 18% for sequence A and C, respectively, which outperforms the results
reported in [44].

In sequence A, the camera is far away from the scene, so the projection relation
is well described by the affine camera model (5.1), which also results in very small
sample residuals in Figure 5.2. The spike in the plot of maximal sample residuals
indicates the transition phase when all features on the car are trimmed out by the
algorithm.

In sequence C, because the camera is close to the foreground object, the affine
camera model does not approximate well the actual camera projection. Furthermore,
the motion of the man’s upper body is non-rigid, which leads to outliers on the face and
shoulders. These observations are consistent with the result of the maximal sample
residuals shown in Figure 5.2. We notice that the second plateau in the residual plot
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Fig. 5.2. The first (left) and last (middle) frames of sequences A and C with the original
tracking outliers. The right column shows the maximal residual values of the two sequences
with various rejection rates using the MVT algorithm. Sequence A contains 140 feature
points, and sequence B contains 107 feature points.

(a) Segmentation of sequence A. The estimated outlier percentage is 0%.

(b) Segmentation of sequence C. The estimated outlier percentage is 18%

Fig. 5.3. Segmentation results of sequences A and C. Left: group 1. Middle: group 2.
Right: outliers.

indicates that a good segmentation can be achieved at the 30% rejection rate, which
conforms to the percentage given in [44]. To make the comparison complete, we show
the segmentation result of RGPCA with 30% rejection rate using MVT in Figure
5.4. Although more samples are trimmed as outliers, the algorithm still gives good
segmentation on the inlying samples.

5.2. Hybrid Linear Representation of Images. An important problem in
image processing is to find efficient and sparse representations of images (rather than
the original bitmaps). Such representations are often the first step for many subse-
quent processes of the images: compression, classification, retrieval, and synthesis,
etc. A popular and still dominant approach to represent images is to transform the
images via certain linear transformations so that the energy of the image will be
concentrated in the coefficients of a sparse set of bases.
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Fig. 5.4. Segmentation results of C with 30% rejection rate. Left: group 1. Middle:
group 2. Right: outliers.

A linear transformation can be either pre-fixed for all images (such as the dis-
crete cosine transform used for the JPEG standard and the wavelet transform for
the JPEG2000 standard) or adaptive for each image (such as the Karhunen-Loève
transform that is equivalent to PCA). However, natural images typically exhibit multi-
modal statistics as they usually contain many heterogeneous regions with significantly
different geometric or statistical characteristics, loosely known as “textures.” Figure
5.5 shows a typical example. Such heterogeneous data can be better-represented using
a mixture of linear models, one for each a homogeneous subset. Figure 5.6 illustrates
the basic idea.

Fig. 5.5. Left: The baboon image. Right: The coordinates of each dot are the first three
principal components of a 2× 2 color block of the image (stacked into a vector in R12). There is a
visible multi-modal structure in the data.

z ∈ R12

G

B

R

I

V1

V2 V3

R12

Fig. 5.6. In a hybrid linear model, vectors {zi} (obtained by stacking the image blocks) are
assumed to reside in multiple subspaces which may have different dimensions.

Obviously, the same assumptions can be made for any transformed image, say



44 Y. MA, A. Y. YANG, H. DERKSEN, AND R. FOSSUM

a sub-sampled version of the image and its residuals. Figure 5.7 left shows a three-
level representation of the baboon image in terms of a (twice) sub-sampled version
and its residuals at two higher level. Figure 5.7 right shows the segmentation of the
sub-sampled image and its residuals according to the subspaces of their associated
hybrid linear models. Using a slight variation of the GPCA algorithm, the number
and dimensions of the subspaces of each hybrid linear model are found automatically
in such a way that they minimize the effective dimension of the imagery data subject
to a given error threshold. For more details about the algorithmic implementation,
the reader may refer to [21]. The source code of the algorithm can be found at:
http://perception.csl.uiuc.edu/gpca.

Fig. 5.7. A multi-scale representation of the Baboon image. Left: Twice sub-sampled image
and its residuals at two higher levels. Right: The segmentation of vectors (2× 2 blocks) by a hybrid
linear model at each level – different subspaces are denoted by different colors. The black regions
correspond to data vectors whose energy is below a given error threshold.

