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ABSTRACT

This dissertation presents five contributions to the design of steady-state

visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs).

First, a new method—based on visual stimulation during sleep—for investi-

gating the neural mechanisms of SSVEPs. Second, a comparison of performance—

in terms of accuracy, latency, bitrate, and engagement—between children and

adults when using an SSVEP-based BCI. Third, a gel-less epidermal elec-

tronic system electrode for use in SSVEP-based BCIs that adheres to the skin

through van der Waals forces. Fourth, a potential application for SSVEP-

based BCIs in individuals without disabilities. Fifth, an adaptive user inter-

face for SSVEP-based BCI text-entry that nearly doubles the performance of

existing systems. Following the description of these contributions, potential

directions for future research are also discussed. These contributions each

move a step towards the long-term goal of developing SSVEP-based BCIs

that are useful outside of the research laboratory for either those with or

without disabilities.
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CHAPTER 1

INTRODUCTION

In 1973, Jacques J. Vidal [195] noted that the long-term potential of BCIs

is to, “elevate the computer to a genuine prosthetic of the brain.” Yet, some

40 years after this first BCI publication:

• There is, arguably, not a single proven application for electroencephalog-

raphy (EEG)-based BCIs for people without disabilities outside of the

laboratory.

• The only application of EEG-based BCIs for those with disabilities is

to enable communication between those with locked-in syndrome (LIS)

and the outside world [174, 96, 175].

Given—Vidal’s original sentiments, the more than 1000 publications related

to their development as of 2010 [74], and the limited number of applications—

clearly the potential for BCIs is high, but the actual design and implemen-

tation of these systems is a challenge.

One explanation for the lack of successful BCIs is that researchers are too

narrowly focused on improving only one component (see Section 1.3.1) of

a BCI system [209]. Wolpaw and Wolpaw [209] suggest that the long-term

success of BCI development, and ultimately the field of brain-computer inter-

facing, depend on designing systems that are useful. Even though Wolpaw

and Wolpaw [209] argue that the field should be focusing on useful BCIs

for those with disabilities, this too could be viewed as being too narrowly

focused. By focusing solely on those with physical disabilities, we overlook

the considerable opportunities to design BCIs for those without disabilities

[4].

In order to design a useful BCI for those with or without disabilities, it

is important to consider what brain signal will be used to control the BCI

(paradigm), the design of the individual parts of the BCI (components), and

the planned BCI use (application). We have chosen to design BCIs that use
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SSVEPs, the brain’s response to flashing lights. Instead of focusing on the

design of a single BCI component, we address challenges in the design of

multiple components. The long-term goal is to develop a BCI that is useful

outside of the research laboratory for either those with or without disabilities.

The remainder of the introduction is organized into four sections. In

Section 1.1, we provide a brief history of electroencephalography (EEG),

SSVEPs, and BCIs. In Section 1.2, we introduce SSVEP-based BCIs. In

Section 1.3, we describe the design of SSVEP-based BCI and the challenges

associated with the design of each of the components of an SSVEP-based

BCI. Finally, in Section 1.4, we describe the organization of this dissertation.

1.1 A Bit of History

The history of BCIs begins with one man’s 40 year search for “psychic en-

ergy.” In 1892, a young German named Hans Berger was thrown from his

horse during a German military exercise. He narrowly escaped death. On

the exact same day, Berger received a telegraph from his family, the first

one they ever sent. His sister had an “ominous feeling” [133] about the day

and insisted her father contact Hans. Reflecting on what had happened (de-

scribed in more detail by Millet [133, 15]), Berger concluded that he and

his sister had communicated telepathically. The incident, combined with an

education in medicine, led Berger to spend his career searching for measur-

able signs of psychic energy. In a way, he succeeded. In 1924, working with

a young patient undergoing brain surgery [44], Berger successfully recorded

the electrical signals generated in the brain. While searching for proof of

telepathy, Berger proved that the human brain generates measurable electri-

cal activity, extending earlier work in animals by Caton [34]. After spending

five years confirming his results, Berger reported his findings and techniques

in a 1929 article “Über das elektrenkephalogramm des menschen” or “On the

electroencephalogram of man” [16]. Not only had Hans Berger [16] discov-

ered the electrical signals generated by the brain, he also published the first

use of EEG in human beings.

Many scientists were skeptical of Berger’s findings and methods. Five
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years later Edgar Adrian1 and Brian Matthews2 replicated Berger’s findings,

bringing them wide-spread acceptance. Using the moving-iron oscillograph

of Matthew’s own design (a recent photo can be seen in Figure 1.1; [127]) and

electrodes made of “copper gauze wrapped in lint and soaked in warm saline”

[44], Adrian and Matthews recorded EEG from their own scalps3 [1, 47, 44].

Figure 1.1: Matthews’ moving-iron oscillograph. Photo courtesy of Alan
Cattell, University of Cambridge. Special thanks to Roberto Inchingolo,
University of Cambridge.

Adrian and Matthews [1] did more than just replicate Berger’s [16] results.

In the course of their experiments, they also discovered that a flashing stim-

ulus (created by attaching a light to a gramophone motor) elicited an EEG

response at the same frequency as the flashing stimulus [47]. This response

is now known as the SSVEP.

11932 winner of the Nobel prize for his work on the function of neurons.
2The electrical engineer who first developed a differential amplifier for electrophysiological
recordings [44, 127].

3It was much easier to record alpha activity from Adrian than to record it from Matthews,
a very early example of inter-subject variability in EEG recordings [47].
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Even in these early days of EEG recordings, the scientists exploring the

use of this new tool recognized its potential. In their book on BCI, Wolpaw

and Wolpaw [209] present one example in the form of a holiday card. On the

card, Hans Jasper depicts his well wishes to Hans Berger as waves passing

from his mind in the form of EEG signals and then transforming into words.

It was already clear to Jasper that the ability to measure neural activity

could be used for communication (see Wolpaw and Wolpaw [209] for image).

Jasper’s vision of an EEG-based communication system has since been re-

alized. In 1973, Jacques J. Vidal came up with the phrase “Brain-Computer

Interface” and demonstrated the first BCI [195]. In 1988, the first BCI text-

entry system (based on the P300) was developed by Farwell and Donchin

[60] at the University of Illinois. More recently, Calhoun and McMillan [31]

developed one of the the first SSVEP-based BCIs to facillitate hands-free

control of computer systems at the Air Force’s Armstrong Research Lab-

oratory. Since then, research into the design of BCIs has intensified [74].

There are currently three main paradigms used to actuate a BCI: P300 [60],

motor imagery [128], and SSVEP [31]. Over time, the performance of BCIs

has steadily improved. A recent BCI interface by Chen [38] achieved a text-

entry rate of 60 characters per minute, compared with the two characters per

minute in the original paper of Farwell and Donchin [60].

1.2 SSVEP-based BCIs

As an introduction, SSVEP-based BCIs function in the following way. When

a visual stimulus is flashed in the user’s visual field, it causes an increase in

EEG activity at harmonic frequencies of the stimulus [140]. These changes

in activity are dependent on the user’s spatial attention [135]. When a user

attends to a flashing stimulus, the size of the SSVEPs elicited increase. If

multiple stimuli are presented (each flashing at a unique frequency) then the

user can make selections by focusing their attention on a specific flashing

stimulus. This modulation of EEG activity based on spatial attention serves

as the basis for most SSVEP-based BCIs [31, 36, 198, 2, 3, 146].

We have chosen to investigate SSVEP-based BCIs, because they can be

used by a higher proportion of the population, have a higher information
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transfer rate, and require less participant training than other (e.g., P300 or

motor-imagery) BCIs. In a 2012 paper, Guger et al. investigated the propor-

tion of the population who can use an SSVEP-based BCI [69]. They com-

pared the results with two previous data sets for motor imagery-based BCIs

[71] and P300-based BCIs [70]. The paper showed that 86.7% of participants

could operate an SSVEP-based BCI with 90 to 100% accuracy, compared

with only 6% of participants using a motor imagery-based BCI and 72.8%

of participants using a P300-based BCI [69]. In addition, researchers have

recently demonstrated several SSVEP-based BCIs for text-entry that outper-

form existing systems using P300 or motor-imagery. These papers showed

that the rate of text-entry for SSVEP-based BCIs can exceed 20 characters

per minute [3, 38], compared with 7-9 characters per minute with a P300

system [188], and 2-7 characters per minute with motor-imagery [23]. With

regard to participant training, SSVEP-based BCIs do not require any par-

ticipant training at all [36] as opposed to motor imagery and P300 systems,

both of which require, at minimum, a few minutes of participant training.

1.3 Design of SSVEP-based BCIs

When designing SSVEP-based BCIs, one has to consider both the compo-

nents and the application.

1.3.1 Components

All SSVEP-based BCIs consist of the same set of components: a stimulus, a

user, EEG recording hardware, a classifier, and a user interface. The overall

performance and user experience associated with any SSVEP-based BCI is

dependent on each of these components and the interplay between them. For

each component, let us consider their purpose, parameters that impact their

behavior, and the existing challenges in their design.

Stimulus

The purpose of the stimulus is to evoke measurable changes in the neural

activities of the user.
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The physical properties of the stimulus have an effect on the amplitude and

distribution of the SSVEP elicited from the user. For example, the frequency

of the flash is know to affect the amplitude of the SSVEP. SSVEPs can be

elicited and measured at the scalp for any frequency between 1 to 100Hz [77].

Lower frequency stimuli, however, tend to elicit larger amplitude SSVEPs

than higher frequency stimuli [77]. In addition to frequency, contrast [32],

color [163], intensity [163], and duty cycle [212] are known to influence the

morphology of the SSVEP elicited from the user.

Current challenges in the design of an SSVEP stimulus include eliciting a

large amplitude response from the user, safety [64], and comfort [111].

User

The user’s role is to respond to changes in the user interface causing their

own brain to generate a response to the desired stimulus. It is important to

understand how SSVEPs are generated in the brain, differences in SSVEPs

measured from different individuals, and how to improve the responses of the

user.

Despite years of study it remains unclear how SSVEPs are generated in

the brain. It is not known, for example, whether SSVEPs are generated

through phase changes of ongoing oscillations in the brain [134] or through

evoked amplitude changes in the brain [33]. Nor is it clear how the second

harmonic component of the SSVEP is generated [156]. Understanding these

(and similar) questions would enable improved stimulus design and perhaps

help to explain performance differences observed between individuals.

Different populations may vary in their ability to use an SSVEP-based

BCI. The majority of SSVEP-based BCIs are tested on young (predomi-

nantly college-aged) adults. There are relatively few studies of SSVEP-based

BCIs involving older adults [5, 201, 199] and only a single study involving

children [57]. These limited studies suggest that both older adults and chil-

dren achieve lower performance than young adults when using SSVEP-based

BCIs. Understanding these demographic differences would make it clear what

populations of people could use an SSVEP-based BCI.

Motivation may play a significant role in the performance measured dur-

ing laboratory studies. Experiments testing BCIs can be tedious and boring.

Some research has shown that when participants are motivated, their perfor-
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mance improves [103, 93], but there are relatively few systematic studies on

this topic.

EEG Recording Hardware

The hardware used to record EEG from a user’s scalp includes electrodes, an

amplifier, and a digitization system.

EEG electrodes are the sensors used to measure the electrical activity gen-

erated by the brain from the scalp. Electrodes often vary in terms of size,

materials [189], if they are either “wet” or “dry” [173], and how they interface

with the amplifier and digitization system [131]. Traditional electrodes are

metal disks (most commonly silver or tin), are “wet”, and are attached to the

scalp using mechanical force. These electrodes are called “wet” electrodes,

because they also rely on electrolyte gel to improve electrical contact. These

electrodes are slow to put on, can be uncomfortable or irritating to the user,

and are difficult to wear for extended periods of time. Newer “dry” elec-

trodes eliminate the need for electrolyte gel by using capacitive sensing [41],

but still require mechanical force to be attached to the scalp, and are very

sensitive to noise. One way to reduce the noise of electrodes is by including

a preamplification and filtering stage very close to the electrode, however,

this requires more complicated circuitry and can be expensive. The design

of high performance, comfortable, and long-term wear electrodes remains a

major challenge in the field.

The roles of the amplifier and digitization systems are to rescale the raw

EEG signals measured from the scalp and convert these signals from an

analog voltage to a digital signal for analysis by a digital computer. Raw

EEG signals are measured in terms of a voltage and on the scale of microvolts.

Most analog to digital converters (the digitization system) require signals

between zero and five volts. Therefore, an amplifier must be used to increase

the size of the EEG signal before it can be digitized. Modern digitization

systems require less amplification, but reducing noise induced by the amplifier

and digitization systems remains a challenge.

7



Classifier

A classifier is used to map changes in EEG activity into selections. The

challenge in designing the classifier is to accurately predict the user’s intent

using as little data as possible.

A great deal of research goes into the design of classifiers for SSVEP-based

BCIs. The traditional method for classifying SSVEPs involves the use of

power spectral density analysis (PSDA). Since SSVEPs are generated in a

very narrow frequency range, frequency based analysis allows isolation of

the SSVEP from noise at other frequencies. The drawback of PSDA is that

it generally involves analysis of a single EEG electrode; there is no built-in

mechanism for combining EEG data from multiple channels. One solution to

this problem was proposed by Friman [65] using a minimum energy combi-

nation (MEC) of channels. MEC improved performance over PSDA, but has

since been supplanted by algorithms based on canonical correlation analysis

(CCA) [112]. Since CCA has been used for nearly 10 years, a number of vari-

ants have been proposed, including multiway CCA [219], phase-constrained

CCA [154], and multiset CCA [218]. Our laboratory has also worked on an

updated CCA classifier that uses sequential classification to improve overall

performance [87]. While each of these algorithms (including ours) provides a

small increase in performance the original CCA algorithm presented by Lin

[112] remains the gold standard.

User interface

The user interface (UI) defines how the user interacts with the BCI and its

design depends on the application (see Section 1.3.2).

The physical design of the user interface has an impact on the perfor-

mance of the BCI. Considering SSVEP-based BCIs for text-entry, there are

very often more characters than stimuli, requiring the user to make multiple

selections to input a single character. For example, the system of Cecotti

[36] used a decision tree to make text selections. This meant that to type a

letter (of 27 possible), three selections were required. The Bremen BCI [198]

reduced the number of selections required to type a character by arranging

letters in a grid format. The grid was organized so that letters that were more

likely to be selected were closer to the center (such as the letters ‘e’ and ‘s’)
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reducing the average number of selection per character. Further reducing the

number of selections per character is one way in which the performance of

SSVEP-based BCIs could be improved.

Some applications may require special considerations in the design of the

UI. Many people with LIS lose their ability to move their eyes left or right,

while vertical gaze is often preserved [119]. Thus, a vertically oriented BCI

may work better for these individuals, but most SSVEP-based BCIs for text-

entry require both vertical and horizontal eye movement [36, 198, 3, 38].

There is a need within the field to think very carefully about the appropriate

tasks for SSVEP-based BCIs [4] and in the case of individuals with disabilities

to consider the limitations of those populations before designing the BCI.

1.3.2 Applications

The application of the SSVEP-based BCI has an effect on the design of

SSVEP-based BCIs. The appropriate applications for SSVEP-based BCIs

outside of the laboratory remains an open question within the field.

Currently there is not a single application for SSVEP-based BCIs out-

side of the research laboratory. P300 and motor imagery-based BCIs have

been used to enable communication between those with LIS and the outside

world [174, 176]. The only previous report of an SSVEP-based BCI to enable

communication in those with LIS, however, reported limited success. In on-

line tests of the system’s performance, only one of the four individuals with

LIS managed to communicate using the SSVEP-based BCI [106]). Other

researchers have described potential applications for SSVEP-based BCIs in

those without disabilities [4], but these systems are still constrained to re-

search laboratories. In the laboratory, SSVEP-based BCIs are investigated

for text-entry [198, 36], robotic navigation [2], gaming [98], and cursor control

[39].

1.4 Organization of Dissertation

The contributions to the design of SSVEP-based BCIs in this dissertation are

described in the following order: In Chapter 2, we describe a new method

for investigating how SSVEPs are generated in the brain; In Chapter 3,

9



we describe experiments on the performance—in terms of accuracy, latency,

bitrate, and engagement—of children using an SSVEP-based BCI. Control

data, collected from adults, is also reported for the purpose of comparing

performance between children and adults; In Chapter 4, a gel-less epidermal

electronic system electrode is described. This electrode enables EEG activity

to be recored from the non-hair bearing scalp. Compared with traditional

“wet” electrodes, it does not require an electrolyte gel or mechanical force

to hold it on the scalp. In Chapter 5, a potential application—user input

for augmented and virtual reality systems—for SSVEP-based BCIs in those

without disabilities is considered. Experiments comparing the accuracy and

latency of inputs obtained from two SSVEP-based BCIs are compared with

two traditional input mechanisms. In Chapter 6, an adaptive user interface

for SSVEP-based BCI text-entry is described. This interface nearly doubles

the performance of two existing SSVEP-based BCI text-entry systems imple-

mented for the purpose of comparison. Finally, in Chapter 7, we summarize

these contributions and considers potential directions for future work.

The dissertation includes material that has already been published (Chap-

ter 6, [3]; Chapter 4, [146]; Chapter 2, [147]) or has been reviewed (Chapter 5)

and requires revision.
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CHAPTER 2

THE ELICITATION OF STEADY-STATE
VISUAL EVOKED POTENTIALS DURING

SLEEP1

2.1 Abstract

This chapter describes a new method—based on visual stimulation during

sleep—for investigating how SSVEPs are generated in the brain. Specifically,

we tested the hypothesis that it is possible to elicit SSVEPs through closed

eyelids during NREM sleep. To test this hypothesis, SSVEP amplitudes were

measured in eight subjects across two conditions of stimulation (stimulation

on and stimulation off) and three brain states (waking, light sleep, and deep

sleep). Results showed a significant interaction between stimulation and

brain state. In particular, EEG activity at the frequency of stimulation was

higher during both light sleep and deep sleep in the stimulation on condition

than in the stimulation off condition. The fact that it is possible to elicit

SSVEPs during sleep may provide a new way to study how SSVEPs are

generated in the brain, one that might help resolve open questions such as

identifying the SSVEP activation sequence or deciding if SSVEPs derive from

evoked or oscillatory neural processes.

2.2 Introduction

For more than 50 years, steady-state visual evoked potentials (SSVEPs) have

provided a tool for the study of visual information processing, the clinical as-

1This work has been previously published as [147] and is co-authored by S. Umunna and
T. Bretl; Copyright ©2017, Psychophysiology, Wiley Periodicals, Inc. This is the peer
reviewed version of the following article: [147], which has been published in final form
at https://doi.org/10.1111%2Fpsyp.12807. This article may be used for non-commercial
purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
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sessment of visual function, and the development of brain-computer interfaces

(BCIs) [145, 194]. Typically measured using electroencephalography (EEG),

SSVEPs were discovered by Adrian and Matthews (1934), just five years af-

ter Hans Berger’s [16] initial description of the alpha rhythm. In the course

of confirming Bergers discovery, Adrian and Matthews demonstrated that a

repetitively flickering visual stimulus elicits EEG activity at the same fre-

quency as the stimulus [1], a phenomenon now known as the SSVEP. Thirty

years later David Regan studied SSVEPs more extensively, introduced them

as a method for studying visual information processing [164], and clearly de-

scribed several advantages of SSVEPs over transient visual evoked potentials

(VEPs) [165]. Compared with VEPs, SSVEPs are: (1) easier to quantify

[118, 165], (2) provide high signal-to-noise ratio (SNR) signals in less time

[165], and (3) less prone to several common sources of noise [165] and artifacts

[68, 158].

Despite the widespread use of SSVEPs, it is still not completely understood

how they are generated in the brain. For example, consider that neither the

activation sequence nor the neural processes that lead to the generation of

SSVEPs is known. SSVEPs reflect the combined electrical activity from

multiple neural sources within the brain [53, 61, 156]. It is believed that

these individual sources are activated sequentially. The order in which these

neural sources are activated, or the SSVEP activation sequence, remains an

open question in the literature [53, 165]. To try to determine this activation

sequence, Di Russo and colleagues [53] used a combination of source localiza-

tion and phase analysis techniques. Based on these methods, they proposed

that the activation sequence from earliest to latest was: V1, V5/MT, V3A,

and then V4/V8. Di Russo et al., [53] specifically caution, however, that the

overlapping nature of the SSVEP response precludes the exact determina-

tion of the neural activation sequence using phase analysis, beyond the usual

problems associated with source localization [118].

Another open question, which Norcia et al. [145] labels the “nature of the

underlying neural mechanism,” is whether SSVEPs are generated through

evoked [179] or oscillatory [123] neural processes. Some researchers hypoth-

esize that SSVEPs are the result of time-locked activity in the cortex that

is evoked by the stimulus [179] while others hypothesize that they are the

result of a “phase-resetting” of an ongoing neural oscillation [134, 148]. Some

evidence for the oscillatory hypothesis comes from the existence of resonance
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frequencies, frequencies at which the response amplitude of SSVEPs is natu-

rally larger [77]. However, these resonance frequencies can also be explained

by the temporal superposition of waves as predicted by the evoked activity

hypothesis [33]. Capilla et al. [33] provide evidence for the evoked hypothesis

by showing that SSVEPs are well modeled by the superposition of time jit-

tered VEPs presented at the same average frequency as SSVEPs. However,

the rapid presentation of these VEPs may engage fundamentally different

neural processes than those presented at much lower rates [145]. It is also

possible that SSVEPs arise as the result of a combination of these two types

of activity [45].

The motivation for this chapter is to provide a new method for investi-

gating how SSVEPs are generated in the brain, one that might help resolve

open questions such as the two we just described. If these questions could be

resolved, researchers may be able to improve the interpretation of visual in-

formation processing experiments using SSVEPs [53], more precisely define

their utility in the clinical assessment of visual function [53], and increase

the performance of SSVEP-based BCIs [194]. The new method we propose

is based on the elicitation of SSVEPs during sleep. We believe that eliciting

SSVEPs during sleep would provide new insight into how these signals are

generated in the brain, because: First, research over the course of 60 year-

soften using EEGhas established that information processing still occurs in

the brain during sleep [79], despite a reduction in overt responsiveness to ex-

ternal stimuli. For instance, the auditory N1 and P2 event-related potentials

(ERPs) can be elicited during both waking and sleep. These ERPs, however,

are altered as a function of the participants brain state [46]. For example,

the amplitude of the auditory N1 is reduced to baseline levels during NREM

sleep but is apparent during REM sleep. The amplitude of the P2 on the

other hand increases during NREM sleep and is visible during REM sleep

[46].

Second, altered information processing during sleep offers the possibility of

comparative studies to dissect SSVEP activity in new ways. Recent evidence

suggests that the differences between ERPs elicited during waking and ERPs

elicited during sleep are due to a reduction in cortical connectivity. Using

a combination of transcranial magnetic stimulation (TMS) and EEG Massi-

mini et al., [126] demonstrated that TMS stimulation during sleep caused a

reduction in the response of areas that were cortically connected to the stim-
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ulation site. Furthermore, the amplitude of this reduction was correlated

with the depth of sleep.

Given that information processing still occurs during sleep, but cortical

connectivity is reduced, it may be possible to infer the SSVEP activation se-

quence without resorting to the phase analysis techniques of Di Russo et al.

[53]. As sleep deepens, neural sources that occur later in the activation se-

quence become cortically disconnected from earlier sources. This reduction in

cortical connectivity may lead to a decrease in response amplitude from these

later sources as compared to earlier sources. One would then predict that the

SSVEP activation sequence could be determined by comparing the response

amplitudes of different individual sources measured during sleep with the re-

sponse amplitudes from those same sources measured during waking. With

respect to the neural processes that lead to the generation of SSVEPs, it

is reasonable to assume that the reduction in cortical connectivity will have

an effect on the oscillatory activity occurring in the brain. If so, one would

predict that the existence of SSVEP resonance frequencies would dissipate,

or, at least, be attenuated, during sleep. Even though the mechanisms un-

derlying visual steady-state responses and other sensory modalities may be

fundamentally different, some evidence for this can be found in the auditory

modality. In a study comparing steady-state auditory potentials elicited by

modulated tones during waking and sleep, Cohen, Rickards, and Clark [43]

found that the response at resonance frequencies was more attenuated during

sleep than at other stimulation frequencies.

