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ABSTRACT 
 

Low-energy trajectories are a growing subset of trajectory design, particularly in the three-body 

space. These trajectories use the inherent stability and instability of certain orbits as a means of 

fuel efficient transfers. Traditionally, work on these types of trajectories has taken a very “hands 

on” approach from the astrodynamicist, i.e. requiring intuition and fine tweaking of parameters. 

This work details preliminary efforts to incorporate resonance orbits, their invariant manifolds, 

and associated families into an automated global optimization tool in order to create solutions of 

optimal impulsive spacecraft trajectories in multi-body environments. Previous work using this 

tool has shown the ability to use other key dynamical structures of the circular restricted three-

body problem (e.g. Euler-Lagrange point orbits and their invariant manifolds) within the same 

automated global optimization framework to produce low-energy trajectory solutions. This work 

outlines necessary dynamical systems theory. Described next is how to generate resonance orbits 

of the first species by providing examples of the Earth-Moon and Jupiter-Europa systems. Finally 

shown is how these structures are used within the optimization framework. Several non-trivial 

impulsive trajectory problems from low-Earth to resonance orbits, resonance to resonance 

transfers, and resonance to Euler-Lagrange point orbit transfers are shown with Pareto front 

solutions.
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Chapter 1 INTRODUCTION 

Spacecraft are embarking on increasingly complex missions to better understand the universe. If a 

mission can be successful with low amounts of fuel then the satellite gains more volume for 

scientific instruments. The pursuit to lower fuel requirements has spawned two main categories of 

mission design that are not mutually exclusive: low-thrust and low-energy mission design. Low-

thrust mission design utilizes highly efficient engines, such as ion or hall thrusters, which provide 

much lower thrust than traditional chemical rockets. Low-thrust engines can sustain the thrust 

output for much longer periods of time than chemical rockets and require less fuel to do so. Low-

energy mission design uses the inherent dynamics of the system to find naturally occurring 

trajectories to move about the system rather than onboard propulsion. Current low-energy missions 

are studied in a simplified Three-Body Problem (3BP), i.e. the motion of a spacecraft in the 

presence of two gravitational bodies. Low-energy missions use unique orbits such as resonance 

orbits. 

A resonance orbit is a type of orbit relating two periodic trajectories. In the Three-Body Problem 

(3BP), these resonance orbits exist between the third body and the second body. If the third body 

is in resonance with the second body, then the periods are approximately related by a positive 

rational number which can be represented as an integer ratio. This will be explained in more detail 

in chapters 2 and 4.  

Resonance orbits have shown significant potential for mission trajectory design. The TESS 

mission at NASA, to be launched later in 2017, uses a 2:1 resonance orbit in the Earth-Moon 

system to achieve its strict science requirements [1]. For the TESS mission, stable resonance orbits 

were better suited for the long duration low-energy mission when compared to other popular 

observation posts such as Lyapunov orbits about Euler-Lagrange points (see 2.3.2), which would 

have required additional station-keeping maneuvers. Resonance orbits proved to be well suited for 

the IBEX mission as well. IBEX is currently in a 3:1 resonance with the Moon and simulations 

done at NASA Goddard show stability over the next twenty years [2]. Resonance orbits are being 

used more frequently for their unique characteristics. It is important to build mission design tools 

that incorporate their dynamical structure so that they can be utilized in future mission analysis.  
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1.1 Background 

Dynamical systems theory is a field of mathematics which focuses on understanding the behavior 

of complex systems by studying the dynamics, which are often modeled by differential equations. 

Dynamical structures are defined as groups of solutions within the dynamical system that have 

similar properties or characteristics. Historically, dynamical systems theory was connected to 

orbital mechanics when Newton began modeling the solar system using his equation for gravity in 

the late 1600s [3]. Euler and Lagrange made significant progress with the three-body problem by 

using a rotating coordinate system [4] [5]. They found areas of equilibrium, or particular solutions, 

to the system. Hill advanced their work further by defining infeasible solution regions [6]. Poincare 

defined periodicity and developed maps to determine if an orbit was periodic [7]. During this 

research Poincare noticed the sensitivity to initial conditions and regions of instability. Poincare 

maps would later become a standard technique in classifying chaotic systems [8]. This field grew 

and developed with several mathematicians but in the 1960s Conley began applying the techniques 

to find low-energy transfers to the Moon [9]. Low-energy transfers continued to be analyzed 

throughout the late 20th century by many astrodynamicists including Howell, Lo, and Barden. 

Howell published several papers studying low-energy missions [10] [11] [12] and worked with Lo 

and Barden to design the GENESIS mission, the first flown mission to use low-energy trajectories 

[13]. Koon, Lo, Marsden, and Ross detailed mission design using low-energy trajectories into a 

staple tome of all the work done up to that point [14]. This work was complemented by a 

comprehensive text by Anderson and Parker [15]. Since then, use of the dynamical structures for 

low-energy trajectories has grown and been used on more missions such as the Solar Heliospheric 

Observatory (SOHO) [16] and Advanced Composition Explorer (ACE) [17], and will soon be used 

for the James Webb space telescope [18].  

Schroer and Ott were the first to show that unstable resonance orbits could be used in low-energy 

trajectories by applying resonance manifolds to Earth-Moon transfers [19]. Anderson and Lo used 

resonance manifolds in ballistic, impulsive, and low-thrust trajectories [20] [21] [22]. They also 

had a series of papers which demonstrated that low-thrust transfers between resonance orbits tend 

to shadow the instantaneous unstable/stable manifolds of the family of resonance orbits used in 

transfer [23] [24] [21]. Vaquero and Howell studied resonance orbits and their manifolds on a 

Poincare surface of section [25]. They also showed that resonance orbits could be used for various 



 

3 

 

transfers [26] as well as connected with manifolds from Lyapunov orbits [27]. Lantoine showed 

that resonance manifolds could be used to find a locally optimal trajectory for moon tour transfers 

[28].  

The above work required a human-in-the-loop approach to trajectory design. Picking patch points 

was often done by an astrodynamicist. For example, Vaquero’s solutions relied heavily on her 

intuition of the dynamics when connecting Lyapunov and resonance manifolds. Recently, 

engineers at NASA Goddard Space Flight Center (GSFC) have developed a software tool to aid 

astrodynamicists in trajectory design by means of a hybrid optimal control (HOC) scheme for 

interplanetary missions. The Evolutionary Mission Trajectory Generator (EMTG) can generate 

interplanetary trajectories that are at least locally optimal in a fast and robust fashion [29].  

The University of Illinois at Urbana-Champaign is developing a similar tool to that of EMTG to 

generate low-energy trajectories in an automated fashion by means of HOC for the three-body 

regime. This tool, called Dynamically Leveraged Automated N-body Trajectory Optimization 

(DyLAN), builds off a long history of stochastic optimization techniques applied to astrodynamics 

problems at UIUC [30] [31] [32] [33] [34]. The goal of the tool is to encode the intuitive methods 

of trajectory design that have been mentioned above to aid an astrodynamicist rather than require 

a human in-the-loop. DyLAN connects invariant manifolds from Lyapunov orbits (see 2.3.2), to 

transfer from a low Earth parking orbit to various Euler-Lagrange points in both the Earth-Moon 

and Sun-Earth system. Previous work on the tool has added capabilities for variable amounts of 

phases [35] and a grid technique to detect Poincare intersections autonomously [36] [37].  

The purpose of this thesis is to add resonance orbits to the tool developed at UIUC and expand the 

tool’s capabilities by encoding the historical intuition of resonance orbits developed over the past 

two decades. In doing this, the tool can use resonance dynamical structure to aid in the locally-

optimal, autonomous, and rapid generation of low-energy trajectories in the three-body problem.  

1.2 Thesis Overview 

Chapter 2 describes the dynamical system that is used to model the trajectories throughout this 

thesis. Specifically, Chapter 2 begins with the n-body problem and through coordinate 

transformations and simplifying assumptions derives the circular restricted three-body problem. 
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From there, the chapter defines periodic orbits and builds a background in orbit stability and 

invariant manifold theory. Chapter 3 details the numeric techniques such as differential correction, 

multiple shooting algorithms, golden section root finding, and continuation schemes. These 

methods are used to generate periodic orbits and invariant manifolds in a robust fashion in the 

following chapters.  

Building on the foundation built in Chapters 2 and 3, resonance orbits, their definition, the 

challenges modeling them, and behavioral characteristics such as their stability are discussed in 

depth in Chapter 4. The chapter focuses on generating resonance orbits in a robust and automatic 

way such that the orbits can be used in a hybrid optimal controller.  

Chapter 5 outlines the HOC framework and software tool (DyLAN) that has been developed at the 

University of Illinois at Urbana-Champaign. This includes fundamental definitions of nonlinear 

programming (NLP), genetic algorithms, and the motivation for linking the two together. Chapter 

6 combines this software tool with the techniques built in Chapter 4 to solve a few sample missions 

which demonstrate the capabilities of DyLAN by including resonance orbits. Chapter 7 

summarizes the results of these sample missions and discusses the capabilities and limitations of 

this modified tool. The chapter concludes with a discussion on potential future research efforts that 

could expand the capabilities of DyLAN. 
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Chapter 2 DYNAMICAL SYSTEM 

2.1 Coordinate Frames 

It is often desirable to look at a particular orbit or trajectory in multiple reference frames. Each 

frame provides different insight to the spacecraft’s motion. For the purposes of this discussion, 

two main coordinate frames need to be identified. Figure 2.1 shows the inertial frame in Cartesian 

coordinates and the circular-restricted three-body (CR3B) frame. The inertial frame is denoted by 

the nomenclature (𝑋, 𝑌, 𝑍) and the CR3B frame is labeled as (𝑥, 𝑦, 𝑧), with 𝑍 and 𝑧 being co-axial 

and pointing out of the page in the positive direction. 

 

Figure 2.1 Point P with respect to both the CR3B frame and the Cartesian frame.  

Section 2.1.1 details the transformation from one frame to the other. The tables of values presented 

later in this thesis will be in the CR3B frame. 

2.1.1 Coordinate Transformation: Inertial to CR3B Frame 

In the case of transforming from the inertial frame to the circular restricted three-body frame this 

transformation includes a rotation and a translation. The rotation is about the z-axis, which is 



 

6 

 

common between both frames, and the translation is a shift to the barycenter. The barycenter is 

defined as the center of mass of the system with the third body being considered massless. The 

translation is only in the 𝑥-direction defined as: 

 
[

𝑥𝐵
𝑦𝐵
𝑧𝐵
] =  [

𝑋 − 𝜇
𝑌
𝑍

] Eq.  1 

Where 𝜇 is the ratio of the secondary mass to the total mass defined as: 

 𝜇 =  
𝑚𝑠

𝑚𝑝 + 𝑚𝑠
 Eq.  2 

Where the inertial states have been nondimensionalized. Let (𝑥𝐵, 𝑦𝐵, 𝑧𝐵) denote the axes in the 

barycenter frame. The relationship between the barycenter and rotating frames is the following: 

 
[

𝑥𝐵
𝑦𝐵
𝑧𝐵
] =  𝑅𝐵

𝑅 [
𝑥
𝑦
𝑧
] Eq.  3 

 

 

Figure 2.2 Rotating frame relative to the barycenter frame. 

Where 𝑅𝐵
𝑅 is the rotation matrix about the 𝑧-axis. The angle between the axis grows at a constant 

rate because the angular velocity in the CR3B frame is constant, and in the nondimensional case 
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unity. Therefore, the angle between the two frames is simply 𝜃 = 𝑡 − 𝑡0. With this simplification, 

the rotation matrix becomes the following expression: 

 
𝑅𝐵
𝑅 = [

cos (𝑡 − 𝑡0) −𝑠𝑖𝑛(𝑡 − 𝑡0) 0
𝑠𝑖𝑛(𝑡 − 𝑡0) 𝑐𝑜𝑠(𝑡 − 𝑡0) 0

0 0 1

] Eq.  4 

Note, for the spatial case the rotation matrix omits the third row and third column. This rotation is 

insufficient to transform a state because it does not account for the velocities of the spacecraft. The 

transformation of a state is as follows: 

 

[
 
 
 
 
 
𝑥𝐵
𝑦𝐵
𝑧𝐵
𝑥̇𝐵
𝑦̇𝐵
𝑧̇𝐵]
 
 
 
 
 

=  [
𝑅𝐵
𝑅 03𝑥3
𝑅̇𝐵
𝑅 𝑅𝐵

𝑅 ]

[
 
 
 
 
 
𝑥
𝑦
𝑧
𝑥̇
𝑦̇
𝑧̇]
 
 
 
 
 

 Eq.  5 

Where 𝑅̇𝐵
𝑅 is the time derivative of the rotation matrix expressed as: 

 
𝑅̇ 𝐵
𝑅 = [

−sin (𝑡 − 𝑡0) −𝑐𝑜𝑠(𝑡 − 𝑡0) 0
𝑐𝑜𝑠(𝑡 − 𝑡0) −𝑠𝑖𝑛(𝑡 − 𝑡0) 0

0 0 0

] Eq.  6 

It is important to note that the inverse of the 6x6 state transformation matrix yields the inverse 

transformation.  

