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Abstract

Modeling and analyzing Mobile Ad-hoc Networks (MANETs) pose non-trivial challenges to formal methods.
Time, geometry, communication delays and failures, mobility, and uni- and bidirectional wireless communi-
cation can interact in unforeseen ways that are hard to model and analyze by current process calculi and
automatic formal methods. As a consequence, current analyses tend to abstract away these physical aspects,
so that—although still quite useful in finding various errors—their simplifying assumptions can easily fail to
model details of MANET behavior relevant to meet desired requirements. In this work we present a formal
framework for the modeling and analysis of MANETS based on Real-Time Maude to address this challenge.
Specifically, we show that our framework has good expressive power to model relevant aspects of MANETs,
and good compositionality properties, so that a MANET protocol can be easily composed with various mod-
els of mobility and with other MANET protocols. We illustrate the use of our framework on two well-known
MANET benchmarks: the AODV routing protocol and the leader election protocol of Vasudevan, Kurose,
and Towsley. Our formal analysis has uncovered a spurious behavior in the latter protocol that is due to
the subtle interplay between communication delays, node movement, and neighbor discovery. This behavior
therefore cannot be found by analyses that abstract from node movement and communication delays.
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1. Introduction

Mobile Ad-hoc Networks (MANETs) are self-configuring networks made up of mobile nodes (laptops,
smart phones, vehicles, sensors, etc.) connected by wireless links. They are increasingly popular and well
suited for deployment in ad-hoc environments. They have an extensive range of applications, including
wireless sensor networks, ambient intelligence, personal area networks and wireless local area networks,
cooperating “smart” cars, alternative communication infrastructure for emergency response during accidents
and natural disasters, which may disable other existing infrastructure, and so on.

The formal analysis of MANETs is challenging, because the relevant requirements for correctness and
performance are themselves non-trivial and go beyond the usual requirements for standard network protocols.
In particular, both mobility and wireless communication under mobility are essential for MANETs and need
to be seriously taken into account when analyzing them under realistic patterns of node movement. Only thus
can MANET protocol designers reasonably determine whether or not a MANET protocol implementation
will be useful and will meet its desired requirements.

1.1. Formal Modeling and Analysis Challenges
Both mobility and wireless communication in MANETs depend on physical characteristics such as: (i)

geometric location of nodes; (ii) speed and direction of mobile nodes; (iii) wireless transmission ranges based
on each node’s battery power and distance between nodes; and (iv) communication delays in both the
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sender and the receiver. Therefore, although usually not described that way, MANETs are in fact cyber-
physical systems (CPSs). This means that their formal modeling, and the formal verification of their relevant
requirements must sufficiently address essential physical characteristics such as mobility and communication
and their interactions. For example, a moving node may be within range of another node when the other
node started a message send, but may have already moved out of such a range by the time when the
message is actually sent. Furthermore, as usual with many other CPSs, there is no easy separation between
correctness requirements, including safety-critical ones, and physical behavior, since timing, distance, motion,
and other physical, quantitative aspects may be essential for correct behavior.

All this means that the formal modeling and analysis of MANETs presents a number of nontrivial
challenges, including:

1. The need to model node movement realistically.

2. Modeling communication. There is a subtle interaction between wireless communication, which typi-
cally is restricted to distances of between 10 and 100 meters, and node mobility. For example, nodes
may move into, or out of, the sender’s transmission range during the communication delay; further-
more, the sender may itself move during the communication. Modeling communication in MANETs is
therefore challenging for process languages, which are usually based on fixed communication primitives.

3. Since the communication topology of the network depends on the physical locations of the nodes, such
locations must be taken into account in the model. However, if not handled carefully this can lead to
very large state spaces, which can makes direct model checking analysis unfeasible.

We discuss related work on the formal analysis of MANETs in much more detail in Section 6. Such work
includes research where MANETS are expressed in the languages of various model checkers, e.g., [4, 8, 12, 19],
and approaches representing MANETs in various process calculi, e.g., [34, 35, 17, 29, 46, 15, 18, 30, 11, 13,
46, 16, 45, 31, 21, 47, 48, 28, 26, 27, 51, 52, 53]. We can summarize our more detailed discussion in Section
6 by stating that in prior work on the formal analysis of MANETs there is still a substantial gap between
a more abstract modeling level—at which various physical aspects are omitted—and the actual level at
which MANETs need to be analyzed to take into account those physical aspects essential to ensure that
relevant requirements are met. Of course, any actual errors found even at a more abstract level are still
very valuable. The main issue, however, is that other realistic potential problems may be easily abstracted
away when they are not reflected in the given formal model. This fact is illustrated by our analysis in
Section 5 of the well-known leader election algorithm by Vasudevan, Kurose, and Towsley [50], where our
analysis has uncovered a spurious behavior that is due to a very subtle interplay between node movement,
communication delays, and neighbor discovery. This problematic behavior therefore cannot be found using
standard formal analysis methods that abstract away node movement and communication delays.

1.2. An Expressive Formal Modeling and Analysis Framework for MANETS
To meet above challenges (1)—(3) a suitable formal and analysis framework for MANETS is needed.

To the best of our knowledge this is not yet available in prior work, and is therefore a key motivation
behind the present work. We see: (i) expressiveness to meet challenges (1)—(3); and (ii) compositionality
as two main requirements that such a formal framework should meet. Requirement (i) is obvious from the
prior discussion. The need for requirement (ii) is amply illustrated throughout the paper but deserves some
explanation. The key point is that, typically, the formal requirements of a MANET protocol will need to
be analyzed under various assumptions such as:

• various mobility models;

• various wireless communication models, such as unidirectional or bidirectional communication; and

• possibly in composition with other auxiliary protocols.
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To put it briefly, to address relevant requirements formal analyses will almost never consider the given
MANET protocol in isolation: they will need to consider it in composition with other formal models of
mobility, communication, and of other MANET protocols. Compositionality, therefore, becomes a highly
desirable feature of a MANET formal framework.

Our proposed answer to the expressiveness requirement for a MANET formal framework is the use of
Real-Time Maude [38]. Because of its expressiveness and flexibility to define models of communication—
and to model physical aspects such as geometric location, speed, and distance—as we show in the paper
Real-Time Maude is well suited for formally modeling MANETs and, to the best of our knowledge, provides
for the first time a reasonably detailed formal modeling framework for them. In particular, we formalize in
Real-Time Maude:

• the most popular models for node mobility, and

• geographically bounded wireless communication, which takes into account the interplay between com-
munication delay and mobility,

Concerning Challenge (3) above, we provide a partial answer, yet sufficient to analyze in detail and
uncover substantial issues in MANET protocols such as AODV and LE that we discuss in the paper. To
make model checking analysis feasible while faithfully representing the relevant physical aspects, we make
our models parametric in aspects such as the possible velocities and directions a node can choose. However,
even if a node moves slowly, given enough time it may still cover the entire area (and hence contribute to an
unmanageable state space). To avoid this second problem we use Real-Time Maude’s time-bounded model
checking command, which allows us to analyze scenarios only up to a certain duration. Admittedly, a full
answer to Challenge (3) will require developing suitable abstraction techniques for MANETs that we leave
for future research. The point, however, is that, by providing a first reasonably detailed formal model of
location-aware MANETs, this paper lays the foundations for developing such abstractions, so that they can
still model the relevant features at a more abstract level.

Our proposed answer to the compositionality requirement is twofold. On the one hand, we specify all our
models modularly and make them parametric; and then exploit Real-Time Maude’s powerful composition
features such as module hierarchies and object-oriented multiple class inheritance, to define suitable model
compositions. On the other hand, we provide, to the best of our knowledge for the first time, a new
compositional methodology for combining various models of real-time systems in such a way that the time
behaviors of each model can be specified in isolation, but can be seamlessly integrated when the various
models are composed.

1.3. Our Contributions
We can summarize our contributions as follows:

1. We provide a formal framework for MANETS satisfying the expressiveness and compositionality re-
quirements already discussed in Section 1.2.

2. We illustrate the practical usefulness of the framework and its main features by:

(a) developing in detail various well-known models of node mobility, of wireless communication, and
of the interaction between mobility and communication;

(b) composing such models with two well-known MANET protocols, namely: (a) the widely used Ad
hoc On-Demand Distance Vector [40] (AODV) routing protocol for MANETs developed by the
IETF MANET working group; and (b) the well-known leader election (LE) protocol of Vasudevan,
Kurose, and Towsley [50]; and

(c) formally analyzing by model checking key properties of both AODV and LE.

3. We present a new compositional methodology for combining various models of real-time systems in
such a way that the time behaviors of each model can be specified in isolation, but can be seamlessly
integrated when composed, and exploit this methodology when combining MANET protocols with
other MANET protocols and with various mobility models.
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The present paper is based on two earlier conference papers, one discussing the modeling analysis results
for the AODV protocol [24], and another discussing similar modeling and analysis results for LE [25]. Besides
giving a more comprehensive account of, and a broader perspective on, the proposed formal framework and
its features, and of giving considerably more technical details and explanations, the following contributions
are new and cannot be found in those previous papers: (i) the formalization of the random direction mobility
model; (ii) a new, formal specification of all the mobility models that makes the various computations much
simpler and precise (staying within the rationals for all but one mobility model); and (iii) solving for the
first time the problem of how the timed behaviors of multiple Real-Time Maude specifications—including
MANET protocols and their mobility models—can be specified in isolation, yet can be seamlessly composed,
thus obtaining the timed behavior of the desired composition. Besides being essential for the proposed
MANET framework, this new method of combining timed behaviors is totally general and should be very
useful for composing larger real-time specifications out of a family of reusable components in many other
application areas.

The paper is organized as follows: Section 2 gives some background on Real-Time Maude, popular models
for node mobility, and wireless communication in MANETs. Section 3 presents our framework for modeling
MANETs in Real-Time Maude, and for composing multiple MANET protocol specifications and mobility
models. Sections 4 and 5 illustrate how our framework has been used to mode and analyze the routing
protocol AODV and the leader election protocol LE, respectively. Finally, Section 6 discusses related work
and Section 7 gives some concluding remarks.

2. Preliminaries

This section gives some necessary background about: (i) Real-Time Maude (Section 2.1), (ii) the most
popular models of node mobility used in MANET protocol evaluation (Section 2.2), and (iii) wireless com-
munication in MANETs (Section 2.3).

2.1. Real-Time Maude
Real-Time Maude [38, 36] is a language and tool that extends Maude [9] to support the formal spec-

ification and analysis of real-time systems. The specification formalism is based on real-time rewrite the-
ories [37]—an extension of rewriting logic [5, 32]—and emphasizes ease and generality of specification.
Real-Time Maude specifications are executable under reasonable assumptions, and the tool provides a vari-
ety of formal analysis methods, including simulation, reachability analysis, and LTL and timed CTL model
checking.

2.1.1. Rewriting Logic Specification in Maude
A membership equational logic (Mel) [33] signature is a triple Σ = (K,Σ, S) with K a set of kinds,

Σ = {Σw,k}(w,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K a K-kinded family of disjoint sets of
sorts. The kind of a sort s is denoted by [s]. A Σ-algebra A consists of a set Ak for each kind k, a function
Af : Ak1 × · · · × Akn → Ak for each operator f ∈ Σk1···kn,k, and a subset inclusion As ⊆ Ak for each sort
s ∈ Sk. The set TΣ,k denotes the set of ground Σ-terms with kind k, and TΣ(X)k denotes the set of Σ-terms
with kind k over the set X of kinded variables.

A Mel theory is a pair (Σ, E) with Σ a Mel-signature and E a finite set of Mel sentences, which are
either conditional equations or conditional memberships of the forms:

(∀X) t = t′ if
∧

i

pi = qi ∧
∧
j

wj : sj , (∀X) t : s if
∧

i

pi = qi ∧
∧
j

wj : sj ,

where t, t′ ∈ TΣ(X)k and s ∈ Sk for some kind k ∈ Σ, the latter stating that t is a term of sort s, provided the
condition holds. In Maude, an individual equation in the condition may also be a matching equation pl := ql,
which is mathematically interpreted as an ordinary equation. However, operationally, the new variables
occurring in the term pl become instantiated by matching the term pl against the canonical form of the
instance of ql (see [9] for further explanations). Order-sorted notation s1 < s2 abbreviates the conditional
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membership (∀x : [s1]) x : s2 if x : s1. Similarly, an operator declaration f : s1 × · · · × sn → s corresponds
to declaring f at the kind level and giving the membership axiom (∀ x1 : [s1], . . . , xn : [sn]) f(x1, . . . , xn) :
s if

∧
1≤i≤n xi : si.

A Maude module specifies a rewrite theory [5, 32] of the form (Σ, E ∪ A,R), where: (i) (Σ, E ∪ A) is a
membership equational logic theory specifying the system’s state space as an algebraic data type with A a
set of equational axioms (such as a combination of associativity, commutativity, and identity axioms), to
perform equational deduction with the equations E (oriented from left to right) modulo the axioms A, and
(ii) R is a set of labeled conditional rewrite rules specifying the system’s local transitions, each of which has
the form:

l : q −→ r if
∧

i

pi = qi ∧
∧
j

wj : sj ∧
∧
m

tm −→ t′m,

where l is a label, and q, r are Σ-terms of the same kind. Intuitively, such a rule specifies a one-step transition
from a substitution instance of q to the corresponding substitution instance of r, provided the condition holds;
that is, that the substitution instance of each condition in the rule follows from R.