The question then, which is the one we answer in this chapter, is can

SSVEPs be elicited during sleep? Effectively, this requires that it be possible

to elicit an SSVEP through a participants closed eyelids, elicit and record

an SSVEP during sleep without waking the participant, and measure the

response using time-frequency analysis of the data.

It has been previously established that SSVEPs can be elicited through

closed eyelids during waking. While the eyelids completely cover the eyes,

they do not perfectly filter all light. In fact, along the visual spectrum, the

eyelid acts as a red-pass filter. Up to 10% of red light (above 600nm) passes

through the eyelid as well as 1-2% of light in the remaining visual spectrum

(430nm - 600nm) [136, 167]. This property is what allows visual stimuli to

be perceived through closed eyelids, a fact that is well demonstrated by Lim

et al. [108] in their paper on the ‘eyes closed’ SSVEP-based BCI.
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It is already known that VEPs can be elicited during sleep without waking

the participant. For instance, a magnetoencephalography (MEG) study of

visual evoked fields (VEFs)—VEFs are the MEG analog of the VEP—during

sleep by Kakigi et al., [89] found that VEFs elicited during sleep are simpler

than those elicited during waking. Their data, in support of Massimini et

als. [126] hypothesis that sleep reduces cortical connectivity, showed that

VEFs elicited during sleep exhibit a reduction in later stage components as

compared with VEFs elicited during waking. Other studies have reported

that it is possible to elicit VEPs in sleeping infants [10, 182]. The results

from these studies suggest that, similarly to adults, brain state has an effect

on the VEPs elicited from infants.

It remains unclear whether SSVEPs can be elicited during sleep—indeed,

only a few studies have investigated repetitive visual stimulation during sleep.

A study by Born et al. in [25] found that repetitive visual stimulations

(which generate SSVEPs in EEG) cause cortical deactivation as measured

using fMRI and PET, but did not report the presence of SSVEPs in the

EEG. The only other previous reports of the elicitation of SSVEPs during

sleep were conducted in the context of epilepsy research. Rodin, Daly, and

Bickford [168] reported that repetitive stimulation during sleep elicited en-

trained EEG responses in the time domain [168], the experimenters did not

specifically analyze the frequencies of the elicited responses, nor did they an-

alyze SSVEPs across the sleep stages. In addition, they used a stimulation

intensity of 250,000 foot-candles (2,500,000 lux), roughly 20 times brighter

than the brightest sunlight [13]. A few studies have since followed up on the

work of Rodin [105, 130, 170, 214], but they all investigated clinical popu-

lations with the goal of determining whether seizures can be induced during

sleep. These researchers also continued to use very bright strobes as stimuli

and analyzed the results in the time domain.

In this chapter, we examined whether SSVEPs could be elicited during

sleep by investigating the EEG activity resulting from the presentation of a

repetitively flickering stimulus (with a brightness of less than 1.5 lux) during

waking and sleep. We hypothesized that the presentation of a visual stim-

ulus would elicit an increase in EEG activity at the same frequency as the

stimulus during both waking and NREM sleep. To test this hypothesis, we

invited participants to sleep in our laboratory while we recorded their EEG.

A head-mounted stimulator was then used to elicit SSVEPs during waking
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and sleep. Results from eight participants confirmed the hypothesis that

visual stimulation during sleep significantly increases EEG activity at the

frequency of stimulation.

2.3 Method

2.3.1 Participants

Eight volunteers (five males, three females, 20-32 years old) participated

in the study. All participants self-reported having no history of seizures,

frequent or severe migraines, motor impairments, or sleep disorders. The

experiments were approved by the University of Illinois Institutional Review

Board. Each participant was informed about the procedure and signed an

informed consent before the experiment.

2.3.2 Recording Parameters

Twenty-one channels of physiological data were recorded from each partic-

ipant using solid tin electrodes at impedances of less than 10 kΩ. Sixteen

channels of EEG data (Supplemental Figure 2.9) were recorded from the fol-

lowing 10-10 international sites [180]: right mastoid, FPz, F3, F4, FCz, C3,

C4, CPz, PO7, PO3, POz, PO4, PO8, O1, Oz, and O2. Two channels of

electrooculogram (EOG) were recorded to monitor for eye movements; one

EOG electrode was placed approximately one centimeter lateral to and one

centimeter below the outer canthus of the left eye the other EOG electrode

was placed approximately one centimeter lateral to and one centimeter above

the right eye [162]. All EEG and EOG electrodes were referenced to the left

mastoid. Two channels of electromyogram (EMG) were recorded to mon-

itor for muscle activity. These channels were placed equidistant from the

midline of the chin approximately three centimeters apart and were bipolar

referenced with one electrode placed on the mentalis muscle and the other

electrode placed on the submentalis muscle. One bipolar channel of electro-

cardiogram (ECG) was recorded to measure heart rate and placed on the

chest. A single ground electrode was situated on the dorsum of the nose.

A James Long EEG amplifier (model TCP-128BA) was used to amplify the

16



Figure 2.1: Diagram showing the setup of the visual stimulation system.

EEG and EOG signals (10,000x). All EEG and EOG data were analog fil-

tered from 0.3 Hz to 30 Hz. The EMG and ECG channels were recorded

using the same amplifier, but at a lower gain (2,000x) using different analog

filter settings (1-300 Hz). The data was then digitized at 1000Hz using a

National Instruments data acquisition unit (Model: NI PCI-6225).

2.3.3 Stimulation Hardware

The visual stimulation system (Figure 2.1) was created using a pair of glasses,

two green light-emitting diodes (LEDs), and an Arduino Uno microcontroller

(Arduino LLC, Somerville, MA). Each LED was placed at the lateral angle

50 to the center of the participants left and right eyes near the lateral can-

thus. A flicker frequency of approximately 7 Hz was chosen, because the

fundamental frequency was less than the alpha range (8 Hz to 12 Hz). The

method used to program the Arduino resulted in an exact frequency of 7.03

Hz. The duty cycle of the LEDs was 50%. The intensity of the LEDs was
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measured using a photometer, emitting 1.5 lux at a distance of approximately

25 mm. The onset and offset of stimulation from the LED glasses were cap-

tured using a photodiode wired directly in the DAQ and sampled at 1000

Hz.

2.3.4 Experimental Procedure

On the evening of the experiment, the participant arrived at the laboratory

one hour before his or her habitual bedtime (between 2300 and 0300 hours).

All experiments were conducted in a sound-attenuated, light-controlled, and

air-conditioned room. Following informed consent, the participant performed

his or her nightly routine. When each participant was ready for sleep, they

positioned themselves in a comfortable reclining chair for the duration of

the study. The recording electrodes and LED stimulator glasses were then

placed on the participant. Following setup, all experiments were monitored

from an adjacent room. A baseline, consisting of two one-minute periods of

SSVEP stimulation, was then recorded from each participant. During this

baseline recording, the participants were asked to close their eyes, to relax,

and to ignore the stimuli. After the baseline, participants were permitted

to fall asleep. Participants were given between 20-40 minutes to fall asleep

before SSVEP stimulation was started. The exact amount of time was differ-

ent for each participant and determined by the experimenters. During each

sleep stimulation period, the SSVEP stimuli flickered for five minutes. Each

stimulation period was followed by an interstimulus interval of ten minutes.

The length of this interstimulus interval was chosen ad-hoc by the experi-

menters. Each sleep recording consisted of two to eight stimulation periods.

The number of stimulation periods was determined by allowing the partici-

pant to sleep for up to two hours or until he or she woke up, whichever came

first. If a participant was awakened before the stimulation periods, or by

the stimulation itself, they were given the option to try again or to end the

experiment.

2.3.5 Data Analysis

All data were analyzed using MATLAB (The Mathworks Inc. Natick, MA).
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Preprocessing

For each subject, two digital filters were first applied to each channel of

the raw EEG data. (1) A 60 Hz notch filter with a 1 Hz bandwidth (-

3db) was applied to the data for the purpose of removing power line noise

and implemented using the iirnotch function in MATLAB. (2) A second-

order infinite impulse response bandpass filter with a passband of 0.5-30 Hz

was applied to reduce noise and implemented using the butter function in

MATLAB. Both filters were applied both forward and backward to prevent

any phase shifts in the data. After filtering, each channel of the EEG data was

re-referenced to the average of the left and right mastoid. The preprocessed

data for subject s04 averaged across channels O1, Oz, and O2 have been

visualized in Figure 2.2 using the short-time Fourier transform (STFT).

Sleep Scoring

The sleep stage of each subject was scored using the sleepSMG toolbox

(Stephanie Greer and Jared M. Saletin, Walker Laboratory UC Berkeley;

http://sleepsmg.sourceforge.net/), a visualization tool for MATLAB. Nine

channels of data were used for sleep scoring, two chin EMG channels, two

EOG channels, and five EEG channels (C3, C4, O1, Oz, and O2). The contin-

uous EEG data for each participant were first divided into 30-second epochs.

Two raters then scored [17, 162] each EEG epoch independently as showing

waking, light sleep (which we define as stage N1 or N2; [66, 132, 157]) or

deep sleep (which we defined as stage N3). The two raters had an inter-rater

reliability of 65%. Rater #2 agreed with Rater #1 for more than 80% of

epochs labeled waking and 95% of the epochs labeled deep sleep. For light

sleep, however, Rater #2 only agreed with Rater #1 48% of the time. The

two raters also labeled epochs with artifacts for rejection from further anal-

ysis. Disagreements between these raters were resolved through consensus,

and final labels were assigned to each epoch for further analysis.

Amplitude Spectral Density

To detect SSVEPs in the EEG data, we used amplitude spectral density

(ASD). Since our sleep data was scored in 30-second epochs, we used the
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same 30-second epochs for calculation of the ASD. An estimate of the power

spectral density was computed for each channel of EEG data within each

epoch (including both the baseline and sleep data) using the pwelch function

in MATLAB. The pwelch function, with a signal length equal to the window

length, is equivalent to calculating the single-sided ASD using the Fourier

transform. Given that the two methods are equivalent, pwelch is a single

function call and was used to reduce the risk of coding errors. A Hanning

window was first applied to each 30-second epoch to reduce spectral leakage.

Each signal was zero-padded to four times the length of the epoch to improve

visualization. Since each epoch was 30 seconds long, there was no overlap

between successive windows. The square root of the data was then taken to

convert the results from power spectral density to ASD. Figure 2.3 shows an

overlay of the ASD values, sleep score, and stimulation periods for subject

s04.

Each estimate of the ASD was then binned into one of two stimulation

conditions, stimulation off or stimulation on. Within each stimulation condi-

tion, the data was further subdivided into one of three brain states based on

the results of the sleep scoring: waking, light sleep, or deep sleep. Note that

the stimulation off waking condition and stimulation on waking condition

included data from both the baseline session and data that was scored as

waking during the sleep session. All estimates of the ASD within each bin

were averaged across windows and channels O1, Oz, and O2 to create final

estimates of the ASD for each subject in each condition [156]. Finally, the

ASD value at the frequency of stimulation was extracted from each condition

for further statistical analysis. This value, which we defined as the SSVEP

amplitude, is similar to that of other researchers [9, 156]. The grand average

ASDs for each condition are shown in Figure 2.4.

2.4 Results

All eight subjects who participated in our study completed the experiments.

Technical issues during subject s03 resulted in the loss of half of the baseline

data and half of the sleep data. Participant s08 reported difficulty falling

asleep and was awoken by the stimulation, but did manage to sleep through

one full stimulation period and one-half of a second stimulation period.
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Figure 2.2: Short-time Fourier transform (STFT) showing sleep recording
session for subject s04, averaged across channels O1, Oz, and O2. The
image was created using the ‘spectrogram’ function in MATLAB with input
parameters of a 30s-time window, a 29s-window overlap, and a Hanning
taper to reduce spectral leakage. The three, five-minute, SSVEP
stimulation periods can be seen at 7.03Hz.

Statistical analyses were conducted in SPSS Version 22 (IBM Corpora-

tion, Armonk, NY). The mean SSVEP amplitudes for each of the conditions

and all eight subjects is reported in Table 2.1 and represented graphically in

Figure 2.5. We performed an analysis comparing the difference in SSVEP

amplitude using a two-way (brain state and stimulation) repeated measures

ANOVA with three levels (waking, light sleep, and deep sleep). We first

assessed that our data met the assumptions of the two-way ANOVA (no

significant outliers, normally distributed data, and equal variances). Exam-

ination of the studentized residuals revealed no outliers for values less than

-3 or greater than 3 standard deviations from the mean. To determine if the

ASD values were normally distributed, a Shapiro-Wilk test was used. All

conditions (p > 0.05) were normally distributed. Mauchlys test of sphericity

was used to determine whether the ASD values from each of the conditions

was of equal variance. The test revealed differences in variance across brain

states (χ2(2) = 8.01, p = 0.02) and in the interaction between stimulation

and brain state (χ2(2) = 8.20, p = 0.02). To account for these differences

in variance, Greenhouse-Geisser correction was used. The corrected two-way
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Figure 2.3: Plot that simultaneously overlays the scoring of sleep stage
(floating bars), whether stimulation was on or off (shaded areas denote
stimulation), and SSVEP amplitude (solid line) for subject s04 during the
sleep recording session. The increase in SSVEP amplitude can be seen to
correspond exactly with the onset of stimulation.

repeated measures ANOVA on SSVEP amplitude revealed an interaction be-

tween stimulation and brain state (F [1.15, 8.02] = 16.51, p = 0.00, η2p =

0.70, uncorrected degrees of freedom were - 2,14).

Simple main effect tests with Bonferroni-Holm correction revealed addi-

tional differences within the data. Simple main effect test for brain state

showed that SSVEP amplitudes were higher for stimulation on (M = 7.72,

SD = 2.73) compared to stimulation off (M = 1.99, SD = 0.33) during light

sleep (F [1, 7] = 30.21, p = 0.01, η2p = 0.81) as well as stimulation on (M

= 11.04, SD = 4.86) compared to stimulation off (M = 2.33, SD = 0.47)

during deep sleep (F [1, 7] = 25.41, p = 0.01, η2p = 0.78). Simple main effect

tests of stimulation showed that there was a difference (F [2, 14] = 26.77, p

< 0.01, η2p = 0.79) between waking, light sleep, and deep sleep during stim-

ulation off. Further pairwise comparisons showed that SSVEP amplitudes

elicited during light sleep (mean difference = 0.64, p = 0.01) and deep sleep

(mean difference = 0.98, p = 0.01) were higher than those during waking and

SSVEP amplitudes elicited during deep sleep (mean difference = 0.34, p =

0.01) were higher than those recorded during light sleep. During stimulation

on, there was also a difference (F [1.14, 7.99] = 22.55, p = 0.01, η2p = 0.76,

uncorrected degrees of freedom were - 2,14) between waking, light sleep, and
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Table 2.1: Mean SSVEP amplitude (µV/Hz1/2) computed for each subject
binned by stimulation condition (stimulation off and stimulation on) and by
brain state (waking, light sleep, deep sleep).

Stimulation Off Stimulation On

Subject Waking
Light
Sleep

Deep
Sleep

Waking
Light
Sleep

Deep
Sleep

s01 1.23 2.40 3.17 2.70 6.36 7.06
s02 1.97 2.27 2.73 2.72 6.41 14.62
s03 1.85 1.99 2.08 3.65 8.25 8.89
s04 1.56 2.26 2.56 1.57 7.65 16.80
s05 0.66 1.49 1.74 4.08 9.79 10.02
s06 1.38 1.56 1.99 6.70 12.73 17.90
s07 1.09 1.95 2.08 1.30 3.40 4.27
s08 1.01 1.96 2.25 2.01 7.15 8.74

Mean 1.34 1.99 2.33 3.09 7.72 11.04
Mdn 1.31 1.98 2.17 2.71 7.40 9.46
SD 0.44 0.33 0.46 1.74 2.73 4.87

deep sleep. Pairwise comparisons revealed that SSVEP amplitudes elicited

during light sleep (mean difference = 4.63, p < 0.01) and deep sleep (mean

difference = 7.94, p = 0.01) were higher than those during waking. There

were two marginal effects that did not meet the threshold of significance

when corrected for multiple comparisons. During waking, SSVEP amplitude

in the stimulation on (M = 3.09, SD = 1.74) condition was marginally higher

(mean difference 1.75, uncorrected p = 0.03, corrected p = 0.06, η2p = 0.52)

than it was during the stimulation off (M = 1.34, SD = 0.44) condition.

Finally, in the stimulation on condition, SSVEP amplitude was marginally

higher (mean difference = 3.32, uncorrected p = 0.04) during deep sleep

than it was during light sleep. In accordance with the ranking procedure of

Bonferroni-Holm, no correction factor was applied to this last comparison,

but it does not meet the threshold of significance.

There were differences in the number of time windows averaged together

to obtain measurements of SSVEP amplitude from different subjects and

conditions (Table 2.2). To determine if these differences had any effect on

the results, we conducted two additional analyses (1) a correlation analy-

sis comparing the number of time windows with SSVEP amplitude and (2)

an analysis of the bootstrap confidence intervals of the individual subject
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Figure IV. 

(a) Stimulation Off

(b) Stimulation On

(c) Difference (On – Off)

Figure 2.4: ASD values for frequencies between 1-13Hz, averaged across all
subjects, for each condition. (a) Brain state (waking, light sleep, deep sleep)
for the stimulation off condition. (b) Brain state (waking, light sleep, deep
sleep) for the stimulation on condition. (c) Brain state (waking, light sleep,
deep sleep) for the difference between the stimulation on condition and the
stimulation off condition. The effect of stimulation is apparent at 7.03Hz.
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Table 2.2: Number of time windows for each subject binned into each
condition of stimulation (stimulation off and stimulation on) and brain
state (waking, light sleep, deep sleep).

Stimulation Off Stimulation On

Subject Waking
Light
Sleep

Deep
Sleep

Waking
Light
Sleep

Deep
Sleep

s01 21 72 70 4 41 22
s02 5 86 59 5 30 11
s03 18 15 12 13 9 1
s04 6 42 46 4 8 18
s05 3 67 21 4 13 14
s06 44 97 21 33 19 7
s07 84 87 46 8 32 19
s08 238 43 4 17 10 4

Mean 52.38 63.63 34.88 11.00 20.25 12.00
Mdn 19.50 69.50 33.50 6.50 16.00 12.50
SD 79.75 28.03 23.68 10.11 12.53 7.56

data. When not corrected for multiple comparisons, there was a moderate

correlation (r = -0.30, p = 0.04) between the number of time windows and

the mean SSVEP amplitude (Supplemental Figures 2.10 and 2.11). If the

data was analyzed by stimulation condition, however, there was no signifi-

cant correlation. The results for stimulation off (r = -0.14 and p = 0.50) and

stimulation on (r = -0.01 and p = 0.96) are shown in Figure 2.6. Bootstrap

confidence intervals were used to test simple main effects within each subject

following the procedures of Oru et al. [152]. For each subject and compar-

ison, the individual trials of the two conditions of interest were resampled

with replacement. These two sets of resampled data were then averaged and

subtracted from one another to create a new estimate of SSVEP amplitude.

As an example, consider subject s01 and a comparison of the light sleep stim-

ulation off condition with the light sleep stimulation on condition. We first

resampled the 72 light sleep stimulation off data trials (Table 2.2) and the 41

light sleep stimulation on data trials (Table 2.2) with replacement. Each of

these resampled datasets was averaged, and the two resampled averages were

subtracted from one another. This resulted in a measurement of the differ-

ence in SSVEP amplitude between the two conditions. This process was then

repeated 1000 times. After 1000 iterations, the lowest 2.5% of values and the
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highest 2.5% of values were trimmed to create a 95% confidence interval. If

the resulting confidence interval did not include zero, it was inferred that

there was a significant difference between the means at the p < 0.05 level.

The confidence intervals for light sleep stimulation off vs. light sleep stimula-

tion on and deep sleep stimulation off vs. deep sleep stimulation on are shown

in Figure 2.7. For both conditions, every single subject showed a significant

increase in SSVEP amplitude during stimulation. For s03 (stimulation on

deep sleep), calculation of a bootstrap confidence interval was not possible,

SSVEP amplitude was estimated from a single trial. Bootstrap confidence

intervals for differences in the other simple main effects are reported in the

supplemental materials (Supplemental Figures 2.12- 2.18).

Given the length of our stimulation periods (5 minutes), we examined the

data for correlations between the length of time following stimulation onset

and SSVEP amplitude. Using the data from the sleep session, the stimula-

tion periods for each participant were extracted from the filtered EEG data.

Then, each stimulation period was analyzed using the STFT. The input pa-

rameters for this STFT were a 30-second nonoverlapping window, Hanning

taper, and no additional zero-padding. The STFT returned ten values, two

for each minute of stimulation. These ten values represent the SSVEP ampli-

tude at a different length of time following stimulation onset. For example,

the first value contained data from 0-30 seconds after stimulation onset. Fol-

lowing this, the data was averaged across all subjects and simulation periods

(Supplemental Figure 2.14). There appeared to be a moderate negative cor-

relation (r = -.48) between SSVEP amplitude and time after stimulation

onset, but it was not significant (p = 0.16).

2.5 Discussion

Our results confirmed the hypothesis that SSVEPs can be elicited during

sleep. Recall that, in this chapter, we define SSVEP amplitude as the ampli-

tude of EEG activity at the frequency of a target stimulus averaged across

channels O1, Oz, and O2 (see Section 2.3.5). Statistical analyses showed an

increase in SSVEP amplitude during the stimulation on condition as com-

pared to the stimulation off condition for both light sleep and deep sleep

(Figure 2.5). This result is important because it directly enables the inves-
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Figure 2.5: Scatterplot of SSVEP amplitudes for all subjects, brain states
(waking, light sleep, deep sleep), and stimulation conditions (stimulation
off, stimulation on). For each condition, mean amplitude across all subjects
has been denoted with a star. Statistically significant (p < 0.01) simple
main effects indicated with “**”.
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ELICITATION OF SSVEPs DURING SLEEP 43 

(a) Stimulation Off

(b) Stimulation On

Figure 2.6: Scatterplot showing the number of time windows averaged
together in a condition compared with the mean SSVEP amplitude for (a)
Stimulation off (all brain states) and (b) Stimulation on (all brain states).
A linear trend line has been added to each plot, and the correlation value is
written in the upper right-hand corner.
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ELICITATION OF SSVEPs DURING SLEEP 44 

Figure VII. 

(a) Light Sleep (Stimulation Off vs. Stimulation On)

(b) Deep Sleep (Stimulation Off vs. Stimulation On)

Figure 2.7: Bootstrap confidence intervals for the analysis of simple main
effects within subjects. This figure shows the data for two conditions (a)
stimulation off (light sleep) vs. stimulation on (light sleep) and (b)
stimulation off (deep sleep) vs. stimulation on (deep sleep). Other
comparisons are included in the supplemental materials document. For
conditions with a single trial, calculation of the confidence interval was not
possible (subject s03, stimulation on condition).
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Figure 2.8: Topographic plot of the ASD values, averaged across all
subjects, at the frequency of stimulation for the EEG channels. (a) Brain
state (waking, light sleep, deep sleep) for the stimulation off condition. (b)
Brain state (waking, light sleep, deep sleep) for the stimulation on
condition. (c) Brain state (waking, light sleep, deep sleep) for the difference
between the stimulation on condition and the stimulation off condition.
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tigation of several open questions relating to how SSVEPs are generated in

the brain. Specifically, sleep may provide a means to investigate the SSVEP

activation sequence and the neural processes that lead to the generation of

SSVEPs.

The data also show that the SSVEP amplitude is larger for the stimula-

tion on condition during light sleep and deep sleep than it is during waking

(Figure 2.5). Evidence from our study and others suggest that the effect

of brain state on steady-state and transient evoked potentials is dependent

on the type of stimulation. For example, previous studies have found that

sleep reduces the amplitude of steady-state responses using auditory stimuli

[43, 113]. Massimini et al. [126], however, showed that early EEG responses

to TMS during sleep were larger in amplitude than they were during wak-

ing. Kakigi et al. [89] reported that the middle latency components of VEFs

were larger during sleep and Shepherd, Saunders, & McCulloch [182] reported

that the N1 and P2 amplitudes of VEPs elicited from infants increased dur-

ing sleep. While our results are intriguing, they may have been affected by

dark/light adaptation [187]. Even though the absolute light levels were the

same during the baseline (used for most of the waking data) and the sleep

experiments (used for all of the light sleep and deep sleep data), no time

was given after the lights were turned off and before the baseline recording

for the participants eyes to adjust. To test the effect of light adaptation

on our results, we conducted a pilot study (Supplemental Analysis II) with

two participants. SSVEP amplitude, through closed eyelids, was more than

twice as large after 30 minutes of light adaptation than it was at baseline

(Supplemental Figure 2.22). Another potential confound is that the major-

ity of the waking data were from the baseline stimulations, which were only

one-minute in length. The stimulation periods during the sleep sessions were

five times longer. It is possible that the eyes adapted to the stimulations

over the course of this time, although an analysis of SSVEP amplitude as a

function of time after stimulation onset (Supplemental Figure 2.19) showed

no significant correlation. Given our current results, the differences between

the existing literature on steady-state and transient evoked potentials during

sleep, and the limitations of our current study, further investigation of the

changes in SSVEP amplitude that occur across brain states is warranted.

