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Abstract

Advancements in the technology of quantum bits invoke more precise calculations for decoherence and

dissipative effects. In this thesis, the physics of truncated two level systems is revisited and it is shown

that in some systems, such as in triple-junction superconducting flux qubit, environmental noises that are

usually recognized to only have dissipative effects and the trivial resultant dephasing, can also cause pure

dephasing. Furthermore, it is demonstrated that, in the current domain of interest for quantum computation

purposes, the effective Hamiltonian of single molecule magnets in interaction with a spin bath differs from

the commonly quoted result in the literature. It is also shown that the topological effects in such problems

are as small as transitional effects to higher excited states beyond the two-level picture. Finally, a simulation

of the quantum noise by the classical noise and a simulation of spin bath by oscillator bath for a quantum

bit as the principal system are presented.
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Chapter 1

Introduction

There are world wide intensive efforts underway to build quantum computers. The building blocks of these

computers are quantum bits. The latter are either intrinsic two level systems, such as nuclei of spin 1
2 , or

in most cases quantum systems that can be regarded as two level systems within the regime of use, such

as superconducting qubits and molecular nanomagnets. These intrinsic or, for the second kind, truncated

two level systems interact with each other in a quantum chip and with their environment. As the result of

interaction with the environment they lose quantum coherence and their quantum features. It is ideal to

understand mechanisms of these types of interactions and find ways to decrease their effects.

The quantum dissipation and decoherence theory studies the procedure of truncation of multi-level sys-

tems to two level systems in presence of an environment and also studies the effect of the environment on the

truncated two level systems. From theoretical aspects, this is a very mature area of research. The advent of

Caldeira-Leggett oscillator bath theory took place in 1980’s [1, 2], that of Prokofev-Stamp spin bath theory

occured in 1990’s [3], and major advancements in the theory of 1/f noise were in 2000’s [4]. For many

researchers, the theoretical studies of this field are rather complete, for practical purposes [5], and what

is left is the engineering of better quantum bits, chips and eventually computers. Although this is, in my

opinion, to a good extent correct, as we see in this thesis there are still some rooms to explore new physics

on theoretical side of the quantum dissipation and decoherence theory.

My plan for this research in the last few years was to revisit and reexamine carefully some quantum

dissipation/decoherence models and check whether there are any aspects that have been overlooked or not

treated properly in the past. We found there are some.

The first one is that in double well potentials the energy splitting can depend on the bias energy between

the bottom of the two wells linearly. We show this through a WKB calculation in Chapter 2. This in turn

suggested to us that the tunneling matrix element should depend on the bias energy. The tunneling matrix

element is well defined between two states in the Hilbert space. To calculate that we revisit truncation

procedure in Chapter 3 and show how a multi-level system can be truncated properly to a two level system
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in presence of an environment and how a bias term can contribute to the tunneling matrix element. We

use the idea of Chapter 2 and the result of Chapter 3 and apply them to quasiparticles noise in Josephson

junctions and superconducting two level systems with multiple junctions and find that there is a phase

damping process that comes out of these considerations and has not been taken into account previously. In

Chapter 5, as another application, we apply the idea of Chapters 2-3 to the Landau-Zener problem and show

that the probability of transition is modified in presence of linear term in the tunneling matrix element. This

completes Part I of the thesis.

In Part III (we discuss Part II momentarily) we apply the results of Part I-Chapter 3 to Molecular

magnets in presence of a spin environment. Chapter 8 serves as a brief introduction to the field of molecular

magnets. We show in Chapter 8-9 that the spin bath theory is solved in the regime that is not appropriate for

molecular magnets. Thus, one has to repeat the truncation procedure for the regime relevant to molecular

magnets. We use the results of Chapter 3 and do the truncation in Chapter 10 for the interesting case

of half-odd-integer spins and compare our results with those of the spin bath theory and show differences.

Finally, in Chapter 11 we discuss that the topological decoherence terms, which are the result of truncation

procedure in the spin bath theory, are of the same importance as transition terms to higher excited states.

Part II concerns a different area of quantum dissipation and decoherence theory. It is on the effects of

entanglement and its simulations. The entanglement between a system and environment is considered as the

main cause of decoherence and as the distinctive feature of quantum theory as compared to classical theories.

How much the effect of entanglement can be simulated classically and how much these effects depend on

the type of the environment? We discuss these in Chapters 6-7. In chapter 6 we show that the effect of

a quantum noise can be simulated classically without appealing to entanglement if one allows the classical

noise fields to depend on the initial state of the universe. In Chapter 7 we demonstrate that an oscillator

bath can simulate the effect of a spin bath on relaxation of a two level system in the strong coupling regime

of the spin bath.
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VARIABLE TUNNELING
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Chapter 2

Tunnel splitting in asymmetric double
well potentials : An improved WKB
calculation
We present an improved Wentzel-Kramers-Brillouin (WKB) calculation of tunnel splitting in one dimensional

asymmetric double well potentials. We show the tunnel splitting in general can have linear dependence to

bias energy beside the well-known quadratic dependence. We demonstrate that the linear correction is

greater than previously thought.

2.1 Introduction

The purpose of this paper is to calculate the energy level splitting (or tunnel splitting), ∆E, in a smooth,

asymmetric, one-dimensional potential, such as that in Fig. 2.1, to first order in ε̃/~ω where ε̃ is the bias

energy between the bottom of the wells and ω is the order of magnitude of the small oscillation frequencies

ωR, ωL in the right and the left wells (see Figs. 2.1-2.2).

V (x)

0 x

V0

E+

E−

Ē ∆E
ε̃

ā b̄

Figure 2.1: Asymmetric double well potential V (x) considered in this paper. E± are energy levels of the
ground state doublet. ∆E is the level splitting and ε̃ is the bias in the bottoms of the wells. Ē is a mean
energy between E− and E+ which is used as a mathematical tool to calculate ∆E. ā and b̄ are turning
points for the fictitious energy level Ē. The height of barrier is V0 which is much larger than other energy
quantities in the problem.

The problem of quantum mechanical tunneling in a double-well potential is ubiquitous in physics. The

quantum state of the system in such problems is effectively restricted to a two-dimensional Hilbert space.
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Quantum tunneling allows the state to hop between these two dimensions. Apart from the well-known

microscopic example of inversion of an amonia molecule, in recent decades quantum tunneling has been

observed in macroscopic phenomena such as the tunneling of magnetic flux in an rf SQUID[2, 6, 7, 8],

tunneling of Bose-Einstein condensates [9, 10] and electronic spin tunneling in the nano-magnetic molecules

such as Fe8 [11, 12, 13].

In some problems the height of the barrier V0 is much larger than the energy gap ~ω between the ground

state doublet and higher excited states. WKB approximation can be applied under the barrier in these

problems. However, application of WKB inside the wells gives inaccurate results [14]. The reason is that,

crudely speaking, the semi classical approximation of WKB is suitable where the classical momentum of

a particle |p(x)| =
√

2m|E − V (x)| is large. This is not satisfied for a particle in ground state inside a

well. However, under the barrier since V (x) is large the condition is satisfied and one can employ the WKB

approximation. [14]

Previous works [15, 16, 17, 18] have calculated the energy splitting ∆E and tunneling amplitude ∆ in

an asymmetric potential to zeroth order in ε/~ω and ε/V0. The general belief [15] is that the correction to

these quantities are of order ε/V0. It is also implicitly assumed in the bulk of literature that the tunneling

amplitude ∆ is relatively independent of the bias energy ε̃ or ε.

In the present paper, however, we show that the correction to tunnel splitting is in general of order ε̃/~ω

in the WKB limit, rather than ε̃/V0.

V (x)

0 x

~ωL
2

~ωR
2

ε

ε̃

Figure 2.2: Asymmetric double well potential V (x). ωL (ωR) is the small oscillation frequencies in the left
(right) well. In the absence of tunneling, ~ωL/2 (~ωR/2 + ε̃) is the ground-state energy of the state
localized in the left (right) well and ε is the difference between these two energies.

Calculations of this paper are more accurate than its previous counterparts. For example, we give an

expression for ∆, Eq. (2.3) ,which does not depend on the value of ∆ itself. The situation is rather different

in Ref. [16, 17, 18]. The Gamow factor, e−2I , in those references depends on the actual energy of the levels
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E± and, hence, on the value of the ∆E, and ∆. Ref. [16] discusses that this dependence is rather weak. Here,

however, we obtain ∆ as a function of the Gamow factor of a fictitious energy Ē, Eq. Eq. 2.5, independent

of ∆E, ∆. Furthermore we show quantitatively that the correction to our expression is negligible.

Before embarking on detailed calculations in the following sections, let us summarize the main results of

this paper for the energy splitting and tunneling amplitude of ground state doublet. We denote the energy

of the near even parity state in the doublet by E+, the lower level, and the energy of the nearly odd parity

state, the upper level by E− (Fig. 2.1). Then we shall derive that the energy splitting between these two

levels ∆E = E− − E+ is

∆E =
√
ε2 + ∆2 , (2.1)

where

ε = ε̃+
~(ωR − ωL)

2
, (2.2)

ε̃ is the energy difference between the minima of the potential, ε is the energy difference between the ground

states of the particle in each well in absent of tunneling (Fig. 2.1-2.2) and

∆ =
~√ωRωL√

eπ
(1 +

k

4

ε

~ωL
ωR − ωL
ωR

)e−Ī(Ē(ε̃)), (2.3)

where

k = γ − ln 2 ' −0.11, (2.4)

Ē(ε̃) = Ē =
~(ωL + ωR)

4
+
ε̃

2
, (2.5)

I(Ē(ε̃)) =
1

~

b̄∫
ā

|p|dx. (2.6)

γ is the Euler-Mascheroni constant and

p =
√

2m(Ē − V (x)). (2.7)

Also, ā and b̄ are the turning points for a classical particle with energy Ē which wishes to climb up the

barrier from either well (See Fig. 2.1).
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2.2 Wave functions and Energy Quantization Equations

In order to find the energy level splitting in the ground state doublet we find the wave function near the left

minimum in region L, under the barrier in region B, and near the right minimum in region R as illustrated

in Fig. 2.3. Then we connect these wave functions in the overlapping regions LB and BR. The connection

formulas give us a constraint which determines the energy splitting.

V (x)

0 x

xL xR

R

B

L

LB BR

E+

a+ b+

Figure 2.3: Regions L and R denote the domain of potential near the left and right minima in which the
potential is sufficiently quadratic. Region B is under the barrier area away from the turning points in
which the WKB approximation can be applied. LB and BR are the overlapping areas where we match the
wave function of each region to that of its neighboring region. xL and xR denote the coordinates of the
local minima.

We assume that the potential is nearly parabolic near the minima in the regions L and R. The Schrodinger

equation for parabolic potentials can be solved exactly for any given energy. The solutions are parabolic

cylinder functions. We find these solutions such that they do not diverge as x→ ±∞, to avoid violation of

square-integrability of the wave function.

Under the barrier, in region B, we use the WKB approximation method.

2.2.1 Wave functions near the local minima of potential: Parabolic cylinder

functions

As discussed earlier, near the minima of the potential xL and xR we can write

V (x) =

{
1
2mω

2
L(x− xL)2 + · · · x ∈ L

ε̃+ 1
2mω

2
R(x− xR)2 + · · · x ∈ R

(2.8)
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where

ω2
L =

V ′′(xL)

m
, (2.9)

ω2
R =

V ′′(xR)

m
, (2.10)

and the zero-point of potential is set such that V (xL) = 0 and V (xR) = ε̃ (Fig. 2.3).

Neglecting the higher order terms in the potential, the Schrodinger equation in region L for the lower

level in the ground state doublet with energy E+ becomes

− ~2

2m

d2

dx2
ψL(x) +

1

2
mω2

L(x− xL)2ψL(x) = E+ψL(x). (2.11)

We can write the above equation in the form of differential equation of parabolic cylinder functions by

defining,

ηl ≡
x− xL√
~/2mωL

, (2.12)

ζL+ ≡ E+

~ωL
− 1

2
. (2.13)

Notice that ηl is a variable and varies with x while xL is a fixed point (We use lowercase l (r) for variables of

the left (right) well and uppercase L (R) for its fixed quantities.). With the above definitions, Eq. Eq. 2.11

can be rewritten as

d2

dη2
l

ψL(ηl) +

(
ζL+ +

1

2
− η2

l

4

)
ψL(ηl) = 0. (2.14)

which is manifestly parabolic cylinder functions’ differential equation [19]. This equation has two independent

solutions, DζL+
(ηl) and DζL+

(−ηl). The former diverges as ηl → −∞ and is not allowed by square-integribility

condition. Therefore, the physical solution for the wave function in region L is

ψL(ηl) = αLDζL+
(−ηl) (2.15)

where αL is a constant to be determined by matching conditions below.

For real values of ηl the asymptotic expansion of DζL+
(−ηl) to leading order, when |ζL+| � 1, is [19]
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DζL+
(−ηl) =(−1)ζ

L
+ η

ζL+
l e−η

2
l /4, ηl�−1

cos(πζL+)|ηl|ζ
L
+e−η

2
l /4 +

√
2π

Γ(−ζL+)
eη

2
l /4

|ηl|
ζL
+

+1
ηl�1

(2.16)

which exponentially decays as ηl → −∞ and has a decaying and growing parts for positive large ηl. We shall

see shortly that keeping both of these parts is necessary for matching the wave functions under the barrier

and near the right well.

The quantity |ζL+| is much smaller than unity. One can observe this fact by noting that in the unbiased

symmetric case this quantity is half of the tunneling amplitude ∆ which is exponentially small. In the

asymmetric case definition Eq. 2.13 implies that |ζL+| is at most of order ε̃/~ω which is much smaller than

unity by our convention in this paper (We demonstrate this fact rather more rigorously in Sec. 2.3 when we

find the energy levels).

Similarly we can find the wave function near the right well in region R. The Schrodinger equation to

second order approximation of the potential is

− ~2

2m

d2

dx2
ψR(x) +

(
1

2
mω2

L(x− xR)2 + ε̃

)
ψR(x)

= E+ψR(x). (2.17)

By defining,

ηr ≡ x− xR√
~/2mωR

, (2.18)

ζR+ ≡ E+ − ε̃
~ωR

− 1

2
, (2.19)

Eq. Eq. 2.17 can be written as

d2

dη2
r

ψR(ηr) +

(
ζR+ +

1

2
− η2

r

4

)
ψR(ηr) = 0, (2.20)

which has two solutions DζR+
(ηr) and DζR+

(−ηr). This time we reject the latter as it diverges when ηr →∞.

So the physical solution of Eq. 2.20 is

ψR(ηr) = αRDζR+
(ηr) (2.21)

where αR is a coefficient to be determined and the asymptotic expansion of DζR+
(ηr) for |ζR+| � 1 is
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DζR+
(ηr) =cos(πζR+)|ηr|ζ

R
+ e−η

2
r/4 +

√
2π

Γ(−ζR+ )
eη

2
r/4

|ηr|
ζR
+

+1
ηr � −1

(−1)ζ
R
+ η

ζR+
r e−η

2
r/4 ηr � 1

(2.22)

This again decays nicely for large positive ηr and has growing and decaying components for large negative ηr

as expected. |ζR+| is also much smaller than unity for the problem we consider for the same reasons mentioned

above for |ζL+|.

The particular regions of interest are LB and BR (Fig. 2.3). We use these regions to match ψL and

ψR to the WKB solution under the barrier. These regions are reasonably far from the turning points to

satisfy validity condition of the WKB approximation, but yet close enough to the bottom of the wells to

allow parabolic approximation of the potential to be employed. In these regions the wave functions that we

found in this section is as follows

ψpar+ (x) =
αL

cos(πζL+)|ηl|
ζL+

eη
2
l
/4

+ αL
√

2π
Γ(−ζL+)

eη
2
l /4

|ηl|
ζL
+

+1
x ∈ LB

αR
cos(πζR+ )|ηr|

ζR+

eη
2
r/4

+ αR
√

2π
Γ(−ζR+ )

eη
2
r/4

|ηr|
ζR
+

+1
x ∈ BR

(2.23)

where superscript par is for parabolic cylinder and the relation between x and ηl, ηr is given in Eqs. (2.12)

and (2.18). In the next subsection we shall find WKB wave function under the barrier and match it with

Eq. Eq. 2.23.

2.2.2 Wave functions under the barrier: WKB approximation limit

Under the barrier, far enough from the turning points in region B, we can apply the WKB approximation.

With the usual ansatz of ψ = exp(iσ/~) one obtains [20]

ψWKB
+ (x) =

C√
|v(x)|

e
−
x∫
a

|p|dx/~
+

C ′√
|v(x)|

e
+
x∫
b

|p|dx/~
(2.24)

where C, C ′ are constants,

p(x) =
√

2m(E+ − V (x)) , (2.25)

v(x) =
p(x)

m
, (2.26)
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and a+,b+ are classical turning points for energy E+ as shown in Fig. 2.3. The choice of lower bounds of the

integrals in Eq. 2.24 is arbitrary. We chose to use a+,b+ to simplify future equations. This choice is different

from what previous authors have used [14, 17, 18].

The particular regions of interest are again LB and BR. In these regions we can approximate the

potential with parabolic functions of Eq. Eq. 2.8. Under this approximation, e.g.,

E+ = V (a+) ' 1

2
mω2

L(a+ − xL)2 (2.27)

and one obtains in region LB for the classical momentum

|p(x)| ' mωL
√

(x− xL)2 − (a+ − xL)2 (2.28)

The first integral in Eq. 2.24 can now be taken for x ∈ LB. We follow methods developed in Ref. [14] in

taking this integral. The result is

1

mωL

x∫
a+

|p|dx ' 1

2
(x− xL)2 − 1

4
(a+ − xL)2

− 1

2
(a+ − xL)2 ln

(
2(x− xL)

a+ − xL

)
.

(2.29)

We used the fact that in the region LB, (x−xL)� (a+−xL). Nevertheless we kept the second term in Eq.

Eq. 2.29 as the left hand side integral appears in the exponent of the first term in Eq. Eq. 2.24. However,

one does not need to keep the similar term in calculating v(x) from Eq. Eq. 2.28, as v(x) appears in the

denominators in Eq. Eq. 2.24 (not in the exponents [14]),

v(x) ' ωL(x− xL). (2.30)

For the second integral in Eq. Eq. 2.24 and x ∈ LB we note that

x∫
b+

|p|dx = −
b+∫
a+

|p|dx+

x∫
a+

|p|dx. (2.31)
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We define,

I+ ≡
b+∫
a+

|p|dx, (2.32)

g(ζ) ≡
√

2π

(
ζ +

1

2

)ζ+ 1
2

e−(ζ+ 1
2 ). (2.33)

Now by substituting from Eqs. (2.29-2.31) into Eq. Eq. 2.24 and using Eqs. (2.12-2.13) and (2.27) we obtain

for x ∈ LB,

ψWKB
+ (x) ' KLη

ζL+
l e−η

2
l /4 +K ′Lη

−(ζL++1)
l e−η

2
l /4, (2.34)

where

KL = (
~ωL
πm

)−
1
4 (
gL+
2

)−
1
2 C, (2.35)

K ′L = (
~ωL
πm

)−
1
4 (
gL+
π

)
1
2 e−I+ C ′, (2.36)

and gL+ = g(ζL+).

Similar procedure can be used for region BR under the barrier and near the right well. Most of the

equations transform trivially if we make the substitution E+ → E+ − ε̃. For the energy and momentum one

has

E+ − ε̃ = V (b+)− ε̃ ' 1

2
mω2

R(xR − b+)2, (2.37)

|p(x)| ' mωR
√

(x− xR)2 − (xR − b+)2. (2.38)

These can be used to take the second integral in Eq. (2.24) as follows

1

mωR

x∫
b+

|p|dx ' −1

2
(x− xR)2 +

1

4
(xR − b+)2

+
1

2
(xR − b+)2 ln

(
2(xR − x)

xR − b+

)
.

