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Abstract

Given α > 0, the α-Grushin plane is R2 equipped with the sub-Riemannian metric generated by the vector

fields X = ∂1 and Y = |x1|α∂2. It is a standard example in sub-Riemannian geometry, as a space which is

Riemannian except on a small singular set—here the vertical axis, where the vector field Y vanishes.

The main purpose of this thesis is to study various problems related to the metric geometry of the

α-Grushin plane and a generalization of it, termed conformal Grushin spaces. One such problem is the

embeddablity of these spaces in some Euclidean space under a bi-Lipschitz or quasisymmetric mapping.

Building on work of Seo [Seo11] and Wu [Wu15a], we prove a sharp embedding theorem for the α-Grushin

plane and a general embedding theorem for conformal Grushin spaces under appropriate hypotheses. We

also study quasiconformal homeomorphisms of the α-Grushin plane.

In the final section, we solve a separate problem regarding quasiconformal mappings in metric spaces.

The main result states that if a metric space homeomorphic to R2 can be quasiconformally parametrized by

a domain in R2, then one can find a mapping which improves the dilatation to within a universal constant.

A non-sharp theorem of this type was recently proved by Rajala in [Raj17]; our theorem gives the sharp

bounds for this problem.
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Chapter 1

Introduction

This thesis is based on the following four papers:

[Rom16] Matthew Romney, Conformal Grushin spaces. Conform. Geom. Dyn., 20: 97–115, 2016.

[RV17] Matthew Romney and Vyron Vellis, Bi-Lipschitz embedding of the generalized Grushin plane in Eu-

clidean spaces, Math. Res. Lett., 24(4): 1179–1205, 2017.

[GJR17] Chris Gartland, Derek Jung, and Matthew Romney, Quasiconformal mappings on the Grushin plane,

Math. Z., 297(3-4): 915–928, 2017.

[Romar] Matthew Romney, Quasiconformal parametrization of metric surfaces with small dilatation, Indiana

Univ. Math. J. (to appear).

The first three papers study the metric geometry of a particular metric space, the Grushin plane, as

well as a generalization that I termed conformal Grushin spaces. The final paper deals with quasiconformal

mappings in an abstract metric setting and has no direct relationship to the other three.

Here is a brief summary of each. The papers [Rom16] and [RV17] both concern the bi-Lipschitz embedding

problem for the α-Grushin plane and its conformal Grushin space generalization. It is shown that, under

suitable mild hypotheses, such spaces can be embedded in Euclidean space under a bi-Lipschitz mapping. In

the case of the α-Grushin plane and certain other specific cases, an embedding with sharp target dimension

can be constructed. These papers generalize earlier results by Seo [Seo11] and Wu [Wu15a].

The paper [GJR17] discusses various questions concerning the definitions and properties of quasiconformal

mappings from the Grushin plane to itself, or to R2. This continues the work of Ackermann [Ack15].

Finally, the paper [Romar] answers an open problem of Rajala from [Raj17]. The result states that, if

a metric space homeomorphic to R2 admits some quasiconformal parametrization by a domain in R2, then

there always exists a parametrization with improved (that is, smaller) dilatation. The result in [Romar]

gives the sharp bounds for this problem.

My hope for this thesis is to go beyond simply repeating the material of my papers. Hence a large portion

will be devoted to giving motivation and background not present in the various papers, at a level accessible
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to a beginning graduate student entering the field of analysis on metric spaces. Consistent with this goal, I

have omitted proofs of the longer theorems; the interested reader can of course find the whole story in the

respective paper. On the other hand, I have included many of the shorter proofs, to at least convey the

flavor of the technical arguments.

One particular goal is to give, as far as possible, an exhaustive review of the literature related to the

Grushin plane. My work included, researchers at the University of Illinois have published seven recent papers

specifically on the Grushin plane and its generalizations [Ack15], [Seo11], [Wu15a], [Wu15b] and two papers

partially dedicated to it [DHLT14], [Tys06]. There are other research groups with interest in the Grushin

plane, coming from different mathematical backgrounds, and we will encounter their work throughout this

thesis.
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Chapter 2

Overview of the Grushin plane

Stated concisely, the Grushin plane is the set R2 consisting of real tuples (x1, x2), equipped with the sub-

Riemannian metric d generated by the vector fields X = ∂1 and Y = x1∂2. We call d the Grushin metric.

When the Grushin metric is understood, we write G in place of R2.

2.1 Explanation of the definition

The Grushin plane is one example of a much more general notion of sub-Riemannian manifold. We will

not develop the general framework of sub-Riemannian geometry here but simply illustrate it for the case

of the Grushin plane. See the book of Montgomery [Mon02] for a friendly introduction aimed at a broader

mathematical audience, including applications to the sciences. The surveys of Belläıche [Bel96] and Gromov

[Gro96] are also recommended.

First, as a sub-Riemannian manifold, the Grushin plane is an example of a length metric space, meaning

that the distance between two points is defined as the infimum of the set of lengths of paths connecting them.

Informally, we can consider the metric as measuring the shortest possible travel time between two points in

the plane. The vector fields X = ∂1 and Y = x1∂2 specify how fast one can travel in a given direction at a

given point. For example, the length of the horizontal path from (0, b) to (a, b) is exactly a, while the length

of the vertical path from (a, 0) to (a, b) is b/a (here a 6= 0).

More precisely, let γ : [t0, t1]→ R2 be an absolutely continuous curve, defined on an interval [t0, t1] ⊂ R.

Write γ in coordinates as γ(t) = (x(t), y(t)). Then the length of γ, denoted by `(γ), is

`(γ) =

∫ b

a

√
x′(t)2 +

1

x(t)2
y′(t)2 dt. (2.1)

The absolute continuity condition on γ is the minimal requirement for this integral to be defined. We recall

one characterization of this property: a curve γ : [0, 1] → R2 is absolutely continuous if and only if it is

rectifiable (of bounded variation) and satisfies Lusin’s condition (N): if E ⊂ [a, b] has measure zero, then so
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Figure 2.1: The vector fields X = ∂1, Y = x1∂2

does the image of E under γ. Equation (2.1) may be written more concisely as

`(γ) =

∫
γ

√
dx2 +

1

x2
dy2.

It should be clear, with a little thought, that (2.1) is the line element consistent with the orthonormal

frame X = ∂1, Y = x1∂2. As simple examples, consider again the case of the horizontal path from (0, b)

to (a, b), and the case of the vertical path from (a, 0) to (a, b). For a derivation of (2.1), as formalized in

control theory, see Bellaiche [Bel96, p. 4-6].

Let Z be the set on which Y vanishes, that is, Z = {x : x1 = 0}. We will call Z the singular line of the

Grushin plane. Its complement will be called the Riemannian set.

2.2 The α-Grushin plane

We will immediately make the following generalization to the α-Grushin plane. Take as before X = ∂1, but

consider instead Y = |x1|α∂2 as the second vector field, for some α > 0. By the same line of reasoning, we

arrive at the integral formula

`(γ) =

∫ b

a

√
x′(t)2 +

1

|x(t)|2α
y′(t)2 dt. (2.2)

Notice that, if we take α = 0, then we just recover the Euclidean metric.

The reason for introducing the α-Grushin plane separately is due to a technicality in the definition of

sub-Riemannian manifold. This technicality is unimportant in the case of the Grushin plane, but it will still

be useful to give an explanation. In the standard framework of sub-Riemannian geometry, one considers

a system of smooth vector fields X1, X2, . . . , Xm on a smooth n-manifold M . Typically, one requires that
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the iterated Lie brackets [Xi, Xj ], [[Xi, Xj ], Xk], . . . , where [X,Y ] = XY − Y X, generate the full tangent

space at each point of M . The importance of this is the so-called Chow’s condition [Cho39]; it can be shown

that when this is satisfied then any two points in M can be connected by a rectifiable path. The minimum

number of terms in the Lie bracket to achieve this at every point is called the step of the sub-Riemannian

manifold.

If α is an integer, then Y is a smooth vector field (for odd integers α, we must replace Y with −Y on

the left half-plane). A short calculation then shows that α + 1 is the step of the α-Grushin plane and we

have a bona fide sub-Riemannian manifold. On the other hand, if α is not an integer, then Chow’s condition

is not satisfied for Gα. However, the rectifiable connectedness of the α-Grushin plane is trivial to establish

directly: for two points (x1, y1) and (x2, y2), pick any value t > max{0, x1, x2} and the polygonal path from

(x1, y1) to (t, y1) to (t,y2) to (x2, y2). Hence it is most natural to take α to be any positive real number.

2.3 Historical summary

The Grushin plane is named after the Russian mathematician Victor Vasilievich Grushin (also spelled as

Grušin), who studied a certain class of hypoelliptic differential operators in a 1970 paper [Gru70]. The

prototype of Grushin’s class of operators is that of the form ∂r1 + |x1|2α∂r2 for some r, α ∈ N.

The Grushin plane, as the metric space introduced above, was first studied by Franchi and Lanconelli

[FL83] in 1983. Somewhat similarly to Grushin’s paper, this was studied as part of a broader class of

examples, of which the Grushin plane is the most basic example.

Both Grushin and Franchi–Lanconelli were motivated by connections to partial differential equations,

and more specifically the notion of hypoelliptic differential operator. Let Ω ⊂ Rn be a domain. A differential

operator D is hypoelliptic if, for any domain V ⊂ Ω and any distribution u on V such that Du ∈ C∞(V ), it

holds that u ∈ C∞(V ).

In 1967, Hörmander gave an essentially complete characterization of second-order hypoelliptic linear

differential operators with smooth coefficients [Hör67]. The main result of Hörmander says that if D can

be written (locally) in the form D = X2
1 + · · · + X2

m + X0 + g for some homogeneous first-order operators

X0, . . . , Xm with smooth coefficients and some smooth function g, and if the iterated commutators [Xi, Xj ],

[[Xi, Xj ], Xk], . . . span the whole tangent space, then D is hypoelliptic. The bracket-generating condition is

often called Hörmander’s condition in PDE; notice that this is none other than Chow’s condition. Already,

this gives an indication of the underlying connection between PDE and geometry. Even before the result

in [Hör67], Hörmander’s work on hypoelliptic operators played a role in him receiving the Fields medal in

1962.
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On a more general level, there arose interest in studying metrics associated to such a differential operator.

An influential paper in this time period is due to Nagel, Stein, and Wainger [NSW85]. This is one of several

origin stories for the area of math now known as sub-Riemannian geometry.

Carathéodory first proved the corank-one case of Chow’s theorem [Car09]. The topic of his paper was

thermodynamics, a subject pioneered in the early 19th century by the French physicist Nicolas Carnot. This

is the origin of the term Carnot-Carathéodory metric, a term often used in the literature for sub-Riemannian

metric.

2.4 The Heisenberg group

When discussing standard examples in sub-Riemannian geometry, the Grushin plane is usually overshadowed

by another object: the Heisenberg group. This is the simplest example of a sub-Riemannian manifold which

is fully sub-Riemannian, in the sense that at every point the horizontal subspace has dimension strictly

smaller than that of the full tangent space. On a related note, it is the simplest nontrivial example of a class

of objects called Carnot groups.

The Heisenberg group is R3 equipped with the sub-Riemannian metric generated by the vector fields

X = ∂1 − x2

2 ∂3 and Y = ∂2 + x1

2 ∂3. In this case, it is less obvious that any two points can be connected

by a path of finite length. Nevertheless, we observe that [X,Y ] = ∂3, so Chow’s theorem does guarantee

the existence of finite-length paths between points. Denote the resulting space by H1 (as implied by the

notation, there is a Heisenberg group Hn for each odd dimension 2n+1, though we omit the definition here).

The Heisenberg group is a very rich mathematical object, appearing naturally in a number of mathemat-

ical contexts, and has been studied extensively. As the name indicates, it has a natural Lie group structure.

The group operation is

(a, b, c) ∗ (a′, b′, c′) = (a+ a′, b+ b′, c+ c′ + (ab′ − ba′)/2).

It can be checked that the Heisenberg vector fields X = ∂1− x2

2 ∂3 and Y = ∂2 + x1

2 ∂3 are left-invariant with

respect to this group operation; in particular, the resulting metric is also left-invariant.

The mathematical origin of the Heisenberg group comes from quantum mechanics. The German physicist

Werner Heisenberg studied the Lie algebra associated with Hn, which arises in a quantum description of

the position and momentum of a particle. A separate mathematical context where the Heisenberg group

appears naturally is in complex analysis of several variables, where the boundary of the unit ball in Cn can

be identified with Hn. The book of Stein [Ste93] contains a nice introduction to the topic in its final chapters;

6



see also the book of Capogna, Danielli, Pauls, and Tyson [CDPT07].

There is a close connection between the two objects: the Grushin plane appears as a quotient of the

Heisenberg group. This could be considered an occurrence of the Grushin plane in “mathematical nature”.

This fact is already observed in work of Rothschild and Stein, where they prove a general result along these

lines [RS76]. A paper of Arcozzi and Baldi [AB08] contains a detailed discussion of this connection between

the Heisenberg group and the Grushin plane.

The precise connection is as follows. For any choice of horizontal tangent vector v at the origin, one

obtains a one-parameter subgroup in H1 via the exponentiation map, denoted Sv. This gives rise to the

right-quotient space Sv\H1. A metric on Sv\H1 is induced by infimizing the sub-Riemannian Heisenberg

metric over all points in the respective cosets. If v = ∂3, then Sv\H1 is isometric to R2; otherwise, Sv\H1 is

isometric to G. See [AB08, Thm. 1] for a proof.