In the stimulation on condition, SSVEP amplitudes were marginally higher

during deep sleep than they were during light sleep (Figure 2.5). The data
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for these two conditions was collected more than 20 minutes after the lights

had been turned off (which was unlikely to have been affected by dark/light

adaptation; [187]) and provides further evidence that SSVEP amplitude in-

creases from waking to light sleep to deep sleep. In addition, this is one of the

first studies to report a difference in the amplitude of steady-state responses

in light sleep vs. deep sleep. Neither Linden et al., [113] nor Cohen et al., [43]

reported differences in the amplitude of steady-state responses between light

sleep and deep sleep. To improve future studies, we suggest that the stim-

ulation procedure is changed to reduce the variance of SSVEP amplitudes

recorded in the stimulation on condition during deep sleep (Table 2.1). This

high variance may have been caused, in part, by the limited number of epochs

recorded during deep sleep. The experiments did not selectively stimulate

participants during specific stages of sleep. The stimulations were a fixed

time apart, which was much easier to program and implement, skewing the

number of samples within each condition for each subject (Table 2.2). While

no significant correlation was found between the number of time windows

and the SSVEP amplitude for either the stimulation off or the stimulation

on (Figure 2.6) conditions, implementation of an online sleep classification

[56] system would allow better control of stimulation during specific stages of

sleep. In addition, a more thorough comparison of SSVEP amplitude across

brain states should include all of the stages of NREM sleep (N1, N2, and N3)

as well as REM sleep (since this data was excluded from the present study).

SSVEP amplitude during waking (Figure 2.5) was only marginally higher

in the stimulation on condition than it was in the stimulation off condition,

we expected the difference between these two conditions to be larger. We at-

tribute this result to five factors. First, the participants in our experiments

were instructed to ignore (i.e. not attend to) the baseline stimuli. Unat-

tended flickering stimuli elicit a much lower amplitude SSVEP than attended

stimuli [139]. Second, the length of baseline stimulation (2 minutes total) was

shorter than the stimulations used during sleep (5 minutes per stimulation

period). The choice of two one-minute stimulation periods was made due

to the worry that participants would fall asleep during the baseline. Al-

though an analysis revealed no significant correlation between time following

stimulation onset and SSVEP amplitude (Supplemental Figure 2.19), there

appears to be a negative correlation between these two variables. Third, the

effect size was smaller than expected, if a smaller effect size had been pre-
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dicted, and more data had been collected, this result may have been different.

Fourth, we always recorded the baseline before the participant went to sleep,

potentially causing ordering effects. In the future, the order of the baseline

and experimental sessions should be randomized. Finally, since these experi-

ments were conducted using sleeping participants in a dark room, dark/light

adaptation may have impacted the results [187] (Supplemental Figure 2.22).

For the stimulation off condition, there was an increase in SSVEP ampli-

tude as brain state changed from waking to light sleep to deep sleep (Fig-

ure 2.5). These differences reached significance despite appearing to be much

smaller in amplitude than the differences between the brain states in the

stimulation on condition. We attribute this to two factors. First, SSVEP

amplitude (Table 2.1) varied less during the stimulation off condition than

during the stimulation on condition. Second, baseline EEG activity is known

to change as a function of brain state. For example, theta activity (4-7 Hz)

increases during sleep [49]. The frequency of stimulation used in this study

(7.03 Hz) was very close to the theta range. Figure 4 shows that ASD values

for all frequencies between 4 Hz and 8 Hz are larger during light sleep and

deep sleep (for both the stimulation off and the stimulation on conditions)

than during waking.

The topography of ASD values at the frequency of stimulation are shown in

Figure 2.8. During waking, the topography of the stimulation on condition

appears to be similar to those previously reported by Herrmann [77]. As

brain state changes from waking to light sleep to deep sleep, the ASD values

measured during the stimulation on condition appear to grow larger, similar

to the analysis of SSVEP amplitude. The distribution of these ASD values,

however, appears to remain the same with the largest ASD values recorded

from near electrode Oz. Further analysis of changes in topography is limited

by the number of electrodes used during the experiments, the distribution

of these electrodes, and the fact that we did not control for the subjects

position [166]. Future work investigating changes in the neural sources of

SSVEP across brain state should use more electrodes since this is known to

improve EEG source localization [99].

Finally, we acknowledge that many factors are known to affect SSVEP

amplitude [220]. These factors include:

• Spatial location of the stimulus - All of the changes in the SSVEP re-
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ported here were the result of LED stimulation near the lateral canthus

of the eye (Figure 2.1). This location was chosen based on the previ-

ous work of Lim [108]. As lateral stimuli have been previously shown

to lateralize SSVEP topography [184], the choice of a lateral stimulus

location may have altered the experimental results.

• Brightness/contrast of the stimulus - we used a dim (approximately

1.5 lux) stimulus to demonstrate that SSVEPs could be elicited during

sleep at brightness levels several orders of magnitudes less than those

reported in the work of Rodin [168]. Previous research has shown that

the amplitude of SSVEPs is related to the suprathreshold contrast of

the stimuli [32]. Additionally, while the eyelid is known to act as a

red-pass filter [136], it is unlikely that the filter characteristics are the

same across individuals.

• Color of the stimulus - A green stimulus was chosen, ad-hoc, for use

in these experiments. Studies show that stimulus color affects SSVEP

amplitude in waking participants [163]. Duszyk et al. [55] recently

revisited the impact of color on SSVEP amplitude and found that blue

stimuli elicit a smaller response than other colors. Future experiments

investigating color would have to account for the filtering characteris-

tics of an individuals eyelids [136], but may provide additional insight

into how SSVEPs elicited during sleep differ from those elicited during

waking.

• Frequency of the stimulus - These experiments used a 7.03 Hz stimu-

lus to avoid overlap with alpha activity (8-13 Hz) that spontaneously

occurs during waking. Different flicker frequencies are known to elicit

different SSVEP amplitudes with resonance peaks occurring at 10, 20,

40, and 80 Hz [77]. These resonance peaks are evidence for the oscilla-

tory hypothesis of SSVEP generation [77, 123]. Since SSVEPs can be

elicited during sleep, and the oscillatory dynamics of the brain change

during sleep [49], a logical question to ask is whether these SSVEP res-

onance frequencies change or disappear during sleep. Changing any of

these factors may lead to a different set of results and represent possible

directions of future work.
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2.6 Conclusion

The experiments presented here show that SSVEPs can be elicited during

sleep using a dim (approximately 1.5 lux) stimulus, through closed eyelids,

without waking the participant. We have also provided evidence that there

may be amplitude differences in SSVEPs elicited during sleep compared with

those elicited during waking. As discussed in the introduction, there are at

least two specific hypotheses that can be tested based on this result: (1)

Given that SSVEPs can be elicited during sleep and that cortical connectiv-

ity decreases with sleep [126], one could hypothesize that neural responses

later in the SSVEP activation sequence will be attenuated more during sleep

than earlier ones. (2) Given that SSVEP amplitude is dependent on fre-

quency and that the oscillatory dynamics of the brain change during sleep

[49], one could hypothesize that SSVEP resonance frequencies would change

or disappear during sleep. While future work might concentrate on con-

firming these hypotheses, they represent just two examples of the types of

hypotheses that can be tested since SSVEPs can be elicited during sleep.

2.7 Acknowledgement

This work was supported by NSF Grants No. 0955088 and 0903622. The

authors would like to thank Bonnie Chen, Randy Lefkowitz, Siyuan Wu,

and the ECE445 team for their efforts in the development of the stimulation

hardware. Thanks to Joost Rommers, Kara Federmeier, Alex Iordan, Jessica

Mullins, and Claudia Lutz for their helpful feedback and incredible insight.

The authors would also like to thank the Christie Clinic Sleep Center for

their insights on polysomnography and sleep scoring.

35



2.8 Supplemental Information

Figure 2.9: Locations of electrodes used to record EEG during experiments.
In addition to the EEG electrodes shown in the diagram, there was an
additional electrode on the right mastoid. All EEG signals were referenced
to the left mastoid, and ground was placed on the nose.
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Figure 2.10: Scatterplot showing mean amplitude vs. number of time
windows for all conditions (r = -0.30, p = 0.036).
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Figure 2.11: Scatterplots showing mean amplitude vs. number of time
windows for the stimulation on condition (a) waking (r = 0.71, p = 0.047),
(b) light sleep (r = -0.47, p = 0.242), and (c) deep sleep (r = -0.20, p =
0.642). These p-values are not corrected for multiple comparisons.
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Figure 2.12: Bootstrap confidence intervals (95%) for comparison of
stimulation off - waking vs. light sleep.
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Figure 2.13: Bootstrap confidence intervals (95%) for comparison of
stimulation off - waking vs. deep sleep.
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Figure 2.14: Bootstrap confidence intervals (95%) for comparison of
stimulation off - light sleep vs. deep sleep.
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Figure 2.15: Bootstrap confidence intervals (95%) for comparison of
stimulation on - waking vs. light sleep.
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Figure 2.16: Bootstrap confidence intervals (95%) for comparison of
stimulation on -waking vs. deep sleep.
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Figure 2.17: Bootstrap confidence intervals (95%) for comparison of
stimulation on - light sleep vs. deep sleep.
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Figure 2.18: Bootstrap confidence intervals (95%) for comparison of waking
- stimulation off vs. stimulation on.
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Figure 2.19: Mean SSVEP amplitude, averaged across all subjects and
stimulation periods, elicited during sleep session as a function of time
following stimulation onset.
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2.8.1 Supplemental Analysis I

Data analysis showing the correlation between individual alpha frequency

(IAF) and the SSVEP amplitude from each subject. This value was calcu-

lated by first averaging channels O1, Oz, and O2, and then computing the

amplitude spectral (four second Hanning window, three-second overlap, and

zero-padded to 16 times the length of the window). IAF was defined as the

frequency with the maximum amplitude (Figure 2.20) between 8-14Hz [35].

IAF was calculated for each subject for both stimulation on (Table 2.3a) and

stimulation off (Table 2.3b).

Figure 2.20: The ASD value for the individual alpha frequency for s01
during waking and the stimulation off condition.

IAFs for stimulation off were correlated with SSVEP amplitude measured

during stimulation on condition. Before comparing these two data sets, the

stimulation on data was baselined by subtracting the SSVEP amplitude of

the stimulation off condition. This was done separately for each brain state.

Scatterplots for each brain state (waking, light sleep, and deep sleep) can be

seen in Figure 2.21. The correlations for each condition are the following:
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Table 2.3: Simulation Study

(a) Individual alpha frequency by subject (stimulation off)

S01 S02 S03 S04 S05 S06 S07 S08

IAF 11.13 9.75 9.18 10.44 9.93 10.13 10.25 11.81

(b) Individual alpha frequency by subject (stimulation on)

S01 S02 S03 S04 S05 S06 S07 S08

IAF 11.81 9.75 9.18 10.31 9.94 10.18 10.38 11.81

waking (r = -0.22, p = 0.602), light sleep (r = -0.22, p = 0.602), and deep

sleep (r = -0.25, p = 0.555). A consistent, but not significant, weak negative

correlation can be seen in all three brain states.

Figure 2.21: Scatterplots of the IAF for each subject during the stimulation
off condition.
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2.8.2 Supplemental Analysis II

Dark Adaptation - Version 1

This analysis looked at the effect of light adaptation on SSVEP amplitude.

Two participants from our laboratory were asked to wear the same visual

stimulator as used during the sleep experiment while their EEG was recorded.

Following the methodology of [187] we conducted a pilot experiment with two

conditions: (1) Baseline and (2) Light Adaptation. After setup, all lighting

in the room was turned off. A five-minute baseline recording was then ob-

tained (7.03Hz stimulation). During this baseline recording, each participant

was asked to close their eyes and ignore the stimuli. Following baseline, the

participant was asked to sit quietly in the dark room without falling asleep.

The experimenters offered to talk with the participants during this period to

help them. After a 30-minute light adaptation period, another five-minute

stimulation period was conducted. Our analysis used EEG data from chan-

nels O1, Oz, and O2. The data from these channels and the two stimulation

periods (baseline and light adaptation) were extracted for further analysis.

SSVEP amplitude was calculated using pwelch in the same way as the sleep

experiments (see Methods - Amplitude Spectral Density for details) using

30-second non-overlapping windows. This resulted in 10 SSVEP amplitude

estimates for each subject and each condition. Finally, the results were con-

verted to a percent change from the average of all of the baseline stimulation

periods. The results of these experiments are shown below:
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Figure 2.22: Scatterplots of the IAF for each subject during the stimulation
off condition.
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Dark Adaptation - Pilot Study

Introduction

This supplemental experiment tests the hypothesis that the amplitude of the

fundamental frequency component of SSVEPs is larger during NREM sleep

than it is during waking.

Previous research has investigated the effect of sleep on the fundamental

frequency component of SSVEPs. Norton, Umunna, and Bretl [147] show

that the fundamental frequency component of an SSVEP elicited by a 7Hz

stimulus is larger during NREM sleep than it is during waking. Sharon and

Nir [181] reported similar results for 3/5Hz stimuli, but that the amplitude of

the fundamental frequency component of SSVEPs elicited by 8/10Hz stimuli

are smaller during NREM sleep than during waking. Neither of these two

studies, however, accounted for the fact that the amplitude of SSVEPs in-

crease following dark adaptation [187]. In addition, Sharon and Nir [181] did

not ask participants to either attend or ignore the stimuli during the baseline

stimulation period. Attention is well known [135] to affect the amplitude of

SSVEPs.

To test whether previously observed differences in the amplitude of the

fundamental frequency component of SSVEPs elicited during sleep could be

attributed to dark adaptation or attention, we compared data collected by

Norton, Umunna, and Bretl [147] with data from two new experiments. Both

experiments test how dark adaptation effects the amplitude of SSVEPs using

the exact same stimulator as Norton, Umunna, and Bretl [147]. To test the

effect of attention following dark adaptation, in one experiment participants

were asked to pay attention to the stimuli and in the other experiment,

participants were asked to ignore the stimuli. Our hypothesis was that the

SSVEPs elicited during sleep would be larger than those elicited after dark

adaptation. We hypothesized that this would be true when participants were

asked to pay attention to a stimulus and when they were asked to ignore a

stimulus.

Participants

There were eight participants in the no attention study and seven participants

in the attention study.

Procedure
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EEG recordings were made using the exact experimental setup described

in Section 2.3.2 with the exception that no EMG, ECG, or EOG data was

recorded. Participants were seated in the same room, using the same chair,

and SSVEPs were elicited using the same stimulator described in Sections 2.3.3

and 2.3.4. After EEG setup, participants were given one of two sets of in-

structions. They were asked to either close their eyes, look straight forward,

and ignore the stimulus or to close their eyes, looks straight forward, and

attend to the stimulus. After receiving instructions, the lights in the room

were turned off so that there was complete darkness and a baseline recording

session was started. This baseline recording session consisted of two one-

minute stimulation periods with two one-minute no stimulation periods in

between and after. Following the baseline stimulation periods, participants

were instructed that they could open their eyes and relax, but not fall asleep.

To help the participants stay awake, they were also permitted to talk to the

experimenter, listen to music, or listen to National Public Radio. This de-

cision was followed by a dark adaptation period of 30 minutes, in which the

participant remained in a completely dark room. Approximately 3 minutes

before the end of the 30 minute dark adaptation period, any entertainment

was stopped and the participant was again asked to close their eyes and either

attend or ignore the upcoming stimulus (depending on what group they were

in). A second stimulation period was then conducted and continuously stim-

ulated the participant for five minutes. After the second stimulation period,

the participant was asked to relax quietly for approximately two minutes be-

fore EEG recording was halted and the experiment ended. Participants were

then thanked for their time.

Data Analysis

Data analysis was conducted using the same procedure detailed in Sec-

tion 2.3.5. ASD estimates were calculated for each participant and condition.

For both of the dark adaptation experiments (no attention and attention),

the final ASD values were calculated in two steps. First the ASD values

for the baseline (stimulation off) condition were subtracted from the base-

line (stimulation on) and dark adaptation (stimulation on) conditions. The

baseline (stimulation on) condition was then subtracted from the dark adap-

tation (stimulation on) condition. The sleep data used were from Chapter 2.

As the effect of sleep on SSVEP amplitude was largest for deep sleep, we
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Figure 2.23: Fundamental Frequency

compared the dark adaptation data with data collected during deep sleep.

The ASD values used for comparison with the dark adaptation data were

obtained by subtracting the deep sleep (stimulation off) data from the deep

sleep (stimulation on) data.

Results

A one-way ANOVA on SSVEP amplitude revealed an effect of the experi-

ments on SSVEP amplitude (F [2,20] = 5.51, p = 0.01). Pairwise comparisons

revealed that SSVEP amplitudes elicited during deep sleep were larger those

elicited after dark adaptation when the participant was instructed to ignore

the stimulus (mean difference = 5.29, p = 0.02) and that SSVEP amplitudes

elicited during deep sleep were larger those elicited after dark adaptation

when the participant was instructed to attend to the stimulus (mean differ-

ence = 5.16, p = 0.03).

Discussion

These data support the hypothesis that SSVEPs elicited during deep sleep

are larger than those elicited following dark adaptation. This result is true

when participants are asked to ignore the visual stimulus as well as when

participants are asked to ignore the visual stimulus.
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CHAPTER 3

THE PERFORMANCE OF 9-11 YEAR OLD
CHILDREN USING AN SSVEP-BASED BCI

FOR TARGET SELECTION1

3.1 Abstract

In this chapter, we report the performance of 9-11 year old children using

a steady-state visual evoked potential (SSVEP)-based brain-computer inter-

face (BCI) and provides control data collected from healthy adults for com-

parison. The only previous investigation of children in a similar age range

using SSVEP-based BCIs reported low performance (∼50% accuracy), but

here children made online selections much more accurately (∼80%). Exper-

iments were conducted in two phases, a training phase and an experimental

phase. An offline analysis of the data collected during the training phase was

used to set two parameters for a classifier and to screen participants who did

not achieve a minimum accuracy of 85%. Eleven of the 14 children and all

11 of the adults who completed the training phase met the minimum accu-

racy requirement. During the experimental phase, children selected targets

with a similar accuracy (79% for children versus 78% for adults), latency

(2.1 seconds for children versus 1.9 seconds for adults), and bitrate (0.50

bits/second for children and 0.56 bits/second for adults) as adults. Children

also selected a similar number of targets as during a bonus round where

participants were allowed to select as many targets as they wanted. This

study provides data that shows that children can use an SSVEP-based BCI

with higher performance than previously believed and provides a baseline for

studies investigating differences in performance between children and adults

using SSVEP-based BCIs.

1This work includes significant scientific contributions from J. Mullins and T. Bretl.
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3.2 Introduction

Non-invasive brain-computer interfaces (BCIs) enable users to control exter-

nal devices (such as computer systems [197, 3], prosthetic arms [81, 215],

and robotic vehicles [54]) using brain activity. The primary application of

BCIs is to replace [209] function in those with severe motor disabilities that

are the result of injury [22] or disease [96, 174]. They also, however, may be

useful for rehabilitation (such as after a stroke [183]) or to supplement [109]

and/or improve[18] the natural capabilities of healthy individuals.

Most current BCI systems rely on brain activity measured using electroen-

cephalography (EEG). EEG is a non-invasive and relatively inexpensive tool

for measuring the brain’s naturally generated electrical activity. There are

several brain signals that can be measured using EEG and then used as in-

puts for BCIs. These include signals related to imagined movement [96], the

detection of infrequent targets [60], or spatially distinct sounds [80]. Here, we

consider EEG-based BCIs that use brain signals elicited by repetitive visual

stimulations, more commonly known as steady-state visual evoked potentials

(SSVEPs).

SSVEP-based BCIs rely on the fact that repetitive visual stimulation elicits

brain activity at the same speed (measured in frequency or flashes per second)

as the stimulus [194]. In addition, the amplitude of the brain activity elicited

by the stimulus is dependent on the user’s attention [135]. This means that

if there are multiple stimuli flashing at different rates, the stimulus that the

user attends to (the target) will elicit a larger amplitude response than the

stimuli that the user ignores. In practice, the user’s target is unknown and

must be inferred through analysis of the EEG signals. This analysis, known

as classification, outputs a guess of the user’s target, called the predicted

target. This process of the user attending to targets and the classification

system predicting targets enables a user to select a specific stimulus from the

available set of stimuli and is the basis of all SSVEP-based BCIs.

There are three common ways to measure the performance of an SSVEP-

based BCI user. Accuracy is the proportion of times the predicted target

matches the intended target [57]. Latency is mean time from target onset

to classification [199, 3]. Bitrate is the number of bits per second that are

transmitted, and is often preferred over other measures because it accounts

for both accuracy and latency. Common ways of quantifying bitrate are the
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information transfer rate (ITR) [211] and the Nykopp bitrate (NBR) [149].

We use NBR to quantify bitrate in this chapter, since it addresses several

well-known limitations of ITR [95].

Given that the goal of most SSVEP-based BCIs is to replace function in

those with severe motor disabilities and that these disabilities affect many

different groups of people (with different ages, genders, etc.), it is important

to understand how SSVEP-based BCI performance varies among these dif-

ferent groups. As an example, consider that SSVEP-based BCIs are often

tested with young adults, but the average age of patients who have locked-in

syndrome (LIS) is approximately 50 (this estimate is based on the average

age of 151 LIS patients reported by Bruno et al. [28]). Then consider that

Lesenfants et al. [106] found that only one out of six LIS patients (average

age 49 ± 19.7 years) could use their SSVEP-based BCI systems with better

than chance accuracy, but 80% of young adults could use their system. If

the goal is to understand what causes these differences, logically it would be

helpful to know how many middle-aged and older adults can use SSVEP-

based BCIs and how their performance with these systems compares with

young adults.

Prior studies of these demographic differences in the performance of SSVEP-

based BCIs have reported mixed results. Allison [5] assessed the performance

of more than 100 people between the ages of 18 and 79 at a large computer

expo (CeBIT 2008). While younger people tended to perform at higher bit

rates, there were no significant differences between performance and age or

performance and gender. A follow-up paper by Volosyak [201] also found

no differences between people of different ages. Two more recent papers,

however, have reported differences between young adults and older adults in

the context of SSVEP-based BCIs. Hsu [82] compared SSVEP-amplitudes

(for use in a BCI) in young adults, older adults, and ALS patients. They

found that young adults produced larger SSVEPs with a higher signal to

noise ratio at an occipital electrode site compared to older adults and ALS

patients. In addition, Volosyak [199] recently investigated differences in per-

formance between young adults (between the ages of 19 and 27) and older

adults (between the ages of 54 and 76) while using an SSVEP-based BCI for

text-entry. The results of this study showed that younger adults achieved a

higher average bitrate than older adults.

While the aforementioned studies have considered adults of different ages,
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only one previous study has investigated the performance of children com-

pared with adults when using SSVEP-based BCIs. In this study, Ehlers [57]

asked children of different ages to control an SSVEP-based BCI for text-

entry. What Ehlers found was that children were less likely to complete the

task and input characters with much lower accuracy than adults do. Ehlers

concluded that children were not yet able to generate a reliable SSVEP due

to developmental differences with adults. While the data presented in this

study are an important contribution to the literature on SSVEP-based BCI,

several confounding factors may cast doubt on the conclusion. For example,

the children were tested in a noisy school environment, one that may have

distracted them from the task. In addition, it is not clear whether the chil-

dren struggled with the SSVEP-based BCI for text-entry or whether they

would struggle with SSVEP-based BCIs in general [92]. Furthermore, Ehlers

only reported accuracy, but not the latency or the bitrate of the adults or the

children. The results from Ehlers study are even more confusing when previ-

ous cognitive neuroscience research is considered. In a 2006 study, Birca [20]

reported that there were no differences in SSVEP magnitude between chil-

dren and adults. In a later follow-up, however, Birca [21] reported that 8-11

children had larger SSVEP responses over the occipital region than adults.