(2.39)

Note that all the signs in the right hand side are flipped in comparison to Eq. Eq. 2.29. In taking the

integrals Eq. 2.29 and Eq. 2.39 one may use Eq. (2.27) of Ref. [19]. In BR the velocity is approximately
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v(x) ' ωR(xR − x) (2.40)

and the first integral in Eq. Eq. 2.24 for x ∈ BR can be calculated by the identity

x∫
a+

|p|dx =

b+∫
a+

|p|dx+

x∫
b+

|p|dx. (2.41)

Now by substituting from Eqs. (2.39-2.41) into Eq. Eq. 2.24 and using Eqs. (2.18-2.19) and (2.37) we obtain

for x ∈ BR,

ψWKB
+ (x) ' LR|ηr|ζ

R
+ e−η

2
r/4 + L′R|ηr|

−(ζR++1)
e−η

2
r/4, (2.42)

where

LR = (
~ωR
πm

)−
1
4 (
gR+
π

)
1
2 e−I+C, (2.43)

L′R = (
~ωR
πm

)−
1
4 (
gR+
2

)−
1
2 C ′, (2.44)

and gR+ = g(ζR+).

2.2.3 Matching WKB and parabolic cylinder wave functions : Energy

quantization equation for the lower energy level

Now we are ready to match the WKB wave functions Eq. 2.34,Eq. 2.42 in regions LB and BR, respectively,

with the parabolic cylinder wave functions Eq. 2.23 in those regions. By matching the wave functions in LB

we obtain relations between C, C ′ and αL,

C = (
~ωL
πm

)
1
4 (
gL+
2

)
1
2 cosπζL+ αL, (2.45)

C ′ = π(
~ωL
πm

)
1
4 (
gL+
2

)−
1
2 eI+Γ−1(−ζL+) αL. (2.46)

Matching the wave functions in BR relate C, C ′ to αR,

C = π(
~ωR
πm

)
1
4 (
gR+
2

)−
1
2 eI+Γ−1(−ζR+) αR, (2.47)

C ′ = (
~ωR
πm

)
1
4 (
gR+
2

)
1
2 cosπζR+ αR. (2.48)
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In order to find the energy quantization equation we find the ratio C/C ′ from Eqs. (2.45-2.46) and from

Eqs.(2.47-2.48) and equate them. This gives us

ζL+ζ
R

+ = f(ζL+)f(ζR+)e−2I+ (2.49)

where

f(ζ) = (2π)−1 cosπζ Γ(1− ζ) g(ζ). (2.50)

and we used the identity tΓ(t) = Γ(1 + t). Eq.Eq. 2.49 is the fundamental equation of this section we were

seeking.

2.2.4 Energy quantization equation for the upper energy level

For the upper level in the doublet with energy E− one can similarly define

ζL− ≡ E−
~ωL

− 1

2
, (2.51)

ζR− ≡ E− − ε̃
~ωR

− 1

2
. (2.52)

and do the previous procedure to obtain identically the energy equation

ζL−ζ
R

− = f(ζL−)f(ζR−) e−2I− (2.53)

where

I− ≡
b−∫
a−

|p|dx. (2.54)

2.3 Energy Splitting and Tunneling Amplitude to First order

Eqs.Eq. 2.49,Eq. 2.53, and in short

ζL±ζ
R

± = f(ζL±)f(ζR±)e−2I± , (2.55)

are transcendental equations. We can only solve them approximately. For small energy bias, ε̃/~ω � 1,

definitions of ζL± and ζR± imply that ζL±, ζR± � 1. For small values of ζL± and ζR±, f(ζL±)f(ζR±) is of order one

hundredth. One can see this by expanding f(ζ) about zero and obtaining
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f(ζ) =
1√
4eπ

(1 + k ζ +O(ζ2)) (2.56)

where k ' .11 is defined in Eq. Eq. 2.4. One then notes that for f(ζ)f(ζ ′) the leading order term is

1/4eπ ' 0.02 . Now since exp(−2I±) is exponentially small in the WKB limit, the left hand side of Eq.

Eq. 2.55 is also exponentially small. Therefore we can expand the right hand sides of Eqs.Eq. 2.49,Eq. 2.53

to first order in ζL± and ζR± to find the energy levels in the ground state doublet, E±,

ζL±ζ
R

± =
[
1 + k(ζL± + ζR±) +O(ζL

2

± , ζ
R

2

± )
] e−2I±

4eπ
. (2.57)

Now instead of engaging with E± which is very large compared to the tunnel splitting we define exponentially

small quantities ∆E± as follows and try to find them

∆E± ≡ E± − Ē (2.58)

where Ē is defined in Eq. Eq. 2.5. In terms of ∆E± , one can write

ζL± = (∆E± + ε/2)/~ωL, (2.59)

ζR± = (∆E± − ε/2)/~ωR (2.60)

Please observe the appearance of ε instead of ε̃. One can also expand I±(E±) around Ē to express both

∆E± in terms of quantities defined at the mean energy Ē,

I± = I(E±) = Ī + Ī ′∆E± +O(∆E2
±) (2.61)

where Ī = I(Ē) and Ī ′ = ∂I
∂E (Ē).[21]

Now by using Eqs. (2.58-2.61), we can write Eq. (2.57) as

∆E2
±

~2ωRωL
− (ε/2)2

~2ωRωL
=

e−2Ī

4πe

(
1 +

kε(~ωR − ~ωL)

2~2ωRωL

)
− e−2Ī

4πe

(
u∆E± +O(∆E2

±)
)

(2.62)

where

u ≡ 2Ī ′ − k~(ωR + ωL)

~2ωRωL
(2.63)
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Since e−2Ī is exponentially small, we can reasonably neglect terms of order e−2Ī∆E2
± in the right hand side

of Eq. Eq. 2.62 while keeping the term of order ∆E2
± in the left hand side of the equation. Eq. Eq. 2.62

then becomes a quadratic equation with two solutions as follows

∆E± = −b′ ∓
√

(
ε

2
)2 + (

∆

2
)2 + b′2 (2.64)

where

b′ =
~2ωLωRe

−2Īu

8πe
, (2.65)

∆2 =
~2ωRωLe

−2Ī

eπ

(
1 + k

ε(ωR − ωL)

2~ωRωL

)
. (2.66)

The level splitting ∆E can now be obtained,

∆E = E− − E+ = ∆E− −∆E+

=
√
ε2 + ∆2 + (2b′)2 (2.67)

The last term above, (2b′)2, is of order e−4Ī and can be neglected in favor of the second term, ∆2, which is

of order e−2Ī . This is irrespective of the value of ε. Therefore, we obtain

∆E ∼=
√
ε2 + ∆2 (2.68)

The second term above can be interpreted as the square of tunneling matrix element. To take square root

from right hand side of Eq. Eq. 2.66 we note that ε/~ωL � 1 and k, ωL−ωRωR
< 1, so we can keep terms to

first order in ε/~ωL � 1 and obtain

∆ =
~√ωRωL√

eπ
(1 +

k

4

ε

~ωL
ωR − ωL
ωR

)e−Ī (2.69)

which is the same as Eq. Eq. 2.3 as promised.

2.4 Dependence of tunnel splitting on bias energy

It has been believed [15] that the dependence of ∆ on ε is only through the quantity ε/V0 which is negligible

in the WKB limit. We are going to illustrate in this section that the dependence is also through the quantity

ε/~ω which is much larger than ε/V0 and may not be neglected. This fact is rather clear from Eq. Eq. 2.69
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if ωR 6= ωL in the unbiased double well potential when ε̃ = 0. That is to say if the potential in the absence

of energy bias is not perfectly symmetric.

The above argument is quite irrespective to the way the exponential factor e−Ī in Eq. Eq. 2.69 varies

with ε. What we wish to illustrate below, in addition, is that e−Ī also varies with ε/~ω or (ε/~ω)2 as its

largest correction.

We are going to analyze below the Gamow factor e−Ī analytically as much as possible and also illustrate

numerical results for the dependence of the factor to ε/~ω. However in order to build intuition and also

give a counter example for the claim that correction to tunneling amplitude is of order ε/V0 let us begin by

considering a simple example of a double oscillator potential.

2.4.1 Example

Consider a biased double oscillator potential

V (x) =

{
1
2mω

2
L(x− xL)2 x ≤ 0

ε̃+ 1
2mω

2
R(x− xR)2 x ≥ 0

(2.70)

for appropriate values of xL < 0, xR > 0, ωL and ωR. The height of the potential barrier is

V0 =
1

2
mω2

Lx
2
L = ε̃+

1

2
mω2

Rx
2
R (2.71)

We can freely choose V0, ωL, ωR, ε̃ and let the above constraint determine xL and xR. To satisfy the WKB

condition we just need to make sure that V0 and xR − xL are sufficiently large and ωR and ωL are not too

large. Otherwise these quantities can be chosen freely. The potential of Eq.(2.70) has a spike at the peak,

at x = 0, which violates the WKB condition m~
p3

dV
dx � 1 [20]. However, one can smooth the potential near

the spike such that the WKB condition is satisfied and the integrals of momentum stays almost intact. We

continue with the potential of Eq. Eq. 2.70 for its simplicity in calculations of the integrals and that we are

only interested here in the mathematical properties of e−Ī .

The integral

Ī =
1

~

b̄∫
ā

|p|dx (2.72)

can be divided into two parts

Ī = ĪL + ĪR (2.73)
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where

ĪL =
1

~

xm∫
ā

|p|dx , ĪR =
1

~

b̄∫
xm

|p|dx (2.74)

and where xm is the coordinate of the maximum potential. This is the strategy we shall use in the next

subsection too for analytic study of the general case. For the potential of Eq.(2.70), ĪL can be easily

calculated. The result in terms of the energy quantities is

ĪL =
V0

~ωL

(√
1− λL − λL log

√
1− λL + 1

λL

)
(2.75)

where λL = Ē/V0. Similarly for ĪR one obtains,

ĪR =
V0 − ε̃
~ωR

(√
1− λR − λR log

√
1− λR + 1

λR

)
(2.76)

where λR = (Ē − ε̃)/(V0 − ε̃). Since λL, λR � 1 we can expand the above expression in terms of λL, λR,

ĪL =
V0

~ωL

(
1 +

λL
2
{log(

λL
2

)− 1

2
}+O(λ2

L)

)
(2.77)

ĪR =
V0 − ε̃
~ωR

(
1 +

λR
2
{log(

λR
2

)− 1

2
}+O(λ2

R)

)
(2.78)

Now we note that

V0

~ωL
λL =

Ē

~ωL
, (2.79)

V0 − ε̃
~ωR

λR =
Ē − ε̃
~ωR

. (2.80)

This shows that the largest correction is of ε̃/~ω. To see it more clearly we combine Eqs. (2.77-2.78) to

obtain Ī to leading orders

Ī =
V0

~ωL
+
V0 − ε̃
~ωR

+ (
1

4
+

ε

4~ωL
){log(

λL
2

)− 1

2
}

+ (
1

4
− ε

4~ωR
){log(

λR
2

)− 1

2
}+O(

Ē

V0
,
ε̃

V0
) (2.81)
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Here we used the identities

Ē =
~ωL

2
+
ε

2
(2.82)

Ē − ε̃ =
~ωR

2
− ε

2
(2.83)

which can be obtained from the definitions of Ē and ε in Eqs. (2.5), (2.2). To zeroth order in ε̃/V0, we have

λR = λL ≡ λ. Therefore Eq. (2.81) becomes

Ī =
V0

~ωL
+

V0

~ωR
− ε̃

~ωR

+ (
1

2
+

ε

4~ωL
∆ω

ωR
){log(

λ

2
)− 1

2
}+O(

Ē

V0
,
ε̃

V0
) (2.84)

One now observes that the leading order correction, due to the bias, comes from the third term in the right

hand side of the above equation, i.e. from −ε̃/~ωR. In the case that ωL 6= ωR the correction from the fourth

term, ε
4~ωL

∆ω
ωR

log(λ2 ), is also important. In fact this can be the dominant correction if λ is suitably small.

We did not keep terms of order O( ĒV0
) above. One could keep them, but that would not alter the conclusion

if one neglects terms of order O(ε̃/V0) and O(ε/V0). This completes our counter example for the statement

which had expressed that the corrections are of order ε̃/V0.

2.4.2 General Case

For a general double well potential we again divide Ī into ĪL and ĪR as in Eqs. (2.72-2.74). Then we use the

results of Sec. III of Ref. [14] which deals with a similar integral (Ref. [14] solves the problem of symmetric

potential. However some of integral calculus done there can be used here if one does division (2.72-2.74) for

the action). We combine Eqs. (3.5), (3.10), and (3.11) of [14] for ĪL = IL(Ē) to obtain

IL(Ē) = IL(0)− mωL
2~

(ā− xL)2 log
2(xm − xL)

ā− xL

− mωL
2~

(ā− xL)2(AL +
1

2
)

+ O((ā− xL)3) (2.85)
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where

IL(0) =
1

~

xm∫
xL

√
2mV (x) (2.86)

AL =

xm∫
xL

{ mωL√
2mV (x)

− 1

x− xL
}dx (2.87)

AL is of order unity. For example for a symmetric quartic double well potential AL = log 2 (see e.g. Sec. V

of Ref. [14]). IL(0) would be half of the action if the potential were symmetric. In deriving Eq.(2.85) one

approximates the potential with a parabola near the minimum xL all the way to the turning point ā. We

can use this approximation to write Eq. (2.85) in terms of Ē by noting that Ē ' 1
2mω

2
L(ā− xL)2:

IL(Ē) ' IL(0)− Ē

2~ωL
log

2(xm − xL)√
2Ē/mω2

L

− Ē

2~ωL
(AL +

1

2
) + · · · (2.88)

In virtue of Eq. Eq. 2.82 one can observe that IL(Ē) in the above equation has corrections of order ε/~ωL.

To expand ĪR = IR(Ē) we use the same strategy as in Sec. III of Ref. [14]. The only change that is required

is to shift the zero point of potential up by the amount ε̃. Then all the arguments trivially follow and we

obtain

IR(Ē) ' IR(0)− Ē − ε̃
2~ωR

log
2(xR − xm)√
2(Ē − ε̃)/mω2

R

− Ē − ε̃
2~ωR

(AR +
1

2
) + · · · (2.89)

where

IR(0) =
1

~

xR∫
xm

√
2m(V (x)− ε̃) (2.90)

AR =

xR∫
xm

{ mωR√
2m(V (x)− ε̃)

− 1

xR − x
}dx (2.91)

Using Eq. Eq. 2.83 one can see that IR(Ē) also has corrections of order ε/~ωR. So in general first order

correction of order ε̃/~ω or ε/~ω appears in the tunneling amplitude both from the prefactor and the Gamow
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factor,

∆(ε̃) =
~√ωRωL√

eπ
(1 +

k

4

ε

~ωL
ωR − ωL
ωR

)e−[ĪL(ε̃)+ĪR(ε̃)] (2.92)

In some circumstances all the first order corrections cancel. This happens if there is unitary transformation

between the Hamiltonians of the same potential with positive and negative bias of the same magnitude as

we discuss elsewhere along with the applications of first order correction in tunnel splitting. In general,

however, one might expect to get such first order corrections in the tunneling amplitude.

2.5 Conclusion

In conclusion, we did a WKB calculation in this paper to find the tunnel splitting in one dimensional

asymmetric potentials. We found that the tunnel splitting can in general have first order dependence to

the bias energy. We showed that the dependence is of order ε̃/~ω which is greater than ε̃/V0 which was

previously thought.
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Chapter 3

Proper truncation of a macroscopic
system to a quantum bit

The result of chapter 2 suggests that a noise that causes fluctuations in bias energy of a double well potential

may cause fluctuations in the tunneling matrix elements as well. The latter is properly defined when one

defines a basis for the Hilbert space of the low energy Hamiltonian of the system, truncates the high energy

Hamiltonian and finds the submatrix elements of it in the space of that basis. We shall study this procedure

in this chapter for a general system in interaction with quantum or classical environments. The system

has an arbitrary self Hamiltonian and we shall not restrict ourselves to the case of double well potentials.

We use the results of this chapter in future chapters to find two level Hamiltonian of superconducting and

single-molecule magnet qubits.

3.1 Quantum Environment

In many realizations of quantum bits (qubits) the system considered as the qubit has several (more than

two) energy levels. However, at low enough temperatures and weak coupling with environment these sys-

tems can effectively act as a two level systems. In order to find the effective Hamiltonian of the two level

system in interaction with its surrounding environment, one has to start with the total Hamiltonian of

the system-environment and truncate the higher states of the system from the Hilbert space to find the

effective Hamiltonian. The strategy in practice is as follows: (1) One finds the ground state |0〉 and first

excited state |1〉 of the system and their energies E0, E1. (2) One then evaluates submatrix elements of

the total Hamiltonian of system plus environment in the basis of {|0〉, |1〉} and forms the qubit-environment

Hamiltonian.

To see this more concrete, we first decompose the total system-environment Hamiltonian into three parts,

Ĥ = ĤS + Ĥint + Ĥenv (3.1)

where ĤS , Ĥint, and Ĥenv are the system, interaction and the environment Hamiltonians respectively. Then
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we notice that we can write the interaction Hamiltonian as

Ĥint =

N∑
i=1

Ŵi Êi (3.2)

where Ŵi are operators on the system Hilbert space and Êi are operators on the environment Hilbert space.

It follows from Eq. 3.1 that Ĥint has to be Hermitian. However, for N ≥ 2, each ŴiÊi individually does not

have to be Hermitian, although they have to add up to a Hermitian operator. In the practical examples that

we shall consider, N is finite and small, N = 1, · · · , 6. For a Molecular spin Ŵi are the spin operators, Ŝx,

Ŝy, Ŝz, and for a Josephson junctions Ŵi are cos φ̂ and sin φ̂ where φ̂ is the phase difference operator of the

junction.

Let us apply the truncation strategy and find submatrix of Ĥ, denoted by Ĥtrunc (for truncated Hamil-

tonian), in the basis of ground state and first excited states of ĤS , {|0〉, |1〉},

Ĥtrunc =

(
E0 0
0 E1

)
+

N∑
i=1

(
W 00
i W 01

i

W 10
i W 11

i

)
Êi + Ĥenv (3.3)

where

Wnm
i = 〈n|Ŵi|m〉. (3.4)

In the following we fix the basis of the two level system to {|0〉, |1〉} and define Pauli operators τ0, τx, τy, τz

in this fixed basis as usual and write the Hamiltonians in terms of these operators,

τ̂0 =

(
1 0
0 1

)
τ̂x =

(
0 1
1 0

)
τ̂y =

(
0 −i
i 0

)
τ̂z =

(
1 0
0 −1

)
, (3.5)

τ̂+ = 2

(
0 1
0 0

)
τ̂− = 2

(
0 0
1 0

)
, (3.6)

and write Ĥtrunc in terms of these operators,

Ĥtrunc =
E0 − E1

2
τ̂z +

E0 + E1

2
τ̂0 + τ̂z

N∑
i=1

W 00
i −W 11

i

2
Êi + τ̂0

N∑
i=1

W 00
i +W 11

i

2
Êi

+
τ̂+

2

N∑
i=1

W 01
i Êi +

τ̂−

2

N∑
i=1

W 10
i Êi + Ĥenv (3.7)

A unit operator in Hamiltonian does not play any role and it is equivalent to shifting the zero point of

potential which has no physical effect. So one can drop (E0 + E1)τ̂0/2 in the above equation. The same

is not true with τ̂0
∑N
i=1

W 00
i +W 11

i

2 Êi because this one is a non-unit operator on the Hilbert space of the
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environment. This can be absorbed into the self Hamiltonian of the environment. For clarity we choose not

to do that at this stage. We shall see later that when the environment is an oscillator bath, absorption of

this term causes a shift in the equilibrium points of the oscillator. However, when the environment is a spin

bath, this term acts as a Zeeman term which can be significantly larger than the self Hamiltonian of the spin

bath.