2.5 Higher dimensions

Let us return now to the Grushin setting. As already alluded to in Section 2.3, the defining procedure

outlined in Section 2.1 is not restricted to two dimensions. The original paper of Franchi and Lanconelli

considers Rn equipped with the sub-Riemannian metric generated by the vector fields Xj , j = 1, . . . , n, of

the form Xj = λj(x)∂j , where λ1 = 1, λj(x) = λj(x1, . . . , xj−1) satisfy certain smoothness and growth

properties. The exact statement is somewhat lengthy and will be omitted here. But, following [Wu15b], one

can have in mind the case λj(x) = |xj−1|αj−1λj−1(x), where αi ∈ [0,∞).

There is a smaller body of literature for the higher-dimensional setting, as results are more difficult to

prove. However, one paper of mention is a Liouville theorem in this setting due to Morbidelli [Mor09]. A

second paper on higher-dimensional Grushin spaces is due to Wu [Wu15b], investigating the quasiconformal

geometry of these spaces—the same types of problems as those outlined in Section 4 below. There are

numerous cases that are considered separately, even in the three-dimensional case; some of these were left

unresolved.

Within this thesis, the papers [RV17] and [GJR17] deal exclusively with the Grushin plane. On the other

hand, the main purpose of the paper [Rom16] is to introduce another way of generalizing the Grushin plane

to higher dimensions. These are the conformal Grushin spaces and they will be defined in Section 5.1. The

results in [Rom16] apply to all dimensions without any additional difficulty to the proofs.
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2.6 Almost Riemannian manifolds

In this section, we give a short overview of another line of research connected to the Grushin plane. A

research group centered around Agrachev, Boscain and Sigalotti recently introduced the notion of an almost

Riemannian manifold, for which the Grushin plane is the prototype. Besides the mathematical appeal of

enlarging the scope of portions of Riemannian geometry, their motivation stems from physical applications

to certain control systems. Papers on this subject include [ABC+10], [ABS08], [BCG13], [BCGS13], [BL13],

[BS08].

Their work deals almost exclusively with the two-dimensional case. Concisely, an almost Riemannian

2-manifold is a sub-Riemannian manifold M with the additional property that for any open set U ⊂M , the

(possibly rank-varying) horizontal distribution is generated by two vector fields, but not one. As above, the

the singular set Z is the set on which the two vector fields are linearly dependent. The set Z must be small,

in a precise sense described in Proposition 2.6.1 below.

The starting point for their investigations is a proposition on the structure of a generic almost Riemannian

2-manifold. That is, an almost Riemannian manifold corresponds to an element in Vec(M)×Vec(M), where

Vec(M) is the space of smooth vector fields on M , endowed with the C2-Whitney topology. (Informally, two

elements in Vec(M) are close relative to this topology if there is a point at which their second order Taylor

expansions are close.) A property is generic if it holds for a dense open set in Vec(M)×Vec(M).

Proposition 2.6.1. For a generic almost Riemannian 2-manifold, generated by the vector fields X and Y

and with singular set Z, the following hold.

(i) The set Z is an embedded smooth manifold of dimension 1.

(ii) {X,Y, [X,Y ]} spans the tangent space except on a set of isolated points in Z.

(iii) {X,Y, [X,Y ], [[X,Y ], X], [[X,Y ], Y ]} spans the tangent space at every point in Z.

This proposition is an application of the transversality theorem, a standard result in differential topology

which states, roughly, that two generic submanifolds of a manifold intersect transversally. The proposition

allows the introduction of local normal forms for the vector fields X and Y , which are used as a basic tool

in the papers cited above.

The set of points for which {X,Y, [X,Y ]} does not span the tangent space are termed tangency points.

By property (ii) in Proposition 2.6.1, these points are isolated. The basic example of a tangency point is

provided by the vector fields X = ∂1 and Y = (x2 − x2
1)∂2. The corresponding almost Riemannian manifold

has a tangency point at the origin.

In this setting, they prove a Gauss-Bonnet-type formula, relating the total curvature of a compact
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oriented almost-Riemannian manifold to the Euler characteristic [ABS08], [ABC+10]. They also study the

heat equation and Schrödinger equation on almost-Riemannian manifolds [BL13]. Their results imply that

heat cannot flow across the singular line in the Grushin plane, nor can a quantum particle cross the singular

line.

2.7 Other recent research directions

An important paper of Monti and Morbidelli [MM04] solves the isoperimetric problem for the α-Grushin

plane. This problem asks for the sets E ⊂ Gα with Lebesgue measure |E| = 1 which minimizes an appropriate

notion of perimeter. This is shown to be the set

Eα =

{
x ∈ R2 : |x2| <

∫ π/2

arcsin |x1|
sinα+1(t) dt, |x1| < 1

}
,

together with its dilations (see Section 3.1) and vertical translations.

This result is particularly noteworthy for its connection with the Heisenberg group. Consider E1 as a

subset of R3, where the x2-axis in Gα is identified with the vertical axis of R2. The set formed by rotating

E1 about the vertical axis is conjectured to be the solution to the isoperimetric problem in the Heisenberg

group. This is a long-standing open problem which has inspired a full-length book [CDPT07].

A careful study of geodesics in the Grushin plane has been carried out in a series of papers by Calin,

Chang, Li and coauthors [CC05], [CCGK05], [CL12]. The primary motivation of these studies lies in under-

standing heat flow on the Grushin plane. Geodesics in the Grushin plane will be discussed in Section 3.4

below.

On a more general note, geometric analysis in the setting of the Grushin plane and other Grushin spaces

has become a fairly popular research direction in recent years. There are now too many papers to discuss

individually, but topics include the p-Laplace equation and other PDE and stochastic accessibility. See

[Bie02], [Bie05], [Bie07], [Bie09], [Bie11], [BG06], [BV11], [Cal14], [CUT14a], [CUT14b], [FV09], [Liu17],

[TU17].

2.8 Notation

At various points, we use the notation ' to denote comparability. More precisely, for a, b > 0 (depending on

certain parameters), the statement a ' b means there exists a constant C (independent of said parameters)

such that C−1 ≤ a/b ≤ C.
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Chapter 3

Basic geometry of the Grushin plane

The section is intended to provide a better intuition for the geometry of the Grushin plane in preparation

for the deeper work that follows. The basic source for most of this material is Belläıche [Bel96].

3.1 The dilation property

The starting point for a study of the geometry of the Grushin plane is the following dilation property. This

states that, for all λ ∈ R,

|λ|d((x1, y1), (x2, y2)) = d((λx1, λ|λ|αy1), (λx2, λ|λ|αy2)). (3.1)

This can be proved by a change of variables in (2.1).

The dilation property tells us something about the shape of balls. Consider the square S0 with vertices at

(±1,±1). It is simple to check that for all x ∈ S0, 1 ≤ d((0, 0), x) ≤ 3. By the dilation property, for all λ > 0,

the square Sλ with vertices at (±λ,±λ|λ|α) has the property that, for all x ∈ Sλ, λ ≤ d((0, 0), x) ≤ 3λ.

For x ∈ G and r > 0, write B(x, r; dα) for the ball at x of radius r in the α-Grushin metric. We have

Figure 3.1: Grushin balls of varying radii centered at the origin
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shown that

[−r/3, r/3]× [−(r/3)1+α, (r/3)1+α] ⊂ B((0, 0), r; dα) ⊂ [−r, r]× [−r1+α, r1+α].

This fact is often known as the ball-box theorem and gives us a rough sense of the shape of balls centered

on the singular line in the Grushin metric. Outside the singular line, small balls are roughly Euclidean in

shape, since the metric there is Riemannian. In Section 3.4, we will give a more precise description of the

shape of Grushin balls.

3.2 The singular line

One can verify the following fact. For a metric space (X, d) and some β ∈ (0, 1), the function dβ : X ×X →

[0,∞) defined by dβ(x, y) = d(x, y)β is also a metric on X. The metric dβ is called the β-snowflake of d.

The terminology arises from the important case of X = R, equipped with the Euclidean distance. Let

C ⊂ R2 be the standard (unbounded) von Koch snowflake, and f : R→ C the standard parametrization of

C. It can be shown that the map f : (R, | · |β)→ (C, | · |) is bi-Lipschitz, where β = log 3/ log 4. In fact, for

any β ∈ (0, 1), there is a similar bi-Lipschitz embedding of (R, | · |β) onto a von Koch snowflake-type curve

in RN , where N = b1/βc+ 1. The dimension N cannot be lowered. This well-known classical result is due

to Assouad [Ass83].

With this terminology in hand, we make a simple but important observation from (3.1) that the Grushin

metric, restricted to the singular line Z = {(x, y) : x = 0}, takes the form

dα((0, y1), (0, y2)) = C|y2 − y1|1/1+α,

for some constant C = C(α). That is, the Grushin metric on Z is the (1 + α)-snowflake of the Euclidean

metric on Z, up to rescaling.

3.3 The Grushin quasidistance

In this section, we present an estimate of the Grushin metric that gives a good qualitative feel for its behavior.

We define the Grushin quasidistance qα by

qα(x, y) = |x1 − y1|+ min

{
|x2 − y2|1/(1+α),

|x2 − y2|
|x1|α

}
. (3.2)
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Figure 3.2: The Grushin quasidistance q1(x, ·) for fixed x

In the next section, we consider explicit formulas for geodesics in the Grushin plane; however, these can be

unwieldy for applications.

As just indicated, the quasidistance qα is bi-Lipschitz equivalent to the Grushin metric dα. The proof is

based on cases and is somewhat tedious, but it is instructive to work out the details.

Assume that |x1| 6= 0; the case that x1 = 0 is similar but simpler, so we ignore it. By dilating, translating,

and reflecting we can assume that x1 = 1, x2 = 0, and y2 > 0. We divide into 5 cases, based on which term

of qα(x, y) dominates and based on the minimum in the second term. For each case, we must prove that

dα(x, y) ' qα(x, y). In the following, let Cα = dα((0, 0), (0, 1)).

Case 1. y2 ≤ |y1 − 1| and y2 ≤ 1. Considering the path from (1, 0) to (1, y2) to (y1, y2) gives dα(x, y) ≤

|y1 − 1|+ y2 = qα(x, y). On the other hand, qα(x, y) ≤ 2|1− y1| ≤ 2dα(x, y).

Case 2. y2 ≥ |y1 − 1| and y2 ≤ 1. As in Case 1, dα(x, y) ≤ |y1 − 1| + y2 = qα(x, y). Next, observe that

dα(x, y) ≤ 2, and so the geodesic γ(t) = (z1(t), z2(t)) from x to y must satisfy |z1(t)| ≤ 3 for all t. This

implies that qα(x, y) ≤ 2y2 ≤ 2 · 3αdα(x, y).

Case 3. |y1 − 1| ≥ 1
4Cαy

1/(1+α)
2 and y2 ≥ 1. Consider the straight-line path from (1, 0) to (0, 0), followed

by a geodesic to (0, y2), followed by the straight-line paths to (1, y2) and then to (y1, y2). This yields

dα(x, y) ≤ 1 + Cαy
1/(1+α)
2 + 1 + |y1 − 1|

≤ (2 + Cα)(y
1/(1+α)
2 + |y1 − 1|) = (2 + Cα)qα(x, y).
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For the other direction, we have

qα(x, y) = y
1/(1+α)
2 + |y1 − 1|

≤ (1 + 4/Cα)|y1 − 1| ≤ (1 + 4/Cα)dα(x, y).

Case 4. |y1−1| ≤ 1
4Cαy

1/(1+α)
2 and y2 ≥ (8/Cα)1+α. The proof that dα(x, y) . qα(x, y) is identical to Case

3.

Next, let γ be an arbitrary curve from x to y, and let γ̃ be the curve consisting of the straight-line

path from (0, 0) to x, followed by γ, followed by the straight line paths to (1, y2) and then to (0, y2).

Then Cαy
1/(1+α)
2 ≤ `(γ̃). This implies that

`(γ) ≥ Cαy1/(1+α)
2 − |y1 − 1| − 2

≥ 1

2
Cαy

1/(1+α)
2 + |y1 − 1| − 2

≥ 1

4
Cαy

1/(1+α)
2 + |y1 − 1| ≥ min{cα/4, 1}qα(x, y)

Infimizing over all paths γ from x to y shows that dα(x, y) & qα(x, y).

Case 5. |y1 − 1| ≤ 1
4Cαy

1/(1+α)
2 and 1 ≤ y2 ≤ (8/Cα)1+α. This is immediate from the compactness of the

set in consideration.

The quasidistance plays a useful role in the papers [Mey11], [Wu15a], [Ack15], and [RV17]. In the paper

[Rom16], analogous ideas are present in the geometric lemmas; see particularly Lemma 5.2.3 below.

3.4 Grushin geodesics

From our discussion up to this point, we have a rough but nevertheless accurate understanding of many

features of Grushin geometry. Here, we refine this by considering geodesics in the Grushin plane. To fix

terminology, we use the term geodesic for local length-minimizers, which are solutions to the Hamilton-Jacobi

equations where the metric is Riemannian. The contrasts with length-minimizing curves, which naturally

are global length minimizers. Note that the completeness of the Grushin plane guarantees the existence of

a length minimizing curve between any two points in Gα, by the Hopf-Rinow theorem.

Let

H(x, ξ) =
1

2

(
ξ2
1 + |x1|2αξ2

2

)
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Figure 3.3: Grushin geodesics of fixed length emanating from the origin

be the so-called Hamiltonian function. Then a geodesic γ(t) = (x1(t), x2(t)) is the projection onto the spatial

coordinates of a solution to the Hamilton-Jacobi system

x′1 = ∂ξ1H(x, ξ) = ξ1

x′2 = ∂ξ2H(x, ξ) = |x1|2αξ2

ξ′1 = ∂x1H(x, ξ) = −αx2α−1
1 ξ2

2

ξ′2 = ∂x2H(x, ξ) = 0

for some initial data. This can be found, for instance, in [MM04, Sect. 4].