The small number and conflicting results of these prior studies leave open

the question of whether or not children can use SSVEP-based BCIs with good

performance. This limits the applicability of SSVEP-based BCIs to the re-

placement of lost function in those with severe motors disabilities—including

LIS [29]—that affect children. To help resolve this question, we describe a

new study in this chapter that measured the performance of 9-11 year old

children using an SSVEP-based BCI. We also measured the performance of

adults for the purpose of comparison. Our study consisted of two phases, a

short training phase and a longer experimental phase. Data collected during

the training phase were used to choose parameters for our classifier and to

screen out participants with exceptionally low performance (11 of 14 children

and 11 of 11 adults met minimum performance requirements). Data collected

during the experimental phase were used to measure accuracy, latency, and

bitrate. In this study, both children and adults were given the opportunity

to continue using the SSVEP-based BCI for as long as they chose (up to 10

minutes)—the number of trials completed by each participant was used as

an additional comparison between the two groups.
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(a) Targets for the short training phase

(b) Targets for the longer experimental phase

(c) Feedback after selection during the longer
experimental phase

Figure 3.1: Graphical representations of the experimental interface. (a)
Shows how targets were identified with an arrow during the short training
phase. (b) Shows how the target was highlighted during the longer
experimental phase. (c) Shows the feedback given to the user after the
classifier guessed the predicted target. Note that the size of the targets and
text have been enlarged to improve readability.
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3.3 Method

3.3.1 Participants

Twenty-six able-bodied volunteers (sixteen 9-11 years olds, Mean = 9.73 and

eleven adults aged between 19-68, Mean = 38.00) participated in our study.

Participants were recruited through email bulletins and word of mouth. Two

adults participants had previous experience with a BCI (S12 and S20). All

subjects had normal or corrected-to-normal vision and no prior history of

neurological illness. Each participant was compensated with a small gift (less

than $5.00US) for their time. This study was approved by the Institutional

Review Board at the University of Illinois at Urbana-Champaign.

3.3.2 EEG Recording

EEG signals were recored from six tin electrodes. The electrodes were placed

on the surface of the scalp located at 10-5 international sites: PO3, POZ,

PO4, O1, OZ, and O2 [151]. The channels were grounded at the right ear and

referenced to the top of the head (location CZ). The signals were recorded

at impedances of less than 10kΩ. All EEG signals were band-pass filtered

from 1Hz to 30Hz, amplified using a James Long bioamplifier, and digitized

at 128Hz (National Instruments Model PCI-6225). BCI2000 [171] was used

to visualize and record the preprocessed EEG signals.

3.3.3 Experimental Procedures

All experiments were conducted in a cool and sound attenuated room with

dim ambient lighting. The participants were seated in a comfortable office

chair between two speakers facing an LED computer monitor (24-inch BenQ

XL2420T). After completing the consent process, each subject was asked

to complete a brief survey with basic background questions, based on the

questionnaire used by Allison [5]. After the survey was completed, the par-

ticipants completed a short training phase and a longer experimental phase.

After the experiments, participants also completed an additional test that

will be discussed as a part of different study. In all experiments participants
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were asked to focus their visual attention on a target blinking presented on

the monitor. For both the short training phase and the longer experimental

phase the targets were three white ovals flashing between white and black at

6.2Hz, 8Hz, and 10Hz.

3.3.4 Training Phase

Each participant completed a short training phase to calibrate the BCI sys-

tem and to screen them for use with the BCI.

Data from the training phase was used to set free parameters of the clas-

sifier (Section 3.3.6). The participants were given verbal instructions and

allowed to start the application when they were ready by pressing a key on

the keyboard. Once the short training phase started, an arrow specified the

target during each trial (Figure 3.1a) and this target was highlighted with a

yellow outline. Participants were instructed to overtly focus their attention

on the target for the entire trial. Each trial lasted five seconds, with a short

pause between trials. The order of the specified targets was randomized with

each of the three frequencies specified as the target five times for a total of 15

trials. The short training phase took no more than five minutes. Following

training, the participants were given time to relax while the experimenter

calibrated the BCI system with the training data.

During the analysis of the training data, if the participant never achieved

an 85% accuracy, they were deemed to be unable to use the SSVEP-based

BCI and any data collected during the longer experimental phase was ex-

cluded from further analysis.

3.3.5 Experimental Phase

During the longer experimental phase, users were asked to select a sequence

of targets using our SSVEP-based BCI. When the experiment was started,

a splash screen was displayed while the experimenter described the task.

After the researcher provided instructions on how to use the application,

the participant was allowed to press a key on the keyboard to begin the

experiment.

Similar to the short training phase, the interface used in the longer exper-
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imental phase displayed three stimuli. The target that the participant was

supposed to select was the same as in the short training phase, except there

was no arrow pointing to it (Figure 3.1b).

Participants were instructed to select targets by overtly shifting their visual

attention. If the classifier guessed a target, a check mark was shown at the

the location of the predicted target (Figure 3.1c) and a tone provided audio

feedback that a selection had been made. Participants were given up to 5

seconds to select a target during each trial. If no target was selected within

5 seconds, the trial ended and the next trial began. The application paused

for one second between trials. Real-time feedback on the number of trials

completed was provided at the top of the interface.

The longer experimental consisted of four rounds and a bonus round at

the end. Each round contained 15 trials. The order of the targets during

each round was randomized. Each of the three stimulation frequencies was

specified as the target five times during each round. At the end of each

round, a message was displayed indicating the round number and the system

paused for six seconds. During the bonus round, participants were allowed

to select targets for as long as they wanted, up to 10 minutes. The frequency

of the targets were selected at random, the experimenters did not guarantee

an equal number of targets from each frequency. At the end of the longer

experimental phase a short message was displayed to the user, letting them

know the session was completed.

3.3.6 Signal Processing

A classifier, based on canonical correlation analysis (CCA), was used to de-

termine the predicted target. Our algorithm for the classification of SSVEP

targets using CCA was similar to the one described by Lin [112] with three

notable differences.

1. We considered only two harmonic frequencies.

2. A threshold (τ) was used to enable asynchronous control.

3. Two free parameters, τ and the amount of data considered by the

classifier (window-length [t]) were set using training data.

For additional details on the classifier used in this study, see Section 3.6.
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Determining Window-length and Threshold

As discussed in Section 3.3.6, the purpose of the short training phase (Sec-

tion 3.3.4) was to set the t and τ . After each participant completed the short

training phase, individual five-second trials were extracted from the training

data. After trial extraction, there were five trials for each of the three target

frequencies. Using this data, a search was performed to find the parameters

that maximized the participant’s Nykopp bitrate (NBR) [149]. The NBR was

computed for t = [0.25, 0.5, ..., 5] and for τ = [0, 0.01, ..., 1]. The values of

t and τ that maximized NBR were subsequently used for classifying targets

during the longer experimental phase.

There were two differences in the way that the parameters were calculated

for different subjects. First, for children, the minimum value of t was set

to be 1.250 seconds. For the adults, the minimum value of t was set to

be 0.5 seconds. Second, for five of the children—denoted with asterisks in

Table 3.4—the parameters were calculated considering three harmonic fre-

quencies instead of two. The potential impact of these difference will be

considered in the results (Sections 3.4) and discussion (Sections 3.5).

3.4 Results

Of the 26 people who participated in our study, 22 were able to complete the

entire experiment. One child was excluded due to a technical issue (software

crash). The remaining three subjects (three children) were excluded due to

low performance. Two of the children who were excluded appeared distracted

during the short training phase. They did not pay attention to the screen

nor did they appear to attempt the task. Data from participants who did not

achieve a minimum accuracy of 85% within five seconds of stimulation during

the short training phase (Section 3.3.4) were excluded from the analysis of

the longer experimental phase.

In our study, there were four primary measurements of performance.

1. Accuracy - Accuracy was calculated as a count of the number of times

that the predicted target was equal to the target divided by the total

number of trials.

2. Latency - The average amount of time (measured in seconds) that
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elapsed between the onset of the stimuli and the classification of the

predicted target.

3. Nykopp Bitrate (NBR) - Calculated using the definition of Nykopp

[149, 95, 172], a quantity that describes the amount of information

transmitted over a noisy channel per unit of time and reported in terms

of bits/second. Our calculation of NBR is based on the formulas found

in Kronegg, Voloshynovskyy, and Pun [95].

4. Trials in bonus round - A count of the number of trials that each

participant completed in the bonus round.

3.4.1 Training Phase

We report our analysis of the training data in two ways. First, we quali-

tatively describe the τ and t values used during the experiments. Second,

we describe an analysis of the data that was performed after all of the data

was collected. In both cases, 11 of the 14 children and all 11 adults who

completed the short training phase exceeded our threshold for being able to

use an SSVEP-based BCI.

Parameters from Experiments

The results obtained during the training phase are described in Tables 3.4-

3.5. The data for the participants included in the study are described in

Table 3.1 (children) and Table 3.3 (adults). Note that there were two differ-

ences in the way that τ and t were calculated for the participants who were

children. (1) For five of the children—denoted with asterisks in Table 3.4—

the calculation of τ and t included three harmonic frequencies, instead of two

(two harmonics were always used during the longer experimental phase). (2)

The minimum value of t for children was set to be 1.250 seconds while the

minimum value of t for adults was 0.500 seconds. Post-hoc Mann-Whitney

U tests with no correction for multiple comparisons found that the t values

used for classification in the participants who were children (Mean = 1.545

seconds, Mdn = 1.375 seconds, SD = 0.45 seconds) were longer (p = 0.02)

than those used for the participants who were adults (Mean = 1.227 seconds,

Mdn = 1.000 seconds, SD = 0.85 seconds). Although, one adult (participant
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(children)

(f) Bitrate as a function of t and τ (adults)

Figure 3.2: Performance of participants from data collected during the
training phase. Accuracy of (a) included children versus included adults,
(b) included children versus excluded children, (c) included children for
each stimulation frequency, and (d) included adults for each stimulation
frequency as a function of t for τ = 0. Images showing bitrate calculated
for each t and τ for (e) included children and (f) included adults. The t and
τ values used in the experimental phase are denoted using a white dot.

S16) had a t of 3.625 seconds, 1.375 seconds longer than any of the children

who participated in the study. There was no difference in the τ values cal-

culated for children (Mean = 0.56, Mdn = 0.58, SD = 0.15) compared with
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adults (Mean = 0.60, Mdn = 0.60, SD = 0.15).

Post-Experiment Analysis

Since there were differences in the classifiers (Section 3.3.6) used to calculate

the t and τ values for children versus those calculated for adults, we per-

formed an additional analysis of the training data after the experiments were

completed. This analysis used the exact same classifier for all participants.

This post-experiment analysis (using the Mann-Whitney U test with no cor-

rection for multiple comparisons) of the training data (Tables 3.1- 3.3) for

the included participants did not reveal any differences (p < 0.05) between

children and adults in terms of accuracy, latency, or NBR. During the train-

ing phase, the children would have selected targets with a similar accuracy

(Mean = 92%, Mdn = 93%, SD = 6%) as adults (Mean = 96%, Mdn = 93%,

SD = 3%), latency (Mean = 1.93 seconds, Mdn = 1.83 seconds, SD = 0.40

seconds) as adults (Mean = 1.75 seconds, Mdn = 1.74 seconds, SD = 0.74

seconds), and NBR (Mean = 0.72 bits/seconds, Mdn = 0.78 bits/second,

SD = 0.20 bits/second) as adults (Mean = 0.90 bits/second, Mdn = 0.91

bits/second, SD = 0.26 bits/second). Similarly to the analysis of the pa-

rameters used during the experiments, the t calculated for children (Mean =

1.43 seconds, Mdn = 1.25 seconds, SD = 0.45 seconds) were slightly longer

(p = 0.04) than for adults (Mean = 1.23 seconds, Mdn = 1.00 seconds, SD =

0.85 seconds). There were not, however, any differences in the values of τ for

children (Mean = 0.58, Mdn = 0.63, SD = 0.16) and adults (Mean = 0.60,

Mdn = 0.60, SD = 0.15). Figure 3.2a represents the similarity between the

children and the adults graphically. When the accuracy of classification for

a τ of 0 is plotted against t, we can see that children and adults improve in

accuracy as a function of t. Figure 3.2b shows accuracy curves for the par-

ticipants who were excluded from the study. Unlike the included children,

the accuracy of excluded children (for τ = 0) does not increase as much as

a function of t. These same accuracy as a function of t curves are shown by

frequency of stimulation for children (Figure3.2c) and adults (Figure3.2d).

Figure 3.2e shows the τ and t values calculated for each child overlaid on a

image of the average NBR for each possible value of τ and t. A similar image

for the adults is shown in Figure 3.2f.
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Table 3.1: Post-Experiment Analysis of Data from Training Phase
(Included Children)

Subject t τ Accuracy Latency NBR

S01 1.375 0.75 0.87 2.40 0.51
S02 1.125 0.70 0.87 1.38 0.79
S03 2.125 0.40 0.87 2.41 0.44
S04 1.375 0.47 1.00 1.57 1.01
S05 0.875 0.75 1.00 1.58 1.00
S06 2.250 0.35 0.87 2.60 0.46
S07 1.125 0.63 0.93 2.14 0.69
S08 1.250 0.58 0.93 1.70 0.78
S09 1.250 0.64 0.93 1.70 0.78
S10 1.875 0.36 0.87 1.92 0.62
S11 1.125 0.73 1.00 1.83 0.86

Mean 1.432 0.58 0.92 1.93 0.72
Mdn 1.250 0.63 0.93 1.74 0.91
SD 0.448 0.16 0.06 0.40 0.20

Table 3.2: Post-Experiment Analysis of Data from Training Phase
(Excluded Children)

Subject t τ Accuracy Latency Bitrate

S23 0.500 0.00 0.40 0.50 0.42
S24 0.500 0.00 0.40 0.50 0.98
S25 0.500 0.00 0.60 0.50 1.05

Mean 0.500 0.00 0.47 0.50 0.82
Mdn 0.500 0.00 0.40 0.50 0.98
SD 0.000 0.00 0.12 0.00 0.35

Lower the threshold to chance and find the window-length and threshold
that give the highest bitrate.
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Table 3.3: Post-Experiment Analysis of Data from Training Phase
(Included Adults)

Subject t τ Accuracy Latency Bitrate

S12 1.000 0.60 0.93 1.17 1.14
S13 1.375 0.51 0.93 1.76 0.75
S14 1.125 0.57 1.00 1.86 0.85
S15 0.750 0.70 1.00 1.80 0.88
S16 3.625 0.27 0.93 3.76 0.35
S17 1.625 0.42 0.93 2.13 0.62
S18 0.750 0.68 0.93 1.12 1.18
S19 0.750 0.74 0.93 1.43 0.93
S20 0.875 0.66 0.93 1.19 1.11
S21 0.625 0.82 1.00 1.33 1.20
S22 1.000 0.60 1.00 1.74 0.91

Mean 1.227 0.60 0.96 1.75 0.90
Mdn 1.000 0.60 0.93 1.74 0.91
SD 0.849 0.15 0.03 0.74 0.26

3.4.2 Experimental Phase

A post-hoc analysis of the data (using the Mann-Whitney U test) did not

reveal any differences between the children and adults in terms of accuracy,

latency, or NBR for the first four rounds of the experimental phase. Nor

was there a difference between children and adults in the number of targets

selected during the bonus round of the experimental phase. Both children

(Mean = 79%, Mdn = 83%, SD = 14%) and adults (Mean = 78%, Mdn =

80%, SD = 11%) achieved similar levels of accuracy during the experimental

phase and both groups had worse performance during the experimental phase

than during the training phase. In terms of latency, the children (Mean

= 2.106 seconds, Mdn = 2.073 seconds, SD = 0.48 seconds) were almost

0.2 seconds slower than the adults (Mean = 1.917 seconds, Mdn = 1.710

seconds, SD = 0.73 seconds). Children (Mean = 0.50 bits/second, Mdn =

0.49 bits/seconds, SD = 0.20 bits/second) also transmitted information at a

slightly lower NBR than the adults (Mean = 0.56 bits/second, Mdn = 0.59

bits/second, SD = 0.25 bits/second). Finally, children selected slightly fewer

targets in the bonus round (Mean = 27.27 targets, Mdn = 17.00 targets, SD

= 28.92 targets) than the adults (Mean = 36.54 targets, Mdn 28.00 targets,
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SD = 30.45 targets).

The data were also inspected for differences in accuracy and latency of

selection of targets by frequency (Figure 3.4) and round (Figures 3.5). No

differences were found.
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Figure 3.3: Performance of participants during the experimental phase in
terms of (a) accuracy, (b) latency, (c) NBR, and (d) number of targets
selected during the bonus round.
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Figure 3.4: Performance of included children versus included adults during
the experimental phase by stimulation frequency in terms of (a) accuracy
and (b) latency.
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Figure 3.5: Performance of included children versus included adults during
the experimental phase by round in terms of (a) accuracy and (b) latency.

3.5 Discussion

This study demonstrated that 9-11 year old children are able to use an

SSVEP-based BCI with much higher accuracy than previously reported. This

is also the first work to report their performance in terms of latency, bitrate

(NBR), and engagement. Furthermore, the results showed that the accura-

cies and NBRs of the children who completed the experimental phase were

nearly identical to that of the adults who completed the experimental phase.

The remainder of the discussion is organized by phase: first we discuss the

training phase, we then discuss the experimental phase, and we conclude by

considering future work.
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3.5.1 Training Phase

A short training phase was used to calibrate the BCI system and to screen

participants for inclusion in the experimental analysis. Data from the short

training phase show that 11 of the 14 children (Table 3.1) and all 11 adults

(Table 3.3) included in this study met the minimum threshold for inclusion

in the experimental analysis. Three children did not meet the criteria for

their data to be included in the experimental analysis (Table 3.2).

The experimenters noted that two of the excluded children were visibly

distracted during the short training phase. In general, the experimenters

noticed that the children appeared more physically engaged during the ex-

perimental phase than during the training phase. During the experimental

phase children made physical adjustments such as sitting up straighter in

their chairs or moved their heads to be aligned with the SSVEP-targets.

They did not make these same adjustments during the training phase. Pre-

vious work evaluating engagement has shown physical movement is linked to

levels of engagement [114]. It is possible the observed behavior in our study

could be an indication of increased engagement during the experimental ses-

sion.

An offline analysis of the data from the training phase revealed a trend

in the data where adults selected targets with a shorter latency and higher

bitrate than children (Figure 3.2a). It is possible that—if a difference exists—

this reflects developmental differences between 9-11 year old children and

adults. Ehlers [57] hypothesized that developmental differences could explain

why children performed with a lower accuracy than adults. Another possible

explanation is that children were not properly motivated to engage with the

training task, resulting in lower performance.

3.5.2 Experimental Phase

In the experimental phase children and adults were asked to select a sequence

of targets using an SSVEP-based BCI. An analysis of the experimental phase

demonstrates that the accuracies and NBRs of the children who completed

the experimental phase was nearly identical to that of the adults who com-

pleted the experimental phase. This inspiring result indicates that 9-11 year

old children are able to use an SSVEP-based BCI with similar performance
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to adults. In addition, this result provides evidence that SSVEP-based BCIs

could be used to replace lost function in children with physical disabilities.

There were several differences between our experiments and the only pre-

vious study of SSVEP-based BCIs for children. First, the environment in

which the children completed the experiments was different. In Ehlers et al.

[57] children performed the experiments in a noisy school environment, while

in our experiments they were in a quiet laboratory environment. Second, the

tasks were different. The children in our study used the SSVEP-based BCI

to complete a simple target selection task. In Ehlers et al [57], children com-

pleted a text-entry task. Text-entry is a very common platform for SSVEP-

based BCI experiments [3, 197], but may not be appropriate for children [92].

Third, our experiments used slightly different stimulation frequencies. The

frequency of stimulation is known to have an affect on the amplitude of the

elicited SSVEP [197]. Fourth, we conducted a short training phase to set

two classifier parameters before the longer experimental phase. It is possible

that any of these methodological differences could explain why children in

our study had higher performance than the similar age group of children in

the study by Ehlers et al. [57].

Children selected targets slightly slower (but not significantly slower) than

adults. This could be attributed to several factors during the longer exper-

imental phase. One possibility is that children do not generate an SSVEP

response as quickly as adults do. An alternative possibility is that the way

the short training phase was conducted limited the speed with which children

could select targets.

3.5.3 Future Work

Given the high performance of the children in this study, it would be interest-

ing to know how younger children compare to the 9-11 year olds investigated

here. Data collected during the experiments of Ehlers et al. [57] suggest a

slight downward trend in accuracy with low-frequency stimuli as a function

of age. Ehlers et al. [57] did not report any significant differences, how-

ever, between children of 6.73, 8.08, or 9.73 years-of-age. Our study provides

a baseline data for 9-11 year old children that could be used as a basis of

comparison with data collected from younger children.
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In summary, our data make several contributions to the development of

SSVEP-based BCIs for children. We report that of the fourteen 9-11 year

children who participated in our study, 11 of them achieved an 85% accuracy

or above during a short training phase. Furthermore, of the 11 children who

completed the longer experimental phase, they achieved an average accuracy

of 79% in 2.1 seconds. We obtained a much higher classification accuracy

than the only other previous investigation of SSVEP-based BCIs for children.

In addition, the results suggest that the performance of children may be

relatively similar to adults using the same SSVEP-based BCI. Finally, this

data is the first reported on children to include performance in terms of

accuracy, latency, and bitrate.

3.6 Classification of the Predicted Target

These equations are based on the original description of canonical correlation

for classification of SSVEP targets by Lin [112]. Assuming k stimuli at

frequencies f1...fk, CCA considers two sets of variables X and Yk and finds

two weight matrices wX and wYk
that maximize the correlation ρk between

them.

ρk =
wT

x ΣXYk
wT

yk√
wT

x ΣXXwxwT
yk

ΣYkYk
wyk

(3.1)

When CCA is used to detect an SSVEP, X represents a matrix of EEG

data (m channels by n samples) and Yk represents a matrix of sine and cosine

reference waves (r reference waves by n samples) at harmonic h frequencies

of stimulus k.

Yk =



sin(2πft1)

cos(2πft1)
...

sin(2πfth)

cos(2πfth)


(3.2)

ρk is initially a vector with a length equal to the smaller of m and r,
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however, here we consider ρk = max(ρk). If

max(ρ) > τ (3.3)

then the classifier’s best guess (the predicted target) is

k̂ = argmax(ρk) (3.4)

Each trial of the training phase was analyzed in the following way. The

analysis of each trial started at time 0, the time of stimulus onset. The data

from time 0 to time t was then considered, if the max(ρk) does not exceed

the threshold, then the window slid in steps of 0.125 seconds. After the

window is moved, ρk is recomputed and compared to the threshold again.

This process continues until ρk exceeds τ or until t extends beyond the end

of the trial. In the case that ρk exceeded the threshold, k̂ is then compared

to the target x?. If ρk does not exceed τ before the end of the trial, then this

was modeled in the calculation of NBR as an erasure.
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3.7 Supplemental Information

Table 3.4: Data from Training Phase (Included Children)

Subject t τ Accuracy NBR

S01∗ 1.375 0.75 0.87 0.57
S02∗ 1.250 0.77 0.87 0.78
S03 2.500 0.43 0.87 0.47
S04 1.375 0.47 1.00 1.01
S05∗ 1.250 0.57 0.94 0.94
S06 2.250 0.35 0.87 0.46
S07∗ 1.375 0.58 0.93 0.71
S08 1.250 0.58 0.93 0.78
S09 1.250 0.64 0.93 0.78
S10 1.875 0.36 0.87 0.62
S11∗ 1.250 0.72 1.00 0.78

Mean 1.545 0.57 0.92 0.72
Mdn 1.375 0.58 0.93 0.78
SD 0.450 0.15 0.05 0.18

∗ - Denotes that 3 harmonics and erasure were used for calculation of
window-length and threshold.
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Table 3.5: Data from Training Phase (Included Adults)

Subject t τ Accuracy NBR

S12 1.000 0.60 0.93 1.14
S13 1.375 0.51 0.93 0.75
S14 1.125 0.57 1.00 0.85
S15 0.750 0.70 1.00 0.88
S16 3.625 0.27 0.93 0.35
S17 1.625 0.42 0.93 0.62
S18 0.750 0.68 0.93 1.12
S19 0.750 0.74 0.93 0.93
S20 0.875 0.66 0.93 1.11
S21 0.625 0.82 1.00 1.20
S22 1.000 0.60 1.00 0.91

Mean 1.227 0.60 0.96 0.90
Mdn 0.849 0.60 0.93 0.91
SD 1.000 0.15 0.04 0.25
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CHAPTER 4

SOFT, CURVED ELECTRODE SYSTEMS
CAPABLE OF INTEGRATION ON THE

AURICLE AS A PERSISTENT
BRAIN-COMPUTER INTERFACE1

4.1 Abstract

In this chapter, a new design for an electroencephalograph (EEG) electrode

that does not require electrolyte gel or mechanical fasteners is described.