3.1.1 System with non-degenerate ground state doublet

Let us first consider the case in which the lowest two states of the system, when isolated from the environment,

are non-degenerate. We define the energy splitting between the lowest two levels of the system by

∆E = E1 − E0 (3.8)

and after reordering and dropping the obvious τ̂0 we rewrite Eq. 3.7 as

Ĥtrunc = −∆E

2
τ̂z +

τ̂z
2

N∑
i=1

(W 00
i −W 11

i ) Êi +
τ̂+

2

N∑
i=1

W 01
i Êi +

τ̂−

2

N∑
i=1

W 10
i Êi

+

N∑
i=1

W 00
i +W 11

i

2
Êi + Ĥenv (Qubit-Env., General Ŵi, non-degenerate case) (3.9)

This is the truncated Hamiltonian of the system-environment. We shall call it the qubit-environment Hamil-

tonian. One notices that the Hamiltonian Eq. 3.9 has in general population relaxation or T1 (as in NMR

language) terms as well as pure dephasing or τφ terms. One of the emphases of this thesis is to show that in

some effective Hamiltonians of qubits an existing τφ term is ignored.

We took Ŵi’s general in Eq. 3.9. If in a problem, Ŵi’s are Hermitian operators, then one can simplify

Eq. 3.9 to

Ĥtrunc = −∆E

2
τ̂z +

τ̂z
2

N∑
i=1

(W 00
i −W 11

i ) Êi + τ̂x

N∑
i=1

W 01
i Êi

+

N∑
i=1

W 00
i +W 11

i

2
Êi + Ĥenv (Qubit-Env., Hermitian Ŵi, non-degenerate case) (3.10)

which is the qubit-environment Hamiltonian when the system is non-degenerate and Ŵi are Hermitian.
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3.1.2 System with Degenerate ground state doublet

When the ground state doublet of the isolated system is degenerate, the energy splitting vanishes ∆E = 0

in Eq. 3.9 and Eq. 3.10 and the qubit-environment Hamiltonian becomes, for general Ŵi

Ĥtrunc =
τ̂z
2

N∑
i=1

(W 00
i −W 11

i ) Êi +
τ̂+

2

N∑
i=1

W 01
i Êi +

τ̂−

2

N∑
i=1

W 10
i Êi

+

N∑
i=1

W 00
i +W 11

i

2
Êi + Ĥenv (Qubit-Env., General Ŵi, degenerate case) (3.11)

and for Hermitian Ŵi,

Ĥtrunc =
τ̂z
2

N∑
i=1

(W 00
i −W 11

i ) Êi + τ̂x

N∑
i=1

W 01
i Êi

+

N∑
i=1

W 00
i +W 11

i

2
Êi + Ĥenv (Qubit-Env., Hermitian Ŵi, degenerate case) (3.12)

One should note that there is some freedom in choosing states |0〉 and |1〉 in the degenerate case because any

linear combination of these two is also a ground state. The choice of |0〉 and |1〉 will affect the submatrix

elements Wnm
i .

3.2 Classical Environment

Under certain conditions, the effect of the environment can be considered classically. For example when

the environment has only low frequency modes such that for each mode hf � kBT , the temperature is

high enough that one can adapt classical approximation and treat the environment classically. The total

Hamiltonian of system-environment hence simplifies to

H(t) = HS +

N∑
i=1

Ŵi εi(t) (3.13)

where εi(t) is the noise of the environment coupled to Ŵi and is a c-number.

We can apply the same strategy of truncation as before to these cases.
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3.2.1 Non-degenerate ground state doublet

The argument follows up to Eq. 3.9 similar to that of preceding sections if we replace Êi by εi(t),

Ĥtrunc(t) = −∆E

2
τ̂z +

τ̂z
2

N∑
i=1

(W 00
i −W 11

i ) εi(t) +
τ̂+

2

N∑
i=1

W 01
i εi(t) +

τ̂−

2

N∑
i=1

W 10
i εi(t)

+

N∑
i=1

W 00
i +W 11

i

2
εi(t) (3.14)

The last term above is a time dependent c-number. Effect of such terms is a global phase factor in the total

wavefunction which has no physical significance. So it can be safely dropped:

Ĥtrunc(t) = −∆E

2
τ̂z +

τ̂z
2

N∑
i=1

(W 00
i −W 11

i ) εi(t) +
τ̂+

2

N∑
i=1

W 01
i εi(t) +

τ̂−

2

N∑
i=1

W 10
i εi(t)

(Qubit-Classical Env., General Ŵi, non-degenerate case) (3.15)

For Hermitian Ŵi’s the Hamiltonian simplifies to

Ĥtrunc = −∆E

2
τ̂z +

τ̂z
2

N∑
i=1

(W 00
i −W 11

i ) εi(t) + τ̂x

N∑
i=1

W 01
i εi(t)

(Qubit-Classical Env., Hermitian Ŵi, non-degenerate case) (3.16)

3.2.2 Degenerate ground state doublet

For the degenerate case ∆E = 0 so we obtain for general Ŵi’s

Ĥtrunc(t) =
τ̂z
2

N∑
i=1

(W 00
i −W 11

i ) εi(t) +
τ̂+

2

N∑
i=1

W 01
i εi(t) +

τ̂−

2

N∑
i=1

W 10
i εi(t)

(Qubit-Classical Env., General Ŵi, degenerate case) (3.17)

and for Hermitian Ŵi’s

Ĥtrunc =
τ̂z
2

N∑
i=1

(W 00
i −W 11

i ) εi(t) + τ̂x

N∑
i=1

W 01
i εi(t).

(Qubit-Classical Env., Hermitian Ŵi, degenerate case) (3.18)
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Chapter 4

Pure dephasing noise of quasiparticles in
Josephson junctions

As an application of the discussions of chapters 2-3, we truncate the interaction Hamiltonian of single and

triple Josephson junction flux qubits in this chapter and show that quasiparticles cause pure dephasing (τφ)

noise beside the well recognized population relaxation (T1) noise. In the literature the quasiparticle noise is

recognized as a population relaxation (T1) noise, when the qubit operates at its optimum point, with usually

an ohmic power spectral density function [2, 22]. We show here that the noise produce pure dephasing as

well. For the interaction Hamiltonian, we use the results of the study of the microscopic theory done by

Eckern , Schön, and Ambegaokar [23]. This result has been cited by Leggett et. al. [2, p. 9], Prokofev and

Stamp [3, p. 678], and Weiss [22, p. 21], however the spin-boson model, which has only a T1 process, has

dominated the literature of quasiparticle noise.

A possible reason for this may be a discussion in [2, p. 14] which casts a general form of noise in flux

qubits into the spin boson model. It seems, however, that the discussion of [2, p. 14] is not appropriate for

at least modern flux qubits. There are two points that one can make in this regard: (1) Ref. [2] studies

the flux qubit problem in the WKB approximation limit. But many applications of Josephson junctions

do not operate in this limit [24]. (2) The discussion of [2, p. 14] incorporates a pure dephasing term

into the renormalized tunnel splitting of the flux qubit. This, however, may not be all accurate. Because a

renormalized Hamiltonian of the flux qubit in absence of any other noise will undergo coherent tunneling with

no dephasing. But, the the original unnormalized Hamiltonian of the flux qubit with a pure dephasing noise

term will undergo phase damping. The resultant evolutions are different, suggesting that the incorporation

of pure dephasing into renormalization of tunnel splitting may not be quite accurate, at least in non-WKB

limit.

Instead of incorporating pure dephasing terms into renormalization of tunnel splitting, we shall derive

the truncated Hamiltonian with all of its population relaxation and pure dephasing noise terms for single

and triple junction flux qubits in this chapter and discuss the significance of pure dephasing terms in each

case. We shall see that the effect of such terms is more important in the triple junction flux qubits and in
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the non-WKB limit.

4.1 Single Josephson junction flux qubit

Consider a flux qubit with single junction in interaction with environment. The system Hamiltonian is

Hsys =
Q̂2

2C
+

(Φ̂− Φext)
2

2L
+ EJ(1− cos φ̂) (4.1)

where C, Φ̂, Φext , L, EJ and φ̂ are respectively the capacitance of the junction, total flux in the loop, the

external flux in the loop, the self geometrical inductance of the ring, the Josephson junction energy and the

phase difference of two superconductors on two side of the junction. Q̂ is the half of charge difference of the

two superconductors and can be written in terms of half of the number difference of Cooper pairs on two

superconductors N̂ as

Q̂ = 2eN̂ (4.2)

It can be shown[25] that

N̂ = i
∂

∂φ̂
[φ̂, N̂ ] = −i (4.3)

The flux quantization relationship requires

Φ

Φ0
=

φ

2π
(4.4)

where Φ0 = h/2e is the flux quantum. For Φext = Φ0/2 the potential in Eq. (4.1) becomes a symmetric

double well potential if EJ is suitably large. One can define φext = 2πΦext/Φ0 to write the potential in

terms of the phase of the junction

Vsys = EL
(φ− φext)2

2
+ EJ(1− cosφ) (4.5)

where EL = Φ2
0/4π

2L. This potential is symmetric for φext = π.

We consider the case when the single junction qubit operates at its optimum point here (φext = π) and

study quasiparticles effects. Eckern , Schön, and Ambegaokar [23] showed that the interaction of a Josephson

junction with qusiparticles can be casted in the following form

Hint = cos(
φ

2
)
∑
i

Ci,1Ri,1 + sin(
φ

2
)
∑
j

Cj,2Rj,2 (4.6)
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where φ is the phase of the Josephson junction, {Ri,1} and {Ri,2} are coordinates of two independent

ensembles of harmonic oscillators, {Ci,1}, {Ci,2} are real-valued coefficients. The self Hamiltonian of such

environment is

Henv =
∑
i

P 2
i,1

2Mi,1
+

1

2
Mi,1ω

2
i,1R

2
i,1 (4.7)

+
∑
j

P 2
j,2

2Mj,2
+

1

2
Mj,2ω

2
j,1R

2
j,2 (4.8)

The spectral densities of these two bath are relatively equal and ohmic in many cases when the variations

of phase are slow on a time scale given by the inverse of the superconducting gap [23, p. 6426-6427].

To truncate the interaction Hamiltonian of Eq. 4.6 we notice that each term in this Hamiltonian is

individually Hermitian. Thus, we can use Eq. 3.10 for the truncation procedure. The result is

Ĥtrunc = −∆E

2
τ̂z +

τ̂z
2

(c00 − c11)
∑
i

Ci,1Ri,1 + τ̂x c
01
∑
i

Ci,1Ri,1

+
τ̂z
2

(s00 − s11)
∑
i

Ci,2Ri,2 + τ̂x s
01
∑
i

Ci,2Ri,2

+
c00 + c11

2

∑
i

Ci,1Ri,1 +
s00 + s11

2

∑
i

Ci,2Ri,2 + Ĥenv (4.9)

where

cnm = 〈n| cos
φ̂

2
|m〉 (4.10)

snm = 〈n| sin φ̂
2
|m〉 (4.11)

The term c00+c11

2

∑
i Ci,1Ri,1 + s00+s11

2

∑
i Ci,2Ri,2 can be absorbed into Henv by appropriate shift of the

center of oscillation of each oscillator in the baths, Rj,n → R′j,n . This, of course, produces an overall

constant, c-number, term which can always be dropped since it does not affect the dynamics. Therefore, one

reaches to

Ĥtrunc = −∆E

2
τ̂z +

τ̂z
2

(c00 − c11)
∑
i

Ci,1R
′
i,1 + τ̂x c

01
∑
i

Ci,1R
′
i,1

+
τ̂z
2

(s00 − s11)
∑
i

Ci,2R
′
i,2 + τ̂x s

01
∑
i

Ci,2R
′
i,2 + Ĥ ′env (4.12)

Some of the coefficients are zero in the above equation. One can see this easily by using shifted phase
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quantity φ̄ = φ− π. In terms of this quantity,

sinφ/2 = cos φ̄/2 (4.13)

cosφ/2 = − sin φ̄/2 (4.14)

The ground state 〈φ̄|0〉 is an even function of φ̄ and the first excited state 〈φ̄|1〉 is an odd function of φ̄.

Since, sin φ̄/2 is odd and cos φ̄/2 is even, we conclude that

s01 = c00 = c11 = 0. (4.15)

Using Eq. 4.15 the truncated Hamiltonian 4.12 is simplified to

Ĥtrunc = −∆E

2
τ̂z +

τ̂z
2

(s00 − s11)
∑
i

Ci,2R
′
i,2 + τ̂x c

01
∑
i

Ci,1R
′
i,1 + Ĥ ′env. (4.16)

The second term above is a pure dephasing term and the third term is a population relaxation term. s00−s11

is not zero, although it may be much smaller than c01. In the non-WKB limit it is more accurate to include

this term in noise models.

In the weak noise limit, we can add the effect of each noise term in Eq. 4.16 to obtain total relaxation

rate, 1/T1, and total dephasing rate, 1/T2. If we denote the power spectral density function of the first

oscillator bath by S1(ω) and that of the second bath by S2(ω) then [26, 4, 22]

1

T1
= π(c01)2 S1(∆E) (4.17)

1

τφ
= π(∆s)2 S2(0) (4.18)

1

T2
=

1

2T1
+

1

τφ
(4.19)

where ∆s = (s00 − s11)/2. Compared to previous analyses of flux qubits with single Josephson junctions

that operates at its optimum point, the new term that we found in this section is the pure daphasing 1/τφ

term above. This term is negligible in the WKB limit. However in non-WKB limit, where most of current

qubtis operate, one may need to include it in their noise models to obtain more accurate models to interpret

experimental data.
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4.2 Triple Josephson junction flux Qubit

In most applications of Josephson junctions in quantum information processing there are more than one

junction involved. In this section we study dissipation and decoherence in triple junction flux qubits. Consider

a three-junction qubit with junctions 1 and 2 that have Josephson energies EJ and capacitance C and junction

3 that has a Josephson energy and capacitance α times larger (Fig. 4.1). The node islands 1 and 2 in Fig.

Figure 4.1: Triple Junction flux qubit. Courtesy of Ref. [27].

4.1 are connected to gate voltages VA and VB through capacitors with capacitances CgA = CgB = γC.

The superconducting loop is threaded by an external magnetic flux fΦ0, where f ∈ [0, 1] and Φ0 = h/2e

is the superconducting flux quantum. The inductance of the loop is assumed to be negligible compared to

LJ = Φ0/2πI0, where I0 is critical current of the junction 1. The potential energy of this system is [27]

U = EJ [2 + α− cosφ1 − cosφ2 − α cos(2πf + φ1 − φ2)] (4.20)

where φ1 and φ2 are phase differences in junctions 1 and 2, respectively. The total Hamiltonian of this

system can be quantized and written as follows [27]

Hsys =
P 2
p

2Mp
+

P 2
m

2Mm
+ EJ{2 + α− 2 cosφp cosφm − α cos(2πf + 2φm)} (4.21)

where φp = (φ1 + φ2)/2, φm = (φ1 − φ2)/2, Pp = −i~∂/∂φp, Pm = −i~∂/∂φm, Mp = (Φ0/2π)22C(1 + γ)

and Mm = (Φ0/2π)22C(1 + 2α + γ). The optimum point of operation of this qubit is at f = 1/2. At that

point the potential makes a double well landscape in two dimensions when α > 1/2. The minima in energy

occur at (φp, φm) = (0,± arccos 1
2α ). The ground state Ψ0(φp, φm) is an even function in φm, Ψ0(φp, φm) =
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Ψ0(φp,−φm) and the first excited state Ψ1(φp, φm) is an odd function in φm, Ψ1(φp, φm) = −Ψ1(φp,−φm) .

As before, each Josephson junction interacts with two independent oscillator baths. The interaction

Hamiltonian for all three junctions is

Hint = cos
φ1

2

∑
i

Ci,1Ri,1 + sin
φ1

2

∑
j

Cj,2Rj,2

+ cos
φ2

2

∑
i

Ci,3Ri,3 + sin
φ2

2

∑
j

Cj,4Rj,4

+ cos
φ3

2

∑
i

Ci,5Ri,5 + sin
φ3

2

∑
j

Cj,6Rj,6 (4.22)

We can use the flux quantization relation φ3 = −2πf − φ1 + φ2 [27] as in Eq. 4.20 to eliminate the phase of

the third junction φ3. Also, we can utilize the relation between φ1, φ2 and φp, φm to write Hint as follows

Hint = cos
φp + φm

2

∑
i

Ci,1Ri,1 + sin
φp + φm

2

∑
j

Cj,2Rj,2

+ cos
φp − φm

2

∑
i

Ci,3Ri,3 + sin
φp − φm

2

∑
j

Cj,4Rj,4

− sinφm
∑
i

Ci,5Ri,5 − cosφm
∑
j

Cj,6Rj,6 (4.23)

Here we set f = 1/2, since we are interested in new effects that have not been recognized in the literature

for the optimum point, which has the minimum decoherence.

We can now truncate Hint and find its matrix elements in the basis of the ground state and first excited

state of the system. The result is

Hint,trunc =
τ̂z
2

(c00
+ − c11

+ )
∑
i

Ci,1Ri,1 + τ̂xc
01
+

∑
i

Ci,1Ri,1

+
τ̂z
2

(s00
+ − s11

+ )
∑
i

Ci,2Ri,2 + τ̂xs
01
+

∑
i

Ci,2Ri,2

+
τ̂z
2

(c00
− − c11

− )
∑
i

Ci,3Ri,3 + τ̂xc
01
−

∑
i

Ci,3Ri,3

+
τ̂z
2

(s00
− − s11

− )
∑
i

Ci,4Ri,4 − τ̂xs01
−

∑
i

Ci,4Ri,2

− τ̂z
2

(s00
m − s11

m )
∑
i

Ci,5Ri,5 − τ̂xs01
m

∑
i

Ci,5Ri,5

− τ̂z
2

(c00
m − c11

m )
∑
i

Ci,6Ri,6 + τ̂xc
01
m

∑
i

Ci,6Ri,6 (4.24)
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plus terms that can be absorbed into the self Hamiltonian of the oscillator baths. In Eq. 4.24

cmn± = 〈m| cos
φp ± φm

2
|n〉 (4.25)

smn± = 〈m| sin φp ± φm
2

|n〉 (4.26)

cmnm = 〈m| cosφm|n〉 (4.27)

smnm = 〈m| sinφm|n〉. (4.28)

Since the ground state is even and the first excited state is odd with respect to φm, we have

c01
m = s00

m = s11
m = 0. (4.29)

We cannot extend this argument to cmn± and smn± because cos
φp±φm

2 , sin
φp±φm

2 are neither even nor odd

with respect to φm.

