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Abstract

Regression testing is the most wide-spread method to ensure the quality of
software systems. Whenever a change is made to the software, tests are run
to ensure bugs are not introduced: if all tests pass, the change is merged into
the codebase; otherwise, the developer needs to identify the bug that was
introduced by the change. Developers assume that the outcomes of the tests
in the regression testing process are reliable, i.e., that the failure indicates
a bug introduced by the change. Unfortunately, unreliable tests manage
to get into the test suite, slowing down the developers’ workflow and having
developers debug not their software but rather the test code or infrastructure.
This dissertation presents two techniques to enable developers to more easily
and proactively detect and debug unreliable tests early, before they become
a problem and slow down the development process.

Developers write unreliable tests, which may pass on their machine but
may at a later point fail because the environment changes. This disserta-
tion presents a technique to detect when code makes wrong assumptions on
underdetermined APIs. While these assumptions may hold in the current
environment, they may not hold in the future, causing tests to fail. The
technique, NONDEX, detects such wrong assumptions by exploring different
behaviors that may not manifest in the current implementation, but are al-
lowed by the specification. Furthermore, the dissertation presents POLDET,
a technique to detect when tests pollute their environment; such polluting
tests can cause other tests to fail or pass seemingly nondeterministically be-
cause of the environment pollution rather than changes in the code. The two
techniques enable developers to identify when they are introducing unrelia-
bility in their test suite and help identify the root causes of the unreliable
tests. The results of the evaluation on open-source projects show the tech-
niques are effective at identifying issues in open-source code and also that

developers are eager to fix the issues and adopt the tools.
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Chapter 1

Introduction

Software is ubiquitous in today’s society: from the now-classic computers,
phones, and tablets, to the more recent wearables, IoT devices in our homes,
smart cities, and critical infrastructure. While software is playing an increas-
ingly more critical role in our lives, it also changes faster than ever to add new
features, adapt to new requirements, eliminate bugs, improve performance,
etc. The fast pace in changing software makes it imperative for developers
to apply rigorous techniques to ensure the quality of the software as they
change it.

Regression testing is the most widely used approach to ensure the quality
of software systems while developers make changes to their code. When a
developer submits a change to a software repository, the regression-testing
system will run the tests and report the outcomes to the developers; this pro-
cess is used to protect the software from regressions, i.e., changes that would
break existing functionality. The software industry has developed large-scale
regression-testing systems for in-house use, e.g., Facebook Buck [12], Google
TAP [39, 89, 126, 128], Microsoft CloudBuild [27], and even released some
of the tools as publicly available services, e.g., AWS CodeBuild [6]. Many
more companies adopt a continuous deployment strategy which leverages re-
gression testing as a gatekeeper for the deployment phase [101,109,115]. The
open-source world in turn has also adopted a plethora of systems that perform
regression testing through continuous-integration services like Travis [56,130]
(overall the most used system on GitHub), AppVeyor [4] for Windows, and
CircleClI [18] for Android.

Test outcomes control whether a change can be merged; if tests fail, the
system does not merge the change into the codebase (although sometimes de-
velopers override this gate-keeping functionality in situations like hot-fixes).
In contrast, if all tests pass, the code change is merged into the codebase.

This quality-assurance process assumes that the outcomes of the tests are



reliable, i.e., if any test fails, then the change is introducing a bug that
the current test suite can detect, and it is therefore beneficial that the test
failed early and did not let a bug slip in. Alternatively, if all tests pass,
then developers assume the change does not introduce any bug that the
current test suite could detect (although there may be other bugs that the
test suite misses because it is non-exhaustive). Unfortunately, this assump-
tion does not hold in practice because many times test outcomes are unreli-
able [7,8,24,30,31,44,75,85,89,90,124, 131,134, 137,148].

Unreliable tests fail without indicating a fault in the system under test
(SUT) or pass while missing faults that they should otherwise detect [131].
Tests whose pass/fail outcome is unreliable, i.e., tests that can pass or
fail without the developer changing the code, are traditionally called flaky
tests [85]. A recent study at Google indicates that over 40% of modules
have had at least one flaky test (out of all the modules that ever passed and
failed at least once) [89]. Such unreliable tests can slow down the developers
by making them waste time debugging failures that are not related to their
change, debugging failing tests that were potentially written by other devel-
opers and are not directly related to what they are developing, and therefore
increasing the debugging effort. Alternatively, unreliable tests may also let
bugs slip in (when they should fail but they pass), with potentially extreme
consequences, albeit this situation is more rare [131]. Unfortunately, the
false alarms not only waste developers time, but also render techniques that
use historical failures unusable [75,89], e.g., test prioritization may prioritize
tests that failed in the past to run earlier than tests that did not, based on
the assumption that their past failures were reliable and indicate that they
are effective at detecting bugs. Furthermore, while unreliable tests are an
important problem in software practice, we also encountered them in teaching
software development in general and software testing in particular [120].

There are several main causes for unreliable test outcomes [85] stemming
from concurrency, test-order dependency, time, I/O, environment assump-
tions, specific JDK or library assumptions, etc. Rothermel and Harrold pre-
cisely identified over two decades ago in the controlled regression testing as-
sumption the ideal environment in which regression tests should be run: “the
only factor that may change the outcome of a test is the code change” [110];
unfortunately, this assumption does not materialize in practice, and there

are no easy solutions to control all the (nondeterministic) factors in the test



execution to guarantee that when a test fails it is indeed due to only the code
change.

This dissertation aims to enable developers to make their tests resilient
to changes in the environment; our techniques help developers find common
causes of unreliable tests and provide debugging information that enables
developers to proactively fix their unreliable tests as soon as they write them,
rather than wait for a later time when problems are harder to fix. We envision
that developers, whenever they add new tests or periodically, would use our
techniques to check that their tests are not unreliable. We argue that fixing
the tests as soon as the problems are introduced lowers the future costs of
false alarms and missing bugs. This approach contrasts the current laissez-
faire approach that constitutes the state of the practice, where tests are rerun

until they all happen to pass and the code can be merged [89,122].

1.1  Thesis

Our thesis is the following:

Proactively detecting causes of unreliable tests is an effective and
efficient approach for developers to use in order to prevent future

slowdowns due to unreliable tests that appear in the test suites.

When the research in this dissertation started, the state of the art in
research and practice for remedying unreliable tests was centered around
detecting unreliable tests once they appear, isolating the environment that
unreliable tests run in to ensure that tests cannot manifest as unreliable, or
making the testing process resilient to unreliable tests by rerunning failing
tests to ensure the tests exhibit reliable failures. It was not even clear if
preventing the introduction of unreliable tests in the test suite was feasible
before a failure could be exhibited in the existing environment. Further, it
was not clear that it could be done efficiently; there are so many potential
sources of unreliability that it was not clear whether efficiently exploring
or controlling the space was feasible. Moreover, detecting unreliability may
yield false positives, therefore hindering the effectiveness of techniques based

on proactively detecting causes of unreliable tests. Detecting unreliable tests



early is more economical than waiting for problems to appear later down
the road. Developers are best equipped to fix problems when they introduce
them because the overhead of context-switching is rather minimal—they are
already familiar with the test and code they wrote so fixing the test to pre-
vent it from being unreliable is the easiest at that point. In this dissertation,
we not only show that it is feasible to proactively detect causes of unreliable
tests, but we demonstrate that we can do so efficiently and effectively, and we
present two techniques that achieve it. First, we describe NONDEX, a tech-
nique to detect tests that make wrong assumptions about underdetermined
APIs by exploring behaviors allowed by the API specification [42,43,120].
Second, we present POLDET, a technique that detects state-polluting tests
in order to prevent test-order dependency [44]. Both techniques help devel-
opers proactively detect causes of unreliability and enable them to fix the

issues in their test-suites.

1.2 Terminology

In this section we define unreliable tests and also discuss some background

on terminology used in other research.

1.2.1 Flaky Tests

The term “flaky test” has been used in practice [31,129] (along with other
informal names such as “flakey”, “intermittent”, “flapper”, etc.), and was
adopted in research [85,90] to informally refer to any test that fails due to
uncontrolled /unknown factors that are perceived to not be a bug in the SUT.
There is no bright-line rule of what constitutes a flaky failure: a test that
fails because of network is not automatically flaky but may illustrate a bug
in the SUT that manifests when the network is not available; similarly, a
test that fails due to concurrency need not be flaky, but rather may expose a
bug only under certain thread schedules (albeit both examples would strictly
speaking meet the definition of “intermittently failing or passing without any
change to the code”). The key intuition is that flaky tests expose bugs in
the test (infrastructure) rather than the SUT.



1.2.2 Unreliable Tests

Throughout this dissertation we use the term unreliable tests to refer not only
to tests that are flaky, but also to any tests that may fail intermittently in the
future, but may have never had a flaky failure yet. Such unreliable tests may
make undocumented assumptions that hold in the current environment, but
they are not in any way guaranteed to hold in the future, e.g., performance
of the underlying hardware or application programming interfaces (APIs)
with underdetermined specifications. In other words, any test that does not
either enforce the controlled regression testing assumption or make its oracle
robust to allowed but uncontrolled changes in the environment is unreliable.
Under this broad definition, is there any test that is reliable? Yes, of course!
For example, tests that mock the network when they depend on the network
control for network unreliability and therefore are reliable with respect to the
network (mocks could also simulate network outages, if tests are meant to
test for that). Note that we do not require test executions to be deterministic,
but rather we require that the oracles are robust to allowed but uncontrolled

changes in the environment for a test to be reliable.

1.2.3 Practical Considerations

One pragmatic consideration in dealing with unreliable tests is whether it
is practical to require all tests to be reliable, because that obviously incurs
a cost. There is a balance to be achieved between making tests resilient
to issues that may or may not arise in the future and addressing current
issues. We believe tools should empower developers to make this decision by
providing the appropriate amount of information needed to make an informed
decision. While it is rather hard for tools to predict the future and foresee
whether something that is uncontrolled by the test will end up making the
test fail, tools can still assist the developers to make a better decision. For
example, when a developer makes an assumption on the environment that
is not supported by the specification, a tool could inform the developer how
strong the assumption is (the stronger the assumption, the likelier for it to
not hold in the future). In general, tools that help developers identify causes
of unreliability need to offer a way for developers to prioritize or focus their

attention on the most relevant issues.



1.3 Wrong Assumptions on Underdetermined APIs

Several commonly used Java APIs, both in the Java Standard Library and
in commonly used third-party libraries, have underdetermined specifications.
Following Liskov [84], we say that a specification is underdetermined if it al-
lows implementations to return different results for the same input, even if
each implementation is itself deterministic and always returns the same re-
sult for the same input. We refer to an API with such a specification as
an underdetermined API. An example underdetermined API is the iterator
method in java.util.HashSet, whose Javadoc specification states, “The ele-
ments are returned in no particular order” [53]. Similarly, libraries for gen-
erating JavaScript Object Notation (JSON) typically do not guarantee any
order for elements in a JSON document [65]. Having such underdetermined
specifications has advantages because it gives implementers of the underde-
termined APIs the flexibility to optimize the various implementations of the
API for different goals, e.g., they may optimize performance in different ways.
However, it is important to precisely document underdetermined specifica-
tions in the API documentation to express all expected behaviors of all the
implementations of an API.

Unfortunately, even when underdetermined APIs have precise documen-
tation, developers do make wrong assumptions about the underdetermined
APIs. While such APIs could allow even nondeterministic implementations,
each typical implementation is deterministic, i.e., two runs of the same im-
plementation (in the same environment) give the same result for the same
input. For example, two runs of a program that iterates over a HashSet may
return the elements in the same order. However, such deterministic imple-
mentations can mislead the developers of API clients, who may assume that
all AP implementations are guaranteed to behave in the same deterministic
manner. For HashSet, while one Java version could provide a deterministic
iteration order, different Java versions provide different iteration orders (e.g.,
the order in Java 7 differs from the order in Java 8). If clients of an underde-
termined API assume stronger-than-specified guarantees, the resulting code
can fail when the API implementation changes, albeit the specification re-
mains the same. A well-known example of such wrong assumptions is that
many projects with JUnit tests relied on a particular order in which test

methods are executed; when these projects upgraded from Java 6 to Java 7,



many tests failed because the order changed from Java 6 to Java 7 [69], albeit
the specification of the API producing the order did not change between the
two versions.

The state-of-the-practice in detecting the negative effects of wrong assump-
tions on underdetermined APIs is rather reactive. Most developers discover
such assumptions only after failures happen (e.g., after environments or li-
braries are changed). Unexpected behaviors cause unreliable tests, which
can pass or fail seemingly without any changes to the code. An unreliable
test that assumes a certain behavior, which is not guaranteed by the API
specification, can fail when the API implementation changes. The develop-
ers of several projects followed a reactive practice in the past by spending
a lot of time fixing their own code as a result of test failures due to wrong
assumptions [35,37,69,70,86,91].

We describe NONDEX, a technique to proactively detect wrong assump-
tions on underdetermined APIs by exploring different allowed behaviors dur-
ing test execution. For example, HashSet, with its underdetermined itera-
tion order, NONDEX randomly explores different iteration orders, which can
proactively detect failures of tests that iterate over HashSet, either directly in
the test code itself or in the SUT. NONDEX can also systematically explore
the space of all possible behaviors allowed by underdetermined specifications
when it is tractable. Once a test fails during exploration, that failure demon-
strates that the code made some wrong assumption. NONDEX also helps in
debugging by pinpointing the location where the assumption was made; the
debugging feature searches for the dynamic invocation of the API whose
exploration caused the failure. Developers can run NONDEX, e.g., during
continuous integration, to check for wrong assumptions on Java APIs. It
is often more cost-effective to detect bugs proactively, right when they are
introduced, rather than reactively, after they manifest when the environment
changes.

Our evaluation of NONDEX on 195 open-source projects downloaded from
GitHub and 72 student submissions from one homework assignment in a
recent offering of our software-engineering course shows that NONDEX is
effective and efficient at pinpointing wrong assumptions in tests. We find
NoNDEX to be highly effective at detecting unreliable tests in both open-
source projects and student submissions. NONDEX detected 60 unreliable

tests in 21 of the 195 open-source projects. We reported to developers the



issues we found in 13 pull requests, and developers accepted 12. Further, the
Checkstyle project, in which we found 5 bugs, integrated NONDEX into their

continuous-integration configuration to run on every push [15].

