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ABSTRACT

This dissertation presents approaches to improve circuit reliability and energy

efficiency from different angles, such as verification, logic synthesis, and

functional unit design. A variety of algorithmic methods and heuristics are

used in our approaches such as SAT solving, data mining, logic restructuring,

and applied mathematics. Furthermore, the scalability of our approaches was

taken into account while we developed our solutions.

Experimental results show that our approaches offer the following advan-

tages: 1) SAT-BAG can generate concise assertions that can always achieve

100% input space coverage. 2) C-Mine-DCT, compared to a recent publication,

can achieve compatible performance with an additional 8% energy saving and

54x speedup for bigger benchmarks on average. 3) C-Mine-APR can achieve

up to 13% more energy saving than C-Mine-DCT while confronting designs

with more common cases. 4) CSL can achieve 6.5% NBTI delay reduction

with merely 2.5% area overhead on average. 5) Our modulo functional units,

compared to a previous approach, can achieve a 12.5% reduction in area and

a 47.1% reduction in delay for a 32-bit mod-3 reducer. For modulo-15 and

above, all of our modulo functional units have better area and delay than

their previous counterparts.

ii



To my parents and Judy, for their love and support.

To my feathered friends, for our invaluable shared memory.

iii



ACKNOWLEDGMENTS

I would like to express my special thanks to my adviser Prof. Deming Chen,

who always encourages me to be bold and brave. I would like to thank you for

advising me on my research and also giving me the freedom to explore different

career paths. My dissertation would not be possible without your advice

and wisdom, and my career would not be the same without your profound

influence. I also would like to especially thank Prof. Rob A. Rutenbar,

who runs a MOOC course, “VLSI CAD: Logic to Layout”, and is also my

doctoral committee member. I would like to thank you for inviting me to

build and TA this first EDA MOOC course. It’s my pleasure to be part

of this awesome and impactful course. I am also grateful to my doctoral

committee members, Prof. Martin D. F. Wong and Prof. Wen-Mei Hwu. Their

constructive comments and suggestions have been proven to be extremely

helpful for this dissertation.

Meanwhile, I would like to thank Lingyi Liu, Lu Wan, Subhendu Roy, and

Keith Campbell for their collaboration in our various research projects that

are included in this dissertation. Furthermore, I would like to thank all my

friends I met at UIUC, who have kept me company over the years.

Finally, I give my deepest gratitude to my parents and my brother who

have been always supportive throughout my whole life. I also want to thank

my girlfriend, Judy, for the great support in my PhD life. I cannot express

my love and gratitude for them in words.

iv



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 SAT-BAG: GENERATING CONCISE ASSERTIONS
WITH COMPLETE COVERAGE . . . . . . . . . . . . . . . . . . 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 SAT-based automatic assertion generation method . . . . . . . 10
2.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

CHAPTER 3 C-MINE: DATA MINING OF LOGIC COMMON
CASES FOR IMPROVED TIMING ERROR RESILIENCE
WITH ENERGY EFFICIENCY . . . . . . . . . . . . . . . . . . . . 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 C-Mine algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Comparison and discussion . . . . . . . . . . . . . . . . . . . . 44
3.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 46
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.8 Area reduction through redundant logic and command fraig sweep 52

CHAPTER 4 CSL: COORDINATED AND SCALABLE LOGIC
SYNTHESIS TECHNIQUES FOR EFFECTIVE NBTI REDUCTION 56
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 NBTI-aware logic synthesis . . . . . . . . . . . . . . . . . . . . 61
4.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

CHAPTER 5 COST-EFFECTIVE ERROR DETECTION THROUGH
MERSENNE MODULO SHADOW DATAPATHS . . . . . . . . . . 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

v



5.4 Modulo functional units architecture . . . . . . . . . . . . . . 85
5.5 Cost-effectiveness evaluations . . . . . . . . . . . . . . . . . . 91
5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

CHAPTER 6 CONCLUSION AND FUTURE WORK . . . . . . . . 106

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

vi



CHAPTER 1

INTRODUCTION

As mobile and internet of things (IoT) devices become globally ubiquitous,

consumer demands for performance, reliability, and energy efficiency are

increasing drastically. With technology downscaling to nanometer range,

circuit reliability and energy efficiency have become critical concerns for

robust system designs [1,2]. Unfortunately, reliability and energy efficiency

are necessary design trade-offs. Therefore, this dissertation develops new

reliability- and energy-centric design techniques and frameworks that can

help hardware designers in reducing circuit design effort.

In this dissertation, we conduct several researches to tackle reliability and

energy issues from different angles, such as verification and logic synthesis,

and in different ways like assertions, better-than-worst-case (BTW) design

methodologies, logic restructuring, and low-cost modulo functional units

for self-checking arithmetic components. In addition to reliability improve-

ment and energy efficiency, we also take scalability into account so that our

methodologies can be applied to industry-strength designs.

Assertions are valuable and commonly applied to formal verification and

simulation-based verification in IC design flow [3]. Unfortunately, assertion

generation is a time-consuming process that depends heavily on human

efforts [4]. Some dynamic methods based on simulation and static methods

based on structure analysis are proposed to automate assertion generation

process. However, dynamic methods [5–10] cannot guarantee the quality of

assertions due to incomplete simulation, while static methods [11,12] might

have scalability limits. With the significant advances in Boolean satisfiability

(SAT) solving, SAT solving becomes a promising technique to overcome

these methods’ weaknesses [13–15]. Therefore, we proposed a SAT-Based

Automatic Assertion Generation method (SAT-BAG), which can avoid the

drawbacks of dynamic methods while circumventing scalability issues faced

by static methods. We successfully formulate assertion generation to a SAT
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problem and use unit assumption to generate concise assertions. Furthermore,

we consider input constraints and word-level features to generate meaningful

and high-readability assertions.

The better-than-worst-case (BTW) design methodology [16, 17] is well-

known for its potential to improve circuit energy efficiency, performance, and

reliability. However, most existing methods [18] do not provide sufficiently

scalable solutions. Thus, we proposed a Common case Mining method (C-

Mine), which combines two scalable techniques, data mining [19] and SAT

solving [20], to provide scale-up solutions for improving energy efficiency by

optimizing common cases. Data mining can efficiently extract patterns from

an enormous data set, and SAT solving is famous for its scalable verification.

This work shows that the combination of these two techniques can result in

the best performance in terms of energy saving and scalability.

Negative bias temperature instability (NBTI) has become a major reliability

concern in nanoscale designs. Although several previous studies have been

proposed to address the NBTI effect during logic synthesis, their performance

is limited because of focusing on a certain logic synthesis stage. Additionally,

their complicated algorithms are not scalable to large designs. To tackle this,

we proposed a Coordinated and Scalable Logic synthesis approach (CSL),

which integrates techniques at different logic synthesis stages, ranging from

subject graph to technology mapping and mapped netlist, to achieve an

effective NBTI reduction. To our best knowledge, this is the first work that

considers and mitigates NBTI impact in subject graphs, the earlier stage of

logic synthesis.

Modulo (residue) arithmetic is useful for creating a shadow datapath to

check the computation of an arithmetic datapath and involves three key steps:

reduction of the inputs to modulo shadow inputs, computation with those

shadow values, and checking the outputs for consistency with the shadow

outputs. The focus of this work is to develop new gate-level architectures and

algorithms to reduce the cost of modulo shadow datapaths. We proposed low-

cost architectures for all four key functional units in a shadow datapath: (1)

a modulo reduction algorithm that generates architectures consisting entirely

of full-adder standard cells; (2) minimum-area modulo adder and subtractor

architectures; (3) an array-based modulo multiplier design; and (4) a modulo

equality comparator that handles the residue encoding produced by the above.

To demonstrate the applicability of our approach for reliability improvement,
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we also used these building blocks to create self-checking multiply-accumulate

and linear algebra primitive datapaths.

The contributions and results of this dissertation are summarized as follows:

• SAT-BAG [21] is proposed to tackle reliability issues by automatically

generating concise assertions with complete coverage. Experimental

results on industry-strength designs, SpaceWire, Ethernet, and Floating

Point, show that the generated assertions can always achieve 100% input

space coverage. In addition, SAT-BAG can remove vacuous assertions by

considering input constraints, and generate highly readable word-level

assertions using the discovered word-level features.

• C-Mine-DCT [22] is proposed to improve the energy efficiency of BTW

design by optimizing common cases. The experimental results show

that, compared to a recent publication, C-Mine can achieve compatible

performance with an additional 8% energy savings, and 54x speedup

for bigger benchmarks on average.

• C-Mine-APR [23] is proposed to compensate for the weakness of C-Mine-

DCT, the typical limitation of tree-based algorithms, and to approach

the problem from a different angle. The experimental results show

that C-Mine-APR can achieve up to 13% more energy saving than

C-Mine-DCT while confronting designs with more common cases.

• CSL [24] is proposed to address the NBTI effect, the major reliability

issue, from the logic synthesis perspective. Experimental results on

industry-strength benchmarks show that CSL can achieve 6.5% NBTI

delay reduction with merely 2.5% area overhead on average, while a

previous work barely gets NBTI delay reduction when the circuits are

optimized beforehand, the circuit sizes are large, and standard cell

libraries are richer.

• We proposed new gate-level architectures [25]1 for Mersenne modulo

functional units targeting shadow datapaths for reliability improvement.

The experimental results show that compared to a previous state-of-

the-art approach, a 12.5% reduction in area and a 47.1% reduction

in delay for a 32-bit mod-3 reducer can be achieved; furthermore, our

1This work is a collaboration with Keith Campbell.
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reducer costs, which are the major costs in shadow datapaths, do not

increase with larger modulo bases, and for modulo-15 and above, all

of our modulo functional units have better area and delay than their

previous counterparts. Using these building blocks to create self-checking

multiply-accumulate and linear algebra primitive datapaths, the cost-

effective results can be achieved such as 32-bit datapath overheads of

6–10% for a 3–61× reliability improvement and overheads of 15–20%

for a 121–2477× reliability improvement.

The rest of the dissertation is organized as follows: Chapter 2 presents SAT-

BAG, our SAT-based assertion generation work. Chapter 3 presents our

proposed C-Mine methodologies, which aim at common case optimization for

low-power BTW designs from different angles. Chapter 4 presents CSL, our

coordinated and scalable logic synthesis for reducing NBTI effect. Chapter

5 presents our low-cost Mersenne modulo functional units targeting shadow

datapaths for reliability improvement. Chapter 6 draws conclusions and

outlines future work.
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CHAPTER 2

SAT-BAG: GENERATING CONCISE
ASSERTIONS WITH COMPLETE

COVERAGE

2.1 Introduction

Verification is the bottleneck in IC design flow and this obstacle becomes more

serious as the complexity of design grows. Assertion-based verification [3] is

widely used in industry to facilitate checking of desired properties. Assertions

are applied to formal verification for property checking and to simulation-based

verification for monitoring design behavior and locating bugs [3].

In the verification process, assertion generation is a tedious and time-

consuming manual procedure. In order to generate high-quality assertions,

this manual procedure would take several refining iterations and lots of

manpower [4]. Therefore, methods to automatically generate assertions

[5–10,26, 27] are proposed to relieve this hardship. Assertions, automatically

generated from a register transfer level (RTL) design, can be used in future

regression tests to guarantee the quality of design, and also help designers

detect unexpected behaviors. Assertions are typically generated for a target

RTL signal, and are of the form A→ B, which includes all propositional and

temporal formulas in a standard temporal logic like LTL [28].

Dynamic methods generate assertions based on dynamic simulation or

execution paths of RTL designs [5–10]. Some of them also check the correctness

of candidate assertions using formal techniques [5, 10]. These techniques

examine simulation data and infer behavior, often using machine learning

[7, 10] and pattern matching algorithms [8] for the same. The quality of

assertions thus inferred heavily depends on the information provided by

simulation data. The generated assertions are always biased towards the

simulation data. This is contradictory to the intention of assertion generation

process. If generated assertions have exactly the same behaviors as the
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simulation data from designers, no new bugs or design behaviors can be

exposed or covered by the generated assertions.

Moreover, directed or even random simulation patterns cannot cover all

behaviors of the design. Insufficient simulation may result in corner case or

rare case scenarios not being covered. The generated assertions fail to cover

the corner cases of the design. However, these corner case assertions are more

valuable to the verification process than typical case scenarios. In addition,

insufficient simulation will lead to poor guesses by the machine learning

algorithms, thereby leading to overfitting, or many redundant propositions

in the assertion [7, 10]. Candidate assertions generated from simulation data

need extra time and effort to formally verify their correctness.

Static analysis of source code and models have been used in software for

generating assertions [11, 12] and in deductive verification for generating

invariants [29]. In hardware, the techniques in [26,27] also generate assertions

based on structural analysis of designs. Static analysis can generate accurate

assertions without spending formal verification time and effort in checking

them. It can also cover 100% of the design input space without reliance on

“typical case scenarios”.

The downside in static analysis is the limited scalability. In the context of

assertion generation, however, scalability is not a critical issue, since assertions

spanning more than 2 − 3 modules are generally unreadable for the users.

For the scaling required by the assertion generation problem, sophisticated,

scalable Boolean SAT based algorithms can be applied very effectively [13–15].

In this work, we propose a SAT-Based Automatic Assertion Generation

method (SAT-BAG), which can avoid the drawbacks of dynamic methods

while circumventing scalability issues faced by static methods. SAT-BAG

converts the assertion generation problem into an ALL-SAT problem [20].

The ALL-SAT problem is to generate all satisfying assignments for a SAT

problem. The design information is completely stored in a SAT instance

instead of simulation data. With this SAT instance, SAT-BAG can generate

concise satisfying assignments for target signals. These satisfying assignments,

together with the target signal value, can be regarded as assertions.

When directly applying SAT solvers to generate satisfying assignments

for target signal, SAT solvers give concrete value to every variable in the

design. As a result, the generated assertions that involve one proposition

for each variable are very verbose. However, not all assignments are nec-
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essary for determining the target variable’s value, and there are a lot of

redundant propositions in the generated assertion. In this work, we apply a

SAT technique, unit assumption [13], to remove redundant propositions in

assertions. Unit assumption is a SAT technique that allows users to make

assumptions for variables during SAT solving and reports which assumptions

contribute to the result. In our context, the propositions of an assertion

can be viewed as assumptions for a target signal. We can examine which

propositions contribute to the target, and include only those in our generated

assertions.

Our SAT-BAG method stores the entire design as SAT instance and also

considers design constraints on the input signals. Generating assertions

without regard to the input constraints may lead to vacuous assertions, in

which the antecedent conditions are never reached or satisfied in the design.

Therefore, to avoid potentially generating assertions on unreachable states,

SAT-BAG converts input constraints into SAT clauses that can filter out

vacuous assertions generated for unreachable states, and also assist in further

redundancy removal from the assertions. For example, a bus controller may

specify the legal work mode of the bus, and our SAT-BAG method can then

incorporate these constraints for shaping input signals in work mode.

To further optimize our proposed SAT-BAG method, we use word-level

features to improve the readability and input space coverage of generated

assertions. Although SAT-BAG can generate concise and high coverage asser-

tions, the generated assertions are at bit-level and thus have low readability,

and the number of bit-level assertions might be large. Therefore, our SAT-

BAG method uses word-level features to elevate the assertions to word level.

Take design c = a[k : 0] ≥ b[k : 0] as an example, SAT-BAG will generate one

word-level assertion instead of many bit-level assertions for valid bit vector

combinations of a and b. Word-level features will be discovered from RTL

design and added into SAT instances to let SAT-BAG generate word-level

assertions.

Our contributions in this work are as follows. We propose a SAT-BAG

method with unit assumption technique to generate concise assertions for given

target signals. Our SAT-BAG method is not biased toward any simulation

data and is able to generate assertions to fully cover both typical case scenarios

and corner case scenarios. Our method can also filter out vacuous assertions

by taking into account input design constraints. We also discover word-level
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features from RTL design and apply these features to generate word-level

assertions, which have higher readability and expressiveness.

2.2 Preliminaries

2.2.1 Assertion

Our assertions are of the form antecedent→ consequent, where antecedent

and consequent are propositional or temporal logic formulas. We use notation

of SystemVerilog assertion [30] for expressing assertions in this work. An

example assertion is (in0 == 0 && in1 == 1) ##1 (in1 == 1)→ (t == 1).

It reads as follows: If both (in0 = 0) and (in1 = 1) in the current cycle, and

(in1 = 1) in the next cycle, then the target signal t should evaluate to true.

In this work, propositions can contain one of two features. A bit-level

feature is a bit signal evaluating to true or false. A word-level feature is a

first order formula in terms of word-level variables, vectors of bit signals,

that evaluates to true or false. In this work, propositions in antecedents

of assertions only consider boundary input signals, which are composed of

primary inputs (PIs), and registers, also called pseudo primary inputs (PPIs).

In our assertions, the consequent contains only one proposition – a target

signal that evaluates to true/false (equals 1/0). A word-level assertion is an

assertion having at least one word-level feature. An example of a bit-level

assertion is: (in0 == 1 && in1 == 0) → (t == 0), while an example of a

word-level assertion is: (in0[k : 0] ≥ in1[k : 0])→ (t == 1).

Previous techniques generate assertions within a sliding time window [7,10].

We use a similar concept here. A parameter window size (w) is used to restrict

the duration of time cycles for temporal assertions we want to generate. For

the example at the beginning of this section, w is set to 2, which means

temporal assertions involving boundary input signals across two cycles will

be generated.

A vacuous assertion is an assertion in which the antecedent cannot be

satisfied. Consider the truth table of a target variable’s function in terms of

features. A table entry is covered by a given assertion if the concrete value of

the entry can satisfy the antecedent of the given assertion. The input space
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coverage of an assertion denotes the percentage of truth table entries covered

by the assertion.

2.2.2 Boolean satisfiability problem

A Boolean satisfiability (SAT) problem is a decision problem [20]. Given a

finite set of Boolean variables V = {v0, . . . , vn}, a literal l is either a Boolean

variable vi or its negated form ¬vi or ∼ vi. A clause is a disjunction of literals.

A SAT instance is a conjunction of clauses, also named as conjunction normal

form (CNF). An assignment over V assigns each Boolean variable vi either

true or false value. A SAT instance is satisfiable if there exists an assignment,

named satisfying assignment, such that the SAT instance evaluates to true;

otherwise it is unsatisfiable.

An ALL-SAT problem is a variation of the SAT problem. While the tradi-

tional SAT problem only concerns one satisfying assignment for a satisfiable

SAT instance, an ALL-SAT solution enumerates all satisfying assignments

of a SAT instance. All satisfying assignments can be achieved by solving

multiple SAT problems repeatedly. Each time a new satisfying assignment ψ

is derived, the blocking clause of ψ will be added into the SAT instance to

avoid deriving the same ψ again. The blocking clause of ψ is a disjunction

of negated values of ψ. This collecting process will continue until no more

satisfying assignments can be derived.

2.2.3 Conversion of a circuit into SAT instance

An RTL design will be compiled to its corresponding circuit netlist. Given the

circuit netlist, it can be converted to a SAT instance such that the functionality

of design is completely preserved [31, 32]. The conversion, named Tseitin

transformation [31], can be done in linear time. For instance, a two input

AND gate, c = AND(a, b), can be converted into the following three clauses:

(va ∨ ¬vc) ∧ (vb ∨ ¬vc) ∧ (¬va ∨ ¬vb ∨ vc)

9
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Figure 2.1: Flow chart of SAT-BAG.

2.3 SAT-based automatic assertion generation method

This section will use a running example in Fig. 2.3 to introduce how to

construct a SAT instance for assertion generation, and how to efficiently

generate assertions with unit assumption technique and enhance the quality

of assertions by applying input constraints. In addition, discovering word-level

features and generating word-level assertions are also discussed in this section.