In the standard case α = 1, there is a relatively simple formula for solutions of this system. For this case,

the family of geodesics through the origin can be parametrized as

γb(t) =

(
1

b
sin(bt),

1

b

(
t

2
− sin(2bt)

4b

))
, (3.3)

with the parameter b ∈ R determining the direction of γb. A similar formula for arbitrary α is available in

terms of hypergeometric functions. Reversing the roles of t and b, equation (3.3) also gives a parametrization

for the sphere of a fixed radius centered at the origin.

As noted earlier, the papers [CC05], [CCGK05], [CL12] study Grushin geodesics in more depth.

3.5 Measure and curvature

A natural choice of measure on the Grushin plane is the Hausdorff 2-measure with respect to the sub-

Riemannian metric, which we denote by H2
α . We recall this fundamental definition. Let r ≥ 0. For a set
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A ⊂ X and all δ > 0, let

Hrδ(A) = inf

ωn2n

∞∑
j=1

diam(Aj)
r : Aj closed, A ⊂

∞⋃
j=1

Aj

 .

Here, ωn denotes the Lebesgue n-measure of the Euclidean n-ball. Then the r-Hausdorff measure Hr(A) is

defined by Hr(A) = limδ→0Hrδ(A), which may be infinite.

Notice that we have defined the Hausdorff measure with a normalization constant. This ensures that the

Hausdorff n-measure on Rn coincides with Lebesgue measure. For the 2-dimensional case, which is our main

consideration, this constant is π/4. This constant is not essential, but it usually is convenient. The choice

of normalization constant plays a role in the statement of Theorem 7.2.3 below, since this is a sharp result.

In the case of the Grushin plane, the Hausdorff measure outside the singular set is given by integrating

the volume element |x1|−α. That is, for a Borel set A ⊂ R2 \ Z,

Hrα(A) =

∫
A

dx1 dx2

|x1|α
.

If α ≥ 1, then H2
α is not locally finite at any point on the singular line. It is true that certain small subsets of

the singular line can have Grushin Hausdorff dimension 2, but this observation is not important to any of the

results that follow. One reason for this is a lemma (Proposition 3.2 in [GJR17]) stating that any rectifiable

curve in G2
α (α ≥ 1) must intersect the singular line Z in a set whose Grushin Hausdorff 1-measure is zero.

We conclude this section with a word on curvature, which adds a new perspective to our picture of the

Grushin plane. Curvature, in its various guises, is one of the main geometric properties studied in Riemannian

geometry. In two dimensions, which is the case for the Grushin plane, the story remains relatively simple.

Here, we need only consider the sectional curvature at a point. This is given by Brioschi’s formula: for a

Riemannian metric ds2 = Edx2
1 +Gdx2

2, the sectional curvature K is

K =
−1

2
√
EG

((
Gx1√
EG

)
x1

+

(
Ex2√
EG

)
x2

)
.

Applying this to the Grushin line element gives K = −α(α+ 1)|x|−2 (see Theorem 8.5 in [DHLT14]). From

this, we see that the Grushin plane has negative curvature everywhere on its Riemannian part, with curvature

that explodes to negative infinity near the singular line. This might suggest some parallels with hyperbolic

geometry; nevertheless, the presence of a singular set changes the situation drastically. For example, there

are two length-minimizing curves between any two points on the singular line Z ⊂ Gα, and many more

geodesics—a phenomenon that cannot happen in hyperbolic geometry.
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Chapter 4

Some concepts from metric geometry

With the Grushin plane now fully introduced, we now turn our attention to some concepts from metric space

geometry. These concepts apply to general metric spaces; our eventual goal is to investigate them in the

context of Grushin-type spaces.

4.1 Quasisymmetric mappings

The notion of quasisymmetry is one of two basic notions of equivalence for metric spaces. The other,

bi-Lipschitz equivalence, will be discussed in Section 4.3.

A homeomorphism f : (X, dX) → (W,dW ) between metric spaces is a quasisymmetry (or, is quasisym-

metric) if there exists a homeomorphism η : [0,∞)→ [0,∞) such that

dW (f(x), f(y))

dW (f(x), f(z))
≤ η(t) (4.1)

for all distinct points x, y, z ∈ X satisfying dX(x, y) ≤ tdX(x, z). The function η is called the control

function. In words, the quasisymmetry condition states that the relative distance between triples of points

is not distorted too greatly. On the other hand, a quasisymmetry can highly distort absolute distance.

A key observation is that this definition applies to any metric space without additional assumptions. It is

a standard exercise to show that an inverse of a quasisymmetry is also quasisymmetric, as is the composition

of two quasisymmetries. Also, the class of quasisymmetries from X to W has nice compactness properties,

under mild hypotheses on W . All these facts make quasisymmetries a natural class of geometry-preserving

mappings to study.

Historically, quasisymmetric mappings arose as a generalization of quasiconformal mapping (see Section

6.1) to the metric space setting. The defining condition (4.1) first appears in in work of Ahlfors and Beurling

[BA56] in the context of boundary behavior of quasiconformal maps in the plane. The condition was isolated

and studied by Tukia and Väisälä in [TV80]. Their paper is recommended as a clear introduction to the

topic, including the properties mentioned in the previous paragraph; see also Chapters 10-11 in the book by
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Heinonen [Hei01].

Later, in Section 6.1, we give a short overview of the basic theory of quasiconformal mappings. It is

a fundamental fact that the class of quasisymmetric homeomorphisms of Rn coincides with the class of

quasiconformal homeomorphisms of Rn. (For domains in Rn, the same is true if one replaces quasisymmetric

with locally quasisymmetric.)

A metric property which is quasisymmetrically invariant is that of being doubling. A metric space is

doubling if there exists a constant C ≥ 1 such that all metric balls B(x, r) in X can be covered by C balls of

radius r/2. The doubling property is a basic niceness property which is necessary for many results, such as

the bi-Lipschitz embeddability in Euclidean space, as discussed below in Section 4.3. A standard exercise is

to show that the quasisymmetric image of a doubling metric space is also doubling.

It is a natural mathematical problem to study when two metric spaces are quasisymmetrically equivalent.

Such spaces necessarily have similar geometric features. A particular important case is when one space is

some Euclidean space Rn (the quasisymmetric uniformization problem). There is much literature on this

and related problems, far beyond the scope of this thesis. We only remark on a few important results. This

sort of problem was first studied in depth by Semmes in [Sem96a]. Laakso provided an important example

of a highly non-Euclidean metric on R2 which nevertheless is quasisymmetrically equivalent to the Euclidean

metric in [Laa02]. We discuss Laakso’s example in more detail in Section 4.4. Finally, Bonk and Kleiner

solved the quasisymmetric uniformization problem for the two dimensional case, under the assumption of

Euclidean mass bounds, in [BK02]. Here is a statement of their result.

Theorem 4.1.1 (Bonk–Kleiner). Let (X, d) be a metric space homeomorphic to S2 which is Ahlfors 2-

regular. Then there exists a quasisymmetric mapping from X onto S2 if and only if f is linearly locally

connected.

A metric space X is linearly locally connected if there exists λ > 0 such that any two points in a metric

ball B(x, r) can be connected by a continuum in B(x, λr), and any two points in X \B(x, r) can be connected

by a continuum in B(x, r/λ). A metric measure space (X, d, µ) is Ahlfors p-regular (for some p > 0) if there

exists a constant C > 0 such that rp/C ≤ µ(B(x, r)) ≤ Crp for every metric ball B(x, r) ⊂ X.

We return again to this theme in Section 7 of this thesis, which discusses some of my work in this line of

research.
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4.2 Quasisymmetric parametrization of the Grushin plane

In light of the preceeding discussion, it is natural to ask whether the Grushin plane can be quasisymmetrically

parametrized by R2. It turns out (in hindsight, not too surprisingly) that the answer is yes. This was first

explicitly shown in 2011 by W. Meyerson in [Mey11]. In this paper, Meyerson shows that the mapping

ϕα : Gα → R2 defined by

ϕα(x1, x2) = ((1 + α)−1x1|x1|α, x2)

is quasisymmetric. The proof is done by cases using the Grushin quasidistance (3.2). Meyerson appears to

have arrived at this mapping on his own. However, it can be found in other papers, since ϕα is a conformal

map between Riemannian manifolds outside the singular line. To my knowledge, it is first used by Beckner

in [Bec01]. It is also used by Monti and Morbidelli in [MM04].

In Theorem 5.2.1 below, we prove a general result on quasisymmetric parametrization of conformal

Grushin spaces, under mild hypotheses. This includes Meyerson’s result as a special case.

As one simple application, the existence of a quasisymmetric parametrization is one way to verify that

the Grushin plane is doubling. It is fairly simple to verify this directly from the dilation property; still,

it’s interesting to note that the α-Grushin Hausdorff 2-measure are doubling measures. (A measure µ on

X is doubling if there exists a C ≥ 1 such that µ(B(x, r)) ≤ Cµ(B(x, r/2)) for all metric balls B(x, r).)

Any metric space with a doubling measure must be doubling. A complete doubling metric space supports a

doubling measure (for the Grushin plane, the pushforward of Lebesgue measure under ϕ−1
α ), but it may not

be a natural measure such as the Hausdorff measure.

4.3 Bi-Lipschitz mappings

A topological embedding f of metric space (X, dX) into the metric space (W,dW ) is bi-Lipschitz if there

exists L ≥ 1 such that

L−1dX(x, y) ≤ dW (f(x), f(y)) ≤ LdX(x, y)

for all x, y ∈ X. In words, a bi-Lipschitz map quasi-preserves distance (note, however, that the term

quasi-isometry refers to a slightly different concept). It is easy to see that any bi-Lipschitz map is also

quasisymmetric (with η(t) = L2t), so this forms a more restrictive class of mapping.

Another natural, broad problem in metric geometry is the bi-Lipschitz embedding problem. This asks

under what conditions a given metric space may be embedded in some given model space (very often, some

Euclidean space Rn) under a bi-Lipschitz mapping. On a philosophical level, such an embedding gives one
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a concrete description of an abstract object, as subsets of a well-understood model space.

A famous theorem in differential geometry is the Nash embedding theorem, which states that any Rieman-

nian manifold can be isometrically embedded in some Euclidean space of fairly small dimension. However,

the term isometric in this context has a different meaning, referring only to the infinitesimal behavior of

the mapping. Such a Nash embedding is typically not a bi-Lipschitz embedding, in this global sense we are

using.

The classical result on the embedding problem is Assouad’s theorem [Ass83]. This states that, for any

doubling metric space (X, d) and β ∈ (0, 1), the snowflaked space (X, dβ) embeds quantitatively into some

Euclidean space. As already mentioned in Section 3.2, the snowflaked line (R, dβ) embeds in Rb1/βc+1, where

this target dimension is sharp.

In a somewhat similar spirit to the quasisymmetric uniformization problem described in Section 4.1, the

bi-Lipschitz embedding problem is a broad and difficult one that has led to a large body of literature. It is

once again Semmes who gets credit for several lengthy and detailed papers pioneering the topic in the 1990’s

[Sem93], [Sem96b], [Sem99]. However, more recent research has seen a large cast of contributers with various

mathematical motivations. Two significant early papers come from Bonk, U. Lang, and Plaut [BL03], [LP01].

A research program focused on metric spaces supporting a Poincaré inequality has been led by Cheeger and

Kleiner [CK13], [CKN11], [Che99]. One class of examples in this framework are metric graphs which support

such a Poincaré inequality (often termed Laakso graphs after a separate paper of Laakso [Laa00]). Other

work has come from the direction of theoretical computer science, based on connections to the Sparsest

Cut problem. Naor and J. Lee are two of the main contributors [ALN05], [KLMN05], [LM10], [Nao10],

[LN14]. In many of these works, the focus is on embeddings into various Banach spaces (for example, Laakso

graphs embed into L1, while the Heisenberg group does not). Finally, we mention an interesting result

on quantitative embedding of Riemannian manifolds into Euclidean spaces by Erikkson-Bique [EB15]. His

main theorem states that any bounded subset of a complete Riemannian n-manifold of bounded sectional

curvature K can be L-bi-Lipschitz embedded into some Euclidean space RN , where L and N depend only

on n, K, and the diameter of the set.

4.4 Two examples

In addition to the papers listed above, we discuss briefly two important examples that help place our

investigations of the Grushin plane in a broader mathematical context.

The first of these is a paper of David and Toro [DT99]. To motivate it, recall from Section 3.2 the result

of Assouad that (R, | · |β), β ∈ (0, 1), is bi-Lipschitz equivalent to a von Koch-type curve in Rb1/βc+1. The
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target dimension is sharp. A natural question is whether a similar sharp snowflake embedding is possible if

R is replaced by Rn. It was included as a notable open problem at the time in a survey article of Heinonen

and Semmes [HS97].

This has proved to be a very difficult problem, eventually solved by David and Toro for certain ranges of

β, depending on the dimension n. More precisely, for β sufficiently close to 1, the snowflaked space (Rn, dβ)

can be embedded in Rn+1 under a bi-Lipschitz mapping. Moreover, its image is a quasiplane (the image of

an n-dimensional linear subspace under a quasisymmetric self-map of Rn). While the result does not address

the case of arbitrary β ∈ (0, 1), their proof is already of such difficulty that it seems unlikely to be improved

upon.

The second example is the paper of Laakso [Laa02], briefly mentioned in Section 4.1. We discuss this

example because provides a interesting but accessible application of the bi-Lipschitz embedding problem and

connects it to the quasisymmetric uniformization problem discussed in Section 4.1. It also provides a point

of contrast with the conformal Grushin spaces studied in Section 5, whose definition is similar.