2.2 The General n-Body Problem 

The objective of the 𝑛-Body problem is to determine the states of all the bodies of a system as a 

function of time given their initial position, velocity, and masses [38] [39]. Assuming all bodies 

can be approximated as point masses, the equations of motion (EOM) for all the bodies can be 

modeled using Newtonian gravitation. 

 
𝑚𝑖𝑹̈𝑖 = 𝐺∑

𝑚𝑖𝑚𝑗

𝑟𝑖,𝑗
𝒓𝑖,𝑗

𝑛

𝑗=1

      (𝑗 ≠ 𝑖) Eq.  7 

Where 𝒓𝑖,𝑗 is the radial vector between the 𝑖th and 𝑗th masses. This results in 6𝑛 EOMs with only 

ten constants of integration from conservation of center of mass, angular momentum, and energy. 

This indicates that no analytical solution exists beyond the two-body problem (which can be solved 

as two one-body problems). Therefore, Eq.  7 cannot be solved in the form of an analytical solution. 
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However, it has been shown that lower fidelity trajectories developed in the three and four-body 

frame (for systems where the CR3BP assumptions are weak) hold well in the 𝑛-body simulators 

with only minor corrections to maintain continuity [40]. Therefore, this analysis will proceed in 

the three-body frame to be able to study the dynamics of the spacecraft in a more controlled 

fashion. 

2.3 The Circular Restricted Three-Body Problem 

In general, the three-body problem has the same complexity issues as the 𝑛-Body problem. 

 
𝑚3

𝑑2𝒓3
𝑑𝑡2

= −𝐺
𝑚3𝑚1

𝑟13
3 𝒓13 − 𝐺

𝑚3𝑚2

𝑟23
3 𝒓23 Eq.  8 

With 18 EOMs and only ten integrals, thus Eq. 8 has no closed-form or analytic solution. The 

circular restricted three-body problem (CR3BP) has underlying assumptions that simplify the 

equations of motion to just that of the third body, in this case the spacecraft. It is assumed that the 

secondary body and primary body orbit around the barycenter in circular orbits, that all three 

masses can be approximated as point masses, and that the third body’s mass is very small compared 

to the primary and secondary such that its motion does not alter the path of the first two. With 

these assumptions, the system can be translated to a rotating frame about the barycenter of the 

system at a constant angular velocity which is equal to the rate the first two bodies revolve around 

the barycenter. Figure 2.3 shows the three bodies in this frame. 
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Figure 2.3 The three-body problem in the CR3B frame. 

To further simplify, the system has been nondimensionalized such that the distance between the 

primary and secondary is unity and the period about the barycenter is 2𝜋. Similarly, the position 

and velocity of the third body has been nondimensionalized by: 

 𝑟∗ =
𝑟𝑑𝑖𝑚
𝑎𝑠

 

Eq.  9 
 𝑣∗ = 

𝑣𝑑𝑖𝑚
𝑎𝑠
𝑇𝑠
⁄

 

Where 𝑎𝑠 is the dimensionalized semi-major axis of the secondary and Ts is the dimensionalized 

period of the secondary body. Thus, the positions for the primary and secondary masses are 

(−𝜇, 0, 0) and (1 − 𝜇, 0, 0) respectively.  

2.3.1 Equations of Motion 

Since the primary and secondary bodies remain fixed in the CR3BP framework the only equations 

of motion are that for the third body. To derive the EOM the relative acceleration formula of the 

spacecraft is used: 

 𝑟̈ = 𝑎𝐺 + 𝜔̇×𝑟 + 𝜔×(𝜔×𝑟) + 2𝜔×𝑣𝑟𝑒𝑙 + 𝑎𝑟𝑒𝑙 Eq.  10 
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Where 𝑎𝐺 is the acceleration of the barycenter which is zero and 𝜔 is the radial velocity of the 

rotating frame 𝜔 = √
𝐺𝑚1

𝑟12
3  but is normalized to unity. Note 𝑖̂, 𝑗̂, 𝑘̂ align with the 𝑥, 𝑦, 𝑧 axis in the 

CR3B frame.  

 𝑟 = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 𝑘̂  

 𝑟̇ = 𝑥̇ 𝑖̂ + 𝑦̇ 𝑗̂ + 𝑧̇ 𝑘̂ Eq.  11 

 𝑟̈ = 𝑥̈ 𝑖̂ + 𝑦̈ 𝑗̂ + 𝑧̈ 𝑘̂  

Substituting Eq. 11 into Eq. 10 and performing the mathematical operations yields: 

 𝑟̈ = (𝑥̈ − 2𝜔𝑦̇ − 𝜔2𝑥)𝑖̂ + (𝑦̈ + 2𝜔𝑥̇ − 𝜔2𝑦)𝑗̂ + 𝑧̈𝑘̂ Eq.  12 

Summing the forces acting on the third body yields: 

 
𝑚𝑟̈ =  −

(1 − 𝜇)𝑚

𝑟12
3 𝒓13 −

𝜇𝑚

𝑟23
3 𝒓23 Eq.  13 

Where 𝑟13 and 𝑟23 are defined as: 

 𝑟13 = (𝑥 + 𝜇)𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂ 
Eq.  14 

 𝑟23 = (𝑥 − 1 +𝑚𝑢)𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂ 

Substituting Eq. 14 into Eq. 13 for the radial vectors, substituting unity for the radial velocity, and 

separating terms yields the equations of motion for the spacecraft:  

 
𝑥̈ = 2𝑦̇ + 𝑥 − 

(𝑥 + 𝜇)(1 − 𝜇)

𝑟133
− 
𝜇(𝑥 − 1 + 𝜇)

𝑟233
  

 
𝑦̈ =  −2𝑥̇ + 𝑦 −

(1 − 𝜇)𝑦

𝑟123
−
𝜇𝑦

𝑟233
 Eq.  15 

 
𝑧̈ =  −

(1 − 𝜇)𝑧

𝑟133
−
𝜇𝑧

𝑟233
  

This is the generalized three-dimensional (or “spatial”) case. The planar, or two-dimensional, 

circular restricted three-body problem (PCR3BP) adds an additional layer of simplification by 

removing motion in the 𝑧-plane while still being able to show the unique behavior of the three-

body system. For numerical simplicity, the focus of this thesis will be the analysis of the PCR3BP 

and all the plots and state information will be represented in normalized units.  
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The PCR3BP is a Hamiltonian system and has an integral of motion called the Jacobi integral: 

 
𝐶(𝜇, 𝑥) = −

1

2
(𝑥2 + 𝑦2) +

1

2
(𝑥̇2 + 𝑦̇2) −

(1 − 𝜇)

𝑟13
−
𝜇

𝑟23
 Eq.  16 

2.3.2 Equilibrium Points 

Euler and Lagrange discovered five points in the CR3B system that are in equilibrium. They can 

be found by defining a potential function: 

 
𝑈 =

𝜔2

2
(𝑥2 + 𝑦2) +

1 − 𝜇

𝑟13
+
𝜇

𝑟23
 Eq.  17 

And solving for the case where 
𝜕𝑈

𝜕𝑥
=

𝜕𝑈

𝜕𝑦
=

𝜕𝑈

𝜕𝑧
= 0. Essentially, these points exist where centripetal 

acceleration and gravitational acceleration cancel. This can be seen in detail in Prussing and 

Conway [39]. The result yields in three collinear points along the 𝑥-axis and two points that each 

make an equilateral triangle with the primary and secondary body. 

 

Figure 2.4 Stationary points in the circular restricted three-body problem. 

These equilibrium points have been shown to have periodic orbits about them. The collinear points 

contain unstable periodic orbits while the equilateral points have stable periodic orbits. A periodic 

orbit of the PCR3BP is a trajectory such that if  𝒙(𝑡0) = 𝒙0 , then there exists a 𝑇 ≥ 0  such 

that 𝒙(𝑡0 + 𝑇) = 𝒙0. The smallest such 𝑇 is termed the period of the orbit. For the planar case, 
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these orbits are called Lyapunov orbits and for the spatial case they are called Halo orbits due to 

their geometry. Figure 2.5 shows example Lyapunov orbits around the L1 and L2 equilibrium 

points. Normalized state information for the orbits in blue can be found in Table 2.1. 

 

Figure 2.5 Periodic orbits of different energies around L1 and L2 in the Earth-Moon system. 

Table 2.1 State information for L1 and L2 orbits. 

 𝑥 𝑦̇ Period (T) Energy (C) 

L1 0.8093292 0.27897327 3.0077217 -1.559192 

L2 1.0810432 0.3667822 3.57440957 -1.5511045 

 

2.3.3 Stability and Invariant Manifolds 

The stability of orbits in the three-body problem is often an important design characteristic when 

picking an orbit for a mission. Stable periodic orbits are useful as final parking orbits in a mission 

because a spacecraft can spend a long mission in that orbit without much fuel for station keeping. 

Unstable orbits are desirable to be used as transfer trajectories from one area of space to another.  

From control theory, the notion of stability can be defined from several important perspectives. 

This analysis uses Lyapunov stability, which analyzes the stability of equilibrium points and 

regions around them. Suppose there exists an 𝑛-dimensional sphere of state values about the 
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equilibrium point of radius 𝜖 and a similar sphere of radius 𝛿 where 𝜖 < 𝛿. The system meets 

Lyapunov stability criteria if a solution 𝑥(𝑡0) starts within 𝜖 of the equilibrium point then it stays 

within sphere  𝛿 ∀𝑡 ≥ 0. If the disturbed solution does not stay within sphere 𝛿 then the solution 

is considered unstable. In linear control theory, this stability can be determined from analyzing the 

eigenvalues and eigenvectors of the matrix 𝐴 in the system of linear systems of equations 𝑥̇ = 𝐴𝑥. 

In general, the behavior of linear dynamics based on the eigenvalues and eigenvectors of the 

monodromy matrix can be summarized into three main groups. If all the eigenvalues have negative 

real components then the equilibrium point is asymptotically stable. If any of the eigenvalues have 

positive real components then the solution is unstable. If the eigenvalues have only imaginary 

components the solution is stable but not asymptotically stable.  

Although periodic orbits are not a constant solution like equilibrium points, stability can be 

analyzed by studying the state transition matrix evaluated at one orbital period, called the 

monodromy matrix. For the nonlinear dynamics of the three-body problem, an approximate linear 

variational equations model is used. The construction and analysis of the state transition matrix is 

covered in more detail in Chapter 3. The stability of the periodic orbit can be determined from 

studying the eigenvalues of the monodromy matrix. Lyapunov’s theorem states that eigenvalues 

from the monodromy matrix exist in reciprocal pairs. For the CR3BP a minimum pair of 

eigenvalues must be equal to unity. For the planar case, there are only two eigenvalue pairs. The 

other pair is associated with the stable and unstable space. An eigenvector associated with |𝜆| <

1 will approach zero as time goes to infinity and is the basis for the stable space. However, an 

eigenvector associated with |𝜆| > 1 will approach infinity as time goes to infinity and is the basis 

for the unstable space. Define the stability index as: 

 
𝜈 =

1

2
(𝜆 +

1

𝜆
) Eq.  18 

Where 𝜆 and 
1

𝜆
 are the unstable and stable eigenvalues respectively. The larger the magnitude of 

𝜈 the faster the state approaches or progresses away from the periodic orbit.  

The eigenvectors associated with the stable and unstable eigenvalues form a basis for the stable 

and unstable space respectively. Invariant manifolds are arcs to and from the periodic orbit that 

are formed by perturbing the state in the direction of the desired subspace. Figure 2.6 shows the 

four main types of manifolds that can be formed off an equilibrium point. Two stable and two 
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unstable manifolds can be formed by perturbing in either the positive or negative scalar multiple 

of the desired subspace.  

 

Figure 2.6 Stable (green) and unstable (red) manifolds about an equilibrium point. 

Minor perturbations of the state of a spacecraft on a periodic orbit in the direction of instability 

cause the spacecraft to drift away from the orbit and into space when propagated forward in time. 

Similarly, perturbations in the direction of stability cause the spacecraft to drift away from the 

orbit and into space when propagated backward in time. For the planar case, these perturbations 

can be applied at any point along the periodic orbit in one of four directions (𝑊𝑠− , 𝑊𝑠+ , 𝑊𝑢− , 

and 𝑊𝑢+) which causes the spacecraft to drift to different locations in space. The manifolds are 

“invariant” because once on a manifold the spacecraft will stay on that manifold.  