1.3.1 Main Contributions

The work on NONDEX, detecting wrong assumptions on underdetermined

APIs, makes the following contributions:

e Defines the problem of code that makes wrong assumptions on under-

determined APIs and identifies it as a cause of unreliable tests.

e Systematically explores, quantifies, and characterizes the state spaces

of programs using underdetermined specifications.

e Presents the development of NONDEX, a tool to explore underdeter-

mined APIs and identify wrong assumptions.

e Evaluates NONDEX on real-world programs.

1.4 State Pollution

One common cause of unreliable tests in regression test suites is dependency
among tests [7,58,85,105,137,148]. These dependencies arise when the tests
read and write some shared resource, e.g., the heap state in the main memory,
file system, database, etc. Prior research showed that these dependencies oc-
cur in various projects (ranging from small projects such as Maven to medium
projects such as Apache Aries and to large projects such as Hadoop) [85],
and that most of these dependencies are on the heap state, reported to range
from 53% [85] to 61% [148] of all test dependencies. These dependencies
make the outcome of regression test-suite runs unreliable: even for the same
version of the SUT, the tests could pass when executed in one order but fail
when executed in another order, leading to unreliable tests [85,93,148].
When tests fail due to test-order dependency, it is hard to pinpoint the root
cause of the dependency, i.e., identify which test “pollutes” what part(s) of
the shared state. For example, consider a test ¢ that starts from a shared state

s, modifies it to s’ such that there could be another test ¢’ that would pass
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when started from s but fail when started from s’. Two issues are important
to highlight here. First, when the test ¢’ seemingly nondeterministically fails
or passes for the same code, the culprit is not necessarily the test ¢’ but the
polluting test ¢, which makes debugging harder.

Second, even if the current test suite does not have any test ¢’ that can be
affected by the polluting test ¢, it is still valuable to know that ¢ is a polluting
test, so it could be fixed even before ' is added and the test order is changed.
For example, the change in test order significantly affected a number of Java
projects when they upgraded to Java 7 [70]. The reason was that Java 7
changed the Reflection API implementation. Because JUnit uses reflection
to find the tests to run, the tests started running in different orders than in
previous versions of Java, exposing test dependencies as failing test suites.
Some of those test suites were years old, and debugging such old test suites
is rather hard, e.g., as reported by several blog posts [69,86,91]. Ideally a
polluting test should be caught right when the developer is about to add it to
the test suite because that is when the developer is in the best position to
fix the polluting test, or at least label it as a polluting test that could cause
problems in the future.

We describe POLDET, a technique that detects polluting tests. POLDET
proactively finds tests that pollute the state, enabling the developers to fix
the tests right away, rather than later when the pollution manifests in the
form of failing tests. Conceptually, POLDET is a rather simple idea that
finds polluting tests “by definition”: for each test in a test suite, POLDET
captures the shared state (on the heap and the file system) before and after
the test, and then compares these two states to determine if there were any
relevant differences.

To help developers find polluting tests, POLDET has to overcome several
challenges. One challenge is to capture and compare the states at the ap-
propriate abstraction level and appropriate program points such that the
reported differences are likely to be relevant pollutions. Some state differ-
ences are irrelevant, e.g., if states s and s’ differ only in the private content of
some caches that the test code cannot observe via the public API, then the
difference is irrelevant. An additional challenge is to offer information that
helps developers in fixing the pollution. The final challenge is to make the
technique efficient, but it is not the most important constraint: the technique

could be run only occasionally for the entire suite, or it could be run only for



the newly added tests rather than for all the tests in the test suite. Indeed,
a prior study [85] shows that 78% of the polluting tests pollute the shared
state right when they are added (i.e., only 22% of the polluting tests start
polluting due to later changes in the test code or the SUT).

The experimental results show that POLDET effectively finds polluting
tests. In the default configuration, POLDET reported 324 tests (out of 6105
tests) as potential polluting tests, and our inspection found that 194 of those
are relevant polluting tests. The runtime overhead of our POLDET prototype
is a geometric mean of 4.50x, on a machine representative of a build-farm
server. We believe this overhead is acceptable for running POLDET occa-
sionally on the entire test suites and running always on the newly added

tests.

1.4.1 Main Contributions

The work on POLDET, detecting state-polluting tests to prevent test depen-

dencies, makes the following contributions:

e Defines the problem of state pollution and identifies it as a cause of

unreliable tests.

e Presents the development of POLDET, a technique to identify tests that
pollute the state shared across test executions and precisely pinpoint
the polluted state.

e Evaluates POLDET on real-world programs.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows.
Chapter 2: Detecting and Debugging Wrong Assumptions on API
Specifications

This chapter presents our work on NONDEX, a technique to detect unre-
liable tests that make wrong assumptions on underdetermined APIs.
Chapter 3: Detecting State-Polluting Tests to Prevent Test De-

pendency
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This chapter presents our work on POLDET, a technique to detect state-
polluting tests, which can cause unreliable tests.
Chapter 4: Related Work

This chapter gives an overview of the related work in the area of regression
testing in general and test reliability in particular.
Chapter 5: Future Work

This chapter presents several directions for future work that build on this
dissertation.
Chapter 6: Conclusions

This chapter concludes the dissertation.

11



Chapter 2

Detecting and Debugging Wrong Assumptions
on API Specifications

In this chapter we describe our approach to detecting tests that are unreli-
able because of wrong assumptions on underdetermined APIs. Section 2.1
provides an overview of the problem of ADIUS code, Section 2.2 precisely
defines underdetermined specifications, Section 2.3 describes NONDEX, our
randomized technique for detecting wrong assumptions on underdetermined
specifications, Section 2.4 presents some of the implementation details of
NONDEX, Section 2.5 presents the results of our evaluation of NONDEX,
and Section 2.6 presents our NONDEX implementation that uses systematic
exploration and our analysis of the state spaces resulting from exploring the
underdetermined APIs.

2.1 Overview

Underdetermined specifications allow several different results for the same
input. Underdetermined specifications are not uncommon for many meth-
ods, including in the standard libraries of many programming languages.
For example, the specification for the malloc function in C allows to re-
turn a pointer that is not guaranteed to have any specific value (if there is
space on the heap otherwise returns NULL); similarly, the specification for the
Object::hashCode method in Java can return any integer and is not guar-
anteed to return a specific value. Underdetermined specifications are not
restricted to simple APIs. For instance, the order in which elements of a set
are returned by an iterator is not-specified—it can be any order. As another
example, the order in which the entries resulting from a SQL query are re-
turned is also sometimes not specified—it depends on the query. Also, any
numerical API with e-tolerance is underdetermined. Such specifications give

implementers more freedom to develop various implementations for different
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goals, e.g., to optimize performance, while still satisfying the specification.

Even when specifications allow for nondeterminism in implementations,
typical implementations of such specifications are often deterministic, with
respect to certain controlled sources. For example, malloc could return the
same pointer on the same platform in two different runs (if one controls for
all other sources, such as address space layout randomization, timing/multi-
threaded effects, etc.). Similarly, Object: :hashCode could return the same
integer (if one controls for all other sources, e.g., OpenJDK Java 8 could
return a deterministic value on the first call if the underlying random imple-
mentation in C is deterministic). Deterministic implementations are good
because they allow easier debugging [9,97]. The implementation of HashSet
is such that iterating through the elements returns them in a deterministic
order for one Java version, but that order can change between Java versions.

Code that Assumes a Deterministic Implementation of an Underdetermined
Specification—which we call ADIUS code—is often bad. Such ADIUS code
can behave unexpectedly when the implementation changes, even if the spec-
ification remains the same. For example, Java code that would assume new
Object () .hashCode () to always return 366712642 on the first call (as it hap-
pens to return for Oracle Java version 1.8.0_25-b17 running with glibc 2.12) is
ADIUS and fairly not robust: any change in the Java implementation could
easily invalidate that assumption. Similarly, code that assumes a specific
iteration order of a HashSet, e.g., that a HashSet with elements 1 and 2 will
be always represented as a string {1, 2} rather than {2, 1}, is ADIUS and
not robust: the Java implementation of HashSet can change such that the
iteration order of the elements changes and the string differs.

While ADIUS code can be a problem in general we are particularly inter-
ested in unreliable tests, which are tests that seem to nondeterministically
pass or fail. Unreliable tests are bad as they can mask bugs (pass when there
are bugs) or raise false alarms (fail when there are no bugs). A test that
executes ADIUS code can be unreliable if it assumes that some values are
deterministic even if they can change: when the assumptions hold, the test
passes, but when the assumptions do not hold, the test may fail. Not all
unreliable tests are due to ADIUS code, e.g., a test asserting that a file sys-
tem contains /tmp could pass on one machine but fail on another. Unreliable
tests are emerging as an active research topic, with recent work on charac-
terizing [85], detecting [8, 24, 44, 54, 58, 148], and avoiding [7, 75] unreliable
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tests. However, this work is the first to investigate ADIUS code as a cause
for unreliable tests.

While the present works identified unreliable tests are an important prob-
lem in software practice and research, we also encountered them in teaching
software development in general and software testing in particular. Typically,
the teaching staff grades students’ solutions to programming assignments us-
ing automated tests. The automated tests are either written by the teaching
staff, or sometimes they are written by the students as part of the assignment.
In either case, these tests can be unreliable, and as a result students with
correct solutions may have failing tests (resulting in lost points, discussions
with teaching staff, revision of grades, etc.), and students with incorrect so-
lutions may have passing tests (resulting in full points, and extremely rarely
in students complaining about not losing points when they should have lost).
Albeit teaching staff can make their tests to be reliable, students are often
asked to write their own tests that can be rather unreliable. We discuss more
details from one recent course in Section 2.5.3 and give just a brief anecdote
here.

We taught several courses on software engineering that require students
to run their tests in Jenkins, a continuous integration system [60]. One
representative example comment about an unreliable test is: “When we |...|
test locally with Eclipse]...] all tests passed. But when we commit [...] and
run tests on Jenkins, [some test fails|. We had no idea what happened here.”
Another example is: “I got this [test failure] information in the last few
lines [... I]s it supposed to be like this or am I making something wrong
here?”. One way to reduce or avoid the problem of unreliable tests is to
reduce the variability in the environments, e.g., (1) require all students to
use virtual machines that run the same OS with the same Java version,
but students prefer working on different local environments, and (2) more
importantly, in the real development practice, have developers use the same
system for development, testing, and deployment, but doing so just postpones
the problem of detecting unreliable tests until later when the code itself
inevitably evolves.

We present a novel technique, called NONDEX, to detect unreliable tests
due to ADIUS code. We implemented NONDEX for Java, but it can be easily
generalized to any other language (in fact one undergraduate student imple-

mented a prototype for Python). In a nutshell, we identified 41 methods with
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underdetermined specifications as discussed in Section 2.3.1, wrote models
for these methods to produce various nondeterministic choices, and used an
execution environment that can explore various combinations of these non-
deterministic choices. Our NONDEX tool, instruments the regular Java APIs
to explore choices and reruns the test suites multiple times from scratch while
exploring different behaviors.

We evaluated NONDEX on two sets of programs: (i) 195 open-source
projects from GitHub and (ii) 72 student submissions from one homework as-
signment in our software-engineering course. We find NONDEX to be highly
effective at detecting unreliable tests in both open-source projects and stu-
dent submissions. NONDEX detected 60 unreliable tests in 21 of the 195
open-source projects. Because our experiments used some older project re-
visions, three of these tests had been already fixed by the developers in the
latest revision. (This fixing additionally confirms that unreliable tests are
important and that developers are willing to address them.) We confirmed
that 57 tests are still present in the respective projects’ latest revision. For
student submissions, NONDEX detected that 34 submissions, representing
almost half of 72 considered, fail due to some ADIUS code, with a total of
110 unreliable tests detected. It is important to note that the homework
assignment was designed a few years ago by a teaching assistant who had
no knowledge of our research on unreliable tests. We already devoted time
in our teaching to expose students to NONDEX and teach them to better
detect and avoid ADIUS code and unreliable tests; increased training that
raises awareness about unreliable tests may help the most with preventing
unreliable tests.

This chapter makes the following contributions:

*» Problem. We define the problem of ADIUS code, identify it as a cause
of unreliable tests, and raise awareness about the problem of unreliable
tests in both software development practice and software engineering

education.

* Technique and Implementation. We propose a simple technique
for detecting unreliable tests caused by ADIUS code and describe our

nondeterministic models and a tool that embody this technique.

*x Evaluation. We evaluated our NONDEX technique on 195 open-source
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Java projects and 72 student code submissions. NONDEX detected
57 previously unknown unreliable tests in open-source projects and
three unreliable tests that had been already fixed by the open-source
software developers. NONDEX also detected 110 unreliable tests in

student submissions.

2.2 Underdetermined Specifications

An underdetermined specification allows for multiple implementations that
can yield different outputs when executed with the same input; we consider
“input” in a broad sense to include all interactions of the code with its envi-
ronment. For example, consider the specification for the method File::1list
that returns a String array with the names of all the files and directories
present in the directory on which the method was invoked. The method’s
Javadoc specification [29] states “There is no guarantee that the name strings
in the resulting array will appear in any specific order; they are not, in par-

U

ticular, guaranteed to appear in alphabetical order.” This specification al-
lows implementations to return names in any order even when executed with
the exact same input (the state of the file system), hence this specification
1s underdetermined. In contrast, consider the specification for the method
File::exists that returns a boolean value indicating whether or not the file
on which the method was invoked exists on the file system. This specification
is not underdetermined; while the returned value depends on the input (the
state of the file system) and can be true or false on different machines, when
executed on the same input (including the file system), any implementation

that conforms to the specification must return the same value.