We briefly summarize the syntax of Maude (see [9] for more details). Sorts and subsort relations
are declared by the keywords sort and subsort, and operators are introduced with the op keyword:
op f : s1 . . . sn -> s, where s1 . . . sn are the sorts of its arguments, and s is its (value) sort. Opera-
tors can have user-definable syntax, with underbars ‘_’ marking each of the argument positions, and are
declared with the sorts of their arguments and the sort of their result. Some operators can have equational
attributes, such as assoc, comm, and id, stating, for example, that the operator is associative and commuta-
tive and has a certain identity element. Such attributes are then used by the Maude engine to match terms
modulo the declared axioms. An operator can also be declared to be a constructor (ctor) that defines the
data elements of a sort. The frozen attribute declares which argument positions are frozen; arguments in
frozen positions cannot be rewritten by rewrite rules [9].

There are three kinds of logical statements in the Maude language, equations, memberships (declaring
that a term has a certain sort), and rewrite rules, introduced with the following syntax:

• equations: eq u = v or ceq u = v if condition;

• memberships: mb u : s or cmb u : s if condition;

• rewrite rules: rl [l]: u => v or crl [l]: u => v if condition.

An equation f(t1, . . . , tn) = t with the owise (for “otherwise”) attribute can be applied to a term f(. . .)
only if no other equation with left-hand side f(u1, . . . , un) can be applied.1 The mathematical variables in
such statements are either explicitly declared with the keywords var and vars, or can be introduced on the
fly in a statement without being declared previously, in which case they have the form var : sort. Finally, a
comment is preceded by ‘***’ or ‘---’ and lasts till the end of the line.

2.1.2. Object-Oriented Specification in Real-Time Maude
A Real-Time Maude timed module specifies a real-time rewrite theory R = (Σ, E ∪A,R) [37], where:

• (Σ, E ∪ A) contains an equational subtheory (ΣTIME , ETIME) ⊆ (Σ, E ∪ A), satisfying the TIME
axioms that specifies sort Time as the time domain (which can be discrete or dense). Although a
timed module is parametric on the time domain, Real-Time Maude provides some predefined mod-
ules specifying useful time domains. For example, the modules NAT-TIME-DOMAIN-WITH-INF and
POSRAT-TIME-DOMAIN-WITH-INF define the time domain to be, respectively, the natural numbers and
the nonnegative rational numbers, and contain the subsort declarations Nat < Time and PosRat
< Time. The supersort TimeInf extends the sort Time with an “infinity” value INF.

1A specification with owise equations can be transformed to an equivalent system without such equations [9].
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• The rules in R are decomposed into: (i) “ordinary” rewrite rules specifying the system’s instantaneous
(i.e., zero-time) local transitions, and (ii) tick (rewrite) rules that model the elapse of time in a system,
having the form l : {t} u−→ {t′} if condition, where t and t′ are terms of sort System, u is a term of
sort Time denoting the duration of the rewrite, and {_} is a built-in constructor of sort GlobalSystem.
In Real-Time Maude, tick rules, together with their durations, are specified using the syntax

crl [l]: {t} => {t′} in time u if condition.

The initial state must be reducible to a term {t0}, for t0 a ground term of sort System, using the equations
in the specification. The form of the tick rules then ensures uniform time elapse in all parts of a system.

Real-Time Maude is particularly suitable to formally model distributed real-time systems in an object-
oriented style. Each term t in a global system state {t} is in such cases a term of sort Configuration (which
is a subsort of System), and has the structure of a multiset made up of objects and messages. Multiset union
for configurations is denoted by a juxtaposition operator _ _ (empty syntax) that is declared associative and
commutative and having the none multiset as its identity element, so that rewriting is multiset rewriting
supported directly in Maude.

In object-oriented timed modules one can declare classes, subclasses, and messages. A class declaration
class C | att1 : s1,...,attn : sn declares a class C with attributes att1, . . . , attn of sorts s1, . . . , sn. An
object of class C is represented as a term of sort Object and has the form

< O : C | att1 : val1,...,attn : valn >,

where O is the object’s identifier, and val1, . . . , valn are its attribute values of sort s1, . . . , sn. A subclass,
introduced with the keyword subclass, inherits all the attributes, equations, and rules of its superclasses.
A message is a term of sort Msg, where the declaration msg m : s1 . . . sn -> Msg defines the syntax of
the message (m) and the sorts (s1 . . . sn) of its parameters.

The dynamic behavior of concurrent object systems is axiomatized by specifying each of its transition
patterns by a rewrite rule. For example, the rewrite rule

rl [l]: m(O,w)
< O : C | a1 : x, a2 : O’, a3 : z, a4 : y >

=>
< O : C | a1 : x + w, a2 : O’, a3 : z, a4 : y >
dly(m’(O’,x), y)

defines a parametrized family of transitions in which a message m, with parameters O and w, is read and
consumed by an object O of class C, the attribute a1 of the object O is changed to x + w, and a new message
dly(m’(O’,x), y) is generated. The latter message has message delay y, and will become the “ripe”
message m’(O’,x) after time y has elapsed. The message m(O,w) is removed from the state by the rule,
since it does not occur in the right-hand side of the rule. Likewise, the “delayed” message dly(m’(O’,x),
y) is generated by the rule, since it only occurs in the right-hand side of the rule. By convention, attributes
whose values do not change and do not affect the next state of other attributes or messages, such as a3 in
our example, need not be mentioned in a rule. Similarly, attributes whose values influence the next state of
other attributes or the values in messages, but are themselves unchanged, such as a2 and a4, can be omitted
from right-hand sides of rules.

2.1.3. Formal Analysis in Real-Time Maude
We summarize below some of Real-Time Maude’s analysis commands. Real-Time Maude’s timed fair

rewrite command
(tfrew t in time <= τ .)

simulates one behavior of the system within time τ from the initial state t. The timed search command

(tsearch [n] t =>* pattern such that condition in time <= τ .)
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analyzes all possible behaviors by using a breadth-first strategy to search for n states that are reachable from
the initial state t within time τ , match the search pattern, and satisfy the search condition. The untimed
search command utsearch is similar, but without the time bound.

The Real-Time Maude’s linear temporal logic (LTL) model checker checks whether each behavior from
an initial state, possibly up to a time bound, satisfies an LTL formula. State propositions are declared as
operators of sort Prop, and their semantics are given by equations of the forms

eq {statePattern} |= prop = b and ceq {statePattern} |= prop = b if condition

for b a term of sort Bool, which defines the state proposition prop to hold in all states {t} where {t} |= prop
evaluates to true. An LTL formula is constructed by state propositions and temporal logic operators such
as True, ~ (negation), /\, \/, -> (implication), [] (“always”), <> (“eventually”), and U (“until”). Then, the
unbounded (resp., time-bounded) model checking commands

(mc t |=u ϕ .) and (mc t |=t ϕ in time <= τ .)

check whether the formula ϕ holds in all behaviors from the initial state t (resp., within time τ).
Real-Time Maude is also equipped with a timed CTL model checker to analyze metric temporal logical

properties [22, 23].

2.2. Models of Node Mobility
A key feature of mobile ad hoc networks is node mobility. In order to analyze the performance of

MANETs under realistic scenarios, researchers on MANET protocol evaluation have developed a number
of node mobility models, defining common realistic node movement patterns. Such node mobility models
can be divided into group mobility models, where the nodes’ movements depend on each other, and entity
mobility models, where a node’s movement is independent of the movements of other nodes.

This paper focuses on entity mobility models within a given convex (two-dimensional) area. The main
entity mobility models in protocol evaluation are random walk, random waypoint, and random direction,
which can be summarized as follows [6]:

Random Walk. A node that moves according to the random walk model moves in “rounds” of fixed
durations. A node moves in the same direction and with the same speed throughout a round. At the
end of each round, the node randomly selects the new speed and direction from given ranges of possible
velocities and directions, and starts a new round by walking with the new speed in the new direction.
If a node reaches the boundary of the area, it “bounces” off the boundary with an angle determined
by the incoming direction and continues along this new path [6].

Random Waypoint. A node that moves according to the random waypoint mobility model initially pauses
for a fixed duration. It then randomly selects a new destination (from a given set of possible destina-
tions) and a new speed (from a given set of possible velocities), and travels to the selected destination
with the selected speed. After arriving, the node again pauses for the fixed duration before a new
moving round starts.

Random Direction. A node that moves according to the random direction model first randomly selects
the new direction and speed. The node then starts moving in the selected direction with the selected
speed until it reaches the boundary of the area. When the node reaches the boundary, it pauses for
a fixed duration, and then randomly selects a new direction and new speed and starts moving in the
new direction.

These mobility models are illustrated in Fig. 1. In addition, a number of formal methods approaches to
MANET analysis also consider the stationary (mobility) model, in which the nodes do not move at all (see,
e.g., [8, 13, 34, 31]).

Note that the random direction model can be regarded as a special case of the random waypoint model
(where the set of possible next destinations are restricted to points on the area boundary). Furthermore,
the stationary model is a special case of all models when the range of possible velocities is [0, 0].

7



Figure 1: Motion paths of a mobile node in three mobility models, where a bullet • depicts a pause in the movement.

2.3. Wireless Communication in MANETs
One of the important, but subtle, issues in mobile ad hoc networks, in which nodes communicate wire-

lessly, is the combination of node mobility, wireless transmission range, and communication delay. In
particular, both a sender and a potential receiver could move during a communication event, so that the
potential receiver could possibly move into, or out of, the transmission range of the sender, which itself could
be moving. To understand how node movement affects wireless communication, it is therefore necessary to
understand the nature of messaging delays in wireless communication.

Wireless Communication. Nodes in a MANET typically communicate wirelessly, e.g., by radio transmission,
so that only those nodes that are within the transmission range of the sending node can receive a message
with sufficient signal strength. Different nodes may transmit with different signal strength, which means
that nodes have different transmission ranges. Furthermore, a node may also dynamically adjust its sending
power, for example to save energy, which happens in, e.g., topology control algorithms.

Wireless communication supports both (one-hop) broadcast (within the sender’s transmission range),
(one-hop) multicast, and (one-hop) unicast, since nodes may communicate at different radio frequencies—
which may be known to all nodes (broadcast), a group of nodes, or just a pair of nodes (unicast channels).
Furthermore, a communication channel can, at a given time, be either bidirectional (both nodes can reach
each other with messages), or unidirectional, if the transmission range of one node is too short for a trans-
mitted message to reach the other node, whereas the transmission range of the other node is broad enough
to reach the first node. Figure 2 shows a system with three nodes, A, B, and C, with transmission ranges
rA, rB, and rC, respectively. The communication “channel” between A and B would be bidirectional, since
a signal from A reaches B, and vice versa. The communication “channel” between A and C, however, is
unidirectional, since a signal from A can reach C, but not vice versa. Finally, there is no communication
channel between B and C.

Two different signals in the network at the same time can cause electromagnetic interference. Nodes
therefore typically execute a media access control (MAC) protocol before transmitting a message to try to
ensure that the appropriate communication channels are clear.

Communication Delay. In a typical wireless transmit/receive process, the per-hop delay, i.e., the communi-
cation delay from a transmitter to a receiver, consists of the following five parts [42]:
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Figure 2: Three nodes and their transmission ranges.

Delay Factor Description
Sender Processing Delay The duration elapsed on the sender side from the moment

a message timestamp is taken to the point the message is
buffered in the device.

Media Access Delay The duration for a message to stay in the radio device
buffer; e.g., in a CSMA system, this is the delay waiting
for a clear channel to transmit.

Transmit Delay The duration for a radio device to transmit a message over
a radio link.

Radio Propagation Delay The duration for a message to propagate through the air to
a receiver.

Receiver Processing Delay The duration spent on the receiver side to pass the received
message from the device buffer to the application module.

The media access delay depends on the MAC protocol used and the network traffic.
We can typically abstract from the radio propagation delay, since the transmission range in MANETs

usually is between 10 and 100 meters, while the radio propagation speed is approximately 3 × 108 meters
per second. This means that we can consider the per-hop communication delay to consist of two parts:

1. The delay at the sender side, which includes the sender processing delay, the media access delay, and
the transmit delay.

2. The delay at the receiver side, which includes the receiver processing delay.

3. Modeling MANETs in Real-Time Maude

This section shows how MANETs, with nodes that move and communicate as explained in Section 2,
can be modeled in Real-Time Maude. This specification of MANETs was used in the two case studies
reported in Sections 4 and 5. A key challenge addressed in this section is the formalization of mobility and
communication that takes into account the possibility of node movement during communication.

In particular, Section 3.2 explains how mobile nodes and the four mobility models (which include the
stationary model) in Section 2.2 can be formalized in Real-Time Maude. Section 3.3 shows how we have
specified wireless communication in MANETs, including wireless unicast, multicast, and broadcast, in Real-
Time Maude.

A key point is that our definition of MANETs communication and mobility models should be composable
with a specification of a MANET protocol. This would allow a modeler to specify a MANET protocol without
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having to take into account the underlying communication and mobility models; this protocol specification
could then be composed with the desired mobility model. Section 3.4 explains how we can compose a
protocol specification with one (or more, in case different nodes follow different movement patterns) of our
predefined mobility models. In addition, it is sometimes needed to compose multiple MANET protocols. For
example, the leader election protocol LE must be combined with a routing protocol to support multi-hop
communication, a neighbor discovery protocol, and with mobility models. Section 3.4 also explains how
multiple MANETs protocol specifications can be easily composed. Such compositions enable a modeling
methodology where each protocol can be specification in isolation, without cluttering the specification with
mobility and communication issues, or with other protocols.

3.1. Some Basic Data Types
Like other papers we have seen on MANET analysis, we assume that nodes move in a two-dimensional

rectangle with size Xsize× Ysize. A location in this area is therefore represented as a pair x . y of rational
numbers:

sorts Point Location . subsort Location < Point .
op _._ : Rat Rat -> Point [ctor] .

vars X Y : Rat .
cmb X . Y : Location if 0 <= X and X <= Xsize /\ 0 <= Y and Y <= Ysize .