Let 𝜏1 be the time along the periodic orbit before the perturbation and let 𝜏2 be the time perturbed 

off an orbit. Lyapunov orbits have directions of stability and instability. The respective manifolds 

for L1 can be seen in Figure 2.7. 
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Figure 2.7 A single manifold (left) and a family of manifolds (right) in the stable direction, 

towards the primary body, off of an L1 Lyapunov orbit in the Earth-Moon system. 

2.3.4 Poincare Surfaces 

Historically, Poincare surfaces (also called “surfaces of section”) have been used to connect two 

trajectories together [14]. This is done by selecting a plane such as the 𝑥-𝑧 plane (or some rotation 

of it about the barycenter) and catching states every time the trajectory intersected this plane. 

Figure 2.8 demonstrates determining a periodic orbit using a surface of section in a visual 

representation. The intersections of both trajectories are displayed on the same position vs. velocity 

surface. Points from both trajectories that are close together are ideal for maneuvers because only 

a small Δ𝑣 is required to go from these two points. If the points are sufficiently close together a 

differential corrector can smooth out the trajectory seamlessly with no burn necessary. 
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Figure 2.8 Poincare surface with a periodic solution and a non-periodic solution. 

There have been recent software tools developed to detect intersections on Poincare surfaces of 

section in an automated fashion [36]. However, this has only been applied to Lyapunov manifolds 

and since resonance manifold intersections are harder to detect than Lyapunov manifolds, the tool 

would need significantly more development before it could be applied to this problem. Thus, this 

analysis does not utilize Poincare surfaces of section but automated detection and analysis would 

be useful additions in future work.  
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Chapter 3 NUMERICAL TECHNIQUES 

To simulate the unique behavior of the three-body problem certain numerical tools need to be 

developed. These tools enable rapid generation and testing of periodic orbits so that they may be 

incorporated into trajectory design.  

3.1 State Transition Matrix 

The state transition matrix (STM) is a square matrix composed of the partial derivatives of the 

state. 

 
Φ(𝑡, 𝑡0) =

𝜕𝑿(𝑡)

𝜕𝑿(𝑡0)
 Eq.  19 

The STM is a linearized map of the states over time. It is calculated by solving the following first 

order matrix differential equation: 

 Φ̇(𝑡, 𝑡0) = 𝐴(𝑡, 𝒙𝑡)Φ(𝑡, 𝑡0) Eq.  20 

With initial conditions Φ(𝑡0, 𝑡0) = 𝐼6𝑥6, for the spatial case, and 𝐴(𝑡, 𝒙𝑡) is a matrix of first order 

partial derivatives of the equations of motion with respect to each state, that is: 

 
𝐴(𝑡, 𝒙𝑡) ≡  

𝜕𝒙̇(𝑡)

𝜕𝒙(𝑡)
 Eq.  21 

Recalling the equations of motion from Chapter 2, taking derivatives of the state and calculating 

partials with respect to the state yields the following matrix: 

 

𝐴(𝑡, 𝒙𝑡) =  

[
 
 
 
 
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
𝜕𝑥̈

𝜕𝑥

𝜕𝑥̈

𝜕𝑦

𝜕𝑥̈

𝜕𝑧
0 2 0

𝜕𝑦̈

𝜕𝑥

𝜕𝑦̈

𝜕𝑦

𝜕𝑦̈

𝜕𝑧
−2 0 0

𝜕𝑧̈

𝜕𝑥

𝜕𝑧̈

𝜕𝑦

𝜕𝑧̈

𝜕𝑧
0 0 0

]
 
 
 
 
 
 
 
 
 

 Eq.  22 
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The partial derivatives in the lower left-hand corner are as follows: 

 𝜕𝑥̈

𝜕𝑥
= 1 − 

(1 − 𝜇)(𝑟1
2 − 3(𝑥 + 𝜇)2)

𝑟1
5 −

𝜇(𝑟2
2 − 3(𝑥 − 1 + 𝜇)2)

𝑟2
5   

 𝜕𝑦̈

𝜕𝑦
= 1 −

(1 − 𝜇)(𝑟1
2 − 3𝑦2)

𝑟1
5 −

𝜇(𝑟2
2 − 3𝑦2)

𝑟2
5   

 𝜕𝑧̈

𝜕𝑧
=  −

(1 − 𝜇)(𝑟1
2 − 3𝑧2)

𝑟1
5 −

𝜇(𝑟2
2 − 3𝑧2)

𝑟2
5  

Eq.  23 
 𝜕𝑥̈

𝜕𝑦
=  
𝜕𝑦̈

𝜕𝑥
=
3𝑦(1 − 𝜇)(𝑥 + 𝜇)

𝑟1
5 +

3𝑦𝜇(𝑥 − 1 + 𝜇)

𝑟2
5  

 𝜕𝑥̈

𝜕𝑧
=  
𝜕𝑧̈

𝜕𝑥
=  
3𝑧(1 − 𝜇)(𝑥 + 𝜇)

𝑟1
5 +

3𝑧𝜇(𝑥 − 1 + 𝜇)

𝑟2
5   

 𝜕𝑦̈

𝜕𝑧
=  
𝜕𝑧̈

𝜕𝑦
=  
3𝑦𝑧(1 − 𝜇)

𝑟1
5 +

3𝑦𝑧𝜇

𝑟2
5   

The planar partials case removes rows and columns three and six from the matrix. Additionally, 

all 𝑧 terms go to zero.  

3.2 Single Shooting Differential Correction 

Due to the chaotic dynamics of the three-body problem, states close to a periodic orbit may not 

close (𝑥(𝑡0) ≠ 𝑥(𝑡) for any time propagated). Initial guesses can be improved using information 

on the error between the initial state and final state and adjusting the initial conditions accordingly. 

A differential corrector is a numeric technique that uses differential information to adjust the initial 

state such that a periodic orbit can be found. For a more in-depth discussion on the derivation see 

[15]. Due to the nature of periodic orbits in the canonical frame they are symmetric about the 𝑥-

axis. This means two things: solving for the whole orbit is equivalent to solving half the orbit and 

mirroring it, and the initial and halftime states should intersect the 𝑥-axis with only velocity in the 

𝑦-direction. For the planar case, the states should be of the following form: 

  𝒙0 = (𝑥0, 0, 0, 𝑦̇0)    &    𝒙𝑡𝑓
2

= (𝑥𝑡𝑓
2

, 0, 0, 𝑦̇𝑡𝑓
2

) Eq.  24 

In practice, a good initial guess will yield a state with some velocity in the 𝑥-direction at the half 

period, 𝒙𝑡𝑓
2

= (𝑥, 0, 𝑥̇, 𝑦̇). This state is achieved by having a conditional integrator that checks for 
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a 𝑦 =  0 crossing near half the period (it may not cross exactly at half the period and therefore a 

time window is more appropriate). Minor adjustments of the initial conditions will adjust the final 

conditions but also the half period as well. To target the desired output for a given 𝑥-position the 

initial 𝑦-velocity is perturbed. The linearized system of equations relating the final state and the 

initial state is: 

 
𝛿𝒙𝑡𝑓

2

= Φ(
𝑡𝑓

2
, 𝑡0) 𝛿𝒙𝑡0 +

𝜕𝒙

𝜕𝑡
𝛿 (
𝑡𝑓

2
) Eq.  25 

Where 𝛿𝒙𝑡𝑓
2

 is the deviation in the final state due to a deviation in the initial state and orbit period. 

More explicitly this equation is of the form: 

 

[
 
 
 
 
 
𝛿𝑥𝑡𝑓

2

0
𝛿𝑥̇𝑡𝑓

2

𝛿𝑦̇𝑡𝑓
2 ]
 
 
 
 
 

≈ [

Φ11 Φ12 Φ13 Φ14
Φ21 Φ22 Φ23 Φ24

Φ31 Φ32 Φ33 Φ34

Φ41 Φ42 Φ43 Φ44

] (
𝑡𝑓

2
, 𝑡0) [

𝛿𝑥0
0
0
𝛿𝑦̇0

] + [

𝑥̇
𝑦̇
𝑥̈
𝑦̈

] 𝛿(
𝑡𝑓

2
) Eq.  26 

The variation in the period is easiest to calculate by manipulating the second line of the system of 

equations in Eq. 24 such that: 

 
𝛿 (
𝑡𝑓

2
) =  

Φ21𝛿𝑥0 +Φ24𝛿𝑦̇0
𝑦̈

 Eq.  27 

Substituting this value into the third line of the system of equations yields an expression for the 

variation in the initial 𝑦-velocity.  

 

𝛿𝑦̇0 = 

𝛿𝑥̇𝑡𝑓
2

− 𝑥̈𝛿 (
𝑡𝑓
2 )

Φ34
 

Eq.  28 

Once the deviation in the initial 𝑦-velocity is calculated it is subtracted from the initial guess. 

 𝑦̇0,𝑛𝑒𝑤 = 𝑦̇0,𝑜𝑙𝑑 − 𝑘𝛿𝑦̇0 Eq.  29 

Where 𝑘 is a dampening coefficient to control how much the 𝑦-velocity changes. If the velocity 

varies too much the solution can take longer to converge. Similarly, if the velocity does not vary 

enough it can have problems converging. Solutions in this thesis used a dampening coefficient of 

0.45.  
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This method is iterated until 𝛿𝑥̇𝑡𝑓
2

 converges to zero under some desired tolerance. This method is 

fast for systems where the period is short and can take a couple dozen steps to converge for longer 

flight times. Figure 3.1 shows an exaggerated example of what the single shooting differential 

corrector does to an initial guess to converge upon a final solution. The solution is displayed in the 

rotating frame. The primary body is denoted by the black dot and the secondary body is denoted 

by the red dot.  

 

Figure 3.1 Example adjustment of differential correction exaggerated. 

The differential corrector converges when the states intersect the 𝑥-axis with only velocity in the 

𝑦-direction at approximately half the orbital period. With half the solution generated the full orbit 

is generated by mirroring the states across the 𝑥-axis.  

3.3 Multiple Shooting Differential Correction 

Single shooting correction is limited due to its use of the STM. The STM is a linear sensitivity 

model. In environments where the orbit period is long the STM loses accuracy. This effect is 

magnified in systems with large 𝜇 coefficients because the linearized model does not capture the 

larger perturbations caused by the second body. The STM could maintain its accuracy if the orbit 

is broken into many segments and if the time of each segment is relatively short. Multiple shooting 
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is similar to single shooting correction except the orbit is now broken into 𝑛-segments with the 

desired goal being the end of each segment matching the beginning of the next segment within 

some set tolerance.  

 

Figure 3.2 Generic multiple shooting intitial configuration. 

The state vector contains the state values for each segment as well as the time of flight for the 

orbit: 

 𝑋 = [𝒙1, 𝒙̅2, … , 𝒙̅𝑛, 𝑡1, 𝑡2, 𝑡3, … , 𝑡𝑛−1] Eq.  30 

Note that for closed orbits the sum of the time segments is the total period of the orbit. Additionally, 

a vector of 𝑚 constraints is constructed which holds the match point constraints between each of 

the segments: 

 𝐹(𝑋) = [𝒙̅2 − 𝒙̅1,𝑡, 𝒙̅3 − 𝒙̅2,𝑡, … , 𝒙̅𝑛 − 𝒙̅𝑛−1,𝑡] Eq.  31 

Here the subscript denotes the segment the state belongs to. If the subscript includes a “𝑡" then it 

is the state propagated forward in time, or the last state in the numbered arc. The constraints will 

vary from application to application. For example, if a full periodic orbit is being generated then 

an additional constraint connecting the last segment back to the first is necessary. The state vector 

is then updated using Newton’s method: 

 𝑋𝑖+1 = 𝑋𝑖 − 𝑘𝑖 ∙ 𝐷𝐹(𝑋𝑖)
−1𝐹(𝑋𝑖) Eq.  32 

Where 𝑖 is an iteration of Newton’s method and k is a scalar tuning parameter which controls the 

correction magnitude for each step. It has been found that stepping fully (𝑘 = 1) in the corrected 

direction can overcorrect the system and cause divergence. To avoid this, a golden section search 

algorithm [41] is used to control the corrected step size such that the iteration’s constraint vector 

is minimized. This sequence will iterate until a desired convergence criteria is met such as the 

match point constraints meeting a certain tolerance. 𝐷𝐹(𝑋) is the Jacobian matrix of the constraint 

vector defined as: 
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𝐷𝐹(𝑋) =
𝜕𝐹

𝜕𝑋
=  

[
 
 
 
 
 
 
 