The overall flowchart of SAT-BAG is shown in Fig. 2.1. Our contributions

are shown in dotted boxes. First of all, an RTL design is converted into

a gate netlist with bit- and word-level features, which are discovered from

static analysis of RTL’s CDFG. Next, the gate netlist is converted to a SAT

instance based on window size. The constraints for a target signal are set

as well. If needed, the input constraints of the design will be converted to

SAT clauses and added to the SAT instance. With this SAT instance, we

begin to repeatedly generate satisfying assignments. Each assignment can

determine features’ values, and redundant features can be removed by unit

assumption. After that, concise bit- and word-level assertions will be collected

and reported. The algorithm terminates after no more satisfying assignments

can be generated.
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2.3.1 Formulation of an All-SAT problem for assertion
generation

Given a sequential circuit synthesized from an RTL design, the transition

functions (T ) can be extracted as Fig. 2.2(a). PIs and POs are primary

inputs and outputs, while PPIs and PPOs are register signals, pseudo primary

inputs and outputs. Next, we unroll the circuit based on the parameter w,

which determines how many cycles we generate temporal assertions for. As

shown in Fig. 2.2(b), if window size w = 3, three T ’s will be duplicated. The

internal register signals in these functions are connected. Signals in each T are

annotated with superscripts, −2, −1, and 0, according to the corresponding

time cycle. The superscript 0 represents the current cycle while −1 and −2

represent the previous two cycles.

A set of boundary input signals of the unrolled circuit based on window

size w is BI = PIs0 ∪ . . .∪PIs−(w−1) ∪PPIs−(w−1), where PIsi and PPIsi

denote the sets of PI and PPI signals at cycle i, respectively. For a target

signal t0, BI t
0

is a subset of BI only collecting boundary input signals that

are in the logic cone of t0, as the shaded region in Fig. 2.2(b). Therefore,

the feature set F for generating assertions for the target signal t0 will be set

to BI t
0

because t0’s value is obviously determined by the boundary input

signals in its logic cone.

Definition 1. Unit assumption [13] is a technique that allows users to as-

sume specific conditions for each SAT solving through function interface

S.solve(assumps), denoted as Sassumps, where S is a SAT instance and as-

sumps is the conjunction of literals like a0 ∧ a1 ∧ . . . ∧ an. During each SAT

solving, literals ai are temporarily assigned to true. Therefore, if there exists

an assignment that satisfies the SAT instance as well as assumptions, that

satisfying assignment is returned. On the other hand, if the SAT problem is

unsatisfiable under the given assumptions, the subset of those assumptions

that collects assumptions contributing to the unsatisfiable result is returned.

After each SAT solving, the unit assumptions are discharged.

The unrolled circuit is converted to a SAT instance S as mentioned in Sec-

tion II.C. To generate assertions for t0 = 1, an assumption for the target signal

t0 = 1 would be added during solving S by function interface S.solve(vt0),

where vt0 is a Boolean variable representing signal t0 in S. This assumed S is

denoted as St0 . With St0 and F , ALL-SAT technique is applied to collect all
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satisfying assignments by repeatedly solving and blocking. Each satisfying

assignment ψ for St0 can determine a unique vector of values for features in

F which leads to t0 = 1. Therefore, this vector of values and t0 = 1 can be

considered the antecedent and consequent of an assertion, respectively. With

iterative collection of satisfying assignments, all assertions for t0 = 1 can be

generated.

Circuit
(T)

PIs

PPIs
Circuit
(T0)

PIs-2

PPIs-2

Circuit
(T+1)

Circuit
(T+2)

Window size = 3

PIs-1 PIs0

(a) (b)

t0
POs POs0

PPOs

Figure 2.2: Unroll circuit based on parameter w and determine relevant
boundary inputs by logic cone information.

Using the running example in Fig. 2.3 to demonstrate, we generate assertions

for o2 = 0 with window size w = 1. Here we omit cycle annotations of

signals for better readability, since this is a single cycle assignment. The

candidate feature set is F = BIo2 = {a, b, ppi1}. The design is converted to a

SAT instance S and the corresponding Boolean variables in S representing

signals a, b, ppi1 and o2 are va, vb, vppi1 and vo2 , respectively. We then

collect all satisfying assignments for S¬o2 . Each assignment can decide a

vector of values for [va, vb, vppi1 ]. In this case, we will collect 7 vectors

for [va, vb, vppi1 ] = {000, 001, . . . , 110}, and each vector can be viewed as

an assertion. For example, the vector [0, 1, 0] stands for a valid assertion

(a == 0 && b == 1 && ppi1 == 0)→ o2 == 0.

Obviously, these 7 assertions, converted from above 7 vectors, are valid

assertions but not concise assertions due to including redundant propositions.

Therefore, the method proposed to generate concise assertions using unit

assumption is introduced in the next section.

2.3.2 Generation of concise assertions using unit assumption

When SAT-BAG computes a vector for features in F , it will apply unit

assumption to check whether all these features are necessary to determine

12



AND 

OR 

f1 

(a) 

a 
b 

c 
o1 

o2 

AND 

OR 

(b) 

a 
b 

c 
o1 

o2 

ppi1 

ppo1 

AND

OR

(T0) 

Figure 2.3: A running example.

the value of target signal and remove redundant features from the vector. In

addition, unit assumption also can accelerate the process of collecting vectors

by blocking several satisfying assignments at the same time.

For the same example, if SAT-BAG computes a vector [0, 1, 0] for [va, vb,

vppi1 ], unit assumption is applied to check whether all features a = 0, b = 1,

and ppi1 = 0 are necessary for determining o2 = 0. First of all, we examine

the necessity of ppi1 = 0. The original assumption for S is changed from

o2 = 0 to o2 = 1 and additional assumptions a = 0, b = 1 are added to S as

well. Now we solve S under new assumptions, which is S.solve(vo2 ∧¬va∧ vb),
and marked as So2∧¬a∧b.

If the result of So2∧¬a∧b is satisfiable, that means signal o2 can be 1 without

the feature ppi1 = 0. Hence, the feature ppi1 = 0 is critical to determine

o2 = 0 and cannot be removed from the vector. And the process will continue

examining the remaining features. In this case, the result of So2∧¬a∧b is

unsatisfiable, which means these two features a = 0 and b = 1 are enough

to determine signal o2 = 0 and the feature ppi1 = 0 is redundant. Therefore,

the vector can be optimized from [0, 1, 0] to [0, 1, X], where X is a don’t-care

term.

Furthermore, many redundant features can be caught simultaneously, be-

cause unit assumption will also report the subset of assumptions that really

contributes to the unsatisfiable result. In this case, {vo2 ,¬va}, a subset of the

original assumptions {vo2 ,¬va, vb}, is reported, and we can know that only

feature a = 0 contributes to this unsatisfiable result and another redundant

feature b = 1 is found. Therefore, the vector can be further optimized from

[0, 1, X] to [0, X,X]. Now we generate a concise assertion (a == 0)→ o2 == 0

13



instead of (a == 0 && b == 1 && ppi1 == 0)→ o2 == 0. In addition, by

blocking the optimized vector [0, X,X], we can avoid generating vectors that

are already covered by [0, X,X]. Therefore, the process of collecting vectors

can be improved as well.

In other words, the original vectors can be regarded as minterms and the

optimized vectors as cubes. Each time we will try to collect cubes instead of

minterms. This not only can help SAT-BAG generate concise assertions but

also can enhance the collecting process by blocking cubes instead of minterms.

2.3.3 Elimination of vacuous assertions and refinement using
input constraints

There might exist constraints on boundary inputs of modules, called input

constraints. These constraints should be taken into account while generating

assertions. On one hand, the inputs of modules or PIs can be driven by

other modules. Obviously these inputs are not real free variables, i.e. some

combinations of the inputs are invalid. There is research [14,33] on generating

this kind of constraint on the connections between modules. On the other

hand, register signals of modules, PPIs, are also not free variables, due to the

presence of some unreachable states. Unreachable states are states for which

there exist no execution traces from the initial states of a given finite state

machine; thus, unreachable states cannot be considered valid state values on

register signals. Reachability analysis [15,34] explores reachable states and

this information can be regarded as a constraint on register signals.

For the same example in Fig. 2.3, if the initial state of flip-flop f1 is set

to 0, the input ppi1 will always be 0 during all clocks. Therefore, the input

constraint ppi1 = 0 should be considered while generating assertions. With

this constraint, the assertion (a == 1 && b == 1 && ppi1 == 1)→ o2 == 1,

though valid, will become a vacuous assertion because ppi1 can never be 1.

In addition, the assertion (c == 0 && ppi1 == 0)→ o1 == 0 can be further

refined to (c == 0)→ o1 == 0.

However, previous work does not take into account input constraints. Their

assertions might be vacuous and might have redundant propositions. There-

fore, in this work, SAT-BAG will take input constraints into consideration

by converting these constraints into SAT clauses [35]. For the same example,

14



PIs 

PPIs 

t 

wf1 = (a[k:0]>b[k:0]) 

wf2 = (State[k:0]=`Run) 

WPOs 

Figure 2.4: Use boundary signals wfi to display the evaluated values of
word-level features.

the constraint ppi1 = 0 can be converted to a SAT clause (¬vppi1). With

these clauses, SAT-BAG can generate more meaningful assertions and more

accurate assertions.

2.3.4 Word-level feature discovery and application

The evaluated values of word-level variables are either true or false; therefore,

these values can be displayed by bit signals wfi as shown in Fig. 2.4. The

signals wfi are added to cycle copies (T s) like primary outputs; thus, they

can be considered features by SAT-BAG for generating assertions as well.

The candidate feature set will be updated to F = BIM ∪WF , where WF =⋃
WPOsi. Furthermore, as to SAT-BAG, word-level features in WF will

have higher priority over bit-level features in BIM to be chosen as propositions

in assertions.

To discover word-level features, an RTL design will be compiled into the

control data flow graph CDFG [36]. There are three typical nodes in the

CDFG: branch, assignment and merge nodes. A branch node represents

a branch statement in RTL; an assignment node represents an assignment

statement in RTL; a merge node represents an end of branch. Word-level

features can be found in branch nodes (ex: if (a ≥ b)) or assignment nodes

(ex: assign c = (a! = b)). We will unroll the design CDFG based on the

window size and trace target signal’s fanin cone backward to the boundary

inputs, PIs and PPIs. Word-level features in terms of boundary input signals

can be collected along the paths of fanin cone.
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2.4 Experimental results

We implemented our proposed method in ABC [37] with a built-in MiniSAT

solver [13]. We present results on SpaceWire (SWR), Ethernet IP core

(ETHNET) and floating point unit (FPU) designs from OpenCores [38] and

IWLS2005 suite [39] for our experiments. All experiments were run on a

Linux machine with Intel Core 2 Quad 2.66GHZ CPU and 8GB RAM.

The experimental results are shown in two subsections. Section 2.4.1

compares of generating bit-level assertions with SAT-BAG and Goldmine

[10], one of the state-of-the-art dynamic works. Section 2.4.2 shows how

optimization techniques, input constraints and word-level features can benefit

SAT-BAG.

2.4.1 Comparison between SAT-BAG and the previous work

Table 2.1 compares the performance of SAT-BAG with Goldmine [10] for

generating bit-level assertions. We set the window size w to 1 or 2 to get

temporal assertions.

From this experiment, we observe that SAT-BAG generates high quality

assertions that have higher input space coverage, and does not miss any

corner case assertions. This is because all test cases can reach 100% input

space coverage. In case StarIdle, SAT-BAG has lower average coverage per

assertions than Goldmine because it generates more additional assertions

that are difficult to be hit by simulation. With these assertions, SAT-BAG

can reach 100% input space coverage while Goldmine can reach only 53.18%.

Due to insufficient simulation, Goldmine also fails to find assertions in some

cases. Furthermore, while Goldmine spends formal verification time and effort

verifying “guesses” by data mining, SAT-BAG does not need this step.

To compare the quality of assertions generated by SAT-BAG and Goldmine,

the redundant proposition distributions of Goldmine’s assertions for WB ACK O

and expa ff are shown in Figs. 2.5 and 2.6. The distribution is built by

counting redundant propositions in assertions of Goldmine. These redundant

propositions are propositions that are not used in the assertions of SAT-BAG,

which are more concise.

Although Goldmine generates more assertions than SAT-BAG on cases

WB ACK O: (Goldmine 9 vs. SAT-BAG 8) and expa ff: (Goldmine 119 vs. SAT-
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BAG 9), some of Goldmine’s assertions have redundant propositions in

antecedents. This means more than one assertion will convey the same

amount of information and have same input space coverage. Hence, more

assertions generated by Goldmine does not imply more information is gained.

2.4.2 Improvements of SAT-BAG

This section will demonstrate the benefits of applying input constraints and

word-level features to SAT-BAG. Table 2.2 shows the results of SAT-BAG

with and without input constraints. We use SpaceWire design, which has
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a one-hot encoding state machine, to show the effect of providing input

constraints to SAT-BAG. The constraint for a one-hot encoded k bit state

variable, s[k − 1 : 0], can be presented as: ∀x, (k − 1) ≥ x ≥ 0, s[x] = 1 →
∀y, (k − 1) ≥ y ≥ 0, y 6= x, s[y] = 0. This constraint can be converted to

SAT clauses by enumerating invalid values of the state variable. Therefore,

SAT-BAG will avoid generating assertions from the invalid state values.

We observe that SAT-BAG can further filter out vacuous assertions and

redundant propositions due to the usage of additional input constraints. Due

to the input constraints, both the number of assertions and propositions

decrease, and the average input space coverage increases. We do not show

the total input space coverage here because SAT-BAG with constraints also

achieves 100% input space coverage. Therefore, if we can provide input

constraints to SAT-BAG, the generated assertions will be more meaningful

and concise.

Table 2.2: Comparison on Assertion Generation of SAT-BAG With and
Without Input Constraints.

Circuit (output)
w/o constraints w/i constraints

Asrt. Num. Avg. prop. Avg. cov. % Asrt. Num. Avg. prop. Avg. cov. %

SWR-active o 18 4.56 13.29 15 2.80 17.50

SWR-err sqc 18 3.33 16.54 15 2.07 25.42

SWR-RST tx o 10 3.00 24.22 7 1.29 44.64

* Avg. prop. denotes the average number of propositions in antecedents of assertions.

Table 2.3 shows the enhancement of SAT-BAG using word-level features.

The first column shows designs and target signals. The remaining columns

show the same information as previous tables for SAT-BAG using two different

kinds of features. SAT-BAG-bit and SAT-BAG-word represent assertion

generations using bit-level features and word-level features.

In this experiment, SAT-BAG-word generates few assertions but still

achieves 100% input space coverage, which means it can generate more

concise assertions, which have higher input space coverage, but also catch

corner case assertions. Take StartIdle as an instance: the number of asser-

tions can be reduced from 994 to 6 and the average number of propositions in

antecedents decreases from 8.8 to 2.3. Furthermore, the average input space

coverage increases drastically from 0.5% to 26.39% and the total input space

coverage is still 100%. All these improvements result from using word-level

features, which can cover many bit-level features.
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Word-level assertions have high input space coverage and high readability.

Some examples of bit-level assertions and word-level assertions are listed

in Table 2.4 to explain these two attributes. For example, the word-level

assertion of active o has better readability than bit one, because it can use a

word-level feature, (state == Started), where Started equals to 6′b001000, to

represent bit level features, state[0] == 0 && state[1] == 0 && state[2] == 0

&& state[3] == 1 && state[4] == 0 && state[5] == 0. Furthermore, take

StartIdle as an another instance; the two word-level features, (NibCnt[6 :

0] ≥ IPGT ) and (NibCnt[6 : 0] ≥ IPGR2), in the word-level assertion

obviously can cover a considerable number of bit-level features. Therefore,

this word-level assertion not only has high input space coverage but also hits

corner cases in the design. Of course, it has better readability than bit-level

assertions as well.

2.5 Conclusion

SAT-BAG method was proposed to generate concise and high coverage as-

sertions by using unit assumption technique as well as by considering input

constraints and word-level features.
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CHAPTER 3

C-MINE: DATA MINING OF LOGIC
COMMON CASES FOR IMPROVED

TIMING ERROR RESILIENCE WITH
ENERGY EFFICIENCY

3.1 Introduction

As design complexity and environmental uncertainty grow, the better-than-

worst-case (BTW) design methodology [16,17] shows its strengths to improve

circuit energy efficiency, performance, and reliability. In contrast to traditional

design methodology, which selects a conservative guard band—higher V dd

or slower clock—for a circuit to guarantee 100% timing correctness, BTW

design can operate the circuit more aggressively by removing the guard band

and complementing it with an error detection and recovery mechanism such

as Razor logic [40, 41] or Error-Detection Sequential (EDS) circuit [42]. With

timing error correction, circuits can be more energy-efficient by overscaling

V dd [1, 16,43] and more reliable because of the built-in robustness that can

protect the circuits from dynamic voltage droop, aging, wearout of transistors,

etc. [44].

Despite the promise of BTW design, its performance crucially depends

on how often error correction intervenes, whose penalty includes flushing

wrong results and re-running the same input patterns. In other words, the

less frequency of triggering correction mechanism, the higher performance

BTW design can gain. As V dd scales down, timing errors start happening,

and the error frequency relies on the path delay distribution of the design.

If the majority of path delays are long and close to the guard band, the

correction mechanism will be triggered too frequently, thus deteriorating the

performance of BTW designs.

From the logic synthesis perspective, several works aim at reshaping path

delay distribution for the benefit of BTW designs, which calls for improving the

timing error resilience of designs. Reference [45] applies retiming technique to

redefine the boundaries of combinational logic for better operation. Reference
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[43] is a power-aware slack redistribution method to shift the slack of frequently

exercised timing paths by gate sizing. DynaTune [46] improves commonly

exercised paths by assigning lower Vt to critical gates. Blueshift [47] takes

advantage of adaptive body biasing. Reference [48] reorders the inputs of gates

for path delay balancing. CCP [18] is a very recent work that resynthesizes

the circuit to reduce the delay of common case inputs, thus improving the

overall energy efficiency by 15%.

Although CCP [18] can optimize the delay paths of common case inputs,

its performance is potentially limited by the scalability issue. Under timing

window constraints, CCP partitions the original circuit into sub-circuits and

resynthesizes each sub-circuit based on probability analysis and BDD-based

time characteristic function (TCF) analysis. However, the granularity of

partitioning influences the performance of CCP drastically. Huge partition

size is unmanageable for BDD-based TCF, while small partition size results

in a considerable number of sub-circuits, i.e., tasks. Furthermore, CCP misses

the whole picture of a design due to the partitioning. For example, CCP

does not consider the variety of slacks of each sub-circuit’s inputs; thus, the

original circuit delay paths might be distorted during the partitioning and

synthesis process. In the chapter, we propose new approaches using data

mining and Boolean satisfiability (SAT) solving to overcome these limitations.

With more than a decade of intensive research, data mining [19,49] and SAT

solving [20] become mature and popular for their scalable problem-solving

capabilities. With great capability of model prediction and pattern matching,

data mining has been used in design automation fields such as assertion

generation [10] and hotspot detection [50]. In addition, the power of SAT

solving has been demonstrated by its successful applications to many problems

that suffer from scalability issues, such as model checking [51], reachability

analysis [15], and assume-guarantee reasoning [14]. Therefore, we will take

advantage of these two techniques to provide highly scalable solutions for

BTW synthesis in this study.

We propose a Common case Mining method (C-Mine), which applies

data mining and SAT solving to optimize the delay paths of common case

inputs, the majority of path delay distribution. C-Mine has two versions, C-

Mine-DCT [22] and C-Mine-APR [23]. They adopt different mining techniques

to mine common case cubes, which represent common case input patterns that

have long delays, from simulation data. C-Mine-DCT adopts decision tree
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learning with tree-pruning techniques proposed to avoid tree size explosion.

Unfortunately, C-Mine-DCT might miss some critical common case cubes

due to the nature of tree-based algorithms. Therefore, we proposed C-Mine-

APR to approach the problem from a different angle. C-Mine-APR employs

Apriori-based frequent itemset mining with database reduction techniques

proposed to accelerate the process. However, without having exhaustive

simulation, these cubes generated from the miners of C-Mine-DCT and C-

Mine-APR should be regarded as “candidates.” Therefore, we exploit SAT

solving to verify these candidate cubes and also apply unit assumption [13]

to further enlarge the obtained cubes. Finally, the timing error resilience of

the BTW design can be improved based on these common case cubes.