Recent advances in electrodes for noninvasive recording of electroencephalo-

grams expand opportunities collecting such data for diagnosis of neurological

disorders and brain-computer interfaces. Existing technologies, however, can-

not be used effectively in continuous, uninterrupted modes for more than a

few days due to irritation and irreversible degradation in the electrical and

mechanical properties of the skin interface. Here we introduce a soft, foldable

collection of electrodes in open, fractal mesh geometries that can mount di-

rectly and chronically on the complex surface topology of the auricle and the

mastoid, to provide high fidelity and long-term capture of electroencephalo-

grams in ways that avoid any significant thermal, electrical, or mechanical

loading of the skin. Experimental and computational studies establish the

fundamental aspects of the bending and stretching mechanics that enable this

type of intimate integration on the highly irregular and textured surfaces of

the auricle. Cell level tests and thermal imaging studies establish the bio-

compatibility and wearability of such systems, with examples of high-quality

measurements over periods of 2 weeks with devices that remain mounted

throughout daily activities including vigorous exercise, swimming, sleeping,

1This work has been previously published as [146] and is co-authored by Dong Sup Lee,
Jung Woo Lee, Woosik Lee, Ohjin Kwon, Phillip Won, Sung-Young Jung, Huanyu Cheng,
Jae-Woong Jeong, Abdullah Akce, Stephen Umunna, Ilyoun Na, Yong Ho Kwon, Xiao-Qi
Wang, ZhuangJian Liu, Ungyu Paik, Yonggang Huang, Timothy Bretl, Woon-Hong Yeo,
and John A. Rogers
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and bathing. Demonstrations include a text speller with a steady-state vi-

sual evoked potential-based brain-computer interface and elicitation of an

event-related potential (P300 wave).

4.2 Introduction

For more than 80 years, electroencephalography (EEG) has provided an effec-

tive noninvasive means to study human brain activity [72, 16]. EEG is instru-

mental in a wide range of clinical and research applications, from diagnosing

epilepsy [185] to improving our understanding of language comprehension

[97] and the development of brain-computer interfaces (BCI) [11]. Conven-

tional EEG recording systems, particularly the physical interface between

the sensor (commonly known as an electrode) and the head, have limitations

that constrain the more widespread use of EEG monitoring. Electrodes typ-

ically consist of rigid metal disks mechanically secured to the head with a

mesh cap and chin strap, where electrolyte gels [173] enable efficient electrical

coupling by reducing the impedance at the skin interface. This arrangement

causes skin irritation (erythema) and leads to electrical degradation for pe-

riods of use that extend more than a few hours, typically caused by drying

of the electrolyte gel [63]. Recent technologies replace the gel [73, 116] with

needles [73, 116], contact probes [116, 169], capacitive disks [41, 150], conduc-

tive composites [101, 137], or nanowires [141]. Such dry electrodes have some

promise, but they require multistep preparations, obtrusive wiring interfaces,

and/or cumbersome mechanical fixtures. These shortcomings limit the po-

tential for long-term use in diagnosis of neurological disabilities [30, 125] or

in persistent BCI [30, 205]. For example, although microneedle electrodes

can record EEG signals for a few hours [204], the interface does not offer the

robustness, comfort, or ease of use needed for sustained operation. Capac-

itive electrodes that incorporate thin, reversible adhesives to the surface of

the scalp avoid some of these drawbacks, but current designs involve bulky

rigid electrode structures with thicknesses in the range of several millimeters

[102]. Although long-term EEG recordings are possible, this device construc-

tion [102] is susceptible to mechanically induced delamination, such that it

cannot remain mounted during bathing, and it must be physically protected

during sleep. Improved versions offer shapes that allow insertion into the
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ear canal [100] but in a way that obstructs hearing while retaining some of

the other disadvantages of the scalp-mounted systems. All of these methods

also use separate sets of electrodes and interconnect wires for reference and

ground. Clearly, opportunities remain for EEG recording systems that en-

able uninterrupted use for weeks or longer, ideally with a form of integration

that is imperceptible to the subject, without significant mass, thermal or me-

chanical loading of the skin, and an ability to operate even during the most

demanding activities, such as vigorous exercising, swimming, or showering.

Spatially compact designs with complete electrode systems that can locate

on regions of the head that are known to afford the strongest EEG signals are

also important. In this chapter, we explore the surfaces of the outer ear (the

auricle) and adjacent regions (the mastoid) as mounting locations for a type

of ultrathin, foldable neural electrode platform that is capable of longterm,

high-fidelity EEG recording of signals commonly used in BCI. The combined

area of the auricle and mastoid represents a uniquely attractive location due

to its electrical isolation from other regions of the scalp and the established

use of the auricle as an effective point for reference/ground measurement elec-

trodes [48, 115]. Mounting an electrode directly on the complex topography

of the auricle presents daunting engineering challenges in integration but ones

that can be overcome through the use of materials and design strategies re-

ported here. The result is a soft, skin conformal system that can remain well

bonded to the skin of these regions for more than 2 weeks, with unmatched

capabilities in continuous monitoring and without the variability and un-

certainty that follows from approaches that require frequent removal and

reapplication. Experimental and computational studies capture the underly-

ing physics associated with the conformal integration onto auricle surfaces,

where the levels of surface curvature lie significantly beyond anything exam-

ined in past work. An integrated collection of electrodes and interconnects

yields EEG data that, when used with appropriate classification algorithms,

provide a long-term BCI that is compatible with steady-state visually evoked

potentials-based text spellers and event-related potential (P300 wave) record-

ings. Studies of the fidelity of EEG alpha rhythms collected over long time

periods, together with cell level tests of toxicity and skin level evaluations of

biocompatibility, demonstrate advantages of these approaches.
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Figure 4.1: Fractal device architectures and mechanical properties of EEG
measurement systems. (A) Epidermal electronics with fractal layouts,
composed of three electrodes (REC, GND, and REF) and interconnect
(Left), with magnified view of the latter (Right). (B) Device laminated on
the auricle and mastoid (Left) and the magnified interconnect (Right). (C)
FEM results of fractal structures upon mechanical bending (180◦) with the
radius of curvature of 0.5mm. (D) FEM results for simultaneous bending
along two orthogonal axes (R, distance between tragus and outer edge of
the ear; d, thickness of ear lobule). (E-H) Images of mounted devices on
different regions of the ear, including the crura of antihelix, helix, and
lobule. (I) Schematic illustration and a flowchart about the overall EEG
recording process.

4.3 Materials and Method

4.3.1 Fabrication of Epidermal Electrodes

The device preparation used conventional microfabrication techniques. A sil-

icon wafer served as a support for a sacrificial layer of polymethyl methacry-

late (100 nm in thickness) and an overcoat of polyimide (1.2µm in thickness).

Metal evaporation, photolithography, and etching defined fractal layouts. A

water-soluble tape (3M) allowed retrieval of these structures after dissolution

of the sacrificial layer, thereby enabling transfer onto a silicone elastomer

(3µm in thickness), supported by a water dissolvable polymer sheet.
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Figure 4.2: Assessments of biocompatibility by infrared thermography
(IRT) and through cell-based studies. (A) Keratinocytes cultured on a
control (Petri dish) with fluorescence microscopic image (Left) and
quantitative measurement of cell viability (Right). (B) Keratinocytes
cultured on a fractal device for comparison. (C) Image of a fractal device
mounted on the forearm. (D) IRT images of the skin surface collected
during 2 weeks reveal no adverse effects. (E) Image of a gel electrode
removed after 1 day (Left) and IRT image showing erythema, elevated
temperature on the skin (Right).

4.3.2 Fabrication of Tripolar Electrodes

The fabrication of tripolar electrodes involved formation of multiple layers of

Au-PI (via)-Au using standard microfabrication techniques. An additional

step of metal evaporation yielded a 500-nm-thick layer of Au for connection

with the prepatterned Au through the PI layer. Patterning, retrieval, and

transfer of fractal traces followed the same methods used for fabrication of

epidermal electrodes, described above.

4.3.3 Fabrication of Capacitive Electrodes

The processing for capacitive devices included spin coating of a dielectric

layer (3-µm-thick elastomer) on Au electrodes. This layer protected the

electrodes and allowed only capacitive coupling to the skin, thereby ensuring

electrically safe, robust recording of EEG. Such structures are also reusable
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and compatible with cleaning using soap and water

4.3.4 Calculation of the Signal-to-Noise Ratio

This calculation used the Welch periodogram in MatLab (Mathworks) across

the bandwidth of 5-30 Hz. Averaging the periodograms calculated for each

trial yielded a single power spectrum. The power of the noise signal corre-

sponds to the average value of those bins in the frequency domain outside of

the range of the frequency of the signal (±0.3 Hz) or any of its harmonics.

The power of the signal corresponds to the sum of the maximum power in

the frequency range of the signal and its first two harmonics minus the aver-

age power of the bins at the frequency of stimulation. EEGLAB (function:

topoplot) [51] plotted the SNR values as a topographical map.

4.3.5 Experiments on Human Subjects

The experiments for recording of EEG alpha rhythms and thermal imag-

ing with TCR and capacitive electrodes involved three volunteers and were

all performed at Virginia Commonwealth University [institutional review

board (IRB) approved protocol: HM20001454]. The experiments for SSVEP

and P300 recording were conducted at the University of Illinois at Urbana-

Champaign (IRB approved protocol: 13453).

4.4 Results and Discussion

Figure 4.1A presents a completed device that includes mesh electrodes for

recording (REC), ground (GND), and reference (REF), joined by a stretch-

able interconnect, all on a soft (modulus: 20 kPa), elastomeric film (thickness:

3 µm). The physical properties associated with this design allow lamination

onto the contoured surfaces of the skin in and around the ear, to enable long-

term measurements of EEG. The electrically active part of the system con-

sists of filamentary serpentine traces (300-nm-thick and 30-µm-wide patterns

of Au with 1.2-µm-thick layers of polyimide above and below), in a spatially

varying, self-similar design formed with a Peano curve as the building block.

This fractal layout represents an extension of recently reported ideas [76]
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but where the configuration spans the entire system level to yield enhanced

levels of mechanical compliance, tailored with orientational anisotropies that

match the requirements for auricle integration. In particular, the intercon-

nects use all vertical Peano curves to maximize stretchability along their

longitudinal axes; the electrodes, by contrast, use a half-and-half design to

balance stretchability in all directions (Figure 4.1A). The result is an overall

device construct that has an effective modulus lower than that of the skin

(∼130 kPa) [91], to ensure conformal contact [85] and robust adhesion [216].

A critical feature of the mechanics appears in Figure 4.1B, which shows a

device wrapped onto the triangular fossa, crura of antihelix, and lobule of the

ear as well as the mastoid. The ability to adopt the complex surface textures

of all areas of the auricle is unique to this class of ultrathin, extremely bend-

able electronics, largely unexplored in previous reports [91, 67, 75, 120, 155].

Mounting of the device begins with removal of hair using a razor (Gillette), if

necessary, followed by mild rubbing of the auricle area using a sterile alcohol

pad (Dukal Corporation) to clean the surface. Electrodes and interconnects

are manually placed on the desired locations by using plastic tweezers (Ted

Pella, Inc.). Soft bonding from van der Waals interactions holds the device

on the skin. Gently spraying water onto the device dissolves the polymer

backing layer [polyvinyl alcohol (PVA); Haining Sprutop Chemical Tech] and

leaves the soft, ultrathin elastomer in contact with the skin. Careful device

handling and complete dissolution of the polymer backing are important to

successful mounting. The main consequence of improper mounting is high

background noise in the EEG data.

The magnified image in Figure 4.1B illustrates how the stretchable inter-

connects maintain contact with the skin (antihelix) by conforming the uneven

surfaces. These behaviors follow from exceptional levels of both bendabil-

ity and stretchability, as revealed by finite element method (FEM) analysis.

Figure 4.1C shows FEM results for bending and folding, where the bend an-

gle is 180◦ and the radius of curvature is 0.5 mm. The maximum principal

strain in the metal layers is only 0.25% (elastic limit of Au: 0.3%) [76]. Addi-

tional results in Figure 4.1D show mechanical bending simultaneously along

two orthogonal axes with relevant radii of curvature (10 mm; comparable to

the distance between the tragus and outer edge of the ear) and diameters

(1 mm; comparable to the thickness of the ear lobule). The experimental

observations (Figure 4.1E-H) are consistent with the predicted responses, as

77



Figure 4.3: Long-term recording of EEG. (A and B) Set of P300 data
collected with an LTE electrode, immediately after mounting (A) and after
24 hours (B). The SNR values are similar. (C-E) EEG alpha rhythms
measured with a set of LTE electrodes for 14 days. (Left) Spectrograms
showing the amplitudes as a function of the frequency for 1 minute Signals
after 30 seconds are clearly detected when the eyes are closed. (Right)
Plots presenting raw EEG signals. The data show no significant differences
in signal amplitudes or patterns during 2 weeks of continuous wear.

illustrated by capabilities for mounting and wrapping on the ear. Further

FEM analysis under uniaxial tensile loads indicates that the electrodes and

interconnects can be stretched by up to ∼50%. These results suggest an abil-

ity to accommodate larger than average skin deformation (10-20%) [91, 85]
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up to and including the maximum strains (∼50%) associated with motion of

the knee joint.

This auricle-mounted system can be used in a sequential process for record-

ing and interpreting EEG signals for BCI (Figure 4.1I). Standard EEG signals

such as alpha rhythms can be readily captured. The three electrodes includ-

ing the REC (mastoid), REF (upper antihelix), and GND electrode (earlobe)

form a bipolar montage. This setup measures the differential amplitudes

(REC and REF), and the GND prevents nonspecific, parasitic signals from

the body. In addition to a soft, dry interface to the skin and an ability to

conform to the auricle, a key point of interest is the related capabilities for

long-term use

The epidermal electrode incorporates well-characterized, biocompatible

materials [silicone [76], gold [202], and polyimide [12]]. Studies using ker-

atinocyte cells demonstrate biocompatibility, as shown in Figure 4.2A-E.

Fluorescence microscope images compare the status of cultured cells in three

categories: live, injured, and dead by using a cell viability assay (Life Tech-

nologies) (Figure 4.2A and Figure 4.2B). The numbers of live cells grown on

a device and on a control (cell culture Petri dish) are identical within sta-

tistical uncertainties. Directly relevant studies involve devices mounted onto

subjects for comparative assessments using infrared thermography [52, 153].

Data indicate no adverse effects up to 2 weeks (Figure 4.2C and Figure 4.2D),

where a thin overcoat of spray-on-bandage material (3M) ensures survivabil-

ity during normal daily activities, such as exercising, showering, or swim-

ming. Conventional gel electrodes, by contrast, show clear signs of erythema

(elevated temperature in Figure 4.2E) after 1 day. Furthermore, the gels

exhibit a ∼50% reduction in volume due to evaporative drying over 6 hours,

consistent with the previous observations [206, 107, 110] of significant in-

creases (2-4 times) in skin-electrode impedance due to the gel dehydration

(within 6 hours). Evaluations used gel electrodes mounted on a skin replica

(polydimethylsiloxane; Dow Corning), placed on a hot plate (Super-Nuova;

Thermo Scientific) to mimic the human skin (temperature: ∼37◦C). These

and other drawbacks render such conventional gel electrodes unsuitable for

continuous, long-term use.

The results in Figure 4.3 establish that the long-term epidermal (LTE)

electrodes presented here offer fidelity in EEG measurement that compares

favorably to that of conventional electrodes. The main advantage of the LTE
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technology is in its long-term utility, as demonstrated in recordings using

electrical connections established in reversible fashion at the peripheral pad

terminations of the Peano fractal interconnects. The mechanically compliant,

reversible interactions facilitated by van der Waals forces provide low elec-

trical resistance for EEG recording. Before the electrical connection, gentle

rubbing with a sterile alcohol pad cleans the surface of the pad and con-

nector. A portable, compact microscope (AnMo Electronics) enables exact

positioning of the connector. During the course of the experiments, involving

multiple cycles of measurements, we observed no significant degradation of

the connector. Rather, eventual failure of the system occurs due to peeling

of the device electrodes from the skin, likely associated with accumulation of

exfoliated cells from the stratum corneum.

A thin layer (∼1 µm) of spray-on bandage, applied once or twice a day,

facilitates strong bonding to the skin and provides environmental protec-

tion [85]. Bipolar EEG recordings collected at various time points during 2

days (recording of P300, as described in a subsequent section) and 2 weeks

(recording of alpha rhythms) with normal living behaviors such as work-

ing, exercising, or showering illustrate the electronic viability. Qualitative

monitoring by contact microscopy reveals no adverse effects such as rashes,

redness, or allergic reactions. Figure 4.3A and Figure 4.3B show P300 data

collected over 24 hours on the skin (mastoid and forehead). The signal-to-

noise (SNR) ratio corresponds to the ratio of the signal power (from target)

to the noise power (from nontarget). The SNR values for these two cases

are nearly identical, and they are comparable to the signals obtained using

freshly applied conventional electrodes with conductive gels.

Another example of long-term use involves recording of EEG alpha rhythms

from the auricle and mastoid over a 2-week period. Alpha rhythms typically

have frequencies between 8 and 12 Hz, centered at ∼10 Hz [11]. Record-

ings during wakeful relaxation with the eyes closed and open appear in Fig-

ure 4.3C-E. Frames on the left show EEG spectrograms for frequencies be-

tween 5 and 15 Hz; the graphs on the right present typical raw EEG signals.

The sharp features that appear at ∼30 s correspond to signals that arise from

blinking. The overall data reveal no significant differences from day 1 to day

14. The polymer overcoat (sprayon bandage) is breathable, thereby avoiding

adverse side effects associated with sweating during activities involved in the

longterm evaluations. The slightly increased levels of background noise, es-
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Figure 4.4: EEG electrodes with tripolar concentric ring (TCR) and
capacitive designs. (A) Schematic illustration of TCR electrodes where a
single set of three rings occupies the same area as a conventional metal
electrode. (B-F) Images of TCR electrodes. (B) Integrated set of electrodes
on the auricle and mastoid. (C) Enlarged view of the REF (upper
antihelix). (D) Magnified view of fractal meshes. (E) GND on lobule. (F)
REC on mastoid. (G) Spectrograms of EEG alpha rhythms recorded by the
TCR electrodes including inner, middle, and outer rings. (H) Capacitive
electrode mounted on the skin by a silky fabric. (I) Process of washing the
electrode in soap water. (J) EEG alpha rhythms to compare signals before
and after washing the electrode for ten cycles. The RMS values show the
retained device functionality.
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pecially on day 14, may arise from the buildup of naturally exfoliated dead

cells on the skin surface [216].

Tripolar concentric ring (TCR) and capacitive electrodes offer enhanced

spatial resolution and increased levels of robustness and electrical safety in

operation (Figure 4.4). LTE designs afford an ability to exploit TCR layouts

in ways that avoid the electrical blurring effects that occur with electrolyte

gel-based systems [159]. Here a single set of three ring-shaped electrodes can

occupy the same area as a single, conventional electrode (1 cm in diameter)

(Figure 4.4A).

The 3D schematic illustration in Figure 4.4A shows an array of eight epi-

dermal TCR-LTE electrodes with top fractal electrodes (Au), interlayer di-

electric (PI) and metal (Au), and a base layer of interconnects and connector

pads (Au) for interfaces to external data acquisition systems (Section 4.3).

The magnified illustration in Figure 4.4A shows a TCR set where the top

electrodes consist of fractal half-and-half patterns with a Peano design motif.

Figure 4.4B-F illustrates TCR-LTE electrodes mounted on the auricle and

mastoid, supported by a 3-µm-thick elastomer. As with the basic structures

of Figure 4.1, each case involves conformal contact against these curvilinear

surfaces. A set of TCR-LTE electrodes can readily measure EEG alpha

rhythms with REC (mastoid), REF (upper antihelix), and GND (lobule)

(Figure 4.4). Figure 4.4C-F presents magnified images. Figure 4.4G presents

spectrograms of EEG alpha rhythms from each ring electrode (inner, middle,

and outer), which reveal an increased power (∼10 Hz frequency) after the

subject closed eyes (30-60 seconds).

Figure 4.4H-J summarizes capacitive designs using an elastomeric insulat-

ing layer (3 µm in thickness) over the electrodes (Section 4.3). This capacitive

layout electrically isolates the metal components of the device from the skin

[84] to avoid direct electrical loading and also to allow multiple cycles of

cleaning with soap and water and disinfection with isopropyl alcohol anti-

septic [76]. Here the capacitive electrode (fractal Peano half-and-half) bonds

to a silky, washable, silicone material (Enaltus) (Figure 4.4H). For recording

of EEG alpha rhythms, capacitive electrodes laminate onto the skin (mastoid

and forehead for the REC and REF, respectively). Figure 4.4I demonstrates

the ability to wash these electrodes in soap/water. For recording, the output

passes to a preamplifier with ultrahigh input impedance (> 5 109 Ω and

∼110 pF; BioRadio 150; CleveMed) to allow signal acquisition with low loss.
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This system provides a common-mode rejection ratio of 90 dB. Recording

used 60-Hz notch and low-pass (Butterworth) filters and a sampling rate of

960 Hz, with a gain of ∼50 dB. EEG alpha rhythms acquired before (top)

and after (bottom) ten cycles of washing appear in Figure 4.4J. The spec-

trograms clearly show alpha rhythms after 30 seconds with the eyes closed,

with negligible differences between these cases.

The recording of EEG data and the device capabilities for continuous long-

term use can be illustrated through BCI experiments. Visually evoked po-

tentials serve as the basis for BCIs based on steady-state visually evoked

potentials (SSVEP) and the P300 event-related potential. Attentional pro-

cesses [138] affect the signal amplitudes, thereby rendering information on a

set of user-intended targets as the basis for a BCI. Figure 4.5 presents results

from a BCI for a text speller. The experimental setup in Figure 4.5A in-

cludes the visual stimuli, a participant wearing the electrodes, an amplifier,

an analog-to-digital converter, classifier, and software (BCI2000) [171]. Three

male volunteers with normal or corrected-to-normal vision demonstrate the

feasibility of an SSVEP-based BCI. The experiment involved testing and

experimental sessions on different days. Initial evaluations with a set of 40

conventional electrodes (Figure 4.5B) yielded data to guide optimal position-

ing of electrodes. The numbers in Figure 4.5B correspond to the channels,

with a reference electrode on the ear. An optical tracking system (Polaris

Vicra; NDI) identified the precise locations. Following the digitization pro-

cess, each participant attended to a series of SSVEP stimuli. EEG recordings

occurred during the course of 60 trials, each with a single stimulus flickering

at 6, 6.67, 7.5, 8.57, or 10 Hz for 20 seconds, with 5 seconds between trials

and a null condition. The algorithms to determine optimal placement and to

classify the online experiments were based on canonical correlation analysis

(CCA) [112, 19]. This process is visualized using a topographic map of the

SNR ratio (Figure 4.5B). Figure 4.5C presents an alternative representation

of this data according to the channels (subject 2 at a stimulation frequency

of 8.57 Hz).