𝜕𝐹1
𝜕𝑋1

𝜕𝐹2
𝜕𝑋1

…
𝜕𝐹𝑚
𝜕𝑋1

𝜕𝐹1
𝜕𝑋2

𝜕𝐹2
𝜕𝑋2

…
𝜕𝐹𝑚
𝜕𝑋2

⋮ ⋮ ⋱ ⋮
𝜕𝐹1
𝜕𝑋𝑛

𝜕𝐹2
𝜕𝑋𝑛

…
𝜕𝐹𝑚
𝜕𝑋𝑛]

 
 
 
 
 
 
 

 Eq.  33 

For the generic case given in Eq.  30 and Eq.  31, 𝐷𝐹(𝑋) is a sparse matrix defined as: 

 𝐷𝐹(𝑋)

=  

[
 
 
 
 
 
 Φ(0,

𝑡𝑓

𝑛
) −Ι6𝑥6 𝒙̇1,𝑡

Φ(0,
𝑡𝑓

𝑛
) −Ι6𝑥6 𝒙̇2,𝑡

⋱ ⋱ ⋱

Φ(0,
𝑡𝑓

𝑛
) −Ι6𝑥6 𝒙̇𝑛,𝑡]

 
 
 
 
 
 

 
Eq.  34 

Where the non-identified entries are zero. For problems defined such that 𝑚 ≠ 𝑛  the pseudo 

inverse is used and Newton’s method takes on the following form: 

 𝑋𝑖+1 = 𝑋𝑖 − 𝑘 ∙ 𝐷𝐹(𝑋𝑖)
𝑇[𝐷𝐹(𝑋𝑖) ∙ 𝐷𝐹(𝑋𝑖)

𝑇]−1𝐹(𝑋𝑖) Eq.  35 

3.4 Continuation Schemes 

Once a single periodic orbit is calculated, a desired parameter of that orbit can be perturbed to 

generate a new orbit in that orbit family. This could be a perturbation in a state parameter, energy, 

mass ratio 𝜇, or a non-physical quantity along a function that is the family of solution orbits. These 

continuation schemes are incorporated to rapidly generate a large family of periodic orbits or 

generate a periodic orbit with desired characteristics.  

3.4.1 Single Parameter State Continuation 

Single parameter state continuation (SPSC) is a simple continuation scheme where one of the state 

parameters of the initial point in the orbit is perturbed and a differential correction scheme is used 

to close this new state. It is common to perturb the x state such that 𝑋(𝑡0) = [𝑥, 𝑦, 𝑧, 𝑥̇, 𝑦̇, 𝑧̇] 

becomes 𝑋(𝑡0) = [𝑥 + 𝛿𝑥, 𝑦, 𝑧, 𝑥̇, 𝑦̇, 𝑧̇]. Since the new state is very similar to the previously closed 

state, the differential correction scheme closes in just a few iterations. This can be done several 
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times to get a whole family of orbits and is more likely to successfully converge with smaller 

perturbations. However, if the perturbation is too small the differential corrector can converge back 

onto the original orbit. The applications of these techniques will be discussed in detail in Chapter 

4.  

3.4.2 Mass Ratio Continuation 

Recall the mass ratio 𝜇 is unique for given primary and secondary bodies. Therefore, to transform 

an orbit from one three-body system to another, the orbit could be continued along the mass ratio. 

For example, if a desired orbit is easily generated in the Jupiter-Europa system and a similar orbit 

would be useful in the Earth-Moon system, continuing along the mass ratio from one system to 

the other is a means of doing so. Note that an orbit which exists in one system may not exist in 

another, so this continuation scheme is not particularly robust but is good for preserving desirable 

stability characteristics between systems [42].  

To continue along the mass ratio a periodic orbit must be generated for an initial mass ratio. The 

mass ratio is then perturbed 𝜇 + 𝛿𝜇 and the equations of motion are then updated with the new 

mass ratio. The differential corrector is used to close a new orbit for the new mass parameter where 

the previously converged orbit acts as an initial guess. This can be iterated several times until the 

desired mass ratio is achieved.  
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Chapter 4 PERIODIC SOLUTIONS  

This chapter will focus primarily on resonance orbits as a dynamical structure, how to generate 

them, what they look like, and how they can be used for low-energy mission design.  

4.1 Resonance Orbits & Families 

Recall that a resonance orbit is a concept involving two periodic trajectories. In the PCR3BP, these 

resonance orbits exist between the third body in relation to the second body. If the third body is in 

resonance with the second body, then the periods are related by a positive rational number which 

can be represented as an integer ratio 𝑝: 𝑞. Here 𝑝 is used to denote the number of revolutions that 

the third body goes around the barycenter. Similarly, 𝑞 indicates the number of times the secondary 

body revolves around the barycenter in the same fixed amount of time.  

In general, resonance orbits rarely have an exact integer relationship but can be approximated as 

such. Orbits of similar ratios are grouped into families and labeled as having a specific 𝑝: 𝑞 ratio. 

In the inertial frame, these orbits do not display unique geometry as they are simply highly 

elliptical orbits. It is the canonical frame that underlines the unique behavior of these orbits. 

 

Figure 4.1 2:3 Jupiter-Europa resonance in the (a) PCR3B frame (b) inertial frame with lunar 

orbit with unit radius in blue. 
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Resonance orbits can be further subdivided into interior and exterior orbits. Interior orbits loop at 

apoapse in the canonical frame and are denoted by having an integer ratio greater than unity. 

Exterior orbits loop at periapse and are identified by having an integer ratio less than unity. Figure 

4.2 gives examples of each type of orbit. The size of the loops grows with increasing eccentricity 

and orbits with sufficiently small eccentricity can have no loop at all.  

 

Figure 4.2 (a) A 5:7 exterior resonance orbit (b) a 7:5 interior resonance orbit; both orbits are 

generated in the Jupiter-Europa system. 

Additionally, resonance orbits can be further subdivided into orders. If  |𝑝 − 𝑞| = 1 , it is 

considered a first order resonance, and if |𝑝 − 𝑞| = 2, it is a second order resonance. Higher orders 

can be generated and studied but this analysis will focus on first and second order resonances.  

4.1.1 Two-Body Approximation 

One method of generating resonance orbits is to begin with a two-body approximation and use a 

correction scheme to correct for any influences of the third body, in this case the addition of a 

moon. This approximation is very useful for three-body systems with small 𝜇 values such as the 

Jupiter-Europa system. Different techniques will be discussed for systems with larger 𝜇 values 

such as Earth-Moon. The two-body approximation is done by first selecting a desired 𝑝: 𝑞 ratio 

then calculating the semi-major axis:  
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𝑎 = (𝜇𝑝𝑇𝑠
2 (
𝑞

𝑝
)
2

)

1
3

 Eq.  36 

Where 𝜇𝑝 is the two-body gravitational parameter of the primary body (𝜇𝑝 = 𝐺𝑚1) and 𝑇𝑠 is the 

period of the secondary, in this case the moon, about the primary. This ensures the spacecraft is in 

an orbit whose period will be an integer ratio of the secondary. Once the semi-major axis is 

calculated an eccentricity value is picked such that a desired radial value is achieved to calculate 

the initial 𝑥 and  𝑦̇ values: 

 𝑟 = 𝑎(1 − 𝑒) Eq.  37 

 

𝑣 = √2𝜇𝑝 (
1

𝑟
−
1

2𝑎
) Eq.  38 

The symmetry of the PCR3BP implies that resonance orbits will be symmetric about the 𝑥-axis. 

Therefore, the initial guess is positioned along the axis of reflection with velocity only in the 𝑦-

direction. The two-body approximation must then be converted to the rotating frame, shifted to the 

barycenter, and converted to dimensionless units detailed in Section 2.3. A differential corrector 

scheme detailed in Section 3.3 can then be used to correct the initial guess so that it has the proper 

state vector: 𝒙 = (𝑥, 0, 0, 𝑦̇) at half the orbit period. This numerically derived half orbit is mirrored 

to show the full orbit. Iterating over various 𝑥  values will generate a resonance family. If a 

differential corrector cannot close an orbit for a particular x value, then a continuation scheme is 

used to approach the desired orbit from previously generated orbits. This method is particularly 

robust for the Jupiter-Europa system due to its small 𝜇 value.  
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Figure 4.3 1:2 resonance family in the Jupiter-Europa system. 

Using a two-body approximation with a differential corrector and continuation scheme is robust 

for generating families of resonance orbits which do not travel very close to the secondary body. 

Figure 4.4 shows a range or resonance families that can be generated with the two-body 

approximation and correction schemes. Figure 4.4 continued.  

Table 4.1 lists normalized state information for the orbits in blue in Figure 4.4. There has been 

extensive analysis on resonance orbits near the secondary body [43]. This is because resonance 

orbits become increasingly unstable as they approach the celestial body. Resonances with close 

approaches have been studied as a means of slowdown flyby maneuvers when touring foreign 

systems such as a Europa Orbiter mission [44]. Once resonance orbits get close to the secondary 

they begin to dwell around the body due to its gravitational influence and the integer ratio of the 

periods fails. This thesis will focus on resonance orbits that are far enough from the secondary to 

maintain the integer ratio approximation. As a result, a significant range of Jacobi energies (Eq. 

16) can still be generated which will be useful when trying to use these orbits for low-energy 

mission design (Chapter 5). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

Figure 4.4 Resonance families in the Jupiter-Europa System.  

(a) 1:1, (b) 1:2, (c) 1:3, (d) 2:1, (e) 2:3, (f) 3:1, (g) 3:2, (h) 3:4, (i) 4:1, (j) 4:3. 
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 (j) 

 

 

Figure 4.4 continued.  

Table 4.1 Initial conditions for various resonance ratios. 

Resonance Ratio 𝑥 𝑦̇ Period C 

1:1 0.45 1.405837 6.28283906 -1.33514828 

1:2 0.45 1.5029984 12.566055 -1.93835058 

1:3 0.45 1.54083216 18.8492865 -1.13625528 

2:1 0.45 1.2401521 6.282847 -1.554348579 

2:3 0.45 1.4686003 18.849137 -1.244943748 

3:1 0.45 1.08753667 6.2835515 -1.731969152 

3:2 0.45 1.3202252 12.5662998 -1.45183985 

3:4 0.45 1.45229635 25.132385 -1.268754087 

4:1 0.45 0.937172633 6.28324735 -1.884190886 

4:3 0.45 1.34801073 18.85033267 -1.41477069 

 

Due to the fact that the Earth-Moon system has a higher mass ratio than Jupiter-Europa, generating 

resonance orbits in the Earth-Moon system is more challenging. Single shooting differential 

correction was insufficient at closing orbits in this system due to the larger gravitational influence 

of the Moon. To account for the larger mass ratio multiple shooting was used. The corrector was 

for the half orbit only and the initial 𝑥 state was fixed so that the orbit would begin at a known 

location. This resulted in the state vector 𝑋 = [𝑦̇1, 𝒙2, … , 𝒙𝑛, 𝑡1, 𝑡2, … , 𝑡𝑛] and constraint 

vector 𝐹 = [𝒙1,𝑡 − 𝒙2, 𝒙2,𝑡 − 𝒙3, … , 𝑦𝑛,𝑡 − 0, 𝑥̇𝑛,𝑡 − 0]. The initial 𝑛 points were picked from a 

converged orbit in the Jupiter-Europa system. Since both systems are nondimensionalized, the 

solution points translate easily. This was done so that the initial points were already configured in 

a near-desired formation and as a result the differential corrector converges in a dozen or so 

iterations. With a strong initial guess, at least one orbit of each ratio can be generated. From there, 

the solution is continued in the radial direction to generate a family of orbits for a particular ratio. 
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Figure 4.5 shows resonance ratios in the Earth-Moon system using this technique. Figure 4.5 

continued. 

Table 4.2 provides normalized state information for the orbits in blue.    

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

Figure 4.5 Resonance families in the Earth-Moon system.  

(a) 1:1; (b) 1:2; (c) 1:3; (d) 2:1; (e) 2:3; (f) 3:1; (g) 3:2; (h) 3:4; (i) 4:1; (j) 4:3. 
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Figure 4.5 continued. 

Table 4.2 Initial conditions for various resonance ratios. 

Resonance Ratio 𝑥 𝑦̇ Period C 

1:1 0.45 1.36819893 6.07127552 -1.32534735 

1:2 0.45 1.47163198 12.391121 -1.178481163 

1:3 0.45 1.5108353 18.687292 -1.120019889 

2:1 0.45 1.179861504 6.0907361 -1.56529492 

2:3 0.45 1.4362871149 18.635858 -1.229236809 

3:1 0.45 1.036747 6.4671316 -1.723909116 

3:2 0.45 1.26986973 12.499695 -1.45504694 

3:4 0.45 1.4086672 25.5351434 -1.2691598 

4:1 0.45 0.877146223 6.319133 -1.876638756 

4:3 1.35 -0.9536793 18.7068434 -1.215266474 

4.2 Periodic Stability and Manifolds 

Once a desired resonance orbit is generated, it is useful to investigate the stability of the orbit. 