Our contributions are summarized as follows. We propose C-Mine-DCT

and C-Mine-APR methods, which successfully combine different data mining

techniques and SAT solving to resynthesize the BTW design for better timing

error resilience and energy efficiency. To improve their performance, tree-

pruning and database reduction techniques are proposed to accelerate the

mining processes, and a unit assumption technique is proposed to refine

the results of SAT-based cube verification. Experimental results show that,

compared to CCP [18], C-Mine-DCT can achieve compatible performance

with an additional 8% energy saving and 54x speedup for bigger benchmarks

on average. Furthermore, since C-Mine-APR has an exceptional ability of

handling designs having more common cases, it can achieve up to 13% more

energy saving than C-Mine-DCT while confronting these kinds of designs.

3.2 Background

This section briefs the reader on the error correction mechanism of BTW

design used in this study and also illustrates the importance of path delay

distribution for BTW design performance. Finally, the usage of common case

cubes for improving the delay distribution is introduced.

3.2.1 Error correction mechanism of BTW design

Razor logic [40, 41] is the BTW design methodology used in this study to

detect and recover the timing errors caused by dynamic voltage scaling [16].
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Razor logic is a circuit-level transformation that augments each flip-flop in

the design by adding a shadow latch to validate the captured values of the

flip-flop.

Fig. 3.1 illustrates the concept of Razor flip-flop. The shadow latch, which

is controlled by a delayed clock, provides a second sample of all pipeline circuit

computations. Under normal operation where L1 combinational logic stage

meets the setup time of main flip-flop, both the main flip-flop and the shadow

latch will latch the same value; thus, no timing error is detected. However, in

the case that L1 logic stage cannot finish its computation in time because of

V dd overscaling, the main flip-flop data will latch an incorrect value, which

is different from the correct late-arriving value lathed by the shadow latch;

thus, a timing error is detected.

For correcting timing errors, Razor logic proposed two approaches, which

have different design complexity and cycle penalty, to recover pipeline state.

One simple method is based on global clock gating to directly restore the

main flip-flop to the correct value in the shadow latch, but this method is slow

and cannot be applied to complex designs; while the other method is based

on counterflow pipeline techniques [52] and is very scalable with multiple

cycle penalty. More details can be found in [40,41].

Logic&Stage&
L1&&

Logic&Stage&
L2&&Main&

Flip2Flop

Shadow&
Latch

Razor&FF

clk_delay

clk

Error

1
0

Comparator

Error_L

Q1D1

Figure 3.1: Error correction mechanism of Razor flip-flop [40,41].
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3.2.2 Importance of correctness probability curve for BTW
design performance

Scaling down V dd can save power immediately, but the overall energy efficiency

also depends on throughput [18]. Equation (3.1) defines a BTW design’s

throughput (TR) as a function of operating frequency f , the correctness

probability (Ps) of all primary outputs, POs, to be stabilized by the cycle time

1/f , and the error correction penalty r, which includes flushing wrong results

and replaying the input patterns [40,41]. Equation (3.2) defines the overall

energy cost as the product of the expected run time (inverse of TR) and the

power consumption at V dd. Therefore, derived from these two equations,

overscaling V dd can save energy only if the throughput can be maintained at

a certain level.

TR = Ps × f + (1− Ps)×
f

r
(3.1)

E = P (V dd)× 1

TR
(3.2)

In BTW design optimization, the correctness probability (Ps) plays a critical

role in maintaining the throughput. In traditional design methodology, V dd

and clock are chosen conservatively to guarantee Ps = 100%, known as a

guard band. However, with V dd overscaling, Ps drops as the V dd scales down,

thus compromising the throughput due to error correction penalty. To keep

the throughput high, we need to maintain a high correctness probability Ps

even if the circuit slows down.

Fig. 3.2, for example, shows the correctness probability curves of two

different implementations D1 and D2 of the same design. With conservative

guard band, both D1 and D2 can operate at tclk = 500 ps with no timing errors

— Ps = 100%. However, there is a significant Ps difference between D1 and

D2 if operating at tclk = 390 ps. Considering a scenario that V dd overscaling

slows down the signal propagation by 110 ps (i.e., both curves shift right by

110 ps), under the same clock setting, D2 will have a considerable drop of Ps

from 100% to 50%, while D1 can still maintain its Ps at 96.2%. Obviously,

the implementation D1 is more suitable than D2 for BTW design operation,

and the purpose of this chapter is to resynthesize design for providing this

BTW-specific feature.
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Figure 3.2: Correctness probability curves of two different implementations
for the same design.

3.2.3 Correctness probability curve reshaping

The correctness probability curve can be improved by appending shortcut

logic into the original design [18]. Shortcut logic is a small design built from

common case cubes to provide shortcuts for frequent input patterns that have

long delays, thus improving their delays. The overall concept is to merge

on-set and off-set common case cubes with the corresponding POs using OR

and AND gates, respectively. This curve-reshaping strategy has been proved

in [18] to keep the functionality of the design intact after the appending.

However, appending shortcut logic into design would introduce additional

area cost; therefore, in this work, we will couple this strategy with redundancy

removal techniques to minimize area overhead.

For example, there is a 4-input circuit shown in Fig. 3.3, and we assume it

has a frequent input pattern (a, b, c, d) = (1, 1, 1, 1), which frequently triggers

a long delay path with a delay of 3. The common case cube1 to collect this

frequent pattern is abcd, and its corresponding shortcut logic (marked in blue)

is merged into the original circuit to improve the delay of this pattern from 3

to 2.3.

1abcd should be a minterm, but we call it a cube for consistency.
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Figure 3.3: An example demonstrates the delay of a common case improved
by shortcut logic.

Therefore, in this work, we focus on identifying common case cubes from

a design and then apply these cubes to reshape the correctness probability

curve of design, improving its timing error resilience.

3.3 Preliminaries

This section briefly introduces the techniques of data mining and SAT solving

used in this chapter.

3.3.1 Data mining technique

Data mining techniques [19, 49] can be roughly classified into two categories:

constraint-based and non-constraint-based ones. Usually, users have a good

sense of the mining direction that might lead to the “data” they are interested

in. Therefore, constraint-based mining is often referred to as the mining

approach that considers such user intuition and expectations to determine

the direction of mining, e.g., frequent pattern mining and classification,

while non-constraint-based ones do not, e.g., clustering and outlier detection.

The following paragraphs will introduce the two constraint-based mining

techniques used in this work, decision tree learning and frequent itemset

mining, as well as the related terminology and algorithm.
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Figure 3.4: An example of decision tree building on a set of data.

3.3.1.1 Decision tree learning

Decision tree learning is a widely used technique in data mining to train

a predictive model from a set of data. This model can predict the value

of a target variable based on several input variables. A decision tree is a

flowchart-like tree structure, where each internal node denotes a split on one

of input variables, each branch represents a decision of the input variable, and

each leaf node (or terminal node) represents a predicted value of the target

variable. The path from the root to the leaf represents a possible implication

between the target variable and the input variables with decided values.

During tree building, the source set will split into subsets based on the

decision of input variables, and this splitting process will terminate when the

subset at a node has the same value of the target variable. Fig. 3.4 shows

an example of decision tree building on three input variables a, b, and c and

a target output variable d. A path from the root to the leaf stands for a

prediction that is ((a, b) = (0, 0))→ (d = 1).

3.3.1.2 Gini index

Gini index, in this work, is a criterion that measures the impurity of D, a set

of Boolean values 0 and 1, defined as

Gini(D) = 1− (
|D0|
|D|

)2 − (
|D1|
|D|

)2
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where D0 (resp. D1) denotes a subset of D that collects all 0 (resp. 1) values.

For example, the Gini index of a set D : {0, 0, 1, 1, 1} is 1− (2
5
)2− (3

5
)2 = 0.48.

Please note that the Gini index of a set equaling 0 means the set is a pure

set, which has the same values.

3.3.1.3 Frequent itemset

A set of items is referred to as an itemset. An itemset that contains k items is

a k-itemset (e.g., an itemset {a, b} is a 2-itemset). The occurrence frequency

of an itemset I is the number of transactions (patterns) that contain I. This

frequency is also known as the support or support count of I. I is a frequent

itemset if its support is large than or equal to a user-prespecified minimum

support threshold, min sup. The set of frequent k-itemsets is commonly

denoted by Lk.

3.3.1.4 Apriori algorithm

Apriori [19,49,53] is a frequent itemset mining algorithm. It adopts a level-wise

search, where k-itemsets are used to explore (k + 1)-itemsets. The algorithm

is briefly described as follows: At first, the set of frequent 1-itemsets, L1, is

generated by scanning the database to accumulate the count for each item

and collecting those items that satisfy min sup. Next, to find the set of

frequent 2-itemsets, L2, a set of “candidate” frequent 2-itemsets, denoted

by C2, is generated by joining L1 with itself, and L2 is then determined by

collecting those candidate 2-itemsets in C2 that satisfy min sup. This process

will continue until no more frequent k-itemsets can be found.

However, the generation of each Lk requires one full scan of the database.

Therefore, to improve the efficiency of the level-wise search for frequent

itemsets, Apriori property is proposed to confine the search space.

Definition 2. Apriori property [19]: All nonempty subsets of a frequent

itemset must also be frequent.

For example, if {a, b} is a frequent itemset, both {a} and {b} should be

a frequent itemset. The property is used as follows. Any (k − 1)-itemset

that is not frequent cannot be a subset of a frequent k-itemset. Thus, if any

(k − 1)-subset of a candidate k-itemset is not in Lk−1, then this candidate
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cannot be frequent either and so can be removed from Ck directly. This

subset test can be done efficiently by maintaining a hash tree of all frequent

itemsets.

Furthermore, many techniques are also proposed to accelerate Apriori

algorithm such as hash-based technique, transaction reduction, partitioning,

and sampling, of which details can be found in [19,49].

3.3.2 Boolean satisfiability problem and technique

A Boolean satisfiability (SAT) problem is a decision problem [20]. Given a

finite set of Boolean variables V = {v0, . . . , vn}, a literal l is either a Boolean

variable vi or its negated form ¬vi (or ∼ vi). A clause is a disjunction of

literals. A SAT instance is a conjunction of clauses, also named as conjunction

normal form (CNF). An assignment over V assigns each Boolean variable

vi either true or false value. A SAT instance is satisfiable if there exists a

satisfying assignment such that the SAT instance evaluates to true. Otherwise,

it is unsatisfiable.

Unit assumption is a SAT technique of MiniSAT [13], which allows users

to assume specific conditions for each SAT solving call through an interface

S.solve(assumps), where S is a SAT instance, and assumps is a conjunction

of literals like a0 ∧ a1 ∧ . . . ∧ an. For each SAT solving call, literals ai are

temporarily assigned to true and will be discharged after the solving. The

return data of this technique are as follows:

• Satisfiable: Return an assignment that can satisfy the SAT instance

as well as the assumptions.

• Unsatisfiable: Return a subset of those assumptions that contribute

to the unsatisfiable result.

3.3.3 Conversion of a circuit into SAT instance

Given a circuit netlist, its functionality can be totally represented by a SAT

instance using Tseitin transformation [31, 32]. This transformation can be

done in linear time. For instance, a two input AND gate, c = AND(a, b),

can be converted into three clauses, (va ∨¬vc)∧ (vb ∨¬vc)∧ (¬va ∨¬vb ∨ vc),
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whose satisfying assignments comprise the valid functionality of the AND

gate.

3.4 C-Mine algorithm

This section introduces the algorithms of C-Mine-DCT and C-Mine-APR,

both of which contain two main phases: (1) candidate mining of common case

cubes and (2) SAT-based cube verification and enlargement. After collecting

common case cubes for timing-critical POs, the corresponding shortcut logic

will be generated and merged into the original design for a better correctness

probability curve.

3.4.1 The flowcharts of C-Mine-DCT and C-Mine-APR

The overall flowcharts of C-Mine-DCT and C-Mine-APR are shown in Fig. 3.5

and Fig. 3.6, respectively. Before running C-Mine, we simulate the design

and collect the delay information of each simulated input pattern. In addi-

tion, timing-critical POs, whose probability curves need to be improved, are

identified by static timing analysis during this preprocess.

Both C-Mine-DCT and C-Mine-APR consist of two phases: candidate

mining and verification. They have individual mining processes but share

the same verification process. For each timing-critical PO, its common case

cubes are generated by C-Mine-DCT and C-Mine-APR as follows.

In the mining phase, C-Mine-DCT applies decision tree learning (Sec. 3.3.1.1)

to generate possible common case cubes from the simulation data. To avoid

tree size explosion, we proposed early tree pruning techniques to reduce

unnecessary and non-promising space searching. The mining process of C-

Mine-DCT will repeat until reaching tree-level limits or no more promising

nodes to split. C-Mine-APR employs Apriori (Sec. 3.3.1.4), a frequent itemset

mining algorithm, to generate possible cubes from the simulation data. To

avoid the “curse of dimensionality” [19], we proposed early database shrink-

ing techniques to reduce the size of database beforehand and also skip the

small-size ones. The mining process of C-Mine-APR will repeat until no more

frequent itemsets are found. Please note that all cubes generated by the

mining phases of C-Mine-DCT and C-Mine-APR are just candidates because
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they are not collected after exhaustive simulation. Additionally, the accuracy

of common case mining can be improved by using directed simulation if the

workload is provided.

In the verification phase, at first, we apply a SAT-based covering check

procedure to filter out candidate cubes that are already covered by existing

common case cubes, thus avoiding unnecessary cube verification and reducing

the area of shortcut logic. Next, a SAT-based verification is applied to

verify the candidates. If candidate cubes are proved to be true, further

cube enlargement can be obtained by applying unit assumption; if false, the

corresponding counterexamples are generated. Although C-Mine-DCT and C-

Mine-APR share the same verification process, the feedbacks provided for their

individual mining phases are different. For C-Mine-DCT, the counterexamples

in the proof of false cubes are provided back to its mining phase to refine

the tree, thus enhancing the hit rate of mining, while for C-Mine-APR,

the information of true cubes is provided to reduce the size of candidate

frequent itemsets, Ci, of Apriori algorithm, thus accelerating the mining

process without sacrificing the performance. Finally, the common case cubes

of timing-critical POs are collected for constructing shortcut logic.

C-Mine-DCT and C-Mine-APR terminate when no more qualified candidate

cubes are found. The algorithms are detailed in the following subsections.

3.4.2 C-Mine-DCT: Decision-tree-based candidate mining of
common case cubes

C-Mine-DCT adopts a promise-driven tree growing strategy to generate

candidate common case cubes; that is, it prunes some tree branches early

and only allows the decision tree to split on promising nodes. Promising

nodes are decisions (directions) that have a higher probability of finding

good candidates. Therefore, we proposed effective criteria to evaluate the

promise value of a node. Additionally, C-Mine-DCT traverses the tree by

breadth-first search (BFS) with a tree-level constraint, which is less than five.

This promise-driven strategy can guide the searching to target at big common

case cubes that can improve more delay paths using less area cost in shortcut

logic. With the tree pruning techniques and level-constraint BFS, we can not

only find high-quality cubes but also prevent tree size explosion.
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Figure 3.5: The flowchart of C-Mine-DCT, and its main contributions are
marked in blue and red.

Fig. 3.7 is a running example of tree growing by splitting on an input a,

which will partition a set of simulation data of a 3-input design into two

subsets. Based on this splitting relationship, we call the original set F a

parent set and its two subsets, Fa=0 and Fa=1, child sets. In the simulation

database (set F in the figure), each entry consists of an input pattern, the

value of the target output (f), and delay information (df ). The tree-pruning

techniques and candidate evaluation used in C-Mine-DCT will be introduced

by this running example in later subsections.

3.4.2.1 Avoidance of unnecessary searching

Since the tree search space increases exponentially with the number of internal

nodes (i.e., decisions), the avoidance of irrelevant decisions is an intuitive and

effective way to reduce the search space; therefore, we apply the fanin cone

information of the target output to identify related inputs, which are those in

the fanin cone, and only grow the tree by making decisions on these inputs.

Furthermore, to avoid duplicate searching, we set an order constraint such

that the tree nodes should split in ascending order such as x1 ≺ x2 ≺ x3 ≺ . . .,
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Figure 3.6: The flowchart of C-Mine-APR, and its main contributions are
marked in blue and red.

where xi is the ith decision variable. Keeping a specific order can shrink

the searching space drastically. For example, without the order constraint,

two splitting sequences {a = 1, c = 0} and {c = 0, a = 1} in Fig. 3.7 will

be traversed; however, both of them will generate the same candidate cube,

((a, c) = (1, 0))→ (f = 1). Therefore, we can know that only one searching

direction, which is {a = 1, c = 0} in our setting, is needed.

Although this order constraint can save enormous searching time, it might

impair the quality of candidates by inserting redundant input decisions,

such as making decisions on non-controlling values of gates. Fortunately,

this situation can be recovered by the cube enlargement mechanism in our

SAT-based verification.

3.4.2.2 Promise of splitting nodes

The promise of nodes is evaluated by the Gini index and timing information

of their corresponding sets. Splitting on promising nodes can increase the

probability of finding high-quality candidates as well as accelerate the tree

growing process. The physical meanings of evaluation are as follows:
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Figure 3.7: A running example for demonstrating promise-driven decision
tree growing for candidate common case cubes.

• Gini Index: If the Gini index of a child set is lower than its parent’s,

it means this decision leads to a purer set, that is, the target output is

converging to the same Boolean value, 0 or 1. Thus, splitting on this

node will have a higher probability of reaching the candidates.

• Timing Information: If the average delay of a child set is higher than

its parent’s, it means this decision will lead to a subspace that contains

common case inputs having longer delays.

With these two evaluating criteria, C-Mine-DCT follows a positive strategy

that a decision node will be discarded only if (1) its Gini index is higher

than its parent’s and (2) its average delay is lower than its parent’s at the

same time. Otherwise, the tree will keep splitting on this node.

Take the same example in Fig. 3.7 to show. The original set F has split into

two child sets Fa=0 and Fa=1 based on the decisions made on input variable

a. Now we are going to determine the next splitting nodes. Obviously, we

just need to examine the promise value of decision a = 1 because the other

decision a = 0 is already a candidate. In this case, the decision a = 1 is

promising because its Gini index (0.44) is lower than its parent’s (0.48) and

its average delay (2.67) is higher than its parent’s (2.2). Therefore, the tree

will keep splitting on this promising node a = 1.
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3.4.2.3 Quality of candidates

To save total runtime, we only pass high-quality candidates to the SAT-based

verification phase. The criterion C-Mine-DCT uses is defined as below.

• Timing Information: If the average delay of the set at the node that finds

a candidate is higher than the average delay of the whole simulation

data set, this candidate will be considered high-quality and passed to

the next verification phase.

In the same case of Fig. 3.7, although (a = 0)→ (f = 0) is a candidate, it

will be discarded because of its low quality, which is evaluated by the fact

that the average delay (1.5) of set Fa=0 is lower than the average delay (2.2)

of the whole data set F .

3.4.3 C-Mine-APR: Apriori-based candidate mining of
common case cubes

C-Mine-APR is an Apriori-based approach to generate candidate common

case cubes. We formulated the common case cube generation problem into a

frequent itemset mining problem, where items are input variables assigned to

0 or 1, and itemsets are cubes. For example, an input assignment a = 0 is

seen as an item, and an itemset {a = 0, b = 1} represents a cube āb.

However, a high-dimensional database usually leads to a well-known problem

in data mining: “curse of dimensionality” [19], that is, searching over high-

dimensional spaces is time-consuming. Therefore, we applied the domain

knowledge of common case cubes to reduce the size of simulation database in

advance, thus improving the computational efficiency of mining as well as the

quality of cubes.

Fig. 3.8 is a running example of frequent itemset mining of common case

cubes for a target output f = 0, and the simulation data of a 3-input

design like Fig. 3.7 is stored in a database. The proposed database shrinking

techniques and candidate generation procedure used in C-Mine-APR will be

introduced by this running example in later subsections.
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Figure 3.8: A running example for demonstrating Apriori-based mining for
candidate common case cubes.

3.4.3.1 Database reduction

To avoid the curse of dimensionality, we apply the domain knowledge of

circuits and common case cubes to reduce the size of the database in advance.

This database reduction can not only lead to more efficient searching but

also enhance the quality of candidate cubes. Given a target output and its

value (i.e., f = 0 in Fig. 3.8), the proposed reduction techniques are applied

as follows.