As was the case with the work of David–Toro, Laakso’s paper originated as a solution to an open problem

in the survey article [HS97]. It gives a negative answer to a conjectured resolution to the quasiconformal

Jacobian problem for R2. This requires some explanation. A locally integrable, nonnegative function ω on

Rn is an A∞-weight if there exists δ, ε > 0 such that for all n-cubes Q ⊂ Rn and Borel subsets E ⊂ Q,

|E| ≥ δ|Q| implies that
∫
E
ω dm ≥ ε

∫
Q
ω dm. This is a standard notion in harmonic analysis, specifically

the theory of Muckenhoupt weights. A related notion was introduced by David and Semmes [DS90]. For

its statement, for x, y ∈ Rn, let Bxy denote the ball of diameter |x − y| containing both x and y. A strong

A∞-weight is a locally integrable, nonnegative function ω on Rn such that the measure induced by ω dm is

doubling and the quasidistance

Dω(x, y) =

(∫
Bxy

ω dm

)1/n

is bi-Lipschitz equivalent to a metric. A bit more concretely, the function Dω induces the metric dω(x, y) =

inf{
∑n
j=1Dω(xj−1, xj) : xj ∈ Rn(0 ≤ j ≤ n), x0 = x, xn = y}. The strong A∞ weight asks for the induced

metric to be comparable to the original function Dω. As the name implies, a strong A∞-weight is also an

A∞-weight.

A landmark paper of Gehring from 1973 shows, as a consequence of the main theorem, that the Jacobian

of a quasiconformal (equivalently, quasisymmetric) mapping of the plane is a strong A∞-weight [Geh73]. The

question is whether the converse holds: is every A∞-weight comparable to the Jacobian of a quasiconformal

mapping? If true, this would provide a complete characterization of weights which arise as Jacobians of a

quasiconformal mapping. However, Laakso answered this problem in the negative by finding an A∞-weight
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Figure 4.1: The set Z used by Laakso

in the plane which is not comparable to any quasiconformal Jacobian. Other examples for higher dimensions

had previously been found by Semmes in [Sem96b].

The method of proof is based on the observation that if ω is the Jacobian of a quasiconformal mapping

f : R2 → R2, then (R2, Dω) is bi-Lipschitz equivalent to R2. This is the connection with bi-Lipschitz

embeddings: in his paper, Laakso constructs a strong A∞-weight which does not bi-Lipschitz embed in any

Euclidean space. In fact, such a weight cannot be the Jacobian of any quasisymmetric mapping of R2 onto

an Ahlfors 2-regular subset of Rn.

For his construction, Laakso considers the fractal set Z illustrated in Figure 4.1, with what amounts

to the metric induced by the weight ω = d(·,Z)s. For a suitable choice of s, this gives a metric on R2,

notwithstanding the fact that ω vanishes on the set Z. Laakso shows that this metric space is not bi-

Lipschitz equivalent to any “rounded ball space” (for instance, a uniformly convex Banach space), thus

ruling out a bi-Lipschitz embedding in Rn.

On the other hand, it is a short task to show that it is quasisymmetrically equivalent to R2. One

moral is that there is no general connection between the existence of a quasisymmetric parametrization

by Euclidean space of one dimension and the existence of a bi-Lipschitz embedding in Euclidean space of

another dimension.

4.5 Bi-Lipschitz embedding of Grushin plane

The bi-Lipschitz embedding problem is most interesting for non-Riemannian spaces. Aside from snowflake

spaces and metric graphs, the most basic example of such a space is the Heisenberg group. Semmes showed

that the Heisenberg group does not embed in any Euclidean space under a bi-Lipschitz mapping, not even

locally [Sem96b]. A more general framework for approaching this sort of problem was developed by Cheeger

in [Che99]. In this paper, Cheeger proves a differentiability theorem for Lipschitz functions on metric
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Figure 4.2: A Christ-Whitney decomposition of the Grushin plane relative to the singular line

spaces supporting a Poincaré inequality. As the Heisenberg group and Rn have non-isomorphic differential

structures, which are defined at almost every point, this rules out any bi-Lipschitz embedding.

Cheeger’s theorem does not apply to the Grushin plane: the differential structures studied in his paper

are defined only almost everywhere, while the singular part of the Grushin plane has Lebesgue measure zero.

Hence it was unknown whether a bi-Lipschitz embedding of the Grushin plane existed. The problem was

taken up by Seo, at the time a student of Tyson. She was able to give an affirmative answer as part of her

thesis work, published as [Seo11]. Seo framed her embedding method in terms of a general metric space, and

we include it as the following theorem.

Theorem 4.5.1 (Seo). A metric space (X, d) admits a bi-Lipschitz embedding into some Euclidean space

if and only if there exist M1,M2 ∈ N, L1, L2 ≥ 1 such that the following hold:

(1) (X, d) is doubling.

(2) There is a closed subset Z 6= ∅ of X which admits an L1-bi-Lipschitz embedding into RM1 .

(3) There is a Christ-Whitney decomposition of X \ Z such that each cube admits an L2-bi-Lipschitz

embedding into RM2 .

The bi-Lipschitz constant and target dimension of this embedding depend only on M1, M2, L1, L2, the

doubling constant of X, and the data of the Christ-Whitney decomposition.

A Whitney decomposition of a domain Ω ( Rn is a decomposition into essentially disjoint n-cubes Q such

that diamQ ' dE(Q, ∂Ω). A Christ-Whitney decomposition is a similar decomposition for metric spaces,

based on work of Christ [Chr90]. Because it is fairly lengthy and technical, we omit a precise statement here.

Seo’s proof is, in part, an adaptation of the proof of Assouad’s embedding theorem [Ass83]. It uses a

coloring argument to embed the infinitely-many Christ-Whitney cubes into finitely-many dimensions, using
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condition (2) to get sufficient separation between the cubes for the map to satisfy a co-Lipschitz inequality.

Seo’s paper does not attempt to find the optimal target dimension. A few years later, this was shown

to be dimension 3 by Wu for the standard Grushin plane (α = 1) [Wu15a]. This was shown by a direct

construction, based on earlier work of Bonk and Heinonen [BH04]. Wu’s result is analogous to the David–

Toro paper [DT99] in proving sharp, low-dimensional embedding of a snowflaked or partially-snowflaked

space. Indeed, Heinonen, in his Math Review of [DT99], asks whether a similar embedding is possible

for “intermediate-type fractal surfaces”. While the phrasing is somewhat imprecise, the Grushin plane is

a metric space which naturally fits this description. In both the David–Toro and Wu constructions, the

embedded image is shown to be a quasiplane in the target space.

Finally, let us describe one potential application of such a bi-Lipschitz embedding of the Grushin plane. A

substantial and ongoing area of research within the field of analysis on metric spaces is the study of Sobolev

spaces of mappings with metric space targets. The notion of Sobolev space requires a linear structure on the

target, and hence one considers a metric space as a subset of some larger Banach space. If the metric space

W is separable, this can always be done via an isometric embedding in `∞ (Frechét’s theorem; see [Hei01,

Exer. 12.6]). This is a very large space, and so one can expect stronger theorems by replacing `∞ with a

smaller space such as some Euclidean space. Prior to the publication of [Wu15a], an initial investigation into

Sobolev mappings with the Grushin plane as a target had been carried out in [DHLT14], using `∞ as the

underlying Banach space. It is not known whether the conclusions of their theorems might be improved by

using a finite-dimensional embedding.

4.6 Sharp bi-Lipschitz embedding of Grushin plane for arbitrary

α ≥ 0

In joint work with Vellis, we extended Wu’s result to the case of arbitrary α ≥ 0. Here is a precise statement.

Theorem 4.6.1. For all integers N ≥ 0 and n ≥ 1, there exists L > 1 depending only on N,n such that for

any α ∈ [N,N + n−1
n ], there exists an L-bi-Lipschitz homeomorphism of Gα onto a 2-dimensional quasiplane

Pα in RN+2.

Our proof is an adaption of the proof of Wu, the main difficulty being how to navigate certain higher-

dimensional issues. Much of the proof is more technical than interesting, but we give an overview of some

of the main ideas involved.

The proof itself is a detailed construction of an appropriate quasiconformal self-map Fα : RN+2 → RN+2.

One then shows that the composition Fα ◦ϕα : Gα → RN+2 is actually bi-Lipschitz, using the quasidistance
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(a) A schematic representation of an I-tube in two dimensional case

(b) A schematic representation of an L-tube in two dimensional case

Figure 4.3: Building blocks of the construction

estimates in (3.2). As before, ϕα : Gα → R2 is the canonical quasisymmetric parametrization of the α-

Grushin plane, where we now consider the image R2 as a subset of RN+2 in the usual way.

The construction of the map Fα proceeds in stages. We give a very rough overview. One defines an I-tube

and an L-tube by beginning with an n-cube and removing a tubular neighborhood of a path JI or JL which

runs from bottom to top (for the I-tube), or from bottom to one of the other faces (for the L-tube). See

Figure 4.3 for a schematic representation in the two-dimensional case. The length of this path is carefully

chosen, as is explained below.

The paths JI and JL themselves are constructed by concatenating some combination of straight line

segments and ninety-degree turns, as illustrated in Figure 4.3. This allows us to iterate the construction:

replace each straight-line segment with a scaled copy of the I-tube, and each ninety-degree turn with a scaled

copy of the L-tube. This is repeated for all scales.

Let τ denote an n-cube with a certain tubular neighborhood of a straight-line path from bottom to top

24



removed. One can show there exists a bi-Lipschitz map from the I-tube onto τ which is well-behaved on

the boundary (to allow for iteration at different scales). Likewise there exists a bi-Lipschitz map from the

L-tube onto τ which is also well-behaved on the boundary. This is achieved by first defining a map on the

boundary, and then justifying an extension to a bi-Lipschitz mapping of the interior.

In dimension three, which is the case of the original paper of Wu, the existence of such an extension follows

from standard metric Schoenflies-type theorems. In arbitrary dimensions, this existence is not obvious. This

step presented the largest difficulty in proving Theorem 4.6.1. We were eventually able to leverage an existing

extension theorem of Väisälä for piecewise linear manifolds, which we quote here.

Theorem 4.6.2 ([Väi86, Corollary 5.20]). Let n ≥ 2 and Σ ⊂ Rn be a compact piecewise linear manifold

of dimension n or n − 1 with or without boundary. Then, there exist L′, L > 1 depending on Σ, such that

every L-bi-Lipschitz embedding f : Σ→ Rn extends to an L′-bi-Lipschitz map F : Rn → Rn.

This does not apply directly to the case under consideration; instead, we must use a factoring argument.

That is, we consider an I-tube or L-tube as arising from a piecewise-linear bi-Lipschitz isotopy from a

straightened tube; this allows us to factor the boundary mapping into bi-Lipschitz maps of small distortion,

to which Väisälä’s theorem applies. We then obtain the desired bi-Lipschitz extension is as the composition

of mappings with smaller distortion.

Having obtained bi-Lipschitz mappings from the I-tube and L-tube onto τ , one can iterate this map at

all scales. This yields, in the limit, a quasiconformal mapping of the n-cube onto itself. This is extended via

backwards iteration to give a quasiconformal self-mapping of RN+2.

A second difficulty not present in Wu’s paper is in producing a construction schema that works for any

real value of α, and which still attains the (at that point, conjectured) sharp target dimension of bαc + 2.

The approach in our paper was to construct a model for integer values of α, and then alternate between

them. This proved the result for rational α. The result for arbitrary α then follows from a standard

Arzela–Ascoli-type limiting argument.
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Chapter 5

Generalization to conformal Grushin
spaces

This section is an exposition of the paper [Rom16]. Its main purpose is to introduce and study a natural

generalization of the Grushin plane, termed conformal Grushin spaces.

5.1 The conformal definition

We will state the main definition first, and then discuss it. We use the notation dE for Euclidean distance

(between either points or sets), and dsE for the Euclidean line element.

Definition 5.1.1. Let n ∈ N, let Z ⊂ Rn be a nonempty closed set, and let β ∈ [0, 1). The (Z, β)-Grushin

space is the space Rn equipped with the metric determined by the line element

ds =
dsE

dE(·, Z)β
.

More explicitly, the distance between two points z1, z2 ∈ Rn is given by inf
∫
γ
ds, the infimum taken over all

absolutely continuous paths from z1 to z2. If n = 2 we call this space the (Z, β)-Grushin plane.

The definition as given has no requirements on Z beyond being closed and nonempty. Thus, it allows the

possibility of infinite distance between points, in which case the (Z, β)-Grushin space is not a true metric

space. For instance, this happens if Z has nonempty interior. A niceness assumption will be inevitable for

proving results; this takes the form of a Hölder condition on the metric.

I decided to call these conformal Grushin spaces. This is because the metric is defined via a weight on

Rn which is a conformal deformation whenever it is finite. The terminology is not entirely satisfying, since

the metric is certainly not conformally equivalent to Rn at points where the weight is infinite. But, a term

like generalized Grushin space would be more misleading, since that would most logically refer to the larger

class of sub-Riemannian Grushin spaces studied by Franchi and Lanconelli.