2.2.1 An Example Unreliable Test

Code that (transitively) calls methods with underdetermined specifications
can be ADIUS and lead to unreliable tests. Figure 2.1 shows an example
unreliable test simplified from a student submission. The Book class has two
fields, title and author. The method under test, getStringRepresentation,
uses a third-party JSON library that turns an object into a string. The
test asserts that the resulting string equals a hard-coded string that has
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class Book {

String title;

String author;

String getStringRepresentation() { ... }

1

2

3

4

5 X
6 class BookTest {
7

8

9

QTest
public void testGetStringRepresentation() {
Book b = new Book("book", "name");
10 assertEquals("{\"title\":\"book\",\"author\":\"name\"}",
11 b.getStringRepresentation());
12 }
13 3}

Figure 2.1: Example unreliable test simplified from student code

the two fields in a particular order, first title and then author. However,
the library uses a HashMap to store the mapping from fields to values, and
iterates over this map to produce the resulting string. The iteration order
over elements in a HashMap is not specified, so while this test can pass for
one implementation, it can fail for another implementation that puts author
before title. NONDEX can detect such wrong assumptions by running the

tests with different choices for the HashMap iteration order.

2.2.2 Levels of Underdetermineness

Some underdetermined specifications, especially when written in a natural
language, can allow for multiple levels of underdetermineness. Figure 2.2
presents an example: the class HashSet has an underdetermined specifica-
tion that can be (mis)interpreted in different ways. The Javadoc specifica-
tion [53] states “/HashSet] makes no guarantees as to the iteration order of
the set; in particular, it does not guarantee that the order will remain con-
stant over time.” Hence, the order of the elements in the array returned by
HashSet: :toArray can be any. The code first constructs an Integer HashSet
object s with the elements 1 and 2 (lines 1-2). Because the specification
allows for any iteration order, a deterministic implementation could return
either of the two orders shown in the two assertions on lines 4 and 5, and

one of the assertions should pass, while the other should fail.
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1 Set<Integer> s = new HashSet<Integer>();

2 s.add(1); s.add(2);

3 Integer[] a = s.toArrayQ);

4 // assertArrayEquals(a, new Integer[]{1, 2});

5 // assertArrayEquals(a, new Integer[]{2, 1});

6

7 // assertArrayEquals(a, s.toArray()); // differ from "a"?
8

9 s.contains(l); // observer calls on "s" may matter

10 // assertArrayEquals(a, s.toArray());

11

12 s.add(3); s.remove(3); // "s" modified and restored

13 // assertArrayEquals(a, s.toArray()); // differ from "a"?
14

15 Set<Integer> t = new HashSet<Integer>();

16 t.add(1); t.add(2); // "t" constructed same way as "s"

17 // assertArrayEquals(a, t.toArray()); // differ from "a"?
18

19 Set<Integer> u = new HashSet<Integer>();

20 u.add(3); u.add(4); // "u" with different elements

21 Integer[] b = u.toArray();

22 // assertEquals(al[0] < a[1], b[0] < b[1]); // order?

Figure 2.2: Different levels of underdetermineness may fail different
assertions

Whether the remaining assertions pass or fail is more open to different in-
terpretations of this underdetermined specification. First, a developer could
assume that two iterations on the same unchanged set object should yield the
same order. However, the specification states that the order can vary “over
time”, which could mean that the order in which elements are returned can
change from one invocation to another even for the same set. Hence, the
assertion on line 7 may get a different order and fail. Second, one could
assume that the order should not change if the set is only read but not mod-
ified. Hence, the assertion on line 10 could pass or fail depending on whether
the assumption holds. Third, one could assume that if a set is modified and
then restored to its original state, the order in which the elements are it-
erated can change from that before the modification of the set. Hence, the
assertion on line 13 could either pass or fail. Fourth, one could assume that

two sets constructed in exactly the same way would yield the same order,

18



but if that does not hold, the assertion on line 17 can fail. Fifth, one could
assume that elements are iterated in the order of addition that is consistent
with the original set s; line 19 creates a new set using different elements but
added in the same order as in set s. One could assume that both sets will
be iterated in the same order—in which elements are added, or the natural
order; depending on whether this assumption holds, the assertion on line 22
can pass or fail. (This final assumption is not completely unrealistic; the
specification for LinkedHashSet indeed guarantees the iteration order over
elements to be the same as that in which the elements are added [83].)
None of the (mis)interpretations are unambiguously supported by the doc-
umentation, but some of them may correspond to more reasonable assump-
tions than others. Developers may be more willing to remove wrong assump-
tions that are, in their intuition, least reasonable. While the specification
allows for a lot of nondeterminism, most implementations are not nondeter-
ministic; identifying assumptions that are more likely to break serves also as

a prioritization mechanism when deciding which assumptions to remove.

2.3 Technique

Our NONDEX technique detects unreliable tests due to ADIUS code mak-
ing wrong assumptions on underdetermined specifications. Section 2.3.1 de-
scribes how we identified several underdetermined APIs in the Java Stan-
dard Library. Section 2.3.2 describes the models we developed for those
underdetermined APIs. Section 2.3.3 presents some implementation details
of NONDEX.

2.3.1 Identifying Underdetermined APIs

Finding methods which have underdetermined specifications is challenging;
in particular, one cannot easily look for nondeterministic implementations
as individual implementations are deterministic most of the time. Rather,
nondeterminism occurs when underdetermined specifications allow multiple
implementations to behave differently from one another while still meeting
the specification, even if each implementation is deterministic. For example,

upgrading from Java 6 to Java 7 changed the order in which the method
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Table 2.1: Underdetermined APIs in the Java Standard Library

Class(es)::method(s) Kind
java.lang.0Object::hashCode random
java.util.{Weak,Identity, }HashMap:keySet, values, entrySet permute
java.util.concurrent.ConcurrentHashMap:: permute
keySet, values, entrySet, keys, elements
java.util.PriorityQueue::iterator, toArray, toString permute
java.util.concurrent.{Delay, PriorityBlocking}Queue: permute
iterator, toArray, toString
java.io.File:list, listFiles, listRoots permute
java.lang.Class:: permute
getClasses, getFields, getDeclaredFields, getConstructors
getAnnotations, getMethods, getDeclaredConstructors
getDeclaredMethods, getDeclaredClasses, getDeclaredAnnotations
java.lang.reflect.Method:: permute
getParameterAnnotations, getExceptionTypes
getGenericExceptyonTypes, getDeclaredAnnotations
java.lang.reflect.Field: permute
getAnotationsByType, getDeclaredAnnotations
java.text.DateFormatSymbols::getAvailableLocales permute
java.text.BreakIterator::;getAvailableLocales permute
java.text.Collator::getAvailableLocales permute
java.text.DecimalFormatSymbols::getAvailablelLocales permute
java.text.NumberFormat::getAvailableLocales permute
java.text.DateFormat::getAvailablelLocales permute
java.text.DateFormatSymbols::getZoneStrings extend
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Class: :getDeclaredMethods from the Java Reflection API returned the list
of methods in a class. JUnit uses the Reflection API for obtaining the
list of methods to run. Thus, when run on Java 6, methods were returned
in one order, but were returned in a completely different order in Java 7.
This seemingly innocuous change caused tests run by JUnit to fail [70] due
to test-order dependencies [7, 8,44, 58, 75,148]. Finding underdetermined
APIs solely from the executable code is infeasible; one must reason about
the specification itself to find if a specification is underdetermined because
the method implementation need not be nondeterministic. This makes it
inherently hard for any static or dynamic analysis technique to find such
underdetermined APIs from one implementation.

To find underdetermined APIs in the Java Standard Library, we first
searched for methods whose documentation indicates that they may have
such specifications and then carefully reasoned from their Javadoc to deter-
mine if their specifications are indeed underdetermined. We used two queries,
based on (1) Javadoc keywords and (2) return types. Specifically, the first
query searches through Javadoc for the following keywords that could in-
dicate underdetermined specifications: “order”, “deterministic”, and “not
specified”. The second query searches for all public methods that return ar-
rays. These queries produced many false positives, e.g., because not every
method that mentions “order” is underdetermined, and some methods that
return arrays must return elements in a specified order. Our search is defi-
nitely not complete, and we leave as future work to develop better approaches
to find underdetermined specifications.

After inspection, we found the underdetermined APIs summarized in Ta-
ble 2.1. We tabulate the class name(s), method name(s), and the kind of
specification underdetermineness. We found three kinds, which we call “ran-
dom”, “permute”, and “extend”. For random, the specific int returned by
Object: :hashCode is not specified, so relying on it to return some specific
value is ADIUS. For permute, the specifications of some methods that return
arrays or collections can have an unspecified order of elements. For extend,
the specification of one method specifies just a lower bound on the length of
the returned array but not the precise length.

We next describe some specific underdetermined APIs that we found. For
class Object, it is well known that hashCode is nondeterministic. In contrast,

the less known inner class HashMap$HashIterator does not have a specified it-
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eration order and can return the map’s elements in any order; this inner class
is exposed to the clients via some methods from Table 2.1 (keySet, entrySet
and values), so code that calls these methods can be ADIUS. Moreover,
HashMap is the underlying data structure for many other data structures,
e.g., HashSet; we do mot count separately the other underdetermined APIs,
e.g., HashSet: :iterator, that could lead to ADIUS code. However, changing
one piece of code in HashMap can affect many types of objects. The specifi-
cation for iterating through WeakHashMap, IdentityHashMap, PriorityQueue,
and ConcurrentHashMap is similar to the specification for iterating through
HashMap. The File class has multiple 1ist methods that return an array of
files in a given directory; the specification allows these arrays to be in any
order. The classes Class, Method, and Field provide several reflection meth-
ods that return arrays of elements, e.g., an array of all methods in a class
or an array of all annotations on a field; the specifications for most of these
methods allow these arrays to be in any order. The classes in the package
java.text return arrays of available locales and zone strings which can be in
any order. Finally, the DateFormatSymbols: :getZoneStrings method returns
an array of arrays, each of which has length at least five; these arrays are
indeed of length five in Java 7, but their length changed to seven in Java 8.

We also briefly explored an option of automatically finding underdeter-
mined APIs in the Java Standard Library. We attempted to automatically
generate tests that could show a behavior difference between Java 7 and
Java 8. To that end, we used Randoop [99] to generate tests. We first in-
structed Randoop to generate tests for a large number of classes in the Java
Standard Library on Java 8 and then ran the generated tests (that still com-
pile) on Java 7. However, the tests (and assertions) that Randoop generated
were unable to detect any changes in the behavior of the two Java versions.
Even focusing Randoop on only one class, HashMap, did not generate (after
one hour) a single test for Java 8 that would fail when run on Java 7. The
reason is that the search space for HashMap is large, with 29 methods, and
only a tiny ratio of method sequences in that space can show the difference
between the two Java versions. In the end, we were able to generate tests
that can reveal differences between Java 8 and Java 7 only after manually
focusing Randoop to only four methods in the HashMap. In the future, one
could try more advanced techniques for finding differences among (Java) im-

plementations [17].
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2.3.2 Nondeterministic Models

We first discuss different models with different levels of nondeterminism that
could satisfy an underdetermined specification. We next discuss approaches
to model nondeterminism in specifications of methods that return arrays
whose order could permute. We finally describe the models for methods
whose return values can be randomized, or whose return arrays can have
their sizes extended.

We developed models to explore potential nondeterminism allowed by the
underdetermined specifications of the identified methods. NONDEX has a
model for each underdetermined API, and each model has up to four different
levels of nondeterminism: FULL, ID, EQ, and ONE.

FULL is the most nondeterministic level as it alters the regular execution
most aggressively. Every invocation of an underdetermined API, even with
the exact same object, can return a different result because the model allows
all the different behaviors to be explored. This level corresponds to checking
that code makes no wrong assumption.

ID is a level that constrains FULL to only explore the same behavior on
the same unchanged object for all different invocations of the same underde-
termined API (this same behavior can be different from the native behavior,
but it is consistent across two different invocations). In other words, this
behavior corresponds to the intuition that implementations are largely de-
terministic and explores only behaviors that preserve deterministic results as
long as the input to the API does not change.

EQ is a level that further constrains ID to explore the same behavior for all
input objects that are equal (not necessarily the same object, although the
same object is equal to itself) but allows different behaviors to be explored
for objects that are not equal.

ONE is the most deterministic level after the first invocation. It does not
introduce any additional nondeterminism to the execution; it only changes
the executions to explore a different behavior, which it keeps as deterministic
as the original execution would.

Table 2.2 shows which of the assertions in Figure 2.2 (referred to by line
numbers in the column headers) can fail under the four levels that NONDEX
supports.

Either of the assertions on lines 4 and 5 can fail on any of the levels, be-
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Table 2.2: Levels that can fail (v') assertions from Figure 2.2

Assertion
45 7 10 13 17 22
Levels
FULL v o v v v v Vv
1D v - - v o v Y
EQ v - - - - v
ONE v - - - - -

cause all levels explore different orderings of the elements in the HashSet than
the orders in both assertions (recall that in a deterministic JVM, one of the
assertions will always pass and one will always fail, whereas in our explo-
ration, they can both pass, both fail, or swap the order of pass/fail during
different executions). Assertions 7 and 10 can only fail in FULL because they
will only fail in levels that allow different orders on two successive invocations
(including invocations of observer methods). Assertions 13 and 17 can fail
in FULL and ID because these levels explore different orderings of objects
based on their identity. Assertion 22 can fail in all levels except ID which
would permute elements in the same way for both objects.

For underdetermined APIs of the random kind, when using the Object
class, it should not be assumed that the hashCode method returns a specific
integer value. In particular, it should not be expected to return the same
value across different runs. However, the returned value should be unique
for an object in the same run. We model these potentially different values
by randomizing the value returned by hashCode on the initial invocation and
then caching this value for future calls. For underdetermined APIs of the
extend kind, we model the possibility that the lengths of arrays returned are

increased nondeterministically on any invocation.