For brevity, let us define

∆cl = (c00
l − c11

l )/2 (4.30)

∆sl = (s00
l − s11

l )/2 (4.31)

(4.32)

where l = ±,m. The total truncated Hamiltonian can now be written as

Htrunc = −∆E

2
τ̂z

+ τ̂z ∆c+
∑
i

Ci,1Ri,1 + τ̂x c
01
+

∑
i

Ci,1Ri,1

+ τ̂z ∆s+

∑
i

Ci,2Ri,2 + τ̂x s
01
+

∑
i

Ci,2Ri,2

+ τ̂z ∆c−
∑
i

Ci,3Ri,3 + τ̂x c
01
−

∑
i

Ci,3Ri,3

+ τ̂z ∆s−
∑
i

Ci,4Ri,4 + τ̂x s
01
−

∑
i

Ci,4Ri,4

− τ̂z ∆cm
∑
i

Ci,6Ri,6 − τ̂x s01
m

∑
i

Ci,5Ri,5

+ Henv (4.33)

where Henv composed of six oscillator baths self Hamiltonians.

We expect the extra pure dephasing terms that is found in Eq. 4.33 to be more significant than the one
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in the single qubit junction because the triple junction wave functions in two dimensions have less symmetry

than the ones of single junction in one dimension. Therefore, the quantities ∆cl, ∆sl should be somewhat

larger than ∆s in the single junction.

As in the case of the single junction, in the weak coupling limit we can add the effects of each oscillator

bath above to find the relaxation and dephasing rate as follows

1

T1
= π{(c01

+ )2S1(∆E) + (s01
+ )2S2(∆E) + (c01

− )2S3(∆E) + (s01
+ )2S4(∆E) + (s01

m )2S5(∆E)} (4.34)

1

τφ
= π{∆c2+S1(0) + ∆s2

+S2(0) + ∆c2−S3(0) + ∆s2
−S4(0) + ∆c2mS6(0)} (4.35)

In comparison with the literature all the terms in Eq. 4.35 are new and have not been recognized to my

knowledge. These terms have non-negligible effects in the non-WKB limit.

This completes our discussion of extra pure dephasing terms in superconduting qubits.

4.3 Conclusion

In conclusion, in this chapter we used the idea of chapter 2 and the method of chapter 3 to find the two

level system Hamiltonian of single and triple junction flux qubits in interaction with quasiparticles. We

utilized the high energy Hamiltonian of quasiparticles interaction found by Eckern , Schön, and Ambegaokar

[23] and truncated it to find the submatrix elements of the interaction Hamiltonian in the basis of ground

state and first excited state of the flux qubit. We found that in addition to population relaxation noise,

the interaction causes pure dephasing noise for two level systems. This pure dephasing noise has not been

recognized, or well treated in my opinion, in the literature. We discussed that the pure dephasing noise is

somewhat more significant for triple junction qubits than is for single junction ones and is more important

in the non-WKB limit. The application of this study is in experiments that temperature is comparable with

the superconducting energy gap.
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Chapter 5

Landau-Zener effect in presence of time
dependent off-diagonal terms in
Hamiltonian
In this chapter I present an analytical solution of the Landau-Zener type problem when an extra linear

term is added to the off-diagonal element of the Hamiltonian. I show such term qualitatively leave the

Landau-Zener effect unaffected while quantitatively modifies the probability of transition. I also construct

an example and present numerical solution of a sweep problem in presence of an oscillatory term in the off

diagonal matrix element of the Hamiltonian. I demonstrate that a frequency of oscillation as low as twice the

minimum gap can dramatically affect the result of the evolution and make an otherwise adiabatic evolution,

diabatic. This effect as we see is more influential than increasing the speed of the sweep for a similar factor

in the Landau-Zener problem.

5.1 Introduction

Landau-Zener theory [28, 29] provides a powerful method for measuring the minimum gap between two

energy levels of a system. It was this method which enabled researchers to measure the extremely small

tunnel splitting in single molecule magnets with relatively large spin S, such as Fe8 (S = 10), Mn4 (S = 8),

Mn4 (S = 9/2), at the first place [11, 30]. Landau-Zener (LZ) effect has recently gained renewed attention

in the context of adiabatic quantum computation [31, 32].

In this chapter, we study two problems: (1) The effect of an extra linear off-diagonal term, proportional

to the bias energy, in the Hamiltonian of Landau-Zener problem. (2) The effect of an oscillatory off-diagonal

term in the Hamiltonian of LZ problem.

We show that in the first problem the LZ effect is qualitatively unaffected, however, it is quantitatively

modified. In the second problem, we illustrate that for some choice of the frequency of the oscillatory term,

the effect is even qualitatively influenced.
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5.2 Effect of Linearly time dependent off-diagonal term in the

Landau-Zener Hamiltonian

In problems that the linear effect occurs, as discussed in the previous chapters, the Hamiltonian for the

truncated two level system is

H = −~∆

2
(1 + c

ε̃

∆
) σx −

~ε̃
2
σz (5.1)

where c is a constant and typically c� 1.

Here we study the correction that the extra term above −c ~ε̃ σx/2 makes in Landau-Zener effect. We

vary the bias by a constant rate as

ε̃(t) = vt (5.2)

The Hamiltonian becomes, in the σz-basis,

H(t) = −~
2

(
vt ∆ + c vt

∆ + c vt −vt

)
. (5.3)

Suppose the system is in the ground state of H(−T/2) at t = −T/2, for T being arbitrarily large. What is

the probability of finding the system in the excited state of H(T/2) at t = T/2?

When c = 0 the problem becomes the standard Landau-Zener problem and the answer is

P = exp

[
−π∆2

2v

]
(5.4)

For v → ∞ the probability is one. This is because the excited state of H(T/2) is the same as the ground

state of H(−T/2) and in a fast sweep the state does not change. For v → 0 the probability is zero. This

is a result of the adiabatic theorem which states that the system stays in the instantaneous ground state

of the Hamiltonian if the Hamiltonian varies slowly by time [33, 34, 35]. For a moderate sweep rate the

probability of transition is according to Eq. 5.4. Kayanuma shows that the transition time is of the order of

∆/2v around t = 0 [36].

We show below that when c 6= 0, Eq. Eq. 5.4 is modified and the probability of transition to the excited

state of the final Hamiltonian becomes

P = exp

[
− π∆2

2v(1 + c2)3/2

]
. (5.5)

Eq. Eq. 5.5 well satisfies the limiting cases, as before. As v → 0, P → 1 in accordance with the adiabatic
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theorem. Also, as v →∞, P → 0 in accordance with the fast sweep argument discussed above.

The (unnormalized) ground state of H(−T/2) and excited state of H(T/2) for arbitrary large T , in

σz-basis, is

|g−∞〉 = |e+∞〉 =

(
1−(1+c2)1/2

c
1

)
(5.6)

We note that in the limit of c→ 0 this state becomes | ↓〉 =

0

1

, which is the spin down state as expected

in the standard LZ problem. The unnormalized excited state of H(−T/2) and ground state of H(T/2) is

|e−∞〉 = |g+∞〉 =

(
1
c

1+(1+c2)1/2

)
(5.7)

which becomes the spin up state | ↑〉 in c→ 0 limit.

In solving the problem, we follow the method of Landau and Lifshitz given in Secs. 52, 53 and 90 of Ref.

[29] for the standard LZ problem. We denote the instantaneous eigenenergies of Hamiltonian H(t), by Ug(t)

and Ue(t). The instantaneous energy splitting between the two levels is

∆U(t) = Ue(t)− Ug(t) = ~
√

(vt)2 + (∆ + cvt)2 (5.8)

According to Ref. [29, p. 349-350], quite generally, the probability P of transition to the excited state of

H(T/2) is

P = exp

[
−2

~
Im
∫ t0

t1

∆U(t)dt

]
(5.9)

where t1 may be taken to be any point on the real axis, t0 is the complex number in the upper half plane

for which

∆U(t0) = 0 (5.10)

and integration is on the path that starts at t1, goes vertically on the real axis to Re(t0) and from there

horizontally parallel to imaginary axis to t0 (See e.g. Fig. 19 of Sec. 52 of Ref. [29])

To find t0 we first complete the square in ∆U(t) as follows,

∆U(t) = ~

√
v2(1 + c2)

(
t+

c∆

v(1 + c2)

)2

+
∆2

1 + c2
(5.11)

Then we choose t1 to be
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t1 = − c∆

v(1 + c2)
. (5.12)

and define

ṽ ≡ v (1 + c2)1/2 (5.13)

∆̃ ≡ ∆ (1 + c2)−1/2 (5.14)

to rewrite ∆U(t) as

∆U(t) = ~
√
ṽ2(t− t1)2 + ∆̃2. (5.15)

Now t0 can be easily obtained as follows,

t0 = t1 + i
∆̃

ṽ
≡ t1 + iτ0. (5.16)

To take the required integral

∫ t1+iτ0

t1

√
ṽ2(t− t1)2 + ∆̃2 dt (5.17)

we first substitute t− t1 = s,

∫ iτ0

0

√
ṽ2s2 + ∆̃2 ds, (5.18)

then, since the integration on s is entirely on the imaginary axis, we substitute s = iτ to get

i

∫ τ0

0

√
−ṽ2τ2 + ∆̃2 dτ = i

π∆̃2

4ṽ
. (5.19)

Substituting Eq. 5.19 into Eq. 5.9 we find the probability of transition,

P = exp

[
−π∆̃2

2ṽ

]
= exp

[
− π∆2

2v(1 + c2)3/2

]
. (5.20)

In comparison to the transition probability Eq. 5.4 in the standard LZ problem, the above expression has

an extra factor of (1 + c2)−3/2 in the exponent. Thus, if one conducts an experiment to measure ∆, and one

is unaware of the presence of the extra term −c ~ε̃ σx/2 in Hamiltonian Eq. 5.1, one will underestimate ∆

by a factor of (1 + c2)3/4.
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5.3 Effect of oscillatory off-diagonal term in the Landau-Zener

Hamiltonian

In this section we construct an example that illustrates that the adiabatic quantum computation is strongly

influenced in presence of oscillatory terms in the Hamiltonian. It is usually considered in adiabatic quantum

computing that the important factor which determines the adiabaticity of the evolution is the size of the

minimum gap between lowest energy levels (at least when considering the closed system) [32]. We, however,

show that in presence of oscillatory terms this is not true.

We first construct a Landau-Zener type example in the slow sweep rate regime which behaves adiabati-

cally. Then we turn on an oscillatory term in the off-diagonal element of the Hamiltonian with oscillation

frequency as slow as twice the minimum gap. We show this small change makes the evolution diabatic.

Strictly speaking, we do not strikingly violate the adiabatic theorem here. However, we show that what

determines the speed of sweep for an adiabatic evolution in a typical situation that deals with an avoided

crossing, is not only the size of the gap but also the existence of oscillatory terms in the Hamiltonian.

Consider the following time dependent Hamiltonian

H(t) = −~∆

2
(1 + a[1− cos(2∆t)]) σx −

~vt
2

σz (5.21)

For a = 0 this is the standard Landau-Zener Hamiltonian. The ground state of H(−T/2) for large T is | ↓〉.

Using dimensionless parameter s = t/T , we denote the probability of the spin to be found in state | ↓〉 at

time t by P↓↓(s). This becomes at t = T/2 equal to the probability of transition to the excited state of the

final Hamiltonian defined in the previous section

P = P↓↓(1/2) (5.22)

because the excited state of H(T/2) is the same as the ground state of H(−T/2), as mentioned before. In this

section we solve the Schrodinger equation for Hamiltonian Eq. 7.3 by use of numerical techniques. Fig. 5.1

illustrates P↓↓(s) for a = 0 and a slow sweep rate v = ∆2/4. The probability of staying in the spin down state

at late times P (s = 1/2) matches very well with analytical expression of Eq. Eq. 5.4, P = e−2π ' 0.0018.

Now we turn on the oscillatory term in Eq. Eq. 7.3 and set a = 1. The off-diagonal term oscillates between

−~∆/2 and −3~∆/2. It never becomes zero, so the gap between the two energy levels is always open. It

is modulated between two values of ~∆ and 3~∆ throughout the process, periodically. This modulation,

however, has a strong effect on the evolution of the system. It excites the system out of its instantaneous
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Figure 5.1: Probability of being in spin down state P↓↓(s) in the standard Landau-Zener problem as a
function of dimensionless time variable s, for v = ∆2/4. Parameters of the simulation are set at T = 2000,
a = 0, and v = ∆2/4 = 0.25.

ground state. Fig. 5.2 illustrates the result of such evolution.
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Figure 5.2: Probability of being in spin down state P↓↓(s) in the Landau-Zener problem with extra
off-diagonal oscillatory term, Eq. Eq. 7.3, as a function of s = t/T , for v = ∆2/4. Parameters of the
simulation are set at T = 2000, a = 1, and v = ∆2/4 = 0.25.

The system remains in the instantaneous ground state until it reaches the avoided crossing. At that place

it gets partially excited and transitions partly to the instantaneous excited state. As the levels diverge the

part that transitioned to the excited state remains there until the evolution ends. At the end, the probability

of transition becomes over 45% and the probability of remaining in the instantaneous ground state is less

than 55%. Thus, although the sweep rate is slow, the system does not remain in the instantaneous ground

state.

In adiabatic quantum computing, the main factor that is usually considered as a measure of slowness of

the process is the minimum gap between the ground level and excited levels [32]. If the sweep rate v is small

compared to this gap squared ∆2 then the process is recognized as adiabatic (for a closed system). That

is the evolution takes the system from a trivial initial ground state to the desired final ground state [31].

However, we observed in this section that ∆2 alone is not determinant. The presence of oscillatory terms in

the Hamiltonian can strongly affect the result and lead to diabatic evolution even if the sweep rate is slow.
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We shall discuss below the validity of adiabatic theorem for our example. However, the point we wish

to make here is not whether the adiabatic theorem is technically violated or not. But, the observation that

hidden oscillatory terms in a Hamiltonian can ruin adiabatic computation. One, who conducts adiabatic

quantum processing, may not be, a priori, aware of existence of such oscillatory terms. This will lead them

to make unsuitable choices for the sweep rate that in turn leads to incorrect results for adiabatic quantum

computation!

Let us now examine the validity of the adiabatic theorem in the above problem. The adiabatic theorem

states [33, 34, 35] that if the system starts in an instantaneous energy eigenstate |En(−T/2)〉, it will remain

in that energy level |En(t)〉 throughout the evolution as long as

I = max
−T/2≤t≤T/2

∣∣∣∣ 〈Em(t)|dH/dt|En(t)〉
E2
nm(t)/~

∣∣∣∣� 1 for all m 6= n (5.23)

where Enm(t) = En(t)−Em(t). As we see in Fig. 5.2 the major non-adiabatic events occur near s = 0−0.03.

Thus, if the adiabatic theorem Eq. 5.23 is violated it is most likely violated in this region. Time derivative

of Hamiltonian Eq. 7.3 is

dH(t)

dt
= −~∆2a sin(2∆t) σx −

~v
2
σz (5.24)

At t = 0, the ground state and excited state are the eigenstates of σx, |±〉, for both a = 0, 1. At that time

the gap between the two levels is ∆ for both values of a. The condition Eq. 5.23 becomes

I =
v/2

∆2
� 1 (5.25)

We notice on passing that the Landau-Zener probability can be written as

P = exp(−π/4I) (5.26)

For v = ∆2/4, I is

1

8
= 0.125� 1 (5.27)

which we consider as being satisfactory enough. Here

P = e−π/4I = e−2π ∼ 0.0018. (5.28)

For a = 0, I = 1/8 in Eq. 5.23. For a = 1, I comes from a time near the time that vt = ∆,
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I =
~∆2/

√
2

2~∆2
=

1

2
√

2
' 0.35. (5.29)

If this was a Landau Zener problem with I = 0.35 the probability P would be

P = e−π/4I ∼ 0.10 (5.30)

However, as one sees from Fig. 5.2, P↓↓ for late times reaches to about 0.45. This means that the oscillation

more violate the adiabaticity than a fast sweep in a Landau Zener type experiment.

The other point, as mentioned above, is that what determines adiabaticity is not the minimum gap, but

also existence of oscillatory terms and one a priori may not be aware of such existence because one does not

know the instantaneous ground state and first excited state of the system at all times. The goal of adiabatic

quantum computation is to find the final ground state of the system at late times. In both cases above,

a = 0, 1, the minimum gap was ∆. The sweep rate was ∆2/4. But one case showed an adiabatic evolution

(a = 0) while the other (a = 1) exhibited a diabatic one. One important feature of our example is that the

frequency of oscillation is small (twice the minimum gap). Thus, even a slow oscillation can ruin adiabaticity.

For a large array of qubits this can be a problem since the gap becomes small.

We conclude that oscillatory terms in adiabatic quantum computation are more detrimental than an

equivalent fast sweeps and the computation may not give the expected result unless the Hamiltonians are

designed such that they preclude generation of oscillatory terms.
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Part II

SIMULATION OF QUANTUM NOISE
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Chapter 6

Classical simulation of arbitrary
quantum noise

I present an explicit classical simulation of arbitrary quantum noise for quantum models in which one qubit

interacts with a quantum bath. The classical model simulates the interaction of the bath and the qubit by

random unitary evolutions. I show that any arbitrary quantum dynamics, including quantum dissipation,

recurrence, and dephasing, can be simulated classically when one allows the unitary operators in the classical

model to depend on the initial state of the system and bath. For initial mixed states of the system and

non-product states of the system and bath, I demonstrate that random unitary expansion is still possible,

in terms of a set of pure states.

6.1 Introduction

Entanglement is ‘the trait of quantum mechanics’ that ‘enforces its entire departure from classical lines of

thought’, according to Erwin Schrodinger [37]. It is the growth of entanglement with an environment, in

open quantum systems, that is commonly stated as the root cause of decoherence [38, 39, 40, 41]. The loss of

coherence in open quantum systems, or decoherence, itself is considered to be the reason of the appearance

of classical traits in quantum systems and to be connected with the quantum-to-classical transition [42, 43].

However, recently it has been demonstrated that certain types of decoherence can be simulated classically

by random unitary dynamics without appealing to entanglement with an environment and the idea of

transformation of information, which comes with it [44, 45, 46, 47, 48, 49]. Specifically, the pure dephasing

decoherence, for principle systems with two dimensional Hilbert space, and depolarizaing noise, for all

dimensionalities, has been simulated classically [47].

Still, the degree of entanglement is been thought as a decisive feature which can classify environments. In

microscopic system-bath models, the strength of coupling between the system and each degrees of freedom of

the environment, which leads to the degree of entanglement with and within the environment, is the decisive

factor. In oscillator bath models each degrees of freedom of the environment is only weakly perturbed [1, 2].
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In spin bath models, however, each degrees of freedom can be strongly perturbed, too [3, 50] . The spin

bath models which have weak couplings with the principle system can be mapped onto oscillator baths

[1, 51, 3, ?, 52] . It has been stated that the spin baths with strong couplings cannot be mapped onto

oscillator baths and they make totally different effects on principle systems [3, 53] .

However, it has recently been recognized that by an appropriate choice of spectral density function, an

oscillator bath can simulate the effect of the spin bath in the strong coupling limit as well [54].

What is the role of entanglement in quantum decoherence? And what is the distinction between quantum

and classical noises? This paper attempts to investigate these questions further.

For a single qubit, it is well known that every doubly stochastic (or unital) channel can be represented as

a random unitary channel [44, 55]. A doubly stochastic channel is a completely positive map on the Hilbert

space of the principle system that maps the completely mixed state onto itself, whereas a random unitary

channel is a convex combination of unitary transformations:

E(ρ) =
∑
i

piUiρU
†
i

(
pi > 0,

∑
i

pi = 1

)
. (6.1)

We extend the idea of random unitary channels to random unitary expansions by letting the unitary operators

Ui depend on the initial state of the system-plus-environment. We show that for a single qubit with initial

pure states ρ(ti) not only doubly stochastic operations but all quantum evolutions have random unitary

expansions:

ρ(t) =
∑
α

pαUαρ(ti)U
†
α (6.2)

where Uα is a function of time and the initial state of the system-plus-environment. A Lebesgue integral

over an infinitely uncountable set of index α is intended by the sum above.