To reduce the columns of the database, which are input assignments, the

fanin cone information of the target output is employed to filter out unrelated

inputs, which are those not in the fanin cone. Removing these unrelated

input assignments (columns) from the database will not affect the correctness

of common case cube mining for the target output, because they do not

determine the value of target output.

To reduce the rows of the database, which are simulation patterns and re-

sults, the value of target output and its timing information are both employed

to filter out redundant rows. Based on the target output value, f = val, we

can remove the rows (i.e., simulation patterns) whose output values are not

equal to val, because they will not be involved in the cube mining of f = val.

Furthermore, we filter out rows whose delays are below a user-specified delay
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threshold, D, because the cubes we want to mine are the ones that cover the

input patterns triggering long delay paths.

To avoid unnecessary mining, the mining process of common case cubes for

f = val will terminate if the remaining rows of the reduced database are

below a threshold, which is set to 10% of the original rows in this work. Please

note that common case cubes should satisfy two conditions: triggering long

delay paths and occurring frequently. Therefore, if the size of the reduced

database is too small, it implies that not too many common case cubes exist

for f = val, and this case should be skipped.

Take the example in Fig. 3.8 to demonstrate the reduction process. We

assume all inputs are in the fanin cone of the target output f ; therefore, no

columns of the database are removed at this time. To generate common case

cubes for the target output f = 0, we can filter out a row of f = 1. Then,

a delay threshold, which is set to the average delay (2), is applied to filter

another row of df = 1. The final reduced database is obtained by removing

these two rows. Finally, the mining process of common cases cubes for f = 0

will begin since the final database has sufficient rows remaining.

3.4.3.2 Frequent itemset mining of candidate cubes

Having the reduced database, our Apriori-based frequent itemset mining

approach will begin to mine candidate common case cubes for the target

output f = val. Before running the proposed approach, users need to specify

a minimum support threshold, min sup. The threshold min sup is used to

filter out the itemsets (cubes) of low frequency, thus controlling the quality

of generated common case cubes and the speed of the approach. We suggest

that the value of min sup is set between 40% to 60% of the total row count

of the database based on the design.

Use the same example in Fig. 3.8 to illustrate the algorithm. Given the

reduced database and min sup = 2, at the first iteration, each item (i.e.,

input assignment) is a member of the set of candidate 1-itemsets, C1, and

the occurrence count of each item is obtained by simply scanning the whole

database once. The set of frequent 1-itemsets, L1, can then be determined by

collecting the candidate 1-itemsets that satisfy min sup = 2. To find the set

of frequent 2-itemsets, L2, the algorithm uses the join L1 on L1 to generate a

set of candidate 2-itemset, C2, where although {c = 0, c = 1} is a candidate
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2-itemset, it will be removed from C2 because it is not a valid cube. Then L2

can be collected from C2 according to min sup. The algorithm will iterate

until Lk is an empty set.

Itemsets in each Li are candidate common case cubes for f = 0. The

physical reason behind this is that these itemsets are frequent because of

belonging to Li, and they also cover long delay paths because they are mined

from the reduced database that only stores simulation patterns with long

delays. Additionally, the itemsets representing invalid cubes in Ci (e.g.,

{c = 0, c = 1} ∈ C2) will be ignored during the process to avoid unnecessary

search and verification.

3.4.4 SAT-based cube verification and enlargement

In the verification phase, SAT solving plays an important role in verifying

and enlarging candidate cubes passed from the mining phase. In addition,

SAT solving also conducts a covering check to filter out candidates that

have been covered by already-collected common case cubes to save runtime.

Furthermore, different feedback is provided to improve the mining phases of

C-Mine-DCT and C-Mine-APR accordingly.

Initially, two copies of the SAT instance of the circuit, Scov and Sver,

are prepared for covering check and verification/optimization, respectively.

The technique of converting the circuit into the SAT instance is detailed in

Sec. 3.3.3. The usage of these two SAT instances is introduced next.

3.4.4.1 Cube covering check

Before verifying a candidate, C-Mine will check if this candidate has been

covered by existing common case cubes. This action can prevent collecting

cubes that improve the same delay paths, thus saving unnecessary verification

time as well as area cost of shortcut logic.

Here Scov works like a list to register what common case cubes have been

collected so far. This registering action can be accomplished by using blocking

clauses, which are clauses that can forbid SAT instances to generate specific

satisfying assignments. Therefore, each time a common case cube is collected,

we will add a blocking clause of this cube into Scov to avoid collecting duplicate

cubes in the future.
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For example, assume a common case cube ((a, b) = (0, 1)) → (f = 1) is

found, it will be registered by adding a blocking clause, (va ∨¬vb ∨¬vf ), into

Scov. Next time, if we obtain a candidate cube like ((a, b, c) = (0, 1, 0))→ (f =

1), which is obviously covered by the previously found cube, it will be filtered

out because of the unsatisfiable result of SAT solving: Scov.solve(¬va ∧ vb ∧
¬vc ∧ vf ).

3.4.4.2 Cube verification and enlargement

Candidate cubes might be false, while true cubes could be enlarged by

removing redundant input decisions. Therefore, we apply unit assumption, a

SAT technique, to verify and enlarge cube candidates simultaneously.

Take the same example in Fig. 3.3 to demonstrate the verification process.

Assume ((a, b, c, d) = (1, 1, 1, 1))→ (f = 0)2 is a candidate cube we obtain,

and it will be verified by solving the SAT instance Sver with a specific unit

assumption, Sver.solve(va ∧ vb ∧ vc ∧ vd ∧ vf ). The physical meaning behind

this solving is to ask an opposite question, Does there exist a satisfying

assignment such that ((a, b, c, d) = (1 , 1 , 1 , 1 ))→ (f = 1 )? Two possible

results of candidate cube verification are explained as follows:

• Satisfiable: The candidate cube is a false cube because there exists

a satisfying assignment, which is a counterexample to disprove the

candidate cube.

• Unsatisfiable: The candidate cube is a true common case cube be-

cause (a, b, c, d) = (1, 1, 1, 1) always implies (f = 0). Furthermore, unit

assumption technique can report a subset of assumptions that mainly

contribute to this unsatisfiable result. In this case, a subset {va, vb, vf}
will be reported, which means (a, b) = (1, 1) is sufficient to determine

the value of f to 0.

In sum, the candidate cube ((a, b, c, d) = (1, 1, 1, 1)) → (f = 0) is verified

(true) as well as enlarged to a bigger cube ((a, b) = (1, 1)) → (f = 0).

Compared to the original cube, this enlarged cube not only contributes a

shorter delay but also costs less area in the shortcut logic, which can been

seen in Fig. 3.9.

2This candidate cube should be a minterm, but we call it a cube for consistency.
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Figure 3.9: Enlarged common case cubes contribute towards better shortcut
logic in terms of delay and area cost.

3.4.4.3 Feedback for improving the mining phase

After verifying candidate cubes, some useful feedback can be provided to

improve the mining phases of C-Mine-DCT and C-Mine-APR accordingly.

C-Mine-DCT can use the counterexamples from the proof of false cubes

to refine the decision tree incrementally, while C-Mine-APR can apply the

information from true cubes to reduce the search space of candidate cubes,

thus accelerating its mining phase. The usage of feedback is introduced with

the examples in Fig. 3.10 as follows.

The decision tree-based mining of C-Mine-DCT can be improved by con-

sidering the counterexamples from the proof of false cubes. In the previous

example of Fig. 3.7, (a = 0) → (f = 0) is identified as a candidate cube

based on the algorithm of C-Mine-DCT. Assume this candidate is proved as

a false cube, and its corresponding counterexample will also be generated

by the SAT-based verification. To refine the tree incrementally, shown in

Fig. 3.10(a), this counterexample will be added to the simulation data set at

the node that find the candidate, so that this node is no longer a leaf node,

and the tree can keep splitting on this node if it is promising. This feedback

loop can help C-Mine-DCT to increase the hit rate of its tree-based candidate

mining.

The Apriori-based frequent itemset mining of C-Mine-APR can be acceler-

ated by considering the information from true cubes. In the previous example

of Fig. 3.8, we can know that (a = 1)→ (f = 0) is a candidate cube because

the itemset {a = 1} is in L1. Assume this candidate is verified as a true

cube, which will not only be collected for building shortcut logic but also be
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Figure 3.10: Different feedback is provided to improve the mining phases of (a)
C-Mine-DCT and (b) C-Mine-APR accordingly.

used to avoid unnecessary candidate search in the mining phase. As shown

in Fig. 3.10(b), the itemset {a = 1} can be removed from L1 because it has

been verified (true). This removal of itemset {a = 1} from L1 will reduce the

size of C2, which is generated by joining L1 and itself, effectively. The idea is

that removing itemsets at the early stage can shrink the search space rapidly

and also avoid collecting duplicate cubes. In the example, three candidates

in C2, {a = 1, b = 1}, {a = 1, c = 0}, and {a = 1, c = 1}, have already

been covered by the true cube (a = 1)→ (f = 0). Therefore, ignoring these

candidates will not compromise the results of mining. This feedback loop

can help C-Mine-APR to speed up its candidate mining drastically as well as

enhance the quality of candidate cubes.

3.5 Comparison and discussion

This section compares the features of C-Mine-DCT and C-Mine-APR and

also discusses their possible corner cases.

3.5.1 Comparison of C-Mine-DCT and C-Mine-APR

Although both C-Mine-DCT and C-Mine-APR are composed of data mining

and SAT solving techniques, they have distinct characteristics because of
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choosing different data mining methods, decision tree learning and frequent

itemset mining.

At first, we proposed C-Mine-DCT (i.e., C-Mine [22]), which adopts decision

tree learning as its mining method, to overcome the limitations of previous

works. C-Mine-DCT can provide sufficiently scalable solution and also consider

a design as a whole without partitioning it. The remarkable feature of C-

Mine-DCT is its fast speed due to the proposed promise-driven techniques

and tree-level constraint. The tree level constraint can not only avoid tree size

explosion but also restrict the search space for finding bigger cubes, which

has been shown to offer better performance in terms of delay and area cost

in Fig. 3.9. However, this level constraint might cause C-Mine-DCT to miss

some critical common case cubes that are deep in the tree. Therefore, we

proposed another version of C-Mine, C-Mine-APR, which employs a different

data mining method, Apriori-based frequent itemset mining, to tackle this

issue.

Unlike C-Mine-DCT, C-Mine-APR does not have the level constraint;

therefore, it might achieve better performance because of having the chance to

find more fine-grained common case cubes. As can be expected, runtime will

be a trade-off, but fortunately, due to the scalable nature of the algorithm, C-

Mine-APR is still competitive compared to the previous works. Furthermore,

another feature of C-Mine-APR is its great ability to handle designs that have

many common cases with long delays. This is because C-Mine-APR reduces

the simulation database beforehand with a delay threshold, the average delay

in this work, and also applies minimum support threshold, min sup, to focus

on high-frequency common case cubes during the mining process. All these

phenomena can be observed in the experimental results.

3.5.2 Corner case discussion

Since heuristic strategies are used in the cube mining of C-Mine-DCT and

C-Mine-APR algorithms, it is worth discussing some possible corner cases

that the algorithms might not handle efficiently. Additionally, not all designs

are suitable for BTW optimization using common case cubes, and we will

also briefly discuss these designs at the end of the subsection.

45



C-Mine-DCT and C-Mine-APR have different corner cases. For C-Mine-

DCT, a possible corner case is when its tree-based mining splits on too many

redundant inputs, which can be removed in the cube enlargement process.

Please note that input decisions might become redundant after other input

decisions are added to the cube candidates. However, within the preset tree

level and order constraints, including too many redundant input decisions

would compromise the quality of cube candidates or even prevent the miner

from finding any ideal candidates. Fortunately, we believe this corner case

should rarely happen because our proposed tree-based mining only considers

related inputs (i.e., inputs in the fanin cone) and splits first on the inputs that

reduce the Gini index most. Nevertheless, even if cube candidates include

redundant input decisions, those redundant inputs can still be optimized out

in the SAT-based verification.

For C-Mine-APR, its possible corner case happens when the size of the

database to mine is too enormous. Although we have applied the domain

knowledge proposed in Sec. 3.4.3.1 to reduce the database efficiently, this

case could still happen under certain conditions. For example, if the target

output f has uneven distribution of values, one of the reduced databases

for f = 0 or f = 1 will not shrink much. Fortunately, we did not see this

corner case happen frequently in our benchmarks. However, if this corner

case indeed happens, we can tackle this issue by partitioning or sampling [19]

the database at the sacrifice of mining quality.

Last, we discuss the general corner cases for C-Mine algorithms. Both

algorithms conduct BTW optimization by finding big common case cubes,

which can optimize more long delay paths with less area in the shortcut

logic. However, not all designs have these kinds of common case cubes,

such as cryptographic hardware, which is designed to hide valuable and

confidential information; therefore, it should be difficult to mine and retrieve

any “informative” data from these cryptographic designs, and we can expect

that our C-Mine algorithms would have limited performance on these designs.

3.6 Experimental results

The proposed algorithms C-Mine-DCT and C-Mine-APR are implemented

in C/C++ on ABC [37], which is a logic synthesis and verification platform.
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MiniSAT [13] is the SAT solver performing SAT solving in this work. We

present results on the designs of medium and large area size from ITC’99

and MCNC benchmarks. All experiments were run on a Linux machine with

AMD Opteron 6276 16-Core 2.3GHz CPU and 128GB RAM.

The comparison on timing error resilience and energy efficiency improved

by C-Mine-DCT, C-Mine-APR, and CCP [18], one of the state-of-the-art

works, is shown in Tables 3.1 - 3.3. The correctness probability curves are

calculated by the timing simulation data generated from Cadence NCSim v5.7

accompanied with Verilog Program Interface (VPI) to record the timestamps

of stabilization of POs. In addition, the relationship between V dd and power

is characterized with HSPICE [18].

To save runtime and area, all methods are only applied to POs whose delays

are within 80%− 100% of the longest path delay according to static timing

analysis. Furthermore, to reduce the area overhead caused by appending

redundant shortcut logic, CCP applied a lightweight logic optimization com-

mand, fraig sweep, of ABC at the end of method. This command preserves

the design structure and only merges the functionally equivalent gates. Its

mechanisms are to group functionally equivalent gates, replace the gates at

high logic levels (i.e., near POs) with the ones at low logic levels (i.e., near

primary inputs, PIs) in the same group, and finally sweep out dangling gates

in the design. Please note that shortcut logic would be reserved because it is

mainly constructed by gates at low logic levels. Therefore, in order to have

fair comparison between the methods, C-Mine-DCT and C-Mine-APR also

adopted this command to offset the area overhead.

3.6.1 Timing error resilience improvement

Table 3.1 shows the correctness probabilities (Ps) improved by C-Mine-DCT,

C-Mine-APR, and CCP over medium benchmarks. Columns 1-4 list the

basic information of the benchmarks and the overscaling V dd used. The

correctness probability (Ps), area, and runtime of original design (Ori.), CCP,

C-Mine-DCT, and C-Mine-APR are listed in Columns 5-15. The difference

between the Ps of original designs and the Ps improved by CCP, C-Mine-DCT,

and C-Mine-APR are listed in Columns 16-18. Their area overhead costs are
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Figure 3.11: Correctness probability curves of pdc reshaped by C-Mine-DCT,
C-Mine-APR, and CCP [18].

listed in Columns 19-21. The last two columns list the normalized runtime

speedup of C-Mine-DCT and C-Mine-APR compared to CCP.

The results in Table 3.1 show that, on average, C-Mine-DCT and C-

Mine-APR can improve correctness probabilities (Ps) by 19.1% and 23.8%,

respectively, while CCP only achieves 17.4%. For example, the correctness

probability curves of pdc reshaped by different methods are shown in Fig. 3.11,

and we can see that C-Mine-APR and C-Mine-DCT effectively reshape the

curves to provide wider plateaus of Ps than CCP. This wide plateau of Ps will

result in better energy efficiency, which is presented in the next subsection.

Additionally, thanks to the scalability of data mining and SAT solving,

the results in Table 3.1 also show that C-Mine-DCT and C-Mine-APR can

achieve average 9x and 4.6x speedup over CCP, respectively. In addition,

our proposed SAT-based verification can verify and enlarge cubes at the

same time; thus, the shortcut logic can be constructed from big cubes such

that area overhead can be controlled. Interestingly, compared to original

designs, C-Mine-DCT and C-Mine-APR actually achieved 4.2% and 4.3%

area reduction, respectively, while CCP had 3% area overhead. Such area

reduction is caused by the fact that merging big redundant cubes into the

design could result in more redundant gates to be optimized and removed.

Please refer to a demonstrating example in Sec. 3.8.
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Table 3.3: Comparison of Throughput and Energy Efficiency of
C-Mine-DCT, C-Mine-APR, and CCP [18] Over Medium Benchmarks.

Circuit
N. Power N. Throughput N. Energy Cons.

Tra. CCP DCT APR Tra. CCP DCT APR Tra. CCP DCT APR

alu4 1 0.77 0.71 0.73 1 0.70 0.76 0.80 1 1.10 0.94 0.91

apex2 1 0.76 0.67 0.65 1 0.83 0.90 0.93 1 0.92 0.74 0.70

apex4 1 0.82 0.80 0.72 1 0.89 0.84 0.82 1 0.92 0.95 0.88

dalu 1 0.82 0.79 0.73 1 0.85 0.89 0.84 1 0.96 0.88 0.87

ex1010 1 0.86 0.79 0.79 1 0.87 0.85 0.83 1 1.00 0.93 0.94

ex5p 1 0.87 0.84 0.87 1 0.94 0.80 0.88 1 0.93 1.05 0.99

misex2 1 0.78 0.70 0.73 1 0.87 0.81 0.81 1 0.89 0.87 0.90

pdc 1 0.54 0.52 0.56 1 0.78 0.82 0.91 1 0.70 0.63 0.61

seq 1 0.54 0.47 0.46 1 0.55 0.80 0.88 1 0.98 0.59 0.53

spla 1 0.61 0.60 0.62 1 0.68 0.63 0.78 1 0.91 0.96 0.80

Ave. 1 0.74 0.69 0.69 1 0.80 0.81 0.85 1 0.93 0.85 0.81

Note: N.: Normalized. Tra.: Traditional design Cons.: Consumption

Furthermore, to demonstrate the scalability of C-Mine-DCT and C-Mine-

APR, we compared them and CCP over large benchmarks in Table 3.2. The

results show that C-Mine-DCT and C-Mine-APR can achieve average 54x and

31x speedup over CCP, respectively, with compatible correctness probability

improvement. However, for all the methods, the improvement of Ps of some

benchmarks seems limited. One possible explanation is that a huge number

of PIs in a design might prevent C-Mine-DCT and C-Mine-APR from finding

effective common case cubes, while the performance of CCP could be restricted

by the scalability issue of BDD-based TCF and the narrow scope of circuit

partition.

3.6.2 Energy efficiency

Table 3.3 shows the energy efficiency improved by C-Mine-DCT, C-Mine-

APR, and CCP over medium benchmarks. To evaluate the energy saving,

we set a penalty r = 5 in Eq. (3.1), which has been commonly used in

previous studies [18, 40, 46, 47]. Then energy efficiency is calculated by
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Eq. (3.2). Table 3.3 lists the data of C-Mine-DCT, C-Mine-APR, and CCP,

which are normalized by the data of traditional design methodology without

V dd overscaling. Columns 3-5 list the normalized power. The normalized

throughput and energy consumption of CCP, C-Mine-DCT, and C-Mine-APR

are listed in Columns 7-9 and Columns 11-13, respectively.

Results in Table 3.3 demonstrate that compared to CCP, C-Mine-DCT

and C-Mine-APR not only can achieve similar or better levels of throughput,

TR = 0.81 and TR = 0.85, but also achieve additional 8% (0.93− 0.85) and

12% (0.93− 0.81) of energy saving, respectively. Having a complete picture of

the design, C-Mine-DCT and C-Mine-APR can generate high-quality common

case cubes to reshape the curve of correctness probability more efficiently.