If one takes n = 2 and Z to be the vertical axis, then one obtains the original Grushin plane, up to

rescaling of the metric. This is seen by taking the original Grushin line element and pushing it forward

under the quasisymmetry ϕα from Section 4.2. Observe the relationship β = 1/(1 + α).
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Figure 5.1: Balls centered at the origin in the conformal Grushin plane

One may wonder about the originality of Definition 5.1.1. It is reminiscent of a standard concept from

complex analysis: the quasihyperbolic metric, first studied by Gehring and Palka [GP76]. There is a large

literature on this topic; see a survey article by Koskela for a brief introduction [Kos98]. The definition

of the quasihyperbolic metric is similar to Definition 5.1.1, except that one restricts to a proper domain

Ω ⊂ Rn and takes Z = ∂Ω and β = 1. Hence another name for the conformal Grushin metric could be

sub-quasihyperbolic metric. There is a fundamental difference, though, in the behavior of the quasihyperbolic

metric: the boundary ∂Ω lies at infinite distance from any point in Ω. This is typically not the case for the

set Z in Definition 5.1.1.

Essentially the same metric as Definition 5.1.1 turns up in work of Gehring and Martio [GM85], though

considered only on a proper domain Ω ⊂ R2. They were motivated by connections with Lipschitz mappings.

See also work of Langmeyer [Lan98].

Tyson proposed Definition 5.1.1 as a potential starting point for my thesis research in 2014. Our mo-

tivating question was the following: under what generality can one obtain geometric parametrization or

embedding results, in particular the bi-Lipschitz embedding result of Seo in [Seo11]? These questions will

be answered in Section 5.2 and Section 5.3.

First, here is a simple concrete example.

Example 5.1.2. Take Z = {0} ⊂ R2. Representing points in the (Z, β)-Grushin plane in polar coordinates

by (r, θ), the map

(x, y, z) =
(
r1−β cos θ, r1−β sin θ, r1−β

√
(1− β)−2 − 1

)
is a path-isometry between the (Z, β)-Grushin plane and a cone S in R3 with angular defect (total curvature)

2πβ. In this case the intrinsic metric on S is bi-Lipschitz equivalent to the Euclidean metric. Composing

the above map with the projection map into the (x, y)-plane gives a bi-Lipschitz map between (R2, dZ) and
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(R2, dE).

Next, we give a precise statement of the Hölder condition mentioned above.

Definition 5.1.3. The (Z, β)-Grushin space satisfies the Hölder condition if there exists H > 0 such that

dZ(x, y) ≤ HdE(x, y)1−β for all x, y ∈ Rn. That is, dZ is (1−β)-Hölder continuous as a function on (Rn, dE).

This definition is our working assumption, sufficient to obtain the results that follow. Fortunately, it

turns out that this Hölder condition is fairly mild. This is the content of the next proposition. We recall a

standard definition needed for its statement. A domain Ω ⊂ Rn is uniform (or, more explicitly, C-uniform)

if there exists C > 0 such that for any two points x, y ∈ Ω, there exists an arc γ from x to y such that

`E(γ) ≤ CdE(x, y) and d(z, ∂Ω) ≥ C−1 min{`E(γx,z), `E(γz,y)} for all z ∈ Im γ. Here γz,w refers to the

subarc of γ from z to w.

Proposition 5.1.4. Let X ⊂ Rn be a nonempty closed set such that Ω = Rn \ X is the union of finitely

many C-uniform domains and Ω = Rn. Then for all β ∈ [0, 1) and any nonempty closed subset Z ⊂ X,

the (Z, β)-Grushin space satisfies the Hölder condition. The Hölder constant depends only on C, β, and the

number of components of Ω, denoted by N .

The proposition follows almost immediately from the definition of uniform domain; the proof is omitted.

The non-trivial content of Proposition 5.1.4 lies in the fact that most domains one typically encounters are

uniform: for example, Z can be taken to be many Cantor-type and other fractal sets. The standard reference

on uniform domains is [Väi88].

5.2 Quasisymmetric parametrization

The Hölder condition is sufficient in order to obtain quasisymmetric parametrizability.

Theorem 5.2.1. Assume the (Z, β)-Grushin space satisfies the Hölder condition with constant H. The

identity map ι : (Rn, dE)→ (Rn, dZ) is quasisymmetric. The control function η depends only on β and H.

The proof is elementary and relatively clean, so we include it here. It requires two geometric lemmas.

Lemma 5.2.2. For any x ∈ Rn,

dZ(x, Z) =
dE(x, Z)1−β

1− β
.

Proof. Let x ∈ Rn. By integrating over a straight-line path that realizes the Euclidean distance from x to

Z, it is clear that dZ(x, Z) ≤ (1 − β)−1dE(x, Z)1−β . For the reverse inequality, let γ be an arbitrary path
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from Z to x. Then

`Z(γ) ≥
∫ `E(γ)

0

dt

tβ
≥
∫ dE(x,Z)

0

dt

tβ
=
dE(x, Z)1−β

1− β
.

Lemma 5.2.3. Fix c ≥ 0. For any x, y ∈ Rn satisfying dE(x, Z) ≤ cdE(x, y),

dZ(x, y) ≥ 1

1− β
((1 + c)1−β − c1−β)dE(x, y)1−β .

Proof. Consider an arbitrary path γ from x to y, parametrized by Euclidean arc length. Then

`Z(γ) ≥
∫ dE(x,y)

0

dt

(t+ dE(x, Z))β

=
1

1− β
(
(dE(x, y) + dE(x, Z))1−β − dE(x, Z)1−β) .

Taking the infimum over all paths yields the same inequality with dZ(x, y) in place of `Z(γ). If c = 0, then

dE(x, Z) = 0 as well and we are done.

Otherwise, write the above inequality in the form

dZ(x, y) ≥ 1

1− β

((
1 +

dE(x, Z)

dE(x, y)

)1−β

−
(
dE(x, Z)

dE(x, y)

)1−β
)
dE(x, y)1−β .

Let h(t) =
(
(1 + t)1−β − t1−β

)
, defined on (0, c]. We compute

h′(t) = (1− β)((1 + t)−β − t−β) < 0.

This shows that h(t) is decreasing, and in particular that

h

(
dE(x, Z)

dE(x, y)

)
≥ h(c).

This yields the desired inequality.

We now prove Theorem 5.2.1.

Proof. We need to show that, for all t ≥ 0, there exists a value η(t) such that, for all distinct points

x, y, z ∈ Rn satisfying dE(x, y) ≤ tdE(x, z), dZ(x, y) ≤ η(t)dZ(x, z), with limt→0 η(t) = 0. Let t ≥ 0 and

suppose that x, y, z ∈ Rn are three such points. We consider two cases.
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First, assume that dE(x, Z) ≤ 2tdE(x, z). By Lemma 5.2.3 there exists c(t, β) > 0 such that dZ(x, z) ≥

c(t, β)dE(x, z)1−β . Now by the Hölder condition there exists H such that dZ(x, y) ≤ HdE(x, y)1−β . It

follows that

dZ(x, y)

dZ(x, z)
≤ Hc(t, β)

(
dE(x, y)

dE(x, z)

)1−β

≤ Hc(t, β)t1−β .

Next, assume that dE(x, Z) > 2tdE(x, z). First consider the straight-line path γ′ from x to y. Notice

that for any point w ∈ Im γ′, dE(w,Z) ≥ dE(x, Z)/2. From this we obtain

dZ(x, y) ≤
∫
γ′

dsE
dE(γ′(·), Z)β

≤
∫
γ′

dsE
(dE(x, Z)/2)β

= 2β
dE(x, y)

dE(x, Z)β
.

Now let γ be any path from x to z. Then

`Z(γ) =

∫ `E(γ)

0

dt

dE(·, Z)β
≥ dE(x, z)

(dE(x, Z) + dE(x, z))β

≥
(

1 +
1

2t

)−β
dE(x, z)

dE(x, Z)β
.

Since γ is arbitrary the same inequality holds with dZ(x, z) in place of `Z(γ). We obtain

dZ(x, y)

dZ(x, z)
≤ 2β

(
1 +

1

2t

)β (
dE(x, y)

dE(x, z)

)
≤ 2β

(
1 +

1

2t

)β
t.

Take η(t) to be the larger of the two upper bounds. It is easy to see that limt→0 η(t) = 0.

5.3 Bi-Lipschitz embedding of conformal Grushin spaces

The main result of [Rom16] is the following.

Theorem 5.3.1. Let n ∈ N, let Z ⊂ Rn be nonempty and closed, and let β ∈ [0, 1). If the (Z, β)-Grushin

space satisfies the Hölder condition (Definition 5.1.3), then it is bi-Lipschitz embeddable in some Euclidean

space. The bi-Lipschitz constant and target dimension depend only on β, n, and the Hölder constant H.

We give a short discussion of the proof. It is proved by verifying Seo’s embeddability criterion Theorem

4.5.1. The doubling property holds by Theorem 5.2.1. The singular set Z, equipped with the Grushin

metric, also embeds in some Euclidean space; this follows from Assouad’s theorem, since the Grushin metric

on Z is comparable to a snowflaked metric on Rn. The final, and non-trivial, step is to verify the uniform

embeddability of Christ-Whitney cubes.

This step is done by estimating the metric in an individual Christ-Whitney cube; one obtains an estimate
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similar to the second case in the Grushin quasidistance (3.2). From there, a suitable dilation gives a uniform

embedding for that cube. The details become somewhat technical, as one must work with the many pieces

of data appearing in the definition of Christ-Whitney cube.

5.4 Another sharp target dimension result

We end this section with an additional result on sharp embedding dimensions for a particular class of

conformal Grushin spaces; this broadens the scope somewhat of the main result in [RV17]. In its statement,

we use the term ε-snowflake line in R2 for the image of (R, | · |ε) under a bi-Lipschitz map into R2 (relative

to the Euclidean metric). Notice that necessarily ε ∈ (1/2, 1]. If ε = 1, such a set is often referred to as a

chord-arc line.

Theorem 5.4.1. Let Z ⊂ R2 be an ε-snowflake line for some ε ∈ (1/2, 1], let β̃ = 1 − ε, and let α̃ =

(β̃ + β − β̃β)/(1− β̃ − β + β̃β). Then for all β ∈ [0, 1), the (Z, β)-Grushin plane is bi-Lipschitz embeddable

in R[α̃]+2. The target dimension is sharp.

Observe that α̃ grows to infinity as either β → 0 or β → 0. The proof of Theorem 5.4.1 relies on the

following result from [RV17] (Corollary 1.3).

Theorem 5.4.2. If α ∈ (0, 1), then any bi-Lipschitz embedding of the singular line of G2
α into R2 extends

to a bi-Lipschitz homeomorphism of G2
α onto R2.

Proof. Suppose that α ∈ (0, 1) and g is a bi-Lipschitz embedding of the singular line Z into R2. We show

that g extends to a bi-Lipschitz embedding of G2
α onto R2.

Let f : G2
α → R2 be the bi-Lipschitz mapping of Theorem 4.6.1. Then, g(Z) and f(Z) are quasilines in

R2 and g ◦ f−1 is a bi-Lipschitz homeomorphism between these quasilines. Consider an η-quasisymmetric

mapping h : R → f(G). By the Beurling-Ahlfors quasiconformal extension [BA56], there exists a K-

quasiconformal extension H : R2 → R2 of h, with K depending only on η that satisfies

diamH(I) ' |DH(x)|diam I

for every arc I ⊂ R × {0} and every point x ∈ R2 for which dist(x, I) ' |I|. (See Section 6.1 below for an

explanation of quasiconformal mappings). Here the ratio constants depend only on η. Similarly, there exists

a quasiconformal mapping G : R2 → R2 extending g ◦ f−1 ◦ h satisfying the same property.

We claim that F = G ◦ H−1 ◦ f is bi-Lipschitz extension of g. Indeed, for any point x ∈ R2 we have

|DH(x)|/|DG(x)| ' diamH(I)/diamG(I) for some suitable I ⊂ R× {0}. Since g ◦ f−1 is bi-Lipschitz, the
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last ratio is comparable to 1. Therefore, |DH(x)| ' |DG(x)| and G ◦H−1 is bi-Lipschitz. We see that F is

bi-Lipschitz, being the composition of bi-Lipschitz mappings.

We continue now with the proof of Theorem 5.4.1.

Proof. Let β̃ = 1 − ε and let Z̃ = {(0, v) : v ∈ R}. There exists a global bi-Lipschitz map Γ : (R2, dZ̃,β̃) →

(R2, dE) such that Γ(Z̃) = Z; this is a restatement of Theorem 5.4.1 in terms of our new notation for Grushin-

type surfaces. We claim that Γ is also a global bi-Lipschitz map between the (Z̃, β̃ + β − β̃β)-Grushin plane

and the (Z, β)-Grushin plane. To check this, note that dE(Γ(·), Z̃) ' dZ̃,β̃(·, Z̃) ' dE(·, Z̃)1−β̃ by Lemma

5.2.2. For any path γ in R2, we have

∫
γ

dsE

dE(·, Z̃)β̃
'
∫

Γ◦γ
dsE .

It follows from this that ∫
γ

dsE

dE(·, Z̃)(1−β̃)β+β̃
'
∫

Γ◦γ

dsE
dE(·, Z)β

for any path γ in R2. This shows that Γ is bi-Lipschitz as a mapping from the (Z̃, β̃ + β − β̃β)-Grushin

plane to the (Z, β)-Grushin plane. The (Z̃, β̃ + β − β̃β)-Grushin plane is isometric (up to rescaling) to the

usual Grushin plane G2
α̃, where α̃ = (β̃ + β − β̃β)/(1− β̃ − β + β̃β). This space is embeddable in R[α̃]+2 by

Theorem 4.6.1.
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Chapter 6

Quasiconformal mappings on the
Grushin plane

The theory of quasiconformal mappings in metric spaces has been an active area of research since seminal

papers of Korányi and Reimann [KR85], Margulis and Mostow [MM95], and Heinonen and Koskela [HK95],

[HK98]. The standard setting in much of the literature is Ahlfors regular metric spaces, often with an

additional assumption of supporting a Poincaré inequality. The Grushin plane is a simple setting in which

the existing theory does not apply, and so it is natural to investigate quasiconformal mappings on the Grushin

plane.