2.3.3 Implementations of Models

We implemented our NONDEX technique for the Java programming lan-
guage by instrumenting the regular implementations of the APIs in the Java
Standard Library, in particular, the OpenJDK JVM version b132, which
corresponds to Java 8. We also downloaded the publicly available OpenJDK
code, which consists of the C/C++ code that implements the core virtual
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class HashMap {

Node<K,V>[] table; // internal table of key-value pairs

int modCount = ... // stores modification count
class Node<K,V> { ... } // stores a key-value pair
class HashIterator { // inner class of HashMap
Node<K,V> next; // next entry to return
Node<K,V> current; // current entry
int expectedModCount; // for fast-fail
int index; // current slot

final boolean original_hasNext() {

return next != null; // original code
}
final Node<K,V> original_nextNode() {

// original code, advances '"next", "current", and "index"
}

final void original_remove() {
// original code, can modify the entire "table"
}
HashIterator() {
// The code is shown in Figure 2.4
}
Iterator<Node<K, V>> NoNDEx_iter;
public final boolean hasNext() {
return NoNDEX_iter.hasNext();
}
final Node<K, V> nextNode() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = NoONDEX_iter.next();
return current;
}
public final void remove() {
original_remove() ;

}

Figure 2.3: NONDEX model for HashMap
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HashIterator() {
expectedModCount = modCount;
Node<K,V>[] t = table;

current = next = null;

1

2

3

4

5 index = O0;

6 if (t !'= null && size > 0) { // advance to first entry
7 do {}

8 while (index < t.length &% (next = t[index++]) == null);
9 }

10 /**% all (and only) the code below is NONDEX extension *x*/
11 List<Node<K, V>> original = new ArrayList<>();

12 while (original_hasNext())

13 original.add(original_nextNode());

14 NonNDEx.shuffle(original, HashMap.this);
15 NonDEX_iter = original.iterator();

16 ¥

Figure 2.4: NONDEX model implementation for HashIterator constructor

machine, and the Java code for the Java Standard Library; for hashCode we
modified the C++ implementation to return different values. For each of the
other APIs we apply instrumentation that calls NONDEX and shuffles the
returned value in the library code.

Figure 2.3 shows the model we use for exploring different orderings when
iterating over a HashMap object. The iteration is done using the inner class
HashIterator. We kept the original code and renamed its methods with the
prefix original . The constructor, with its implementation presented in Fig-
ure 2.4, computes, starting at line 11, the order that the original code would
have normally returned, applies a permutation depending on the NONDEX
level, and stores the resulting order in an Iterator object called NonDEx_iter.
The next method returns the elements in the permuted order and updates
the internal state as required. The hasNext method is now based on the
new elements order and delegates the call to the new Iterator object. The
remove method just delegates the call to the original method that changes
the table.

Figure 2.5 shows how NONDEX performs shuffling depending on the level.
For FULL, NONDEX uses the same Random object to perform all shufflings,
which means two consecutive shufflings of the same object can yield different

orders. For ID, NONDEX considers a value representing the identity of the
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class NonDEx {
static Level level; // FULL, ID, EQ, or ONE
int seed = ...;

static Random full = new Random(seed);

public static <T> List<T> shuffle(List<T> 1, Object o) {
int size = l.size();
Random rand = (level == FULL) ? full : // Full
(level == ID) 7 new Random(seed +
System.identityHashCode(o)) : // Same object
(level == EQ) 7 new Random(seed + o.hashCode()) : // Equal object
(level == ONE) ? new Random(seed); // Once
for (int i = 0; 1 < size - 1; i++) {
int s = rand.getNext(i, size);
if (s == i) continue;
T obj = l.get(i);
l.set(i, l.get(s));
l.set(s, obj);
}
return 1;

3

Figure 2.5: Implementation of exploration
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Figure 2.6: High-level architecture of the key NONDEX components; see
Section 2.3 for the description

object; for HashMap, this value is the sum of the identity hash code (a likely
unique number for each Java object provided by the Java Virtual Machine)
and the modCount field that counts the number of modifications, which means
that for the same object with the same modCount, NONDEX uses a fresh
Random object with the same seed, therefore this Random object returns the
same sequence of values for permuting the order. Similarly, for EQ, NONDEX
considers the value-based hash code of the object to produce a new Random
object. For ONE, NONDEX always creates a fresh Random object using the

same seed therefore producing always the same ordering.

2.4 Implementation

NoONDEX is a Maven plugin that has two user-facing phases: (i) detection
finds tests that pass without NONDEX but fail when NONDEX explores dif-
ferent allowed behaviors—such failures indicate wrong assumption(s) made
on underdetermined APIs; and (ii) debugging searches through detected fail-
ures to find the underdetermined APIs on which wrong assumptions were
made and to identify the invocation(s) making such assumptions. Currently,
NoONDEX exploration handles 41 underdetermined APIs that we manually
identified from the following packages java.lang, java.util, java.io, and
java.text shown in Table 2.1; we first identified only 30 of these underde-
termined APIs in our earlier paper [120, Table I]!.

!The publicly released NONDEX tool does not handle the native hashCode, because it
did not expose any bugs during our experiments and would unnecessarily complicate the
tool implementation and portability.
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Internally, NONDEX consists of four components: (1) the instrumenta-
tion engine modifies the API classes in the Java Standard Library to add
code for random exploration, (2) the runner executes the program on the
instrumented library, (3) the detector reruns the program a specified num-
ber of times to randomly explore different behaviors, and (4) the debugger
identifies the API invocation(s) where a wrong assumption was made. Fig-
ure 2.6 shows an architectural overview of the NONDEX components, and

the following subsections describe each component.

2.4.1 Instrumentation Engine

The goal of the instrumentation engine is to modify the Java Standard Li-
brary classes from the Java Standard Library to allow random exploration.
The challenge is to develop instrumentation that can automatically handle a
large number of Java versions. For our original prototype [120], we manually
modified the Java sources of the relevant files for one version, compiled them,
and used them in place of the original files. However, this solution was brit-
tle, because the tool would often not work unless the exact same Java version
(e.g., 1.8.0-b132) was used for the run as the version for which we manually
modified the sources. The reason our initial prototype did not work was that
some internal parts of the modified files changed between Java versions, even
when the signatures of the public APIs we modified did not change. Hence,
we developed our current solution based on instrumentation which is much
more robust, and we have tested it on 14 different versions of OpenJDK and
Oracle’s JDK implementations of Java 8, on Linux, OS X, and Windows.
The instrumentation engine takes as input the rt.jar file containing the
classfiles of the Java Standard Library that will be used when running the
tests. The instrumentation engine selects from rt.jar the classfiles corre-
sponding to the APIs that should be modified to add random exploration.
For APIs that should be modified and return an array, our instrumentation
simply adds a call to our NONDEX helper method to explore different orders
of the returned array (effectively randomly permuting the array before re-
turning it). This modification is robust as long as the type signature of the
API does not change. The instrumentation is much more involved for the

(Concurrent)HashMap classes, because their iterators are lazy, implemented
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as private data structures that change even within the same Java major ver-
sion, e.g., the HashMap iterator was implemented using a class called Entry
until OpenJDK version 1.8.0-b108 [59] and using a class called Node since
then; we developed customized instrumenters that can generate appropriate
modified code based on whether rt. jar uses Entry or Node. This modification
would need to change in the future if the Java Standard Library implements
HashMap using a third approach. We used ASM [11] to implement all classfile
manipulation.

Performing instrumentation from scratch on every run is unnecessary, so
we reuse each previously instrumented class in subsequent runs, as long as
the instrumented class from rt.jar did not change. (The original class does
not change until/unless the user switches to another version of Java.) To
decide when to reuse the instrumented classes, NONDEX stores for each
instrumented class the checksum of the classfile from the rt.jar that was

instrumented.

2.4.2 Runner

The runner is a thin layer of code that enables random execution for APIs
instrumented by NONDEX. On every invocation of an instrumented API,
the runner randomly chooses one behavior from the behaviors appropriate
for that API. NONDEX currently supports two kinds of behaviors: (1) per-
mutation for APIs where order is underdetermined, and (2) extensions for
APIs where only lower bounds on array size(s) are specified. The runner
takes as inputs (i) a random seed, which completely determines the choice
of behaviors, (ii) the mode of exploration—ONE or FULL (the two modes
differ in the kind of wrong assumptions they can detect, as described in detail
in Section 2.2%), and (iii) optionally the range of choices to be randomized

(which is used by debugging).

2We originally evaluated four different modes, but the publicly released NONDEX of-
fers only two modes, ONE and FULL, because they are the easiest to understand and
correspond to the two extremes of nondeterminism.
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2.4.3 Detector

The detector first runs all tests once without randomization and then calls
the NONDEX runner a number of times, with different random seeds, to
rerun all the tests. The detector reports tests that pass without NONDEX
randomization but fail with NONDEX randomization; such tests likely3 make
wrong assumptions on underdetermined APIs. The detector first runs the
tests without NONDEX because tests that fail on their own are due to some
other causes and should not be reported as failures due to wrong assumptions.
After the first run, the detector invokes the instrumentation engine to create
the instrumented APIs (or reuses cached copies of previously instrumented
APIs) before it starts running tests with NONDEX.

The detector stores information about failing tests in a .nondex directory
which also contains information about each execution, without and with
NoONDEX, as well as the configuration used for test executions, the seed
needed to reproduce the failure, and the number of invocations of the runner’s
choice generator; the latter number helps the debugging phase to search for

the invocation(s) that caused the failure(s).

2.4.4 Debugger

When a test fails with NONDEX, the test may invoke several underdeter-
mined APIs, e.g., it may iterate over several HashSet objects. Many of these
invocations are correct, making no wrong assumptions, so manually locating
the invocation(s) that caused the detected failure can be tedious. NONDEX’s
debugging phase automatically identifies such invocation(s).

To identify such invocation(s), NONDEX uses a binary search that keeps
track of a range of API invocations and selectively enables exploration for
half of them. Even for disabled invocations, our search advances the random-
number generator, i.e., NONDEX still calls the random-number generator to
shuffle the order of elements, but NONDEX returns the original, not the shuf-
fled, order. (Without this control, the search could get different behaviors for
the same random seed, making it harder to reproduce the failure.) Debug-
ging continues until a single invocation is identified or the remaining range

cannot be further halved. If a single invocation cannot be identified from

3The tests may be unreliable [85] due to other reasons and fail irrespective of NONDEX.
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running just one test method, NONDEX re-starts debugging for the entire
test class, and if again a single invocation cannot be identified, NONDEX
re-starts debugging for the entire test suite. Debugging is repeated for each
failing test reported by the detector.

The debugging phase reports to the user an API call that causes the de-
tected failure together with the call stack of the API’s invocation which
further helps in localizing the context in which the wrong assumption was
made. In our prior work [120], we performed all debugging manually; after
implementing automated debugging, we found that we had made an error in
manually identifying the root cause of one failure, which anecdotally shows

that the automated debugging helps to more reliably identify the root causes.

2.5  Evaluation

We evaluated our NONDEX technique on 195 open-source projects and 72
student submissions from a software-engineering course. Section 2.5.1 de-
scribes our experiments with the open-source projects and Section 2.5.2 de-
scribes our early efforts and results for NONDEX adoption. Section 2.5.3

describes our experiments with the student code.

2.5.1 Experiments on Open-Source Projects

We evaluated NONDEX on 195 open-source projects. We selected these
projects and their specific revisions from our previous studies with open-
source projects [24,79,121]. All these projects are from GitHub [36], use
Maven to build [88], and compile successfully using Java 8. For each project,
we first ran NONDEX with 10 randomly generated seeds, using the FULL
level. If any test failed with these 10 seeds, we examined it to determine
what caused the failure.

We detected 60 unreliable tests in the 21 projects listed in Table 2.3. We
tabulate a short PID for ease of reference, the project name, and the project
revision on which we ran NONDEX. For each project with an unreliable test
(found with 10 random seeds), we then reran that project’s tests again us-
ing NONDEX with 100 randomly generated seeds, using all nondeterministic

levels. We obtained the number of times each unreliable test fails out of the
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Table 2.3: 21 projects (out of 195) with at least one unreliable test

PID PRoOJECT SHA

P1 EsotericSoftware /reflectasm 4551612¢
P2 EsotericSoftware /yamlbeans 2cctbd9d
P3  JodaOrg/joda-time 07002501
P4 OryxProject/oryx 833c3fea
P5  Thomas-S-B/visualee 410a80£0
P6 apache/commons-cli a0dcd6a0
pP7 apache/commons-lang fad946al
P8  benas/easy-batch 4761baba
P9  bpsm/edn-java c1d891d6
P10  caelum/vraptor 443cf0ed
P11  fernandezpablo85/scribe-java 0311a435
P12  geosolutions-it/geoserver-manager a4268dda
P13  jknack/handlebars.java 83dd013a
P14  joel-costigliola/assertj-core e8a696e8
P15  jscep/jscep a224cc25
P16  junit-team/junit 1d63100e
P17  ning/org-json 9be37018
P18  qos-ch/slf4] 52fcbbe8
P19  sematext/ActionGenerator 10f4a3e6
P20  stickfigure/objectify 819eb72f
P21  versly/wsdoc 89480chHd

100 seeds.

Table 2.4 shows a partial list of the 60 tests that we examined. We tabu-
late the PID (from Table 2.3), the name of the test class and its unreliable
test method, the number of failures detected for each of the four levels, and
the underdetermined API that causes the failures. The apache/commons-lang
project has 14 tests similar to MultilineRecursiveToStringStyleTest: :bool-
Array, and the caelum/vraptor project has 13 tests similar to XStream-
SerializerTest: :shouldSerializeCollection, so the two table rows show
the total number of failures for each level across all 14 and 13 tests, respec-
tively. Our evaluation started on older revisions of these projects, and three
tests (GenericTest: :testWrite, TestDateTimeZone: :testGetShortName, and

TagTypeTest: :collectSectionAndVars) are already fixed on the current re-
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visions of their respective projects.

Running NONDEX using the FULL level may introduce too much nonde-
terminism, and one might initially consider some detected unreliable tests
to be false alarms. However, Table 2.4 shows that only six unreliable tests
(FieldAccessTest::testIndexSetAndGet,OptionGroupTest::testToString,
FieldUtilsTest::testGetAllFields, FieldUtilsTest: :testGetAllFieldsList,
MethodSorterTest: :testJvmMethodSorter, and EventLoggerTest: :testEvent-
Logger) fail sometimes for the FULL level but not fail at all for any of the
100 randomly generated seeds for any of the other levels. The remaining 54
unreliable tests are also detected by the other levels, suggesting that these
are not false alarms.

For each unreliable test, the table shows the number of seeds/runs on which
it fails. For most unreliable tests, the number of seeds is fairly high, with
only 8-14 unreliable tests failing for fewer than 50 seeds for each level (not
counting unreliable tests that have 0 failures for a given level), and only two
of those tests fail fewer than 30 times for each level. These high numbers
suggest that it is likely that an unreliable test can be detected by running
NoONDEX with just a few seeds.