For mixed initial state ρ(ti) of a single qubit we show that a random unitary expansion is possible in the

following sense:

ρ(t) =
∑
α

pαUαρα(ti)U
†
α (6.3)

where

ρ(ti) =
∑
α

pαρα(ti) (6.4)

and ρα(ti) are some pure states.

We construct an explicit time-continues classical model that simulates the effect of entanglement and
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derives the above results. For the sake of simplicity we first introduce the classical simulation of quantum

models in which the system starts in pure states and the universe (system plus environment) starts in product

states. We devote Sec. 6.2-6.4 to this case and describe the quantum and classical models and prove their

equivalence. In Sec. 6.5 we relax the initial state assumption and let the system start in a mixed state

and the universe in a non-product state. We show that a random unitary expansion is still possible in this

case. Finally, in Sec. 6.6 we give three examples for the case of initial pure states. The first example is the

simulation of quantum recurrence in which the entropy decreases in the intermediate stage of evolution from

almost maximum value of ln 2 to zero! The second example simulates pure dephasing decoherence. The last

example is a simulation of amplitude damping, which could not be achieved in the previous classical models,

, except for short times and at high temperatures [48].

6.2 Quantum Model for Initial pure states

In this section through Sec. 6.4 we consider all quantum models with the following four properties: (1) The

central system S is a single qubit. (2) The qubit interacts with an arbitrary quantum bath B. (3) The initial

state is a product state

ρU (ti) = ρQ(ti)⊗ ρB(ti) (6.5)

where ti is the initial time, ρU is the density matrix of the universe (system plus bath), and ρQ(ti), ρB(ti)

are the initial density matrices of the system and the bath (We use superscript Q for the density matrix of

the system, instead of subscript S, to emphasize that this density matrix is associated with the quantum

model). (4) The system is initially in a pure state,

ρQ(ti) = |Ψi〉〈Ψi|. (6.6)

The total Hamiltonian of the above quantum models can be decomposed into three parts as usual:

HU = HS +Hint +HB (6.7)

where HU , HS , HB and Hint are the Hamiltonian of the universe, the qubit, the bath, and the interaction

Hamiltonian respectively. The density matrix of the universe evolves by the evolution unitary operator

U(t, ti) = e−iHU (t−ti). (6.8)

where we have set ~ = 1. At each t the density matrix of the universe is
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ρU (t) = U(t, ti)ρU (ti)U(t, ti)
†. (6.9)

The quantity of interest here is the reduced density matrix of the system, which can be obtained by taking

the trace of ρU (t) over a basis of the bath

ρQ(t) = TrB [ρU (t)] (6.10)

Choosing some basis for the Hilbert space of the qubit, one can write ρQ(t) in its matrix form

ρQ(t) =

(
ρQ00(t) ρQ01(t)

ρQ10(t) ρQ11(t)

)
(6.11)

Since the evolution is quite arbitrary there are only a few general statements that one can make about ρQ(t).

Three of them are particularly useful in our discussion:

ρQ00(t), ρQ11(t) ≥ 0 (6.12)

ρQ00(t) + ρQ11(t) = 1 (6.13)∣∣∣ρQ10(t)
∣∣∣ ≤√ρQ00(t)ρQ11(t). (6.14)

The first two are well known. The third one can be derived from the positivity condition of the reduced

density matrix, which implies det(ρQ) ≥ 0. The positivity of the reduced density matrix itself can be derived

easily from the positivity of the universe density matrix. In App. A we give a proof for Eq. 6.14, which is

finer than the positivity condition and may be used for generalization of the argument in higher dimensions.

We shall use (6.12)-(6.14) in constructing the classical model in the next section.

6.3 Classical Model for Initial pure states

The classical model consists of a stochastic magnetic field, which acts on the qubit with Hamiltonian,

HCl(t) =
1

2
~B(t) · ~σ (6.15)

where ~B(t) = (Bx(t), By(t), Bz(t)) and ~σ = (σx, σy, σz) are Pauli matrices. Each Bj = (Bj(t) : ti ≤ t), for

j = x, y, z, is a random process in the standard sense [56]. That is, each Bj is a family of random variables

Bj(t) defined on a probability space (Ω,F , P ) where Ω is the sample space, F is a set of subsets of Ω, and P

is a probability measure on F . By definition, for each t fixed, the random variable Bj(t) is a function from

the sample space Ω to the real line: ω 7→ Bj(t, ω). Here ω are elements of Ω. For each ω fixed, ~B(t, ω) is a
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function of t, called the sample path (or noise history) corresponding to ω, so ω’s label the sample paths.

On each sample path ω, the qubit evolves from an initial state ρCl(ti) to state ρClω (t) at each t ≥ ti. The

initial state does not depend on ω, however at any later time the state depends on ω. The evolution operator

for sample path ω is

UClω = T exp[−i
∫ t

ti

HCl
ω (t)dt] (6.16)

where T denotes time ordering and

HCl
ω (t) =

1

2
~B(t, ω) · ~σ. (6.17)

The evolved state at time t can be written as

ρClω (t) = UClω ρCl(ti)U
Cl†
ω . (6.18)

In a classical noise model, the standard approach [47] is to consider the density matrix of the qubit at time

t as the expectation value of ρClω (t) over all sample paths,

ρCl(t) =
〈
ρClω (t)

〉
ω
, (6.19)

where 〈〉ω denotes the expectation function.

Our goal is to construct the random magnetic field process ~B(t) such that ρCl(t) = ρQ(t) when the two

models start from the same initial state ρCl(ti) = ρQ(ti).

To this end, we begin with introducing, on a probability space (Ω,F , P ), a random process Φ = (Φ(t) :

ti ≤ t) with the following properties:

1. For all ω ∈ Ω, Φ(ti, ω) = 0

2. For each ω fixed, Φ(t, ω) is differentiable with respect to t.

3. For each t fixed, the probability density function of the random variable Φ(t) is a Gaussian with mean

zero and variance σ2(t),

pΦ(φ, t) =
1√

2πσ2(t)
exp

[
− φ2

2σ2(t)

]
. (6.20)

4. The variance σ2(t) is
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σ2(t) = −2 lim
s→t

ln

∣∣∣ρQ10(s)
∣∣∣√

ρQ11(s)ρQ00(s)
(6.21)

Inequality (6.14) guarantees that the right hand side of Eq. 6.21 is nonnegative. Hence, it can be considered

as the variance of a Gaussian distribution. In the case that σ2(t) = 0 the Gaussian distribution becomes a

delta function. For the case σ2(t) =∞ the distribution Eq. 6.20 is interpreted as a uniform distribution over

the entire real line. App. B gives a construction of Φ(t, ω) which satisfies the above properties.

The meaning of probability density function pΦ(φ, t) for each t fixed is

pΦ(φ, t) = lim
ε→0

1

ε
P{ω : φ ≤ Φ(t, ω) ≤ φ+ ε} (6.22)

Knowing the probability density function, we can calculate the expectation of any function of Φ(t, ω) for

each t fixed. As we shall see, it is particularly useful to calculate 〈exp[±iΦ(t, ω)]〉ω:

〈
e±iΦ(t,ω)

〉
ω

=

∫ ∞
−∞

e±iφP{ω : φ ≤ Φ(t, ω) ≤ φ+ dφ}

=

∫ ∞
−∞

e±iφ p(φ, t) dφ = e−σ
2(t)/2

=

∣∣∣ρQ10(t)
∣∣∣√

ρQ11(t)ρQ00(t)
(6.23)

where the first integral above is a Lebesgue integral that is written in terms of an ordinary Reimann integral

on the second line by use of the probability density function.

We define for each ω fixed, functions a(t, ω), b(t, ω):

a(t, ω) =

√
ρQ00(t) (6.24)

b(t, ω) =

√
ρQ11(t) ei Arg[ρQ10(t)]eiΦ(t,ω) (6.25)

Here Arg is the argument function over complex numbers (e.g. z = |z|eiArg[z]). Note that a(t, ω) is a

deterministic function of t and is independent of sample path ω, however, b(t, ω) is a random function and

depends on the sample path. Nevertheless, on each sample path one always has the identity

|a(t, ω)|2 + |b(t, ω)|2 = ρQ00(t) + ρQ11(t) = 1 (6.26)

where we used Eq. Eq. 6.13 in the last equality.
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We are now ready to give the explicit form of ~B(t, ω) :

Bz(t, ω) = i[ȧ(t, ω) a(t, ω)∗ + ḃ(t, ω)∗ b(t, ω)] (6.27)

B+(t, ω) = −i[ȧ(t, ω)∗b(t, ω)− ḃ(t, ω)a(t, ω)∗] (6.28)
Bx(t, ω) = Re B+(t, ω) (6.29)
By(t, ω) = Im B+(t, ω) (6.30)

where dots denote derivatives with respect to t. Bx(t, ω) and By(t, ω) are by definition real-valued. It is

easy to show that Bz(t, ω) is also real-valued:

Bz(t, ω)−Bz(t, ω)∗ = i[ȧa∗ + ȧ∗ a+ ḃ∗ b+ ḃ b∗]

= i
∂

∂t
[aa∗ + bb∗] = 0 (6.31)

Here we omitted (t, ω) dependences of a(t, ω), b(t, ω) for brevity and used Eq. 6.26 in the last step. Eq.

Eq. 6.31 implies that Bz(t, ω) is real-valued. Thus (6.27)-(6.30) describe a well-defined stochastic magnetic

field. Substituting them in Eq. Eq. 6.17 one obtains the Hamiltonian HCl
ω (t) of the classical model on each

sample path.

We note that the classical Hamiltonian HCl
ω (t) depends on the total Hamiltonian of the quantum model

HU , the time elapsed from the beginning of the evolution and the initial state of the universe ρU (ti). This is

because a(t, ω) and b(t, ω), which constitute B(t, ω), depend on ρQ(t) which in turn depends on ρU (t). The

latter depends on HU , t and ρU (ti) (See Eqs. Eq. 6.7-Eq. 6.11). Thus HCl
ω (t) is not only a function of the

Hamiltonian of the quantum model, but also depends of the initial state of the universe.

6.4 Equivalence of the Quantum and Classical Models for initial

pure states

We assume that the qubit in the classical model starts from the same initial pure state as in the quantum

model,

ρCl(ti) = ρQ(ti) = |Ψi〉〈Ψi|. (6.32)

Since the initial state is a pure state, on each sample path ω the qubit evolves according to the time-dependent

Schrodinger equation
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i|Ψ̇(t, ω)〉 = HCl
ω (t)|Ψ(t, ω)〉 (6.33)

The solution of this Schrodinger equation on each sample path is

|Ψ(t, ω)〉 =

(
a(t, ω)
b(t, ω)

)
(6.34)

as we demonstrate below: Firstly, since Φ(ti, ω) = 0 for all sample paths, from definitions Eq. 6.24-Eq. 6.25

one can see that

|Ψ(ti, ω)〉 = |Ψi〉 (6.35)

for each ω, modulus an overall phase factor. Secondly, |Ψ(t, ω)〉 of Eq. Eq. 6.34 satisfies the Schrodinger

equation Eq. 6.33:

HCl
ω |Ψ(t, ω)〉 =

Bz B∗+

B+ −Bz


a
b


=

iȧ[a∗a+ b∗b]

iḃ[a∗a+ b∗b]


=

iȧ
iḃ

 = i|Ψ̇(t, ω)〉 (6.36)

where we used Eq. 6.26. Thus, |Ψ(t, ω)〉 is the solution of Eq. 6.33.

The density matrix of the qubit on each sample path is then

ρClω (t) = |Ψ(t, ω)〉〈Ψ(t, ω)| =
(
|a|2 ab∗

ba∗ |b|2
)

(6.37)

The density matrix of the classical model is the average of the density matrices of all sample paths

ρCl(t) =
〈
ρCl(t)

〉
ω

=

〈|a|2〉ω 〈ab∗〉ω
〈ba∗〉ω

〈
|b|2
〉
ω

 . (6.38)

Since |a(t, ω)|2 = ρQ00(t) and |b(t, ω)|2 = ρQ11(t) are deterministic functions,

〈
|a(t, ω)|2

〉
ω

= ρQ00(t) (6.39)〈
|b(t, ω)|2

〉
ω

= ρQ11(t). (6.40)
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For the off-diagonal term 〈ba∗〉ω we have

〈b(t, ω)a(t, ω)∗〉ω =
√
ρ00(t)ρ11(t)ei Arg[ρ10(t)]

〈
eiΦ(t,ω)

〉
ω

(6.41)

By use of Eq. Eq. 6.23, the above expression simplifies to

〈ba∗〉ω =
∣∣∣ρQ10(t)

∣∣∣ei Arg[ρQ10(t)] = ρQ10(t) (6.42)

Similarly, one obtains

〈ab∗〉ω =
∣∣∣ρQ10(t)

∣∣∣e−i Arg[ρQ10(t)] = ρQ01(t). (6.43)

Finally, by substituting Eq. 6.39, Eq. 6.40, Eq. 6.42, and Eq. 6.43 into Eq. 6.38 we obtain

ρCl(t) =

(
ρQ00(t) ρQ01(t)

ρQ10(t) ρQ11(t)

)
= ρQ(t) (6.44)

just as desired. Hence, the classical model simulates the quantum model exactly.

Summarizing, we built an stochastic magnetic field and hence a classical Hamiltonian for each history of

noise. Then we showed that the density matrix of the qubit in this classical model at each moment of time

is equal to the reduced density matrix of the quantum model at that time.

One can write Eq. Eq. 6.44 in a more familiar form

ρQ(t) =

∫ ∞
−∞

dφ p(φ, t) UClω |Ψi〉〈Ψi|UCl
†

ω (6.45)

where p(φ, t)dφ = P{ω : φ ≤ Φ(t, ω) ≤ φ + dφ} and UClω = UClω (t;HU ; ρU (ti)). This form demonstrates

that every quantum evolution of an open two dimensional system has a random unitary expansion (See Eq.

Eq. 6.2).

6.5 Quantum and Classical Models for Initial Mixed States

The simulation of mixed states is similar to the one for pure states, apart from a few modifications that

we mention below. For the quantum model, we relax conditions (3) and (4) of Sec. 6.2 for initial states

of the universe and the principle system (a single qubit), and let them to start in any arbitrary states.

That is the universe can start in a non-product state ρU (ti) and the system can start in a mixed state

ρQ(ti) = TrB [ρU (ti)]. The universe evolves according to the unitary evolution of Eq. Eq. 6.9. The relations

Eq. 6.12-Eq. 6.14 still hold since they do not depend on the initial states. Therefore we can use them in

building the classical model as before.
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The classical model follows the classical model of Sec. 6.3 verbatim, except we relax the first property

of the random phase Φ(t, ω): It does not start from zero for all sample paths, rather it obeys the Gaussian

distribution of Eq. Eq. 6.20 for all times including the initial time ti. Thus, Φ(t) is a differentiable random

process with Guassian distribution whose mean and variance are zero and σ2(t) of Eq. Eq. 6.21, respectively.

Since the initial state is a mixed state, σ(ti) 6= 0. We construct Φ(t, ω) as in App. B, Eq. Eq. B.1. Because

σ(ti) 6= 0, not all Φ(ti, ω) are equal to zero, as expected. The random magnetic field and the classical

Hamiltonian follows Eqs. Eq. 6.27-Eq. 6.30 and Eq. 6.17, as before.

To prove the equivalence of the classical model and the quantum model in the case of initial mixed state

we begin with constructing wave functions |Ψ(t, ω)〉 as in Eq. Eq. 6.34. By use of Eqs. Eq. 6.37-Eq. 6.44

one can see that the density matrix of the quantum system at anytime, including the initial time ti, can be

expanded in terms of these pure states:

ρQ(t) =

∫ ∞
−∞

dφ p(φ, t) |Ψ(t, ω)〉〈Ψ(t, ω)| (6.46)

One notes that wave functions |Ψ(t, ω)〉 now do not start from the same value at t = ti because for two

different sample paths ω, ω′, the initial value of the random phase can be different Φ(ti, ω) 6= Φ(ti, ω
′).

Nevertheless, |Ψ(t, ω)〉 satisfy Schrodinger equation Eq. 6.33 on each sample path, as shown in Eq. Eq. 6.36.

Therefore, one can obtain |Ψ(t, ω)〉 by evolving |Ψ(ti, ω)〉 through UClω :

|Ψ(t, ω)〉 = UClω |Ψ(ti, ω)〉 (6.47)

where UClω is defined in Eq. Eq. 6.16. Substituting Eq. 6.47 into Eq. Eq. 6.46 we obtain

ρQ(t) =

∫ ∞
−∞

dφ p(φ, t) UClω |Ψ(ti, ω)〉〈Ψ(ti, ω)|UCl
†

ω . (6.48)

At t = ti, UClω , which is a function of time, is the identity operator and Eq. Eq. 6.48 reduces to

ρQ(ti) =

∫ ∞
−∞

dφ p(φ, t) |Ψ(ti, ω)〉〈Ψ(ti, ω)|. (6.49)

Eqs. Eq. 6.48-Eq. 6.49 are the random unitary expansions we intended to find for arbitrary evolution of a

single qubit with initial mixed state (See Eqs. Eq. 6.3-Eq. 6.4). In the sense of these equations the classical

model and the quantum model are equivalent for initial mixed states as well.

53



6.6 Examples

We consider three examples for classical simulation of quantum models. In all the examples we assume that

the universe starts in the product state ρU (0) = |Ψi〉〈Ψi|⊗ρB(0) where |Ψi〉 = α|0〉+β|1〉 and ρB(0) will be

specified for each example. We determine σ2(t), a(t, ω) and b(t, ω) in each example. The stochastic magnetic

field B(t, ω) and the classical Hamiltonian HCl(t, ω) can then be constructed by Eqs. Eq. 6.27-Eq. 6.30,

Eq. 6.17 and the discussion of Sec. 6.3.

6.6.1 Quantum recurrence

Consider a spin-boson Hamiltonian at zero temperature

HU =
1

2
ω0σz + σz

N∑
n=1

(gna
†
n + g∗nan) +

N∑
n=1

ωna
†
nan (6.50)

where N is finite and the frequencies of the bath are commensurable (i.e. for each ωn, ωm there are integer

numbers pn , pm such that ωn/ωm = pn/pm). The bath is initially in its ground state. The evolution of the

reduced density matrix is then [52]

ρQ(t) =

(
|α|2 αβ∗ e−iω0t−Γ(t)

α∗β eiω0t−Γ(t) |β|2
)

(6.51)

where

Γ(t) =

N∑
n=1

4
|gn|2

ω2
n

(1− cosωnt) (6.52)

Since ωn’s are commensurable, Γ(t) is a periodic function. It starts at Γ(0) = 0 and returns to zero with some

period P . Between two nodes of function Γ(t), however, the value of the function can be large if N is large

or coupling constants gn are significant. For example, for |gn| = ωn = 2πn/P and N = 30 the average value

of the function between two nodes is Γ(t) ≈ 120. This gives rise to decoherence factor exp[−Γ(t)] ≈ 10−53

in the off diagonal elements of Eq. 6.51. This implies that for α = β = 1/
√

2 the system that started in a

pure state with entropy S[ρQ(0)] = Tr[ρQ(0) ln ρQ(0)] = 0 evolves to nearly the completely maxed state

ρQ(t) ≈
(

1
2 0
0 1

2

)
0� t� P (6.53)

with maximum possible entropy S[ρQ(t)] ≈ ln 2 for most of the times between, for example, t = 0 and t = T ,

and then the entropy of the system decreases and the system returns to the original pure state at t = T with

S[ρQ(P )] = 0.
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In terms of Bloch vector the above process describes a contraction of the Bloch sphere to almost a point

and then an expansion of it to its full size.