Two of the mobility models select the new speed and direction at the same time. We therefore represent
the combination of speed and direction by a vector < xSpeed , ySpeed > of sort SpeedVector, where
xSpeed denotes the distance traveled along the x-axis during one time unit, and ySpeed represents the
distance traveled along the y-axis during the same time unit:

sort SpeedVector .
op <_,_> : Rat Rat -> SpeedVector [ctor] .

We also assume a sort SpeedVectorRange, and (for random waypoint mobility) sorts DestinationRange,
and VelocityRange, denoting sets of, respectively, SpeedVector, Location, and nonnegative rational num-
ber elements. We do not further specify the different powersets, whose elements could be unions of dense
intervals or of single points, or both. Since the nodes may need to nondeterministically select a new speed, a
new next destination, and/or a new next direction, we assume for generality’s sake that there is an operator
choose that can be used in rules to nondeterministically select any value in the respective set:

op choose : SpeedVectorRange -> Choice [ctor] .
op choose : DestinationRange -> Choice [ctor] .
op choose : VelocityRange -> Choice [ctor] .
op [_] : SpeedVector -> Choice [ctor] .
op [_] : Location -> Choice [ctor] .
op [_] : Rat -> Choice [ctor] .

We assume that an element e can be chosen from a set S if choose(S) rewrites to [e] in zero or more steps.
In the case studies in this paper, the different ranges are all finite sets of the form e1 ; e2 ; . . . ; en,

where the set union operator _;_ is declared to be associative and commutative. For example, the sort
SpeedVectorRange is defined as follows in our case studies:

sort SpeedVectorRange .
subsort SpeedVector < SpeedVectorRange .
op empty : -> SpeedVectorRange [ctor] .
op _;_ : SpeedVectorRange SpeedVectorRange -> SpeedVectorRange [ctor assoc comm id: empty] .

The following rewrite rule then specifies that any element from such a set of speed vectors can be
nondeterministically selected:

var SV : SpeedVector . var SVR : SpeedVectorRange .
rl [chooseSpeedAndDirection] : choose(SV ; SVR) => [SV] .
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3.2. Modeling Node Mobility
We model a MANET in an object-oriented style, where the state of the system consists of a collection

of objects, representing mobile nodes, and a set of messages traveling between these objects. As is common
in network simulations, and following the survey [6] on mobility models for mobile ad hoc network research,
which does not even mention node collisions, we abstract from the size of the mobile nodes and therefore
also abstract from node collisions.

Each mobile node is modeled as an object instance of some subclass of the following class Node:

class Node | currentLocation : Location, transRange : PosRat .

The attributes currentLocation and transRange denote the node’s current location and transmission
range, respectively.

A stationary node is modeled as an object instance of the subclass StationaryNode that does not add
any new attributes to Node:

class StationaryNode .
subclass StationaryNode < Node .

A mobile node is modeled as an object instance of a subclass of the class MobileNode:

class MobileNode | speedVector : SpeedVector, timer : TimeInf .
subclass MobileNode < Node .

where the attribute speedVector denotes the node’s current speed vector (giving its current velocity and
direction). The timer attribute is used to ensure that a node changes its movement (or lack thereof) in a
timely manner; that is, timer denotes the time remaining until some discrete event must take place.

The different mobility models are then specified in subclasses of MobileNode as follows.

Random Walk. Recall that a node moving according to the random walk model is moving in time intervals
of length movingTime. At the end of an interval the node nondeterministically chooses a new speed and a
new direction for its next interval. If in the meantime the node hits the boundary of the area, it “bounces
off” the boundary like a billiard ball. A random walk node is modeled by an object instance of the following
subclass RWNode:

class RWNode | speedVectorRange : SpeedVectorRange, boundaryTimer : TimeInf .
subclass RWNode < MobileNode .

The attribute speedVectorRange denotes the set of possible next speed vectors. The timer attribute
inherited from its superclass denotes the time remaining of its current move period. The boundaryTimer
attribute denotes the time until the node hits the area boundary. In case the node is not expected to hit
the area boundary during its current move, this timer is turned off; i.e., has the “infinity” value INF.

The instantaneous behavior of the mobility part of a random walk node can be modeled by the following
rewrite rules. In the startNewMove rule, the node is finishing one interval (the timer attribute is 0), and
must select the speed and the direction for its next round, reset the timer to expire at the end of the next
round, and possible reset also the boundaryTimer if the node will hit the boundary during the next round.
We also declare the variables used in this section:

vars SV NEW-SPEED : SpeedVector . var SVR : SpeedVectorRange . var DER : DestinationRange .
var VR : VelocityRange . vars R X Y X1 Y1 X-SPEED Y-SPEED : Rat .
var VELOCITY : PosRat . vars L L’ CURR-LOC NEXT-LOC NEW-GOAL-LOC : Location .
vars T T’ T1 : Time . vars TI NEW-BOUNDARY-TIMER : TimeInf .
var MOVE-TIME : NzTime . var MSG : Msg . var MC : MsgContent .
vars O O’ : Oid . var OS : OidSet . var OBJECT : Object .
vars C C1 C2 SYSTEM : Configuration .
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crl [startNewMove] :
< O : RWNode | timer : 0, speedVectorRange : SVR, currentLocation : CURR-LOC >

=>
< O : RWNode | timer : movingTime, speedVector : SV,

boundaryTimer : if timeUntilWallHit(CURR-LOC, SV) < movingTime
then timeUntilWallHit(CURR-LOC, SV) else INF fi >

if choose(SVR) => [SV] .

op timeUntilWallHit : Location SpeedVector -> TimeInf .
eq timeUntilWallHit(X . Y, < X-SPEED , Y-SPEED >)
= min(--- hit right or left wall:

if X-SPEED > 0 then (Xsize - X) / X-SPEED --- hit right wall
else (if X-SPEED < 0 then (- X) / X-SPEED --- hit left wall

else INF fi) fi, --- no movement in x-direction
--- hit upper or lower wall:
if Y-SPEED > 0 then (Ysize - Y) / Y-SPEED --- upper wall
else (if Y-SPEED < 0 then (- Y) / Y-SPEED --- hit lower wall

else INF fi) fi) . --- no movement in y-direction

This definition allows a node to travel along a boundary if it so chooses.
The boundaryHit rewrite rule models the “billiard ball bounce” when a node hits a boundary during its

move. When a left or right wall is hit, the speed along the x-axis is negated, and when an upper or lower
boundary is hit, the speed along the y-axis is negated. (This means that both speed vector components are
negated in the unlikely case that a corner is hit.) The boundaryTimer must also be reset in case the node
will again hit a wall before finishing its current movement period:

crl [boundaryHit] :
< O : RWNode | boundaryTimer : 0, timer : T,

currentLocation : X . Y, speedVector : < X-SPEED , Y-SPEED > >
=>

< O : RWNode | boundaryTimer : NEW-BOUNDARY-TIMER, speedVector : NEW-SPEED >
if NEW-SPEED := < if (X == 0 or X == Xsize) then - X-SPEED else X-SPEED fi,

if (Y == 0 or Y == Ysize) then - Y-SPEED else Y-SPEED fi >
/\ NEW-BOUNDARY-TIMER := if timeUntilWallHit(X . Y, NEW-SPEED) < T

then timeUntilWallHit(X . Y, NEW-SPEED) else INF fi .

(The actual movement of such a node is modeled in Section 3.5, where the behavior in time is discussed.)
Our “speed vector” representation ensures that we stay within the rational numbers, and allows precise

computation of quantities, e, e.g., the time until the area boundary is reached. Notice that selecting a
desired velocity v and direction α amounts to selecting the speed vector < v · cosα , v · sinα >.

Random Waypoint. In the random waypoint mobility model, a node alternates between pausing and moving.
When it starts moving, it selects a new velocity and a new destination and starts moving towards the
destination. Random waypoint is the only mobility model that forces us to leave the precision of the rational
numbers, since we must use the square root function to compute the distance to the desired location.
However, by approximating such square roots as rationals, we never leave the realm of rational number
computations.

A node that moves according to the random waypoint pattern is modeled by an object instance of the
subclass RWPNode :

class RWPNode | velocityRange : VelocityRange, destRange : DestinationRange, status : Status .
subclass RWPNode < MobileNode .

sort Status .
ops pausing moving : -> Status [ctor] .
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The status attribute is either pausing or moving, and destRange denotes the set of possible goal locations.
The instantaneous behavior of this mobility model is given by the following rewrite rules. First, the

startMoving rule considers the case when a node is pausing and the timer expires, the node must get
moving by selecting a new velocity and a new desired next location, and resetting the timer so that it
expires when the goal location is reached. It is worth remarking that, since a node must pause when it
has reached the goal destination, it does not make sense to select the current location as the next goal
destination:

crl [startMoving] :
< O : RWPNode | currentLocation : X . Y, status : pausing, timer : 0,

velocityRange : VR, destRange : DER >
=>

< O : RWPNode | status : moving,
speedVector : < (NEXT-X - X) / MOVE-TIME , (NEXT-Y - Y) / MOVE-TIME >,
timer : MOVE-TIME >

if choose(VR) => [VELOCITY]
/\ choose(DER) => [(NEXT-X . NEXT-Y)]
/\ NEXT-X =/= X or NEXT-Y =/= Y
/\ MOVE-TIME := distance(X . Y, NEXT-X . NEXT-Y) / VELOCITY .

op distance(X . Y, X1 . X2) = sqrt((X1 - X) * (X1 - X) + (Y1 - Y) * (Y1 - Y)) .
op sqrt : Rat -> Rat .
eq sqrt(R) = rat(sqrt(float(R))) .

Notice that VELOCITY is declared to be a (non-zero) positive rational number. We define an approximate
square root function on the rationals by first converting a rational number to a floating-point number,
computing the square root of the floating-point number, and then converting back the resulting floating-
point number to a rational number.

The startPausing rule applies when the timer of a moving node expires; then it is time to take a rest
for pauseTime time units:

rl [startPausing] :
< O : RWPNode | status : moving, timer : 0 >

=>
< O : RWPNode | status : pausing, timer : pauseTime > .

Random Direction. A node that moves according to the random direction model nondeterministically
chooses a direction and a speed, i.e., a speed vector, and walks in the given direction until it reaches
the boundary of the area. It then pauses for some time before starting a new walk. Nodes moving according
this mobility pattern should be modeled as object instances of the following subclass RDNode:

class RDNode | speedVectorRange : SpeedVectorRange, status : Status .
subclass RDNode < MobileNode .

The instantaneous behaviors are formalized by two rewrite rules; the newRDwalk rule chooses a new speed
vector when the node has paused long enough (i.e., when it is pausing and its timer expires):

crl [newRDwalk] :
< O : RDNode | currentLocation : CURR-LOC, speedVectorRange : SVR,

timer : 0, status : pausing >
=>

< O : RDNode | status : moving, speedVector : SV, timer : TI >
if choose(SVR) => [SV]

/\ TI := timeUntilWallHit(CURR-LOC, SV)
/\ TI > 0 .
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The last conjunct in the condition ensures that the selected direction leads inwards towards the area of
operation (or that the node will stand still forever).

The startPausing rule models the stage when a moving node starts pausing:

rl [startPausing] :
< O : RDNode | status : moving, timer : 0 >

=>
< O : RDNode | status : pausing, timer : pauseTime > .

3.3. Modeling Communication in Mobile Wireless Systems
This section explains how we model communication in MANETs. We abstract from communication

collision detection and avoidance, and refer to [30, 7] for the formal treatment of communication collisions
in wireless networks.

As explained in Section 2.3, wireless communication in a MANET supports both broadcast, unicast, and
multicast in one “hop.” Our model has three corresponding message types for the sender to use for one-hop
transmission:

msg broadcast_from_ : MsgContent Oid -> Msg .
msg unicast_from_to_ : MsgContent Oid Oid -> Msg .
msg multicast_from_to_ : MsgContent Oid OidSet -> Msg .

An element of sort OidSet denotes a set of object identifiers. The application-specific sort MsgContent
denotes the content of the message to be transmitted. When the sender sends a “message” of one of the
above kinds, each node within range that should receive the message will receive a message of the form

msgContent from sender to receiver.

Broadcast. When a node sender wants to broadcast some message content mc to all nodes reachable in one
hop, it generates a “message”

broadcast mc from sender.

The following equation adds the delay on the sending side, sendDelay, to this “broadcast message:”

eq broadcast MC from O = dly(transmit MC from O, sendDelay) .

op transmit_from_ : MsgContent Oid -> Msg [ctor] .
op distrMsg : Oid Location Rat MsgContent Configuration -> Configuration [ctor frozen (1)] .

The crucial moment is when the sending delay expires and the transmit message becomes “ripe.” This
corresponds to the time when the message is actually transmitted by the sender. All the nodes that are
within the transmission range of the sender at that moment should receive the message. This distribution
is performed by the function distrMsg, where distrMsg(snd, tr, loc, mc, conf ) generates a single message,
with content mc, for each node in conf that is currently within the transmission range tr of location loc.
The expression loc withinTransRange tr of loc’ computes whether the location loc’ is within distance tr
from the location loc. The transmission range tr should be the transmission range of the sender at the
moment of transmission (remember that our framework supports dynamically modifying the transmission
power). In particular, the following equations, which take place exactly when the sending delay expires, are
used to generate a single message mc from snd to rcvr for each node that is within the transmission range
of the sender snd when the sending delay expires; it also uses the transmission range of the sender at that
moment. The resulting message has a delay recDelay modeling the delay at the receiving side:
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eq {< O : Node | currentLocation : L, transRange : R > (transmit MC from O) C}
= {< O : Node | > distrMsg(O, L, R, MC, C)} .

eq distrMsg(O, L, R, MC, < O’ : Node | currentLocation : L’ > C)
= < O’ : Node | currentLocation : L’ > distrMsg(O, L, R, MC, C)

(if L’ withinTransRange R of L then dly((MC from O to O’), recDelay) else none fi) .

eq distrMsg(O, L, R, MC, MSG C) = MSG distrMsg(O, L, R, MC, C) .
eq distrMsg(O, L, R, MC, none) = none .

op _withinTransRange_of_ : Location Rat Location -> Bool .
eq (X . Y) withinTransRange R of (X1 . Y1)
= ((X1 - X) * (X1 - X) + (Y1 - Y) * (Y1 - Y)) <= R * R .