Assume that the actual probability of an unreliable test failing for a seed
is equal to the percentage of seeds that fail out of the 100 seeds that were
run. For example, if the probability of an unreliable test failing for a seed is
30%, then the probability of the unreliable test not failing for 10 different,
independent seeds is (1 -0.3)'? = 0.028; in other words, there is a less than
3% chance of NONDEX missing to detect that unreliable test running with
10 seeds. In the most extreme case we detected, in the Thomas-S-B/visualee
project, the expected probability of an unreliable test failing for a seed in
the FULL level is only 8%, so the chance of NONDEX missing this unreliable
test running with 10 seeds is (1 - 0.08)!% = 0.434. Even in this case, there
is more than 50% chance of detecting such an unreliable test with 10 seeds,
despite the chance of it failing for any one seed being rather low.

In summary, a developer using NONDEX to detect unreliable tests may
not need to run with many seeds and can still have some confidence that
NONDEX does not miss to detect any unreliable tests. Therefore, albeit
NONDEX runs 3 times by default to minimize the user wait time, for stronger
guarantees we recommend that NONDEX by default be run for 10 seeds while

increasing the level of nondeterminism, from ONE to FULL.
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Table 2.4: Unreliable tests detected in open-source projects

PID TESTCLASS::TESTNAME FULL 1D EQ ONE CAUSE

P1 FieldAccessTest::testIndexSet AndGet 48 0 0 0 Class::getDeclaredFields

P2 GenericTest::testWrite 73 75 54 53 HashMap::entrySet

P3 TestDateTimeZone::testGetShortName 35 53 53 53 DateFormatSymbols::getZoneStrings
P4 TextUtilsTest::test JSONMap 51 52 60 53 HashMap::entrySet

P5 JPAExaminerTest::testFindAndSetAttributesManyT... 8 5 5 6 Class::getDeclaredMethods

P5 JavaSourceTest::testGetDependenciesOfType 12 12 12 4 Class::getDeclaredMethods

P6 OptionGroupTest::test ToString 42 0 0 0 HashMap::values

P6 BugCLI162Test::testPrintHelpLongLines 51 55 55 53 HashMap::values

P7 MultilineRecursiveToStringStyleTest::boolArray 100 100 100 100 Class::getDeclaredFields
P7 ...other 14 similar tests, total failures... 1296 1216 1215 1138 Class::getDeclaredFields
P7 FieldUtilsTest::testGet AllFields 100 0 0 0 Class::getDeclaredFields
P7 FieldUtilsTest::testGet AllFieldsList 100 0 0 0 Class::getDeclaredFields
P7 FieldUtilsTest::testGetFieldsWithAnnotation 56 51 53 45 Class::getDeclaredFields
P8 GsonRecordMarshallerTest::marshal 86 7 7 84 Class::getDeclaredFields
P8 JacksonRecordMarshallerTest::marshal 87 81 81 84 Class::getDeclaredFields
P8 XstreamRecordMarshallerTest::marshal 96 94 94 97 Class::getDeclaredFields
P9 PrinterTest::testPrettyPrinting 69 73 54 53 HashMap::entrySet

P10 XStreamSerializerTest::shouldSerializeCollection 41 48 45 52 Class::getDeclaredFields
P10 ...other 13 similar tests, total failures... 736 709 737 764 Class::getDeclaredFields
P11 MapUtilsTest::shouldPrettyPrintMap 97 94 97 97 HashMap::entrySet

P12 GSLayerEncoder21Test::testMetadata 84 81 71 100 HashMap::entrySet

P13 TagTypeTest::collectSectionAndVars 100 100 100 100 HashMap::keySet

P14 Maps_format_Test::should_format_Map_containing... 76 50 62 53 HashMap::entrySet

P15 DefaultCertStorelnspectorTest::example 92 94 59 53 HashMap::keySet

P15 HarmonyCertStorelnspectorTest::example 95 96 59 53 HashMap::keySet

P16 MethodSorterTest::testJvmMethodSorter 100 0 0 0 Class::getDeclaredMethods
P17 TestSuite::test JSONStringerObject 79 77 83 84 Class::getFields

P18 EventLoggerTest::testEventLogger 100 0 0 0 Class::getDeclaredMethods
P19 BulkJSONDataESSinkTest::testGetBulkData 49 37 47 43 HashMap::entrySet

P19 JSONUtilsTest::testGetElasticSearchAddDocument 35 35 43 47 HashMap::entrySet

P19 XMLUtilsTest::testGetSolrAddDocument 36 43 43 47 HashMap::entrySet

P20 CollectionTests::testBasicSets 100 96 91 84 HashMap::keySet

P20 CollectionTests::testCustomSet 85 79 91 84 HashMap::keySet

P21 JaxRSRestAnnotationProcessorTest::stabilitySet... 71 86 51 53 HashMap::keySet

P21 SpringMVCRestAnnotationProcessorTest::stabilit... 76 75 51 53 HashMap::keySet
Unreliable Tests Found 60 54 54 54

Total Failures 4362 3744 3643 3590

Min Failures 8 0 0 0

Max Failures 100 100 100 100
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The common threats to validity apply to our study, therefore our results
may not generalize to other projects or unreliable tests. Of particular concern
is that our experiments could have missed some unreliable tests even in the
projects that we ran with 10 seeds. If some test fails infrequently, it may be
missed; there might be many such tests that NONDEX missed, so we could
not have even studied them in more detail. In the future, we plan to evaluate
more systematic exploration to check whether this is indeed the case.

We next discuss in more detail three unreliable tests detected by NONDEX

in open-source projects.

Overly Nondeterministic Level

A case where the FULL level detects an unreliable test that is never de-
tected for any other level is OptionGroupTest: :testToString from the project
apache/commons-cli. Figure 2.7 shows that unreliable test. Lines 4 and 5
add two options to the OptionGroup gl. OptionGroup stores options in a
HashMap (line 16), and its toString method (lines 19-27) iterates over this
map. The code encodes that the iteration order over the HashMap is not
guaranteed, so lines 6 and 7 check that the result of calling toString on
gl is either of the two hard-coded strings. However, toString is invoked
twice, and in the FULL level, NONDEX can reshuffle the order differently for
the two invocations, causing the assertion to potentially fail. The developer
made a reasonable assumption that calling toString on the same, unchanged
object twice returns the same string both times; we see that the other levels
of NONDEX never flag this test as unreliable. Nevertheless, the test could be
still changed to call toString only once, capture the result, and then assert

that it is one of the two possible values.

Example New Unreliable Test

We detected 57 unreliable tests that were not fixed on the then-current re-
vision of the projects, and Figure 2.8 shows one such unreliable test, Map-
UtilsTest::shouldPrettyPrintMap from the fernandezpablo85/scribe-java
project. The test (lines 3-7) makes and populates a HashMap and then com-
pares the result of calling MapUtils: :toString with a hard-coded string (lines
8-10). However, MapUtils: :toString calls entrySet on its input Map, and the
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public class OptionGroupTest {
public void testToString() {
OptionGroup gl = new OptionGroup();
gl.addOption(new Option(null, "foo", false, "Foo"));
gl.addOption(new Option(null, "bar", false, "Bar"));
if (!"[--bar Bar, --foo Foo]".equals(gl.toString())) {
assertEquals (" [--foo Foo, --bar Bar]", gl.toString());

}

public class OptionGroup ... {
Map<String, Option> om = new HashMap<String, Option>();
public OptionGroup addOption(Option option) {
om.put (option.getKey(), option);
return this;
}
public String toString() {
StringBuilder buff = new StringBuilder();
Iterator<Option> iter = getOptions().iterator();
buff.append("[");
while (iter.hasNext()) {
/* ... populate buff with the values in iter ... */
return buff.toString();
}

}

Figure 2.7: Example unreliable test from apache/commons-cli

order of iteration is not fixed, so the assertion on lines 810 can sometimes

fail. More precisely, it fails in all but one of the 4! orderings, i.e., in about

96% of cases, as also obtained in our experiments.

2.5.2

Practical Impact and Adoption

Detecting Failures

To test the NONDEX tool in general and the NONDEX Maven plugin in par-

ticular, we integrated NONDEX in the pom.xml files of several Maven-based
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1 public class MapUtilsTest {

2 @Test public void shouldPrettyPrintMap() {

3 Map<Integer, String> map = new HashMap<>();
4 map.put(l, "one");

5 map.put(2, "two");

6 map.put(3, "three");

7 map.put(4, "four");

8 assertEquals(

9 "{1->one, 2 > two , 3 -> three , 4 -> four }",
10 MapUtils.toString(map));

11 }

12}

13

14 public class MapUtils {

15 public static <K,V> String toString(Map<K,V> map) {
16

17 StringBuilder result = new StringBuilder();
18 for(Map.Entry<K,V> entry : map.entrySet()) {
19 result.append(String.format(", %s -> %s ",
20 entry.getKey () .toString(),
21 entry.getValue() .toString()));
22 }
23 return "{" + result.substring(1) + "}";
24 }
25 }

Figure 2.8: Example unreliable test from fernandezpablo85/scribe-java

projects from GitHub. Our goal was to test whether NONDEX works with
these projects “out-of-the-box” and not necessarily to detect any new unreli-
able tests. We found that integrating NONDEX into these projects was indeed
easy, and that by just adding a few lines to pom.xml, we could run NONDEX
on all these projects. NONDEX worked well with projects that use different
testing frameworks (e.g., JUnit 4, JUnit 3, and TestNG) and even various test
runners (e.g., parameterized tests [114,127]). Along the way, we also detected
21 new unreliable tests in eight projects (eight tests in alibaba/fastjason,
five tests in checkstyle/checkstyle, three tests in nutzam/nutz, and one
test in each of alibaba/druid, bukkit/bukkit, jankotek/mapdb, pedrovgs.al-
gorithms/algorithms, and perwendel/spark).
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Debugging Failures

We further applied the automated NONDEX debugging on these 21 newly
detected and 54 previously detected failing tests to determine the root cause
of each failure. The number of underdetermined API invocations that NON-
DEX randomized per failure ranged from 5 to 9,710. The results showed that
our simple binary-search debugging works extremely well for these cases—
for 74 out of 75 failures, NONDEX minimized the cause down to only one
invocation; the remaining failure is for a test written in JUnit 3 for which
the Surefire Maven plugin (used by NONDEX to run tests) cannot easily
run single test methods. We also counted the number of wrong assumptions
on various APIs supported by NONDEX; the invocations causing the fail-
ures were getDeclaredFields (41 cases), HashMap iteration (32 cases), and
getGenericExceptionTypes (1 case). Because binary search is simple, we
were surprised that it sufficed to identify precisely one invocation in all but
one of the cases we tried. In the future, we plan to explore more sophisticated

search strategies, such as delta debugging [145], and automated fixing.

Case Studies and Adoption

We opened 13 pull requests (PRs) for failures detected by NONDEX, re-
porting the issue and providing a fix, in four open-source projects: five
PRs in alibaba/fastjson, five PRs in checkstyle/checkstyle, two PRs in
scribejava/scribejava, and one PR in square/retrofit. We did not open
PRs for all unreliable tests that NONDEX detected because we are not ex-
perts in the projects and could not easily provide a fix for each unreliable
test. All PRs we opened were accepted by developers except one PR in
alibaba/fastjson. One of the developers of Checkstyle was quite pleased
with the PRs we opened, asked us about the tool we used to detect the
issues, and recommended that we integrate NONDEX in their continuous in-
tegration; we indeed integrated NONDEX in both pom.xml and .travis.yml
for Checkstyle [15]. Furthermore, we have piloted the use of NONDEX in
a software testing course to educate students about wrong assumptions on
underdetermined APIs. Students have used NONDEX to find issues both in
their own code and in open-source projects they are familiar with. Overall,

we found our currently released NONDEX tool to be robust enough for use
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public class DefaultNameProvider implements NameProvider {
public String getName(...) {
String[] nameSet = getNameSet(...);
return nameSet[0];
¥
private synchronized String[] getNameSet(...) {
String[][] z = DateTimeUtils.getDateFormatSymbols(...).getZoneStrings();
String[] setEn = null;
for (Stringl(] s : z) {
if (s != null && s.length == 5 && id.equals(s[0])) {
setEn = s;
break;
}
¥
}
}

Figure 2.9: Code for DefaultNameProvider from JodaOrg/joda-time

both in real-world projects and in teaching.

Example Fixed Unreliable Test

We next describe an unreliable test that NONDEX detected when run on
an older revision of the JodaOrg/joda-time project; the test has been fixed
since then. Figure 2.10 shows TestDateTimeZone: : testGetShortName and the
relevant portions of the SUT. The call to getShortName on line 4 eventually
leads to a call to the DefaultNameProvider: :getNameSet method defined on
lines 6-17. The problem is the guard condition, s.length == 5 on line 11.
In Java 7, the call to DateFormatSymbols: :getZoneStrings on line 7 indeed
returned each array element of z of exactly length five. However, the speci-
fication of that method only guarantees that each element of z has length of
at least five. In fact, in Java 8, the implementation changed such that each
array element has length exactly seven, which still satisfies the specification
but is different from what was the case in Java 7. This change in the imple-
mentation revealed the developer’s reliance on the length of the elements of

z. NONDEX was able to detect this on an older revision of the code, and the
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1 public class TestDateTimeZone extends TestCase {
2 public void testGetShortName() {

3 DateTimeZone zone = DateTimeZone.forID(...);
4 assertEquals("BST", zone.getShortName(...));
) .

6 }

7}

8

9 public abstract class DateTimeZone ... {

10 public String getShortName(...) {

11 String name;

12 NameProvider np = getNameProvider();

13 if (np instanceof DefaultNameProvider) {

14 name = ((DefaultNameProvider) np).getShortName(...);
15 }

16

17 return name;

18 }

19 private static NameProvider getDefaultNameProvider() {
20 NameProvider nameProvider = null;

21

22 if (nameProvider == null) {

23 nameProvider = new DefaultNameProvider();
24 }

25 return nameProvider;

26 7

27}

Figure 2.10: Example unreliable test from JodaOrg/joda-time

developers have since fixed this problem by changing checks such as the one

shown on line 11 to be s.length >= 5 instead.