Figure 4.5D illustrates the text speller interface, which includes a question

posed to the user, defined as a mapping from the visual targets to a set

of possible characters. The highlighted characters in Figure 4.5D illustrate

such a mapping. Each visual target flickers at a unique frequency, allowing a

CCA-based classifier to determine the users desired character. The simplified
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Figure 4.5: Recording of steady-state visually evoked potentials (SSVEP)
and P300 and their use for brain-computer interfaces. (A) Experimental
setup for SSVEP-based text speller, showing a visual stimulation, a
volunteer wearing electrodes, and a signal amplifier and classifier. (B) Brain
mapping with 40 electrodes to identify locations that yield the highest
signals. (C) Plot of SSVEP signal quality according to the location. (D)
Image of the text speller interface including visual stimulation,
classification algorithm, and a volunteer watching the flickering windows.
(E) Flowchart of the simplified classification process. (F) Summarized
performance of three subjects in the spelling task. The averaged spelling
rate for computer with word prediction is 2.37 characters/min, and the
averaged accuracy is 93%. (G) Comparison of the signals for LTE and
conventional gel electrodes. Both exhibit similar patterns and amplitudes.
(H) Image of the P300-based text speller to record the event-related
potentials to identify the desired letter.
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classification steps appear in the flowchart of Figure 4.5E. When the user

chooses a target, the interface updates a model of its belief and then selects a

new query. Three subjects attempted to spell “computer” with the assistance

of word prediction algorithms [3]. Figure 4.5F summarizes the performance

for three subjects. The averaged spelling rate is 2.37 characters per min,

which is only a factor of two to three times slower than a full cap system

that uses 8-10 electrodes on the hairy scalp (4-7 characters per min) [36].

Figure 4.5G compares an SSVEP from an LTE electrode with that from a

conventional electrode (subject 2, channel 23). The results exhibit similar

patterns and amplitudes.

P300 event-related potentials (ERP) provide an additional example of a

BCI (Figure 4.5H). This study began with acquisition of baseline data using

conventional electrodes at four sites (each auricle, mastoid, and forehead)

and compared with LTE electrodes to measure P300 ERP. A participant

responded to a series of words including “brown”, “fox”, “epidermal”, and

“electrode”. Our data primarily show components of the P300 at 0.3-4 Hz.

The data were baseline corrected to the 200-ms period before the stimulus

onset and then averaged to yield an ERP. The result of the recorded P300

ERP (Figure 4.3A and Figure 4.3B) clearly distinguishes responses to target

and nontarget stimuli.

The collection of results presented here illustrates that extremely compli-

ant electrodes allow integration with demanding regions of the head such as

the auricle, for long-term EEG recording, without gels, via direct contact or

capacitive coupling. The system level fractal design for both the electrodes

and the interconnects is a critical feature that affords excellent levels of both

bendability (>180◦) and stretchability (>50%). Thermal imaging and EEG

studies provide evidence for noninvasive, biocompatible interfaces to the skin,

with electrical properties that support invariant recording quality over peri-

ods that extend to 2 weeks. Areas for future work include further modeling

and experimental study of tripolar electrodes and development of wireless

communication and power supply systems that can co-integrate with these

auricle mounted electrodes.
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CHAPTER 5

“OK BRAIN”: A COMPARISON OF
SPEECH, TOUCH, AND SSVEP-BASED

BCI INPUTS FOR HEAD-MOUNTED
DISPLAYS1

5.1 Abstract

In this chapter, the application of steady-state visual evoked potential (SSVEP)-

based brain-computer interfaces (BCIs) for augmented and virtual reality

head-mounted displays (HMDs) is explored. Specifically, steady-state vi-

sual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) were

evaluated as an input mechanism for HMDs. This evaluation compared the

performance of three input mechanisms (speech recognition, touch gestures,

and SSVEP) on a commercially available HMD with SSVEP-based BCI on a

desktop monitor. The results of this comparison study showed that users of

an SSVEP-based BCI on a desktop monitor can complete a binary decision

task with greater than 98% accuracy in an average of 1.21 seconds, resulting

in an average bitrate of 0.76 bits/second. A post-hoc non-inferiority analysis

showed that the bitrate of the SSVEP-based BCI on a desktop was as high or

higher than speech recognition or touch gestures. While SSVEP-based BCI

on an HMD was significantly slower than SSVEP-based BCI on a desktop

and touch gestures, it still achieved 96% accuracy after 2.2 seconds. These

results show that SSVEP-based BCIs may provide a viable input mechanism

for HMDs and, in particular, suggest that there may be conditions under

which SSVEP-based BCIs are comparable in performance to existing HMD

input mechanisms.

1This work includes significant scientific contributions from J. Mullins, E. Johnson, O.
Choudhary, T. Bretl, and C. Shin.
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5.2 Introduction

Figure 5.1: User wearing head-mounted display and EEG electrode cap.

Augmented reality head-mounted displays (HMDs) provide a method for

enhancing our interactions with our environment by superimposing virtual

objects over real ones. Common interactions include object selection or ma-

nipulation, navigation, and application control [26]. For example, researchers

have demonstrated the use of augmented reality HMDs for annotating aca-

demic posters [190], providing real-time navigation during exercise routines

[143], and for controlling a speech loudness application [129].

A variety of input mechanisms are used to interact with HMDs. Some input

mechanisms like speech recognition, touch gestures, and head movements are

already part of commercial devices. Other input mechanisms like hand-to-

face gestures [178], 3D hand-held controllers [78], and gaze tracking [191] are

the topic of active research.

Non-invasive brain-computer interfaces (BCIs) based on electroencephalog-

raphy (EEG) are another potential input mechanism for use in HMDs. While

different EEG signals can be used to obtain inputs for a BCI, here we consider

the use of steady-state visual evoked potentials (SSVEPs). SSVEP-based

BCIs rely on the brain’s natural response to a repetitively flickering stimu-

87



lus. When a user allocates their attention to a flickering stimulus, it causes

an increase in EEG activity at the same frequency as that stimulus [135] as

well harmonic frequencies of that stimulus [140]. Since this change in EEG

activity is related to the user’s spatial attention, the user is able to select a

single target from a set of potential targets simply by moving their atten-

tional focus. This allows SSVEP-based BCI designers to treat an SSVEP

stimulus as a button that a user activates via their attention. SSVEP-based

BCIs have previously been shown to provide fast and reliable inputs [197]

with little to no training [8].

There have been relatively few studies of SSVEP-based BCIs for virtual or

augmented reality applications. Legény et al. [104] examined how SSVEP

stimuli could be integrated into a virtual environment, concealing them in

the wings of simulated butterflies. Faller et al. [59] developed an applica-

tion framework for controlling a 3D avatar using SSVEP-based BCIs. They

then demonstrated this framework by having participants navigate an avatar

through an apartment in both virtual [59] and augmented reality [58] sce-

narios.

While these works have shown that it is possible to use an SSVEP-based

BCI for HMDs, there are no studies comparing the performance of SSVEP-

based BCIs to existing HMD input mechanisms. The lack of research could be

due to the perception that BCI input performance is much worse than that of

currently existing input mechanisms [161, 117] (also discussed by Allison [4]).

Recent research by Koo and Choi [94] support this perception in the context

of HMDs by reporting SSVEP-based BCI input accuracies of between 38%

and 94% using 12 seconds of stimulation with a virtual reality device [94].

Using a traditional SSVEP stimulator, however, Volosyak [197] demonstrated

that users could input commands with a six-class SSVEP-based BCI with

100% accuracy in as little as 1.3 seconds.

In this chapter, we evaluated the performance—in terms of bitrate—of

SSVEP-based BCI in comparison to existing HMD input mechanisms. Based

on the perception that the performance of BCI-based inputs is inherently

slow, we hypothesized that inputs obtained from an SSVEP-based BCI would

have a significantly lower bitrate than existing input mechanisms on an HMD.

To test this hypothesis, we asked subjects to use four different input mecha-

nisms to complete a binary decision task. Three input mechanisms were im-

plemented on a commercially available augmented reality HMD, the Google
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Glass, including: touch gestures, speech recognition, and SSVEP-based BCI.

The fourth input mechanism, SSVEP-based BCI on the desktop, was in-

cluded as the “gold-standard” of current BCI research. Contrary to our

expectations, there was no significant difference between the SSVEP-based

BCI on the desktop, speech recognition, and touch gestures. Furthermore,

only touch gestures and the SSVEP-based BCI on the desktop provided a

significantly higher bitrate than SSVEP-based BCI on the HMD.

Based on our results, we also performed post-hoc analyses of non-inferiority

to test whether the performance of SSVEP-based BCI on the desktop was

as good or better than speech recognition and touch gestures. Results from

these tests showed that SSVEP-based BCI on the desktop was non-inferior to

both the speech recognition and touch gesture conditions. While the post-hoc

nature of these tests precludes strong conclusions, they do provide evidence

that SSVEP-based BCIs are a viable option for HMDs, one that warrants

further study.

5.3 Method

5.3.1 Participants

We performed experiments with 12 able-bodied volunteers. All participants

had normal or corrected-to-normal vision and no history of neurological ill-

ness. The experiments were approved by the University of Illinois Institu-

tional Review Board.

5.3.2 EEG Recording

EEG signals were extracted from six tin electrodes located at 10-5 interna-

tional sites: PO3, PO4, POZ, O1, OZ, O2.[151] Electrode impedances did

not exceed 10kΩ. All electrodes were referenced to location CZ with a ground

electrode placed on the right ear lobe. The EEG signals were amplified using

a James Long bioamplifier, band-pass filtered from 1Hz to 30Hz, and digi-

tized at 1000 Hz using a National Instruments data acquisition unit (Model

PCI-6225). All signals were recorded and visualized using BCI2000 [171].
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Figure 5.2: Performance comparisons were dependent on the task
completion time (t), as described in the 5.3.4 subsection of the Chapter 5.3.
The diagrams show how task completion time was calculated for (a) speech
recognition, (b) touch gestures, (c) SSVEP (desktop), and (d) SSVEP
(HMD).

5.3.3 Experimental Procedures

All experimental sessions were conducted in a cool and sound attenuated

room with dim ambient lighting. Each subject completed one experimental

session consisting of four conditions presented in a randomized order using

a Latin square design. Each condition was designed to test the participant’s

performance with a single input mechanism. The four input mechanisms

were: speech recognition, touch gestures, SSVEP with stimuli on a desktop

PC, and SSVEP with stimuli on the HMD. Prior to starting each condition,

participants were given the opportunity to practice with the input mecha-

nism. During the experiments, the participant was seated in a comfortable

desk chair in front of two speakers and a computer monitor. The two speakers

were placed 24 inches in front of the participant with one speaker 18 inches

to the participant’s right and the other 18 inches to the participant’s left.

90



Custom experimental software, developed in MATLAB (The MathWorks,

Natick, MA) using PsychToolBox [27], was used to produce a sequence of

auditory stimuli. Each auditory stimulus was a 330 Hz tone lasting for 100ms

presented by either the left or the right speaker. Stimulus onset times for

all four conditions were recorded by wiring the audio signals from MATLAB

directly into the data acquisition unit. Timing diagrams for each of the four

conditions are visualized in Figure 5.2.

Speech Recognition Condition

Speech commands were input into the Google Glass (software version XE22)

using a custom Android application (Android API 19; Android Studio 1.1.0

for Mac). The participant was presented with a randomized sequence of au-

ditory tones from either the left or the right speaker. The participant was

asked to say “Left” if the tone was on the left and “Right” if the tone was on

the right. Following a speech command, the Google Glass was programmed

to play an audio chirp at the time of classification. This audio chirp was

recorded by a microphone mounted on the Google Glass. The microphone

was wired directly into the data acquisition unit and sampled at 6000 Hz.

After the classification chirp, feedback on the predicted selection was pro-

vided to the user and the expected/predicted responses were logged. The

application was then reset in preparation for the next trial. Data from 36

speech recognition trials was collected.

Touch Gestures Condition

Touch gestures were input into the Google Glass (software version XE22)

using a custom Android application (Android API 19; Android Studio 1.1.0

for Mac). Starting with their hands on the desk in front of them, an auditory

tone prompted the user to input a touch gesture onto the Google Glass’ built-

in touchpad. Each participant was asked to swipe forward on the touchpad

for a stimulus on the right or backward on the touchpad for a stimulus on

the left. We chose this mapping, because these exact same gestures are used

to navigate right and left in the main menu of the Google Glass. Following

the classification of a touch gesture, the Google Glass was programmed to

play an audio chirp. These audio chirps were recorded by a microphone
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mounted on the Google Glass wired directly into the data acquisition unit and

sampled at 6000 Hz. After classification, feedback on the predicted selection

was provided to the participant and the expected/predicted responses were

logged. Data from 36 touch gestures trials was collected.

SSVEP (Desktop) Condition

During the SSVEP with stimuli on a desktop PC condition, which we label

“SSVEP (desktop)”, participants were asked to respond to a sequence of

SSVEP stimuli presented on an LCD monitor (24-inch BenQ XL2420T).

Each participant was seated 24 inches from the monitor and asked to place

their head in a chin rest to maintain a constant distance between the user

and the SSVEP stimuli. The SSVEP stimuli were presented using a custom

application written using PsychToolBox [27]. Each SSVEP stimulus was

programmed to flicker at one of four possible frequencies: 6Hz, 7.5Hz, 8.57Hz,

or 10Hz. Since it is well known that the amplitude of the SSVEP varies by

individual and frequency [5], 72 trials of data were collected, 12 trials for

each combination of the four frequencies. This allowed the experimenters to

evaluate different SSVEP frequency combinations for each user. During each

trial, an audio tone prompted participants to attend to one of two SSVEP

stimuli for eight seconds. Each stimulus was located on opposite sides of

the monitor and subtended a visual angle of approximately 9◦ (computed

following recommendations of the American Clinical Neurophysiology Society

[186]). The frequency of the two SSVEP stimuli and the location of the

auditory tone were randomized. After 36 trials, the participant was permitted

an approximately one minute break. The order of the stimuli were logged for

future analysis.

SSVEP (HMD) Condition

During the SSVEP with stimuli on the HMD, which we label “SSVEP (HMD)”,

participants were asked to respond to a sequence of SSVEP stimuli presented

on the Google Glass (software version XE22). These stimuli were presented

using a custom Android application (Android API 19; Android Studio 1.1.0

for Mac). In our application, we found the fastest reliable refresh rate of

the Google Glass to be 33Hz. This necessitated the use of different stimula-
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tion frequencies than in the SSVEP (desktop) condition. Therefore, the four

stimulation frequencies used were: 4.725Hz, 5.475Hz, 6.575Hz, and 8.25Hz.

As in the SSVEP (desktop) condition, 72 trials were collected, 12 trials for

each combination of the four frequencies. The auditory tone prompted the

user to attend to the left or right stimulus—each of which subtended a visual

angle of approximately 5◦—for eight seconds while their EEG responses were

recorded. A network connection between the auditory stimulus presentation

software and the Google Glass was used to control the onset of the SSVEP

stimuli. The frequency of each of the two SSVEP stimuli and the location

of the auditory tones were randomized. After 36 trials the participant was

permitted an approximately one minute break. The order of the stimuli were

logged for future analysis.

5.3.4 Data Analysis

First, individual trials for each condition were segmented. The stimulus onset

time for each trial was determined using the envelope of the audio tone. The

start of the tone was defined as the first time when the envelope crossed a

threshold of three times the mean envelope level.

Speech Recognition and Touch Gestures Conditions

The audio chirp denoting the time of classification and recorded with the

microphone was used to determine the trial end time. This data was band-

pass filtered from 1200-2600Hz (speech recognition) and 1200-2200Hz (touch

gestures) to isolate the chirp. The envelope was then calculated and the trial

end time was determined as the first time to cross a threshold of three times

the mean envelope. For each of the 36 trials, a task completion time (t)

was calculated as the trial end time minus the stimulus onset time, and an

average task completion time (T ) was computed as the expected value of t

across all of the trials. Task completion accuracy (P ) was computed for each

condition as the number of trials where the predicted stimulus matched the

desired stimulus. Finally, since task completion time and task completion

accuracy are dependent measures, we chose to compare the four input mech-

anisms using information transfer rate (ITR), a measure that simultaneously

accounts for both of these variables that is commonly used to measure the
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performance of BCIs [210]. ITR was computed as:

ITR =
log2N + log2 P + (1− P ) ∗ log2

1−P
N−1

T
(5.1)

Where N represents the number of classes (in our case two).

SSVEP (Desktop) and SSVEP (HMD) Conditions

The auditory prompts for all of the conditions were generated using the same

PsychToolBox script on a PC and the trial onset times were determined

using the same method as the one used for the speech recognition and touch

gestures conditions.

During the experiments, we chose to turn SSVEP stimulation off between

the trials. This meant, during the SSVEP (HMD) condition, that an acti-

vation signal had to be sent to the Google Glass. This activation signal was

sent over a wireless network and subject to network delay (Figure 5.2d). We

quantified this delay by measuring the time from when we sent the activa-

tion signal to the time that the Google Glass sent back a message notifying

PsychToolBox that it had received this activation signal. This delay was not

insignificant. As a result, we chose to reject all SSVEP (HMD) trials with a

network delay that exceeded 0.25s.

For the SSVEP (desktop) and SSVEP (HMD) conditions, the 72 trials were

subdivided into six subsets of 12 trials. Each subset only contained trials from

one pair of stimulation frequencies (four possible frequencies, choose two).

For each subset, a classification analysis was performed. For this analysis, we

used the classifier described by Lin et al. [112], based on canonical correlation

analysis (CCA). CCA is a multivariate statistical analysis technique that

finds a linear combination of independent (X) and dependent (Y ) variables

using two corresponding weight matrices wx and wy that maximize:

ρf =
wT

x ΣXYw
T
y√

wT
x ΣXXwxwT

y ΣY Ywy

(5.2)

Using the EEG data as X, Y was composed of sine and cosine waves at the

frequency of stimulation (our specific formulation included three harmonics).

More details of this method can be found in Lin [112]. For each trial, two
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correlation values (ρf1 and ρf2) were computed, one for each of the two stim-

ulation frequencies. The stimulation frequency with the highest CCA value

was predicted to be the desired stimulus. An accuracy was computed for

each subset as the number of trials where the predicted stimulus matched

the desired stimulus. This accuracy is dependent on a free parameter called

window-length. Window-length represents the amount of EEG data (mea-

sured in seconds) considered by the classifier. For example, a 0.5s window

length would include EEG data from trial onset to 0.5s following trial onset.

A 1s window-length would include data from the trial onset to 1s following

the trial onset. For each subject, each condition, and each subset, we tested a

range of possible window-lengths from 0.5-5 seconds in 0.01 second steps. To

optimize the BCI to the individual participants, we selected a combination

of three frequency pairs (from the six available) for further analysis. The

ITR of each combination (six subsets, choose three) of frequency pairs was

first analyzed. We chose the combination of frequencies that resulted in the

highest ITR. Finally, from this optimal set of frequencies, the window-length

(and associated accuracy) that gave the highest possible ITR was selected

for comparison with the other input mechanisms Figure 5.3c.

5.4 Results

All participants were able to complete all four conditions. Before analysis,

we rejected 5% of SSVEP (HMD) condition trials, due to excessive network

delay (as discussed in Section 5.3.4).

5.4.1 Superiority Testing

The task completion times and accuracies for all four conditions are shown

in Table 5.1. These data are also represented graphically in Figure 5.3.

For seven subjects, the SSVEP (desktop) condition was the fastest. For four

subjects, the speech recognition condition was the fastest and for one subject

the touch gestures condition was the fastest. In general, the task completion

times for the SSVEP (HMD) condition were higher than the other methods,

but one subject was as fast as 1.23 seconds.

Figure 5.3c shows the distribution of bitrate data from each of the four
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Figure 5.3: Box plot comparisons of (a) accuracy, (b) latency, and (c)
bitrate for each input mechanism. Within each boxplot, all four conditions
are included (speech recognition, touch gestures, SSVEP (desktop), SSVEP
(HMD). The dashed red lines indicate the median value for each condition.
The edges of the boxes represent the 25th and 75th percentiles, the whiskers
of the plot represent variability outside of this range and outliers are
denoted with crosses. The “***” indicates significance p < 0.001.

conditions. The SSVEP (desktop) condition had the highest mean ITR of

0.76 bits/second. Statistical analysis was conducted in SPSS. Using a re-

peated measures ANOVA with Greenhouse-Geisser correction, a significant

difference (F (3, 33) = 12.519, p = 0.001) was found between the input mech-
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anisms. Using pairwise comparisons with Bonferroni correction, both the

SSVEP (desktop) condition (p < 0.001) and the touch gestures condition

(p < 0.001) were found to provide a significantly higher bitrate than the

SSVEP (HMD) condition.

For SSVEP-based BCIs, there is a trade-off between task completion speed

and accuracy. Figure 5.5a shows this trade-off averaged across subjects for

the SSVEP (desktop) and the SSVEP (HMD) conditions. Figure 5.5b shows

a similar trade-off for ITR as a function of window-length. The SSVEP (desk-

top) condition uniformly provided a higher bitrate, regardless of window-

length.

speech recognition touch gestures SSVEP (desktop) SSVEP (HMD)
t P ITR t P ITR t P ITR t P ITR

S01 1.08 97 0.75 1.37 100 0.73 0.76 97 1.07 1.43 100 0.70
S02 0.87 86 0.48 1.14 92 0.52 1.35 100 0.74 2.31 100 0.43
S03 1.04 86 0.40 1.26 97 0.64 2.21 100 0.45 3.68 100 0.27
S04 1.12 86 0.37 1.36 100 0.74 0.96 100 1.04 1.48 97 0.55
S05 1.05 100 0.95 1.02 100 0.98 1.1 100 0.91 1.74 94 0.38
S06 1.19 97 0.68 1.36 100 0.74 1.15 100 0.87 3.12 100 0.32
S07 1.07 100 0.93 1.44 100 0.69 0.99 92 0.59 1.50 88 0.32
S08 1.28 89 0.39 1.57 100 0.64 1.05 97 0.78 2.19 92 0.27
S09 1.13 97 0.71 1.22 100 0.82 0.98 89 0.51 3.40 100 0.29
S10 1.20 86 0.35 1.44 100 0.69 1.15 100 0.87 1.67 100 0.60
S11 1.05 97 0.77 1.40 100 0.71 1.47 100 0.68 2.57 94 0.27
S12 1.05 92 0.57 1.39 100 0.72 1.40 97 0.58 1.23 89 0.40
Mean 1.09 93 0.61 1.33 99 0.72 1.21 98 0.76 2.2 96 0.40

Table 5.1: Task completion time (seconds), task completion accuracy (%),
and ITR (bits/second) averaged across trials, for each subject and
condition.

5.4.2 Non-Inferiority Testing

Our results did not support the hypothesis that inputs obtained using either

speech recognition or touch gestures provided a significantly higher bitrate

than those obtained using SSVEP (desktop). It is not appropriate, however,

to conclude that a failure to reject the null hypothesis is the same as saying

that the SSVEP (desktop) condition has performance that is as good or better
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(b) Touch gestures non-inferiority

Figure 5.4: Non-inferiority comparisons for (a) speech recognition and (b)
touch gestures.

than that of the speech recognition or touch gesture input mechanisms. The

proper way to test this hypothesis is through the use of non-inferiority testing.

The purpose of non-inferiority testing—commonly used in clinical drug

trials—is to provide statistical evidence that two treatments are close enough

in performance “that one cannot be considered superior or inferior to the

other” [203]. How researchers define “close enough” is dependent on the

context. Regardless of the study, however, this value is commonly known as

the margin of non-inferiority and is mathematically denoted by δ. Here, we

chose δ = 20%. This choice is based on a conservative estimate of the just-

noticeable-difference (JND)—the minimum difference required to be noticed

by a user—of time perception.[177]

We conducted a post-hoc two one-sided test (TOST) in MATLAB [203],

the results of this test are represented in Figures 5.4a and 5.4b. For this

analysis, we assumed α = 0.05 and did not correct for multiple comparisons.

The TOST test revealed that for the speech recognition condition (δS = 0.12

bits/second), one could conclude that the ITR of the touch gestures and

SSVEP (desktop) conditions was as high or higher than speech recogni-

tion. The test also showed that for the touch gestures condition (δT = 0.15

bits/second) that one could conclude that the ITR of the SSVEP (desktop)

condition is as high or higher than touch gestures.
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(b) Average bitrate as a function of window-length

Figure 5.5: (a) Accuracy and (b) bitrate versus window-length for the
SSVEP (desktop) and the SSVEP (HMD) conditions averaged across all
participants.

5.5 Discussion

The SSVEP (desktop) condition had the highest mean bitrate (Table 5.1) of

all of the tested input mechanisms. This result was different than what was

originally hypothesized. Neither the speech recognition condition nor the

touch gestures condition resulted in a significantly higher bitrate than the

SSVEP (desktop) condition. Furthermore, a supplemental non-inferiority

analysis suggests that the bitrate of the SSVEP (desktop) condition is as

high or higher than any of the other input mechanisms tested here, although
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this hypothesis needs to be stated a priori and re-tested in order to verify it

in future work.