The use of the “global state” operator {_} in the first equation ensures that C includes all nodes in the
system, except the sender O.

Unicast. The distribution/transmission of a unicast is similar to that of a broadcast, except that it is no
longer necessary to consider the entire state:

op transmit_from_to_ : MsgContent Oid Oid -> Msg [ctor] .

eq (unicast MC from O to O’) = dly(transmit MC from O to O’, sendDelay) .

eq (transmit MC from O to O’)
< O : Node | currentLocation : L, transRange : R >
< O’ : Node | currentLocation : L’ >

=
< O : Node | > < O’ : Node | >
(if L’ withinTransRange R of L then dly(MC from O to O’, recDelay) else none fi) .

Multicast. Multicast can be defined by letting a multicast message be equivalent to a set of unicast messages:
one unicast message for each node in the group:

eq (multicast MC from O to O’ ; OS) = (unicast MC from O to O’) (multicast MC from O to OS) .
eq (multicast MC from O to none) = none .

3.4. Composing MANET Protocols and Mobility and Communication Models
Our model of mobile nodes must be easily composable with a specification of the MANET protocol to

be analyzed. Furthermore, it is often necessary to compose multiple MANET protocols (and our model of
communication and mobility for nodes). For example, as already mentioned, the leader election protocol
of Vasudevan, Kurose, and Towsley should be run in parallel with both neighbor discovery protocol and a
routing protocol. The point is that we can specify each protocol separately, without worrying about mobility,
communication, or other protocols running in parallel.

A key Real-Time Maude feature that enables us to easily compose our model of mobile nodes with
one or more MANET protocol specification(s) is the support for multiple class inheritance: one subclass
may inherit the attributes and the rewrite rules of multiple superclasses. In particular, the objects in a
specification of a MANET protocol P should apply to objects instances of a subclass P -Node of Node:

class P -Node | attributesP . --- protocol-specific attributes
subclass P -Node < Node .

All the rules in the specification of the protocol P should involve objects of class P -Node.
A specification of the protocol P can be composed with our model of mobile nodes by executing the

system on objects that are instances of both the desired mobility class and the class P -Node. For example,
a node in the protocol P that moves according to the random walk mobility model would be an object
instance of the following subclass:
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Figure 3: Composing protocols and node mobility and communication.

class P -RWNode . --- no additional attributes
subclass P -RWNode < P -Node RWNode .

In this way, we can also analyze the protocol P when the different nodes in the system may move according
to different mobility patterns: some nodes may be stationary, others may move according to the random
walk model, and yet others could move according to the random direction model.

Let us now consider the composition of two MANET protocols, say LE and ND. Assume that these
protocols run in parallel and that they share—and interact through—a number of shared attributes, such
as, e.g., neighbors : OidSet. The protocols LE and ND should then be defined in terms of objects of
the following classes LE-Node and ND-Node, respectively:

class NeighborsNode | neighbors : OidSet . --- shared attribute
subclass NeighborNode < Node .

class LE-Node | attributesLE . --- LE-specific attributes
subclass LE-Node < NeighborsNode .

class ND-Node | attributesND . --- ND-specific attributes
subclass ND-Node < NeighborsNode .

Objects in the composition of both protocols should be instances of a subclass of both LE-Node,
ND-Node, and the desired mobility model class:

class LE-ND-RWNode .
subclass LE-ND-RWNode < LE-Node ND-Node RWNode .

class LE-ND-RDNode .
subclass LE-ND-RDNode < LE-Node ND-Node RDNode .

...

Figure 3 summarizes the composition of one or more protocol specifications and our generic model of
wireless communication and node mobility (shown as “Mobility & Communication” in the figure).

What remains is the subtle issue of being able to define also the timed behavior of each component
separately. In Real-Time Maude, the timed behavior of an object-oriented system is typically specified by a
tick rule
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crl [tick] : {SYSTEM} => {timeEffect(SYSTEM, T)} in time T if T <= mte(SYSTEM) .

where

• timeEffect defines the effect of time elapse on the state of the system, and

• mte (“maximum time elapse”) defines the maximum time that may elapse until an event must take
place.

These functions distribute over the objects and messages in the state in the expected way:

op timeEffect : Configuration Time -> Configuration [frozen (1)] .

ceq timeEffect(C1 C2, T) = timeEffect(C1, T) timeEffect(C2, T) if C1 =/= none and C2 =/= none .
eq timeEffect(none, T) = none .

Furthermore, time affects messages by decreasing the remaining message delay according to the time elapsed:

eq timeEffect(dly(MSG, T1), T) = dly(MSG, T1 monus T) .

where x monus y = max(0, x − y). The message delay operator dly is declared to have right identity 0,
which means that a message m and dly(m, 0) are considered to be identical in Real-Time Maude.

The function mte also distributes over the elements in a configuration in the expected way:

op mte : Configuration -> TimeInf [frozen (1)] .
ceq mte(C1 C2) = min(mte(C1), mte(C2)) if C1 =/= none and C2 =/= none .
eq mte(none) = INF . --- "infinity" value

Time advance must stop when a message becomes ripe:

eq mte(dly(MSG, T)) = T .

Since a “ripe” message m is identical to dly(m, 0), this equation implies that time cannot advance when
there is a ripe message in the configuration; each message must therefore be treated/consumed at the moment
when its delay expires.

What still remains is to define timeEffect and mte on single objects. In other large Real-Time Maude
applications (see [36]), these functions could be defined directly on the objects:

eq timeEffect(< O : C | ... >, T) = < O : C | ... > .
eq mte(< O : C | ... >) = ... .

This is no longer possible if the timed behavior of each component should be specified separately. Instead,
the way to achieve such modular specification of the timed behavior of each protocol is to define, for each
protocol Pi, the functions

op timeEffect-Pi : Object Time -> Object [frozen (1)] .
op mte-Pi : Object -> TimeInf [frozen (1)] .

Likewise, the functions

op timeEffect-Mob : Object Time -> Object [frozen (1)] .
op mte-Mob : Object -> TimeInf [frozen (1)] .
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should define the timed behavior of node mobility and communication. The point is that this approach
allows us to define the timed behavior of each protocol, as well as the timed behaviors of node mobility and
communication, separately, by just defining the functions timeEffect-Pi and mte-Pi on objects of class
Pi-Node, for each protocol Pi, and by defining timeEffect-Mob and mte-Mob on our model of node mobility
and communication.

The only definition needed in the composition of multiple MANET protocol specifications is to define the
“global” function timeEffect as the “composition” of the functions timeEffect-P1, timeEffect-P2, . . . ,
timeEffect-Pn, and timeEffect-Mob, and to define the function mte as the “composition” of the functions
mte-P1, mte-P2, . . . , mte-Pn, and mte-Mob:

eq mte(OBJECT) = min(mte-P1(OBJECT), ..., mte-Pn(OBJECT), mte-Mob(OBJECT)) .
eq timeEffect(OBJECT, T) = timeEffect-Pn(...(timeEffect-P1(timeEffect-Mob(OBJECT, T), T), ...), T) .

This definition of timeEffect is confluent provided at most one function timeEffect-Pi updates the same
attribute. To the best of our knowledge, and despite the wealth of large Real-Time Maude applications, this
is the first time that a method is shown for composing Real-Time Maude specifications where each single
specification also defines the timed behavior of the subsystem/protocol.

To summarize, a module defining the composition of two protocols LE and ND as well as an initial state
in such a composition should have the following form:

(tomod LE+ND is
including MOBILE-NODE . --- specifying mobile nodes, tick rule, etc.
including LE . --- specifying the protocol LE
including ND . --- specifying the protocol ND

... --- specify the sorts SpeedVectorRange, VelocityRange, and DestinationRange

... --- and the choose rule on these domains

class LE-ND-RWNode . --- random walk
subclass LE-ND-RWNode < LE-Node ND-Node RWNode .

class LE-ND-RDNode . --- random direction
subclass LE-ND-RDNode < LE-Node ND-Node RDNode .
...
--- define timed behavior
var OBJECT : Object . var T : Time .
eq timeEffect(OBJECT, T) = timeEffect-ND(timeEffect-LE(timeEffect-Mob(OBJECT, T), T), T) .
eq mte(OBJECT) = min(mte-Mob(OBJECT), mte-LE(OBJECT), mte-ND(OBJECT)) .

--- define suitable initial state
ops node1 node2 ... node-k : -> Oid [ctor] . --- node names
op init : -> GlobalSystem .
eq init = {< node1 : LE-ND-RWNode | attributesWithInitialValues >

< node2 : LE-ND-RDNode | attributesWithInitialValues ’ >
...

< node-k : LE-ND-RWNode | attributesWithInitialValues ’’ >} .
endtom)

The following Section 3.5 defines the timed behavior of node mobility and communication.

3.5. Timed Behavior of Mobility and Communication
As explained in Section 3.4, the timed behavior of node mobility is specified by defining the functions

timeEffect-Mob (how does the passage of a certain amount of time affect the state of a mobile node?)
and mte-Mob (how much time can advance before some “event” must take place?) on mobile nodes. The
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definition of the functions timeEffect and mte in Section 3.4 defines the timed behavior of different kinds
of “messages”: a message must be treated as soon as its delay has expired.

The mobility-specific parts of a stationary node are not affected by the elapse of time, and do not impose
any constraints on how much time can advance:

eq timeEffect-Mob(< O : StationaryNode | >, T) = < O : StationaryNode | > .
eq mte-Mob(< O : StationaryNode | >) = INF .

The mobility-specific parts of a random walk node allows time to advance until one of its timers expires:

var TI : TimeInf .
eq mte-Mob(< O : RWNode | boundaryTimer : TI, timer : T >) = min(TI, T) .

Time affects a random walk node by decreasing the timers according to the elapsed time, and by moving
the node to a new location:

eq timeEffect-Mob(< O : RWNode | boundaryTimer : TI, timer : T,
currentLocation : X . Y,
speedVector : < X-SPEED , Y-SPEED > >, T’)

= < O : RWNode | boundaryTimer : TI monus T’, timer : T monus T’,
currentLocation : (X + X-SPEED * T’) . (Y + Y-SPEED * T’) > .

We next discuss how time affects the mobility-specific parts of a random waypoint node. The next
“event” (either start pausing or start moving) takes place when the timer expires:

eq mte-Mob(< O : RWPNode | timer : T >) = T .

The passage of time affects a pausing node by decreasing its timer value according to the elapsed time:

eq timeEffect-Mob(< O : RWPNode | status : pausing, timer : T >, T’)
= < O : RWPNode | timer : T monus T’ > .

Time elapse affects a moving random waypoint node by decreasing its timer and moving the node:

eq timeEffect-Mob(< O : RWPNode | status : moving, timer : T,
currentLocation : X . Y,
speedVector : < X-SPEED , Y-SPEED > >, T’) =

= < O : RWPNode | timer : T monus T’,
currentLocation : (X + X-SPEED * T’) . (Y + Y-SPEED * T’) > .

The timed behavior of a random direction node is defined in exactly the same way.
The timed behavior of communication is straightforward. The sending delay is modeled as follows in

Section 3.3: A broadcast or unicast message is immediately transformed into a “message” dly(transmit
..., sendDelay) with delay sendDelay. When this delay expires, the resulting transmit message is
transformed into a message of the form dly(M from sender to receiver, recDelay) with delay recDelay.
When time recDelay has passed, this message becomes the undelayed/ripe message M from sender to
receiver which is read by the receiver. The equation

eq timeEffect(dly(MSG, T1), T) = dly(MSG, T1 monus T) .

in Section 3.4 is the one that reduces the remaining messaging delay according to the elapsed time T, and
the equation

eq mte(dly(MSG, T)) = T .

ensures that time cannot advance when there is a ripe message in the system, since an undelayed message
M is equivalent to dly(M, 0). Ripe messages must therefore be read immediately.
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Figure 4: Route discovery process

4. Case Study 1: Route Discovery in AODV

This section shows how our framework has been used to formalize and analyze the well-known Ad hoc
On-Demand Distance Vector (AODV) [40] routing protocol for MANETs. Section 4.1 gives a brief overview
of the AODV protocol. The protocol is intended to first establish a route between a source node and a
destination node, and then maintain a route between the two nodes during topology changes caused by
node movement. We focus in this paper on the route discovery process, and present our Real-Time Maude
model of the AODV route discovery process in Section 4.2. Section 4.3 explains how the main property of
any routing protocol, that a route will be established between source and destination, can be analyzed under
different mobility models. Our analysis shows that a previously known flaw in AODV due to link failures in
a static setting can also be caused by mobility in a mobile setting. The entire executable Real-Time Maude
specification is available at https://sites.google.com/site/siliunobi/wrla14.

4.1. The AODV Protocol
AODV [40] is a widely used protocol developed by the IETF MANET working group for routing messages

between mobile nodes which dynamically form an ad hoc network. AODV allows a source node to initiate a
route discovery process to establish a route to a given destination node. Each node contains the distances,
measured in hops, to other nodes in its routing table. Since AODV works on-demand, routers only maintain
distance information for nodes reached during route discovery. AODV consists of two main parts: route
discovery and route maintenance.