Stability analysis can be achieved using Floquet theory [45] which was detailed for periodic orbits 

about the Euler-Lagrange points in Section 2.3.3.  

Stable resonance orbits are of interest due to their ability to serve as long term parking orbits for 

science missions with little to no station keeping required. Unstable orbits are also of interest since 

it implies the existence of both stable and unstable invariant manifolds which provide means of 

low-energy transport within the three-body system. This is analogous to invariant manifolds of 
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Lyapunov and Halo orbits about the unstable Euler-Lagrange points. Figure 4.6 shows a stable 

manifold off a 2:3 resonance orbit in the Earth-Moon system. This orbit is stable and therefore 

takes a couple revolutions about the periodic orbit before drifting into space. The perturbation 

magnitude is small so that the system would asymptotically approach the periodic orbit. The 

perturbation magnitude for this work is 1E-6.  

 

Figure 4.6 Earth-Moon 2:3 resonance with a stable manifold arc corresponding to 𝜏1 =
10.3 (≈ 0.6 𝑇) and 𝜏2 = 60. 

Figure 4.7 shows several manifolds off a 1:2 resonance orbit. The green arcs indicate stable 

manifolds which approach the periodic orbit when integrated forward in time. The red arcs are 

unstable manifolds which flow away from the periodic orbit when integrated forward in time. The 

motion of the manifolds is not as uniform as it was for the Lyapunov orbits in Figure 2.7 (b). With 

the generation of a range of resonance orbits and their manifolds, this dynamical structure can be 

used for low-energy trajectory design.   
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Figure 4.7 Earth-Moon 1:2 resonance orbit with stabile and unstable manifolds at 40 even 

𝜏1 intervals for 𝜏2 of 60. 
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Chapter 5 TRAJECTORY DESIGN & OPTIMIZATION 

Trajectory design is a challenging endeavor that usually requires multiple iterations to converge 

upon a solution. There are several different techniques and methods for designing a trajectory from 

one point to another. Historically, trajectory design has relied heavily on the intuition of an 

astrodynamicist whose years of experience and understanding of the dynamical system are used to 

piece together a feasible trajectory that meets the spacecraft’s constraints. For example, there has 

been some preliminary work showing that resonance orbits as well as their manifolds can be used 

for low-energy transfers within the three-body framework [26]. That analysis was successful but 

required multiple lengthy steps to generate a trajectory. The steps included identifying key periodic 

orbits that would be used for the trajectory, propagating their respective manifolds, plotting the 

intersecting manifolds on a surface of section, picking a point within the areas of intersection that 

connects the two manifolds, and differentially correcting the trajectory to smooth out any 

discontinuities. This process is iterated over a range of orbit energies until a feasible solution is 

found. The problem space grows with each additional phase of the trajectory and takes a lot of 

theoretical understanding to know how to tweak the parameters properly. Additionally, initial 

conditions and constraints of the spacecraft are capricious and any significant changes could 

require a whole new trajectory. As a result, preliminary trajectory design that relies heavily on a 

human in-the-loop can be computationally and financially expensive.  

Since the late 1950s, optimal control techniques have been used for trajectory design [46]. The 

motivation for these techniques was to derive trajectories from financially driven constraints such 

as minimizing fuel (Δ𝑣) or minimizing time of flight (TOF). However, due to the chaotic nature 

of the dynamical systems, these solutions are only locally minimum, and it is difficult to prove if 

a solution is a true global minimum. Therefore, deriving solutions relies on nonlinear programming 

techniques (see Section 5.1.2).  

Due to the sensitivity to initial conditions, optimal solvers have been paired with an outer loop 

which performs an educated search over bounded initial conditions. These outer loops often use 

evolutionary algorithms such as particle swarm algorithms or genetic algorithms. Recently, 

astrodynamicists at NASA GSFC have had success with such a hybrid optimal controller (HOC) 

for interplanetary trajectory design [47]. This success has motivated the University of Illinois to 
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develop a similar tool (DyLAN) for trajectories in the three-body problem as a means of 

automating the design process and transferring the computational and iterative burden from the 

designer to the computer [35].  

5.1 Trajectory Design 

For the purposes of this thesis, a mission is defined as going from an initial parking orbit to a 

desired final parking orbit. A phase is defined as going from one parking orbit to another. Figure 

5.1 provides a cartoon representation of the distinction between a mission and a phase.  

 

Figure 5.1 Demonstration of two-phase mission. A and C are initial and final parking orbits. B is 

an intermediate parking orbit. 

Therefore, a “single-phase” mission is one where the trajectory goes directly from the initial 

parking orbit to the final parking orbit. An example of a single-phase mission is going from LEO 

to a parking orbit about the L1 Euler-Lagrange point. A “two-phase” mission includes an 

intermediate parking orbit between the initial orbit and final orbit for a nontrivial period of time. 

An example of a two-phase mission is to go from LEO to a parking orbit about the L1 Euler-

Lagrange point to a final parking orbit about the Moon. Missions with multiple phases have 

multiple intermediate parking orbits.  
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The purpose of breaking up a mission into phases is to isolate the dynamical systems used to find 

low-energy trajectories for each phase. For example, the two-phase mission to the Moon can utilize 

stable manifolds onto a periodic orbit about the Euler-Lagrange L1 point for the first phase and 

then an unstable manifold off the periodic orbit towards the Moon for the second phase. There are 

multiple decision variables that need to be determined to find a low-energy trajectory with 

desirable characteristics. These variables include the time along the initial parking orbit before 

performing a burn, the time coasting before the spacecraft injects onto a manifold, the time along 

the manifold (recall this was labeled 𝜏2 in Section 2.3.3), and the time along the periodic orbit 

associated with the manifold (recall this was similarly labeled 𝜏1). The number of time variables 

grows with each additional phase. There are also Δ𝑣 decision variables that are the magnitude and 

direction of the change in velocity each time a burn is performed. Lastly, there are energy decision 

variables which determine the Jacobi energy of the dynamical structure such as a periodic orbit 

about an Euler-Lagrange point. The Jacobi energy of that dynamical structure will determine its 

shape and therefore the reachability space of its invariant manifolds.  

A low-energy trajectory has desirable characteristics if it minimizes financial or logistical cost 

functions. Two common costs are fuel and time of flight. For chemical impulse thrusters, those 

costs take the following form: 

 
Δ𝑣 =∑√Δ𝑣𝑖,𝑥

2 + Δ𝑣𝑖,𝑦
2

𝑛

𝑖=1

 Eq.  39 

 𝑇𝑂𝐹 = 𝑇𝑝𝑎𝑟𝑘𝑖𝑛𝑔 + 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑇𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑 Eq.  40 

Where 𝑇𝑝𝑎𝑟𝑘𝑖𝑛𝑔 is the time along the initial parking orbit, 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 is the time from the parking 

orbit to an invariant manifold, and 𝑇𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑 is the time along both the invariant manifold and 

periodic orbit it is attributed to (𝜏1 + 𝜏2). Similarly, the Δ𝑣 cost function is the sum of the resultant 

changes in velocity at each impulse. These two cost functions often conflict with each other, such 

as minimizing one often results in increasing the other. Therefore, for preliminary mission design, 

it is often desirable to generate a trade space of solutions so that the astrodynamicist can pick the 

ideal tradeoff based on the needs for a specific mission.  

It is clear a mission can involve a large design space which is often difficult to navigate in order 

to find a trajectory which locally minimizes the cost functions. DyLAN solves missions using a 
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two-loop approach. The purpose of the outer loop is to evaluate the cost functions and adjust phase-

level decision variables, i.e. the parking orbit variables and the dynamical structure variables such 

as energy, 𝜏1, and 𝜏2. The purpose of the inner loop is to find Δ𝑣’s which minimize the two-point 

boundary value problem (TPBVP) between the parking orbit and the invariant manifold arc.  

5.1.1 Outer Loop 

As mentioned, the purpose of the outer loop is to choose phase level continuous and discrete 

decision variables that optimize the mission. For multi-objective problems (problems with multiple 

cost functions), this can be done two ways: using a single function and an appropriate weighting 

scheme: 

 

{
 
 

 
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥̅) =  ∑𝑤𝑖𝑓𝑖(𝑥̅)   subject to:

𝑥̅𝑙𝑏 ≤ 𝑥̅ ≤ 𝑥̅𝑢𝑏
𝐴𝑥̅ = 0
𝑐(𝑥̅) ≤ 0

 Eq.  41 

Where 𝑤𝑖 are scalar weights for each cost function, 𝑥̅𝑙𝑏 and 𝑥̅𝑢𝑏 are lower and upper bounds on 

the state values, 𝐴𝑥̅ is a system of linear equality constraints and 𝑐(𝑥̅) is a vector of nonlinear 

constraints. Multi-objective problems can also be solved by keeping the objectives separate: 

 

{

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(̅𝑥̅) = [𝐽1(𝑥̅) 𝐽2(𝑥̅) … 𝐽𝑛(𝑥̅)]
𝑇 subject to:

𝑥̅𝑙𝑏 ≤ 𝑥̅ ≤ 𝑥̅𝑢𝑏
𝐴𝑥̅ = 0
𝑐(𝑥̅) ≤ 0

 Eq.  42 

Minimizing Eq. 42 results in a trade space of solutions. This trade space is often called a “Pareto 

front” [48]. A Pareto front is a solution set where each member in the space is better than all its 

neighboring solutions in at least one objective. For a two-dimensional optimal control problem, a 

converged family of solutions would produce a solution set similar to what is seen in Figure 5.2. 
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Figure 5.2 Sample Pareto front for two objective case. Single objective minimal 𝐽1(𝑥̅) in blue 

and single objective 𝐽2(𝑥̅) in red. 

There are multiple techniques for the outer loop process, each with their own capabilities and 

limitations. For DyLAN, a genetic algorithm (GA) is used due to its ability to scale well with 

multiple constraints and its recent success in interplanetary trajectory design applications [47] 

[49].  

5.1.1.1 Genetic Algorithm 

A genetic algorithm replicates the natural selection process by controlling a population of solutions 

and evolving them towards a converged solution set. For the multiple objective case, the 

population evolves towards a Pareto front solution space. In this application, each individual in the 

population has a unique combination of decision variables that define a trajectory. During the 

initialization of this algorithm the phase decision variables are picked at random from a design 

space bounded by the user. Each individual has a TPBVP which is then locally optimized using 

nonlinear programming techniques (see Section 5.1.2). Once locally optimized, the individuals are 

then evaluated on how well they meet the cost functions. Once the individuals have been ranked 

they are paired at random and “mate” to create two new children that have combinations of phase 

v from their parents. Mutations can occur during the reproduction process to further randomize the 

design space and diversify the population. The children are then locally optimized and ranked as 
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well. Once both generations are ranked, the half of the population who has the worst rank is thrown 

out. This process repeats until a desired number of generations is satisfied. If the solution set does 

not form a Pareto front, i.e. the points in the set are not better in at least one 𝐽𝑖(𝑥̅) than their nearest 

neighbors, then the process is repeated with a higher generation cap. If that solution does not 

converge to a Pareto front then the HOC is unable to find feasible solutions and the bounds of the 

states need to be adjusted. For the examples studied here, the outer loop is minimizing two 

objectives: time of flight (TOF) and Δ𝑣. This means an individual that has a low TOF and low Δ𝑣 

will rank highly and have future generations derived from it. Shah’s work provides a thorough 

exploration and discussion of this framework [50].  

5.1.2 Inner Loop: Local Optimization 

Recall the purpose of the inner loop is to solve the two-point boundary value problem from the 

initial parking orbit to the final desired parking orbit for a particular phase. For trajectories that 

result in multiple dynamical systems, multiple TPBVPs are solved sequentially. Often, TPBVPs 

are solved by breaking the trajectory into two parts, a forward arc and a backward arc, and 

minimizing the differences at the match point for both position and velocity such that the solution 

is continuous. Nonlinear programming is the process to solve an optimization problem which can 

be put in the form of Eq. 43:  

 

{

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥̅)  subject to:
𝑥̅𝑙𝑏 ≤ 𝑥̅ ≤ 𝑥̅𝑢𝑏

𝐴𝑥̅ = 0
𝑐(𝑥̅) ≤ 0

 Eq.  43 

Due to the nature of astrodynamics problems the Jacobian matrix of the NLP tends to be sparse. 

Therefore, the solver used is the Sparse Nonlinear OPTimizer (SNOPT) [51] which uses gradient 

information to converge upon a locally optimal solution.  