Although the entropy decreases in the intermediate stage in the above process, it can still be simulated

classically. The variance σ(t)2 defined in Eq. 6.21 is in this case

σ2(t) = 2 Γ(t) (6.54)

and the functions a(t, ω), b(t, ω) of Eqs. (6.24)-(6.25) are

a(t, ω) = |α|, b(t, ω) = |β| eiArg[α∗β] eiω0teiΦ(t,ω) (6.55)

6.6.2 Pure dephasing

One can also use Hamiltonian Eq. 6.50 as an example of phase damping in the limit N → ∞. Suppose

the bath is in thermal equilibrium at some nonzero temperature T and the spectral density function of the

bath is ohmic: J(ω) =
∑
n|gn|

2
δ(ω − ωn) = 4−1J0ωe

−ω/Λ, where J0 is a dimensionless constant and Λ is a

cut-off frequency. The evolution of the reduced density matrix can be described by Eq. Eq. 6.51 when one

substitutes for Γ(t) the following expression [52]

Γ(t) =

∫ ∞
0

dω
4J(ω)

ω2
(1− cosωt) coth(ω/2kBT )

=
J0

2
ln(1 + Λ2t2) + J0 ln

[
sinh(πkBTt)

πkBTt

]
(6.56)

Here Γ(t) is an increasing function of time, which gives rise to the increase of the entropy of the system over

time. There is no revival of coherence in this limit. The classical model is similar to the one in the previous

subsection and is described by Eqs. Eq. 6.54-Eq. 6.55 where Γ(t) is given by Eq. Eq. 6.56.

6.6.3 Amplitude damping

Finally, consider an amplitude damping channel [55]

ρ(t) =

(
1− (1− γ(t))(1− |α|2) αβ∗

√
1− γ(t)

α∗β
√

1− γ(t) |β|2(1− γ(t))

)
(6.57)

where the environment starts in the ground state and γ(t) is the probability of decay of the qubit from the

excited state to its ground state. For real physical processes, γ(t) can be replaced by (1− e−t/T1), where T1

is the longitudinal relaxation time constant.
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Amplitude damping channel is not a unital channel and a general classical simulation of it has not been

achieved in the literature, to our knowledge. The classical model of Sec. 6.3 gives such simulation by letting

the unitary operators of the classical model to depend on the initial state of the universe. The ingredients

of the model are as follows

a(t, ω) =
[
1− (1− γ(t))(1− |α|2)

]1/2
(6.58)

b(t, ω) = |β|
√

1− γ(t) eiArg[α∗β] eiΦ(t,ω) (6.59)

σ2(t) = ln
(
|α|−2 − (1− γ(t))(|α|−2 − 1)

)
. (6.60)

6.7 Conclusion

In conclusion, we have constructed, for arbitrary quantum noises, a classical simulation of single-qubit

models. We showed how entanglement between a qubit and an external bath can be modeled classically

without using the bath. This was made possible by allowing the unitary operators in the classical model to

depend on the initial state of the system and the bath.

We demonstrated that the reduced density matrices of quantum models that start from initial pure

states have random unitary expansions. For the quantum models that start from mixed states (and even

non-product state of the system and bath) we showed that the density matrices can be expressed as random

unitary expansion of some pure states.

The classical model was based on utilizing a differentiable random phase that has Gaussian distribution

with time-varying variance. We gave the explicit expression for the stochastic magnetic field of the classical

Hamiltonian. The field depends on the Hamiltonian of the quantum model, the time elapsed from the

beginning of the evolution, and the initial state of the system and bath in the quantum model.

Simulation of quantum dissipation such as amplitude damping had not been achieved in preceding classical

models, except for short times and high temperatures. Here, we offered exact results for a general simulation

of such process (amplitude damping), for arbitrary long times, as well as of quantum recurrence and pure

dephasing.

Entanglement with an external environment plays an important role in quantum dissipation and de-

coherence of open quantum systems, beyond doubt. However, the result of this paper and its preceding

counterparts show that the distinction between quantum and classical noises may not be apparent in sys-

tems with low dimensionality.
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Chapter 7

Oscillator bath simulation of spin bath

I demonstrate that the conventional Caldeira-Leggett oscillator bath model can simulate the effect of

Prokof’ev-Stamp spin bath model in the strong coupling limit of the spin bath. It has been previously

recognized that the spin bath model, in the strong coupling limit, has effects on quantum systems that are

strikingly different from what an oscillator bath can produce. I show, however, that by choosing appropriate

parameters for an oscillator bath, the bath can simulate the effect of the spin bath on systems.

7.1 Introduction

Quantum theory was originally developed in the context of isolated microscopic systems whose interactions

with their environments were negligible (e.g. the atoms in a beam). The theory was tested successfully in

this domain in the early twentieth century and some of its founding fathers, such as Niels Bohr, believed that

it would not be applicable in a larger domain where systems are strongly coupled to complex environments.

[57, 58]

Advancement of experimental techniques and equipments in recent decades, however, showed that quan-

tum theory does apply in a broader range. It can well describe behaviors of open quantum systems, as

large as a few microns, that are strongly coupled to their complex environments (e.g. the phase of the

Cooper pairs, in SQUIDs, that is coupled to phonons, radiation field, normal electrons, nuclear spins, etc. )

[1, 2, 7, 6, 26, 8, 24, 59].

In handling complex environments coupled to open quantum systems, the effects that the environments

exert on the principal systems are of the main interest, not the the behaviors of the environments in their

own right. As a result, theorists attempt to model complex environments by mapping them onto simpler

ones that are better tractable and have the same effects on the principal systems. Two of these simple models

that are now well established in the literature are the oscillator bath and spin bath models [1, 2, 57, 60, 53,

50, 3, 61, 62, 52, 22].
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The oscillator bath model consists of a set of non-interacting simple harmonic oscillators that are in-

dividually coupled to the principal system. Caldeira and Leggett [1, p. 439] showed that at absolute zero

temperature, any arbitrary environment whose each degree of freedom is only weakly perturbed, by the

principal system, can be mapped onto an oscillator bath.

It is important to note that although each degree of freedom of the environment is weakly perturbed in

this model, the principal system can be strongly perturbed by the overall effects of all the oscillators. We use

the term weak coupling limit to refer to the case that each degree of freedom of the environment is weakly

perturbed, and the term strong coupling limit when they are strongly perturbed. However, in both cases the

principal system can be weakly or strongly perturbed.

The oscillator bath model has been extensively used in the literature to model finite temperature envi-

ronments [2, 63, 64, 65, 66, 52, 22] . Such usage, e.g. to model phonons, electrons, magnons, spinons, holons,

etc. at low energies and temperatures, are permissible as long as it is supported by a detailed microscopic

theory (e.g. such as [23] for quasiparticles in Josephson junctions). However, in general there is no proof,

to our knowledge, that a quite arbitrary environment at a nonzero temperature can be mapped onto the

oscillator bath model, even in the weak coupling limit.

The spin bath model consists of microscopic spins that are independently coupled to the principal system.

In real scenarios these spins interact with each other, although weakly [3, 12]. The spin bath model can be

studied at both weak and strong coupling limits and there are practical cases associated to each of them

[60, 53, 50, 3, 61, 62, 12, 67, 68, 11, 13, 30, 69].

Caldeira, Neto and de Carvalho [51] demonstrated that effects of a spin bath model with non-interacting

spins and in the weak coupling limit can be obtained through the method that one uses for the oscillator

bath model if one modifies the spectral density function suitably [51]. In this sense they showed that the

noninteracting spin bath model maps onto the oscillator bath model in the weak coupling limit.

Weiss reached the same conclusion by use of the fluctuation-dissipation theorem for each degree of freedom

of the environment, which is permissible in the weak coupling limit (See Sec. 3.5 and 6.1 of [22]).

However, despite this success in mapping noninteracting spin bath onto oscillator bath in the weak

coupling limit, the scheme ccould not be extended trivially to the case of self interacting spin bath, mainly

due to the difficulty of calculating spin correlation function for each spin of the bath in a self interacting

bath. If one wishes to use the scheme of the oscillator bath model to solve such problems, one may need to

resort to the original mapping of Caldeira and Leggett [1] for zero temperature or, possibly, the mapping

of this Letter for finite temperatures. In either case, however, one observes that a straightforward relation
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between the spectral density function of the spin bath and that of the oscillator bath cannot be achieved.

Prokof’ev and Stamp presented an independent solution for the spin bath model in both weak and strong

coupling limits. For an interacting spin bath that is coupled to an effectively two-state system, in the

strong coupling limit, they found that under most conditions the principal system undergoes an incoherent

relaxation with relaxation rate that decreases by the increase of bias energy between the two states of the

principal system. They stated that this effect is in contrast to what an oscillator bath would have: ‘All of

this is in complete contrast to how inelastic tunneling works in the presence of an oscillator bath; there the

relaxation rate typically increases as one moves away from resonance’ (i.e. as the bias energy increases) [3].

They, hence, concluded that the spin bath model in the strong coupling limit has completely different effects

on principal systems and is not comparable with the oscillator bath model [60, 53, 50, 3, 61, 62].

In this Letter, we, however, show, as our second objective, that a Caldeira-Leggett oscillator bath can

simulate the effect of an spin bath in the strong coupling limit of the spin bath. We demonstrate that an

oscillator bath can produce an incoherent relaxation for the system that Prokof’ev and Stamp considered

with a relaxation rate that decreases as one moves away from resonance. By choosing an appropriate spectral

density function for the oscillator bath we obtain a relaxation rate that is even quantitatively comparable

with that of the spin bath model.

7.2 Simulation of Spin bath by oscillator bath in strong coupling

limit

In the second part of this Letter, we show how a Caldeira-Leggett oscillator bath can simulate the effect of

the Prokof’ev-Stamp spin bath that is in a strong coupling limit.

For two state principal system, the Prokof’ev-Stamp spin bath Hamiltonian is [3]

H = −∆

2

{
τ̂− cos

[
Φ− i

N∑
k=1

~αk · ~̂σk

]
+ H.c.

}

− ξ

2
τ̂z + τ̂z

N∑
k=1

~ω
‖
k · ~̂σk +

N∑
k=1

~ω⊥k · ~̂σk

+

N∑
k,k′=1

3∑
α,β=1

V αβkk′ σ̂
α
k σ̂

β
k′ (7.1)

where ~̂τ , ~̂σk are Pauli operators of the principal system and the kth spin of the spin bath, respectively, ∆
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is the tunnel splitting of the two state system, ξ is a bias energy, the last term is the self Hamiltonian of

the spin bath, and Φ, ~αk, ~ω
‖
k and ~ω⊥k are the parameters of the model that depend on the high energy

Hamiltonian of the principal system (See Ref. [3])

Hamiltonian Eq. 7.1 is the result of truncation of the high energy Hamiltonian of a single molecule

magnet (such as Fe8, Mn12, · · · ) and its surrounding nuclear spins, defects, etc. to a low energy effective

Hamiltonian which represents the single molecule magnet by a two level system [60, 53, 50, 3, 61, 62]. The

single molecule magnet forms a double well energy landscape with a very small tunnel splitting ∆ [12]. In

these problems, the latter is typically the smallest energy scale included in the Hamiltonian (For Fe8 for

example ∆ ∼ 0.1 µK, V αβk,k′ ∼ 1 µK, ξ ∼ 0.1 mK, and the width of the fluctuating field ξ0 ∼ 10 mK)

[60, 53, 50, 3, 61, 62, 12, 67, 68, 11, 69]. .

In the strong coupling limit, the solution of this model under most conditions is an incoherent relaxation

of the principal system with relaxation rate [60]

Γ(ξ) ∼ ∆2

ξ0
e
−
∣∣∣ ξξ0 ∣∣∣ (7.2)

where ξ0 is the width of resonance window over which the bias field of the bath fluctuates. ξ−1
0 is also roughly

equal to the time scale of this fluctuation [60, 3].

The simulator oscillator bath Hamiltonian of the above model is as follows

H = −∆

2
τ̂x −

ξ

2
τ̂z +

τ̂z
2

∑
i

ci x̂i

+
∑
i

p̂2
i

2mi
+

1

2
miω

2
i x̂

2
i (7.3)

This is the well known spin-boson Hamiltonian which couples simple harmonic oscillators to the principal

two state system. The effect of this oscillator bath is encapsulated in its temperature T and spectral density

function J(ω) [1, 2],

J(ω) =
π

2

∑
i

c2i
miωi

δ(ω − ωi). (7.4)

To simulate the effect of the spin bath we choose T = 0 and the spectral density function

J(ω) = 2πα ω e−ω/ξ0 (7.5)

with α = 1/2. This is only for the sake of simulation. We disclaim an accurate physical content for it in

this chapter. For a more accurate physical consideration please see chapter ??. Nevertheless, we notice that
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the memory time of the oscillator bath with the above spectral density function is of order ξ−1
0 , comparable

with the time of fluctuation of the bias field in the spin bath. The width of the fluctuation of the bias field

ξ̂B = 1
2

∑
i cix̂i is also of order ξ0 at T = 0.

To see the latter one notes that

〈ξ2
B〉 = 〈1

4

∑
i,j

cicjxixj〉

' 〈1
4

∑
i

c2ix
2
i 〉 &

1

4

∑
i

c2i
~

miωi
(7.6)

where we neglected the cross terms 〈xixj〉 and used the ground state value of 〈x2
i 〉. This is because at T = 0,

almost all of the oscillators are not excited by the construction of Caldeira-Leggett oscillator bath model [1].

Since we have set ~ = 1, the right hand side of Eq. 7.6 can be written in terms of the spectral density

function Eq. 7.4 as

1

4

∑
i

c2i
miωi

=
1

2π

∫ ∞
0

J(ω)dω (7.7)

Combining Eq. 7.6 and Eq. 7.7 we obtain,

1

2π

∫ ∞
0

J(ω)dω . ξ2
0 . (7.8)

The choice of Eq. Eq. 7.5 gives

1

2π

∫ ∞
0

J(ω)dω =
1

2
ξ2
0 . (7.9)

which is compatible with Eq. 7.8. Thus, the spectral density of Eq. 7.5 produces a fluctuation of the bias

field with the width of order ξ0.

To solve the model one notes that ∆ � ξ, so one can do perturbation theory in ∆. This method of

solving spin-boson Hamiltonian is known as the golden-rule and results in an incoherent relaxation of the

principal system at rate [2]

Γ(ξ) = ∆2

∫ ∞
0

dt cos(ξ t) cos(
Q1(t)

π
) e−Q2(t)/π (7.10)
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where

Q1(t) =

∫ ∞
0

J(ω)

ω2
sin(ωt)dω, (7.11)

Q2(t) =

∫ ∞
0

J(ω)

ω2
(1− cos(ωt)) dω (7.12)

at T = 0. By use of J(ω) of Eq. Eq. 7.5 in Eqs. Eq. 7.11-Eq. 7.12, one obtains

Q1(t) = 2 πα tan−1 ξ0t (7.13)

Q2(t) = α π ln(1 + ξ2
0t

2). (7.14)

Substituting these functions for α = 1/2 into Eq. Eq. 7.10 and taking the integral we find the relaxation

rate of the oscillator bath model

Γ(ξ) =
π∆2

2ξ0
e
−
∣∣∣ ξξ0 ∣∣∣ ∼ ∆2

ξ0
e
−
∣∣∣ ξξ0 ∣∣∣ (7.15)

This is comparable with the relaxation rate of the spin bath model Eq. 7.2. Therefore, we conclude that the

oscillator bath model can simulate the effect of the spin bath model in the strong coupling limit of the spin

bath. It can produce incoherent relaxation with a rate that decreases as the bias energy increases with the

same functionality, as in the spin bath model.

7.3 Conclusion

In conclusion, we have shown in this chapter that an oscillator bath can simulate the effect of the spin bath

in the strong coupling limit. This is the limit that has been thought to have strikingly different effects on

principal systems.
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Part III

SINGLE MOLECULE MAGNETS AND

THE THEORY OF SPIN BATH:

REVISITED
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Chapter 8

Introduction

At the end of the twentieth century a new class of magnetic materials was discovered: Molecular magnets.

Each molecule in these materials act like a giant spin when temperature is lowered sufficiently. The simplest

model describing most of these single molecule magnets (SMMs) has a biaxial spin Hamiltonian as follows

H = −DS2
z + E(S2

x − S2
y) (8.1)

where 0 < |E| < D and sign of E can be positive or negative. In Hamiltonian 8.1, for E > 0, the easy

axis is z, the medium axis is y, and the hard axis is x. This Hamiltonian is also called easy-plane-easy-axis

Hamiltonian, referring to its easy plane, here Y OZ, and its easy axis, x.

Fe8 and Mn12 are the most investigated SMMs [12]. Fe8 molecules with formula ([(tacn)6Fe8O2(OH)12]8+),

where tacn, pronounced "tack-en", is the macrocyclic ligand C6H12(NH)3, forms a crystal (Fig. 8.1). In

each molecule of Fe8 there are eight ions of Fe3+ each with spin 5/2. These ions strongly interact with each

other via intramolecule exchange interaction and below 400mK they are locked into a fixed structure and

act as a single giant spin with total spin of S = 10. The values of D, E, parameter Λ = 2|E|/(D − |E|),

Prokofev-Stamp action A0 = 2S/
√

Λ and Chudnovsky-Gunther action SE = S ln[(1 +
√
λ)/(1−

√
λ)], where

λ = D−E
D+E , for Fe8 along with three other SMMs are tabulated in Table 8.1. We shall discuss the relevance

of the last three quantities in the remaining of this chapter and next chapter.

Table 8.1: Parameters of biaxial Hamiltonian (8.1) of two major single molecule magnets Fe8, Mn12 along
with Mn4’s [12, 30]

SMM S D (K) |E| (K) Λ A0 SE

Fe8 10 0.295 0.056 0.47 29.1 23.4
Mn12 10 0.65 0 0 ∞ ∞

Mn4(S=9/2) 9/2 0.68 0.064 0.20 20.1 13.7
Mn4(S=8) 8 0.43 0.029 0.14 42.7 27.1

Similar argument apply for Mn12, Mn4(S=9/2) and Mn4(S=8). One can find their chemical formulas

in Refs. [12, 30]. Infinite actions for Mn12 should not be surprising becuase the Hamiltonian (to quadratic
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Figure 8.1: Fe8 molecular structure. Courtesy of Ref. [12]

order) commutes with Sz. To observe tunneling one usually applies magnetic field along the x or y axes [12].

For other three SMMs, one observes that the actions are finite but quite large. Thus, one can consider all of

them to be in the WKB limit.

In general, one may need to add fourth order (quartic) terms to Hamiltonian of Eq. 8.1 for a complete

study of SMMs. However, those terms are orders of magnitude smaller than the quadratic terms and in

many theoretical studies of SMMs are not neglected [70, 71, 72, 73, 74, 75, 76, 50, 53].

The SMMs in their crystals interact with other SMMs and with nuclear spins, defects, phonons, etc..

Prokofev, Stamp and compony (PS) developed a theory, called the theory of spin bath, to solve the problem of

the dynamics of giant spins in interaction with their surrounding microscopic spins [53, 61, 62, 77, 50, 60, 3].