Route Discovery. When a source node S wants to establish a route to a given destination node D, the source
node initiates a route discovery process by broadcasting a route request (RREQ) message to its neighbors.
When a node N receives such a RREQ message, it unicasts a route reply (RREP) message to the source if a
valid route to the destination D can be found in its local routing table; otherwise, the node N re-broadcasts
the received RREQ message to its own neighbors. As the RREQ messages travel from S to D, reverse paths
from all nodes back to S are automatically set up. Eventually, when a RREQ message reaches D for the
first time, D sends a RREP message back along the reverse path, which also gives the desired route between
S and D. A node that receives multiple RREQ messages drops the subsequent ones if the same RREQ
was recorded previously. To ensure loop-free routing, AODV employs a sequence number to represent how
fresh the received information is. The higher a sequence number is, the fresher a route will be. Therefore a
requesting node is required to select the one with the greatest sequence number.

Figure 4 shows a topology of five nodes with node 1 the source and node 5 the destination. Dashed
arrows and solid arrows show the RREQ and RREP flows, respectively. After the route discovery process,
a route 1−→ 2−→ 5 is established. Note that the route 1−→ 3−→ 4−→ 5 may be established instead, for
example due to message loss or high latency along the path 1−→ 2−→ 5; AODV does not guarantee that
the route established is the shortest one.
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Route Maintenance. The purpose of route maintenance is to provide feedback to the sender in case a router
(i.e., a node on the route from source to destination) is lost or a link breaks, in order to trigger route
re-discovery. In a mobile setting, node movement could make a router unable to forward the message. If
an intermediate node moves away, all its neighbors should be informed of the fact, which is also further
forwarded to all the other hops in order to delete the associated route. As a result, the source node must
then re-discover a new route. AODV uses a simple neighbor discovery protocol to detect topology changes.

4.2. Modeling AODV Route Discovery in Real-Time Maude
This section presents our Real-Time Maude specification of the AODV route discovery process. We

discuss 5 of the 16 rewrite rules in our specification, and refer to https://sites.google.com/site/
siliunobi/wrla14 for the full specification.

In AODV each run of the route discovery process is identified by the initiator of the route discovery and
its current request identifier. In addition, each node has a sequence number used to determine how fresh a
route to the destination must be before it can be accepted by the source [41].

Nodes. We model AODV nodes as objects of a subclass AODV-Node of class Node. The new attributes are
the following:

• rreqId denotes the node’s current request identifier.

• sequenceNumber denotes the node’s current sequence number;

• routingTable denotes the node’s routing table of the predefined Maude data type MAP. Each entry in
the routing table has the form n |-> tuple3(n′, d, s), where n is a destination node, n′ is the next
hop towards the destination n, d is the distance to the destination, and s is the sequence number of
the node n.

• requestBuffer is a set of received routing requests of the form o ~ n, where o is the initiator of
the request and n is its request id, uniquely determining the request. This is needed to know which
requests the node has already treated.

class AODV-Node | rreqId : Nat, sequenceNumber : Nat,
routingTable : RouteTable, requestBuffer : RreqBuffer .

subclass AODV-Node < Node .

Messages. In the AODV route discovery process there are mainly two kinds of messages: RREQ messages,
that are broadcast (in one hop), and RREP messages, that are unicast in a hop-by-hop fashion to the source:

op rreq : Oid Nat Nat Oid Sqn Nat Oid -> MsgContent [ctor] .
--- source, source sqn, request id, destination, destination sqn, current number of hops, router
op rrep : Oid Oid Sqn Nat Oid -> MsgContent [ctor] .
--- source, destination, destination sqn, current number of hops, router

In addition, we initiate a round of the protocol using a message initiateRouteDiscovery(source,
destination ):

msg initiateRouteDiscovery : Oid Oid -> Msg .

Timed Behavior. Since we focus on route discovery, we will not handle the timing issues in the route
maintenance process. Our AODV model therefore does not impose additional timing constraints:

eq timeEffect-AODV(< O : AODVNode | >, T) = < O : AODVNode | > .
eq mte-AODV(< O : AODVNode | >) = INF .

4.2.1. Modeling Dynamic Behaviors
The route discovery process in AODV consists of three parts: initiating route discovery, route request

handling, and route reply handling.
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Initiating Route Discovery. At the start of the route discovery process, a source node checks its local routing
table for an entry towards the destination (inRT(RT, DEST)). If such an entry does not exist, the source
initiates the route discovery process by broadcasting a RREQ message. Before broadcasting, the originator
needs to increase the local routing request ID and its own sequence number, and add the outgoing RREQ
id to the request buffer:2

rl [init-route-discovery] :
initiateRouteDiscovery(O, DEST)
< O : AODV-Node | rreqID : RREQID, sequenceNumber : SN,

routingTable : RT, requestBuffer : RB >
=>

if inRT(RT, DEST)
then < O : AODV-Node | > --- route exists; do nothing
else < O : AODV-Node | rreqId : RREQID + 1, sequenceNumber : SN + 1,

requestBuffer : (O ~ RREQID , RB) >
(broadcast rreq(O, SN + 1, RREQID, DEST, 0, 0, O) from O) fi .

Route Request Handling. When a node receives a RREQ message, it first checks whether a request with the
same source and request ID has already been received and stored in the request-buffer. If so, the request
can be ignored and the local routing table is updated by adding a routing table entry towards the sender.

If the request has not been received before (not (SOURCE ~ RREQID) in RB), the receiving node adds
the new route request identifier to the request buffer, and takes further actions as explained next.

The rewrite rule receiving-rreq-2 shows the case when the receiver is the desired destination node.
The receiver then generates a route reply message rrep(SOURCE, DEST, SN’, 0, DEST), where SN’ is the
maximum of the current sequence number and the destination sequence number in the RREQ [40]. The hop
count is obviously 0. The destination should also update the routing table entry for the sender, as well as
the source node, in its local routing table (RT’ and RT”). Then the RREP is unicast to the next hop along
the route back to the source node (nexthop(RT”[SOURCE])) by looking up the updated routing table RT”.

crl [receiving-rreq-2] :
(rreq(SOURCE, OSN, RREQID, DEST, DSN, HOPS, SENDER) from SENDER to DEST)
< DEST : AODV-Node | sequenceNumber : SN, routingTable : RT, requestBuffer : RB >

=>
< DEST : AODV-Node | sequenceNumber : SN’, routingTable : RT’’,

requestBuffer : (SOURCE ~ RREQID , RB) >
(unicast rrep(SOURCE, DEST, SN’, 0, DEST) from DEST to nexthop(RT’’[SOURCE]))

if RT’ := update(SENDER, SENDER, 1, 0, RT) /\
RT’’ := update(SOURCE, SENDER, HOPS + 1, OSN, RT’) /\
SN’ := max(SN, DSN + 1) /\
not (SOURCE ~ RREQID) in RB .

If the receiving node O is not the desired destination DEST, but an intermediate node, then it either:
(a) generates a route reply to the sender, or (b) re-broadcasts the received RREQ to its neighbors. Action
(a), as the receiving-rreq-3 rule shows, happens only when O’s local information is fresher than that in
the RREQ; that is, its local sequence number for the destination is greater than or equal to the received
sequence number (DSN <= localdsn(RT[DEST])). In this case, O unicasts the route reply with the fresher
destination sequence number and its distance in hops from the destination along the route back to the source
node:

crl [receiving-rreq-3] :
(rreq(SOURCE, OSN, RREQID, DEST, DSN, HOPS, SENDER) from SENDER to O)

2We do not show the declarations of the mathematical variables used in the case studies; they follow the Maude convention
that such variables are written with capital letters.
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< O : AODV-Node | sequenceNumber : SN, routingTable : RT, requestBuffer : RB >
=>

< O : AODV-Node | sequenceNumber : SN, routingTable : RT’’,
requestBuffer : (SOURCE ~ RREQID , RB) >

(unicast rrep(SOURCE, DEST, localdsn(RT’’[DEST]), hops(RT’’[DEST]), O)
from O to nexthop(RT’’[SOURCE]))

if DEST =/= O /\ inRT(RT,DEST) /\ not (SOURCE ~ RREQID) in RB /\
DSN <= localdsn(RT[DEST]) /\
RT’ := update(SENDER, SENDER, 1, 0, RT) /\
RT’’ := update(SOURCE, SENDER, HOPS + 1, OSN, RT’) .

Action (b) happens if local information is not fresh enough, or if no routing table entry for DEST can be
found. O should then re-broadcast the received RREQ with the hops increment and the maximal destination
sequence number in the message content.

Route Reply Handling. If the receiver of an RREP message is in fact the originating source of the route
discovery process, the RREP is consumed and a routing table entry for the destination is created or updated.
We can consider three cases: (a) the destination sequence number in the originator’s existing routing table is
smaller then the one in the received RREP; (b) the two destination sequence numbers are the same, but the
increased hop count in the received RREP is smaller than the one in the local routing table (hops(RT[DEST])
> HOPS + 1); or (c) no route table entry for the destination can be found locally. In all other cases, the
received RREP can be silently ignored. The receiving-rrep-3 rule shows the specification of case (b):

crl [receiving-rrep-3] :
(rrep(SOURCE, DEST, DSN, HOPS, SENDER) from SENDER to SOURCE)
< SOURCE : AODV-Node | sequenceNumber : SN, routingTable : RT, requestBuffer : RB >

=>
< SOURCE : AODV-Node | routingTable : update(DEST, SENDER, HOPS + 1, DSN, RT) >

if inRT(RT, DEST) /\ DSN == localdsn(RT[DEST]) /\ hops(RT[DEST]) > HOPS + 1 .

When the receiver is an intermediate node, the RREP can be forwarded if one of the above cases (a), (b)
or (c) is satisfied, and can be silently ignored otherwise. The receiving-rrep-6 rule formalizes case (c):

crl [receiving-rrep-6] :
(rrep(SOURCE, DEST, DSN, HOPS, SENDER) from SENDER to O)
< O : AODV-Node | routingTable : RT >

=>
< O : AODV-Node | routingTable : RT’ >
(unicast rrep(SOURCE, DEST, DSN, HOPS + 1, O) from O to nexthop(RT’[SOURCE]))

if SOURCE =/= O /\ not inRT(RT,DEST) /\
RT’ := update(DEST, SENDER, HOPS + 1, DSN, RT) .

4.3. Formal Analysis of Route Discovery in AODV
To the best of our knowledge AODV has only been formally analyzed in static topologies with random

link failures, or in an arbitrary mobility setting. Our framework allows us to analyze AODV under realistic
mobility and communication models.

Combining AODV and Mobility. As explained in Section 3.4, an AODV node whose mobility follows a
certain mobility pattern is modeled by an object instance of a subclass of both the mobility model class
and the class AODV-Node. For example a node that moves according to the random walk pattern should be
modeled as an object instance of the AODV-RWNode:

class AODV-RWNode .
subclass AODV-RWNode < AODV-Node RWNode .
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class AODV-RWPNode .
subclasses AODV-RWPNode < RWPNode AODVNode .

class AODV-StationaryNode .
subclass AODV-StationaryNode < AODV-Node StationaryNode .

The composition of the two specifications must also define the functions timeEffect and mte on objects
as explained in Section 3.4:

eq mte(OBJECT) = min(mte-AODV(OBJECT), mte-Mob(OBJECT)) .
eq timeEffect(OBJECT, T) = timeEffect-AODV(timeEffect-Mob(OBJECT, T), T) .

Initial States. We make the following assumptions in our experiments:

• The transmission range is 10 meters, and the area under consideration is 100× 100.

• The sending and receiving delays are 10 and 5 time units, respectively, in all scenarios except for the
scenarios IV and V below.

We define a parametric initial configuration init1(source, destination), corresponding to the setting in
the lefthand side of Fig. 5 (a solid circle refers to the initial location of a node, while a dash circle refers to
some point along the motion path of a node). This setting has four stationary nodes (1, 3, 4, and 5), and
one random waypoint node (2) that can only choose to move up to location (50, 60). The five nodes are
initially located at positions (45, 45), (50, 50), (50, 40), (60, 40), and (60, 50), respectively.

op init1 : Oid Oid -> Configuration .
subsort Nat < Oid .
vars SOURCE DEST : Oid .

eq init1(SOURCE, DEST)
= initiateRouteDiscovery(SOURCE, DEST)

< 1 : AODV-StationaryNode | currentLocation : 45 . 45, transRange : 10, rreqId : 10,
sequenceNumber : 1, routingTable : empty, requestBuffer : empty >

< 2 : AODV-RWPNode | currentLocation : 50 . 50, transRange : 10, speedVector : < 0 , 0 >,
timer : pauseTime, velocityRange : (1), destRange : (50 . 60),
status : pausing, rreqID : 20, sequenceNumber : 1,
routingTable : empty, requestBuffer : empty >

< 3 : AODV-StationaryNode | currentLocation : 50 . 40, transRange : 10, rreqId : 30,
sequenceNumber : 1, routingTable : empty, requestBuffer : empty >

< 4 : AODV-StationaryNode | currentLocation : 60 . 40, transRange : 10, rreqID : 40,
sequenceNumber : 1, routingTable : empty, requestBuffer : empty >

< 5 : AODV-StationaryNode | currentLocation : 60 . 50, transRange : 10, rreqID : 50,
sequenceNumber : 1, routingTable : empty, requestBuffer : empty > .

rl [chooseDestination] : choose(D ; DR) => [D] . --- any element in the set can be chosen
rl [chooseVelocity] : choose(V ; VR) => [V] .
eq pauseTime = 10 . --- also experimented with 30 and 60

The following parametrized initial state denotes the MANET in the upper part of Fig. 6: it has three
stationary nodes, and one random walk node (node 2) that can move up or down:

op init3 : Oid Oid -> Configuration .

eq init3(SOURCE, DEST)
= initiateRouteDiscovery(SOURCE, DEST)

< 1 : AODV-StationaryNode | currentLocation : 40 . 50, transRange : 10, rreqId : 10,
sequenceNumber : 1, routingTable : empty, requestBuffer : empty >
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< 2 : AODV-RWNode | currentLocation : 50 . 40, transRange : 10, speedVector : < 0 , 0 >,
timer : 0, speedVectorRange : (< 0 , 1> ; < 0 , -1 >), boundaryTimer : INF,
rreqID : 20, sequenceNumber : 1,
routingTable : empty, requestBuffer : empty >

< 3 : AODV-StationaryNode | currentLocation : 60 . 50, transRange : 10, ... >
< 4 : AODV-StationaryNode | currentLocation : 70 . 50, transRange : 10, ... > .

rl [chooseSpeedVector] : choose(SV ; SVR) => [SV] .