For an impulsive thrust case, the NLP has nine control decision variables: half transfer time 𝑡1/2, 

forward coast time 𝑡𝑐,𝑓 , backward coast time 𝑡𝑐,𝑏 , forward arc velocity angle 𝜃𝑓 , forward arc 

velocity magnitude |𝑣|𝑓 , mid-course velocity angle 𝜃𝑚 , mid-course velocity magnitude |𝑣|𝑚 , 

backward arc velocity angle 𝜃𝑏, and backward arc velocity magnitude |𝑣|𝑏. Table 5.2 lists these 

decision variables in a concise reference table later in section 5.3.1. The solution is considered 
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feasible when the states of the forward and backward arcs match where they meet within a 

desirable tolerance. The cost function 𝑓(𝑥̅) is the change in velocity for all three burns. An optimal 

solution will reduce the midcourse burn to zero.  

These trajectories tend to be very sensitive to initial conditions. Poor initial conditions may not 

converge to a solution at all. Additionally, the bounded solution space may have multiple local 

optimal solutions where one is more optimal than the rest. To enable SNOPT to find the more 

optimal solution, a numerical technique to push initial conditions out of locally optimal “wells” is 

needed.  

5.1.2.1 Monotonic Basin Hopping 

Monotonic basin hopping (MBH) allows an NLP to explore a bounded state space in a stochastic 

way. MBH picks a random initial guess 𝑥̅ based on a user defined distribution such as Uniform, 

Gaussian, or Cauchy (this work is done with Uniform). SNOPT executes with this initial guess. If 

SNOPT does not converge to a solution then the initial guess is removed and MBH picks a new 

guess at random within the predefined bounds. If SNOPT converges to a feasible solution 𝑥̅∗ then 

MBH will apply a random perturbation to the converged solution, called a “hop”, and pass the 

perturbed solution back to SNOPT to resolve. If the perturbed solution performs better than the 

previous solution, the old solution is discarded and MBH hops from the new solution again. If the 

perturbed solution is infeasible or worse than the previous solution, then the perturbed solution is 

discarded and MBH hops in a different direction from the previous solution and a stagnation 

counter is iterated. If the stagnation counter exceeds a threshold, MBH resets the process with a 

new random guess. This step is important to hop out of local minimum pockets and better search 

the design space. MBH runs until one of the following conditions is met: a) a defined number of 

iterations, or b) a computational time limit.  
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5.2 DyLAN 

Figure 5.3 shows a block diagram that details DyLAN from a top-level overview.  

 

Figure 5.3 An overview of the optimization framework. 

The program begins with the user defining the bounds on the problem such as initial and final 

conditions, bounds on orbit characteristics, and bounds on flight time. The outer loop GA is 

NSGA-II (Non-dominated Sorting Genetic Algorithm II), chosen for its ability to handle multiple 

objective optimization problems. The GA picks phase decision variables from different dynamical 

structures such as periodic orbits about Euler-Lagrange points or resonance orbits. The GA 

generates a population where each individual is a unique combination of phase decision variables 

within the user defined bounds. The phase variables define a two-point boundary value problem 

between parking orbits and dynamical structures which are solved for using the nonlinear program 

SNOPT. Once SNOPT closes the trajectory, the GA evaluates each individual based on the cost 

functions. This outer loop then inner loop cycle is repeated until the program converges to a family 

of solutions that form a trade space for the various cost functions. The user can then use these 

solutions to jumpstart their mission design by having access to a broad solution space.  
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Before the work presented here, DyLAN only had access to Lyapunov orbits and their respective 

manifolds to enable low-energy trajectory design. This included single-phase transfers, such as 

from an initial orbit to a Lyapunov parking orbit via a selected manifold or multi-phase transfers 

where Lyapunov orbits and their manifolds are linked together to achieve a longer sequence of 

transfers [50].  

5.3 Augmentation for Resonance Structure 

While DyLAN originally could only manipulate sequences of Lyapunov orbits and their 

manifolds, augmenting it with resonance-based dynamical structures significantly expands the 

design space. Including resonance orbits and their manifolds requires identifying key decision 

variables that the GA needs to be able to utilize sufficiently explore the design space.  

5.3.1 Decision Variables for Hybrid Optimal Control  

Resonance orbits are added to the framework by giving the outer loop six decision variables that 

characterize the orbit and manifold pair. Recall that with two-body approximation, multiple 

shooting, and parameter continuation that 𝑝, 𝑞, and 𝑟 are sufficient to define the initial state of the 

resonance orbit along the 𝑥-axis (4.1.1). Additionally, the normalized time units 𝜏1 and 𝜏2 define 

the time along the resonance orbit before being perturbed and the time along the perturbation 

(manifold arc) respectively. These time parameters are sufficient at characterizing the invariant 

manifold off the resonance orbit. This is true for both a stable or unstable manifold arc, the only 

difference is the direction of perturbation. 𝑤 is the direction of perturbation. Recall Figure 2.6 

which shows two directions for both the stable and unstable arcs. For the purposes of this work, 

these two directions will be denoted “towards the primary” or towards the negative 𝑥-axis, with a 

𝑝 subscript, and “towards the secondary” or towards the positive 𝑥-axis, with a 𝑠 subscript. Table 

5.1 summarizes these decision variables.   
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Table 5.1 List of decision variables for the outer loop of DyLAN. 

Variable Description Lower Bound Upper Bound 

𝑝: 𝑞 Discrete resonance ratios Figure 4.5 Ratios found in Figure 4.5 

𝑟 
Nondimensionalized distance on the 𝑥-axis 

from the origin for initial condition 
0.15 0.95 

𝜏1 
Normalized time along the periodic orbit 

before perturbation 
0.0 1.0 (Full period) 

𝜏2 
Normalized time along the periodic orbit 

after perturbation 
1.0 60.0 (260.556 days) 

𝑤 

Direction of perturbation: towards the 

primary or secondary body; a discrete 

variable 

𝑤𝑝 𝑤𝑠 

The bounds of these decision variables will be shifted depending on the target mission. The NLP 

has nine decision variables for impulsive thrust case denoted in Table 5.2. The upper bound values 

are represented with their normalized values along with the dimension values in parenthesis. 

Table 5.2 List of decision variables for the inner loop NLP. 

Variable Description Lower Bound Upper Bound 

𝑡1/2 Half transfer time for each forward and 

backward arc 

0.0 15.0 (65.139 days) 

𝑡𝑐,𝑓 Forward coast time 0.0 3.0 (13.029 days) 

𝑡𝑐,𝑏 Backward coast time 0.0 3.0 (13.029 days) 

𝜃𝑓 Forward arc velocity angle 0.0 2𝜋 

|𝑣|𝑓 Forward arc velocity magnitude  0.0 5.0 (5.123 km/s) 

𝜃𝑚 Mid-course velocity angle 0.0 2𝜋 

|𝑣|𝑚 Mid-course velocity magnitude 0.0 5.0 (5.123 km/s) 

𝜃𝑏 Backward arc velocity angle 0.0 2𝜋 

|𝑣|𝑏 Backward arc velocity magnitude 0.0 5.0 (5.123 km/s) 

Chapter 6 details a few sample missions of resonance orbits in a HOC framework. 
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Chapter 6 SAMPLE TRAJECTORIES 

This Chapter demonstrates the capabilities of DyLAN with a few simple trajectories focusing on 

trajectories enabled by resonance orbits. Three missions are explored here in detail. The first 

mission is a LEO to a cislunar resonance transfer. The second mission is a resonance to resonance 

orbit transfer with open 𝑟 decision variable and the third mission is a resonance to resonance 

transfer with both 𝑟 parameters held fixed.   

6.1 LEO to Resonance Transfer 

The first mission is a single-phase trajectory from a circular low Earth orbit to any cislunar 

resonance orbit. The initial parking orbit is 800 km, and the bounds on the genetic algorithm orbits 

are as follows:  

Table 6.1 GA decision variable bounds for a LEO to resonance trajectory. 

𝑇𝑜𝑟𝑏𝑖𝑡 [0, 0.069] Days along the LEO orbit 

𝑝: 𝑞 1:1, 1:2, 1:3, 1:4, 2:3, 3:1, 3:4 

𝑟 0.85 Normalized dimension (fixed) 

𝜏1 [0, 𝑇𝑟𝑒𝑠𝑜] Normalized time depending on ratio 

𝜏2 [0, 60] Normalized time units 

 𝑤 𝑤𝑝 or 𝑤𝑠: Direction for stable manifold  

Table 6.1 lists the types of resonance ratios that will be considered for this mission. These are a 

subset of the ones which were found and labeled in Figure 4.5. The radial distance is fixed and 

was chosen to be close to the moon to be similar to a L1 Lyapunov manifold transfer. The time 

variables were bounded such that 𝜏1 could be any time along the periodic orbit and 𝜏2 was chosen 

to be a substantially long time such that the manifold had sufficient time to flow away from the 

resonance orbit. The directional variable is a binary option which chooses the direction off the 

periodic orbit. 𝑇𝑜𝑟𝑏𝑖𝑡 is the time along the LEO from an initial state on the positive 𝑥-axis (0° true 

anomaly). Using the decision variables in Table 5.2, the NLP is tasked with solving a TPBVP 

between the 800 km parking orbit and the state of the spacecraft at the end of the stable manifold 

arc.  
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The GA uses these decision variables to spawn a generation of 48 individuals. The algorithm is 

then executed iteratively for 90 generations. The generation history is compared to approximate 

the amount of change per generation. If the change between the 89th and 90th generation is 

significant then the algorithm is run for more generations. The following figures (Figure 6.1 and 

Figure 6.4) show the Pareto front of the final generation as well as a sample trajectory from the 

solution set.   

 

Figure 6.1 Pareto front of LEO to resonance transfer. 

Figure 6.1 shows a sharply defined solution set. The trade space shows very little improvement in 

time of flight for drastic increases in fuel consumed. Similarly, there is hardly any improvement 

in fuel saved for drastic increases in time of flight. This solution set provides an array of trajectories 

that the astrodynamicist can choose the transfer which best suits the needs of the mission. If the 

mission requires a short time of flight then the astrodynamicist can compromise a bit of fuel for 

reduced flight time. Or, the mission designer may want a long tour of cislunar space before arriving 

at the parking orbit and therefore a long time of flight mission is desirable. Figure 6.2 shows the 

Pareto front zoomed in on the multi-objective corner where trajectories have both short time of 

flights and low fuel consumption.  
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Figure 6.2 Close up of Figure 6.1. 

Figure 6.3 shows the evolution of the Pareto front for multiple generations. The individuals 

conform quickly from a scattered set in the 5th generation to a clean front by the 50th generation. 

After the 50th generation the individuals transition from a spread across minimum fuel solutions to 

a spread across minimum time of flight solutions by the 90th generation.  

 

Figure 6.3 Evolution of Pareto front over generations in the GA 
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To better illustrate the various stages of the trajectory, the minimum Δ𝑣 solution from the Pareto 

front will be used. This trajectory was chosen because it is an exaggerated example of how 

manifolds can be used in low-energy trajectory design. The trajectory requires a Δ𝑣 of 3.076992 

km/s and a transfer time of 246.13 days. The trajectory can be seen in Figure 6.4; it is a transfer 

from a 800 km circular LEO orbit to a 3:1 resonance orbit at  𝑟 = 0.85. Figure 6.5 shows a series 

of steps along the trajectory. Step (a) shows the initial coast along the parking orbit, the length of 

which is determined by variable 𝑇𝑜𝑟𝑏𝑖𝑡 which is chosen by the GA. Steps (b) - (d) detail the TPBVP 

transfer which is determined by the NLP decision variables. Steps (e) and (f) detail getting onto 

the stable resonance manifold and then final parking orbit which are determined by the final 

parking orbit variables 𝑝: 𝑞, 𝑟, 𝜏1, 𝜏2, and 𝑤 which are chosen by the GA.  

 

Figure 6.4 Minimum fuel LEO to cislunar resonance trajectory from solution set. 
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(a) The spacecraft departs from its initial state at LEO and coasts for 𝑇𝑜𝑟𝑏𝑖𝑡 time units.  

 

(b) The spacecraft coasts along the initial LEO parking orbit for 𝑡𝑐,𝑓 time units.   

Figure 6.5 LEO to resonance trajectory broken into discrete steps (a)-(f). 
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(c) The spacecraft performs a burn and coasts for 2𝑡1/2 time units before performing the 

second and final burn. Note the change in scale, and thus relative invisibility of the 

original parking orbit. 

 

(d) The spacecraft coasts an additional 𝑡𝑐,𝑏 time units. This is a decision variable set by the 

NLP. 

Figure 6.5 Continued. 
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(e) The spacecraft coasts onto the stable manifold arc and then coasts along the arc for a 

prescribed 𝜏2 time along the arc. 