The theory assumes a biaxial Hamiltonian for the giant spin (Eq. (1.3) of [50, p. 2903])

HPS =
1

S
[−K‖S2

z +K⊥S
2
y ] (8.2)

and adds to it interaction Hamiltonian of the giant spin with microscopic spins (spin bath) and also the self

Hamiltonian of the spin bath to form the total high energy Hamiltonian of the system plus environment

(the spin bath). Since in low temperatures only the ground state doublet of the giant spin is of the main

importance, PS truncate the resultant Hamiltonian to find the effective Hamiltonian of the two level system

and the spin bath.

The whole literature of the spin bath theory [53, 61, 62, 77, 60, 3] is based on the validity of this truncation
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scheme. Tupitsyn, Prokofev and Stamp (TPS) describe this truncation method in details in Ref. [50]. There

are two assumptions that they make for Hamiltonian of Eq. 8.2 and truncate the high energy Hamiltonian

assuming validity of these two:

S � 1 (8.3)

Λ = K⊥/K‖ � 1 (8.4)

[50, p. 2909]. The first limit (S � 1) is relevant to some SMMs, however, the most important SMMs, Fe8

and Mn12, for purpose of quantum tunneling do not satisfy the second one (Λ � 1). In fact Λ < 1 for a

large class of SMMs. For E < 0 one can write Eq. 8.1 in the form of Eq. 8.2 as follows,

H = −(D − |E|)S2
z + 2|E|S2

y (8.5)

where we added |E|S.S = |E|S(S + 1) to the Hamiltonian. From Eq. 8.5 one observes that

Λ =
2|E|

D − |E|
(8.6)

If E > 0 one can rotate the coordinate around the z-axis by 90 degrees to relabel x and y axis and obtain

the same result. The values of Λ for the four major SMMs are tabulated in the fourth column of Table

8.1. As one sees Λ < 1 for all four SMMs. Thus, the second assumption that TPS make exclude the

interesting examples of SMMs. To further insure this point we quote a passage from book [12] on Molecular

Nanomagnets. Gatteschi, Sessoli, and Villain on discussion of diabolic points write [12, p. 208]:

"For Hz = 0, the Hamiltonian (6.81) reduces to H = −D′S2
z + BS2

x + gµBHxSx. This Hamiltonian is

easy to study in the limit 0 < D′ � B (Weigert 1994). This case has perhaps no important experimental

applications, but it is interesting because the number of diabolic points for given values of B and D can be

determined by simple, analytical argument."

The limit 0 < D′ � B in the Hamiltonian in the quotation is the same as Λ � 1. As mentioned in the

quotation this limit has perhaps no important experimental applications. In the theory of the spin bath the

truncation problem is solved in the limit K⊥/K‖ � 1 "so that the tunneling amplitude is appreciable" [50, p.

2909]. However, experiments later showed that in fact tunnel splittings in molecular magnets are very small

[11]. For Fe8, for instance, the tunnel splitting in the ground state is ∆Fe8 = 0.1 µK ' 2 kHz, which is six

orders of magnitude smaller than a tunnel splitting in superconducting flux qubits ∆flux qubit ∼ 1 − 5 GHz

[24].
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The results of the theory of spin bath depend on the assumptions about S and Λ. This means that for

molecular magnets in the regime Λ < 1 one has to repeat the truncation procedure to obtain the effective

Hamiltonian. In chapter 9 we show that even the equation for the tunnel splitting of a bare giant spin in

the theory of spin bath depends on the assumption of Λ � 1, let alone the rest of the truncation. We

use coherent spin bath integral technique to obtain the tunnel splitting and compare our result with the

literature.

In chapter 10 we use the method of chapter 3 to truncate the biaxial Hamiltonian for a half odd integer

spin in the regime of Λ < 1 and compare our effective Hamiltonian with that of the theory of spin bath. We

show our results differ from those of the spin bath theory.

Finally, in chapter 11 we return to the regime of Λ � 1 of the spin bath theory and compare the effect

of topological decoherence terms, which are byproducts of truncation procedure in the theory of spin bath

[3], and transition to higher excited states. We find that topological decoherence terms are of the same

importance as the terms that cause transition to higher excited states, beyond the two lowest lying levels.

The transition terms are always truncated in the truncation procedure. We conclude that in a consistent

picture if one wants to include the decoherence terms in the effective Hamiltonian, one needs to include two

more states to the picture and instead of a two level system, truncate the high energy Hamiltonian to a four

level system.
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Chapter 9

Coherent state path integral calculation
of tunnel splitting in single molecule
magnets

9.1 Introduction

In this chapter we calculate tunnel splitting in single molecule magnets with biaxial Hamiltonians. We use

coherent path integral method for calculating the tunnel splitting. Van Hemmen and Süto Gunther1995

solved this problem by use of WKB method. Chudnovsky and Gunther[78] employed the path integral

technique and solved the equation of motion for the classical paths to calculate the tunnel splitting. We

instead use imaginary angles to find the splitting without solving the equation of motion for instantons.

This chapter can be regarded as a continuation of the work of Garg in Ref. [70] who employed imaginary

angles to find the values of quenching fields when a field along the hard axis is applied. Garg calculated the

imaginary part of the action for the instantons to study their topological effects. We calculate the real part

as well to find the tunnel splitting completely.

In handling the real part of the action we find that the two paths that Garg [70] considered as the classical

paths give rise to an unphysical result. There are two other paths that serve as the classical paths and one

should calculate their actions. This finding can help one to solve a more general problem of a giant spin in

presence of a magnetic field with component along the medium and hard axes.

9.2 Instanton calculation of tunnel splitting

The instanton method seems peculiar in the sense that it uses imaginary time. In some spin Hamiltonian

problems use of the instanton method can become even more strange as one has to utilize imaginary angles

as well. Is this method reliable in multidimensional problems such as the spin Hamiltonian problems? In this

chapter we calculate tunnel splitting in single molecule magnets with biaxial Hamiltonian and use imaginary

angles. We show that our result agree with WKB result and other path integral results which did not use

imaginary angles.
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To begin with, we orient the coordinate system such that the hard axis is along the z-axis, the easy axis

is along the x-axis and the medium axis is along y. The biaxial Hamiltonian can be written as

H = k1S
2
z + k2S

2
y (9.1)

where k1 > k2 > 0.

We use the coherent-state path integral method to find the splitting. It is ideal for this technique to not

orient the easy axis along the z-axis, because the coherent state along the south pole on the z-axis is not well

defined. The best choice is to orient the easy axis along the x-axis as we do here. Below we briefly review

the path integral technique.

For any Hamiltonian H, the operator e−HT can be expanded in terms of its energyeigen states |i〉 and

eigenvalues Ei as follows

e−HT =
∑
i

e−EiT |i〉〈i| (9.2)

Here T is a quantity with dimension of inverse energy and otherwise of no physical significance (it is unrelated

to inverse of actual temperature of the environment β). Consider two states |n1〉 and |n2〉. For the matrix

element

〈n1|e−HT |n2〉 =
∑
i

e−EiT 〈n1|i〉〈i|n2〉 (9.3)

the largest terms in the expansion in the limit of T → ∞ are the terms corresponding to the ground state

and possibly the first excited state, if the energy of the latter is close enough to the ground state energy.

Other terms are exponentially smaller. Thus,

〈n1|e−HT |n2〉 ' e−E0T 〈n1|0〉〈0|n2〉+ e−E1T 〈n1|1〉〈1|n2〉 (9.4)

If |n1〉 and |n2〉 are chosen such that, and |0〉 , |1〉 allow such choice,

〈n1|0〉〈0|n2〉 = −〈n1|1〉〈1|n2〉 (9.5)

then Eq. 9.4 becomes

〈n1|e−HT |n2〉 ' 2 e−(E0+E1)T/2 〈n1|0〉〈0|n2〉 sinh[
(E1 − E0)T

2
] (9.6)

Thus one can read off the energy splitting between the ground state and first excited state ∆E = E1 − E0,

if one knows how to calculate 〈n1|e−HT |n2〉. This is typically done by use of path integral technique. For

spin Hamiltonians, the relevant path integral is the coherent-state path integral and state |n1〉 and |n2〉 are
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chosen to be the coherent states. The matrix element is equal to

〈n1|e−HT |n2〉 =

∫ n2

n1

Dn(τ) e−SE [n(τ)] (9.7)

where the Euclidean action SE [n(τ)] is

SE [n(τ)] =

∫ T/2

−T/2
[−iS(1− cos θ)φ̇(τ) + E(n(τ))]dτ. (9.8)

Here the semiclassical energy E(n) is

E(n) = 〈n|H|n〉. (9.9)

The path integral of Eq. 9.7 is dominated by the paths which have the largest Re e−SE [n(τ)]. These paths

can be found by condition δSE [n(τ)] = 0 that lead to [70]

iS
dn

dτ
= −n× ∂E

∂n
(9.10)

dE

dn
= 0 (9.11)

The second equation implies that the semiclassical energy is conserved on the optimum action path (the

classical path or the instanton). This alone can be used to find the action on the classical path.

The semiclassical energy of Hamiltonian of Eq. 9.1 can be written as [70]

E(θ, φ) = K1 cos2 θ +K2 sin2 θ sin2 φ (9.12)

where K1 = S2k1, K2 = S2k2. E(θ, φ) is nonnegative. Thus, its minimum value 0 minimizes the action 9.8.

Therefore, the energy of the instanton is zero and the action on the classical path reduces to

SE [n(τ)] =

∫ T/2

−T/2
[−iS(1− cos θ)φ̇(τ)]dτ = −iS

∫ φ(T/2)

φ(−T/2)

(1− cos θ)dφ (9.13)

The simplicity of the problem of coherent state path integral in the above situation is that one does not have

to solve the classical equation and find the classical path in order to evaluate the above integral. If one can

find cos θ as a function of φ on the classical path, one can calculate the integral. This can be easily done by

setting

E(θ, φ) = 0 (9.14)

and solving for cos θ. The result is
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cos θ± =
±iλ1/2 sinφ

(1− λ sin2 φ)1/2
(9.15)

where

λ = K2/K1 = k2/k1 < 1. (9.16)

cos θ+ has a negative real part action ReSE and is rejected on the physical ground. cos θ− has a positive real

part action, and hence negative −ReSE in e−SE , with, as a result, a well behaved fluctuation determinant

and we accept it as the physical solution. Garg [70] used cos θ+ instead and did not include cos θ− paths.

In calculation of the imaginary part of the action this choice does not matter. But for the real part that we

do here it makes a difference. On physical ground we reject cos θ+ term. We will see that this choice give a

correct WKB result while the other one would give a different tunnel splitting.

Since the starting point and final point of the instanton are coherent state |n1〉 = |θ1, φ1〉 and |n2〉 =

|θ2, φ2〉 with real values of θi , φi , the instanton should start from and end at real-valued spherical angles.

The only real values that satisfy

E(θ, φ) = 0 (9.17)

are θ = π/2, φ = 0,±π. Therefore, the classical action integral becomes

SE = −iS
∫ ±π

0

(1− cos θ−)dφ (9.18)

where cos θ− is given by either (9.15).

The integral over cos θ− is

∫ ±π
0

−iλ1/2 sinφ

(1− λ sin2 φ)1/2
dφ = i ln

1−
√
λ

1 +
√
λ

(9.19)

Therefore the action becomes

SE = ∓iSπ − S ln
1−
√
λ

1 +
√
λ

(9.20)

The contributions of these two terms in the path integral are

D Te
−iπS+S ln 1−

√
λ

1+
√
λ +D Te

+iπS+S ln 1−
√
λ

1+
√
λ = 2DT cosπS

(
1−
√
λ

1 +
√
λ

)S
(9.21)

where D is the contribution of fluctuations around the classical path apart from the zero mode which gives

rise to T . These are contributions of single instantons. One can add contributions of multiple instantons to
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find an expression similar to Eq. 9.6 with sinh function and energy splitting equal to

∆E = 4D |cosπS|

(
1−
√
λ

1 +
√
λ

)S
= 4D |cosπS| e−S ln 1+

√
λ

1−
√
λ (9.22)

This completes our derivation of tunnel splitting using imaginary angles. We note that the cos θ+ path would

give rise to a an action S ln 1+
√
λ

1−
√
λ
which is positive and does not describe the minimal path.

9.3 Comparison with the literature

Let us now compare the above result with the literature. Chudnovsky and Gunther in Ref. [78, p. 662-Eq.

(14)] obtained a similar result, without the factor of cosπS, by solving the equation of motion for the classical

path and calculating the action of the classical path. Later, Loss, DiVincenzo, and Grinstein [79, p. 3233-Eq.

(6)] found the factor of cosπS by including the factor of iSφ̇ in the Euclidean Lagrangian. Van Hemmen

and Süto in [80, p. 27] compared their WKB result with the result of Chudnovsky and Gunther[78], similar

to Eq. 9.22, and showed that their results agree in the limit that is sensible to tunneling (One can work out

readily and observe that the limit they refer to, in the last paragraph of [80, p. 27], is Λ < 1 in the language

of TPS).

We can compare the tunnel splitting of Eq. 9.22 with the one that Tupitsyn, Prokofev and Stamp found

in Ref. [50] by writing TPS Hamiltonian

HTPS =
1

S
[−K‖S2

z +K⊥S
2
y ] (9.23)

in the form of Hamiltonian of Eq. 9.1. To this end, we add a constant K‖(S + 1) = 1
SK‖S.S to the above

Hamiltonian to get

HTPS =
1

S
[(K⊥ +K‖)S

2
y +K‖S

2
x] (9.24)

Now we relabel the axes by the cyclic rotation x→ y → z → x to obtain

HTPS =
1

S
[(K⊥ +K‖)S

2
z +K‖S

2
y ] (9.25)

This is the same as Hamiltonian of Eq. 9.1 if one sets

k1 =
K⊥ +K‖

S
(9.26)

k2 =
K‖

S
(9.27)
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For this system, according to Eq. 9.22 the tunnel splitting is

∆E = 4D |cosπS| exp

(
−S ln

1 +
√
K‖/(K⊥ +K‖)

1−
√
K‖/(K⊥ +K‖)

)
(9.28)

In the limit of Λ = K⊥/K‖ � 1, which is the limit in which TPS solved the truncation problem, the factor

in the square root becomes very small and one can approximate the above expression by

∆E = 4D |cosπS| exp
(
−2S

√
K‖/K⊥

)
= 4D |cosπS| exp

(
−2S/

√
Λ
)

(9.29)

Eq. 9.29 agrees with the result of TPS for a bare system with biaxial Hamiltonian (9.23) [50, p. 2909]. A

similar comparison is done by Chudnovsky in Ref. [80, p. 80-81].

In general, however, Eqs. 9.28 and 9.29 are not equivalent. They are only equivalent in the limit of

Λ� 1. This indicates that the TPS results in Ref. [50] for the truncation problem depend on the condition

Λ � 1. If this is not satisfied, which isn’t for many single molecule magnets, TPS effective Hamiltonian

can give an incorrect result. This is indeed the case as we show in the next chapter. In it I truncate the

biaxial Hamiltonian for half-odd-integer-spin in presence of a spin environment by use of method of chapter

3 and compare the result with that of the theory of spin bath. I show there is a strike difference between

the two results, suggesting that the theory of spin bath results are only valid in the limit of Λ � 1 that is

not relevant to many SMMs.

9.4 Conclusion

In conclusion, in this chapter we calculated tunnel splitting of a giant spin with a biaxial Hamiltonian by

the use of imaginary angles in coherent path integral technique. Our result match the literature that use

other methods in calculating the splitting. In the limit of Λ� 1 our result also match with the ones of the

spin bath theory. We conclude that the assumption of Λ � 1 plays a key role in the spin bath theory and

for molecular magnets whose Λ < 1 one needs to solve the problem of truncation and calculation of the spin

bath again. We do the truncation problem for a case of half integer spin in the next chapter.
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Chapter 10

Truncation in presence of environment

10.1 Introduction

In this chapter we use the results of chapter 3 to solve the truncation problem for half-odd-integer-spin

single molecule magnets in presence of a spin environment. We compare our results with those of Tupitsyn,

Prokofev and Stamp [50] and show that they differ by orders of magnitudes. We suspect that the difference

is because the TPS result is inapplicable in the limit of Λ < 1 that is relevant to molecular magnets.

Although tunneling of magnetization is theoretically predicted to be suppressed in half-odd-integer-spins

at zero magnetic field [79], experiments have always witnessed tunneling of magnetization in single-molecule

magnets (SMM) with half-odd-integer spins [30, 12]. It is now believed that the tunneling is due to interaction

of SMM with nuclear spins and other molecular spins in the sample [30]. One could use Prokofev-Stamp spin

bath theory to justify this effect, at least qualitatively, if the theory was formulated for the limits relevant

to real SMMs. However, as we discussed in the previous chapter this is not the case. Thus, one has to

truncate the high energy Hamiltonian of half-integer SMM and spin bath for right limits and from that find

the reason behind the tunneling. We shall do so in this chapter.

10.2 Truncation procedure

Suppose the giant spin has the biaxial Hamiltonian

HS = −DS2
z + E(S2

x − S2
y), (10.1)

which is a generic Hamiltonian for SMMs to second order. The spin may interact with the microscopic spins

of the spin bath through various types of interactions. Sum of all these interactions can be written in the

following from
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Hint =
∑
k; α,β

ωkαβSασ
k
β (10.2)

where α, β = x, y, z; σk is the spin operator of the spin k of the bath, and ωkαβ are coupling coefficients. The

self interaction of the microscopic spins also can be written in general as

Henv =
∑

kl; α,β

V klαβσ
k
ασ

l
β (10.3)

Thus, the total Hamiltonian of the system plus the bath is

H = HS +Hint +Henv (10.4)

To truncate this Hamiltonian we use the truncation method described in chapter 3. Since the ground state

of half-odd-integer-spin is degenerate, by Kramers theorem or destructive interference of instantons [79], we

use Eq. 3.11. Applying Eq. 3.11 and evaluating the submatrix elements of Sx, Sy, Sz numerically in the

basis of the ground state |0〉 and first excited state |1〉 we obtain

Heff =
∑
k; α,β

ωkαβcατ̂ασ
k
β +

∑
kl; α,β

V klαβσ
k
ασ

l
β (10.5)

where τα are Pauli matrices describing spin-1/2 operator of the two level system, as in chapter 3, and cα are

coefficients that are obtained numrically. The values of cα depend on parameters of Hamiltonian Eq. 10.1.

For example for Mn4 (S = 9/2), with S = 9/2, D = 0.68 K, and E = 0.064 K they are

cx = 7.7× 10−5, cy = 8.5× 10−5, cz = 4.49671 ≈ S (10.6)

cz is nearly S = 9/2. There is a way to understand this. For a degenerate state any linear combination of

eigenstates is an eigenstate. We chose to use the localized states in either wells of Hamiltonian of Eq. 10.1

as the basis of the truncation in our numerical calculation of Eq. 10.6. Thus,

|0〉 ≈ |S〉, (10.7)

|1〉 ≈ | − S〉 (10.8)

where states |m = ±S〉 on the right hand side of the above equations are eigenstates of Sz. In this basis the

submatrix elements of operator Sz are

(Sz){|0〉,|1〉} ≈
(
S 0
0 −S

)
= S τz (10.9)
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To understand values of cx and cy one should note that Eqs. (10.7-10.8) are only approximation and the

ground state doublet are not exactly | ± S〉,

|0〉 6= |S〉, (10.10)

|1〉 6= | − S〉, (10.11)

they rather have tails under the barrier. Therefore, one expects that the submatrix elements of Sx and

Sy to be nonzero, although they can be exponentially small similar to tunnel splitting ∆0 in absence of

interference effects of the instantons. The tunnel splitting ∆ in SMM problems can be written in general as

∆ = ∆0 cosπS [79]. For half-odd integer S, ∆ is zero. However, by varying magnetic field along the hard axis

one can find ∆0 approximately [70]. For Mn4 (S=9/2) I obtained ∆0 ∼ 3× 10−5 K, which is exponentially

small compared to D ∼ 0.7 K.