Property to Analyze. We formally analyze the main property of a routing protocol: a route will eventually
be established between the source node and the destination node.

We use Real-Time Maude’s LTL model checker to analyze this property, and define the parametrized
atomic proposition route-found(source, destination) to hold if and only if there is an entry towards the
destination node destination in the routing table of the the node source:

op route-found : Oid Oid -> Prop [ctor] .
eq {CONFIG < SOURCE : AODV-Node | routingTable : (RT , DEST |-> TP) >}

|= route-found(SOURCE, DEST) = true .

The following time-bounded model checking command then checks whether a route from node 1 to node
5 can always be found from initial state init1(1,5) within time 100:

(mc {init1(1, 5)} |=t <> route-found(1, 5) in time <= 100 .)

The model checking command returns true if the property holds for all behaviors; otherwise, a trace
illustrating a counterexample is shown.

In addition, we also use search to search for states where the desired route has been found, to: (i)
output the routing table, and (ii) analyze whether it is possible to arrive at a state where a route has
been established, even if not all behaviors satisfy the desired property.3 The following time-bounded search
command is then used:

(tsearch {init1(1, 5)} =>* {C:Configuration} such that routeFound(1, 5, C:Configuration)
in time <= 100 .)

where routeFound is defined as expected:

op routeFound : Oid Oid Configuration -> Bool [frozen (3)] .
eq routeFound(SOURCE, DEST, < SOURCE : AODV-Node | routingTable : (RT , DEST |-> TP) > C) = true .
eq routeFound(SOURCE, DEST, C) = false [owise] .

In this case study, we use the natural numbers as the time domain.

Scenarios and Analysis Results. We have analyzed AODV in five different scenarios.
Scenario I, shown in Fig. 4, corresponds to the state init1(1, 5), except that all nodes are stationary

nodes. The model checking result shows that a desired route is always established. The search command
shows a routing table entry 5 |-> tuple3(2, 2, 1) in node 1’s routing table, indicating that a 2-hop
route with the next hop 2 is built towards node 5. By checking node 2’s routing table, we obtain the route
1−→ 2−→ 5.

Scenario I corresponds to the initial state init1(1, 5). We set its pause time to: (a) 10 time units,
(b) 30 time units, or (c) 60 time units. The analysis results show that:

• In Case (a), the property holds, and we find a routing table entry 5 |-> tuple3(3, 3, 1) in node
1’s routing table, and the whole route is 1−→ 3−→ 4−→ 5.

3The same analysis can be performed by time-bounded model checking of the formula [] ~ routeFound(source,destination).
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Figure 5: Topologies of Scenarios II and III.

• In Case (b), the property does not hold, and the tsearch command returns no solution, meaning that
there is no possibility that a route can be built between the nodes 1 and 5 within 100 time units.

• In Case (c), the property holds, and we can obtain the same route as in Case (a).

In Case (b), the pause time (30) allows node 2 to forward the RREQ message to node 5. However, node
2 cannot receive the RREP message from node 5 due to its movement (the dash circle in this case is at
(50, 60)). Meanwhile, since node 5 has already recorded node 1’s RREQ from node 2, it silently ignores the
one from node 4. Thus, in this case, no route can be established between nodes 1 and 5.

Scenario III is shown in the righthand side graph in Fig. 5 and considers three nodes. The point now
is that both node 2 (located at (40, 50)) and node 3 (a random waypoint node located at (50, 40)) want to
establish a route to node 1 (located at (50, 50)). Before sending out the RREQ message, node 3 moves left
to the new location (40, 40), which is within the transmission range of node 2. Thus, to establish the route
to node 1, node 3’s RREQ message needs to be forwarded by node 2. However, our analysis shows that
route discovery for node 3 fails: no route can be found between nodes 3 and 1, though obviously node 2
succeeds in building a route to node 1.

This problem arises due to the discarding of the RREP message. As stated in [40], an intermediate node
forwards a RREP message only if the RREP message serves to update its routing table entry towards the
destination. However, in this case, node 2 has already secured an optimal route to node 1 before receiving
the RREQ message from node 3. The paper [12] also points out this problem, but in a static linear topology
with three nodes and two links. Our scenario, besides uncovering the flaw in AODV, shows in a more
realistic setting that node mobility may cause failure in the AODV route discovery.

Scenario IV corresponds to the initial state init3(1, 4) and is shown in Fig. 6 (top). We set the sender
delay and the receiver delay to 10 and 0, respectively, and set node 2’s moving time to 10. Thus, it can
receive the RREQ message from node 1, once it reaches up to the intermediate point (50, 50) between nodes
1 and 3.

The experimental results show that route discovery fails. The reason is that when node 2 is ready to send
out the RREQ message after both delays expire, it has moved to (50, 60), indicated by the uppermost dash
circle, which is beyond the transmission range of node 3, and therefore no RREQ message will be delivered
to node 3, not to mention the destination node 4.

Scenario V has the same topology and setting as Scenario IV, except that node 2 is a random waypoint
node with pause time 10, so that it can receive the RREQ message from node 1, once it moves to the
intermediate point (50, 50). Model checking shows that the property does not always hold. However, search
finds that a route between nodes 1 and 4 can sometimes be successfully established. The reason is that node
2 has, for each moving step, two nondeterministic choices (up or down). A route cannot be established for
some moving choices, like (up, down, down, down). However, AODV could be lucky and establish a route
with different movements. For example, node 2 may pause at the (50, 50) for a time interval that equals
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Figure 6: Topologies of Scenarios IV and V.

the sum of both delays at its side, thus generating the RREQ message for node 3 before it moves away.
Likewise, when node 2 returns to the intermediate point, it happens to receive the RREP message from
node 3. Despite delays, it takes advantage of the pause time to forward the RREP message back to the
source node 1.

Our analysis is summarized in Table 1; essentially we find that the previously known error in AODV due
to link failure in a static topology can also appear when two mobile nodes want to find routes at the same
time, under various standard mobility models.

Table 1: Summary of the results and execution times of our analyses of the different scenarios. For model checking (mc), the
table shows X if the property holds, and shows × otherwise. For the tsearch command, X shows that a route can be found.
All experiments in this paper were carried out on a 2.90GHz Intel Core i7-3520M with 3.7GB RAM.

Scenario I II-(a) II-(b) II-(c) III IV V
mc result X X × X × × ×
mc execution time (ms) 196 152 252 200 256 288 272
tsearch result X X × X × × X
tsearch execution time (ms) 272 284 324 332 212 528 1328

5. Case Study 2: The LE Leader Election Algorithm

This section gives an overview of how our framework has been used to formalize and analyze the well-
known leader election algorithm for MANETs by Vasudevan, Kurose, and Towsley [50, 49]. We call their
leader election algorithm LE.

LE uses source-to-destination (i.e., “multi-hop”) unicast, and therefore relies on the network infrastruc-
ture being able to transport messages to a given node. This can be achieved by composing LE with some
routing protocol, such as AODV, and some transport protocol, such as UDP or TCP, that uses the routing
information obtained by the routing protocol to transport messages from source to destination. However,
the detailed description of LE [49] does not specify any routing or message transport protocol; it just as-
sumes that “a message sent by a node is eventually received by the intended receiver, provided that the two
nodes remain connected forever starting from the instant the message is sent.” We follow a similar approach.
Instead of using AODV or another concrete routing algorithm, we model multi-hop communication in the

27



following much more abstract way that satisfies the assumption above: if there exists a communication path
from source to destination at a certain time after the message is sent, the message is delivered to the receiver.

LE also assumes that each node knows its neighbors, and that new links formed by node mobility are
detected somehow. However, LE does not specify any neighbor discovery algorithm, nor does it make
explicit the assumptions/requirements on the discovery of new links. The exception is that an explicit
“probe” protocol is used to discover the loss of connection to a node from which a node awaits an ack
message. We model neighbor discovery abstractly by periodically letting each node know which nodes are
currently within its transmission range.

We formally analyze LE in a number of scenarios, including with both bidirectional and unidirectional
communication channels and with node mobility. Our analysis has uncovered a spurious behavior in which
a continuously reachable node is left out of the election forever. As explained in detail in Section 5.3, this
behavior is caused by a very subtle interplay between node mobility, communication delays, and neighbor
discovery. The point is that this spurious behavior could never be found by standard formal analysis methods
for MANETs that abstract away communication delays and node movements. LE has been subjected to
a large number of formal analyses that have failed to find flaws in the algorithm. We cannot claim that
this behavior invalidates the LE algorithm, since LE may be based on other unstated assumptions, such
as “continuous neighbor discovery” and/or multi-hop communication even to nodes that are immediate
neighbors when a sending event begins. However, at the least, our “counterexample” shows the need to make
explicit subtle assumptions about the underlying neighbor discovery process, and to make more precise the
meaning of sending to “immediate neighbors” when an immediate neighbor may cease to be one during the
sending process.

Section 5.1 gives a brief overview of the LE protocol. Section 5.2 presents the Real-Time Maude model
of LE. Section 5.3 explains how our modeling framework for MANETs can be used to analyze our LE model
under realistic mobility and communication models, including both bidirectional links and unidirectional
links.

The paper [25] presents our model and analysis in greater detail. The entire executable Real-Time Maude
specification is available at https://sites.google.com/site/siliunobi/leader-election.

5.1. Overview of LE
Apart from tolerating frequent topology changes, one key feature of LE is that it aims not only at

finding a leader, but also at electing the best-valued node (according to some measure, such as the amount
of remaining battery life or the average distance to other nodes) in each connected component as the leader
of the connected component.

In a static topology, LE works as follows. When an election is triggered at a node, the node broadcasts
an election message to its immediate neighbors. A node that receives an election message for the first time,
records the sender of the message as its parent in the spanning tree under construction, and multicasts an
election message to its other neighbors. (It is assumed that each node knows its set of neighbors, which
can be established with a simple neighbor discovery protocol running in parallel.) When a node receives an
election message from a node that is not its parent, it immediately responds with an ack message. When
a node has received an ack message from all its children, it sends an ack message to its parent. Each ack
message to a parent includes the identity and value of the best-valued node in the subtree (of the spanning
tree defined by the “parent” relation) rooted at the sender. Therefore, when the source node has received
an ack message from all of its children, it can easily determine the best-valued node in the entire spanning
tree (i.e., in its connected component); this best-valued node becomes the elected leader. The source node
then broadcasts a leader message announcing the identity of the new leader. Figure 7 shows a run of LE
under a static topology of five nodes, with node 1 being the source and node 5 the best-valued node (the
higher the node number, the better value it has). Starting with the propagation of election messages, LE
eventually announces, by the propagation of leader messages, the best-valued node 5 as the leader, after
having received all ack messages.

Multiple nodes can concurrently initiatemultiple elections; in this case, only one election should “survive.”
This is done by associating to each election a priority, so that a node already involved in an election ignores
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Figure 7: An example LE run in a static topology.

incoming elections with lower priority, but participates in an election with higher priority after discarding
its current election.

To deal with the dynamic setting, with node mobility and link failures, the algorithm is extended to
handle the following scenarios:

1. When a parent-child pair becomes disconnected during the election process, the parent removes the
child from its waiting list of acknowledgements and continues its election. The child terminates the
current election by announcing as the leader its maximal downstream node. LE’s probe mechanism is
used to detect a disconnected link between a child and its parent.

2. When a new link forms between two nodes: If one or both nodes are in their elections, the ongoing
computation(s) terminate before the exchange of leaders takes place; if both have accomplished their
elections and are propagating their own leaders, the exchange of leaders occurs with the better-valued
leader being the winner.

Node crashes and recoveries can also result in dynamic topologies. LE takes them into account implicitly
by treating the former as network partitioning and the latter as network merging.

The main correctness property of LE is that every connected component will select a unique leader,
which is the highest-valued node in that component. In [50, 49] the authors prove this correctness property,
assuming that the links are bidirectional, but add that “the algorithm should work correctly even in the
case of unidirectional links, provided that there is symmetric connectivity between nodes.”

5.2. Modeling LE in Real-Time Maude
This section explains how LE has been formalized in Real-Time Maude, and presents 8 of the 23 rewrite

rules in our formal model of LE.

5.2.1. Nodes and Messages
We model an LE node as an object of a subclass LE-Node of the class Node. The new attributes are

the identifier of the leader (leader), the parent (parent), the current best-valued node (max), the node’s
computation number (number), its computation index (src), which denotes the “index” of the election
in which the node is currently participating, the set of neighbors from which the node is expecting, but
has yet to receive, an ack message (acks), a flag indicating whether the node is currently in an election
(eflag), a flag indicating whether the node has sent an acknowledgement to its parent (pflag), the node’s
(immediate) neighbors (neighbors), the new neighbors found by the neighbor discovery process (newNbs),
and the relevant nodes which can no longer reach the node (lostConxs):
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class LE-Node | leader : Oid, parent : Oid, max : Oid,
number : Nat, src : CompIndex, acks : OidSet,
eflag : Bool, pflag : Bool, neighbors : OidSet,
newNbs : OidSet, lostConxs : OidSet .

subclass LE-Node < Node .

A computation index is a pair o ~ k, with o a node identifier and k a computation number, identifying an
election. As in [50], we assume that a node’s identifier determines its value.

In LE there are mainly three kinds of messages: election, ack, and leader messages. The first
parameter of these messages identifies which election the message belongs to. In addition, we use a message
electLeader to start a run of the leader election process:

op election : CompIndex Oid -> MsgContent [ctor] . --- computation index
op ack : CompIndex Bool Oid -> MsgContent [ctor] . --- highest-valued node
op leader : CompIndex Oid -> MsgContent [ctor] .
msg electLeader : Oid -> Msg .