The results also demonstrate that participants were able to use an existing

HMD for SSVEP-based inputs with an average latency of 2.2s and an average

accuracy of 96%. While this was slower than the other input mechanisms,

this study is one of the first to use SSVEP on an HMD [90] and is the first

that we are aware of to use SSVEP on the Google Glass. The differences in

performance between the SSVEP (desktop) and SSVEP (HMD) conditions

can be attributed to network delay and other factors known to effect the

amplitude of SSVEPs, including: stimulation hardware [213], stimulation

frequencies [77], stimulus size [142], and the fact that the SSVEP (HMD)

condition only stimulated one eye [90]. These results show the potential of

SSVEP as an input mechanism for HMDs and demonstrate that such inputs

can be obtained using an existing hardware platform.

One limitation of the current study is that the SSVEP (desktop) and

SSVEP (HMD) conditions were classified offline while the speech recognition

and touch gestures conditions were classified in real-time. This could have af-

fected the results in two ways. First, offline classification may predict better

performance than what is achieved online. A recent SSVEP-based BCI paper,

however, demonstrated that online performance was better than offline per-

formance [38]. Second, the classifier requires computation time. An analysis

of the classifier used for both the SSVEP (desktop) and the SSVEP (HMD)

conditions showed that the computation time was only 0.01s per trial. If 0.01s

were added to each of the SSVEP trials, the bitrate of the SSVEP (desktop)

condition would be reduced by less than 0.01 bits/second. For the speech

recognition condition, the audio trigger collected clear audio data from some

participants, enabling an analysis of classification time. Speech offset times

(Figure 5.2a) were determined for three subjects (S1,S2,S3). By computing

the difference between the speech offset time and the task completion time,

an estimate of “classification time” was obtained. After subtracting this es-

timate from every subject’s task completion time, performance of the speech

recognition condition would rise from 0.61 bits/second to 0.84 bits/second.

Even in this case, however, the speech recognition condition would not have

a significantly higher bitrate than the SSVEP (desktop) condition (p >0.9)

or the touch gestures condition (p >0.75).

While this study chose to focus on input performance, future investigations
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should also consider the advantages and disadvantages of SSVEP-based in-

puts from a user experience perspective [193]. SSVEP-based inputs may be

advantageous because they provide confidentiality, can be used in cases where

the users hands are occupied [4], and are not adversely affected by noisy en-

vironments. SSVEP stimuli, however, can be annoying to the user [220].

Some researchers have found high frequency stimuli (over 30 Hz) to be more

comfortable for users, but less performant [197]. In addition, SSVEP-based

input systems require cumbersome EEG recording hardware.

If one were to conduct a user experience study, it would be important to

consider whether SSVEP-based input performance matches the user’s per-

ception of SSVEP-based input performance. For example, it is known that

delays in feedback between one tenth of a second and one second are noticed

by users and cause them to lose the feeling that they are directly interacting

with the data [144]. In the case of speech recognition and touch gestures,

the user orients their gaze, performs a motor action (speaking or gesturing),

and (assuming a negligible classification time) immediately receives feedback.

When using an overt SSVEP-based BCI, on the other hand, the cessation

of gaze orientation is followed by a period in which the user generates an

SSVEP. Since no other motor action is being performed during this time, it

could be perceived by the user as a delay even when there isn’t one.

This work represents the first direct comparison between existing input

mechanisms for HMDs and SSEVP-based BCI. The results of the compar-

ison study do not support the hypothesis that speech recognition or touch

gestures enable a higher ITR than SSEVP-based BCI for the binary selection

task tested here. A supplemental analysis also suggests that the differences in

performance may be small enough that the SSVEP-based BCI could be con-

sidered non-inferior. While additional tests are necessary to confirm this new

hypothesis, the current results are important because they provide estimates

of performance for each of these input mechanisms that can be used in later

studies. More broadly, the experiments describe one scenario—the binary se-

lection of targets for HMDs—where SSVEP-based BCI may perform as well

as existing input mechanisms. This is surprising as the general perception,

for healthy populations, is that BCIs are uniformly slower than existing in-

put mechanisms [161, 117]. The results in this chapter show that BCI-based

input for HMDs represents an exciting opportunity for the BCI community

and encourage future studies to directly compare the performance of these

101



systems with existing input mechanisms.
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CHAPTER 6

AN SSVEP-BASED BRAIN-COMPUTER
INTERFACE FOR TEXT SPELLING WITH
ADAPTIVE QUERIES THAT MAXIMIZE

INFORMATION GAIN RATES1

6.1 Abstract

In this chapter, we present an adaptive user interface for text-entry using

a steady-state visually evoked potential (SSVEP)-based brain-computer in-

terface (BCI). Like other SSVEP-based spellers, ours identifies the desired

input character by posing questions (or queries) to users through a visual

interface. Each query defines a mapping from possible characters to steady-

state stimuli. The user responds by attending to one of these stimuli. Unlike

other SSVEP-based spellers, ours chooses from a much larger pool of possi-

ble queries—on the order of ten thousand instead of ten. The larger query

pool allows our speller to adapt more effectively to the inherent structure of

what is being typed and to the input performance of the user, both of which

make certain queries provide more information than others. In particular,

our speller chooses queries from this pool that maximize the amount of infor-

mation to be received per unit of time, a measure of mutual information that

we call information gain rate. To validate our interface, we compared it with

two other state-of-the-art SSVEP-based spellers, which were re-implemented

to use the same input mechanism. Results showed that our interface, with

the larger query pool, allowed users to spell multiple-word texts nearly twice

as fast as they could with the compared spellers.

1This work has been previously published as [3] and is co-authored by A. Akce and T.
Bretl; ©2015 IEEE.
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6.2 Introduction

The development of electroencephalogram (EEG)-based brain-computer in-

terfaces (BCI) for text-entry has exploded over the past decade [37]. These

interfaces create a direct neural link between a human user and a computer,

allowing the user to type without a keyboard or physical movements. One

common input mechanism, which we consider in this chapter, is the steady-

state visually evoked potential (SSVEP). In an SSVEP-based speller, users

are presented with a set of visual targets that are associated with possible

characters. These targets blink on and off at slightly different but fixed fre-

quencies. By attending to a particular target, the user elicits phase-locked

EEG activity at the corresponding frequency. Measurement of this activity

allows the computer to detect the target to which the user is attending, hence

the user’s desired character. While it is not within our scope to discuss the

relative merits of BCI and non-BCI text-entry, we note that SSVEP may

remain applicable even when users have no control over gaze (e.g., as with

“locked-in” syndrome). Attentional focus that is independent of visual focus,

also elicits SSVEPs [7].

Most existing SSVEP-based spellers have fewer visual targets than possible

characters. As a consequence, the user must attend to a sequence of targets

in order to type a single character. For example, the SSVEP-based spellers of

both Volosyak [197] and Cecotti [36] allow 28 possible characters—the stan-

dard alphabet, space, and delete—but have only five targets. The interface

of Volosyak [197] arranges characters in a grid, associates four targets with

cardinal directions (left, right, up, down) in which to move a cursor in this

grid, and interprets the fifth target as selecting the character at the current

location of the cursor. The interface of Cecotti [36] arranges all characters

except delete in a static hierarchical menu with a decision between three

groups at each level of the hierarchy (three groups of 9 characters, then of 3

characters, and finally of 1 character), associates a target with each group,

associates the fourth target with delete, and interprets the fifth target as

moving up in the hierarchy.

When discussing these two interfaces, we find it helpful to regard each

presentation of visual targets as a question or query posed to the human user.

Each query defines a mapping from possible characters to visual targets, in

the sense that there is a correct choice of target to which the user must attend
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in order to specify a given character most quickly. The queries of Volosyak

[197] ask which direction the desired character is with respect to the cursor.

The queries of Cecotti [36] ask which of three groups contains the desired

character.

In this chapter, we present a new SSVEP-based speller that is similar to

the ones of Volosyak [197] and Cecotti [36] but that poses a different set

of queries. These queries are of two types. A range query (Figure 6.1a)

asks which of five ordered groups of characters (e.g., “delete” through B, C

through K, L through M, N through T, and U through “space”) contains

the desired character, by associating a target with each group. A character

query (Figure 6.1b) asks which of four ordered characters (e.g., C, F, G, and

S)—if any—is the desired character, by associating a target with each one

and by interpreting the fifth target as “none of them.”

What is important about these two new types of queries is their variety.

There are 2925 distinct range queries and 20475 distinct character queries,

meaning that our interface has a total of 23400 queries from which to choose.

You might say that our interface has a query pool of size 23400. In contrast,

the interface of Volosyak [197] has a much smaller query pool of size 28, equal

to the number of characters in the grid. Similarly, the interface of Cecotti [36]

has a query pool only of size 13, equal to the number of possible groupings

of characters in the static hierarchical menu.

The reason that variety is important is that not all queries are equally infor-

mative. Language has an inherent structure that—depending on context—

makes certain characters much more likely than others. In principle, larger

query pools allow better adaptation to this structure. They give an interface

the freedom to pick “the right question.”

Indeed, our SSVEP-based speller chooses queries that explicitly maximize

the amount of information to be received per unit of time about the desired

character, a measure of mutual information that we call information gain

rate (IGR). IGR is similar to other measures of mutual information like the

commonly used information transfer rate (ITR) [210, 6, 217] and the less

well known Nykopp bit rate [149]. The reason we use a new measure in this

chapter is that IGR—unlike ITR, for example—does not assume that each

visual target is equally likely to be selected within a given time window.

Instead, IGR takes into account the expected input performance of each

user (characterized by selection accuracy and selection latency) as well as
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(a) A range query posed after spelling “COMP”

    

(b) A character query posed after spelling “COMP”

Figure 6.1: Examples of the two types of queries posed by our speller, range
queries (a) and character queries (b). In each case, targets are arranged
horizontally at the top of the screen (the white boxes) and text appears
along the bottom.

a probabilistic language model. We emphasize that IGR and the models

that it takes into account are not in direct competition with the query pool.

Rather, if the query pool gives us the freedom to pick the right query, IGR

offers our interface the means to select that query. This choice of measure

distinguishes our interface from others that also have larger query pools, like

the motor-imagery-based speller of Blankertz et al. [24] and the P300-based

speller of Ma et al. [121]—although, these other interfaces are harder to

compare directly due to their use of input mechanisms other than SSVEP.
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We acknowledge that many factors affect the performance of an SSVEP-

based speller (e.g., the classification rate [122, 62], the stimulus design [40,

220, 86], and the layout of the interface [208, 83]). Larger query pools may

also necessitate the use of serial visual search strategies by the participant,

resulting in prolonged selection latencies. Nonetheless, empirical results with

six qualified subjects showed that our SSVEP-based speller—with the larger

query pool and with IGR as the performance measure to be maximized—

allowed users to spell multiple-word texts nearly twice as fast as they would

with the SSVEP-based spellers of Volosyak [197] and Cecotti [36].

In what follows, we first present our new speller (Section 6.3). Next, we

describe the experimental comparison to existing spellers (Section 6.4) and

give the results of this comparison (Section 6.5). Finally, we conclude by

discussing the importance of these results with respect to the design of BCI

text-entry systems (Section 6.6).

6.3 Design of Our Speller

Our SSVEP-based speller allows a user to type a string of text that consists

of the standard alphabet (‘A’ to ‘Z’), space (‘ ’), and delete (‘<’). In order

to type each individual character, the user must respond to a sequence of

queries. Each query associates possible characters with one of five visual

targets (i.e., five blinking SSVEP stimuli). Our speller poses two types of

queries (Figure 6.1):

1. A range query asks which of five ordered groups of characters contains

the desired character, by associating a target with each group. In the

example of Figure 6.1a, the five groups are ‘<’ to ‘A’, ‘B’ to ‘K’, ‘L’

(i.e., a group with only one character), ‘M’ to ‘T’, and ‘U’ to ‘ ’.

2. A character query asks which of four ordered characters—if any—is

the desired character, by associating a target with each one and by

interpreting the fifth target as “none of them.” In the example of

Figure 6.1b, the four characters are ‘A’, ‘E’, ‘I’, and ‘L’.

Each query reduces our speller’s uncertainty about the user’s desired charac-

ter. Once the speller is confident enough, it makes a “guess” at the desired
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character, appends this guess to the string of text at the bottom of the screen,

and proceeds with a new sequence of queries to obtain the next character.

In Section 6.3.1, we define a formal model of our speller. In Section 6.3.2,

we use this model to derive algorithms that say how to choose each query

(based on maximizing a measure of mutual information that we call IGR)

and how to guess the desired character (based on maximizing likelihood with

respect to a language model).

6.3.1 Models

In what follows, we denote the set of possible characters by C = {‘<’, ‘A’, . . . , ‘Z’, ‘ ’}
and the set of possible targets, numbered from left to right, by U = {1, . . . , 5}.

Queries

We can describe any range or character query as a map f : C → U . For

example, the range query in Figure 6.1a is given by

f(c) =



1 if c ∈ {‘<’, ‘A’}

2 if c ∈ {‘B’, . . . , ‘K’}

3 if c ∈ {‘L’}

4 if c ∈ {‘M’, . . . , ‘T’}

5 otherwise.

(6.1)

Suppose that the user in this example were trying to spell the word “COM-

PILE.” Having already spelled “COMP,” the current desired character would

be ‘I’. The formal definition (6.1) of the range query in Figure 6.1a makes

clear that the correct choice of target would be f(‘I’) = 2—i.e., that the

user should attend to the second target from the left in order to specify their

desired character most quickly. Similarly, the character query in Figure 6.1b
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is given by

f(c) =



1 if c = ‘A’

2 if c = ‘E’

3 if c = ‘I’

4 if c = ‘L’

5 otherwise.

(6.2)

Continuing with our example, the correct choice of target in this case would

be f(‘I’) = 3. As can easily be derived, we have 2925 distinct range queries

and 20475 distinct character queries from which to choose, for a total of

n = 23400. We index the corresponding maps by f1, . . . , fn.

Accuracy and Latency

As we have seen, there is a single correct choice of target—call it the intended

target—to which the user should attend in response to a query. Because of

uncertainty in the measurement and interpretation of SSVEP, the target that

is actually selected—call it the observed target—may differ from the intended

target. To capture this difference, we model the intended target as a discrete

random variable X and the observed target as a discrete random variable Y ,

both taking values in U . We also model the amount of time taken for the

user to respond to a query as a continuous random variable T , taking values

in the set of positive real numbers R+. Two statistical quantities then suffice

to describe the input performance of a user:

• the conditional probability mass function pY |X(y|x), which specifies the

likelihood that the observed target is y given that the intended target

is x;

• the conditional expectation E(T |X = x, Y = y), which specifies the

average time taken for the user to respond to a query given that the

intended target is x and the observed target is y.

We will refer to pY |X(y|x) as the accuracy model and to E(T |X = x, Y = y)

as the latency model. Although these two models may differ from one user

to another, we assume that they remain the same over time—in other words,

that input performance is the same when typing the first character in a string
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of text as when typing the last character. Accuracy and latency models can

be computed from experimental data (e.g., during user training)—we will

say how in Section 6.4.3. For now, we assume both models are given.

Language

We model the desired character as a discrete random variable C, taking

values in C. The probability mass function pC(c) then completely describes

the speller’s uncertainty about the user’s desired character. We will refer to

pC(c) as the language model. There are standard ways to derive this language

model from a database of English text—we will say how in Section 6.4.4. For

now, we assume that the language model is given.

Unlike the accuracy and latency models, the language model changes over

time—indeed, the purpose of each query is to steer this change in a way that

reduces uncertainty about the desired character. In particular, by application

of Bayes’ theorem (see Appendix 6.8), it is possible to show that

pC|Y (c|y) =
pY |X(y|fi(c))pC(c)∑
s∈C pY |X(y|fi(s))pC(s)

(6.3)

for all c ∈ C. Equation (6.3) provides a recursive update rule: start with

the current language model pC , observe a target y in response to a query fi,

compute a new language model pC|Y using (6.3), and replace pC with pC|Y .

6.3.2 Algorithms

How to choose each query

We can use the models defined in Section 6.3.1 to measure the amount of

information to be received per unit of time about the desired character. We

call this quantity IGR and define it as follows:

IGR =
I(X;Y )

E(T )
. (6.4)
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The numerator in (6.4) is the mutual information between the intended target

and the observed target. It is defined as

I(X;Y ) =
∑
x∈U

∑
y∈U

pX,Y (x, y) log

(
pX,Y (x, y)

pX(x)pY (y)

)
(6.5)

and is a commonly used measure of information gain [50]. The denominator

in (6.4) is the average time taken for the user to respond to a query. It is

defined as

E(T ) =
∑
x∈U

∑
y∈U

pX,Y (x, y)E(T |X = x, Y = y). (6.6)

It is possible to show (see Appendix 6.9) that

pX,Y (x, y) = pY |X(y|x)pX(x) (6.7)

pY (y) =
∑
x∈U

pY |X(y|x)pX(x) (6.8)

and

pX(x) =
∑

{c∈C : fi(c)=x}

pC(c), (6.9)

so IGR (6.4) can be computed with knowledge of the accuracy model pY |X(y|x),

the latency model E(T |X = x, Y = y), the language model pC(c), and the

query fi(c), all of which we defined in the previous section. Note that IGR is

an explicit function of the query index i—we can make this dependence clear

by writing IGR(i). Our speller chooses the query with index that maximizes

IGR:

imax = arg max
i∈{1,...,n}

IGR(i).

How and when to guess the desired character

Our speller’s best guess at the desired character given an observed target y

in response to a query fi is the character of maximum likelihood with respect

to the updated language model:

cmax = arg max
c∈C

pC|Y (c|y),
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where pC|Y (c|y) is computed as in (6.3). The only remaining question is if

our speller is confident enough about this guess to append cmax to the string

of text, or if it should continue posing queries. To answer this question, our

speller compares the maximum likelihood

pmax = pC|Y (cmax|y)

to the likelihood of certain other possible characters. In particular, we define

the set

Cinner = {c ∈ C : f(c) = y and c 6= cmax}

of characters other than cmax that are associated with the same observed

target y, and the set

Couter = {c ∈ C : f(c) 6= y}

of characters not associated with this target. Next, we compute

pinner =

0 if Cinner = ∅

max
{
pC|Y (c|y) : c ∈ Cinner

}
otherwise

and

pouter =

0 if Couter = ∅

max
{
pC|Y (c|y) : c ∈ Couter

}
otherwise,

i.e., the maximum likelihood over characters in Cinner and Couter, respectively

(or zero if either set is empty). Our speller stops posing queries when both

pmax

pinner
> α and

pmax

pouter
> β,

where the thresholds α and β are parameters.
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(a) Speller of Volosyak

    

(b) Speller of Cecotti

Figure 6.2: Sample screenshots of the spellers re-implemented for
comparison to our speller: speller of Volosyak [shown in (a)] and speller of
Cecotti [shown in (b)].

6.4 Method

6.4.1 Participants

We performed experiments with 11 able-bodied participants between the

ages of twenty and thirty who had normal or corrected-to-normal vision.

All experiments were approved by the Institutional Review Board of the

University of Illinois.
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6.4.2 Signal Recording and Classification

The steady-state stimuli were 5 targets presented on an LCD monitor, or-

dered from left to right, at 7.50, 10.0, 6.67, 12.0, and 8.57Hz. These stimuli

appear as white squares across the top of Figure 6.1. EEG signals were

extracted from seven electrode sites across the occipital region of the scalp

(PO7, PO3, PO4, PO8, O1, OZ, O2) at impedances not exceeding 10kΩ.

All electrodes were referenced to electrode location PZA [88]. EEG signals

were acquired using a 128-channel bioamplifier at 256Hz, bandpass-filtered

from 1Hz to 30Hz, and analyzed using a 1.5 second sliding window with an

overlap of 1.375 seconds. A classifier, based on the traditional power spectral

density analysis (PSDA) method [192], was used to determine user selections.

In our implementation of this classifier, multi-electrode EEG data were fil-

tered into four different spatial representations using bipolar and Laplacian

combinations (see [65] for a description). The specific combinations, taken

from Prueckl [160], were as follows:

CH1 = 4 ∗OZ − (O1 +O2 + PO7 + PO8)

CH2 = 2 ∗OZ − (O1 +O2)

CH3 = 4 ∗OZ − (O1 +O2 + PO3 + PO4)

CH4 = 2 ∗OZ − (PO7 + PO8)

The Fast Fourier Transform (FFT) with a rectangular window and zero-

padded to 1024 points, was computed for each combination using MATLAB’s

‘fft’ function. The result was then multiplied by its complex conjugate to

obtain power spectra. A signal-to-noise ratio (SNR) was obtained for each

combination and each frequency by dividing the power of the signal (average

power at the frequency of interest ± 0.2Hz) by the average power of the noise

(average power in the frequency band of 6.25-12.5Hz excluding the frequency

of interest ± 0.2Hz). The highest and lowest SNR values for each frequency

were discarded. The two remaining SNR values were averaged to obtain a

single value for each frequency. If any of these five averaged values exceeded

a pre-determined threshold, the corresponding target was selected as the

observed target. If more than one frequency exceeded the threshold during

the same window of time, the lowest frequency was selected as the observed

target.
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6.4.3 Training Phase

The accuracy model and the latency model (Section 6.3.1) for each user were

derived from data collected during a training phase. In this training phase,

100 queries were presented to each user. An arrow specified the intended

target for each query. Users were asked to respond by attending to that

target. In total, each of the five targets was specified as the intended target

twenty times, in random order. For each query, the intended target, the

observed target, and the user response time were recorded. The conditional

probability pY |X(y|x) was computed as the ratio of the number of times y was

the observed target given that x was the intended target over the number of

times x was the intended target. If y was never observed, in other words if the

empirical value of pY |X(y|x) = 0, a small number (0.01) was added. These

values were then normalized to obtain a probability measure. The conditional

expectation E(T |X = x, Y = y) was computed as the average user response

time over all queries in which the intended target was x and the observed

target was y. If y was never observed, in other words if the empirical value

of E(T |X = x, Y = y) = 0, then this empirical value was replaced with the

average user response time over all queries (over all intended and observed

targets).

6.4.4 Spelling Phase

Following training, participants completed a three-part spelling phase. The

purpose of this spelling phase was to evaluate the performance of participants

using our speller with their performance using two existing SSVEP spellers,

the one of Volosyak [197] and the one of Cecotti [36], that were highlighted in

a review of BCI text-entry [37]. All three spellers presented the same number

of visual targets (five) and allowed users to type a string of text consisting of

the same standard alphabet (‘A’ to ‘Z’), space (‘ ’), and delete (‘<’). These

spellers were implemented as follows:

• Our interface (Figure 6.1) was implemented exactly as described in

Section 6.3. The accuracy and latency models were derived from data

collected during training as described in Section 6.4.3. The language

model was constructed with prediction by partial matching (PPM) [42]

applied to the English corpus provided with the Dasher text-entry in-

115



Table 6.1: Target texts and their negative log-likelihoods (NLL)

Text Text NLL (bits/char)

Txt1 BCI 7.19
Txt2 BRAIN 3.04
Txt3 SIREN 5.31
Txt4 BRAIN COMPUTER INTERFACE 1.98
Txt5 PLEASE GET ME A BLANKET 2.64

terface [207]. The conditional probability of the delete (‘<’) character,

which was not included in the PPM model, was fixed at 0.05.

• The interface of Volosyak [197] arranges characters in a grid according

to their frequency in English text, associates four targets with cardinal

directions (left, right, up, down) in which to move a cursor in this

grid, and interprets the fifth target as selecting the character at the

current location of the cursor (Figure 6.2a). As an example, a user

might try to select ‘B’ with the following sequence of intended targets:

right, right, down, and then select. There were differences between our

implementation and the original implementation of [197], both in the

location of targets on the screen and in the arrangement of characters

in the grid. These differences are potential sources of error and will be

discussed further in Section 3.5.

• The interface of Cecotti [36] arranges all characters except delete (‘<’)

in a static hierarchical menu with a decision between three groups at

each level of the hierarchy (three groups of 9 characters, then of 3

characters, and finally of 1 character), associates a target with each

group, associates the fourth target with delete (‘<’), and interprets the

fifth target as moving up in the hierarchy (Figure 6.2b). For example,

a user might try to select ‘B’ with the following sequence of intended

targets: left, left, and middle. Our implementation and the original

implementation of [36] differ only with respect to the location of targets

on the screen.