 

(f) The spacecraft performs another miniscule burn, in the 𝑤𝑝 direction, off the manifold and 

onto the periodic orbit. The spacecraft then coasts for 𝜏1 time units bringing it back to its 

original state on the 𝑥-axis. The spacecraft is now on the final 3:1 parking orbit. 

Figure 6.5 Continued. 
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Table 6.2 shows all the final decision variable values for the specific trajectory shown in Figure 

6.4. Listed are the decision variables for the GA as well as the decision variables for the NLP.    

Table 6.2 Final GA and NLP decision variables for LEO to 3:1 resonance transfer.  

Variable Value (Normalized Units) 

𝑇𝑜𝑟𝑏𝑖𝑡 0.00146913 

𝑝: 𝑞 3:1 

𝑟 0.85* fixed 

𝜏1 5.85681 

𝜏2 53.142589 

𝑤 𝑤𝑝 

𝑡1/2 0.382136 

𝑡𝑐,𝑓 0.00808 

𝑡𝑐,𝑏 3.14499 

𝜃𝑓 5.2812315 

|𝑣|𝑓 2.8922 

𝜃𝑚 5.084716136 

|𝑣|𝑚 0.0 

𝜃𝑏 4.48221 

|𝑣|𝑏 0.11115 

6.2 Resonance to Resonance Transfer: Open R 

The purpose of demonstrating the resonance to resonance mission with an open R target is to 

validate the search process of the outer loop. The mission is to transfer from any resonance orbit 

to another. In order to minimize the cost functions, particularly Δ𝑣, the algorithm should naturally 

converge on solutions where each resonance pair has the same 𝑝, 𝑞, and 𝑟 decision variables. This 

is equivalent to saying the most fuel efficient transfer is to simply stay at the initial conditions. 

Table 6.3 denote the bounds on the decision variables initially introduced in Table 5.1 for this 
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specific mission. Since both the initial and final parking orbit are resonance orbits they will each 

have an invariant manifold arc. To distinguish these similar variables the initial parking orbit will 

be generated from 𝑝1: 𝑞1 and 𝑟1 and will have an unstable manifold off of it defined by the time 

variables 𝜏1,𝑈𝑆 and 𝜏2,𝑈𝑆 where the subscript 𝑈𝑆 indicates that it belongs to the unstable manifold 

arc. Conversely the final parking orbit will have a stable manifold onto the orbit so the manifold 

variables will be denoted with an 𝑆 subscript. Bracketed values indicate a continuous range while 

the others are discrete decision variables. 

Table 6.3 Decision variables for a resonance to a resonance transfer. 

𝑝1: 𝑞1 1:1, 1:2, 1:3, 1:4, 2:1, 2:3, 3:1, 3:2, 3:4, 4:1 

 𝑝2: 𝑞2 1:1, 1:2, 1:3, 1:4, 2:1, 2:3, 3:1, 3:2, 3:4, 4:1 

𝑟1, 𝑟2 [0.35, 0.65] 

𝜏1,𝑈𝑆  [0, 𝑇𝑟𝑒𝑠𝑜1]  

𝜏1,𝑆 [0, 𝑇𝑟𝑒𝑠𝑜2] 

𝜏2,𝑈𝑆, 𝜏2,𝑆 [0, 60] for both 

𝑤𝑈𝑆, 𝑤𝑆 𝑤𝑈𝑆,𝑝or 𝑤𝑈𝑆,𝑠 & 𝑤𝑆,𝑝 or 𝑤𝑆,𝑠 

After 90 generations the solution space has conformed to the following solution front: 

 

Figure 6.6 Resonance to resonance Pareto front. 
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The solution front conforms to a tight set of solutions with a miniscule Δ𝑣 for a range of time of 

flights. Figure 6.8 shows a sample trajectory from the solution set. As predicted, the GA converged 

towards solutions where resonance ratio and position were the same such that the “transfer” is truly 

minimum in that the spacecraft never leaves the orbit it begins on. This gives confidence that 

DyLAN is capable of searching a large design space with multiple decision variables in both the 

GA and NLP and still arrive at the logical solution. The Pareto front settled to this distribution 

early in the evolutionary process. It did not take many generations for the individuals to converge 

to the solution front seen in Figure 6.6. Figure 6.7 shows the evolution of individuals at discrete 

points. The individuals at the 5th generation are quite scattered and not converged to a solution 

front. However, by the 50th generation most of the individuals are settled into a solution front with 

only minor modifications until the tool terminates at the 90th generation.  

 

Figure 6.7 Evolution of Pareto front over generations in the GA 

The chosen sample trajectory is the multi-objective minimal case. The trajectory requires a Δ𝑣 of 

1.511E-6 km/s and a transfer time of 35.85 days. The trajectory can be seen in Figure 6.8, as a 

transfer from a 1:1 resonance to a 1:1 resonance at equal 𝑟 values as predicted. Figure 6.9 shows 

a series of steps along the trajectory. Steps (a) and (b) are determined by the initial parking orbit 



 

54 

 

variables 𝑝1, 𝑞1, 𝑟1, 𝜏1𝑈,𝑆, 𝜏2,𝑈𝑆, and 𝑤𝑠 which are chosen by the GA. Steps (c) and (d) detail the 

TPBVP transfer which are determined by the NLP decision variables. Steps (e) and (f) are 

determined by the final parking orbit variables 𝑝2, 𝑞2, 𝑟2, 𝜏1,𝑆, 𝜏2,𝑆, and 𝑤𝑢 which are also chosen 

by the GA. . Note that resonance orbits are much more stable than common low-energy transfer 

orbits such as Lyapunov orbits about Euler-Lagrange points. This means that when a spacecraft 

performs a small maneuver to get onto a manifold arc, the manifold often follows very closely to 

the original periodic orbit. This is particularly prevalent in steps (e) to (f) when the spacecraft 

transitions from the stable manifold of the final parking orbit to the final parking orbit itself. Notice 

that the spacecraft travels back in the direction of the manifold and that the minor burn performed 

is sufficient to keep the spacecraft along the 1:1 resonance orbit.  

 

Figure 6.8 Resonance to resonance sample trajectory from the solution set. This is a 1:1 

resonance to a 1:1 resonance. They are the same orbit. 
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(a) Coast along the initial parking orbit a prescribed 𝜏1,𝑈𝑆 time units.  

 

(b) The spacecraft performs a miniscule burn in the 𝑤𝑝 direction to jump onto the unstable 

manifold and coasts for 𝜏2,𝑈𝑆 time units. 

Figure 6.9 Trajectory broken into discrete steps (a)-(g). 
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(c) The spacecraft performs a burn and coasts for 2𝑡1/2 time units before performing the 

second and final burn (𝑡𝑐,𝑓 = 0).  

 

(d) The spacecraft coasts an additional 𝑡𝑐,𝑏 time units. This is a decision variable set by the 

NLP. 

Figure 6.9 Continued. 
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(e) The spacecraft coasts onto the stable manifold arc and coasts an additional 𝜏2,𝑆 time units 

along the arc. 

 

(f) The spacecraft performs another miniscule burn, in the 𝑤𝑝 direction, off the manifold and 

onto the periodic orbit. The spacecraft then coasts for 𝜏1,𝑆 time units bringing it back to 

its original state on the 𝑥-axis. The spacecraft is now on the final 1:1 parking orbit.  

Figure 6.9 Continued.  
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Table 6.4 shows all the final decision variable values for the specific trajectory shown in Figure 

6.8. Listed are the decision variables for the GA as well as the decision variables for the NLP.    

Table 6.4 Final GA and NLP decision variables for 1:1 to 1:1 transfer.  

Variable Value (Dimensionless) 

𝑝1: 𝑞1 1:1 

𝑟1 0.56534053971 

𝜏1,𝑈𝑆 0.85349786144 

𝜏2,𝑈𝑆 1.48334723722 

𝑤𝑈𝑆 𝑤𝑈𝑆,𝑝 

𝑝2: 𝑞2 1:1 

𝑟2 0.56533029768 

𝜏1,𝑆 0.672379646819 

𝜏2,𝑆 3.18009249908 

𝑤𝑆 𝑤𝑆,𝑝 

𝑡1/2 2.18838 

𝑡𝑐,𝑓 0.0 

𝑡𝑐,𝑏 1.4698 

𝜃𝑓 1.68378 

|𝑣|𝑓 1.475E-6 

𝜃𝑚 1.45 

|𝑣|𝑚 0.0 

𝜃𝑏 0.461088 

|𝑣|𝑏 0.0 
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6.3 Resonance to Resonance Transfer: Targeted R 

The purpose of this resonance to resonance mission is to demonstrate a more challenging transfer 

utilizing both stable and unstable manifolds. The mission is to transfer from a resonance orbit at 

𝑟 = 0.25 to another at 𝑟 = 0.95. This displays DyLAN’s ability to transfer from an elliptical orbit 

whose perigee is at 0.25 normalized units to an elliptical orbit whose perigee is at 0.95 normalized 

units using invariant manifolds. Table 6.5 lists the bounds on the decision variables initially 

introduced in Table 5.1 for this specific mission. Since both the initial and final parking orbit are 

resonance orbits they will each have an invariant manifold arc. Like the previous problem, to 

distinguish these similar variables, the initial parking orbit will be generated from 𝑝1: 𝑞1 and 𝑟1 

and will have an unstable manifold off of it defined by the time variables 𝜏1,𝑈𝑆 and 𝜏2,𝑈𝑆 where the 

subscript 𝑈𝑆 indicates that it belongs to the unstable manifold arc. Conversely the final parking 

orbit will have a stable manifold onto the orbit so the manifold variables will be denoted with an 

𝑆 subscript. Bracketed values indicate a continuous range while the others are discrete decision 

variables. 

Table 6.5 Decision variables for a resonance to a resonance transfer. 

𝑝1: 𝑞1 1:1, 1:2, 1:3, 1:4, 2:3, 3:1, 3:4, 4:1 

 𝑝2: 𝑞2 1:2, 1:3, 1:4, 2:3, 3:4 

𝑟1, 𝑟2 0.25 & 0.95 Fixed 

𝜏1,𝑈𝑆  [0, 𝑇𝑟𝑒𝑠𝑜1]  

𝜏1,𝑆 [0, 𝑇𝑟𝑒𝑠𝑜2] 

𝜏2,𝑈𝑆, 𝜏2,𝑆 [0, 60] for both 

𝑤𝑈𝑆, 𝑤𝑆 𝑤𝑈𝑆,𝑝or 𝑤𝑈𝑆,𝑠 & 𝑤𝑆,𝑝 or 𝑤𝑆,𝑠 

Figure 6.10 shows the Pareto front of the individuals after 90 generations. 
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Figure 6.10 Resonance to resonance Pareto front. 

The solution front conforms to a tight set of solutions with a miniscule Δ𝑣 for a range of time of 

flights. Figure 6.12 shows a sample trajectory from the solution set. The Pareto front settled to this 

distribution early in the evolutionary process. It did not take many generations for the individuals 

to converge to the solution front seen in Figure 6.10. Figure 6.11 shows the evolution of individuals 

at discrete points. The individuals at the 5th generation are moderately scattered, but a general 

concave structure is being formed. By the 50th generation most of the individuals are settled into a 

solution front with only minor modifications until the tool terminates at the 90th generation.  
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Figure 6.11 Evolution of Pareto front over generations in the GA 

The chosen sample trajectory is the multi-objective minimal case. The trajectory requires a Δ𝑣 of 

0.09947 km/s and a transfer time of 62.855 days. The trajectory can be seen in Figure 6.12, as a 

transfer from a 3:4 resonance to a 1:4 resonance. Figure 6.13 shows a series of steps along the 

trajectory. Steps (a) and (b) are determined by the initial parking orbit variables 𝑝1, 𝑞1, 𝑟1, 𝜏1𝑈,𝑆, 

𝜏2,𝑈𝑆, and 𝑤𝑠 which are chosen by the GA. Steps (c) - (e) detail the TPBVP transfer which are 

determined by the NLP decision variables. Steps (f) and (g) are determined by the final parking 

orbit variables 𝑝2, 𝑞2, 𝑟2, 𝜏1,𝑆, 𝜏2,𝑆, and 𝑤𝑢 which are also chosen by the GA.  
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Figure 6.12 Resonance to resonance sample trajectory from the solution set. This is a 3:4 

resonance to a 1:4 resonance.  

 

(a) Coast along the initial parking orbit a prescribed 𝜏1,𝑈𝑆 time units.  

Figure 6.13 Trajectory broken into discrete steps (a)-(g). 
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(b) The spacecraft performs a miniscule burn, in the 𝑤𝑠 direction, to jump onto the unstable 

manifold and coasts for 𝜏2,𝑈𝑆 time units. 