5.2.2. Modeling Communication
In LE, nodes broadcast/multicast election messages to immediate neighbors, and unicast ack messages

to their parents and “siblings” in the spanning tree under construction. Sending to immediate neighbors
may be seen as one-hop broadcast/multicast, which we model as explained in Section 3.3: the sender
sends a “broadcast message;” after time sendDly this broadcast message is distributed to all nodes within
transmission range of the sender at that moment, and will arrive rcvDly time units later.

Unicasting ack messages, however, may involve multiple hops, since a node may have moved away from
its parent by the time the ack message should be sent. As mentioned above, LE does not specify a transport
protocol to transmit such messages, but only requires (i) that communication between neighbors is FIFO
and (ii) that the destination node must get the message if it is connected to the sender forever from the
time when the message is sent. In their simulations, the LE developers execute LE together with the AODV
routing protocol and different transport protocols, including TCP, UDP, and UDP broadcast.

In this paper, we abstract from details about how messages are routed, and model multi-hop message
transmission as follows:

• the sender sends a multiHopUnicast message to the destination node;

• if there exists a communication path from source to destination exactly multiHopSendDelay time units
later, the message will be received by the destination node multiHopSendDly + rcvDly time units
after it was sent.

We model such communication as follows:

op multiHopUnicast_from_to_ : MsgContent Oid Oid -> Msg .
op mhTransfer : MsgContent Oid Oid -> Configuration .

vars O O1 O2 : Oid . var OS : OidSet . var MC : MsgContent .
var CONF : Configuration . vars L1 L2 : Location . var R : Rat .

eq multiHopUnicast MC from O1 to O2 = dly(mhTransfer(MC, O1, O2), multiHopSendDly).
eq {mhTransfer(MC, O1, O2) CONF}
= if O2 in reachable(O1, CONF) then {dly(MC from O1 to O2, rcvDly) CONF} else {CONF} fi .

op reachable : OidSet Configuration -> OidSet [frozen (2)] .

ceq reachable(O1 ; OS, --- add O2 to nodes reachable from (O1 ; OS)
< O1 : Node | currentLocation : L1, transRange : R >
< O2 : Node | currentLocation : L2 > CONF)
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= reachable(O1 ; O2 ; OS, < O1 : Node | > < O2 : Node | > CONF)
if not (O2 in (O1 ; OS)) /\ L2 withinTransRange R of L1 .

eq reachable(OS, CONF) = OS [owise] . --- fixed point reached

Since this model abstracts from the actual route by which a message is transported, a message that happens
to be transferred in one hop has the same delay as one that uses 10 hops. Our model satisfies the requirement
that messages are delivered if there is a path from source to destination forever. However, our model does
not guarantee FIFO transmission between neighbors for two reasons:

1. Two one-hop messages sent “at the same time” results in two messages with the same delay, since our
model abstracts from details about the buffering of outgoing messages.

2. Since we abstract from routing details, a “multi-hop” message has sending delay multiHopSendDly
even if it happens to need only one hop, and could be overtaken by a one-hop broadcast message sent
later along the same link.

5.2.3. Neighbor and Connectivity Discovery
LE assumes that new (one-hop) links caused by node movement are detected. We model such neighbor

discovery abstractly by periodically updating the newNbs attribute of each node with those nodes that are
within transmission range but are not included in the node’s neighbors attribute, and by removing from
neighbors those nodes that are no longer within transmission range.

In LE, the leader of a component “periodically sends out a heartbeat message to other nodes,” which can
then discover whether they are disconnected from the leader. Each node n also periodically sends a probe
message to each node n′ from which it awaits an ack message. If n does not receive a reply message from
n′ within certain time, it assumes that the connection to n′ is lost. Finally, LE assumes that a node knows
when it becomes disconnected from its parent. We abstract from heartbeat and probe/reply protocols, and
instead periodically check whether a connection is lost to nodes in acks, the leader, or the parent.

We include in the state a timer object < 100 : GlobalND | timer : t > that triggers both the neighbor
discovery process and the lost connectivity process, periodically, each time the timer expires:

rl [computeNewNbsAndLostConnections] :
{< O : GlobalND | timer : 0 > CONF} =>
{< O : GlobalND | timer : period > updateNbsAndAck(CONF)} .

where, for each node object o in CONF, updateNbsAndAck:

1. sets o’s newNbs attribute to o’s current immediate neighbors minus the nodes already in o’s neighbors
attribute;

2. removes all nodes which are no longer o’s neighbors from o’s neighbors attribute;

3. sets o’s lostConxs attributes to those relevant nodes that cannot reach o (in multiple hops).

We refer to the online specification for the definition of this function.

5.2.4. Timed Behavior
Since we integrate neighbor discovery into our LE model, we will not explicitly handle the timing issue.

For example, we do not model a timeout for an awaited acknowledgement.

5.2.5. Modeling the Behavior of LE
Our model of LE consists of five parts: initiating leader election, handling an election message, handling

an ack message, handling a leader message, and dealing with new neighbors and lost connections.
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Starting Leader Election. A “message” electLeader(o) kicks off a run of LE with node o as initiator. Node
o multicasts a message election(o ~ n) to all its immediate neighbors, where n is the latest computation
number.4 The source will then wait for the ack messages from those neighbors by setting acks to OS.
Moreover, it sets eflag to true, indicating that it is currently in an election:

vars O O’ O1 O2 SND LID M M’ P : Oid . vars OS OS1 OS2 : OidSet .
var N : Nat . var I : CompIndex . vars B FL : Bool .

rl [init-leader-election] :
electLeader(O)
< O : LE-Node | eflag : false, neighbors : OS, number : N, leader : O2 >

=>
< O : LE-Node | acks : OS, src : O ~ N, number : N + 1,

eflag : true, pflag : false, parent : O, max : O >
(multicast election(O ~ N, O2) from O to OS) .

Receiving an Election Message. When a node that is not involved in an election (eflag is false) receives an
election message from SND, the node sets SND as its parent, and sets its src, eflag, and pflag attributes
accordingly. The node multicasts an election message to all its neighbors except the parent:

crl [join-1] :
(election(I, LID) from SND to O)
< O : LE-Node | eflag : false, leader : LID, neighbors : OS1 >

=>
< O : LE-Node | src : I, acks : OS2, eflag : true, pflag : false,

parent : SND, max : O >
(multicast election(I, LID) from O to OS2)

if OS2 := delete(SND, OS1) .

Receiving Ack Messages. When a node receives an ack message for the current computation I, from a
node SND, it deletes SND from the set acks. If the reported best node M’ is better than the node’s current
best-valued node M, then the max attribute is also updated accordingly:

rl [update-acks] :
(ack(I, FL, M’) from SND to O)
< O : LE-Node | pflag : false, src : I, acks : OS, max : M >

=>
< O : LE-Node | acks : delete(SND, OS), max : (if FL and M’ > M then M’ else M fi) > .

All acks Received. When a node is no longer waiting for any ack message (acks is empty), and it has not
yet sent an ack to its parent (pflag is false), it sends an ack message to its parent, with its best-valued
node M. However, if the node initiated this round of the protocol (and therefore is the root node) it starts
propagating the leader M to its immediate neighbors:

rl [all-acks-received-1] :
< O : LE-Node | acks : empty, src : (O’ ~ N), pflag : false,

parent : P, max : M, neighbors : OS >
=>

if O =/= O’ --- not root node
then < O : LE-Node | pflag : true >

(multiHopUnicast ack(O’ ~ N, true, M) from O to P)
else < O : LE-Node | eflag : false, leader : M >

(multicast leader(O’ ~ N, M) from O to OS) fi .

4In case there are multiple concurrent runs of the protocol, this index helps deciding which run should continue.
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Leader Message Handling. If a node already in an election receives a leader message for the first time, it
just updates the local leader, clears the eflag (its election is over), and propagates the received message:

crl [adopt-new-leader-1] :
(leader(I, LID) from SND to O)
< O : LE-Node | pflag : true, eflag : true, max : M, neighbors : OS >

=>
< O : LE-Node | leader : LID, eflag : false, src : I >
(multicast leader(I, LID) from O to OS) if M <= LID .

New Links. If one or more new neighbors have been found from a node O that has already finished its
election, then the node multicasts the leader message to the new immediate neighbors:

rl [new-links-found] :
< O : LE-Node | newNbs : O’ ; OS, eflag : B, src : I, leader : LID >

=>
< O : LE-Node | newNbs : empty >
(if not B and LID =/= 0 then (multicast leader(I, LID) from O to (O’ ; OS)) else none fi) .

Lost Connections. If a node gets disconnected from its parent while still in an election, it terminates the
diffusing computation by announcing its maximal downstream node as the leader:

rl [disconnected-from-parent] :
< O : LE-Node | lostConxs : OS ; P, pflag : true, eflag : true,

parent : P, max : M, src : I, neighbors : OS2 >
=>
< O : LE-Node | lostConxs : OS, eflag : false, leader : M >
(multicast leader(I, M) from O to OS2) .

5.3. Formal Analysis of LE
We compose our MANETs model with our model of the LE protocol model (and our abstract models

of neighbor discovery and multi-hop unicast) to analyze LE under realistic mobility and communication
models. This includes analyzing LE with both bidirectional links and unidirectional links; the latter are a
consequence, e.g., of nodes sending with different signaling power, which could be due to different device
capabilities and/or different amounts of remaining energy.

Although many papers (e.g., [50, 13, 46, 16, 45, 21, 47, 48, 31, 14]) have studied LE, it seems that very
little is known by way of formal analysis about how it behaves with unidirectional connections and under
realistic mobility scenarios. We analyze LE under four different settings:

I. single connected component (i.e., each node can reach any other node by at least one (possibly directed)
path); only stationary nodes; bidirectional communication channels;

II. single connected component; only stationary nodes; both bidirectional and unidirectional communica-
tion channels;

III. single connected component throughout the entire leader election process; both stationary and mobile
nodes; bidirectional communication channels;

IV. two connected components that repeatedly merge and partition because of node movement.

LE Nodes. As explained in Section 3.4, we can combine our protocol specification with a node mobility
model by having nodes as object instances of a subclass of both LE-Node and a mobility class, such as
RWPNode for random waypoint mobility:
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class LE-RWPNode .
subclass LE-RWPNode < RWPNode LE-Node .

class LE-StatNode .
subclass LE-StatNode < StationaryNode LE-Node .

We use the numbers 1, 2, . . . as node identifiers, and use the value 0 as the undefined/”null” node:
subsort Nat < Oid .

Formalizing the Correctness Property. We use model checking to analyze the main correctness property of
LE, as described in [50]:

“Given a network of mobile nodes each with a value, after a finite number of topological changes, every
connected component will eventually select a unique leader, which is the most-valued-node from among the
nodes in that component.”

The following atomic proposition unique-leaders holds if and only if all nodes in a connected component
have the same leader, which is, furthermore, the highest-valued node in that connected component:5

op unique-leaders : -> Prop [ctor] .

eq {< O : LE-Node | leader : 0 > REST} |= unique-leaders = false .
--- no leader (’0’) selected by some node

ceq {< O : LE-Node | leader : O’ > REST}
|= unique-leaders = false if O’ < O . --- O better than its leader

ceq {< O1 : LE-Node | leader : O’ > < O2 : LENode | > REST}
|= unique-leaders = false

if O’ < O2 --- wrong leader selected by O1
/\ O2 in reachable(O1, < O1 : LENode | > < O2 : LENode | > REST) .

eq {SYSTEM} |= unique-leaders = true [owise] .

The main correctness property can then be formalized as the LTL formula <> unique-leaders. Given
an initial state init, the following commands check whether the property holds (possible up to the duration
of the test round, roundTime). If the property does not hold, a trace illustrating a counterexample is shown.

(mc {init} |=u <> unique-leaders .)
(mc {init} |=t <> unique-leaders in time <= roundTime .)

We can use unbounded model checking for static topologies. In dynamic topologies, the locations of the
moving nodes contribute to an infinite reachable state space, and time-bounded model checking is therefore
required to have a finite reachable state space, which implies that model checking terminates.

5.4. Scenarios and Analysis
We make the following assumptions in our experiments:
• The transmission range of a node is 10 meters, and the test area is 100m× 100m.

• The one-hop delays at the sender side and at the receiver side are 1 and 0, respectively. The multi-hop
“send” delay is 2 time units.

• roundTime (i.e., the time bound in the model checking) is 20.

• All nodes are initially aware of their one-hop neighbors. leader and parent are initially set to 0, and
max is initialized to the node’s identifier.

5Remember that the value of a node is given by its identifier.
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Figure 8: Topology in Scenario II.

Figure 9: Topology in Scenario III.

Scenario I. Scenario I corresponds to the topology in Fig. 7, and consists of five stationary nodes with
bidirectional connections. The nodes 1, 2, 3, 4, and 5 are located at (45 . 45), (50 . 50), (50 . 40),
(60 . 40), and (60 . 50), respectively. We consider two sub-scenarios: (a) only node 1 initiates a round
of the leader election protocol; and (b) all five nodes initiate a run of the protocol. Time-bounded model
checking shows that the property holds: all five nodes elect the best-valued node 5 as their leader within 20
time units; the execution times of the analyses are 150 milliseconds (ms) and 4500 ms, respectively.

Scenario II. This scenario, shown in Fig. 8 (where a solid line denotes a bidirectional link, an arrow denotes
a unidirectional link, and a dashed circle shows a node’s transmission area), considers a topology with three
stationary nodes, where the links between nodes 2 and 3 and between 3 and 1 are unidirectional. This
scenario defines a single connected component in the sense that there is a directed path from each node to
any other node. To form such a unidirectional but connected component, we set the transmission ranges of
the source 1 and other two nodes 2 and 3 to 10m, 30m, and 20m, respectively.