This endeavor was initiated by Ackermann, another recent student of Tyson. In [Ack15], she studies a

version of the Beltrami equation for the Grushin plane (see the commentary following Definition 6.1.3) and

shows that it is satisfied by a class of mappings considered earlier by Payne in [Pay06]. There are some other

natural questions on the topic of quasiconformal mappings on the Grushin plane. Does the infinitesimal

metric definition of quasiconformal map (Definition 6.1.1) imply the global quasisymmetry condition? Is

the inverse of a quasiconformal mapping still quasiconformal? Can one characterize the class of conformal

homeomorphisms of the Grushin plane?

I explored these questions in collaboration with Gartland and Jung, two other graduate students at

Illinois. We also considered a deeper question of whether there is a meaningful geometric definition of

quasiconformality (Definition 6.1.2). This is complicated by certain technical and philosophical issues, but

in the end we were able to give what I consider a satisfactory answer to the problem.

Before proceeding further, we offer some background to the area of quasiconformal mappings.

6.1 Basic theory of quasiconformal mappings

Complex analysis, at a basic level, is the study of holomorphic or analytic functions of a complex variable.

Such a function has the property of being conformal, or angle-preserving. Beginning in the 1920s, this

was generalized to the notion of quasiconformal mapping (the term map or mapping meaning an injective

function). The field of quasiconformal mappings, developed first in the plane, later in Euclidean spaces Rn

of arbitrary dimension, and finally in various metric space settings, is one outgrowth of complex analysis
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developed over the past century.

At the foundations lie the questions of definitions and regularity of a quasiconformal map. There are three

main definitions, commonly referred to as the metric, analytic, and geometric definitions. The metric defini-

tion is the weakest; the other two definitions either contain or imply strong properties of a quasiconformal

mapping. We give these definitions for the metric space setting.

Definition 6.1.1. A homeomorphism f : (X, dX) → (W,dW ) of two metric spaces is metrically quasicon-

formal if there exists H ≥ 1 such that, for all x ∈ X,

lim sup
r→0

sup{dW (f(x), f(y)) : y ∈ X, dX(x, y) ≤ r}
inf{dW (f(x), f(y)) : y ∈ X, dX(x, y) ≥ r}

≤ H.

Next is the geometric definition, which applies to any two metric measure spaces (X, dX , µ) and (W,dW , ν).

For a fixed p ≥ 1, define the p-modulus of a family Γ of curves in X as

Modp Γ := inf

∫
X

ρpdµ,

where the infimum is taken over all Borel measurable functions ρ : X → [0,∞] with the property that∫
γ
ρ ds ≥ 1 for all locally rectifiable curves γ ∈ Γ. Such a function ρ is called admissible, and the value p is

called the exponent.

Definition 6.1.2. A homeomorphism f : (X, dX , µ) → (W,dW , ν) between metric measure spaces is geo-

metrically quasiconformal with exponent p if there exists a constant K such that

K−1 Modp Γ ≤ Modp fΓ ≤ K Modp Γ (6.1)

for all curve families Γ.

In the case of X = W = Rn, one takes the exponent p = n. One often encounters a variation on Definition

6.1.2, which we explain now as it will be relevant in the next section. For disjoint continua E,F ⊂ X, we let

Γ(E,F ) denote the family of curves with one endpoint in E and another endpoint in F . In this variation, one

requires that (6.1) hold only for curve families Γ(E,F ), for all disjoint continua E,F ⊂ X. It is customary to

refer to the complement of E∪F as a ring or ring domain. We will refer to such a mapping f as geometrically

quasiconformal for ring domains. In the Euclidean case, and even rather broad metric space settings (see

[Wil12]), these definitions coincide. This is nontrivial, and probably difficult to prove directly. Instead, one

shows that this weaker variant of the geometric definition implies the analytic definition (Definition 6.1.3

below), and then one shows that the analytic definition, in turn, implies the stronger definition.
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We conclude now with the analytic definition. We could state this definition for an arbitrary metric

measure space, similar to Definition 6.1.2. However, this would require some notion of metric Sobolev space,

which would take some time to develop; we refer the interested reader to [HKST01] or [HKST15]. Instead,

we give the definition for the Euclidean case.

Definition 6.1.3. A homeomorphism f : Rn → Rn (where n ≥ 2) is analytically quasiconformal if f is in

the Sobolev space W 1,n
loc (Rn,Rn), and there exists K ≥ 1 such that

|Df(x)|n ≤ KJf (x) (6.2)

for a.e. x ∈ Rn. Here Jf is the Jacobian of f , and |Df | is the operator norm of Df .

If n = 2, after identifying R2 with C, the condition (6.2) is equivalent to satisfying the Beltrami equation:

there exists a measurable function µ : C → C, ‖µ‖∞ ≤ (K − 1)/(K + 1) < 1, such that ∂f
∂z = µ∂f∂z a.e.

Also, the requirement that f ∈W 1,n
loc (Rn,Rn) is equivalent to the so-called ACLn property (see for instance

Rickman [Ric93, Theorem 1.2]). The map f is absolutely continuous on lines (ACL) if for each closed n-

interval Q = [a1, b1] × · · · × [an, bn], f is absolutely continuous on n-a.e. line segment in Q parallel to a

coordinate axis (that is, the family of those line segments where f fails to be absolutely continuous has

n-modulus zero). Then f is said to be ACLn if additionally the partial derivatives (which must exist almost

everywhere) are locally n-integrable.

In the classical setting of homeomorphisms of Rn, all three definitions are equivalent (taking p = n in

the geometric definition). They are also equivalent to the notion of quasisymmetry, defined in Section 4.1.

This equivalence is quantitative in the sense that worst-case data corresponding to one definition can be

computed from the data of the other. Still the main reference for this material, even with its typewriter

typesetting, is the book of Väisälä [Väi71].

6.2 Equivalence of definitions for the Grushin case

The main theorem in [GJR17] is the following. For a homeomorphism f : G2
α → G2

α, we call Y ∪ f−1(Y ) the

singular set of f and its complement the Riemannian set of f .

Theorem 6.2.1. Let f : G2
α → G2

α be a homeomorphism. The following are equivalent.

(a) f is quasisymmetric.

(b) f is metrically quasiconformal.
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(c) f is metrically quasiconformal on its Riemannian set.

(d) f is geometrically quasiconformal for ring domains, for the Grushin Hausdorff 2-measure H2
α and

exponent p = 2.

(e) f is uniformly locally geometrically quasiconformal on its Riemannian set. That is, there exists a

K ≥ 1 such that, for any point x in the Riemannian set of f , there exists a neighborhood Ux such that

f |Ux : Ux → G2
α is geometrically quasiconformal with constant K.

Theorem 6.2.1 is quantitative in the sense that worst-case data for one definition can be computed from

the data of any other definition. The quantitative relationship is written down explicitly as Remark 3.8 in

[GJR17].

The proof strategy for Theorem 6.2.1 is to exploit the corresponding fact for the Euclidean plane. This

is achieved via the standard quasisymmetry ϕα : G2
α → R2. Here is an example which works out one of the

implications in Theorem 6.2.1.

Theorem 6.2.2. Let f : G2
α → G2

α be a homeomorphism which is metrically quasiconformal on its Rieman-

nian set. Then f is quasisymmetric.

Proof. The result essentially follows from a negligibility theorem of Väisälä [Väi71] for Euclidean quasicon-

formal mappings. Let f̃ = ϕα ◦ f ◦ ϕ−1
α , and let Z̃ denote the vertical axis as a subset of R2. Notice that

R2 \ f̃−1(Z̃) has two components, which we denote by E1 and E2. Now, f̃ is metrically quasiconformal on

each component of Ei \ Z̃. We apply the theorem of Väisälä [Väi71, Theorem 35.1], which states that any

set of σ-finite 1-dimensional Lebesgue measure is negligible, to conclude that f̃ is metrically quasiconformal

on both E1 and E2. It follows then that f̃−1 is metrically quasiconformal on R2 \ Z̃. By the same theorem

of Väisälä, f̃−1 is metrically quasiconformal on all of R2. This suffices to show that f̃ , and hence f itself, is

quasisymmetric.

Corollary 6.2.3. The inverse of a metrically quasiconformal mapping f : G2
α → G2

α is metrically quasicon-

formal.

Proof. For such an f , the preceeding theorem says that f is quasisymmetric. Thus f−1 is also quasisym-

metric, hence quasiconformal in the metric sense.

The most difficult piece of Theorem 6.2.1 is the following.

Theorem 6.2.4. A quasisymmetric map f : G2
α → G2

α is geometrically quasiconformal for ring domains.
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The proof of this is fairly lengthy and involves a number of lemmas. Here is a sketch of the main ideas.

It is easy to see that Theorem 6.2.4 follows from showing that the canonical quasisymmetry ϕα : G2
α → R2

is modulus-preserving for ring domains. The main obstacle is that there are many unrectifiable curves in

G2
α whose images under ϕα are rectifiable in R2. Hence it is possible, in principle, for ϕα to increase the

modulus of curve families.

Fix subsets E,F ⊂ G2
α. The task becomes a matter of finding a full-modulus subset of the curve family

Γ(ϕαE,ϕαF ) that are well-behaved under ϕ−1
α : they remain rectifiable and the usual change-of-variables

formula holds. This task is accomplished, first, by using the Riemann mapping theorem for doubly connected

domains to map R2 \ (E∪F ) conformally onto an annulus. The family of radial curves has full modulus, and

hence so does the corresponding subfamily of Γ(ϕαE,ϕαF ). The second ingredient is using an approximation

procedure for such curves near the singular line, to obtain curves whose images under ϕ−1
α are also rectifiable.

See [GJR17, Sec. 3] for details.

6.3 A family of curves

Observe that the statement of Theorem 6.2.4 refers only to ring domains. This is a necessity: we can show

by example that a quasisymmetry of the Grushin plane need not quasi-preserve the modulus of an arbitrary

curve family.

Theorem 6.3.1. For α ≥ 1, there exists a family Γ of nonrectifiable curves in G2
α with Mod Γ > 0.

Proof. We continue to use (x, y) for coordinates in G2
α and (u, v) for coordinates in R2, and to use ˜ to

indicate objects in R2.

Consider the family Γ̃ of curves γ̃a(t) = (t1+α/(1 + α),−tα/ log t + a) : (0, 1/2] → (R2, dE), where

0 ≤ a ≤ 1. We will show that this family has positive modulus. This has the same modulus as the family Γ

consisting of the curves γa = ϕ−1
α ◦ γ̃a.

Let D be the domain in R2 which is foliated by the curves in Γ̃. In coordinates

 u = t1+α

1+α

v = −tα
log t + a

 t = ((1 + α)u)1/(1+α)

a = v + ((1+α)u)α/(1+α)

log((1+α)u)1/(1+α)

.

Write γ̃(a, t) in place of γ̃a(t), observing that |Jγ̃(a, t)| = tα and |Jγ̃−1(u, v)| = ((1 + α)u)−α/(1+α).

Let ρ̃ be an admissible function for Γ̃, which we may assume to be supported on D. This means that
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∫
γ̃a
ρ̃ ds ≥ 1 for all a ∈ [0, 1]. This can be written as

1 ≤
∫
γ̃a

ρ̃ dsE =

∫ 1/2

0

(ρ̃ ◦ γ̃a)

√(
du

dt

)2

+

(
dv

dt

)2

dt

=

∫ 1/2

0

(ρ̃ ◦ γ̃a)

√
t2α +

(
t−1+α

log2 t
− α t−1+α

log t

)2

dt.

Then

1 ≤
∫ 1

0

∫ 1/2

0

(ρ̃ ◦ γ̃a)

√
t2α +

(
t−1+α

log2 t
− α t−1+α

log t

)2

dt da

=

∫
D

ρ̃

√
((1 + α)u)2α/(1+α) +

(
t(u)−1+α

log2 t(u)
− α t(u)−1+α

log t(u)

)2
1

((1 + α)u)α/(1+α)
dm.

Applying Hölder’s inequality gives

1 ≤
(∫

D

ρ̃2dm

)1/2
(∫

D

1 +
1

((1 + α)u)2α/(1+α)

(
t(u)−1+α

log2 t(u)
− α t(u)−1+α

log t(u)

)2

dm

)1/2

.

To evaluate the rightmost integral, we pull back to the (a, t)-plane to get

∫
D

(
1 +

1

t2α

(
t−1+α

log2 t
− α t−1+α

log t

)2
)
tα dm =

∫ 1

0

∫ 1/2

0

tα +
1

tα

(
t−1+α

log2 t
− α t−1+α

log t

)2

dt da

=

∫ 1/2

0

tα +
1

tα

(
t−1+α

log2 t
− α t−1+α

log t

)2

dt.

The convergence of this integral follows from that of
∫ 1/2

0
−t−2+α(log t)−2 dt, for α ≥ 1. This gives a positive

lower bound for
∫
D
ρ̃2 dm in the case that α ≥ 1.

However, we show that the curves γa(t) = (t, −t
α

log t + a) are not rectifiable for α > 0. We compute

∫
γa

dsα =

∫ 1/2

0

√
1 +

1

t2α

(
t−1+α

log2 t
− α t−1+α

log t

)2

dt

≥
∫ 1/2

0

|1− α log t|
t log2 t

dt =∞,

where divergence follows from the divergence of
∫ 1/2

0
(−t log t)−1 dt, for α > 0.

Based on the same example we also obtain the following collection of results.

Corollary 6.3.2. Let f : G2
α → G2

α (α ≥ 1) be a quasisymmetric homeomorphism.
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(1) The modulus of a curve family may fail to be quasi-preserved by f . Of necessity, such a curve family

does not correspond to a ring domain.