Typically, such a multi-scale scheme can achieve a more compact representation
because it extracts low-frequency parts of the image first.19 Figure 5.8 gives a com-
parison of the efficiency of different lossy image representation schemes for the baboon
image: the discrete cosine transform (DCT), the Karhunen-Loéve transform (KLT),
hybrid linear model (without sub-sampling), the level-3 biorthogonal 4.4 wavelets
(used in JPEG2000), and the level-3 multi-scale hybrid linear model.20

Potentially, there might be many other ways of applying the (multi-scale) hybrid
linear model to images that could achieve even better performance. In fact, a higher
PSNR curve can be achieved for the baboon image if we apply the multi-scale hybrid
linear model in the wavelet domain (see [21]).

5.3. Other Applications. Subspace arrangements have been proven to be per-
tinent for many other problems that arise in image processing, computer vision, pat-
tern recognition, and system identification. Besides the two applications mentioned
above, we list a few more examples and references in the following:

1. Identification of Hybrid Linear Systems. It is known from system theory that
the input-output data of a linear dynamical system lie on a subspace. Thus,
for a hybrid linear system that may switch among multiple linear systems,
its input-output data lie a union of multiple subspaces. The problem of
identifying the component systems (as well as the switching as a function
of time) is essentially a problem of subspace arrangement estimation. The
GPCA algorithm has been successfully applied to the identification of hybrid

19The energy of typical natural images concentrates more in low frequencies.
20The experimental results given here are attributed to Wei Hong of the University of Illinois at

Urbana-Champaign.
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Fig. 5.8. Comparison of several lossy image representation schemes for the baboon image.
Vertical axis: here the signal is the original image and the noise is the difference between the
original image and its approximation given by different representation schemes; Horizontal axis:
percentage of the ratio of coefficients kept.

linear systems such as the hybrid auto-regressive exogeneous (ARX) model
[31] and the hybrid auto-regressive moving average (ARMA) model [22].

2. Classification of Face Images. It is known that the frontal images of a person’s
face under different lighting conditions form a low-dimensional subspace [20].
Thus, the problem of clustering face images that belong to different persons
can also be characterized as a problem of subspace arrangement estimation.
The GPCA algorithm has shown quite success in solving this problem [54].
This approach can be generalized to the classification of other types of images
(e.g., hand-written digits).

3. Segmentation of Video Sequences. One problem in computer vision is how to
partition a long video sequence into multiple short segments such that each
segment corresponds to a different scene or event. By viewing each image
frame as a sample point, we can fit a piecewise-linear model to the video
sequence. Image frames that belong to the same linear piece are naturally
grouped together according to their appearance. GPCA has started to be-
come a popular algorithm for video segmentation, both in the spatial and
temporal domain [22,54].

6. Conclusions and Perspectives. This paper introduces a set of new mathe-
matical models – subspace arrangements – for the analysis of multivariate mixed data.
Based on the algebraic and statistical properties of subspace arrangements, a set of
new computational tools have been developed for the modeling and segmenting mixed
data. One important feature of these tools is that they take a “top-down” approach
to the estimation of multiple subspaces. That is, the overall algebraic structure of
the data set is found first and then the geometric information of the individual sub-
spaces and segmentation of the data are subsequently retrieved. This runs somewhat
contrary to the conventional approach taken by existing data clustering methods in
statistical learning, such as the EM and the K-means. As a consequence, the result-
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ing algorithms, GPCA and its variations, require no initialization and can be used in
combination with EM and K-means.

Our exposition also conveys an important message: The confluence of algebra,
statistics, and computation is crucial for a complete and thorough understanding of
the modeling of mixed data; it is often the source of the inspiration for many of the
new algorithms. Within this framework, we will not be surprised that even more
effective and general algorithms will be found in the near future.

These new algorithms have shown to be particularly effective in the modeling and
segmenting of imagery data, including but not limited to conventional images, videos,
biological images, as well as hyper-spectral images. The initial success of these tools
in the identification of hybrid systems also suggests that there is good potential in
extending them into the dynamical domain.

In many scientific studies, the structure of the data can be modeled as a low-
dimensional (nonlinear) manifold embedded in a high-dimensional space. Many al-
gorithms have been proposed to identify such a manifold [40, 46]. GPCA provides
yet another class of tools that allow us to obtain a piece-wise linear approximation of
the manifold (subject to an error threshold). Important geometric or topical proper-
ties, e.g. dimension(s), components, of the manifold can be extracted from such an
approximation.
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