We finally note that the precision of our numerical calculations of cα is about 10−15, so nonzero values

of cx and cy are not results of round off error.

Now we can use the effective Hamiltonian Eq. 10.5 to find the reason of tunneling of half-odd-integer

giant spins.

10.3 Why do half-odd-integer single-molecule magnets tunnel?

Suppose the SMM starts in the localized state |0〉 ≈ |S〉. By definition of the Pauli matrices in chapter 3

τx|0〉 = |1〉 τy|1〉 = −i |0〉. (10.12)

Two terms in the effective Hamiltonian (10.5) have these operators

τx
∑
k; β

ωkxβcxσ
k
β τy

∑
k; β

ωkyβcyσ
k
β (10.13)

Thus, these terms cause the SMM to tunnel through the barrier and go to the other localized state |1〉. This

is the reason behind tunneling of half-odd-integer spin SMMs in experiments (For example Wernsdorfer et.

al. report tunneling of Mn4 (S=9/2) in [30]). In the process of tunneling, the microscopic spins involved, as

the mediator, can flip with the molecular spin or can stay fixed. In both cases the giant spin can flip. One

can also use the above argument and replace the microscopic spins by the molecular spins of other molecules

in the crystal to argue that molecular interactions can also contribute to the tunneling process.

Next we compare our results with those of Tupitsyn, Prokofev and Stamp [50]
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10.4 Comparison with Prokofev-Stamp spin bath theory

Tupitsyn, Prokofev and Stamp in Sec. 4 of [50, p.2916-2918] write their biaxial Hamiltonian 8.2 in units of

K⊥ as follows

H =
1

S
[−S2

z + ΛS2
y +

ω0

2
~S.~σ] (10.14)

plus a Zeeman term for external magnetic field that we set to zero since we are going to study the case of

zero external magnetic field here. Above, Λ = K⊥/K‖ as in chapter 8. For half-odd-integer giant spin TPS

obtain effective Hamiltonian [50, p. 2918]

Heff,TPS ≈ (−1)2S+1{2∆0 α τyσx − 2 ∆0
α√
Λ
τxσy}+

ω0

2
τzσz (10.15)

where α = πω0/2Ω0 and Ω0 = 2(K‖K⊥)1/2 [50, p. 2909]. In unit of K‖, one has Ω0 = 2
√

Λ. Ω0 is, according

to TPS [50, p. 2904], the bounce frequency of the instantons and is roughly equal to the energy gap between

the lowest doublet of states and the higher excited states.

To compare with TPS results we start with Hamiltonian of Eq. 10.14 and truncate it using the method

of chapter 3, as described in previous sections of this chapter. We obtain

Heff =
ω0

2

(
c′xτxσx + c′yτyσy + c′zτzσz

)
(10.16)

where for example for S = 9/2 and Λ = 0.2 the coefficients are

c′x = 1.9× 10−5 c′y = 1.7× 10−5 c′z = 0.9992 (10.17)

In comparison with Eq. 10.15, the coefficient of the term that involves τz matches pretty well. However,

in equation (10.16), τx is coupled to σx and τy is coupled to σy while in Eq. 10.15 one has τyσx and

τxσy couplings. If one associates this to different definitions of coordinate systems, one still sees that the

coefficients of these two terms do not match in Eqs. (10.15) and (10.16). The ratio of the coefficient of the

σx term to the coefficient of σy term in Eq. 10.15 is
√

Λ, which for Λ = 0.2 this number is
√

Λ = 0.44.

However, the ratio of the coefficient of the σx term to the coefficient of σy term in Eq. 10.15 is c′x/c′y = 1.11

that is larger than
√

Λ = 0.44. Even c′y/c
′
x = 0.89 is twice as large as

√
Λ. Thus, the coefficients do not

match.

The above discussion was irrespective to the value of ∆0. If one uses the formula of TPS to calculate ∆0

one observes strike difference between Eqs. (10.15) and (10.16). TPS state on page 2909 of [50] that
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|∆0| =
√

2 ReA0 /π Ω0 e
−A0 (10.18)

where

A0 = 2S(K‖/K⊥)1/2 (10.19)

Ω0 = 2(K‖K⊥)1/2. (10.20)

A0 is the action of instantons on the semiclassical trajectories, neglecting the interference effects. In units

of K‖, ∆0 becomes

|∆0| =
√

4S

πΛ1/2
2
√

Λ e−2S/Λ1/2

(10.21)

where the action became A0 = 2S/Λ1/2 as noted on page 2921 of [50]. The conclusion of TPS is that as

long as A0 > 1 their formulas are rather accurate [50, p. 2923]. For S = 9/2 and Λ = 0.2, A0 = 20.1. Thus,

one expects that Eq. 10.15 to match with truncation of Eq. 10.16, which is based on the standard method

of truncation described in chapter 3. However, from Eq. (10.21) one obtains for S = 9/2 and Λ = 0.2,

∆0 = 8.6× 10−9. (10.22)

which is very smaller than a bare tunneling one would expect for Mn4. Substituting this into Eq. 10.15

and using the definition of α = πω0/2Ω0 = 1.72 ω0 one obtains numerical coefficients of TPS effective

Hamiltonian

Heff,TPS ≈
ω0

2
{2.9× 10−8 τyσx − 6.5× 10−8τxσy + τzσz} (10.23)

The coefficients of the first two terms are three orders of magnitude smaller than those of Eq. 10.16. We

believe this much discrepancy is due to an error in the formula of TPS for ∆0 Eq. 10.18 (i.e. Eqs. (3.9-3.12)

of Ref. [50]). We shall discuss this point in more details in the next chapter.

10.5 Conclusion

In conclusion, in this chapter we truncated the high energy Hamiltonian of half-odd-integer-spin single

molecule magnets in interaction with their spin bath environment and showed that the interaction terms in

the truncated Hamiltonian cause the SMM to tunnel. We compared the result of our truncation with that

of the spin bath theory [50] and showed that our results differ from that.
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Chapter 11

Topological decoherence and transition
to higher excited states

11.1 Introduction

In this chapter we compare the probability amplitude of transition to higher excited states, beyond the

ground state doublet, and the probability amplitude of tunneling only due to the topological terms. We

restrict ourselves to the limit Λ� 1 that Tupitsyn, Prokofev and Stamp considered in Ref. [50]. The result

of this chapter is that these two probabilities are comparable for times t ≤ ∆0/
√
S. This time scale is quite

relevant to fast sweep experiments that are usually performed to measure the tunnel splitting, as we shall

discuss in this chapter.

The self Hamiltonian of giant spin , as in Ref. [50], is

HTPS =
1

S
[−K‖S2

z +K⊥S
2
y ] (11.1)

Two of the main assumptions of Ref. [50], in practice, for truncating this Hamiltonian when it interacts with

nuclear spins with couplings ωk are: (1) Λ = K⊥/K‖ � 1 [50, p. 2909]. (2) ωk/Ω0 � 1, where Ω0 is the

energy gap between the lowest doublet of states and higher excited states. The second assumption is made

to suppress transition to higher excited states. On this point TPS write: "In this paper we concentrate on

the weak coupling regime ωk/Ω0 � 1 when the idea of an effective Hamiltonian is meaningful (we recall that

by definition Heff is operating in the low-energy subspace, and that a consistent solution requires ωk � Ω0"

[50, pp. 2912-2913].

As a result of assumption (2), one would expect to not have terms of order ωk/Ω0 in the effective

Hamiltonian Heff of the two level system. However, one sees that all the topological terms that TPS

incorporated in Heff are of this order.

As a concrete example we shall study here the case of half-odd-integer-spin in interaction with one nuclear

spin and in absence of external magnetic field as in Sec. 4 of [50]. This case is ideal for our study because

one can isolate the effects of topological terms. Without these terms (if one considers the TPS truncation as
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a complete theory in the limit Λ � 1) the central spin cannot tunnel. It is only the topological terms that

allow the central spin to tunnel. TPS effective Hamiltonian for zero magnetic field, half-odd-integer spin in

interaction with one nuclear spin is (Eq. (4.13) on p. 2918 of [50], we set ψ ∝ Hy = 0. ψ is given in Eq.

(4.4) of the reference and is proportional to external magnetic field along the y-axis)

Heff = (−1)2S+1{2∆0α τy σx − 2∆0
α√
Λ
τx σy}+

ω0

2
τz σz (11.2)

where

α =
πω0

2Ω0
(11.3)

~σ and ~τ are Pauli operators of the nuclear spin and the central spin or the truncated giant spin. The localized

state of the giant spin in either wells are the eigenstates of τz. This Hamiltonian is the truncation of (Eq.

(4.1) on p. 2916 of Ref. [50])

H =
1

S

[
−S2

z + ΛS2
y +

ω0

2
~S.~σ
]
. (11.4)

The topological terms in the effective Hamiltonian (11.2) are the ones in the curly brackets. As one observes

they are at most of order of 2∆0α. ∆0 is the tunnel splitting that it would be there if the destructive

interference effects of the instantons did not exist. It is exponentially small. α is of order of ω0/Ω0 and is

assumed to be small by assumption (2) to suppress transitions to higher excited states. Including a term of

order 2∆0α in the effective Hamiltonian can be worrisome in two aspects: (a) It seems that the probability

amplitude for tunneling through the barrier due to topological terms is comparable to probability amplitude

of transition to higher excited state which one neglects to achieve the effective Hamiltonian (11.2). (b) The

tunneling time that the topological terms can cause tunneling is of order Ω0/ω0

∆0
which is much larger than

∆−1
0 and it is not obvious that it is relevant to experiments.

We study the first aspect quantitatively here. In the next section we calculate the transition probability

amplitude from ground state to second excited state of the Hamiltonian of Eq. 11.4.
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11.2 Transition probability of excitation to higher states beyond

low lying levels

Since the spin is half-odd-integer the ground state of the bare biaxial Hamiltonian is degenerate. One can

consider the ground states as the localized states in either wells

|0〉 ≈ |S〉 (11.5)

|1〉 ≈ | − S〉 (11.6)

The coupling term to the nuclear spin ω0 is much smaller than energy gap Ω0. Thus, one can treat the third

term in Eq. 11.4 as a perturbation on the first two terms when one is interested in the physics of the system

in one well and not the tunneling effect. Then one can use the perturbation theory to evaluate the transition

amplitude between the ground state and the second excited state

|2〉 ≈ |S − 1〉. (11.7)

An important observation to make is that the matrix element of Sx between state |0〉 and |2〉 is

〈2|Sx|0〉 ≈
√
S

2
(11.8)

This can be understood in virtue of Eqs. (11.5) and (11.7). I checked this numerically for exact ground state

|0〉 and second excited state |2〉 for different values of Λ. In fact the exact value of 〈2|Sx|0〉 is somewhat

larger than
√

S
2 and exact value of |〈2|Sy|0〉| is somewhat smaller than

√
S
2 (Eq. 11.8 is more general than

the case of half odd integer and applies to full integer spins with a similar biaxial Hamiltonian as well. One

can readily see this by noting that in this case |0〉 ≈ (|S〉+ | − S〉)/
√

2 and |2〉 ≈ (|S − 1〉+ | − S + 1〉)/
√

2.

We confirmed this point numerically too.).

If the central spin starts in the ground state at t = 0 and the nuclear spin in |+〉, the eigenstate of σx,

then the probability of being found in the second excited state according to perturbation theory (Sakurai

Sec. 5.6, Eq. (5.6.22) [81] is

|c(t)|2 =
∑
n=±

4
∣∣∣〈2, n| 1S ω0

2
~S.~σ|0,+〉

∣∣∣2
Ω2

0

sin2 Ω0t/2 ∼ (

√
2ω0√
SΩ0

)2 sin2 Ω0t/2 (11.9)

Ω0 is large compare to other energy scale in the problem. Thus, sin2 Ω0t/2 causes the probability to quickly

oscillate between zero and (
√

2ω0√
SΩ0

)2. Therefore, the probability amplitude oscillates between zero and
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cmax ∼
√

2ω0√
SΩ0

(11.10)

We wish to compare this probability amplitude with the probability amplitude of tunneling due to the

topological terms in 11.2. The latter can be regarded as a measure of the effect of topological terms. We

calculate this probability amplitude in the next section.

11.3 Effect of topological terms on the tunneling probability

Since the central system starts in a localized state, its initial state in the two level system picture is |τz = +1〉.

The probability amplitude of tunneling to the other localized state |τz = −1〉 is therefore

|d(t)|2 =
∑
n=±1

∣∣〈τz = −1, σx = n|e−iHefft|τz = +1, σx = +1〉
∣∣2. (11.11)

For times t � (2α∆0)−1 we can keep terms to linear order in 2α∆0t in the above expression to find the

order of magnitude estimate of |d(t)|:

|d(t)| ∼ 2α∆0t+O(
2α∆0

ω0
). (11.12)

11.4 Comparison between the two probabilities

Comparing Eqs. (11.10) and (11.12), we observe that the tunneling probability amplitude due to topological

terms are of order of probability amplitude of transition of the system to third excited state if

∆0t+O(
∆0

ω0
) ∼ 1√

S
. (11.13)

ω0 is usually orders of magnitude larger than ∆0. Thus, the largest of the two in the left hand side of the

above equation for time t ∼ 1/(∆0

√
S) is the first one. Therefore, the condition becomes

∆0t ∼
1√
S

(11.14)

This means that for

0 < t <
1

∆0

√
S

(11.15)

the transition probability to higher excited states is larger than the probability of tunneling due to topological

terms. In other words, over such time scales the topological terms are immaterial if one wishes to use the
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two level system (TLS) picture. Including them in the Hamiltonian is equivalent to breaking down the TLS

picture.

11.5 Relevance to experiments

The time range of condition 11.15 is in fact quite relevant to many experiments. For example in order

to measure tunnel splitting in SMMs, researchers conduct Landau Zener experiments [11, 30, 12]. The

measurements are done in the fast sweep rate where the probability of flipping of the central spin is less than

4% (See e.g. Ref. [30], Fig. 2 and Eq. (2)). We recall from chapter 5 that the probability of not flipping is

P = e−π∆2/2v (11.16)

Thus, in the fast sweep regime of such experiments

1− e−π∆/2v < 0.04. (11.17)

This condition implies that

v > 38∆2. (11.18)

We also recall from chapter 5 that the transition time in Landau Zener problems is of order t ∼ ∆/2v. Over

this time the tunneling can take place. For the fast sweep of inequality 11.18 this time is

t <
1

76∆
. (11.19)

Comparing inequalities (11.19) and (11.15), we come to the conclusion that for

S < 5776 (11.20)

the topological terms are as important as the transition terms to higher excited states in fast sweep experi-

ments. Most, if not all, the SMMs satisfy condition (11.20).

11.6 Conclusion

In conclusion, we showed in this chapter that even in the regime of Λ � 1, the topological terms have the

same significance as the transition terms to higher states for times t < 1/∆0

√
S . We discussed that the time

regime t < 1/∆0

√
S is relevant to sweep experiments that are conducted for measuring tunnel splitting in
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molecular magnets. As a result, a consistent truncation of half-odd-integer should incorporate all four low

lying levels simultaneously. The idea of the two level system is not accurate in this case.

For full integer spins since the gap is not quenched and gives rise to a term of order ∆ in the effective

Hamiltonian, which is much larger than topological terms of order α∆, one can utilize the two level system

picture. However, one can neglect topological terms because they are of order of transition terms to higher

excited states.
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Appendix A

A property of the reduced density matrix

In this appendix we prove the inequality Eq. 6.14, |ρ10| ≤
√
ρ00ρ11, for any 2× 2 reduced matrix.

Quite generally, the density matrix of the universe can be written in terms of a statistical mixture of

pure states of the universe, ρU =
∑
n pn|Ψn〉〈Ψn| where |Ψn〉 are pure states of the universe and pn are their

statistical probabilities (pn ≥ 0,
∑
n pn = 1.)

One can choose basis {|i, µ〉} for the universe which is a direct product of a basis of the system {|i〉},

where i = 0, 1, and a basis of the bath {|µ〉}. Then one can expand the pure states |Ψn〉 in terms of this

basis, |Ψn〉 =
∑
i,µ c

n
i,µ|i, µ〉 and rewrite the universe density matrix as

ρU =
∑

n;i,j;µ,ν

pn c
n
i,µ c

n∗

j,ν |i, µ〉〈j, ν| (A.1)

Now the reduced density matrix elements are as follows,

ρ00 =
∑
n;µ

pn
∣∣cn0,µ∣∣2 (A.2)

ρ11 =
∑
n;µ

pn
∣∣cn1,µ∣∣2 (A.3)

ρ10 =
∑
n;µ

pn c
n
1,µ c

n∗

0,µ. (A.4)

|ρ01| satisfies the following inequality

|ρ01| =

∣∣∣∣∣∑
n;µ

pn c
n
1,µ c

n∗

0,µ

∣∣∣∣∣ ≤∑
n;µ

pn
∣∣cn1,µ∣∣ ∣∣∣cn∗0,µ

∣∣∣. (A.5)

We define vectors ~Ri

~Ri = (
√
p0

∣∣c0i,0∣∣,√p0

∣∣c0i,1∣∣, · · · ;
√
p1

∣∣c1i,0∣∣,√p1

∣∣c1i,1∣∣, · · · ) (A.6)

Then we observe that ρ00 =
∣∣∣~R0

∣∣∣2, ρ11 =
∣∣∣~R1

∣∣∣2, and, from inequality Eq. A.5,
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|ρ01| ≤ ~R0. ~R1. (A.7)

Since, ~R0. ~R1 ≤
∣∣∣~R0

∣∣∣∣∣∣~R1

∣∣∣ we conclude that

|ρ10| ≤
√
ρ00ρ11. (A.8)

86



Appendix B

Construction of Φ(t, ω)

Φ is a random process with Gaussian distribution whose variance σ2(t) is time dependent. We demanded

that the process be differentiable with respect to time on each sample path in order to have a well-defined

magnetic field in Eqs. (6.27)-(6.30). Such a process exists, as long as σ2(t) is differentiable with respect to

time [82]. There are many constructions for Φ, depending on what correlation function one would like for

the random process. The simplest construction is the following [82]: Let Z be a standard Gaussian random

variable with mean zero and variance equal to unity. By definition of random variables, Z is a function from

a sample space Ω to the real line : ω 7→ Z(ω). Now let

Φ(t, ω) = σ(t)Z(ω), (B.1)

where σ(t) is taken from Eq. (6.21). Φ(t, ω) has the properties we wanted. For each t fixed, the distribution

of the process is Gaussian because the distribution of Z is Gaussian. Also the mean and variance are

〈Φ(t, ω)〉ω = 〈σ(t)Z(ω)〉ω = σ(t) 〈Z(ω)〉ω = 0 (B.2)〈
Φ(t, ω)2

〉
ω

= σ2(t)
〈
Z(ω)2

〉
ω

= σ2(t) (B.3)

as expected. For each ω fixed, Φ(t, ω) is differentiable with respect to t since σ(t) is so. Finally, Φ(ti, ω) = 0

for initial pure states because σ(ti) = 0 for such states. In this case the right hand side of Eq. (6.21) is

zero. For mixed states the right hand side of Eq. (6.21) is nonzero and σ(ti) 6= 0. However, Φ(ti, ω) is not

required in the classical model of Sec. 6.5 to be zero either. Thus the random phase Eq. B.1 works well for

this case, too.
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