However, C-Mine-APR seems to outperform C-Mine-DCT in the energy

efficiency by just 4% (0.85− 0.81) on average. To further demonstrate the

strength of C-Mine-APR, which is the ability to handle designs that have

more common cases, we applied five different signal probabilities (SP ) from

0.1 to 0.9 at primary inputs to imitate the effects of using different workloads.

The signal probability here means the probability of signal to be logic 1.

Intuitively, the workloads of SP = 0.1 and SP = 0.9 will have more common

case input patterns than the other settings such as SP = 0.5, which is the

default setting at PIs for our previous experiments. For example, the input

pattern (111 · · · 11) in the workload of SP = 0.9 will be a possible frequent

pattern (common case) based on probability. Fig. 3.12 shows the additional

energy saving C-Mine-APR can achieve compared to C-Mine-DCT in the

different workloads. We can see that C-Mine-APR achieves 13% and 7% more

energy saving than C-Mine-DCT in the workloads of SP = 0.1 and SP = 0.9,

respectively, while only 4% is obtained in the workload of SP = 0.5.

From the above experiments, we show that both C-Mine-DCT and C-

Mine-APR can achieve better performance than CCP in terms of runtime

and energy saving. C-Mine-DCT has better runtime performance, while

C-Mine-APR has remarkable handling of designs with more common cases.

3.7 Conclusion

The C-Mine-DCT and C-Mine-APR methods were proposed to provide scale-

up and comprehensive solutions for improving the timing error resilience of
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Figure 3.12: Additional energy saving achieved by C-Mine-APR compared to
C-Mine-DCT over medium benchmarks with different workloads.

BTW designs, so that greater efficiency in energy can be achieved. We applied

data mining and SAT solving to generate common case cubes, which can

construct shortcut logic for reshaping the correctness probability curve of a

design. Experimental results demonstrated significantly better scalability of

C-Mine-DCT and C-Mine-APR with equivalent or better performance and

energy results compared to a recent BTW synthesis solution. Furthermore,

our new proposed C-Mine-APR can even achieve up to 13% more energy

saving than C-Mine-DCT on the designs with more common cases.

3.8 Area reduction through redundant logic and

command fraig sweep

In this section, we use an example to demonstrate how appending shortcut

logic into the design and applying an ABC [37] command, fraig sweep, can

generate additional area reduction. Fig. 3.13 shows a 4-input design, which is

composed of three AND gates and one OR gate. The area of each two-input

gate is 3 units, and the total area of this design is 12 units.

Assuming that C-Mine finds a common case cube, ((a, b, c) = (1, 1, 1))→
(o = 1), a new design improved by the corresponding shortcut logic (blue part)

is shown in Fig. 3.14, and its area increases from 12 to 19 units. Fortunately,

this area overhead can be reduced by applying the command, fraig sweep.
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Figure 3.13: A demonstrating example.
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Figure 3.14: Append shortcut logic into the design.

The command, fraig sweep, is a lightweight logic optimization command,

which would preserve the design structure by only merging the functionally

equivalent gates. Its main steps are summarized below:

1. Group functionally equivalent gates.

2. Replace the gates at high logic levels (i.e., near POs) with the ones at

low logic levels (i.e., near PIs) in the same group.

3. Sweep out dangling gates caused by the previous replacement process.

To reduce the area overhead of the improved design in Fig. 3.14, fraig sweep

will group gates G4 and G2 together because they are functionally equivalent,

which can be seen in Fig. 3.15.

Next, since the logic level of gate G4 is smaller than that of gate G2, G2 will

be replaced by G4, and its original fanout will be reconnected to G4, shown
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Figure 3.15: Group functionally equivalent gates.

in Fig. 3.16; therefore, the area of design will be reduced to 10 units after

sweeping out dangling gates G0, G1, and G2. Finally, the optimized design in

Fig. 3.17 can not only preserve the shortcut logic but also have additional

16.7% area reduction, compared to the original design in Fig. 3.13.
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Figure 3.16: Merge equivalent gates and sweep out dangling gates.
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Figure 3.17: Area reduction after appending shortcut logic into the design
and applying the command, fraig sweep.
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CHAPTER 4

CSL: COORDINATED AND SCALABLE
LOGIC SYNTHESIS TECHNIQUES FOR

EFFECTIVE NBTI REDUCTION

4.1 Introduction

With technology downscaling to nanometer range, circuit reliability has be-

come a critical challenge for robust system designs [2]. Reliability degradation

results from factors such as soft errors, manufacturing variability, temperature

effects, and aging. As the trend moves to nanoscale devices, aging, which

causes significant loss on circuit performance and lifetime, is becoming rela-

tively dominant in reliability concerns. Hot carrier injection (HCI) [54] and

negative bias temperature instability (NBTI) [55, 56] are two major aging phe-

nomena, which can lead to permanent degradation of transistors, thus hurting

the reliability of nanoscale circuits. Among these aging phenomena, NBTI

has become particularly prominent and has received considerable attention.

NBTI is an aging phenomenon that increases the threshold voltage (Vth)

of PMOS transistors over a long period of time, thus slowing logic gates

and preventing circuits from meeting the timing requirements. NBTI occurs

when PMOS transistors are under negative gate-to-source bias (stress phase:

Vgs = −Vdd). During the stress phase, interface traps along the silicon-oxide

interface take place due to the dissociation of Si−H bonds. For instance,

over a period of ten years, these traps can increase the Vth of PMOS in 65

nm technology by up to 50 mV [57], resulting in the delay degradation of

circuits. Although some of interface traps can be annealed by relaxing the

stress condition (Vgs = 0), this recovering process is incomplete. Therefore,

the NBTI-induced delay degradation crucially depends on the amount of

time during which PMOS transistors are under the stress phase. The signal

probability SP (the probability of signal to be logic 1) is an effective metric

to estimate the NBTI-induced aging degradation of PMOS, which causes the

delay of logic gates increase over a period of time [58].
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From the logic synthesis perspective, previous works mitigate NBTI effect

by taking account of signal probability during synthesis, and these works

can be classified into two major groups: considering NBTI either during or

after technology mapping (TechMap). During-TechMap: [58] matched the

standard cells with the most suitable gate size based on signal probability for

reducing NBTI effects. [59] proposed a commercial tool flow to balance the

circuit timing with respect to specific NBTI-aware guardbands for improving

lifetime. After-TechMap: [60, 61] used logic restructuring and pin reordering

techniques with considering signal probabilities to mitigate NBTI-induced

delay degradation. [62–64] applied gate sizing techniques with variable Vth to

decrease NBTI impact and achieve timing closure. However, some of them

might have scalability issues because of applying complicated algorithms

designed only for a certain synthesis stage. For example, the complexity of

restructuring algorithms proposed in [60] might be up to O(n3), where n is the

number of gates in a circuit. Furthermore, their performance is constrained

by the results of corresponding technology mapping.

Technology mapping [65, 66] based on tree- or directed acyclic graph-

covering has a known issue of suffering from structural bias. In other words,

the structure of the resultant mapped netlist depends heavily on the given

subject graph, which is a multi-level network of simple gates for representing

the Boolean function of the circuit. Although some researches [67–69] targeted

mitigating structural bias heuristically, they cannot avoid this issue completely.

Therefore, based on this fact, our proposed work is inspired by two ideas:

Can the mapped netlist have better NBTI tolerance if the given subject graph

is NBTI-friendly? and further How to generate an NBTI-friendly subject

graph?

Unlike previous works, which attacked the NBTI effect at certain later

stages of logic synthesis and were limited by complicated algorithms, we

propose a Coordinated and Scalable Logic synthesis approach (CSL), which

integrates techniques at different stages to achieve an effective NBTI reduction.

Furthermore, the proposed techniques are designed to deal with large-scale

benchmarks. We observe that considering the NBTI effect in the early

stages of the design flow can have a better chance to boost the results with

less overhead. At the first stage, subject graph, we propose an algorithm to

restructure the subject graph into NBTI-friendly one iteratively. At the second

stage, technology mapping, we search for the best matching gates that result
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in better NBTI tolerance with minimum area overhead from standard cell

libraries. This stage also prevents the performance gain at the previous stage

from being eliminated. At the last stage, mapped netlist, we propose a scalable

pin reordering techniques, smart pin, to tweak the structure of transistor

connections for further reducing NBTI effect with negligible runtime overhead.

In sum, NBTI-aware logic restructuring, NBTI-aware technology mapping,

and NBTI-aware pin reordering work together to construct a comprehensive

and robust NBTI-aware logic synthesis approach.

The contributions of this work are three-fold. To our best knowledge, this

is the first NBTI study that (1) considers the NBTI effect at the subject

graph stage, (2) deals with large-scale benchmarks even with around a million

of gates, and (3) coordinates techniques across several stages to build a

comprehensive logic synthesis approach for NBTI reduction. Experimental

results show that on average CSL can achieve 6.5% NBTI delay reduction with

2.5% area overhead among the industry-strength benchmarks from ISPD’12

contest [70] without worrying about the size of circuits and the composition

of standard cell libraries.

4.2 Preliminaries

This section introduces the background of this work, including subject graph,

NBTI modeling, and transistor stacking effect in the PMOS network.

4.2.1 Subject graph

The subject graph, the input to the technology mapping stage, used in this

work is in And-Inverter Graph (AIG) format, which has been shown an

efficient data structure for manipulating large Boolean networks in logic

synthesis and formal verification [37, 67, 71]. An AIG is a multi-level Boolean

network composed of two-input ANDs and INVs. The data structure of AIG

is a directed acyclic graph, in which nodes with no incoming edge are primary

inputs (PIs) while those with two incoming edges are two-input AND gates.

The edges in AIGs represent wires. Inverters are represented by bubbles on

the edges. All primitive gates have their corresponding forms in AIGs as
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AND2 INV OR2 

Figure 4.1: The corresponding AIGs of primitive gates: INV, AND2, and
OR2.

shown in Fig. 4.1; therefore, arbitrary Boolean networks can be represented

by AIGs.

4.2.2 NBTI modeling

This section briefly introduces the NBTI modeling [58, 62, 72] used in this

work. The model is used to estimate the delay degradation of each gate in the

standard cell library, as a function of the signal probabilities of gate inputs

and intrinsic gate delay. An NBTI-stress factor of a gate input i, denoted by

γnbti(i), represents the probability of the PMOS transistor at input i being

stressed. γnbti(i) impacts the rise delay of the timing arcs from the gate

input i to the gate output. The idea of NBTI modeling is to estimate the

corresponding increase in Vth for different NBTI-stress factors at the end of

a time period. Then, the final Vth is plugged into HSpice simulation to get

the NBTI-affected rise delay. Finally, a piecewise linear model, similar to

that in [62,72], is developed (within 1% difference to the HSpice simulation

data) for adjusting the output rise delay caused by an input i based on γnbti(i)

during timing analysis. The details of the modeling can be found in [58,62].

Fig. 4.2 shows the rise delay characterization of an inverter with input i based

on γnbti(i). We can see that the maximum increase of rise delay of the inverter

is about 25%.

Next, let us discuss the relationship between signal probability and γnbti(i)

of a gate input i. The γnbti(i) can be derived from the signal probability of

input i and that of other inputs. Take an example of and-or-inverter (AOI12)

gate in Fig. 4.3(a), whose output function is o = a+ bc. Let SPa, SPb, and

SPc denote the signal probabilities of inputs a, b, and c, respectively. The

γnbti of b and c, γnbti(b) and γnbti(c), are simply their probabilities of being
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Figure 4.2: Rise delay vs. NBTI-stress factor in an INV [62].

logic 0, while γnbti(a) is the probability that a is equal to logic 0 as well as at

least one of b and c is equal to 0, where the PMOS transistor at a is stressed.

The γnbti for inputs, a, b, and c, of the AOI12 gate are shown in Eq. 4.1.

Therefore, the NBTI-aware timing model can be built by characterizing all

gates in the standard cell library accordingly.

γnbti(b) = (1− SPb)

γnbti(c) = (1− SPc)

γnbti(a) = (1− SPa)(1− SPb · SPc)

(4.1)

4.2.3 PMOS transistor stacking effect

Two transistors connected in series are called stacking. For a CMOS logic

gate, if its pull-up (PMOS) network has stacking transistors, we say that

these PMOS transistors have the stacking effect [58, 60]. The stacking effect

causes the NBTI effect of lower PMOS transistors, which are closer to the

output signal, to be milder than that of upper PMOS transistors, which are

closer to the power supply (Vdd). This is because the lower PMOS transistors

are under stress (connected to Vdd) only when their upper PMOS transistors

are “on” simultaneously. In other words, a lower PMOS transistor can be

protected from NBTI-induced aging by its upper ones. Take a three-input
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Figure 4.3: The transistor schematics of gates AOI12 and NOR3.

NOR gate in Fig. 4.3(b) as an example. The PMOS transistor of input a can

be protected by the PMOS transistors of inputs b and c. By leveraging the

stacking effect of pull-up transistors, the previous work [60] proposed a pin

reordering method to reduce the NBTI effect. However, it only dealt with

NOR gates. In this work, we also propose a new pin reordering method, which

considers all kinds of gates that leverage the stacking effect in the library.

The details are presented in Sec. 4.3.3.

4.3 NBTI-aware logic synthesis

This section introduces CSL, a coordinated and scalable NBTI-aware logic

synthesis approach, which consists of three techniques: NBTI-aware subject

graph restructuring, NBTI-aware technology mapping, and NBTI-aware smart

pin reordering for the three stages mentioned, respectively. To make the

approach scalable, we restrict both time and space complexity of the proposed

techniques.

To begin with, we perform parallel simulations to accelerate the calculation

of the signal probabilities of gates in the subject graph and mapped netlist.

Please note that CSL is a general approach that can accept both purely

random simulation and directed simulation; therefore, if a workload is given,
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designers can apply the same directed simulation patterns through the whole

process to optimize the NBTI behavior of designs specifically.

Additionally, the major overhead of this NBTI effect reduction approach

is area, which is a common trade-off in logic synthesis: the shorter delay

of a circuit, the bigger area of the circuit. Therefore, our objective is not

only to reduce the longest NBTI-affected delay of circuits, but also to control

the area overhead in an acceptable range. The techniques in the approach

for mitigating NBTI effect at different stages are discussed separately in the

following subsections.

4.3.1 Subject graph restructuring

Our purpose at this stage is to provide an NBTI-friendly subject graph to

CSL’s technology mapping stage as well as to control the area overhead of

mapped netlist in advance. CSL is the first work that considers and reduces

NBTI effect in the subject graph.

4.3.1.1 NBTI-aware static timing analysis for AIG

An AIG, the format of subject graph used in this work, is a multi-level

Boolean network of simple nodes to represent the functionality of a circuit.

The delay of an AIG is usually measured by performing static timing analysis

(STA) with a unit-delay model, in which both the rise and fall delays of gates

are set to one. However, to generate NBTI-friendly AIGs, NBTI-aware STA

for AIG is needed. Therefore, we propose an NBTI-aware delay model based

on the NBTI modeling in Sec. 4.2.2 to estimate the NBTI-degraded delay

of AIG nodes. Although the NBTI modeling in Sec. 4.2.2 is designed for

standard cells, we found that its concepts can be still applied to AIG nodes,

so that the NBTI delay paths in AIGs can be identified.

The usage of the NBTI modeling for AIG nodes is similar to that for

standard cells. That is, the rise delays of simple nodes (AND gates) of AIGs

should reflect NBTI degradation by considering inputs’ NBTI-stress factors.

As aforementioned, the structure of the mapped netlist depends strongly on

the subject graph. Therefore, the intuition behind the prediction is that long

NBTI delay paths in an AIG might have higher probabilities to be mapped

than the long NBTI ones in the final mapped netlist. Although this predictive
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model might not be completely accurate, it still provides useful guidance to

generate NBTI-friendly subject graphs for technology mappers, which can be

observed in our experimental results.

4.3.1.2 NBTI balance

With the NBTI-aware STA for AIGs, we propose an AIG restructuring

procedure, named NBTI balance, to reduce the NBTI effect. The proposed

idea is illustrated in Fig. 4.4, and NBTI balance consists of three main steps

as follows:

Step. 1: Identify the NBTI-critical POs based on the parameter threshold.

Step. 2: Extract and remove the fanin cones of these NBTI-critical POs.

Step. 3: Add the optimized fanin cones (with better NBTI delays) back for

these NBTI-critical POs and minimize the area overhead.

In Step. 1, we identify NBTI-critical primary outputs (POs) in an AIG

as follows. After finding the maximal NBTI delay of the circuit, dmax, the

POs whose NBTI delays are larger than or equal to dmax × threshold are

considered NBTI-critical POs as shown in triangles with red bold line in

Fig. 4.4(a). The parameter threshold is a user-defined parameter within an

interval [0, 1], which is used to determine how many POs to be re-synthesized

in the next step. Optimizing a group of POs together not only saves runtime

but also helps reduce area overhead down the road. The parameter setting is

shown in the experimental section.

In Step. 2, as shown in Fig. 4.4(b), NBTI-critical cones, the fanin cones that

belong to the NBTI-critical POs, are extracted and removed from the AIG to

form a subcircuit. While extracting NBTI-critical cones, the functionalities of

non-NBTI-critical POs are preserved by duplicating the sharing logic between

critical and non-critical cones if needed. Please note that most of the duplicate

logic can be shared again when the optimized NBTI-critical cones are added

back in the next step.

In Step. 3, the subcircuit of NBTI-critical cones is re-synthesized using a

resyn2 script in ABC [37]. This script can optimize both timing and area of

the subcircuit. The physical meaning behind this operation is to destroy long

NBTI delay paths of critical POs in the AIG. In the end, the optimized cones
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Figure 4.4: The illustration of NBTI Balance procedure.

with respect to the NBTI-critical POs are added back to the AIG to maintain

the original functionality as shown in Fig. 4.4(c). Additionally, the structural

hashing mechanism in ABC, which can increase the number of sharing nodes

by merging functionally equivalent ones, is also adopted to control the area

overhead during the adding back operation as shown in Fig. 4.4(d).

Next, let us discuss the efficiency of this procedure. The time complexities

of Step 1 and Step 2 are linear to the number of nodes in the AIG. For Step 1,

the delay is calculated from the PIs to the POs in the breadth-first search

(BFS) manner. For Step 2, the logic cones of NBTI-critical POs are also

extracted in BFS manner from the POs to the PIs. In Step 3, the resyn2 script

can optimize a circuit of a million of gates in few seconds, and structural

hashing mechanism is also efficient by using hash tables. Therefore, the

proposed NBTI balance procedure is efficient and thus scalable to large-scale

benchmarks. This can be seen in the experimental results.
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4.3.1.3 Complete NBTI-aware subject graph restructuring

Although NBTI balance generates an NBTI-friendly AIG for the next stage,

this procedure cannot be complete without appropriate termination conditions.

In other words, we have to determine the number of iterations of NBTI balance

for maximizing the reduction of NBTI effect with acceptable area overhead.

Therefore, we add two termination conditions that complete our restructuring

technique. The pseudo code of the proposed NBTI-aware subject graph

restructuring is shown in Algorithm 1, where the two termination conditions,

imprvIter < minImprv and imprvTotal > targetImprv, are involved. The

physical meanings of these two conditions are explained as follows.

• (imprvIter < minImprv) : Terminate the iteration when the improve-

ment of NBTI delay of one iteration is less than minImprv , which

is set to 0.1% in this work. This condition indicates that the NBTI

balance has reached its limit and no more significant improvement of

NBTI delay would be expected.

• (imprvTotal > targetImprv) : Terminate the iteration when the accu-

mulated improvement of NBTI delay (compared to the original NBTI

delay) is larger than targetImprv . According to our experiments,

the average delay degradation under NBTI effect among the bench-

mark set we used is around 9%; therefore, the targetImprv is set to

10% in this work to avoid over-optimization of NBTI delay. The value

of targetImprv should be set according to the observation of NBTI

degradation of benchmark set.

In sum, the NBTI balance procedure will be iterated until the improvement

is tiny or the target improvement has been achieved.

Area is traded for NBTI delay improvement in this work. However, large

area overhead is not acceptable. Therefore, for maintaining the area overhead

within a range, the total improvement of NBTI delay is “restricted” to

targetImprv as mentioned. As a result, if the total improvement of NBTI

delay is larger than targetImprv, we undo the last iteration and explore the

solution space of last iteration by increasing threshold parameter, such

that fewer NBTI-critical POs are selected for optimization in this iteration.