(2) (failure of absolute continuity on lines (ACL) property) The map f may fail to be absolutely continuous

on almost every closed, compact curve.

(3) (failure of Lusin condition N) The map f may map a set of zero measure (here, Hausdorff 2-measure)

onto a set of positive measure.

Proof. Let Γ′ be the family of curves in G2
α obtained by adding the left endpoint 0 into the domain of each

curve in Γ in the example of Theorem 6.3.1. Then Γ′ consists only of non-locally rectifiable curves. The

definition of modulus implies that any curve family with no non-locally rectifiable curves has modulus zero.

However, the family ϕαΓ′ has the same modulus as the family Γ̃ in the proof of Theorem 6.3.1, which is

positive. Hence it is not true that the map ϕα quasi-preserves the modulus of all curve families not associated

to some disjoint continua E,F .

Define f̃ : R2 → R2 by f̃(u, v) = (u+ 1, v), and f : G2
α → G2

α by f = ϕ−1
α ◦ f̃ ◦ ϕα. Since ϕαΓ′ and fΓ′

have the same modulus, we obtain claim (1) of the theorem.

To verify claim (2), consider again the curve family Γ′ and the function f defined in the previous para-

graph. The family fΓ′ has positive modulus and contains only rectifiable curves, but every curve in Γ′ is

nonrectifiable. This shows that f−1 is not absolutely continuous on almost every closed rectifiable curve.

To verify claim (3) observe that f(Z) is a locally rectifable line in G2
α, whose image under f−1, namely

Z itself, has positive 2-measure whenever α ≥ 1.

In summary, we have shown that various properties regarding curve families and absolute continuity, all

of which are well-known in the Euclidean case, do not hold for the Grushin case. In particular, we have seen

a difference between the property of quasi-preserving the modulus of all curve families associated to a ring

domain, and the property of quasi-preserving the modulus of an arbitrary curve family.

6.4 Conformal mappings of the Grushin plane

An auxiliary theorem in [GJR17] is a characterization of conformal mappings of the Grushin plane, which

we define in the metric sense (Definition 6.1.1, with H = 1).

Theorem 6.4.1. Let f : G2
α → G2

α (α > 0) be an orientation-preserving homeomorphism which is metrically

conformal. Then there exists λ > 0, a ∈ R such that f(x, y) = (±λx,±λ1+αy + a).
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Proof. Define f̃ : R2 → R2 by f̃ = ϕα ◦ f ◦ ϕ−1
α . Note that f̃ is a conformal mapping on the image of the

Riemannian set of f . By the argument of Proposition 6.2.2, we conclude that f̃ is in fact conformal on all

of R2. It follows that

f̃(u, v) = (a1 + λ0((cos θ)u− (sin θ)v), a2 + λ0((sin θ)u+ (cos θ)v))

for some a1, a2 ∈ R, λ0 > 0, θ ∈ [0, 2π). The theorem will follow by showing θ ∈ {0, π} and a1 = 0. This in

turn will follow from showing that f maps the singular line Z = {0} × R onto itself.

An explicit formula for f obtained by conjugating f̃ by ϕα is fairly complicated. However, we can work

with f̃ directly by considering instead the conformal definition of the Grushin plane, as developed in Section

5.1, rather than the standard definition. In the conformal Grushin plane, all balls centered on the singular

line are self-similar (relative to the Euclidean metric) by the corresponding version of the dilation property

(3.1) and have (Euclidean) dilatation strictly larger than 1. Recall Figure 5.1 above. Since f̃ is a similarity

map, it preserves the Euclidean dilatation of metric balls; this implies that f̃ cannot map a point on the

singular line to a point off the singular line, as small balls in the conformal Grushin metric which are off the

singular line have roughly Euclidean shape. We conclude that f̃ and hence f maps the singular line onto

itself, and the result follows.

A Liouville-type theorem on the rigidity of conformal mappings between domains in higher-dimensional

Grushin spaces was proved by Morbidelli [Mor09]. Morbidelli does not address the two-dimensional case

explicitly, instead referring the reader to a paper of Payne [Pay06]. Theorems 4.4 and 4.5 of [Pay06] describe

a sequence of one-parameter families of conformal homeomorphisms of Gα or subdomains, including the

conformal mappings in Theorem 6.4.1 above. However, Payne does not address the converse question of

whether these one-parameter families generate all conformal mappings.
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Chapter 7

Quasiconfomal parametrization of
metric surfaces

This section is dedicated to a result on quasiconformal parametrizations for abstract metric surfaces with

locally finite Hausdorff measure. This is a very general setting, though observe that it does not include the

Grushin plane—the Grushin Hausdorff 2-measure is not locally finite.

7.1 Rajala’s uniformization theorem

The motivation comes from the quasisymmetric uniformization problem, already discussed in Section 4.1. In

place of quasisymmetric mappings, one may relax the problem to the class of quasiconformal mappings, in the

sense of Definition 6.1.2. This is the geometric definition; throughout this section, the term quasiconformal

will refer specifically to this definition. A result for quasiconformal mappings analogous to the Bonk–Kleiner

theorem was obtained by Kai Rajala in [Raj17]. It is based on the following definition.

For its statement, we use the following terminology. A quadrilateral is a topological closed disk with four

designated boundary edges, denoted in cyclic order by ζ1, ζ2, ζ3, and ζ4. Also, for a set Ω ⊂ X and disjoint

continua E,F ⊂ Ω, let Γ(E,F ; Ω) denote the family of curves in Ω intersecting both E and F .

Definition 7.1.1. The metric space (X, d) is reciprocal if there exists κ ≥ 1 such that for all quadrilaterals

Q in X,

Mod Γ(ζ1, ζ3;Q) Mod Γ(ζ2, ζ4;Q) ≤ κ (7.1)

and

Mod Γ(ζ1, ζ3;Q) Mod Γ(ζ2, ζ4;Q) ≥ 1/κ, (7.2)

and for all x ∈ X and R > 0 such that X \B(x,R) 6= ∅,

lim
r→0

Mod(Γ(B(x, r), X \B(x,R);B(x,R))) = 0. (7.3)

The Euclidean plane R2 is reciprocal, in fact with κ = 1. This follows from standard computations of

modulus: for R = [0, a] × [0, b] ⊂ R2, with ζ1 = [0, a] × {0}, etc., it holds that Mod Γ(ζ1, ζ3;R) = a/b and
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Mod Γ(ζ2, ζ4;R) = b/a. By the Riemannan mapping theorem, any quadrilateral Q is conformally equivalent

to such a rectangle R, where the ratio a/b does not depend on the choice of R. Another calculation shows that

Mod Γ(B(x, r),R2 \B(x,R);B(x,R)) = 2π log(R/r)−1, which verifies condition (7.3). Since R2 is reciprocal,

it is immediate that any metric space (X, d) quasiconformally equivalent to R2 must also be reciprocal.

In the main result of [Raj17], Rajala shows that Definition 7.1.1 is sufficient to construct “by hand” a qua-

siconformal mapping onto a domain in R2. While the proof is lengthy and difficult, Rajala’s uniformization

theorem is simple to state.

Theorem 7.1.2. Let (X, d) be a metric space homeomorphic to R2 or S2 with locally finite Hausdorff 2-

measure. There exists a domain Ω in R2 or S2 and a quasiconformal mapping f : (X, d)→ Ω if and only if

X is reciprocal.

The original Bonk–Kleiner theorem (Theorem 4.1.1) can then be deduced as a corollary to Theorem

7.1.2. This follows from two facts, also proved in [Raj17]. First, any space satisfying the upper mass bound

H2(B(x, r)) ≤ Cr2 is reciprocal. Second, under that same assumption and the local linear connectivity

property, a quasiconformal mapping is also quasisymmetric. Hence Rajala’s result is indeed a generalization

of the ealier work of Bonk–Kleiner.

7.2 Minimizing dilatation

Let f : X → W be a quasiconformal map between the metric spaces X and W . We use the following

notation. The smallest value KO such that Mod Γ ≤ KO Mod f(Γ) for all curve families Γ in X is called the

outer dilatation of f . Similarly, the smallest value KI such that Mod f(Γ) ≤ KI Mod Γ for all curve families

Γ in X is the inner dilatation.

The same paper of Rajala also examines a related question: if such a quasiconformal parametrization

exists, can one find a quasiconformal mapping which improves the dilatation constants KO and KI to within

some universal constants? If so, what is the best result of this type? Rajala obtains the following theorem

[Raj17, Thm. 1.5]:

Theorem 7.2.1. (Rajala) Let Ω ⊂ R2 be a simply connected domain and (X, d) a metric space of locally

finite Hausdorff 2-measure. There exists a quasiconformal homeomorphism f : X → Ω if and only if there

exists a 2-quasiconformal homeomorphism f : X → Ω.

This result is proved using two classical results. First is the measurable Riemann mapping theorem, the

fundamental existence result for quasiconformal mappings in the plane. This is usually formulated using

complex notation, where a quasiconformal mapping is a homeomorphic solution of the Beltrami equation.
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Here is a precise statement. Let Ω ⊂ C be a simply connected domain and µ : Ω→ C a measurable function

with ‖µ‖∞ < 1. Then there exists a quasiconformal mapping g : Ω → Ω such that ∂zg(z) = µ(z)∂zg(z) for

a.e. z ∈ Ω. The function µ is called the complex dilatation. Its relation to the dilatation in Definitions 6.1.2

and 6.1.3 is this: ‖µ‖∞ ≤ k < 1 if and only if g is K-quasiconformal for K = (1 + k)/(1− k).

The second result invoked in proving Theorem 7.2.1 is John’s theorem on convex bodies. This theorem

asserts, in part, that any convex body A in Rn contains a unique ellipsoid E of maximal volume satisfying

E ⊂ A ⊂
√
nE, where the constant

√
n is the best possible. The constant 2 in Theorem 7.2.1 is derived

from the constant
√

2 in John’s theorem for dimension two.

To give some context to Theorem 7.2.1, we mention an important example.

Example 7.2.2. This is Example 2.2 in [Raj17]. Take X = R2, equipped with the `∞-metric. The identity

map ι : X → R2 satisfies

2

π
Mod Γ ≤ Mod fΓ ≤ 4

π
Mod Γ.

Moreover, any quasiconformal mapping f : X → R2 must have KO ≥ π/2 and KI ≥ 4/π.

A similar fact holds with the `1-metric in place of the `∞-metric. Both of these represent extremal norms

on R2, so (in light of the proof of Theorem 7.2.1, see Section 7.4) it is natural to conjecture that the modulus

bounds in Example 7.2.2 are also extremal.

In the paper [Romar], I was able to prove the following improvement to Theorem 7.2.1. The given bounds

had been conjectured by Rajala in [Raj17].

Theorem 7.2.3. Let Ω ⊂ R2 be a simply connected domain and (X, d) a metric space of locally finite

Hausdorff 2-measure. There exists a quasiconformal homeomorphism f : X → Ω if and only if there exists

a quasiconformal homeomorphism f : X → Ω satisfying

2

π
Mod Γ ≤ Mod fΓ ≤ 4

π
Mod Γ. (7.4)

Rajala’s techniques, together with standard volume ratio estimates (see for instance [Bal97, Thm. 6.2]),

guarantee the existence of a quasiconformal map fO : X → Ω with outer dilatation KO ≤ π/2, and a

quasiconformal map fI : X → Ω with inner dilatation KI ≤ 4/π. The improvement in Theorem 7.2.3 is in

finding a map which satisfies both modulus inequalities simultaneously. As already indicated in Example

7.2.2, inequality (7.4) cannot be improved.

The simple connectedness assumption is essential to Theorem 7.2.3. For example, any K-quasiconformal

mapping f between the annular regions {x ∈ R2 : 1 < |x| < a} and {x ∈ R2 : 1 < |x| < b}, b ≥ a,

must satisfy K ≥ log b/ log a. In particular, for any K ′ ≥ 1 there exist annuli A1, A2 ⊂ R2 such that any
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K-quasiconformal map f : A1 → A2 must satisfy K ≥ K ′. A similar fact holds for wedge domains in Rn,

n ≥ 3, which is one indication that a result like Theorem 7.2.3 is only possible in dimension two. See Väisälä

[Väi71, Sec. 39-40] for a discussion of quasiconformal mappings between annular and wedge domains.

My contribution was in stating and proving a volume ratio inequality adapted to the problem at hand.

I consulted a couple experts on the subject of convex bodies, and it appears to be an original result despite

its elementary statement.

7.3 Volume ratio lemma for planar convex bodies

First, we fix some notation and recall some definitions. In the following, |E| will denote the area of the set

E ⊂ R2. We also let L(E) = sup{|z| : z ∈ E} denote the outer radius of E and `(E) = inf{|z| : z /∈ E}

denote the inner radius of E. A convex body is a compact convex set A in R2 with nonempty interior; it is

symmetric if z ∈ A implies −z ∈ A. There is a natural correspondence between the set of norms on R2 and

the set of symmetric convex bodies in R2. Namely, the unit ball for a norm on R2 is a symmetric convex

body, while for any symmetric convex body A the function p(x) := inf{t > 0 : x/t ∈ A} defines a norm

on R2. Terms such as ellipse and polygon should be understood as including the interior of the respective

objects.

For a convex body A ⊂ R2 and a linear transformation T ∈ GL(2,R), let r(A, T ) = L(TA)/`(TA). Set

ρ(A) = inf r(A, T ), the infimum taken over all T ∈ GL(2,R). Notice that ρ(A) ≤
√

2 by John’s theorem.