Unrelated Unreliable Tests

We discuss one example unreliable test that we accidentally detected during
our evaluation. Although detecting unreliable tests is a positive outcome in
general, we are careful to mark this unreliable test as a false alarm (FA) in
our evaluation because the source of flakiness is not related to any of the
models that we are evaluating in NONDEX.

Figure 2.11 shows the unreliable test T1 that nondeterministically passes or
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1 public class ClassLoaderTest extends TestCase {

2 public void testAutoUnloadClassloaders () throws Exception {
3 int ic = ACL.activeACLs();

4 ClassLoader tcLoaderl = new TestClassLoader1();
5 Class testClassl = tcLoaderl.loadClass(..);

6

7 ClassLoader tcLoader2 = new TestClassLoader2();
8 Class testClass2 = tcLoader2.loadClass(...);

9

10 tcLoaderl = null; testClassl = null;

11 tcLoader2 = null; testClass2 = null;

12

13 // Force GC to reclaim unreachable

14 // (or only weak-reachable) objects

15 System.gc();

16 .

17 System.gc();

18 while (ACL.activeACLs() > 1 && times < 50) {

19 Thread.sleep(100); // test again
20 }
21 // Yeah, both reclaimed!
22 assertEquals(Math.min(ic, 1), ACL.activeACLs());
23 }
24}

Figure 2.11: Example unreliable test T1 detected during our experiments

fails because it (incorrectly) assumes deterministic behavior of the garbage
collector. Specifically, the calls to System::gc on lines 14 and 15 do not
force garbage collection, per the official Java API documentation. Thus, the
assertion on line 22 can sometimes fail when ACL: :activeACLs does not return

1, as the developers of the tests assume.

2.5.3 Experiments on Student Code

We also evaluated NONDEX on 72 student submissions for a programming
assignment. We first describe the assignment that the students were supposed
to do. We then describe how we set up our experiments for the student
submissions. We finally describe high-level results concerning our findings of

running NONDEX on the student submissions.
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Assignment

The assignment asked the students to create a simple library-management
application. This library-management assignment was first created four years
ago and has been minimally updated by different teaching staff members over
the years; this year’s iteration of the assignment was updated by two teaching
assistants who were not involved in this study. The students were expected
to write both code that implements such an application and unit tests using
JUnit [68] to test the different components of the application.

The teaching staff provided the students some skeleton code outlining the
basic expected components of the application. The application should repre-
sent a library containing books which can be organized into collections. The
Book class represents a book and has only two fields, a title and an author,
both represented by String objects. This Book class extends the abstract
class Element. The Collection class represents a collection of such Element
objects that are stored in a List. Furthermore, the Collection class also
extends Element, so a Collection is allowed to contain other Collection ob-
jects, creating a hierarchy that illustrates the composite design pattern [33].
Finally, at the top level, there is a Library class that can hold a List of
Collection objects.

Students were expected to implement several methods and constructors
for each of these classes. We discuss those that are most relevant for this
study. For both Book and Collection, students must implement a method
getStringRepresentation that returns String representations of objects of
those classes. Given such a string representations, students must implement
a constructor for Book that takes the string representation and constructs the
corresponding Book object. For Collection, students must similarly imple-
ment a static method restoreCollection that takes a string representation
of a Collection and constructs the corresponding Collection object. For
Library, students must implement (1) the constructor that takes a file con-
taining string representations of a sequence of Collection objects and con-
structs the corresponding Library and (2) the method saveLibraryToFile
that writes out the Library to a file.

Along with the skeleton code and implementation requirements, the teach-
ing staff made further restrictions and suggestions. First, the students’ code

must build successfully in a common environment used by the entire class.
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This environment uses OpenJDK Java 7, so students’ code must also compile
to Java 7 bytecode and run successfully using the OpenJDK Java 7 JVM.
Students must also write tests for each of the three classes they implement,
with at least nine tests for the entire application. Finally, the staff strongly
encouraged the students to use some third-party library to handle the pretty-
printing/parsing of objects to/from strings, as the Library can potentially
have complex structures involving deeply nested Collection objects. How-
ever, the staff did not restrict the students to a specific third-party library, so
the students chose whatever library they felt comfortable with. Many used
various libraries for JSON or XML.

Experimental Setup

For our evaluation on student code, we started from the 89 submissions that
built successfully (both compiled and had all tests pass) in the common envi-
ronment that uses OpenJDK Java 7. With these 89 submissions, we ran the
tests in another environment that is exactly the same as the environment pro-
vided to the students, except this other environment uses OpenJDK Java 8
instead. By running the students’ tests against their own code an an environ-
ment using Java 8, we already detected some students’ tests to be unreliable
as they assumed specific behavior of the libraries (either the Java Standard
Library or the third-party libraries used), and most likely failing due to the
presence of ADIUS code.

Running the students’ tests in this Java 8 environment, we found 17 sub-
missions that fail. In fact, in the past, running in multiple environments (e.g.,
on Linux virtual machines and on Mac and Windows laptops from teaching
assistants) was the only approach that we could use to detect (some) un-
reliable tests. Using NONDEX, we can have a more thorough detection of
unreliable tests; even if some tests pass on both Java 7 and Java 8, it does
not imply they do not contain any ADIUS code that could fail on some fu-
ture Java 9 (or even on Java 8 on another OS or by another JVM provider,
say, IBM). We therefore focus the rest of our evaluation on the remaining 72

submissions.
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Table 2.5: Unreliable tests detected in student submissions

FULL ID EQ ONE
Unreliable Tests Found 110 88 34 34

Total Failures 8159 6785 2031 1827
Min Failures 37 0 0 0
Max Failures 100 100 81 78

Results

We ran the student submissions using our NONDEX tool in all four nonde-
terministic levels and for 100 randomly generated seeds. (The tests from
students submissions run much faster than the open-source projects, so we
could immediately use 100 seeds.) NONDEX detected 34 student submissions
with at least one unreliable test. In total, NONDEX detected 110 unreliable
tests. Table 2.5 summarizes the results. We tabulate the number of unreli-
able tests detected in each level (up to 110), and the total, minimum, and
maximum number of the 100 seeds that cause a failure for one of those un-
reliable tests in each level. We elide detailed results for each individual test
as in Table 2.4 because there are too many tests.

From the table, we see that the FULL level detects the most unreliable
tests, followed by ID, and then by EQ and ONE, which both detect the same
number of unreliable tests. Unlike for open-source projects where all three
partial levels behaved the same (either all three had at least one failure or all
three had no failure), for student submissions, ID detected more unreliable
tests than either EQ or ONE that detected exactly the same unreliable tests.
Considering the total number of failures, like for open-source projects, we see
that the FULL level detects more failures than the ID level, followed by the
EQ level and finally by the ONE level.

Discussion

In the 17 cases where the students’ tests fail just by switching from Java 7 to
Java 8, the unreliable tests check the functionality of the methods that get
the string representation of a Book or a Collection object. The tests gen-
erally construct some Book or Collection objects and assert that the return

of the method that gets the string representation matches some hard-coded
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string value. In all but one of these submissions, students either directly
use a Java HashMap as part of their implementation for constructing a string
representation, or they use a third-party library (e.g., JSON in Java [66] or
JSON.Simple [67]) where the serialization is backed by a Java HashMap. The
assertions against the hard-coded strings succeed in Java 7 because the order
remains consistent across different runs of the JVM, but in Java 8, the under-
lying implementation of HashMap changed such that the iteration order can
differ from that of Java 7. The one remaining failing submission uses an XML
serialization library (XStream [141]) to construct a string representation of
a Collection object, but the order of the declared fields for a class is also
not guaranteed, so the comparison with a hard-coded string value here once
again fails in this later version of Java. In summary, all these 17 submissions
have ADIUS code and fail due to relying on some assumed order that is not
guaranteed to hold.

In the student submissions that do not fail on Java 8, NONDEX detected
additional unreliable tests that fail due to the nondeterminism in the or-
dering provided by the iterator for a HashMap. As with the tests that fail
on Java 8, these unreliable tests generally construct Book and Collection
objects and assert their string representation to be equal to a hard-coded
string. Similar to some cases in the open-source projects, some failures are
due to “too much” nondeterminism in the orderings, e.g., when a test calls
getStringRepresentation on an object and then compares the string against
another call of getStringRepresentation of an equal object rather than as-
serting the string to be the same as a hard-coded string. In such a case, the
FULL or ID level would shuffle both calls to getStringRepresentation (be-
cause FULL shuffles always and ID shuffles when objects are different) and
potentially end up failing the assertion where the other two levels do not fail.
Moreover, the FULL level also detects as unreliable some cases that depend

on the field ordering, which other levels never detect.

2.6 Systematic Exploration using Java PathFinder

Running NONDEX even with 100 different seeds may not detect all unreliable
tests, because the random choices explored can miss some cases that would

cause a test to fail. To more systematically explore these tests, we used

46



JPF [64,132]. JPF provides a specialized JVM, implemented in Java, that
can explore all nondeterministic choices. However, JPF cannot handle all
Java code out-of-the-box. In particular, it cannot handle code that depends
on native methods, such as those in the Gson or XStream libraries that some
students used. We only ran the student’s code on JPF because JPF did not
work with the open-source projects used in our study.

Our NONDEX implementation for systematic exploration uses the Java
PathFinder [64,132] tool and can systematically explore the choices by model
checking the nondeterministic models. We focused on the HashMap iterator,
because it can find a large number of ADIUS code and unreliable tests.
We used the JPF’s provided facility for nondeterministic choices, based on
Verify.getInt which we use to return a permutation of the original iteration
order, to encode a model that is between our partial and fully nondetermin-
istic models. The advantage of using JPF is that it can provide guarantee on
the completeness of the exploration, unlike random exploration. As a result,
we had to extend JPF support for the Java Standard Library to attempt to
run it on more code. But in the end we were able to run it only on a subset

of student submissions.

2.6.1 Motivating Example

Figure 2.12 shows some test simplified from a student homework in the soft-
ware engineering class used in our study. Recall that the students were
asked to write code for a Book class and tests for their code. The method
testGetStringRepresentationl aims to test that the Book object produces
a correct string representation: the test checks that the round-trip from the
string representation of a Book to a Book object and back to its string repre-
sentation yields the same String result used to construct the Book object.
The problem with the test in Figure 2.12 is that it assumes the order
of the fields in the JSON representation of the Book object to be the same
every time, either {author="Die...", title="Cos..."} or {title="Cos...",
author="Die..."}. This assumption is wrong; it is not supported by the
JSON specification: the author and title could appear in any order in the
resulting string. In fact, the data structures used to implement the underlying

JSONObject do not guarantee the order assumed by this test. Specifically, a
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1 public class BookTest {

2 private String toJSON(String s) throws JSONException {
3 JSONObject obj = new JSONObject();

4 String[] info = s.split(",");

5 obj.put ("author", info[0].trim());

6 obj.put("title", info[1].trim());

7 return obj.toString();

8 }

9 QTest

10 public void testGetStringRepresentationl ()

11 throws JSONException {

12 Book book = new Book(toJSON("Diego et al., Costization"));
13 assertEquals(toJSON("Diego et al., Costization"),

14 book.getStringRepresentation()) ;

15 }

16}

Figure 2.12: Example test that fails due to an underdetermined
specification

HashMap is used to store a mapping between field names and their values,
and the code in JSONObject (not shown here) iterates the HashMap to produce
the String representation. The specification of the HashMap explicitly states:
“This class makes no guarantees as to the order of the map; in particular, it
does not guarantee that the order will remain constant over time.” [53]. Code
making such wrong assumptions, unsupported by the specification, is brittle
because whenever the library changes, the assumptions may stop holding,
and the code can break [58,70].

Our NONDEX technique finds assumptions on certain APIs by exploring
different behaviors permitted by the specification. If exploring these dif-
ferent behaviors triggers a failure, it indicates that the code makes some
wrong assumption on the API. In the example in Figure 2.12, NONDEX
would explore different orders of iteration for the underlying HashMap of each
JSONObject. Note that it is necessary to explore an execution where the two
iteration orders for the two JSONObject objects differ, i.e., {author="Die...",
title="Cos..."} and {title="Cos...", author="Die..."}. We manually
create models for APIs based on their specifications, and we use JPF to
explore these models for all allowed behaviors to find wrong assumptions.

Figure 2.13 shows the entire state-space graph resulting from the JPF’s ex-
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Figure 2.13: State-space graph for the example test

ploration of different behaviors of APIs with underdetermined specifications
in this example. In the execution of the test testGetStringRepresentationi,
the program executes three underdetermined APIs, corresponding to the
three choice points. Two of these are in the translation of the JSONObject
to String in the method toJSON (called twice from the test), and one is in
the body of the method getStringRepresentation (not shown here). Each
of these choice points is over a collection with two elements (corresponding
to the fields author and title), hence it has two possible orders.

Even this simple graph illustrates some interesting properties. For exam-
ple, the nondeterministic choice point in state 0 is rather local, and both of its
orders lead to the same state 1. The reason is that the first call to toJSON can
produce two different string objects, but both of them produce the same Book
object. Effectively, this choice point does not matter for the failure. What
does matter is the relationship between the second and third choice points:
if they choose the same order, the test passes, but if they choose different
orders, the test fails. The probability that a uniformly randomly selected
execution finds this failure is exactly 50%. Moreover, a simple strategy that
always switches between choosing the natural order (the first outgoing edge,
marked 0) and its opposite (the last outgoing edge, in this case, marked 1)
would definitely find the failure in this example, but this is not always the

case. We discuss in Section 2.6.3 the results from more examples.
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1 // in jpf-core/src/classes/java/lang/Class.java

2 . class Class ... {

3 e

4 public native Field[] getDeclaredFields() throw...;
5 }

6 // in jpf-core/src/peers.../JPF_java_lang_Class.java
7 . class JPF_java_lang_Class extends NativePeer {

8 e

9 @MJI

10 public int getDeclaredFields_____ 3Ljava_lang_reflect_Field_2
11 (MJIEnv env, int objRef) {

12

13 for (i=0; i<nStatic; i++) {

14 FieldInfo fi = ci.getStaticField(i);

15 o

16 }

17 for (i=0; i<nInstance; i++) {

18 FieldInfo fi = ci.getDeclaredInstanceField(i);
19

20 }

21}

22}

Figure 2.14: Original Class::getDeclaredFields in JPF

2.6.2 Technique and Implementation

Recall that the overall NONDEX technique is rather simple: we first manually
find methods in the Java Standard Library with underdetermined specifica-
tions, then manually build models of these methods, and finally use an appro-
priate execution environment to explore various behaviors of these models.
We next describe how we implemented NONDEX models in JPF. We pre-
sented already one implementation of the HashMap iterator in Section 2.3.
Thus, we illustrate here the implementation of another method, and also
mention one change we made in the former implementation of the HashMap
iterator. The key goal of our implementation of NONDEX in JPF is to enable
systematic exploration of all possible behaviors of methods with underdeter-
mined specifications.
To illustrate our encoding of models in JPF, consider the getDeclaredFields

method from the class java.lang.Class. This method returns an array of
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1 // modified Class.java

2 . class Class ... {

3 ce.