 

(c) The spacecraft coasts along the unstable manifold an additional 𝑡𝑐,𝑓 time. This is a 

decision variable set by the NLP.   

Figure 6.13 Continued. 
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(d) The spacecraft performs a burn and coasts for 2𝑡1/2 time units and then performs the 

second and final burn. 

 

(e) The spacecraft coasts an additional 𝑡𝑐,𝑏 time units. This is a decision variable set by the 

NLP. 

Figure 6.13 Continued. 
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(f) The second burn jumps the spacecraft onto the stable manifold arc at the state associated 

with the prescribed 𝜏2,𝑆 time along the arc. 

 

(g) The spacecraft performs another miniscule burn, in the 𝑤𝑠 direction, off the manifold and 

onto the periodic orbit. The spacecraft then coasts for 𝜏1,𝑆 time units bringing it back to 

its original state on the 𝑥-axis. The spacecraft is now on the final 1:4 parking orbit.  

Figure 6.13 Continued. 
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Table 6.6 shows all the final decision variable values for the specific trajectory shown in Figure 

6.12. Listed are the decision variables for the GA as well as the decision variables for the NLP.    

Table 6.6 Final GA and NLP decision variables for 3:4 to 1:4 transfer.  

Variable Value (Dimensionless) 

𝑝1: 𝑞1 3:4 

𝑟1 0.25 Fixed 

𝜏1,𝑈𝑆 0.935836151051 

𝜏2,𝑈𝑆 1.49687681126 

𝑤𝑈𝑆 𝑤𝑈𝑆,𝑠 

𝑝2: 𝑞2 1:4 

𝑟2 0.95 Fixed 

𝜏1,𝑆 0.354857685496 

𝜏2,𝑆 1.49671164469 

𝑤𝑆 𝑤𝑆,𝑠 

𝑡1/2 7.23696854367 

𝑡𝑐,𝑓 0.116277755424 

𝑡𝑐,𝑏 0.0825358576926 

𝜃𝑓 4.71183726357 

|𝑣|𝑓 0.00589127284335 

𝜃𝑚 2.47815109481 

|𝑣|𝑚 0.0 

𝜃𝑏 0.0 

|𝑣|𝑏 0.0911990450789 
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6.4 Summary of Results 

The three missions detailed above show a range of missions that DyLAN is able to solve with 

resonance orbits and their manifolds incorporated into the hybrid optimal control algorithm. These 

missions, particularly the LEO to resonance and resonance to resonance with fixed 𝑟 parameter, 

are of particular interest to the astrodynamicist community because they display low-energy means 

of touring cislunar space. In addition to the few shown trajectories, each mission was solved such 

that a trade space of solutions for the multi-objective Pareto front was provided all at once. All 

three of these missions took approximately 3.5 hours to run on a computer cluster of 48 processors, 

one for each individual to be computed embarrassingly parallel. Furthermore, these solutions were 

generated autonomously beyond a human bounding the decision variables. In summary, by using 

resonance dynamical structures in the DyLAN tool, a trade space of solutions to three different 

missions were generated autonomously in a computationally efficient manner in a way that has 

not been done before.     
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Chapter 7 CONCLUSIONS 

7.1 Summary of Contributions 

The work in this thesis extends previous work on trajectory design using resonance orbits. Vaquero 

[26] [27] [42]  and Anderson [20] [21] [22] [24] [38] [44] have been particularly active in recent 

years studying resonance orbits in this manner. This work detailed incorporating resonance orbits 

into automated low-energy trajectory design in the three-body problem. Incorporating resonance 

orbits autonomously was done by two significant efforts. The first effort was to generate resonance 

orbits in a robust fashion. These orbit generation methods were automated and incorporated into 

the larger low-energy trajectory solver, DyLAN. The result was robust generation for a number of 

𝑝: 𝑞 ratios in three-body systems, and specifically demonstrated for both high (Jupiter-Europa) and 

low (Earth-moon) relative mass systems. This required implementing robust algorithms such as 

multiple shooting, radial continuation, and gravitational parameter continuation. The second effort, 

once robust generation was developed, was to incorporate the resonance dynamical structure into 

DyLAN’s hybrid optimal control algorithm. This included identifying key parameters that define 

a resonance orbit and manifold and determining bounds for each decision variable that give the 

HOC algorithm a proper design space. This integration was tested in three basic missions: a LEO 

parking orbit to resonance orbit, a resonance to resonance transfer with open 𝑟 decision variable, 

and a resonance to resonance transfer with fixed 𝑟 values. These missions are examples of practical 

mission applications of the tool as they represent real trajectories of interest for cislunar missions.  

This effort has some limitations in the types of trajectories it can produce. The techniques detailed 

here can cover a larger range of resonance orbits in the Jupiter-Europa system where the two-body 

approximation is more accurate. Unfortunately, the range of resonance ratios is reduced in the 

Earth-Moon system where the two bodies have much closer mass. Additionally, the range of the 

resonance families is limited. For example, most orbits detailed here are defined within 𝑟 ∈

[0.25, 0.95] normalized distance units on the 𝑥-axis. Notice this excludes orbits near both the 

primary, secondary, and beyond the secondary. Lastly, the work only details single-phase 

impulsive thrust missions but there is a significant potential in missions utilizing low-thrust 
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propulsion and multiple phases. These limitations are strong candidates for future work developing 

DyLAN and its utilization of resonance dynamical structures.   

7.2 Future Work 

Future work should be aimed at making the resonance generation more robust, expanding 

generation capabilities to encompass unstable resonances close to the secondary body, enable 

detecting resonance manifold intersections as an alternative to solving the TPBVP, and increasing 

the fidelity of the trajectories. Anderson, Vaquero, and Howell have developed intuition for 

resonance generation, selection, and manipulation. Capturing this intuition into autonomous 

algorithms would enable better initial guesses at solutions. Better initial guesses would enable 

DyLAN to converge to a family of solutions with fewer iterations. With fewer generations the 

overall runtime of the program would be reduced. Additionally, the GA internal parameters were 

held fixed for this work. It is possible these parameters could be tuned to better enable missions 

incorporating resonance orbits and their manifolds. Lastly, the missions could be expanded to 

include low-thrust propulsion and multiple phases. Each of these potential avenues are discussed 

in more detail in the following subsections. 

7.2.1 Robust Manifold Generation vs Computational Efficiency 

One of the major limitations of this work is the range of resonance orbits that can be generated 

robustly. The more resonance orbits that can be generated, the wider the design space and the more 

options the tool DyLAN has at its disposal for finding low energy transfers. This thesis 

incorporated multiple shooting and continuation schemes as a means of addressing this challenge; 

however, these two numeric techniques are not sufficient at producing a comprehensive range of 

resonance orbits. Additionally, these workarounds slow down the runtime of the tool and encumber 

the program with many checks and failsafes to prevent the likelihood of an orbit failing to generate.  

To improve the computational efficiency of resonant orbit generation, robust continuation schemes 

should be developed and integrated. Pseudo-arc continuation does not continue along a physical 

dimension but rather along the solution function [42] where each point on the curve is a member 

of the resonance family. However, because the continuation is along the solution function, it is 

difficult to predict the continued states and thus difficult to target a specific resonance orbit. 
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Pseudo-arc continuation was explored briefly but abandoned due to time constraints. Further 

exploration in Pseudo-arc continuation as well as finer improvements in the continuation schemes 

implemented in this thesis could significantly increase the robustness and reduce computational 

complexity of resonance orbits.  

An additional solution would be to read in values of pre-generated orbits stored in databases [52]. 

These databases can be extended to full families of orbits with the simple continuation schemes 

detailed in this thesis and would substantially reduce the computational complexity of generating 

a periodic orbit.    

7.2.2 Resonance Orbits Close to the Secondary 

Anderson utilized resonance orbits as a means of slowing down a spacecraft’s approach towards 

Europa in the Jovian system [22]. The close approach distance on the secondary body during the 

designed resonance orbits were much closer than is traditionally used. Resonance orbits that 

approach the secondary body are difficult to generate because they stop following the two-body 

approximations detailed in section 4.1.1 and their period becomes less predictable because the 

spacecraft tends to linger by the secondary body. Anderson details some techniques for generating 

resonance orbits close to the secondary but acknowledges that there is still future work to be done 

in this area [43]. These techniques were beyond the scope of this initial work in automating 

resonance orbits, but are a strong avenue for future development. This feature would enable 

DyLAN to solve an expanded set of mission profiles such as consecutive secondary flybys as a 

means of being captured in an orbit about the secondary.  

7.2.3 Manifold Intersections 

Vaquero and Anderson have both shown Poincare sections to display the intersection of resonance 

manifold arcs [25] [38]. The benefit of looking at these surfaces is that it guarantees the two arcs 

are matching in position and in one of the two velocity components. Usually, only a minor Δ𝑣 is 

required to transition from one arc to another. Intersection on a Poincare section eliminates the 

need for solving a TPBVP between arcs altogether and results in a very fuel-efficient transport 

(sometimes at the cost of TOF). Detecting these shapes and more importantly where two shapes 

intersect autonomously is a significant amount of effort.  
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7.2.4 High Fidelity Modeling 

DyLAN has been developed to be a preliminary mission design tool. This means results from 

DyLAN would enable mission level decisions at an early point in the process. DyLAN currently 

works in the CR3BP because it is a significant increase in fidelity from a two-body or even patched 

conic model. However, as detailed in section 2.3 the CR3BP has major underlying assumptions 

that are not truly present in the physical universe. Increasing the fidelity of the models used would 

increase the correlation between design and reality. Therefore, adding more fidelity to DyLAN 

would strengthen its utility for preliminary mission design. Increasing fidelity can be achieved via 

two strategies. One strategy would be to upgrade the models used. Upgrading the models means 

transitioning from the CR3BP equations of motion to the four-body problem or higher dimensions 

of problems. Additionally, the bodies would be orbiting in their true motions such as in the 

elliptical three-body problem. Furthermore, spherical harmonics could be used instead of the point 

mass assumptions to better model the gravitational effects on the spacecraft. The second strategy 

would be to use the trajectory produced in the lower fidelity three-body model as an initial guess 

for a solver in an 𝑛-body environment such as GMAT. Both strategies require a substantial amount 

of effort but either would greatly increase the confidence in solutions produced by DyLAN when 

making critical mission level design decisions.   

7.2.5 Outer Loop Tuning 

The genetic algorithm has several internal parameters that influence the evolution of individuals 

over the generations. There are a number of parameters such as mutation rate, cross over rate, 

elitism percent, as well as the population size and number of generations. The work in this thesis 

held these values constant for all three missions. It is a worthwhile effort to study how these 

parameters affect the convergence of solutions and if different combinations of parameters 

converge to different solution spaces entirely. 

7.2.6 Low-Thrust Propulsion 

This work uses impulsive thrust as the only means for a spacecraft performing a burn to change its 

velocity. However, modern missions are diverging from impulsive thrust and beginning to use 
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low-thrust, such as electric propulsion, more regularly. Studying resonance transfers with low-

thrust would build off observations made by Anderson [21] [24] [38] and expand the mission 

capabilities for DyLAN. There are a number of low-thrust transcriptions that would need to be 

seriously considered such as temporal distribution vs spatial distribution [53] of control nodes and 

how to manage the large volume of decision variables in DyLAN’s hybrid optimal control 

algorithm.  

7.2.7 Multi-phase Transfers 

Using resonance orbits as an intermediate orbit for a mission or linking multiple resonance orbits 

together is a logical progression from the single-phase trajectory work presented here. Historically, 

Lyapunov orbits and their manifolds have been sought after as means for LEO to low lunar orbit. 

Using resonance dynamical structure instead of Lyapunov orbits and their manifolds is an 

interesting challenge that would be of significant value to the astrodynamicist community. With 

multi-phase mission design the trajectories can be a unique combination of resonance orbits and 

Lyapunov orbits to accomplish a desired mission. Vaquero showed a LEO to resonance to 

Lyapunov orbit about the L4 equilibrium point [42]. Building off her techniques and incorporating 

them into an automated algorithm for multi-phase mission analysis is an important follow on to 

the work in presented in this thesis.  

7.3 Conclusion 

The work detailed in this thesis demonstrates resonance orbits and their invariant manifolds in an 

automated hybrid optimal control software package called DyLAN. Example missions such as 

LEO to cislunar space and resonance to resonance transfers are solved for and discussed at length.  

Future work on improving the capabilities of DyLAN and how the software can efficiently utilize 

the resonance dynamical structure are also discussed. The aforementioned future work will benefit 

the field of trajectory design in the three-body problem because DyLAN provides a platform for 

preliminary mission level trajectory design in a way that does not depend on a human in-the-loop. 

Moving towards automated solutions will enable rapid prototyping of missions and thus increase 

the likelihood that a prospective mission becomes realized.   
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