Expressed in different terms, ρ(A) is the (multiplicative) Banach-Mazur distance between A and the closed

Euclidean unit ball in R2.

It is easy to verify that there is a matrix T ∈ GL(2,R) such that r(A, T ) attains ρ(A). Consider the

family T = {T ∈ GL(2,R) : 1/
√

2 ≤ `(TA) ≤ L(TA) ≤ 1}. By John’s theorem, restricting to T ∈ T does

not affect the infimal value of r(A, T ). For such a map

T =

a b

c d

 ,

we must have a2 + c2 ≤ `(A)−2 and b2 + d2 ≤ `(A)−2. This is seen by looking at the action of T on the test

points `(A)e1 and `(A)e2. We also have |detA| = |ad − bc| ≥ L(A)−2/2. Hence the set T is compact as a

subset of GL(2,R) and it follows that a nonzero map T minimizing r(A, T ) must exist.

Lemma 7.3.1. Let A ⊂ R2 be a symmetric convex body and T ∈ GL(2,R) a linear map such that

r(A, T ) = ρ(A). Then the image of A satisfies 2L(TA)2 ≤ |TA| ≤ 4`(TA)2.

44



Proof. Let Ã = TA. Without loss of generality we can assume that the outer radius satisfies L(Ã) = 1. Let

` = `(Ã). Then from John’s theorem it follows that 2−1/2 ≤ ` ≤ 1. Where convenient, we will use complex

notation for points in R2. For θ ∈ [0, 2π), let zθ denote the unique point in ∂Ã ∩ {eiθr : r > 0}. By rotating

if necessary, we will assume that |z0| = 1.

We first need a fact about the existence of contact points with the circles S(0, `) and S(0, 1). Specifically,

we claim that there exist values 0 = θ0 < θ1 < θ2 < θ3 < π such that |zθ0 | = |zθ2 | = 1 and |zθ1 | = |zθ3 | = `.

Suppose this does not hold. Then there exist 0 < θ1 ≤ θ3 < π such that |zθ1 | = |zθ3 | = `, |zθ| < 1 whenever

θ1 < θ < θ3, and |zθ| > ` whenever 0 < θ < θ1 or θ3 < θ < π. Observe that if θ, θ′ are such that |zθ| = 1

and |zθ′ | = `, then |θ − θ′| ≥ cos−1(`). In particular, θ1 ≥ cos−1(`) and θ3 ≤ π − cos−1(`).

Consider now a small linear stretch in the direction (θ1 +θ3)/2. Expressed in a suitable orthonormal basis

{v1, v2} for R2, this linear stretch takes the form Tλ : (x, y) 7→ (λx, y) for some sufficiently small parameter

λ > 1.

Let θ = (θ3 − θ1)/2. For sufficiently small ε > 0, consider the function

Rε(λ) =
λ2 cos2(θ + cos−1(`)− ε) + sin2(θ + cos−1(`)− ε)

λ2`2 cos2(θ + ε) + `2 sin2(θ + ε)
.

We obtain the functions Rε(λ) by considering the (Euclidean) norm of the image of the points ei(θ1−cos−1(`)+ε)

(the numerator) and `2ei(θ1−ε) (the denominator), as expressed relative to the basis {v1, v2}. Then Rε(λ) is an

upper bound for r(A, TλT ) for sufficiently small λ and satisfies Rε(1) = r(A, T ). In particular, d
dλr(A, TλT ) ≤

R′0(λ). We compute

R′0(λ) =
−2λ
√

1− `2 sin(2θ + cos−1(`))

`2
(
sin2 θ + λ2 cos2 θ1

)2 .

Since 2θ1 + cos−1(`) < π, we see that R′(1) < 0. This contradicts the minimality of r(A, T ). The existence

of the desired values 0 = θ0 < θ1 < θ2 < θ3 < π now follows.

We now estimate |Ã| from above. Write θ` = cos−1(`). By covering Ã with the triangles [0, ei(θ1−θ`), ei(θ1+θ`)],

[0, 1, ei(θ3−θ`), ei(θ3+θ`)] and the set

{reiθ : 0 ≤ r ≤ 1, θ ∈ [0, θ1 − θ`] ∪ [θ1 + θ`, θ2 − θ`] ∪ [θ2 + θ`, π]},

along with their reflections about the origin, we obtain

|Ã| ≤M(`) := π − 4 cos−1(`) + 4`
√

1− `2.

See Figure 7.1a. Observe that M(2−1/2) = 2 = 4(2−1/2)2, so the right inequality |Ã| ≤ 4`2 holds for
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zθ1zθ3

1`

θ`

(a) The convex body Ã is contained in the shaded region and its reflection about the origin.

zθ2

1`

θ`

(b) The convex body Ã contains the shaded region and its reflection about the origin.

Figure 7.1: Estimating the area of Ã.

` = 2−1/2. Next, compute M ′(`) = 8
√

1− `2. Since this satisfies M ′(`) ≤ 8` when 2−1/2 ≤ ` ≤ 1, we obtain

|Ã| ≤ 4`2 holds for all ` ∈ [2−1/2, 1].

We can estimate |Ã| from below using the polygons [0, 1, `eiθ` ], [0,−1, `ei(π−θ`)], [0, `eiθ2−θ` , eiθ2 , `eiθ2+θ` ]

and the set

{reiθ : 0 ≤ r ≤ `, θ ∈ [θ`, θ2 − θ`] ∪ [θ2 + θ`, π − θ`]}.

See Figure 7.1b. This gives

|Ã| ≥ m(`) := (π − 4 cos−1(`))`2 + 4`
√

1− `2.

Now m(2−1/2) = 2, so the left inequality 2L2 ≤ |Ã| holds when ` = 2−1/2. Since m′(`) = 2π`+ 4
√

1− `2 −

8` cos−1(`) ≥ 0, we obtain 2 ≤ |Ã| for all ` ∈ [2−1/2, 1]. This completes the proof.
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7.4 Outline of main result

A self-contained proof of Theorem 7.2.3 would be lengthy. We follow the same presentation as that given

in [Romar], which depends on auxiliary facts from the original paper [Raj17]. The proof of Theorem 7.2.3

is very close to that of Rajala’s original result, Theorem 7.2.1; the significant difference is that we apply

Lemma 7.3.1 in place of John’s theorem.

As mentioned above, the main tool is the measurable Riemann mapping theorem. The idea is that by

post-composing the map f : X → Ω ⊂ R2 with a suitable planar quasiconformal mapping, we can cancel

out most of the dilatation in the original mapping.

The other tool employed is a metric differentiability theorem due to Kirchheim [Kir94]. Let Z be a metric

space, which by Fréchet’s theorem we may assume to be a subset of some larger Banach space, with norm

‖ · ‖. For a Lipschitz function g : Ω ⊂ R2 → Z, define the metric differential MD(g, x) at the point x ∈ Ω by

MD(g, x)(u) = lim
r→0

1

r
‖g(x+ ru)− g(x)‖,

where u ∈ R2, if this limit exists. It is shown in [Kir94, Thm. 2] that MD(g, x) is a seminorm on R2 for a.e.

x ∈ Ω.

While a quasiconformal mapping need not be Lipschitz, it can nevertheless be decomposed into Lipschitz

pieces on a subset of full measure. As explained in [Raj17, Lem. 14.1, 14.2], for every quasiconformal map

h : Ω→ X there exist disjoint measurable sets Ωj (j = 1, 2, . . .) covering Ω up to a set of measure zero such

that h|Ωj is j-Lipschitz. The map h|Ωj can be extended to a Lipschitz map hj : R2 → `∞(X). Then for all

j ∈ N and a.e x ∈ Ω, MD(hj , x) is a non-zero norm on R2.

We proceed now with the proof sketch. Recall that we are assuming the existence of a quasiconformal

homeomorphism h = f−1 : Ω → (X, d). For a.e. x ∈ Ω, we obtain a non-zero norm Gx on R2 from the

metric derivative of the function hj described above, where j is such that x ∈ Ωj . For each such norm Gx,

the set Cx = {y ∈ R2 : Gx(y) ≤ 1} is a symmetric convex body in R2.

Let Tx be an invertible linear mapping for which L(TxCx)/`(TxCx) = ρ(Cx). Let Ex = T−1
x (B(0, `(TxCx)));

this gives an ellipse field on Ω defined for a.e x ∈ Ω. It can be shown that the ellipse Ex does not depend on

our choice of Tx. Setting Ex = B(x, 1) for the remaining points in Ω gives an ellipse field defined on all Ω.

The associated complex dilatation is measurable and has a uniform bound less than 1.

Applying the measurable Riemann mapping theorem gives a quasiconformal mapping ν : Ω → Ω such

that

Dν(x)(Ex) = B(0, rx)
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for a.e. x ∈ Ω and some rx > 0. Let C ′x = Dν(x)(Cx), observing that Dν(x) differs from Tx by a scaling

factor and orthogonal transformation.

Define H = h ◦ ν−1 : Ω→ X. As above we obtain Lipschitz pieces Hj = H|Ω′j for disjoint sets Ω′j ⊂ Ω.

Then there exists Rx′ > 0 such that C ′x = {y ∈ R2 : MD(Hj , x
′)(y) ≤ Rx′}, for a.e. x′ ∈ Ω, where j is such

that x′ ∈ Ω′j and x = ν−1(x′). Hence for a.e. x′ ∈ Ω, the metric derivative satisfies |MD(Hj , x
′)| = Rx′/rx,

and the Jacobian JH is given by JH(x′) = πR2
x′/|C ′x|. By Lemma 7.3.1 we see that

|MD(Hj , x
′)|2

JH(x′)
=
|C ′x|
πr2
x

≤ 4

π
.

Following [Raj17], this suffices to show the inequality Mod Γ ≤ 4π−1 ModHΓ for all curve families Γ in Ω.

Similarly we have

`(MD(Hj , x
′)) := inf

|z|=1
|MD(Hj , x

′)z| = Rx′

L(C ′x)
,

valid for a.e x′ ∈ Ω. This gives by Lemma 7.3.1

JH(x′)

`(MD(Hj , x′))2
=
πL(C ′x)2

|C ′x|
≤ π

2
,

which suffices to show that ModHΓ ≤ (π/2) Mod Γ for all curve families Γ in Ω.
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Chapter 8

Open problems

We conclude with some potential research questions and directions. First are some questions that deal with

the Grushin plane.

1. Harmonize the notion of conformal Grushin space with the work on almost-Riemannian manifolds

carried out by Agrachev and co-authors. This would include extending, if possible, the embedding

results of Theorems 5.2.1 and 5.3.1 to this setting.

2. Study quasiregular mappings on the Grushin plane. A quasiregular mapping is essentially a quasicon-

formal mapping without the requirement of injectivity. There is a well-developed theory of quasiregular

mappings in both the Euclidean setting and various metric space settings; a starting point is the book

of Rickman [Ric93]. One point to notice is that negligibility theorem used in the proof of Theorem

6.2.2 is not true in general for quasiregular mappings, hence a deeper investigation is needed.

3. Extend the results on quasiconformal mappings in Chapter 6 to higher-dimensional Grushin spaces or

to conformal Grushin spaces. This is challenging due to the failure of the Riemann mapping theorem

in higher dimensions.

Next are some problems related to quasiconformal mappings in metric spaces, inspired by the paper of

Rajala [Raj17] and the result in Chapter 7. For all of these, let (X, d) be a metric space with locally finite

Hausdorff 2-measure homeomorphic to R2.

4. If X satisfies the reciprocality condition (7.3), does there exist a homeomorphism h : R2 → (X, d) such

that Mod Γ ≤ K ModhΓ for all curve families Γ and some fixed constant K ≥ 1? This would be a

one-sided version of Theorem 7.1.2. We could also ask a similar question without assuming (7.3), but

such a parametrization would not be a homeomorphism in general. Consider, for example, a conformal

weight on R2 which vanishes on a line segment; even though the line segment collapses to a point, the

resulting metric space is still homeomorphic to R2.
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5. Suppose there exists a homeomorphism f : (X, d)→ R2 which quasi-preserves modulus of quadrilater-

als: there exists K ≥ 1 such that for all quadrilaterals Q ⊂ X,

K−1 Mod fΓ(ζ1, ζ3;Q) ≤ Mod Γ(ζ1, ζ3;Q) ≤ K Mod fΓ(ζ1, ζ3;Q).

Then is f K-quasiconformal? That is, must the same inequality hold for an arbitrary curve family?

6. Is it true that (X, d) satisfies the upper reciprocality bound for quadrilaterals (7.1) if and only if it

satisfies the analogous upper reciprocality bound on ring domains? If true, then the reciprocality

condition could be framed equivalently in terms of rings.

7. In modulus stable under convergence of sets in this setting? For instance, if Mod Γ(B(x, r), X \

B(x,R), B(x,R)) ≥ K for all r ∈ (0, R), does it follow that Mod Γ({x}, X \B(x,R), B(x,R)) ≥ K?
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[Car09] Constantin Carathéodory. Untersuchungen über die Grundlagen der Thermodynamik. Math.
Ann., 67:355–386, 1909.

[CC05] Ovidiu Calin and Der-Chen Chang. The geometry on a step 3 Grushin model. Appl. Anal.,
84(2):111–129, 2005.

[CCGK05] Ovidiu Calin, Der-Chen Chang, Peter Greiner, and Yakar Kannai. On the geometry induced
by a Grusin operator. In Complex analysis and dynamical systems II, volume 382 of Contemp.
Math., pages 89–111. Amer. Math. Soc., Providence, RI, 2005.

[CDPT07] Luca Capogna, Donatella Danielli, Scott Pauls, and Jeremy Tyson. An introduction to the
Heisenberg group and the sub-Riemannian isoperimetric problem, volume 259 of Progress in
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