4 public Field[] getDeclaredFields() throw... {

) return NonDex.shuffle(getDeclaredFields0());

6 }

7 public native Field[] getDeclaredFields0() ...;

8 }

9 // modified JPF_java_lang_Class.java

10 ... class JPF_java_lang_Class extends NativePeer {
11 .

12 OMJI

13 public int getDeclaredFieldsO_____ 3Ljava_lang_reflect_Field_2
14 (MJIEnv env, int objRef) {

15 /* body the same as was in getDeclaredFields */
16 %

17 ¥

Figure 2.15: Modified Class: :getDeclaredFields

the type Field[] which represents all the fields declared by the class (but ex-
cludes inherited fields). The Javadoc for this method states: “The elements
in the returned array are not sorted and are not in any particular order.” [19].

A typical implementation of this method is deterministic and returns the
fields in some particular order. For example, in JPF, this method is imple-
mented as a native peer with the relevant parts shown in Figure 2.14. The
Class implementation declares only that the method getDeclaredFields is
native, and the actual implementation in JPF_java_lang Class.java returns
the array that has static fields before instance fields. Interestingly, the same
JPF_java_lang Class.java uses a different order in the method getFields
which returns an array which represents all the public fields in the class and
includes inherited fields—that method returns instance fields before static
fields and has a comment “the spec says there is no guaranteed order so we
keep it simple” [20].

To support NONDEX, we modify getDeclaredFields such that JPF can
explore all possible orders of the fields. We modified the implementation
directly at the JPF level as shown in Figure 2.15: (1) we renamed the original
getDeclaredFields peer to getDeclaredFields0 and kept its body and (2) we
added the method getDeclaredFields to first obtain the original array of
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import gov.nasa.jpf.vm.Verify;

class NonDex {

public static <T> T[] shuffle(T[] objs) {

return shuffle(Arrays.asList(objs)).toArray(objs);

public static <T> List<T> shuffle(List<T> objs) {
int permutation = Verify.getInt(0O, factorial(objs.size()) - 1);

1

2

3

4

5 }
6

7

8 return nthPermutation(permutation, objs);
9

}
10 public static <T> List<T> shuffle01d(List<T> objs){
11 int k = objs.size();
12 for (int i = 0; 1 <k - 1; i++) {
13 Collections.swap(objs, i, Verify.getInt(i, k-1));
14 }
15 return objs;
16 }
17
18 %

Figure 2.16: NONDEX methods for shuffling

fields and then shuffle it using our NONDEX method shuffle (described in
the next paragraph). Note that we effectively modified the behavior of an
existing native method to add shuffling, which is easy to do in JPF because
the native methods are themselves implemented in Java.

We next describe how we implemented the NonDex: : shuffle methods. Fig-
ure 2.16 shows the key parts of our implementation. The shuffle method for
arrays is the one invoked from getDeclaredFields, but many other methods
require shuffling a list, so our key logic is in the shuffle method for lists. Its
implementation is straightforward: given a list objs, it computes the total
number of permutations of this list (k!, where & is the length of the list) and
then selects one particular permutation to explore in each invocation, using
the JPF library method Verify::getInt. (Note that both bounds in getInt
are inclusive, hence subtracting one from the number of permutations.) The
method nthPermutation computes the n-th permutation of a given list in the
lexicographic order, using a traditional algorithm [117]. Note that several
methods in the NONDEX library modify their given arguments in place, but
we ensure that they are called only when the arguments are copies that can

be modified without affecting Java semantics. (While our goal is to explore
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all possible orders using NonDex, we do not want to generate some impossible
order.) For example, the Javadoc for several Class methods explicitly states:
“The caller of this method is free to modify the returned array; it will have
no effect on the arrays returned to other callers.”

Figure 2.16 also shows an old shuffle method that we used in our first
NoONDEX paper [120]. This method also enumerates all k! permutations of
the input objs list of length £, but it creates a different state-space graph
that does not precisely capture the nondeterminism inherent in these permu-
tations. This method uses the Knuth shuffle [74] for random permutations
but applies it to systematically explore all possible permutations. For each
position 7, it chooses some position between ¢ and k — 1 to swap with 7.

To illustrate the difference between the methods shuffle and shuffle01d,
consider a list with 4 elements. The current shuffle creates a single choice
point with 4! = 24 outgoing edges, i.e., the state-space graph has 25 nodes (1
choice point and 24 successor states). In contrast, the old shuffle would create
one choice point with 4 outgoing edges of which each leads to a choice point
with 3 outgoing edges of which each leads to a choice point with 2 outgoing
edges, creating a factorial tree. This also gives 24 choices in the end, but the
state-space graph now has 40 edges and 41 nodes, i.e., 16 more edges and 16
more nodes than our current nondeterministic choice tree. These additional
edges and nodes do not properly capture the amount of nondeterminism but
are just the consequence of how permutations are computed. For this reason,
all our experiments use the current shuffle implementation, not only for the

new methods that we added but also for the HashMap iterator.

2.6.3 Evaluation

We next present the results of our experiments on 46 student-written tests;
we know from our previous work that (1) JPF can run these tests, at least for
some executions, and (2) the tests contain wrong assumptions on APIs (Sec-
tion 2.5.3). In the past, we ran these tests in JPF with only one underdeter-
mined method and to find only one error state, thus we stopped the explo-
ration on the first failure. In the current evaluation, our key goal is to analyze
the state-space graphs, thus we run JPF with search.multiple errors=true,

and we also run with all 11 models of methods with underdetermined speci-
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fications (HashMap iterator and 10 methods similar to getDeclaredFields).

Table 2.6 shows the statistics about the state-space graphs. We obtained
the full graphs for 46 failing tests. We previously had five additional tests in
Section 2.5.3. During the exploration of two tests, JPF ran out of memory
(the default 1GB) after finding 450,463 and 1,321,584 errors, respectively.
Two tests were affected by a real bug in JPF, namely the JPF native peers
in JPF_java lang StringBuilder.java and JPF_java lang StringBuffer.java
do not work with the latest Java versions. The fifth test was mistakenly
reported as failing in the past, because the SUT throws some exceptions
that are caught, printed, and “swallowed”; the code does have some bugs
but not of the kind that NONDEX should find.

State-Space Graph Size

We tabulate the graph size (number of nodes and edges) as a measure of the
uses of underdetermined APIs. We find that many tests have rather simple
graphs, similar to the example from Section 2.6.1. However, a few tests have
large graphs, with the largest (T36) having 6,438,913 nodes and 12,747,262
edges. Note that all the code is single-threaded, so the choice points are
due only to the methods with underdetermined specifications. The largest
choice point that we allow to be exhaustively explored is for collections with
six elements, i.e., 720 outgoing transitions. For larger collections, we explore

only one order, as provided by the underlying implementation.

Failure Probability

We also show the number of failing nodes and the failure probability. The
latter is computed under the assumption that each (local) choice for each
choice point is equally likely, e.g., if a choice point has 6 outgoing edges,
each has 1/6 probability to be chosen. The overall failure rate is computed
over a reverse topological sort of the graph: each failing node has the failure
probability of 1.0, each passing node has the failure probability of 0.0, and
an inner node with n children has the failure probability (p; + ...+ p,)/n,
where p1,...,p, are failure probabilities of the successor nodes. The failure
probability of the start node in the graph gives the overall failure probability
for the graph. We can see that it can be as high as 99.61%, and is at least
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Table 2.6: Statistics of tests exploration

1D #Nodes #Edges #Fail  Pr[%] #Merges #Crit

T1 7 7 2 50.00 0 2
T2 7 7 2 50.00 0 2
T3 208 283 64 75.00 29 32
T4 16 19 4 50.00 1 4
T5 7 7 2 50.00 0 2
T6 23 26 8 62.50 1 4
T7 5 4 1 50.00 0 1
T8 941099 950699 875520 98.96 386 9216
T9 53 71 36 72.22 4 6
T10 8 9 2 50.00 1 2
T11 8 9 2 50.00 1 2
T12 8130 8192 4032 98.44 0 64
T13 8 9 2 50.00 1 2
T14 35 42 12 75.00 5 4
T15 140 164 56 87.50 18 8
T16 150279 169994 65280 99.61 1797 256
T17 1124 1348 448 87.50 158 64
T18 10468 13252 3840 93.75 864 256
T19 8 8 2 50.00 0 2
T20 155 194 56 87.50 17 8
T21 224 332 56 87.50 22 8
T22 4 3 1 50.00 0 1
T23 6 5 2 75.00 0 1
T24 8825 9711 3968 96.88 700 128
T25 4 3 1 50.00 0 1
T26 885 1175 296 99.22 47 16
T27 17221 18311 8064 98.44 964 128
T28 7 7 2 50.00 0 2
T29 8 8 2 50.00 0

T30 8 8 2 50.00 0 2
T31 2645 3365 960 93.75 222 64
T32 9 8 3 87.50 0 1
T33 11 10 4 87.50 0 1
T34 15 15 6 75.00 0 2
T35 8 9 2 50.00 1 2
T36 6438913 12747262 65280 99.61 2113793 256
T37 5 4 1 50.00 0 1
T38 32 53 3 75.00 10 1
T39 24 37 3 75.00 1
T40 6 6 1 50.00 1
T41 5 4 1 50.00 0 1
T42 11 12 2 50.00 2
T43 1056 1106 552 95.83 28 24
T44 9 9 2 50.00 0 2
T45 20 23 6 87.50 3 2
T46 160 331 56 88.89 41 8

50% in all cases; it means that a uniformly random local selection of choices

has a good chance to find any of these unreliable tests, which confirms why
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our results with NONDEX on JVM are already quite good (Section 2.5).

Irrelevant Nondeterminism

We further measure how much of the nondeterminism becomes irrelevant as
the execution leads to the same state irrespective of the choices made at some
choice point. Specifically, we count the number of “merge” nodes that have
in-degree greater than one. (These are only the internal nodes and do not
include the final, pass or fail, nodes.) While some tests have no merge nodes,
other tests have quite a few, even up to almost one third of all nodes (T36
and T38). These merge nodes post-dominate some choice points that can be
safely ignored when debugging the cause of failures due to underdetermined

specifications in these cases.

Critical States

Collecting the entire state space enables us to determine the number of criti-
cal states, i.e., states with choice points from which at least one choice leads
to paths that end either only in failure(s) or only in pass(es), while other
choices lead to paths with different outcomes. In other words, these are the
points where the exploration diverges, and so these are the key points for
the developer to focus on when debugging failures that NONDEX detects.
We find that the number of critical states is relatively small compared to all
states, the highest ratio being 32/208 for T3. Many cases have just one or
two critical states. When JPF can analyze some code, our NONDEX tool
in JPF can greatly complement our NONDEX tool in JVM: we envision a
system where the tool in JVM is run first (because it can check all Java code
and runs much faster for one execution) for some random choices, and if it
detects a failure, then JPF is used to explore the neighborhood around this

failure to determine which choice points are critical.

Choice Prioritization

Random exploration has a good chance to find the failure (e.g., with 50%
failure probability for each path, trying just 7 independent paths gives over
1-(1/2)" > 99% probability to find the failure), but we evaluate whether
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some prioritization heuristics could increase that chance. One seemingly
good heuristic could be to first explore for each choice point the order that
is opposite (O) of the natural (N) order, e.g., if some collection naturally
returns foo, bar, baz, we could first explore baz, bar, foo. The intuition
is that most tests pass for the natural order, and the opposite may create
a completely unexpected situation. However, this heuristic finds failures in
only 9 out of 46 tests. The reason is that many cases require two choices to
be related for the failure (e.g., our running example requires two choices to
differ). Additional heuristics are then to explore orders that alternate O and
N,ie., ONONON...or NONONQO.... All three heuristics together can find
failures in 37 out of 46 cases, which is greater than 9 but still not perfect. In
the future, we hope to identify heuristics that are even more likely to produce

failures in most if not all cases.
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Chapter 3

Detecting State-Polluting Tests to Prevent
Test Dependency

In this chapter we describe our approach to detecting tests that pollute the
state shared across test executions. Section 3.1 presents an overview of the
problem of polluting tests, Section 3.2 presents our motivating example, Sec-
tion 3.3 outlines POLDET, our general approach to detecting polluting tests,
Section 3.4 presents some details on our implementation of POLDET, Sec-
tion 3.5 presents the results of our evaluation, and Section 3.6 discusses the

threats to the validity of our experiments.

3.1 Overview

Regression testing is a crucial activity in software development. Developers
rely on regression testing to determine whether the newly made code changes
break software functionality. If a run of the regression test-suite produces a
failure, developers need to debug it. For a reliable test suite, failures should
indicate a problem introduced by the code change and not a problem in
the test suite itself. If the problem is indeed in the SUT, then it is highly
beneficial that a test in the test suite failed. However, if the problem is in
the test code itself, then the test code should be changed.

One common problem [7, 58, 85,105, 137, 148] in regression test suites is
dependency between tests. These dependencies arise when the tests read
and write some shared resource, e.g., the heap state in the main memory, file
system, database, etc. Prior research showed that these dependencies occur
in various projects (ranging from small projects such as Maven to medium
projects such as Apache Aries and to large projects such as Hadoop) [85],
and that most dependencies are on the heap state, reported to range from
53% [85] to 61% [148] of all test dependencies. These dependencies make the

outcome of regression test-suite runs unreliable: even for the same version
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of the SUT, the tests could pass when executed in one order but fail when
executed in another order leading to unreliable tests [85,93,148].