Real-Time Maude model checking shows (in 100 ms CPU time) that the desired property is satisfied in
this topology with the above system parameters.
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Scenario III. Scenario III, shown in Fig. 9 (where a dashed arrow denotes a node’s motion path), considers
a bidirectional dynamic topology with three nodes, where the source node 1 is located at (50 . 50), and
nodes 2 and 3 are initially at (60 . 50) and (50 . 55), respectively. Node 3 is a random waypoint node that
moves back and forth along the dashed arrow with end points (50 . 55) and (60 . 55) (denoted by 3’).
Note that the topology remains a connected component despite node 3’s movement. We set the pause time
of the moving node to 0 and the period of the neighbor/connectivity discovery process to 2.

We experiment with three sub-scenarios: (a) the speed of the moving node is 10; i.e., the speedRange
attribute is the singleton 10; (b) the speed is 5; and (c) the speed is again 10, but now the pause time is 1
time unit. The initial state of Scenario III-a is given by the term (with parts of the term replaced by ‘...’):

eq period = 2 .
eq pauseTime = 0 .

eq initConfig
= electLeader(1)

< 100 : GlobalND | timer : period >
< 1 : LE-StatNode | currentLocation : 50 . 50, transRange : 10, leader : 0, max : 0,

neighbors : (2 ; 3), parent : 0, number : 100, src : 0 ~ 0,
acks : empty, eflag : false, pflag : false, newNbs : empty,
lostConxs : empty >

< 2 : LE-StatNode | currentLocation : 60 . 50, transRange : 10, leader : 0, max : 0,
neighbors : 1, parent : 0, ... >

< 3 : LE-RWPNode | currentLocation : 50 . 55, transRange : 10, speed : 0,
speedVector : < 0 , 0 >, speedRange : 10,
destRange : (60 . 55) ; (50 . 55) , timer : pauseTime,
status : pausing, leader : 0, neighbors : 1, ... > .

Real-Time Maude model checking of Scenario III-a shows (in 240 ms CPU time) that the desired property
is not satisfied: Node 3 moves away from Node 1 during Node 1’s multicast to “immediate neighbors,” and
is not within Node 1’s transmission range when the sending delay of the one-hop multicast of election
messages to “immediate neighbors” expires. Therefore, Node 3 does not get this message. Furthermore, the
neighbor discovery process takes place every 2 time units, which exactly coincides with the moments when
Node 3 is close to Node 1! The neighbor discovery process therefore never discovers that Node 3 is not an
immediate neighbor of Node 1, and will hence never discover that Node 3 is a new neighbor. Node 3 will
therefore be left out of the election process forever.

We cannot claim that this behavior invalidates the LE protocol, since LE may be based on other as-
sumptions, such as “continuous neighbor discovery” and/or multi-hop communication even to nodes that
are immediate neighbors when a sending event begins. However, this spurious behavior shows (at least) the
need to make explicit subtle requirements of the underlying neighbor discovery process, and to make more
precise the meaning of sending to “immediate neighbors” when an immediate neighbor may cease to be one
during the sending process.

Real-Time Maude model checking of Scenarios III-b and III-c show that the desired property holds in
these scenarios. The only difference between Scenarios III-a and III-c is that pauseTime is 1 in Scenario
III-c. This implies that Node 3 takes three time units to move from location 3 to location 3’, and back.
Since the neighbor discovery process takes place every two time units, it will sooner or later take place when
Node 3 is in location 3’ in Fig 9, and hence no longer is an immediate neighbor of Node 1. Sometime later,
the neighbor discovery will take place when Node 3 is again close to Node 1, and will discover the “new”
link between Nodes 1 and 3, and will then involve Node 3 in the election.

In Scenario III-b, it takes Node 3 two time units to move between the locations 3 and 3’ in Fig. 9, and
the neighbor discovery process will therefore update the neighbor information every time Node 3 reaches
one of these end-points.

Scenario IV. Finally, to analyze merge and partition of connected components during the leader election
processes in two connected components, we consider the system with two connected components (consisting
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Figure 10: Topology in Scenario IV: two connected components that repeatedly merge and partition.

of Nodes 1 and 2, and of Nodes 3, 4, and 5, respectively) in Fig. 10. Since Node 5 moves back and forth
between position 5 and position 5’ in Fig. 10, the two connected components will repeatedly merge (when
Node 5 is close to position 5’) and partition (when Node 5 is close to position 5).

Our model checking analysis shows that the property holds when both Node 1 and Node 3 initiate
elections at the same time and when pauseTime is 8.

6. Related Work

There are a number of formal specification and analysis efforts of MANETs in general, and AODV in
particular. Bhargavan et al. [4] use the SPIN model checker to analyze AODV. They only consider a 3-node
topology with one link break, but without node movement, and communication delay is not considered.
Chiyangwa et al. [8] apply the real-time model checker Uppaal to analyze AODV. They only consider a
static linear network topology. Although they take communication delay into account, the effect of mobility
on communication delay is not considered, since the topology is fixed. Fehnker et al. [12] also use Uppaal
to analyze AODV. They also only consider static topologies, or simple dynamic topologies by adding or
removing a link, and those topologies are based on the connectivity graph without concrete locations for
nodes. Furthermore, no timing issues are considered. Höfner et al. [19] apply statistical model checking
to AODV. However, mobility is simply considered by arbitrary instantaneous node jumping between zones
that split the whole test grid. Although they take into account the communication delay, the combination
of mobility and communication delay is not considered.

None of these studies has built a generic framework for MANETs. Our modeling framework aims at
the combination of (bidirectional/unidirectional) wireless communication and mobility, and allows formal
modeling and analysis of protocols under realistic mobility models.

On the process algebra side, [34, 35, 17, 29, 46, 15, 18, 30, 11, 13, 46, 16, 45, 31, 21, 47, 48, 28, 26, 27, 51,
52, 53] have been proposed as process algebraic modeling languages for MANETs. These languages feature
a form of local broadcast, in which a message sent by a node could be received by other nodes “within trans-
mission range.” However, connectivity is only considered abstractly, without taking into account concrete
locations and the transmission range of nodes. Furthermore, [34] only considers fixed network topologies,
whereas the others (except [18]) deal with arbitrary changes in topology. Godskesen et al. [18] consider
realistic mobility, and propose concrete mobility models. However, no protocol application or automated
analysis is given, and communication delay is not taken into account. Merro et al. [30] propose a timed
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calculus with time-consuming communications, and equip it with a formal semantics to analyze communi-
cation collisions. In general, these studies have proposed modeling/analysis frameworks for MANETs, but
they lack the expressiveness to model both mobility, bidirectional/unidirectional wireless communication,
and/or timing issues.

The leader election protocol LE has also been subjected to a number of formal analysis efforts. Gelastou
et al. [13] specify and verify LE using both I/O automata and process algebra. They only consider static
bidirectional topologies with non-lossy channels, and communication delay is not taken into consideration.
Singh et al. [46] present the ω-calculus for formally modeling and reasoning about MANETs, and illustrate
their techniques by developing and analyzing a formal model of LE. They only consider dynamic bidirectional
topologies where a node is free to move as long as the network remains connected, without taking into
account unidirectional scenarios, communication delay, and message loss. Ghassemi et al. [16] provide a
framework for modeling and analyzing both qualitative and quantitative aspects of MANET protocols,
where communication delay and dynamic topology (modeled by probabilistic message loss) are considered.
They focus on the performance of LE under various parameters without giving any qualitative results. Sibilio
et al. [45, 31] propose a calculus for trustworthy MANETs with which they analyze a secure version of LE
(neighbors trust each other at some security level) with three stationary nodes connected by bidirectional
links. Kouzapas et al. [21] propose a calculus of dynamic networks whose semantics contain rules mimicking
the behavior of a neighbor discovery protocol (just as we integrate the underlying neighbor discovery into
our model). They analyze LE with an arbitrary derivative of the initial state based on bisimilarity under the
assumption of no message loss. Song et al. [47, 48] introduce a stochastic broadcast calculus for MANETs
with mobility modeled stochastically. They analyze a simplified model of LE with four nodes, where the
mobility of (only) one node affects the transmission probability. In [14], Ghassemi et al. introduce both
constrained labeled transition systems to represent mobility and a branching-time temporal logic to model
check MANET protocols. They specify the correctness property of LE, but do not verify it in detail.
Finally, the developers of LE present in their accompanying technical report [49] a “formal” specification of
LE and use temporal logic to prove the correctness of the protocol, assuming bidirectional connections and
no message loss.

The work presented in this paper distinguishes itself by modeling node locations, transmissions ranges,
message loss, communication delay, well known mobility models, neighbor discovery, and uni/bidirectional
connectivity, as well as their interrelations. From a modeling perspective:

• Related work does not model node locations explicitly, but represent the topologies abstractly as
“neighborhood graphs.”

• Related work therefore does not consider realistic mobility models, but only static topologies or simple
dynamic topologies with arbitrary link breaks.
In particular, related work on defining a modeling framework for MANETs or targeting specific pro-
tocols such as AODV or LE, model the network topology or neighborhood connectivity in an abstract
way without representing the actual location of a node, the distance between nodes, or the transmis-
sion range of a node. Instead, the topology is described as a set of connectivity graphs denoting the
possible connectivities between nodes within the network.
The following related work encodes node locations and/or transmission ranges abstractly: [29] encodes
a node’s location and radius into the syntax of the calculus, but does not consider concrete locations or
actual distances between nodes; [18] describes mobility models using abstract functions on vectors, but,
again, does not model distances between nodes or transmission range; [19] models the network topology
over a 2D rectangular grid, provides each node with transmission range, and uses a topology-based
mobility model where only the change of the connectivity graph due to node movement is considered;
[34] models node transmission range and locations abstractly and uses abstract functions to compute
distances between nodes.

• Related work does not consider unidirectional connectivity.
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• Regarding neighbor discovery, though most related work considers neighbor connectivity, they implic-
itly model its behaviors as arbitrary changing of connections (though [21] mentions that the modeling
framework is embedded with the underlying neighbor discovery, it handles neighborhood changes as
others). We explicitly integrate an abstract neighbor (and multi-hop connectivity) discovery process
into our model, and model its dynamic behaviors accordingly along with node mobility.

• Regarding transmission mode, most related work considers broadcast and unicast. Only [45, 47, 48, 31]
consider groupcast.

• Regarding message loss, [47, 48, 16] consider probabilistic message transmission, and [14] considers
lossy communication and loss of connectivity, whereas message loss in our model comes from node
mobility and unidirectional connections.

• Only [16, 47, 48] consider communication delay.

• To the best of our knowledge no related work considers the the interplay of all the above ingredients.

Finally, Maude and Real-Time Maude have been applied to analyze wireless systems. Our previous work
[24, 25] builds the modeling framework that serves as the basis for this paper, and analyzes AODV and LE
under different mobility models. The papers [20, 39] model wireless sensor networks in (Real-Time) Maude,
but do not consider node mobility.

7. Conclusions

The formal modeling of MANETs presents non-trivial challenges, because physical aspects such as geo-
metrical location, mobility, and wireless communication need to be taken into account to faithfully specify
and verify their requirements. Although, as discussed in Section 6, there is already a substantial body of
work on the formal analysis of MANETs, there is still a substantial gap between the more abstract level at
which those analyses have been carried out and the more detailed level at which various physical aspects
having a direct bearing on required behavior have to be considered. To address this problem we have pre-
sented a new formal framework for MANETs based on Real-Time Maude and having good expressiveness
and compositionality features. We have also shown how the most commonly used mobility models as well
as wireless communication and its interactions with mobility can be naturally expressed in the framework.
Furthermore, we have presented two case studies, for the AODV and LE protocols, showing the effectiveness
of the formal framework and of Real-Time Maude in analyzing MANETs in sufficient detail and uncover-
ing problematic behaviors due to mobility. In particular, our analysis uncovered a previously unreported
spurious behavior in the well-analyzed LE protocol that is due to the subtle interplay between neighbor
discovery, node movement, and communication delay. This behavior would be impossible to find if those
aspects are abstracted away. Our analysis does not explicitly falsify LE—due to the vague description of the
assumptions on communication and neighbor discovery in [49]—but at least shows a potentially troubling
behavior and the need to make certain assumptions more precise.

As usual, much work remains ahead. First, the ground is now ready for analyzing various compositions
not only of one MANET protocol with various mobility models, but also of composed MANET protocols with
such models. Second, a broader collection of MANET protocols should be analyzed and the experience gained
should be used to improve the framework and its methodology. Third, suitable abstraction methods that
can drastically reduce the state space while still modeling relevant physical aspects at a more abstract level
should be developed. Fourth, we analyze the systems from particular single initial states, with given (initial)
locations, speed ranges, neighbor discovery time intervals, and so on. It would be desirable to somehow cover
entire parameter spaces. Recent developments in combining rewriting with SMT solving [43] might make
such analysis possible and should be further investigated. Fifth, various performance and Quality of Service
(QoS) requirements for MANETs should also be supported by the formal framework. For this, the use of
probabilistic rewrite theories [1] together with statistical model checking tools e.g., [44, 1, 2] have already
been shown to be quite well suited for analyzing various network protocol applications, including sensor
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networks (see, e.g., [3, 20, 10]), so the extension of these methods to MANETs should be straightforward.
Last, but not least, the framework and its methodology should be used not just for post mortem analysis
of existing MANET protocols, but also as an integral part of the design of new MANET protocols. In
particular, its usefulness in identifying design errors early in the design process, shortening its length, and
resulting in MANET designs of higher quality and reliability should be evaluated.
Acknowledgements. We thank the anonymous reviewers for their very insightful comments on an earlier
version of this paper that has led to substantial improvements. This work was partially supported by NSF
grant CNS 13-19109.
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