The objective is to achieve an NBTI delay improvement less than but close
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Algorithm 1 NBTI-aware subject graph restructuring.

1: function nbtiBalanceAig(oriAig, thld)

2: // initialization

3: oriDelay ← nbtiSTA(oriAig)

4: currAig ← nbtiBalAig ← oriAig

5: repeat

6: // save the results of previous iteration

7: currAig ← nbtiBalAig

8: currDelay ← nbtiSTA(currAig)

9: // detect NBTI critical POs and optimize their delays

10: nbtiBalAig ← nbtiBalance(currAig, thld)

11: newDelay ← nbtiSTA(nbtiBalAig)

12: // examine termination conditions

13: imprvIter ← compImprv(currDelay, newDelay)

14: imprvTotal← compImprv(oriDelay, newDelay)

15: until imprvIter < 0.1% or imprvTotal > 10%

16: // control imprvTotal not exceed 10% by exploring the

solution space of this iteration with different thld’s

17: if imprvTotal > 10% then

18: nbtiBalAig ← explDiffThld(oriDelay, currAig, thld)

19: end if

20: return nbtiBalAig

21: end function

to targetImprv. This idea about solution space exploration with various

threshold parameters is detailed in the pseudo code of Algorithm 2.

4.3.2 Technology mapping

Given an NBTI-friendly subject graph (AIG), we propose an NBTI-aware

technology mapping technique, which not only preserves the NBTI reduction

gains from the previous stage, but also alleviates NBTI impact from the

aspect of technology mapping. Additionally, the mapping selection step in it

also considers the succeeding stage, smart pin reordering, ahead for maximally

reducing the NBTI effect.
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Algorithm 2 Explore the solution space of a specific iteration with various
threshold parameters.

1: function explDiffThld(oriDelay, currAig, startThld)

2: thld← startThld

3: nbtiBalAig ← currAig

4: repeat

5: // use a bigger thld to balance the tradeoff

6: thld← thld+ 0.01

7: // have explored all possible thld’s, discard

the results of this iteration

8: if thld > 1 then

9: return currAig

10: end if

11: nbtiBalAig ← nbtiBalance(currAig, thld)

12: newDelay ← nbtiSTA(nbtiBalAig)

13: imprvTotal← compImprv(oriDelay, newDelay)

14: until imprvTotal ≤ 10%

15: return nbtiBalAig

16: end function

The technology mapper adopted in the work is based on a cut-based

Boolean matching method [37,67]. The mapper consists of five major steps:

(1) Compute k-feasible cuts. A feasible cut of a node n in the AIG is a set

of nodes Cn in the fanin cone of n such that any path from a PI to n passes

through Cn. A k-feasible cut means the size of the cut must be less than

or equal to k. A k-feasible cut is redundant if there exits a node in the cut

whose value can be completely determined by the other nodes in it. For

example, in Fig. 4.5, the set {a, b, c} is a 3-feasible cut of node n, while the

set {a, b, c, e} is a redundant 4-feasible cut of node n because the value of

node e can be determined by nodes b and c in the same cut. The redundant

k-feasible cuts will not be considered during cut enumeration. The parameter

k is heuristically set to 5 for the tradeoff of efficiency and effectiveness in the

work. (2) Compute the truth tables of cuts. The local function of a node

in terms of its cut is computed symbolically. With considering 5-feasible

cut, the truth table (function) of each cut can be stored in a 32-bit integer,

thus accelerating the symbolic function computation as well as the matching
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Figure 4.5: The redundant and irredundant feasible cuts of node n.

process in the next step. (3) Perform Boolean matching. Each node in the

AIG might have more than one 5-feasible cut. For each cut, a matching gate,

if existing, is selected from the library. (4) Compute the best arrival time of

each node. The best arrival time of each node is computed and selected from

all its matchings of cuts in a topological order. (5) Select the best cover. In a

reverse topological order, which is from the POs to the PIs, the best matching

gates are chosen using a delay-oriented method with the area constraint until

all nodes in the AIG are covered.

To reduce NBTI effect at this stage, the arrival time computation of matches

should reflect NBTI-induced degradation accordingly. Given a matched gate

and a cut, γnbti for the inputs are computed from their signal probabilities

based on the NBTI modeling mentioned in Sec. 4.2.2. Since only the rise

delay would be affected by NBTI, two out of four timing arcs, input rise to

output rise and input fall to output rise, are adjusted with considering

γnbti.

Furthermore, to break a tie during the best cover selection, NOR or Or-And-

Inverter (OAI) gates will be chosen with high priorities to benefit our next

stage. The beneficial effects will be discussed in the next subsection. Our

technology mapping stage produces an NBTI-tolerant mapped netlist to the

next stage.
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4.3.3 Smart pin reordering

Given an NBTI-tolerant mapped netlist, we propose a scalable pin reordering

technique, named smart pin, to tweak the structure of the netlists for more

NBTI effect reduction. Based on the discussion of stacking effect in Sec. 4.2.3,

it is intuitive to assign inputs to the PMOS transistor stack of a gate in

descending order of input signal probabilities from the top to the bottom of

pull-up network. Although this assigning order can result in the smallest NBTI

degradation for the gate, it might not lead to the smallest signal arrival time at

the gate’s output. This is because the inputs with higher signal probabilities

(smaller probabilities of being logic 0) might have larger signal arrival time.

Therefore, to minimize the NBTI-degraded delay of the overall circuit, both

signal probabilities and signal arrival time of inputs should be considered

simultaneously for pin reordering technique. The previous work [60] considered

the stacking effect in NOR gates only, and only considered input arrival time to

search a pin ordering that leads to the best timing exhaustively. Therefore,

it might not be applicable for richer standard cell libraries, which have other

gates with PMOS transistor stacking or gates with many pins.

The two major characteristics of the proposed smart pin reordering tech-

nique are applicability and scalability. For applicability, in addition to

leveraging stacking effect of NOR gates, we also explored and leveraged the

stacking effect in OAI gates, as marked in rectangles in Fig. 4.6, for NBTI

reduction. For scalability, the smart pin reordering technique heuristically

determines pin assignment by slack, which is defined as the difference between

the required time and arrival time of the gate’s output signal for the timing

path, rather than exhaustively searching like the previous work.

The scalable heuristic is described as follows. First, given the required

time of the POs, the slack of each gate in the mapped netlist is computed

using an NBTI-aware STA with considering signal probabilities of the gate

inputs. Next, pins of PMOS stack(s) in NOR and OAI gates are reassigned

based on the slack information in a topological order from the PIs to the POs.

Specifically, the input with the smallest slack is assigned to the lowest PMOS

transistor, and the other inputs are dealt with in the same way. The physical

meaning behind this strategy is that a timing path through an input with

a small slack is tight and more fragile to NBTI-induced delay degradation;
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Figure 4.6: The PMOS transistor stacking effect exists in the schematics of
gates OAI12 and OAI22.

therefore, assigning this input to the lower position of PMOS stack can protect

the tight timing path against NBTI effect in the future.

In addition to the applicability and scalability of the smart pin technique,

in this coordinated approach, CSL’s technology mapping stage chooses NOR

and OAI gates with higher priorities when a selection ends in a tie, thus

inducing more flexibility and increasing the effectiveness of this smart pin

reordering technique.

4.4 Experimental results

The CSL for NBTI reduction was implemented in C/C++ in ABC [37],

which is a state-of-the-art logic synthesis and verification platform. The

benchmarks are industry-strength designs from ISPD’12 contest [70] and

benchmark statistics is listed in Table 4.1. The standard cell library used in

the experiments is a subset of library mcnc.genlib [73], which contains INV,

NAND2, NAND3, NAND4, NOR2, NOR3, NOR4, AOI12, AOI22, OAI12,

and OAI22. The technology process used is 32nm Predictive Technology

Model (PTM) [74], and NBTI effect is considered at the end of a 5-year
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Table 4.1: The Statistics of Benchmarks from ISPD’12 Contest [70]

Circuit PI # PO # Comb. cell # Seq. cell # Total cell #

pci bridge32 160 201 29844 3359 33203

DMA 683 276 23109 2192 25301

des perf 234 140 102427 8802 111229

vga lcd 85 99 147812 17079 164891

b19 22 25 212674 6594 219268

leon3mp 254 79 540352 108839 649191

netcard 1836 10 860949 97831 958780

period. All experiments were run on a Linux machine with AMD Opteron

6276 16-Core 2.3GHz CPU and 128GB RAM.

The previous work [60], which is the most related to CSL, combines logic

restructuring and pin reordering based on functional symmetry detection

and transistor stacking effect to mitigate NBTI-induced delay degradation.

Given a mapped netlist, it identifies functional symmetries using the concept

of supergates (SG) [75], where a supergate is a group of connected gates

that logically equals a big AND/OR gate. Having these SGs detected, [60]

can swap wires inside supergates to improve NBTI delay without altering

the functionality of netlist. The NBTI delay of the netlist will be improved

iteratively until no further improvement is obtained. To extract SGs in a

netlist, [60] first treats all POs as SG roots and assigns non-controlling values

to them. Then backward implication is applied to each gate in a reverse

topological order to determine the values of all inputs until (1) no more

implication can be made or (2) the current gate is not fanout-free. The gates

where backward implication stops are treated as new SG roots. The same

backward implication is applied to those new SG roots with non-controlling

values recursively until no more SGs can be detected. To compare [60] and

CSL, we reimplemented [60] on the same platform ABC, and the results

were verified by the equivalent checking commands of ABC to guarantee the

functional correctness of logic restructuring and pin reordering.

Table 4.2 shows the comparison of [60] and CSL on NBTI reduction over

industry-strength benchmarks. Since CSL includes stages that optimize and

remap the original benchmarks, to fairly compare the performance of [60]

and CSL, the original benchmarks were first optimized and remapped by
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ABC to eliminate redundant logic. These new optimized benchmarks are our

baseline results. The threshold parameter of CSL is set to 0.97 empirically.

Because of lack of real workloads, the signal probabilities are calculated using

purely random simulation for both [60] and CSL. The NBTI delay is obtained

by an NBTI-aware STA using the NBTI modeling in Sec. 4.2.2. The aging

degradation is the percentage difference between the nominal delay and NBTI

delay. Columns 1-5 list the basic information and NBTI-induced degradation

of the baseline benchmarks. Columns 6-7 and Columns 8-10 list the results

of [60] and CSL, respectively. The runtime is in seconds. Compared to the

baseline, the NBTI delay improvements of both methods are listed in Columns

11 and 13, and the area overhead of CSL is listed in Column 12. There is

no area overhead in [60], since it only swaps wires and does not introduce

additional gates.

4.4.1 The performance of [60]

As shown in Table 4.2, we observed that the performance of [60] on large-scale

benchmarks is limited based on our reimplementation. After investigating the

algorithm and benchmarks, the possible explanations for this phenomenon

follow.

First, as we mentioned, the performance of after-TechMap works might be

constrained by the results of technology mapping. Therefore, after benchmarks

are optimized and remapped (e.g., by ABC in this work) for delay, there might

be little space left for further delay or NBTI delay improvement, thus affecting

the performance of these works. However, this effect is more dramatic in [60]

because it only performs wire swapping without inducing any additional gates.

Second, the size of supergates does matter to the performance due to the

complexity of algorithm. The statistical information of supergates detected

by [60] for each benchmark is listed in Table 4.3. As shown in Table 4.2, [60]

cannot finish vga lcd, leon3mp, and netcard within the specified time limit

because these benchmarks have big SGs whose sizes are 219, 225, and 877,

respectively. In Table 4.3, we can know the number of wires in a SG is

essentially proportional to its size. However, the number of valid combinations

of wire swappings is indeed exponential to the number of wires. Therefore,

when the size of a SG is enormous, [60] spends much time in exploring many
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Table 4.3: The Statistics of Supergates Detected by [60] in Benchmarks

Circuit Supergate # Max Size of SG Wire # in Max-size SG

pci bridge32 2021 11 37

DMA 1269 12 41

des perf 6915 7 13

vga lcd 1167 219 730

b19 15313 21 50

leon3mp 12545 225 735

netcard 59196 877 2669
1 Supergate size is measured by the number of primitive gates in it.
2 The number of wires in a SG includes inputs to SG and its internal wires.

possible combinations of wire swappings to find the one that reduces the

NBTI delay of the SG most. Although [60] has proposed some heuristics

to prune the exploring space, the number of wire swappings to try is still

intractable in big SGs. Furthermore, large-scale benchmarks usually have

more big SGs than small-scale ones; therefore, we could infer that large-scale

benchmarks are not friendly to [60].

Third, the NBTI delay reduction is limited because not many SGs are

located on the NBTI longest path of circuits. Please note that the standard

cell library used in the work is richer than that used in [60]. Our library has

two additional primitive gate types, OAI and AOI, which do not have non-

controlling values and cannot perform backward implication. Additionally,

large-scale benchmarks usually have many non-fanout-free gates because of

logic sharing. Therefore, for pci bridge32, DMA, des perf and b19, [60]

cannot find enough SGs on the longest path to improve NBTI delay due to

keeping restarting SG expansion on new SG roots, while encountering OAI,

AOI, and non-fanout-free gates. This scattered SG structure compromises the

performance of [60] drastically. Take DMA as an example, we found that there

is only one SG of size 2 on the NBTI longest path. Worse, this SG, consisting

of only a NAND2 and an INV, has no valid wire swappings that can improve

the NBTI delay. Therefore, no NBTI improvement can be made in DMA.
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Table 4.4: The Effectiveness of NBTI-aware Subject Graph Restructuring of
CSL.

Circuit

CSL (AIG restr.) CSL (AIG restr.) Performance

Area
NBTI Area NBTI Delay

Delay Overhead (%) Imprv. (%)

pci bridge32 44166 19.86 0.38% 10.78%

DMA 48494 19.16 6.60% 3.57%

des perf 180731 17.04 6.74% 2.35%

vga lcd 284397 15.64 6.76% 9.23%

b19 442878 63.81 0.25% 4.19%

leon3mp 1254236 40.89 0.28% 6.15%

netcard 1617043 31.85 5.52% 1.82%

Ave. 3.79% 5.44%

* Area size is normalized by INV’s size and reported by ABC [37].

4.4.2 The performance of CSL

According to Table 4.2, CSL can achieve 6.53% NBTI delay improvement

with merely 2.49% area overhead on average. Thanks to NBTI-aware subject

graph restructuring technique, NBTI-friendly graphs can be generated by

considering NBTI effect and controlling area overhead as early as possible.

Given the NBTI-friendly graphs, our technology mapping technique can have

more flexibility in choosing the matching gates that can reduce NBTI delay

most as well as not sacrificing area too much. For example, CSL can mitigate

the NBTI effect of b19 and pci bridge32 with insignificant area overhead

(< 1 %). This contribution is even more significant for large benchmarks like

netcard and leon3mp, for which CSL can improve NBTI delay without any

area overhead or even a little area reduction. Interestingly, for pci bridge32

and vga lcd, the improved NBTI delay is slightly better than the original

nominal delay, possibly due to the restructuring at the subject graph stage.

Additionally, the runtimes of benchmarks also demonstrate the scalability of

CSL. All the benchmarks can finish in several seconds to an hour. Please

note that the major part of runtime is spent on technology mapping, which

is also a necessary effort for non-NBTI-aware approaches. We could find that

CSL has a great ability to handle large-scale benchmarks as well as having

no constraints on the libraries used.
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To demonstrate the benefit of considering NBTI effect at an earlier stage,

we conducted another experiment that only applies NBTI-aware subject

graph restructuring technique in CSL without using NBTI-aware technology

mapping and smart pin reordering techniques. Results in Table 4.4 demon-

strate that NBTI-aware subject graph restructuring alone can achieve 5.44%

NBTI delay improvement on average, which is the major contribution of the

complete CSL. These results support the idea of early consideration of NBTI

effect. Although the techniques of the rest stages, NBTI-aware technology

mapping and NBTI-aware smart pin reordering, seemingly provide 1.09%

(6.53% − 5.44% = 1.09%) improvement in NBTI delay, they help reduce

area overhead from 3.79% to 2.49%. Therefore, the coordination among the

techniques at different stages can result in the best performance of CSL.

4.5 Conclusion

This work proposes a coordinated and scalable logic synthesis approach, CSL,

to address NBTI effect, which is a major cause of aging and reliability issues in

nanometer IC designs. It consists of NBTI-aware subject graph restructuring,

technology mapping, and smart pin reordering techniques at different stages

to form a coordinated NBTI-aware logic synthesis approach. Experimental

results demonstrated the capability and scalability of CSL to mitigate the

NBTI effect with acceptable area overhead and runtime.
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CHAPTER 5

COST-EFFECTIVE ERROR DETECTION
THROUGH MERSENNE MODULO

SHADOW DATAPATHS

5.1 Introduction

As technology scales into deep-submicron nodes and more transistors are

packed into a chip, reliability problems ranging from transistor wear-out to

soft errors to electromigration are getting worse. For each reliability problem,

there are logic and physical-design level techniques proposed to address the

problem. For example, flip-flop hardening [76,77] is proposed to address soft

errors in flip-flops and Razor logic [78, 79] is proposed to detect timing errors

(such as those caused by transistor wear-out). But these low-level solutions

are limited in that they only protect some of the hardware components (e.g.

flip-flop hardening only protects flip-flops) and/or only apply to certain classes

of errors (e.g. flip-flop hardening only protects against soft errors).

Each of these solutions adds some complexity to the design process and

impacts quality of results (QoR). Building a comprehensive solution with

these low-level techniques would involve combining multiple solutions which

can further compound the design complexity and QoR cost. Clearly there is

a need for a holistic solution to reliability problems. Ideally, such a solution

would protect all of the hardware against essentially all possible reliability

problems.

With the end of Dennard scaling, technology scaling has also resulted

in a proliferation of hardware accelerators to meet high image and video

processing demands despite limited scaling in microprocessor performance

and efficiency. While microprocessor area is usually control-logic dominated,

hardware accelerators are datapath-dominated with the majority of the area

dedicated to computation in application-specific, computation-intensive, and

complex datapaths.
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For arithmetic-oriented datapaths (i.e., involving the elementary addition,

subtraction, and multiplication operations) modulo shadow datapaths [80]

are a useful technique for protecting arithmetic datapaths using lightweight

(e.g. 2-bit) shadow logic that redundantly performs the same computation

as the main datapath, but with modulo residues. Modulo shadow datapaths

have been shown to detect stuck-at faults, timing errors, and soft errors [80].

As with any reliability improvement technique, the cost of modulo shadow

datapaths limits its applicability. Furthermore, increasing the width of the

shadow datapath is also desirable, as it reduces the chance of false error

detection negatives (i.e., the output was wrong, but it happened to have

the correct residue value) and improves coverage, but increasing the shadow

datapath width also increases costs.

Existing approaches to modulo logic rely on logic synthesis tools to produce

optimal QoR. Furthermore, some approaches [81, 82] only use the FPGA

platform for QoR evaluation, which does not accurately model the effects of

ASIC technology mapping.

In this chapter, which is an extension of our conference publication [25],

we develop our own gate-level design techniques to create minimum area

and minimum delay modulo functional units for any given modulo residue

bitwidth, dramatically improving QoR over the state-of-the-art approach. To

demonstrate the applicability of our approach for reliability, we use these

building blocks to create self-checking multiply-accumulate and linear algebra

primitive datapaths. We observe cost-effective results, with 32-bit datapath

overheads of 6–10% for a 3–61× improvement in reliability, and overheads of

15–20% for a 121–2477× improvement in reliability. Additionally, we propose

an area overhead estimation method for self-checking arithmetic component

implementation.

Our contribution highlights are:

1. A modulo reduction algorithm which generates architectures consisting

entirely of full-adder standard cells that efficiently reduce large numbers

of bits;

2. minimum-area modulo adder and subtractor architectures;

3. an array-based modulo multiplier design;
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4. QoR comparisons showing the cost-effectiveness of our functional units

compared to the previous state-of-the-art in area and delay;

5. low-cost designs for self-checking multiply accumulator and linear alge-

bra primitives; and

6. an area overhead estimation method.