During the evaluation of each speller, subjects were asked to specify the

texts in Table 6.1. The first three (Txt1, Txt2, Txt3) were single-words texts

and the last two (Txt4 and Txt5) were multiple-word texts. Table 6.1 also
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lists the likelihood of each text with respect to our language model as mea-

sured by the average number of bits necessary per character, a quantity that

is called the negative log-likelihood per character (NLL). The multiple-word

texts (Txt4, Txt5) had NLL comparable to the average NLL of English texts,

which is about 2 bits per character [14, 124]. Participants completed all five

texts, in order, for a single speller before moving on to the next speller. There

was a short (one minute) break between each speller. To reduce possible bias,

the order in which the spellers were evaluated was randomized. Experimen-

tation was halted at the request of the user or if user performance was lower

than one character per minute (cpm).

6.4.5 Simulation Study

As we acknowledged in Section 6.4.4, there were small differences between our

implementation and the original implementation of the spellers of Volosyak

[197] and Cecotti [36]. In our implementation of the speller of Volosyak, the

fifth row of the character grid was shifted one cell to the right of the original

implementation. To quantify the effect of this layout change we performed

Monte-Carlo simulations using two versions of the speller of Volosyak: the

one utilized in the present study, and the one in [197] with the original lay-

out. A total of 1000 simulations were conducted with each text (listed in

Table 6.1) and participant (S1-S6, S8, S9). In each query, recall that there

is a single correct choice of intended target, the simulation assumes that

the human subject always makes the correct choice of intended target. The

observed targets and the target selection latencies were randomly sampled

according to the accuracy and latency models of each participant. In partic-

ular, given an intended target x the observed target y was sampled according

to the probability distribution pY |X(y|x). The selection latency was sampled

from a normal distribution with mean E(T |X = x, Y = y) and with stan-

dard deviation computed from the participant’s training trials. Results were

obtained for our speller, the two versions of the speller of Volosyak, and the

speller of Cecotti.
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6.5 Results

Of the 11 subjects who participated in our study, six (S1, S2, S3, S4, S5,

S6) were able to complete the entire experiment. Three of the participants

(S7, S8, S9) completed the training phase, but were unable to complete

all three parts of the spelling phase. The remaining two participants were

unable to complete the training phase with at least 50% accuracy on all

of the targets. Their data have been excluded from further analysis. All

subjects were näıve to EEG-based BCIs with the exception of subjects S1

and S2, who had extensive experience. Specifically, subjects S1 and S2 had

previously participated in greater than 20 hours of experiments with SSVEP-

based BCIs. The following performance measures were used:

• input error (ε), the fraction of the number of incorrect queries—in

which the observed target did not match the intended target—to the

number of all queries;

• input latency (E(T )), the mean latency—the time it takes to obtain a

user response after the onset of a stimulus—across all queries;

• input/character ratio (C), the average number of user responses re-

quired to spell a single character of the target text, i.e., the ratio of the

total number of queries to the number of characters in the target text;

• spelling rate (R), the average number of characters spelled per minute

(cpm), without counting any instances of delete, i.e., the ratio of the

number of characters in the target text to the total time elapsed in

spelling.

We note that it was indeed possible to compute the input error during the

spelling phase, since—under the assumption that errors are derived from in-

correct classification of SSVEP response and not from incorrect user behavior—

the intended target (either a singleton or a finite set) was always known.

6.5.1 Training Phase

Table 6.2 shows the training data obtained from each participant. Across the

six subjects who completed the entire experiment, the input error was 2%,
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Table 6.2: Training Phase

(a) Average input accuracy (%) of each subject for each target

Subject Target 1 Target 2 Target 3 Target 4 Target 5 Avg

S1 100 100 100 100 100 100
S2 100 95 100 100 100 99
S3 100 100 80 100 100 96
S4 100 100 100 100 95 99
S5 100 100 100 100 95 99
S6 100 95 100 95 100 98

Avg 100 98 96 99 98 98.5

S7 100 100 95 100 100 99
S8 90 95 100 55 95 87
S9 75 75 80 95 75 80

Avg 88.3 90 91.7 83.3 90 88.7

(b) Average input latency (seconds) of each subject for each target

Subject Target 1 Target 2 Target 3 Target 4 Target 5 Avg

S1 2.66 2.63 3.07 3.54 2.64 2.91
S2 6.07 3.45 3.77 3.84 2.85 3.99
S3 2.76 2.79 3.94 2.27 2.25 2.80
S4 2.65 1.77 1.88 2.85 2.10 2.25
S5 1.44 1.38 1.98 1.74 1.53 1.61
S6 4.80 4.04 3.90 3.50 3.61 3.97

Avg 3.40 2.68 3.09 2.96 2.50 2.92

S7 1.97 2.57 1.84 3.73 2.40 2.50
S8 3.37 3.65 2.65 8.17 2.40 4.05
S9 7.65 9.93 5.23 3.82 8.22 6.97

Avg 4.33 5.38 3.24 5.24 4.34 4.51
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and the input latency was about 3 seconds. For subjects S8 and S9, who only

completed the training phase, error was higher, 13% for S8 and 20% for S9.

Average input latency for subjects S7 and S8 was comparable to those who

completed the entire study. Input latency for S9, however, was considerably

higher at 6.97 seconds.

6.5.2 Spelling Phase

Table 6.3 shows the spelling rates obtained for each speller and text during

the three-part spelling phase. We applied the Friedman Test—a common

non-parametric statistical test for repeated measures experiments—to deter-

mine any significant differences in spelling rate due to the speller interface

across all of the texts (Txt1, Txt2, Txt3, Txt4, and Txt5). The Friedman

Test revealed a significant main effect of speller interface (χ2 = 10.17, p <

0.01) on spelling rate. Post-hoc tests with Bonferroni correction revealed

that our speller was significantly faster than the speller of Volosyak (p <

0.05) and the speller of Cecotti (p < 0.05), but our implementations of the

spellers of Volosyak and Cecotti did not differ significantly in performance

from one another (p > 0.5). For single-word texts (Txt1, Txt2 and Txt3)

average spelling rates obtained with all three spellers were similar, averaging

7.33 cpm for our speller, 6.32 cpm for the speller of Volosyak, and 6.25 cpm

for the speller of Cecotti. For multiple-word texts (Txt4 and Txt5), the av-

erage spelling rate obtained with our speller (11.93 cpm) was nearly twice as

fast as those obtained with the spellers of Volosyak (5.69 cpm) and Cecotti

(6.22 cpm). Notably, using our speller subject S2 achieved more than 17 cpm

by spelling Txt5 with zero input error and with 2.5 seconds of mean input

latency.

Table 6.4 shows the average input error, input latency, and input per

character ratio for each of the three spellers and five texts. Input errors (Ta-

ble 6.4a) increased compared to training, but were similar across both single-

word and multiple-word texts at about 5%. Input latencies (Table 6.4b) also

increased compared to training from 2.92 seconds to 3.38 seconds for the

speller of Cecotti, 3.60 seconds for our speller, and 3.91 seconds for the speller

of Volosyak. During the spelling of multiple-word texts our speller required

less than half (1.60) the number of the inputs as the spellers of Volosyak
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Table 6.3: Spelling Phase Results - Spelling Rate

(a) Average spelling rates (by subject and text) for our speller

Subject Txt1 Txt2 Txt3 Single Words Txt4 Txt5 Multiple Words

S1 6.75 9.93 4.31 7.00 10.96 11.09 11.03
S2 7.89 10.00 11.11 9.67 15.05 17.12 16.09
S3 2.31 10.33 8.90 7.18 12.23 13.44 12.84
S4 3.93 10.15 4.76 6.28 10.41 8.97 9.69
S5 4.82 14.74 11.16 10.24 15.67 15.53 15.60
S6 1.95 2.26 6.63 3.61 6.95 5.72 6.34

Avg 4.61 9.57 7.81 7.33 11.88 11.98 11.93

(b) Average spelling rates (by subject and text) for speller of Volosyak [197]

Subject Txt1 Txt2 Txt3 Single Words Txt4 Txt5 Multiple Words

S1 4.52 5.35 5.16 5.01 4.27 4.55 4.41
S2 5.61 6.10 10.67 7.46 5.96 5.61 5.79
S3 4.67 7.75 9.62 7.35 7.43 8.15 7.79
S4 4.45 4.78 8.72 5.98 5.92 6.52 6.22
S5 7.48 7.24 12.18 8.97 7.55 8.18 7.87
S6 2.09 2.77 4.65 3.17 2.75 1.38 2.07

Avg 4.80 5.67 8.50 6.32 5.65 5.73 5.69

(c) Average spelling rates (by subject and text) for speller of Cecotti [36]

Subject Txt1 Txt2 Txt3 Single Words Txt4 Txt5 Multiple Words

S1 3.52 4.56 3.59 3.89 3.95 4.75 4.35
S2 5.59 8.95 6.14 6.89 7.35 6.80 7.08
S3 8.25 9.15 7.53 8.31 9.03 4.22 6.63
S4 5.65 8.39 8.82 7.62 6.16 7.35 6.76
S5 3.44 10.51 9.34 7.76 8.12 9.87 9.00
S6 2.67 3.42 2.90 3.00 3.17 3.87 3.52

Avg 4.85 7.50 6.39 6.25 6.30 6.14 6.22
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Table 6.4: Spelling Phase Results - Input Error, Input Latency, and Input
per Character Ratio

(a) % Input Error (ε) for each target, averaged across subjects

Speller Txt1 Txt2 Txt3 Single Words Txt4 Txt5 Multiple Words

Ours 0.09 0.04 0.02 0.05 0.02 0.04 0.03
Volosyak 0 0.03 0.11 0.05 0.04 0.05 0.05
Cecotti 0.03 0.02 0.05 0.03 0.04 0.09 0.07

(b) Input latency (E(T )) in seconds for each target, averaged across subjects

Speller Txt1 Txt2 Txt3 Single Words Txt4 Txt5 Multiple Words

Ours 3.66 3.40 3.63 3.60 3.44 3.45 3.45
Volosyak 4.35 3.46 3.93 3.91 3.55 3.31 3.43
Cecotti 3.98 2.95 3.22 3.38 3.25 2.95 3.10

(c) Input/character ratio (C) for each target, averaged across subjects

Speller Txt1 Txt2 Txt3 Single Words Txt4 Txt5 Multiple Words

Ours 4.44 2.40 2.40 3.08 1.58 1.62 1.60
Volosyak 3.33 3.40 2.07 2.93 3.35 4.13 3.74
Cecotti 3.56 3.13 3.43 3.37 3.38 3.84 3.61
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Table 6.5: Simulation Study

(a) Average simulated spelling rates (R) of single-word texts
(Txt1, Txt2, Txt3) for an average of subjects S1-S6, subject
S8, and subject S9. Simulations that failed to produce the
target text are denoted “-”.

Speller Average (S1-S6) S8 S9

Ours 9.45 6.15 3.99
Volosyak 7.26 3.32 -
Volosyak (original) 8.18 3.60 -
Cecotti 6.17 4.40 1.22

(b) Average simulated spelling rates (R) of multiple-word texts
(Txt4, Txt5) for an average of subjects S1-S6, subject S8, and
subject S9. Simulations that failed to produce the target text
are denoted “-”.

Speller Average (S1-S6) S8 S9

Ours 15.1 10.38 1.78
Volosyak 6.29 3.52 -
Volosyak (original) 6.38 3.58 -
Cecotti 6.03 4.49 1.21

(3.74) or Cecotti (3.61) to specify the same characters (Table 6.4c).

6.5.3 Simulation Study

Table 6.5 shows the results of Monte-Carlo simulations. For single-word

texts, the original layout for the speller of Volosyak [197] was, on average,

0.92 cpm faster for S1-S6 than the layout we used in our implementation

of this speller. For multiple-word texts, the original layout of the speller of

Volosyak [197] was 0.09 cpm faster for S1-S6 than the layout we used in our

implementation of this speller.

6.6 Discussion

When asked to specify multiple-word texts, participant performance with

our speller (11.93 cpm) was nearly double that with the compared spellers

(5.69 cpm for the speller of Volosyak [197] and 6.22 cpm for the speller
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of Cecotti [36]). This increase in performance was not due to differences

in input error (Table 6.4a), in input latency (Table 6.4b), or in the size

and shape of visual targets, which were identical. Instead, the performance

increase can be attributed to the reduction in the number of queries required

to determine the desired input character. In particular, when evaluated on

multiple-word texts, our speller required less than half the number of queries

as the spellers of Cecotti [36] or Volosyak [200] to specify a character, on

average (Table 6.4c). Our use of a larger query pool and of IGR as a measure

of performance to be maximized when choosing queries from this pool was

what led to this reduction in the number of required queries.

Despite the fact that users specified texts faster with our speller, results

show that the spelling rate for single-word texts was comparable for all three

interfaces: 7.33 cpm with our speller, 6.32 cpm with the speller of Volosyak

[197], and 6.25 with the speller of Cecotti [36]. We attribute the lower spelling

rate of our interface under these conditions to the higher NLL values of

the single-word texts (Table 6.1). In particular, we observe a clear inverse

relationship between NLL and spelling rate in Table 6.3a: Txt1 had an NLL

of 7.19 and was spelled at a rate of 4.61 cpm, Txt3 had an NLL of 5.31 and was

spelled at a rate of 7.81 cpm, and Txt2 had an NLL of 3.04 and was spelled

at a rate of 9.57 cpm. Both multiple-word texts had lower NLLs—closer

to the average of English text, which is 2 bits per character [14, 124]—and

consequently higher average spelling rates. The reason for this trend is that,

by using a language model, our speller tries to take advantage of the fact that

text with high NLL (e.g., “BCI” as in Txt1) is rare in everyday conversation.

Results from the simulation studies suggest that the increase in perfor-

mance with our speller as compared to the speller of Volosyak [197] was not

due to the small difference in character layout. The fifth row of the charac-

ter grid in our implementation was shifted one character to the right of the

original implementation described in [197]. We simulated performance with

our implementation and compared it with the performance of the original

implementation. These simulations showed no difference between our imple-

mentation (6.38 cpm) and the original (6.29 cpm) for multiple-word texts.

For single-word texts, the original implementation was slightly faster (8.18

cpm) than our implementation (7.26 cpm). We note that the original ver-

sions of the spellers of Volosyak [197] and Cecotti [36] also differed from our

implementations in the locations of the targets. The effect of this change has
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not been investigated further, may have increased overall input latency, and

represents a potential source of error.

One interesting trend that emerged from our study is that the average

input latency of users with our speller (3.60 seconds) was higher than the

average input latency for the speller of Cecotti [36] (3.38 seconds). The input

latency of all three spellers was slower than the average input latency during

training (2.92 seconds). Since the layout of characters in our speller changes

for each query, the user needs to visually search the layout in order to locate

their desired character, slowing target selection in our speller as opposed to

the speller of Cecotti [36]. Our speller was designed to minimize this issue

by displaying characters in a single, alphabetically ordered, row. There may

be conditions, however, when smaller query pools are actually preferable.

Another possible drawback of our speller is that it requires training. This

requirement is a limitation of the design, but it may be possible to either

minimize this training step or to use an online training paradigm. Some

more advanced classifier designs also require training data [87]—it may be

possible to train both the speller and the classifier simultaneously. With

respect to our use of multiple query types, further work would be needed to

characterize the impact of each type of query on overall performance.

6.7 Conclusion

In this chapter, we presented a steady-state visually evoked potential based

brain-computer interface that allowed users to input text by responding to

a sequence of queries. These queries were chosen from a large query pool to

maximize IGR, the expected amount of information to be received per unit

of time about the desired character. The computation of IGR was based

on three models, a language model (that predicted likely characters based

on context) and two models of user performance (input accuracy and input

latency). Experimental results demonstrated that six subjects were able to

use our interface to input multiple-word text at an average of 11.93 cpm,

with one subject achieving an average spelling rate of 16.09 cpm.

There are several ways in which the interface described here could be im-

proved. Input response times could be reduced through the use of different

classifiers (such as those by Lin [112] or Johnson [87]), the shape and size of
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the stimuli could be changed, the number of input classes could be increased,

word completion [196] could be implemented, and different frequencies could

be assigned to the targets. As an example of how these changes might im-

prove the interface, consider the assignment of frequencies to targets. It is

clear from our training data (Table 6.2) that this association matters. For

example, during training subject S2 selected Target 5 (8.57Hz) more than

twice as fast (2.85s) as Target 1 (7.5Hz, 6.07s). In other words, for subject

S2, Target 5 was easier to select than Target 1. If we switch the assignment of

frequencies to targets, we would expect Target 1 (8.57Hz) to be easier to se-

lect than Target 5 (7.5Hz). In our interface, the set of characters with which

Target 1 and Target 5 are associated are different. Thus, when we change the

assignment of frequencies to targets, we expect a specific set of characters

to be easier to select. IGR could be used to determine the best assignment

of frequencies to targets. This could improve the maximum spelling rate of

participants and represents a topic of future work.

6.8 Derivation of Language Model Update Rule

We will proceed to derive Equation (6.3), which says how to update the

language model given an observed target y in response to a query fi. Bayes’

theorem tells us that

pC|Y (c|y) =
pY |C(y|c)pC(c)∑
s∈C pY |C(y|s)pC(s)

(6.10)

for all c ∈ C. Note that

pY |C(y|c) =
∑
x∈U

pY |X,C(y|x, c)pX|C(x|c) (6.11)

=
∑
x∈U

pY |X(y|x)pX|C(x|c) (6.12)

= pY |X(y|fi(c)), (6.13)

where (6.11) follows from the law of total probability, (6.12) follows by as-

sumption that the observed target and the desired character are conditionally

independent given knowledge of the desired target, and (6.13) follows by as-
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sumption of zero user error in response to a query, since in this case

pX|C(x|c) =

1 if fi(c) = x

0 otherwise.

After substitution of (6.13) into (6.10), we arrive at (6.3).

6.9 Derivation of Information Gain Rate

We will proceed to derive Equations (6.7)-(6.9), which are used to compute

the IGR. Equation (6.7) follows from the definition of conditional probability.

Equation (6.8) follows from the law of total probability. Equation (6.9)

follows from the law of total probability

pX(x) =
∑
c∈C

pX|C(x|c)pC(c)

and by assumption of zero user error in response to a query, since in this case

pX|C(x|c) =

1 if fi(c) = x

0 otherwise.
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CHAPTER 7

CONCLUSION

This dissertation described five fundamental contributions to the design of

SSVEP-based BCIs.

• In Chapter 2, we described a new method for investigating how SSVEPs

are generated in the brain, one that is based on the elicitation of

SSVEPs during sleep. This study provided a theoretical motivation

for eliciting SSVEPs during sleep, experimental evidence that SSVEPs

can be elicited during sleep, and supplemental data that suggests that

SSVEPs elicited during sleep are larger in amplitude than those elicited

during waking.

• In Chapter 3, the performance of children using an SSVEP-based BCI

for target selection was reported, and this data was compared to data

from adults using the same SSVEP-based BCI. The data showed that

children were able to use an SSVEP-based BCI with an accuracy that

is much greater than previously believed. Furthermore, the target se-

lection accuracy of the 11 children who completed the experimental

phase of our study was very similar to the target selection accuracy of

the adults. This work was only the second study to investigate SSVEP-

based BCIs for children.

• In Chapter 4, a new epidermal electronic system electrode was pre-

sented. The electrode can record EEG from non-hair bearing regions

without electrolyte gel or a mechanical fastener. In addition, this new

electrode has the appearance of a second skin, conforming to the wearer.

These properties increase the likelihood that a user would wear this sys-

tem outside of the research laboratory.

• In Chapter 5, a potential application for SSVEP-based BCIs in those

without disabilities was discussed. In this chapter, we also reported one
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of the only comparisons between SSVEP-based BCIs and traditional

input mechanisms. There is a perception within the field of brain-

computer interfacing that, when targeting users without disabilities,

BCIs are low performing replacements for existing input mechanisms.

The experiments reported in Chapter 5 challenged that perception.

They showed that inputs obtained from an SSVEP-based BCI on a

desktop were non-inferior to those obtained through speech recognition

or touch gestures. In the very specific case of a binary selection task,

SSVEP-based BCIs may provide performance that is as good, or better

than other methodologies. One potential application for such a BCI

would be in augmented or virtual reality systems.

• Finally, in Chapter 6, the design of an SSVEP-based BCI for text-entry

is presented. This system enabled users to input character selections

nearly twice as fast as two existing SSVEP-based BCI interfaces imple-

mented for the purpose of comparison. While a more recent SSVEP-

based BCI for text-entry has achieved even higher performance [38],

the system we described only used five stimuli to make selections, while

Chen et al. [38] used 40. The use of fewer stimuli may be particularly

applicable in the case of those with disabilities, such as LIS, who have

limited ability to move their eyes.

7.1 Future Work

Each of the five studies presented in this dissertation raised new questions

that could be the focus of future research.

• SSVEPs can be elicited during sleep (Chapter 2). Experimental evi-

dence from our study as well as a study by Sharon and Nir [181] suggest

that SSVEPs elicited during sleep are different than those elicited dur-

ing waking. Neither our study nor the study by Sharon and Nir [181]

accounted for dark adaptation. This makes it difficult to determine

whether the differences in SSVEPs observed were due to sleep or dark

adaptation. In addition, the combined data from two studies only con-

sidered a few of the variables (e.g. frequency and color) that are known

to impact the amplitude of SSVEPs. Therefore, it remains unclear
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how exactly the morphology of SSVEPs change with sleep. Further

research that shows how sleep affects SSVEPs may then allow us to

test hypotheses about how these signals are generated in the brain.

• Data reported in Chapter 3 show that 9-11 year old children can use

an SSVEP-based BCI for target selection. Of the 14 children who

participated, 3 were unable to exceed the threshold for inclusion into

the experimental phase. We posed several possible explanations for

this result. First, it is possible that the children were not engaged

with the task. Another explanation is that developmental differences

between children and adults explain the differences observed in the

experiments. It is also possible that random chance is the reason that

all of the adults met the criteria for inclusion while three children were

excluded. Resolving which of these hypotheses (or others) to explain

why some children performed poorly during the training phase would

contribute greatly to the development of BCIs for children.

Given the overall performance of the children included in the experi-

mental phase of our study, it is also of interest to determine how well

younger children perform when using an SSVEP-based BCI. Investigat-

ing a younger age group could simultaneously extend our understanding

of who can use an SSVEP-based BCI and may help us to understand

why some children performed poorly during the training session. If

younger children can also use the SSVEP-based BCI, this may enable

new applications for these systems for children with or without physical

disabilities.

• The EES electrodes presented in Chapter 4 have the potential to enable

unobtrusive long-term EEG recording outside of the laboratory. There

are many ways, however, that the current design could be improved.

For example, different metals (instead of gold) could reduce cost or

increase signal quality, a conductive coating might improve contact, or

better connectors could ease electrode placement and longevity.

• The experiments described in Chapter 5 require careful consideration.

Our data show that the SSVEP-based BCI on a desktop computer was

non-inferior to two traditional input mechanisms for augmented and

virtual reality applications. Non-inferiority tests, however, should be
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based on an a priori hypothesis, not a post hoc analysis. Therefore,

at a minimum, our experiments should be replicated. If SSVEP-based

BCIs are non-inferior to the two input mechanisms that we tested, they

may be slower or less accurate than other untested input mechanisms.

Non-inferiority tests are implicitly designed to answer the question of

whether two systems are close enough in performance that any differ-

ences are not important. This evokes the question of how much of a

difference in performance matter. Even more interestingly, are percep-

tions of differences in performance between two input mechanisms the

same as the actual performance differences? It is intriguing to consider

that maybe SSVEP-based BCIs are perceived as being slow, when in

fact, their performance is as good or better than other input mecha-

nisms.

• Building on our work on the SSVEP-based BCI user interface. There

are many ways that our text-entry system could be improved. A larger

pool of queries could be considered, models of user performance could

be updated in real-time, and the dictionary could be vastly reduced

to consider only words that an SSVEP-based BCI user may want to

input. Perhaps the more important question to ask is why SSVEP-

based BCIs for text-entry merit further development? These systems

are often purported to be for those with physical disabilities, but are

always tested on people without physical disabilities.

Taken together, the five contributions described in this dissertation each

move a step toward solving the challenges facing the design of SSVEP-based

BCIs. As a result, these challenges can be more clearly defined and the

potential uses of SSVEP-based BCIs can be better understood. Through

continued research, the long-term goal of a useful BCI for those with or

without disabilities will be achieved, and Vidal’s vision of a genuine prosthetic

for the brain will be realized.
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