The rest of this chapter is organized as follows: Section 5.2 discusses related

work, Section 5.3 provides some background knowledge used in subsequent

sections, Section 5.4 describes the gate-level architecture of our modulo

functional units, Section 5.5 provides QoR and overhead comparisons for

individual functional units and for our example self-checking datapaths, and

we conclude in Section 5.6.

5.2 Related work

5.2.1 Fault detection

As mentioned in Section 5.1, there are many alternative approaches to error

detection. The classical approach is modular redundancy [83, 84], duplicating

the entire hardware module and comparing the outputs for discrepancies.

Such an approach has at least a 2× area cost, which can be prohibitively

expensive and negates the benefits of Moore’s law scaling.

Razor logic [78,79], an approach involving creating a shadow latch for each

flip-flop in a design, has been proposed to address timing errors, but also

imposes timing constraints on a design. Flip-flop hardening techniques [76,77]

have been proposed to address soft errors in flip-flops, but such techniques

do not protect combinational logic. Logic parity [85] is another technique

for protecting flip-flops by adding a parity flip-flop for flip-flop clusters with

parity prediction and checking logic. Such parity techniques are practically

limited to protecting only the flip-flops in a design using the aforementioned

clustering technique [85] due to the high overheads (e.g., around 30% area

overhead for a 32-bit adder [86]) associated with parity prediction across

functional units.

While Razor logic, flip-flop hardening, and parity are limited to certain

kinds of faults and certain parts of a datapath, modulo shadow datapaths have
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none of these limitations. Modulo shadow datapaths [80] holistically protect

the entire datapath from input to output, including all of the combinational

logic. Modulo shadow datapaths is a general purpose error detection technique

with essentially no assumptions about fault behavior.1

Finally, Algorithm-Based Fault Tolerance (ABFT) [87, 88] is an algorithm-

level technique for protecting linear vector and matrix computations by

predicting and checking the sums of groups of output elements. ABFT can

involve expensive extra memory accesses for checksum computation and

storage and may require the duplication of vectors for certain computations.

5.2.2 Modular arithmetic

For small modulo bases, a lookup table based approach has been used for

basic functional units [80,89] with explicit don’t cares inserted to provide hints

to the logic synthesis engine for inputs combinations that should never occur.

A reducer is built with a tree of such lookup-table based modulo adders [89].

Such an approach is impractical for larger bases due to exponential scaling.

Piestrak et al. propose a design for a modulo-3 reducer consisting of full-

adder (FA) cells and interleaved inverters [89, 90] which exploits the fact that

for a given bit b ∈ {0, 1}, 2b = −b = 3− b = 2 + (1− b) (mod 3). In other

words, bits of weight 2 can be inverted and treated as a bit of weight 1 with a

constant offset (which can be lumped together at the end) so that all bits have

the same weight of 1 and can be passed through stages of FAs. While this

design may appear superficially similar to our reducer design in Fig. 5.1(b),

our design uses a more general strategy inspired by Wallace trees that does

not require separate inverters. Furthermore, our strategy generalizes to any

Mersenne base while their design trick is limited to modulo-3 arithmetic.

Wei and Shimizu [91] proposed a signed-digit architecture which can handle

any modulo base of the form 2n ± 1. The authors measured the area cost of

their approach with rough gate count numbers and do not provide ASIC area

with real units. Area cost would be a significant problem for the hardware

1Modulo shadow datapaths are limited in their applicability to non-arithmetic logic (e.g.
bitwise operations). Campbell et al. demonstrated in [80] that these limitations can be
worked around by considering non-arithmetic components to be modulo shadow datapath
barriers and insuring that inputs to those components are checked directly or indirectly,
while protecting the non-arithmetic components themselves with another complementary
technique.
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cost-effectiveness of their approach considering the complexity of their signed-

digit adders which must use 2 bits for each binary digit instead of the single

bits used in our approach.

For cryptography applications, there are also a number of hardware accel-

erator designs for accelerating modulo exponentiation of large (e.g. 256-bit)

numbers, which is performed with a series of modulo multiplies [92]. These de-

signs use application-specific algorithms (e.g. Montgomery multiplication [93])

that make them very specialized for big-integer modulo exponentiation, and

thus unsuitable for reliability applications.

5.3 Background

5.3.1 Modulo arithmetic

Modulo-b arithmetic (also called residue arithmetic) is arithmetic defined in a

finite field with b possible values, where each possible value corresponds to a

remainder when an integer is divided by b, which we refer to as the modulo base

(using Euclidean division so that remainders are always positive). Addition,

subtraction, and multiplication are defined with “wraparound” arithmetic

where the result is immediately divided by b and the remainder taken as the

result.

For example, in modulo-3 space the possible values are {0, 1, 2} and 2+2 = 1

since in integer space (2 + 2) mod 3 = 1 where a mod b is the remainder after

dividing a by b.

Since equivalent lightweight computations can be performed in modulo-

b space as in integer space, modulo arithmetic can be used as a way to

independently check integer computation. This works because we have

defined a homomorphism from integer arithmetic to modulo arithmetic. In

other words, given integers {x, y, z} and corresponding modulo variables

{x′, y′, z′} = {x, y, z} mod b we observe the following properties:

x+ y = z =⇒ x′ + y′ = z′ (mod b) (5.1)

x− y = z =⇒ x′ − y′ = z′ (mod b) (5.2)

xy = z =⇒ x′y′ = z′ (mod b) (5.3)
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where (mod b) next to an equation indicates that the arithmetic is performed

in modulo-b space. Thus for Eqs. (5.1), (5.2), and (5.3), z′ can be indepen-

dently computed two ways: by mapping z to modulo space or by mapping x′

and y′ to modulo space and performing the “shadow computation” in each

equation.

Note that this “shadow computation” property holds for arbitrarily complex

integer arithmetic involving addition, subtraction, and multiplication. For

example, x2− 4xy+ 2y2 = z =⇒ x′2− 4x′y′+ 2y′2 = z′ (mod b). Exploiting

the ability of homomorphisms such as this integer to modulo mapping to scale

to arbitrarily complex expressions is the key to implementing cost-effective

error detection.

5.3.2 Mersenne numbers

For positive integers n we define the Mersenne numbers by M(n) = 2n − 1.

The use of M(n) as a modulo base has the following useful property for n ≥ 2:

2n = 1 (mod M(n)) (5.4)

5.3.3 Binary representations

Our encodings for modulo residues are based on the standard binary repre-

sentation for integers, where bits have weights with successive powers of two.

In other words the integer value of a particular sequence {bn−1, bn−2, ..., b0}
of bits is defined as:

v =
n−1∑

i=0

2ibi (5.5)

A standard Mersenne number residue r with base M(n) will be in the range

0 ≤ r ≤ M(n)− 1 = 2n − 2. Thus n bits are sufficient to encode a residue

with base M(n), and the most significant bit (MSB), bn−1, will have weight

2n−1. If a carry bit is generated from adding two MSB bits, it will have weight

2n which is equivalent to 1 by application of Eq. (5.4).
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5.3.4 Normalization

There is one special encoding possible for an M(n) residue encoded with n

bits, the value where all bits bi = 1. This encoding has the integer value

2n − 1 = M(n) by Eq. (5.5). Since this residue is the same as the modulo

base, it is equivalent to zero. We call this special encoding for zero the

denormalized encoding of zero, write it as −0, and call encodings that allow

it non-normalized encodings.

5.3.5 Fault model

Our fault model considers all gate outputs and assumes a uniform probability

of a bit flip occurring at a given output at a given cycle. This fault model is

referred to as a single event transient (SET) fault model which is a generaliza-

tion of flip-flop bit-flips to all gates. Formally speaking, we let X be the set

of all gate output bit flip events in a given cycle and say ∀(x ∈ X) P (x) = p,

for some uniform bit-flip probability p. By assuming that p� 1 (i.e. that a

fault is a rare event) we can neglect the probability of two faults occurring

at the same cycle (e.g. P (xi ∩ xj)� p for xi, xj ∈ X) and approximate the

probability of any fault occurring in a given cycle as:

P (F ) = P

(⋃

x∈X

x

)
≈ pn (5.6)

where n = |X|.

5.3.6 Reliability model

Reliability is a measure of how well a design tolerates faults and prevents

them from leading to undetected errors. We can define reliability formally as

P (W ), the probability that a design will produce the wrong output in a given

cycle, where values closer to zero are better. Building on our fault model

from Section 5.3.5, we can model reliability as follows:

P (W ) = P (F )P (W |F ) (5.7)
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Here P (W |F ) represents the average probability that a single fault will lead

to a design failure. For designs without an error detection mechanism, this is

equivalent to the fraction of all possible faults that are not masked. (Masked

faults temporarily change the internal behavior of the design but not the

outputs.) Let Y ⊆ X be the subset of fault events that result in design failure

and let m = |Y |. Then:

P (W |F ) =
m

n
(5.8)

∴ P (W ) ≈ pm (5.9)

Assuming that different designs using the same standard cell library have the

same p value, we can measure the relative reliability of those two designs as

the ratio of their m values. In other words, for two designs A and B:

P (WA)

P (WB)
≈ pmA

pmB

=
mA

mB

(5.10)

We call this value the reliability improvement of design B relative to design A.

Values greater than one indicate an improvement in reliability (i.e. reduction

in failure rate), while fractions indicate a regression in reliability (i.e. an

increase in failure rate).

5.3.7 Error recovery

Our methodology enables self-checking designs which raise an error signal

when an output check fails. To use an error signal to enable error recovery,

such self-checking designs must be integrated with a higher-level error recovery

strategy. Examples of this strategy include:

• Restart the accelerator. This is the simplest option which is a cost-

effective strategy when the faults are very rare events (e.g. once a day)

and accelerator inputs and outputs are saved in dedicated memories.

• Flush the pipeline. In an accelerator design with a long computation

pipeline, it is possible to trigger a pipeline flush followed by a restart of

the pipeline wind-up, similar to a microprocessor pipeline flush after

a branch misprediction. This is essentially a fine-grained execution

restart.
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• Rollback to a checkpoint. This is the most general strategy, which

involves the use of a regular checkpointing mechanism that saves suffi-

cient information about the state of the accelerator to enable a rollback

to that state. Multiple redundant checkpoints may be needed if the

probability of checkpoint corruption (checkpointing an erroneous compu-

tation result before the error is detected) is high enough to significantly

impede reliability improvement.

5.4 Modulo functional units architecture

The following subsections discuss our gate-level architectures for our modulo

M(n) integer reducers, adders, multipliers, negators, and zero comparator

functional units. All of these functional units work with non-normalized

n-bit encodings (see subsection 5.3.4 for definition) for residues modulo M(n).

Furthermore, we provide illustrated examples with specific values of n for

explanatory purposes, but these architectures generalize in a straightforward

manner (except where noted otherwise) to any n ≥ 2 and any input bitwidth

w ≥ 2n.

Algorithm 3 Partial modulo reduction

procedure reduce(A) . A is a m× n matrix of bits
while |A| ≥ 3 do . |A| is the number of rows in A

G← row triplets selected from A.
L← leftover rows, |L| < 3.
G′ ← G passed through n× FA blocks.
A← {G′, L}.

end while
return A . The result is a 2× n matrix of bits

end procedure

5.4.1 Reducer

Our reducer functional units compute y = a mod M(n), where a is a w-bit

wide datapath value, and y is a n-bit residue value.
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Figure 5.1: Wallace-tree like reduction strategy and 16 bit modulo-3 reducer.
In (a), each square represents a bit, and the number in the square is the
weight of that bit. In (b), each 2× FA box represents a pair of full adders,
one taking three bits of weight 1 as input and one taking three bits of weight
2. Each wire (except the top input bundle) bundles two bits of weights 1 and
2.

5.4.1.1 Reduction strategy

In order to perform this reduction to a residue, our unique approach is a

Wallace-tree like reduction strategy shown in Fig. 5.1(a). Our reducer starts

with a standard bit sequence representing an integer with bits having weights

with successive powers of two. Using the standard homomorphism from

integer arithmetic to modulo arithmetic (see subsection 5.3.1), we can reduce
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the weights in Eq. (5.5) to residues as follows:

y =

(
w−1∑

i=0

2iai

)
mod M(n) (5.11)

=

(
w−1∑

i=0

(2i mod M(n))an

)
mod M(n) (5.12)

=

(
w−1∑

i=0

(2i mod n)an

)
mod M(n) (5.13)

where the last equivalence follows from Eq. (5.4).

In other words, the weights on the input bits shown in Fig. 5.1(a) are

reduced to a repeating cycle of successive powers of two, drawn as a 4 × 2

matrix in Fig. 5.1(a) for n = 2 and M(n) = 3. We now feed these bits to

full adder (FA) gates. A full adder takes three bits of weight w as input

and produces two bits as output: one of weight w and another of weight

2w. A FA is a transistor-level optimized cell in a standard cell library that

reduces the number of bits by 1 (3 inputs less 2 outputs), and as we will see

shortly, performs arithmetic amenable to a modulo context. Thus FAs are

ideal technology mapping targets for cost-effective modulo arithmetic.

In the 4× 2 matrix in Fig. 5.1(a), we can select two groups of 3 bits with

the same weight (highlighted in red) and pass them through full adders. The

result is two bits of weight 2, one bit of weight 1, and one bit of weight 4.

But 4 = 1 (mod 3) (an example of Eq. (5.4)), so the output of the FAs is

equivalent to two bits of weight 1 as well as 2. Since we also have two bits

left over from the input, we now have a 3× 2 matrix of bits (lower left corner

of Fig. 5.1(a)). We repeat this process, selecting groups of 3 bits and putting

them through FAs until no groups of 3 bits remain. This process is formalized

in Algorithm 3.

Intuitively, it is desirable to perform reductions with entirely full adders

since each FA gate is doing useful work reducing the number of bits by 1. Half

adders (HA) take two bits of the same weight, w, as input and produce two

bits of weights w and 2w and thus do not by themselves reduce the number

of bits.
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5.4.1.2 Architecture

Fig. 5.1(b) provides a block diagram for our Mersenne modulo reducer gate-

level architecture for n = 2 =⇒ M(n) = 3 and input width w = 16. Each

wire (except the top input bundle) corresponds to a bundle for a bit matrix

row in Fig 5.1(a) if it were to be expanded from an 8-bit input to a 16-bit

input. Three wires representing three rows are connected to corresponding

bundles of FAs (the 2×FA blocks) which generate two rows (wires) of output.

Note that, perhaps counterintuitively, the two output wires of each 2× FA

block in Fig. 5.1(b) represent bundles with all of the different possible bit

weights (i.e. a row of a bit matrix in Fig 5.1(a)), not a bundle of sum bits

and a bundle of carry bits.

Using the reduction strategy in Algorithm 3, we iteratively process all of

the groups of three wires from the previous stage in parallel by passing them

through 2×FA blocks until only two wires remain. Note that while Fig. 5.1(b)

provides an example for n = 2 =⇒ M(n) = 3 and input width w = 16,

along with our other functional units in this section, this example generalizes

to any n ≥ 2 and any w ≥ 2n.2 For the final reduction stage, we use a binary

modulo adder, which we discuss next.

5.4.2 Adder

Our gate-level modulo binary adder architecture is shown in Fig. 5.2(a) for

n = 3 =⇒ M = 7. The first stage is a standard ripple-carry adder. The final

carry produced by the first stage has weight 2n = 1 (mod M) by Eq. (5.4),

so it wraps around as a carry-in to the second stage. We guarantee under all

possible adder input combinations that this carry circulation will stop before

or at the most significant bit in the second stage. In other words, at most one

of the input bits to the MSB adder gate in the second stage is a 1. We call an

adder gate with this input constraint a quarter adder (QA) and implement it

with a 2-input OR gate.

Theorem 1. At most one of the inputs to the quarter adder gate in our

modulo binary adder is 1.
2For w values that are not a multiple of n, we can pad the input with conceptual

constant zero bits until w mod n = 0. Each of those zero bits will be connected to a
different full-adder, so we can recover from most of the padding overhead by optimizing
those full adders with one constant zero bit to half adders.
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Figure 5.2: Modulo-7 adder, multiplier, and zero comparator. In (b) bits are
annotated with their weights. Each X represents a 2-input AND gate with
inputs connect on the left, and outputs connected on the right.

Proof. We prove this guarantee by contradiction. Suppose both inputs to the

QA are 1. Then both inputs to each half adder in the second stage must be

1. Then all inputs to each full adder in the first stage must be 1. Then both

outputs of the half adder in the first stage must be 1, which is impossible.

5.4.3 Multiplier

Refer to Fig. 5.2(b) for our modulo binary multiplier architecture for n =

3 =⇒ M = 7. The multiplier is like an array multiplier with a twist: each

combination of input bits is combined with a 2-input AND gate, but bit

weights wrap around modulo M , resulting in a n×n matrix of partial product

bits as shown in the upper part of Fig. 5.2(b), which also corresponds to the
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lower-left corner. For example, the product of the two bits of weight 22 = 4

will have weight 24 = 16 = 21 = 2 (mod 7) by Eq. (5.4).

Since the output is a square matrix of bits, we can then apply our reduction

techniques from subsection 5.4.1 to reduce them. Fig. 5.2(b) elaborates on

the reduction for a 3× 3 matrix of 9 bits.

5.4.4 Negation and subtraction

Negation with our encodings of Mersenne modulo numbers is quite simple:

just pass each bit through a NOT gate. Mathematically, this works because:

−a = M − a = (2n − 1)−
n−1∑

i=0

2iai (5.14)

=
n−1∑

i=0

2i −
n−1∑

i=0

2iai =
n−1∑

i=0

2i(1− ai) (mod M) (5.15)

These NOT gates can be integrated into gates in upstream or downstream

functional units to effectively eliminate their overhead (e.g., flip-flops with

inverted outputs or NAND gates instead of AND gates in a multiplier array).

Subtraction is implemented as a composition of negation and addition, i.e.

a− b = a+ (−b).

5.4.5 Zero comparator

We created a custom architecture for a zero comparator which takes 2n bits as

input and compares the sum of the 2× n matrix of bits with zero, illustrated

in Fig. 5.2(c) for n = 3 =⇒ M = 7. We take 2n bits as input due to the

extra cost of reducing 2n bits to n bits (see Subsection 5.5.4).

Theorem 2. Our zero comparator architecture illustrated in Fig. 5.2(c) is

correct.

Proof. We start with some special cases: the inputs (−0 + −0) (all ones)

and (0 + 0) (all zeroes) produce the correct output by inspection. For the

remaining cases the only way to get a sum of zero is if a and b are bitwise

complements of each other. Again, we see by inspection that the logic will

output a 1 for this case. If a and b are not bitwise complements, the only
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way for the logic to output a 1 is if a = b = ±0, the special cases we already

discussed.

5.5 Cost-effectiveness evaluations

5.5.1 Cost evaluation methodology

To evaluate the area and delay of our approach, we implemented our gate-level

designs with a 45 nm ARM standard cell library. Our focus is on minimum

area to minimize cost, so we selected the smallest (1×) standard cell for each

gate type for the modulo functional units. The longer delay of a modulo

shadow datapath simply increases error detection latency by a few cycles,

so this tradeoff is acceptable in return for reduced area cost. We compare

with other techniques compiled with the logic synthesis tool Synopsys Design

Compiler 2016.03-SP5-5 and also map modulo functional units from those

designs to 1× standard cells to enable meaningful comparisons.

5.5.2 Effectiveness evaluation methodology

Our reliability improvement evaluation is based on gate-level error injection.

Our reliability evaluation of each design starts with 10,000 simulated fault

injection experiments with each main datapath and shadow datapath width

variation of that design as well as baseline unprotected designs with no

shadow datapath. In each fault injection experiment, a random gate output is

selected to have its bit flipped while a random test vector is selected for input

to the design. The test vectors are selected using a decaying exponential

probability distribution such that each possible number of leading zeroes is

equally probable. This distribution provides a more realistic input distribution

that represents the full dynamic range of the largest and smallest input values

rather than just the largest input values as a uniform distribution would. Test

inputs that are so large that they result in an overflow in the main datapath

are discarded and replaced with another random vector. Our shadow datapath

technique is capable of detecting overflows, but the main focus of this chapter

is detecting single event transient errors. Thus we set these overflow cases

aside to avoid polluting our error injection data.
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Table 5.1: Functional-Unit Level Results.

[80] Ours Difference

Area Delay Area Delay Area Delay

M
o
d
u
lo

-3
adder 8.3 0.09 12.8 0.13 53.7% 42.9%

subtractor 8.3 0.09 14.0 0.15 68.9% 60.4%

multiplier 4.5 0.04 17.8 0.16 299.3% 292.7%

32-bit reducer 177.8 0.73 155.6 0.39 −12.5% −47.1%

M
o
d
u
lo

-7

adder 55.9 0.32 21.1 0.21 −62.3% −35.8%

subtractor 59.7 0.33 23.0 0.22 −61.6% −32.7%

multiplier 30.0 0.21 47.8 0.30 59.2% 42.3%

32-bit reducer 493.2 1.27 153.6 0.61 −68.8% −52.0%

M
o
d
u
lo

-1
5 adder 188.0 0.46 29.3 0.27 −84.4% −41.6%

subtractor 192.8 0.53 31.9 0.29 −83.5% −46.0%

multiplier 133.4 0.51 90.4 0.42 −32.2% −16.8%

32-bit reducer 687.6 1.55 151.7 0.53 −77.9% −66.1%

Thus in each injection experiment we apply the input test vector and flip

the bit of the selected gate output at the cycle when the input reaches that

gate. We observe whether the fault is masked (i.e. whether the output is

correct) and whether the fault is detected (i.e. whether the error output is

asserted). Faults that are both unmasked and undetected are counted as

design failures. Now that we have a failure rate metric, we apply Eq. (5.10)

to compute the relative reliability of each of our design variations over the

corresponding baseline. We approximate the expected number of all possible

faults that lead to design failure, m, through this sampling procedure as

follows:

m ≈ injection-sites× undetected-unmasked-faults

faults-injected
(5.16)

5.5.3 Modulo functional units

Our first set of comparisons looks at the functional-unit level and compares

our designs for modulo adders, subtractors, reducers, and multipliers to

equivalent designs from [80]. We implement a subtractor with a negation of

one input followed by an adder. In [80], the adder, subtractor, and multiplier
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are implemented with lookup tables, while a reducer is implemented as a tree

of modulo adders.

Table 5.1 shows the results of our comparisons. Area is measured in µm2

while delay is measured in ns. We observe that our reducer designs, which

tend to be the dominant part of shadow datapath costs, provide lower area and

delay than those of [80]. Even for the simplest modulo-3 reducer, we achieve

a 12.5% reduction in area and a 47.1% reduction in delay. Furthermore,

this reducer cost is essentially fixed as the modulo base scales because the

number of full adders required is the same as the number of bits reduced

(w − n). Longer delays also increase the need for pipeline flip-flops which in

turn impacts area cost. Our other observation is that as we scale to larger

Mersenne bases, even the adders and subtractors and eventually the multiplier

become less costly than [80]. This is expected due to the exponential scaling

nature of lookup tables in [80].

5.5.4 Self-checking multiply accumulator

To evaluate the cost-effectiveness of our approach in a functional-unit level ap-

plication, we consider a self-checking multiply-accumulator (MAC) illustrated

in Fig. 5.3(a). The shadow datapath is built from components introduced

in Section 5.4: a full reducer to n bits (Fig. 5.1(b)), a partial reducer to 2n

bits (omitting the final binary adder in Fig. 5.1(b)), a modulo multiplier

matrix from Fig. 5.2(b) (with NAND gates to negate the output), a negation

inverter (subsection 5.4.4), and a zero comparator (Fig. 5.2(c)). Note that

the reducers are summation reducers, so they function as adders.

Under error free conditions, the shadow datapath will compute −(a mod

M)(b mod M) and −(c mod M), add it to ab + c from the output, reduce

the result modulo M , and get a result of 0. Computation errors in either the

main or shadow datapath will generate a nonzero result (provided aliasing

does not occur, which in our experience is unlikely for single bit errors).

A key strategy in this design is the avoidance of reduction beyond 2n bits

(except for multiplier inputs) as reduction beyond 2n bits involves the use

of half adders which do not directly provide bit reduction while the main

reduction process is mapped entirely to full adders. This strategy is similar

to the carry save technique used in standard binary integer arithmetic design.

93



We evaluated our MAC architecture by synthesizing the multiply accumu-

late main datapath with Design Compiler targeting minimum delay while

generating 1× gate-level designs for the shadow datapath with gate-level

architectural templates and Algorithm 3. QoR and reliability results for differ-

ent width datapaths and modulo widths (n) are shown in Figs. 5.3(b), 5.3(c),

and 5.3(d). We observe 12 − 18% area overhead for a 32-bit self-checking

MAC with reliability improvements of 4–142×. We observe error signal delays

of about 1.5× the delay of the main datapath.

As mentioned at the start of this section, the longer delay of a modulo

shadow datapath simply increases error detection latency by a few cycles

and does not affect the performance of the main datapath. For example,

in [80], the authors used a pipelining strategy to run the shadow datapath 2

cycles behind the main datapath without affecting performance. We adopted

a similar pipelining strategy to implement a pipelined version of the self-

checking MAC, whose architecture and QoR results are shown in Fig. 5.4.

The main datapath has one pipeline stage while the shadow datapath has

three, for an error signal delay of 2 cycles. We observe a 1− 2% increase in

area overhead for a 32-bit pipelined design due to additional flip-flips, while

the delay (clock) overhead decreases from 100% to 0− 20%. Since our error

injection methodology involves injection into all gates, not just flip-flops, the

reliability improvements for the pipelined version of the MAC are very similar

to the combinational version as flip-flops represent a small fraction of the

gates in these designs.

It is important to note that our delay overhead evaluation represents a near

worst-case analysis: we tell Design Compiler to synthesize our main datapath

to run at the maximum possible clock frequency and the critical path of the

main datapath goes through a single multiplier and adder. Such a high clock

frequency is a difficult target to achieve in a complex design even without

considerations for error detection logic. Nevertheless, for designs with very

high clock frequencies, there are strategies for eliminating this clock overhead

in the shadow datapath. Examples include:

1. Retime the flip-flops in the shadow datapath for better balancing of

the pipeline stages. This is the best solution for small clock-period

overheads where there is likely a solution involving overloaded stages

offloading their excess delay to underloaded stages.
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2. Perform minimum-area gate upsizing on the shadow datapath to satisfy

timing constraints. As our shadow datapath consists entirely of 1×
sized gates, there is plenty of room for upsizing.

3. Add additional pipeline stages to the shadow datapath. This solution

will work in the worst cases where the other methods are insufficient to

address timing on their own.

5.5.5 Self-checking linear algebra primitives

Expanding on our MAC design in Section 5.5.4, we consider a variety of key

functional units in vector and matrix computation. The designs we selected

are: (1) vector-scalar product, (2) vector inner-product, (3) vector outer-

product, (4) matrix-vector product, and (5) matrix product. We selected

these functional units as representative examples because such operations

tend to be the computationally intensive parts of complex datapaths in

accelerators. As mentioned in Section 5.1, accelerators with complex datapaths

are becoming increasingly prevalent due to microprocessor designs reaching

the limits of traditional CMOS scaling. Furthermore, these functional units

can be used directly in large vector and matrix computations by breaking

the computation into appropriately sized tiles that correspond directly to

the input of our primitives. Matrix and vector based complex computation

applications include machine learning, data mining, artificial neural networks,

image and video processing, and digital signal processing.

All designs were implemented with the same pipelining strategy as the

pipelined multiply accumulator discussed in Section 5.5.4. The cost (QoR

overhead) and benefit (reliability improvement) of each variation of each of our

five compound functional unit designs are charted in Figs. 5.5–5.9. For a 32-

bit main datapath and 2-bit shadow datapath, we observe area costs of 6–10%

with a reliability of 3–61×. Looking at the 5-bit shadow variation, the area

cost increases to 9–14%, but the reliability benefit jumps to 28–901×. Finally,

in the widest 8-bit shadow variation, we observe area costs of 15–20% with

reliability benefits of 121–2477×. Overall, we observe a slow, graceful increase

in area cost as the shadow datapath width scales while the improvement

in reliability shows an exponential trend (note the logarithmic scales on

the reliability metric). The exponential trend in reliability is expected as
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Figure 5.3: Self-checking multiply accumulator architecture and overhead
evaluation. M = 2n − 1.
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Figure 5.4: Self-checking pipelined multiply accumulator architecture and
overhead evaluation. M = 2n − 1. Dotted lines represent the boundaries of
pipeline stages. We implemented the inverter at the output of the reducer for
input c with an inverting flip-flop.
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the probability of aliasing (the output is wrong, but happens to have the

correct modulo checksum) is proportional to the modular base M(n) = 2n−1.

These results demonstrate that our technique scales well to wide shadow

datapaths to produce very cost-effective solutions for designs requiring a

multiple order-of-magnitude boost in reliability.

It is important to note that these results represent the worst-case needle-in-

a-haystack fault scenario: A single bit-flip occurring in a single cycle at any

gate output in the design with test vectors representing the full dynamic range

of possible input. Faults that affect multiple locations or multiple cycles will

have a greater chance of being detected. Fault models that consider a subset

of gates (such as only flip-flops as is often found in the literature) create

artificial advantages for techniques that only consider that subset of gates.

Flip-flops in particular represent a small fraction of the area occupied by the

combinational logic in the same design, so the assumption that faults only

significantly affect flip-flops is questionable. As mentioned in Section 5.1, our

approach is to avoid assumptions and design general-purpose error detection

solutions.

We also measure the clock period overhead of each variation of our de-

signs. For many variations, particularly those with a wide main datapath

and a narrow shadow datapath, we observe no overhead. However, we do

observe clock period overheads of up to 60% in some cases. As discussed in

Section 5.5.4, the clock frequencies of these designs are aggressive and there

are many strategies for eliminated clock overhead if the shadow datapath

does turn out to be the critical path.

Finally, looking at the 64-bit reliability results, we observe some interesting

anomalies: the trend for reliability improvement diverges significantly from the

trend for 8-bit, 16-bit, and 32-bit reliability improvement. Note that reliability

improvement is largely a function of two factors: the shadow datapath width

which determines the probability of aliasing (the output is wrong, but it

happens to have the correct modulo checksum) and the design of the main

datapath. A shadow datapath design of a given width is largely unchanged

from the 32-bit to the 64-bit main datapath, which leaves the design of the

main datapath as implemented by our logic synthesis tool, Design Compiler.

As Design Compiler is a proprietary tool, we have limited information about

its behavior, but we suspect the reason for the divergence is a transition from
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Table 5.2: Self-Checking Component Area Overhead.

Design
Red. # Mul. # R/M Area O/H. (32-bit) Area O/H. (64-bit)

(shadow) (main) Ratio Mod-3 Mod-7 Mod-3 Mod-7

Matrix mul. 12 8 1.50 6.2% 7.1% 3.7% 4.0%

Vector outer product 15 9 1.67 7.4% 8.4% 4.2% 4.6%

Matrix vector mul. 11 6 1.83 7.4% 8.3% 4.7% 5.0%

Vector inner product 7 3 2.33 9.2% 10.2% 5.5% 5.8%

Scalar vector mul. 7 3 2.33 10.0% 11.1% 5.5% 5.9%

MAC (pipelined) 4 1 4.00 12.3% 13.4% 7.8% 8.2%

* Red.: reducer. Mul.: multiplier. R./M: the ratio of Red. # over Mul. #. O/H.: overhead.

one strategy for 8-bit, 16-bit, and 32-bit multiplier synthesis to a different

strategy for 64-bit multiplier synthesis.

5.5.6 Early protection overhead estimation

For early-stage design modeling, we propose an area overhead estimation

indicator, reducer to multiplier ratio (R/M ratio), which is the ratio of the

reducer count in the shadow datapath to the multiplier count in the main

datapath. The R/M ratio is an analytical way to approximate area overhead

assuming that reducers dominate shadow datapath cost while multipliers

dominate main datapath cost. We approximate reducer count as the number

of inputs and outputs; therefore, the approximation is more accurate for

narrow shadow datapaths, that is, n2 � d, where n is modular width and d

is original datapath width.

We take our self-checking pipelined MAC and linear algebra primitives

with different combinations of 32/64-bit main datapaths and mod-3/mod-7

shadow datapaths to compare their R/M ratios and actual area overheads in

Table 5.2. Except for the MAC, whose size is small and whose area overhead

can be easily caused by other components, e.g., flip-flops, we observe that

the proposed R/M ratio is a good indicator to estimate the area overhead

of self-checking arithmetic components. We find that the R/M ratio is a

useful heuristic for designers to estimate area overhead at the early stages of

self-checking design development.
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5.6 Conclusions

We introduced new gate-level architectures for Mersenne modulo functional

units targeting shadow datapaths for reliability, including a modulo reduction

algorithm that maps entirely to full adders and new adder and multiplier

designs based on integer counterparts with a wraparound twist. We compared

our functional units to the previous state-of-the-art approach, observing a

12.5% reduction in area and a 47.1% reduction in delay for a 32-bit mod-3

reducer. We also observed that our reducer costs, which tend to dominate

shadow datapath costs, do not increase with larger modulo bases, and that

for modulo-15 and above, all of our modulo functional units have better area

and delay than their previous counterparts. To demonstrate the applicability

of our approach for reliability, we used these building blocks to create self-

checking multiply-accumulate and linear algebra primitive datapaths. We

observed cost-effective results, with 32-bit datapath overheads of 6–10% for

a 3–61× improvement in reliability, and overheads of 15–20% for a 121–

2477× improvement in reliability. Additionally, we proposed an area overhead

estimation method for self-checking arithmetic component implementation.

Future directions for this research include: (1) extending support for mod-

ulo bases beyond Mersenne numbers; (2) support for fixed-point arithmetic;

(3) gate-level automation through integration into a logic synthesis engine;

and (4) full automation of shadow datapath generation with a high-level

synthesis approach like [80].
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Figure 5.5: Self-checking pipelined vector outer product and overhead
evaluation. M = 2n − 1. Dotted lines represent the boundaries of pipeline
stages.
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Figure 5.6: Self-checking pipelined vector inner product and overhead
evaluation. M = 2n − 1. Dotted lines represent the boundaries of pipeline
stages.
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Figure 5.7: Self-checking pipelined scalar vector multiplication and overhead
evaluation. M = 2n − 1. Dotted lines represent the boundaries of pipeline
stages.
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Figure 5.8: Self-checking pipelined matrix vector multiplication and overhead
evaluation. M = 2n − 1. Dotted lines represent the boundaries of pipeline
stages.
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Figure 5.9: Self-checking pipelined matrix multiplication and overhead
evaluation. M = 2n − 1. Dotted lines represent the boundaries of pipeline
stages.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this dissertation, we present several approaches to improve circuit reliability

and energy efficiency from different angles. The approaches include a variety

of algorithmic methods, heuristics, and design techniques. Furthermore, we

take into account the scalability of our approaches for the applicability to

industry-strength designs, which has been shown in the experimental results.

The highlights of this dissertation are as follows:

1) Applying SAT solving to tackle reliability issues by automatically gen-

erating concise assertions with complete coverage.

2) Applying data mining and SAT solving to improve the energy efficiency

of BTW design by optimizing common cases.

3) Proposing a coordinated and scalable methodology including early-stage

logic restructuring, NBTI-aware technology mapping, and smart pin

swapping technique to alleviate NBTI effect.

4) Proposing a new low-cost gate-level architectures for Mersenne modulo

functional units targeting shadow datapaths for reliability improvement.

In addition to the angles and methods we have explored, we would like

to propose some possible future directions of circuit reliability and energy

efficiency. As the complexity of hardware increases, development effort

becomes enormous, thus dramatically increasing time-to-market and design

costs. High-level synthesis (HLS) has emerged as a promising way to deal with

this complexity and accelerate design automation by raising the abstraction

levels. Higher abstraction levels not only provide designers with a global

picture of the design but also allow designers to explore the design space more

efficiently and rapidly.

Compared to the layers of verification, logic synthesis, and functional unit

design we have explored, HLS has richer information about the design behavior
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such as computation expressions and control flow, thus enabling further

optimizations, which are not feasible at the RTL or gate level. Therefore,

tackling reliability and energy issues from the angle of HLS is worthwhile to

explore.

An interesting idea is to automatically generate assertions through HLS

for reliability improvement. In traditional ways, assertions are written by de-

signers manually, but these designer-written assertions might not be sufficient

enough to catch all bugs and errors. Therefore, we believe that an HLS-based

assertion generation technique can serve as a supplementary methodology to

provide additional fault coverage, since HLS has more comprehensive infor-

mation of design behavior. One usage of assertions is to be synthesized as

checkers in hardware for detecting errors. However, these extra checkers might

incur unacceptable performance degradation and area overhead. Therefore,

another possible aspect to explore is to develop light weight checkers, which

can maintain fault coverage at a certain level but do not sacrifice performance

and area too much.
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[13] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
Applications of Satisfiability Testing. Springer, 2003, pp. 502–518.

[14] A. Gupta, K. L. McMillan, and Z. Fu, “Automated assumption generation
for compositional verification,” in Computer Aided Verification. Springer,
2007, pp. 420–432.

[15] A. Gupta, Z. Yang, P. Ashar, and A. Gupta, “Sat-based image compu-
tation with application in reachability analysis,” in Formal Methods in
Computer-Aided Design. Springer, 2000, pp. 391–408.

[16] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and
challenges for better than worst-case design,” in Proceedings of the 2005
Asia and South Pacific Design Automation Conference. ACM, 2005,
pp. 2–7.

[17] T. M. Austin and V. Bertacco, “Deployment of better than worst-case
design: Solutions and needs,” in 23rd International Conference on Com-
puter Design (ICCD 2005), 2-5 October 2005, San Jose, CA, USA, 2005,
pp. 550–555.

[18] L. Wan and D. Chen, “CCP: Common case promotion for improved
timing error resilience with energy efficiency,” in Proceedings of the
2012 ACM/IEEE international symposium on Low power electronics and
design. ACM, 2012, pp. 135–140.

[19] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques.
Elsevier, 2011.

[20] A. Biere, M. Heule, and H. van Maaren, Handbook of Satisfiability. IOS
Press, 2009, vol. 185.

109



[21] C.-H. Lin, L. Liu, and S. Vasudevan, “Generating concise assertions
with complete coverage,” in Proceedings of the 23rd ACM International
Conference on Great Lakes Symposium on VLSI. ACM, 2013, pp.
185–190.

[22] C.-H. Lin, L. Wan, and D. Chen, “C-Mine: Data mining of logic common
cases for low power synthesis of better-than-worst-case designs,” in
Proceedings of the 51st Annual Design Automation Conference. ACM,
2014, pp. 1–6.

[23] C.-H. Lin, L. Wan, and D. Chen, “C-mine: Data mining of logic common
cases for improved timing error resilience with energy efficiency,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
2017.

[24] C.-H. Lin, S. Roy, C.-Y. Wang, D. Z. Pan, and D. Chen, “CSL: Co-
ordinated and scalable logic synthesis techniques for effective NBTI
reduction,” in Computer Design (ICCD), 2015 33rd IEEE International
Conference on. IEEE, 2015, pp. 236–243.

[25] K. Campbell, C.-H. Lin, and D. Chen, “Low-cost hardware architectures
for mersenne modulo functional units,” in Design Automation Conference
(ASP-DAC), 2018 23rd Asia and South Pacific. IEEE, 2018.

[26] L.-C. Wang, M. S. Abadir, and N. Krishnamurthy, “Automatic generation
of assertions for formal verification of powerpc microprocessor arrays
using symbolic trajectory evaluation,” in Proceedings of the 35th annual
Design Automation Conference. ACM, 1998, pp. 534–537.

[27] A. Hekmatpour and A. Salehi, “Block-based schema-driven assertion gen-
eration for functional verification,” in Test Symposium, 2005. Proceedings.
14th Asian. IEEE, 2005, pp. 34–39.

[28] A. Pnueli, “The temporal logic of programs,” in Foundations of Computer
Science, 1977., 18th Annual Symposium on. IEEE, 1977, pp. 46–57.
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