Several research groups have started developing techniques that can com-
bat test dependencies. We discuss related work in Section 4 but highlight
two techniques here. Zhang et al. [148] present a technique that can find ex-
isting test dependencies by running a test suite in various, carefully selected,
orders and checking if any order fails. However, their technique requires that
the test dependency already be present in the test suite, i.e., it does not
proactively find potential test dependencies even before they can manifest.
Bell and Kaiser [7] present VMVM, a technique that can tolerate the pres-
ence of test dependencies by restoring shared heap state, which may have
been modified, after each test run. However, their technique does not report
whether there is a modification or not; it always restores the state under the
assumption that it may have been modified.

The existing techniques do not directly provide the information about the
root cause of the dependencies, i.e., do not report which test “pollutes” what
part(s) of the shared state. For example, consider a test ¢ that starts from a
shared state s, modifies it to s’ such that there could be another test ¢’ that
would pass when started from s but fail when started from s’. Two issues are
important to highlight. First, when the test ¢’ seemingly nondeterministically
fails or passes for the same code, the culprit is not necessarily the test ¢’ but
the polluting test ¢, which makes debugging harder.!

Second, even if the current test suite does not have any test ¢’ that can
be affected by the polluting test ¢, it is still valuable to know that ¢ is a
polluting test, so it could be fixed even before t’ is added and the test order
is changed. For example, the change in test order significantly affected a
number of Java projects when they upgraded to Java 7 [70]. The reason was
that Java 7 changed the Reflection API implementation. Because JUnit uses
reflection to find the tests to run, the tests started running in different orders
than in previous versions of Java, exposing test dependencies as failing test
suites. Some of those test suites were years old, and debugging such old test
suites is rather hard as reported by several blog posts [69,86,91]. Ideally a
polluting test should be caught right when the developer is about to add it to

"While this dissertation does not consider fixing of test pollution, a typical fix is either
for ¢ to clean the state after it finishes its logic, or for ¢’ to clean the state before it starts
its logic.
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the test suite because that is when the developer is in the best position to
fix the polluting test, or at least label it as a polluting test that could cause
problems in the future.

We present POLDET, a technique that detects polluting tests. POLDET
proactively finds tests that pollute the state, enabling the developers to fix
the tests right away, rather than later when the pollution manifests in a test
failure. Conceptually, POLDET is rather simple and finds polluting tests “by
definition”: for each test in a test suite, POLDET captures the shared state
(on the heap and the file system) before and after the test, and then compares
these two states to determine if there were any relevant differences.

To help developers find polluting tests, POLDET has to overcome several
challenges. One challenge is to capture and compare the states at the ap-
propriate abstraction level and appropriate program points such that the
reported differences are likely to be relevant pollutions. Some state differ-
ences are irrelevant, e.g., if states s and s’ differ only in the private content
of some library caches that the test code cannot observe via the public API,
then the difference is irrelevant. An additional challenge is to offer informa-
tion that helps developers in fixing the pollution. The final challenge is to
make the technique efficient enough, but it is not the most important: the
technique could be run only occasionally for the entire suite, or it could be
run only for the newly added tests rather than for all the tests in the test
suite. Indeed, a prior study [85] shows that 78% of the polluting tests pollute
the shared state right when they are added (i.e., only 22% start polluting
due to later changes in the test code or the SUT).

This chapter makes the following contributions:
» Problem We formalize the problem of test pollution

» Technique and Implementation We present the POLDET technique

that detects pollutions on shared heap or file system and tool for Java
*x Evaluation We evaluate POLDET on 26 projects from GitHub

The experimental results show that POLDET effectively finds polluting
tests. In the default configuration, POLDET reported 324 tests (out of 6105
tests) as potential polluting tests, and our inspection found that 194 of those
are indeed relevant polluting tests. The runtime overhead of our POLDET

prototype is a geometric mean of 4.50x, on a machine representative of a
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powerful build-farm server. We believe this overhead is acceptable for run-
ning POLDET occasionally on the entire test suites and running always on
the newly added tests.

3.2 Motivating Example

We next discuss a real example of a polluting test that was added to the
Apache Hadoop project [47] at one revision and then created problems in
the test suite much later. Figure 3.1 shows a simplified code snippet from
the TestPathData class. This snippet includes two tests of interest with their
full names—testAbsoluteGlob and testWithStringAndConfForBuggyPath; for
brevity, we will refer to them as FT and PT, respectively. The bug issue
HADOOP-8695 [46] reported that the test F'T" occasionally fails. Debugging
showed the cause was the pollution of the field testDir.

The static field testDir (line 2) is of type org.apache.hadoop.fs.Path.
This class represents the name of a file or a directory, and it performs opera-
tions on that name, e.g., extracting the components of the path.?2 The field is
initialized in the initialize method, which is annotated with @BeforeClass
so that JUnit executes it once before all the tests in the test class (and not
once before each test in the test class).

In revision 1099612 in the Hadoop SVN repository [45], the developers
added the test PT (while F'T did not exist yet). PT sets the field testDir
(line 22) and leaves it polluted. In that revision, no other test read the value
of testDir, so no technique (e.g., Zhang et al.’s technique [148] based on test
reordering or Huo and Clause’s technique [58] based on taint analysis) prior
to our work would report PT as a polluting test.

Later on, in revision 1186529, the developers added the test F'T. This test
reads the value of testDir and expects to get its initial value set by the
initialize method. In Java 6, JUnit indeed ran tests in the order they were
listed in the source of the test class; because F'T' was listed before PT, FT
was run first, causing no problems. However, in Java 7, the order in which
JUnit runs the tests became seemingly nondeterministic, which led to F'T

failing seemingly nondeterministically. This failure is reported in HADOOP-

2While the objects in this example represent directory and file names, all objects are
still in memory, and the example does not pollute the file system but only the heap.
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1 public class TestPathData {

2 static Path testDir;

3

4 O@BeforeClass

5 public static void initialize() {

6

7 testDir = new Path(System.getProperty("test.build.data",
8 "build/test/data") + "/testPD");
9 }

10  @Test // FT

11 public void testAbsoluteGlob() {

12 PathData[] items = PathData.expandAsGlob(testDir +
13 "/d1/£1x", conf);

14 assertEquals(

15 sortedString(testDir + "/d1/f1", testDir + "/di/f1.1"),
16 sortedString(items));

17 }

18 .

19 Q@Test // PT
20 public void testWithStringAndConfForBuggyPath() {
21 dirString = "file:///tmp";
22 testDir = new Path(dirString);
23 assertEquals("file:/tmp", testDir.toString());
24
25 }
26}

Figure 3.1: apache/hadoop example of a polluting test that led to the failure
of other tests later on
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8695, and debugging showed that FT fails whenever it is run after PT. In
this example, it is easy to establish that the cause is the pollution of the field
testDir.?

This example shows how test pollution can create problems, sometimes
much later from when the polluting test is added, making it potentially hard
to debug and fix. In this example, the polluted shared state is directly the
static field in the test class. However, in general, the polluted shared state
can be an object much deeper in the heap (not directly pointed to by the
static field), and the polluted shared state can be reachable starting from a
static field in the code under test (not in the test code). Debugging such cases
is much harder, especially long after the code is written. Most importantly,
the developers may not be aware that their tests pollute the shared state
until such pollution results in failures, when it is likely disrupting to their
workflow to debug failing tests.

POLDET helps developers find polluting tests early. If POLDET were run
on the class TestPathData when the test PT was added (although FT' did
not exist yet), POLDET would report that PT polluted the shared state.
Moreover, POLDET would also report where the states differ. Given such a
report, the developer can then choose to either fix the test right away or to
provide a configuration option for POLDET to avoid reporting this pollution
in the future. Had the Hadoop developers used a POLDET(-like) tool in
revision 1099612, they could have avoided the problems that started from
revision 1186529 and lasted until revision 1374447.

3.3 Technique

We next describe our POLDET technique for finding polluting tests. POLDET
takes as input a set of tests (and configuration options that specify how to
compare states). POLDET produces as output a subset of tests that modify
the state, and for each such test produces some description of the state
difference, identified by an access path through the heap or a file name.
Test executions operate on the system state that consists of parts shared

across tests (program heap, local file system, and network-accessible persis-

3The fix in revision 1374447 moves the initialization of testDir to a new method
annotated with @Before such that JUnit sets up the state before each test.

63



tent state, e.g., services, databases, etc.) and parts not accessible across tests
(e.g., the stack of each test invocation). We are interested in the parts that
are shared and can be polluted from one test run to another. We refer to
these parts as the cross-test-shared state. In general, pollutions could occur
via network or databases, but in this dissertation, we focus on pollutions
via heap state and file system; prior studies show these two to be the most
prevalent causes of test dependency [85,148].

We first discuss program points at which to compare states. We then
formalize the concept of heap-shared state, describe the state abstraction
that POLDET uses, define heap-shared state differences, and describe what
differences POLDET reports. We finally discuss the comparison of file-system

states.

3.3.1 Program Points

To find state pollutions, POLDET captures the state before the test starts
executing and after the test finishes executing. So far we have intuitively re-
ferred to the program points before and after the test execution. To precisely
define these points, we need to consider how a test framework invokes the
tests. Most test frameworks allow the developer to provide some setUp and
tearDown code to execute before each test (to set up the state) and after the
test (to clean the state at the end), respectively. Ideally, the states should
be captured before the setUp code and after the tearDown code. We elabo-
rate more on the choice of capture points in Section 3.4.2. Interestingly, in
our experiments we find that the setUp and tearDown code fragments do not
themselves pollute the state; if a test pollutes the state, then (almost) always
the test body itself pollutes the state.

3.3.2 Heap-State Representation

Formally, we model the heap-shared state of an object-oriented program as a
graph with labeled edges. Nodes represent the heap-allocated objects, classes,
and primitive values including null. Edges represent object fields: if the
graph models a concrete heap, then there exists an edge with a label f from

node o7 to node oy iff the field f of the object represented by node o, points
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to the object represented by node oy or holds a primitive value represented
by node 05. Each object has a field representing its class, hence some nodes
represent classes themselves. Arrays are modeled as objects whose outgoing
edges are labeled with array indexes and point to array elements. We also
allow for abstract heaps whose labels need not be fields, as discussed later in

this subsection.

Definition 1. A heap-shared state is a multi-rooted graph G = (V,E, R) with
VcOuCuP, E e 20U0)xFx(OCUP) - qnd R c 'V, where O is the set of objects
in the heap, C is the set of classes in the program, P is the set of primitive
values (including null), and F is the set of object fields in the program,
integers (for array indexes), and additional labels introduced by abstraction.
If the graph models a concrete heap, then (o1, f,02) € E iff 01.f = 0y on the
heap.

The heap-shared state represents the parts of the program state reachable
from the roots R. The roots correspond to the variables in the global scope
that are accessible across test executions. For example, in the Java language,
the roots are the static fields of all classes loaded in the current execution,
while in the C language, the roots are the global variables. The general
definition of roots needs to be instantiated for each language and even for
each test framework for the same language. For example, JUnit and TestNG
are the two most popular test frameworks for Java, and they share different
parts of the heap across tests: JUnit shares only the state reachable from the
static fields, while TestNG also shares the state reachable from the test-class
instance.

State abstraction can ignore some parts of the state that are overly complex
or contain regions irrelevant for the tests. For example, consider a state with
an object representing a set. The concrete set implementation uses some data
structure, e.g., an array, a tree, or a hashtable. For most tests (unless they
focus on testing the set library itself), the particular set implementation
is irrelevant, and only the elements that the set contains are relevant. A
concrete heap-shared state that captures all objects, including all the data-
structure implementation details, is usually not the best choice. To compare
the states and present the differences, it is preferable to consider two sets
with the same elements to be the same regardless of their implementation

details. This is similar to how Java serialization ignores some fields when
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writing object graphs to the disk. Abstraction can also reduce the size of the
captured state and runtime overhead.

Our technique allows for abstraction that omits some concrete edges from
the heap-shared state or introduces new edges to it. In a concrete heap-
graph, every edge label corresponds to some concrete field or array index in
the heap, but an abstract heap-graph can have additional edge labels. More
importantly, in an abstract heap-graph, some objects may have multiple
outgoing edges with the same label, e.g., a node representing a set may have
multiple outgoing edges labeled element. In general, POLDET users can
define abstractions specific to their program; by default, our implementation
uses some generic abstractions from the XStream library [142] as described
in Section 3.4.5.

3.3.3 Finding Heap-Shared State Differences

POLDET compares heap-graphs using graph isomorphism based on node bi-
jection [139]. In other words, the actual identity of the objects in the two
states does not matter, but only the shape that connects these objects and
the primitive values stored in the objects do matter. The rationale for this
is twofold. First, the two captured states come from the same program ex-
ecution, so two nodes that bijectively correspond in the two heap-graphs
most likely represent only one object in the actual program state. Second,
most tests do not depend on the object identity, so even if two nodes that
bijectively correspond do not represent the same object but represent two
different objects that have equivalent field values, the test execution is un-
likely to observe the difference. (In Java, code can observe the identity of an
object o, e.g., with System.identityHashCode(0).)

We first define isomorphism for two heap-graphs that have exactly the

same set of roots.

Definition 2. Two multi-rooted graphs G = (V,E,R) and G' = (V',E',R) are
isomorphic, in notation G ~ G', iff there exists a bijection p:V — V' that is
identity for all classes and primitive values (p(x) = x for all z e CUP) and

E"={{p(0), f.p(")) |{o, f,0') € E}.

Because this definition requires the two graphs to have the same set of

roots, it is too strict for comparing heap-graphs in most popular languages,
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because the set of roots can change during program execution. For example,
languages that run on the JVM [82] or CLR [72] have lazy class loading that
can add static fields, increasing the number of roots, and programs can also
dynamically unload classes, decreasing the number of roots. To accommodate
different sets of roots, we define a restriction of a heap-graph with respect to
a set of roots, intuitively capturing only the subgraph that is reachable from

the given set of roots.

Definition 3. A root-restriction of a graph G = (V,E,R) for a set of roots
R’ ¢ R, in notation Gg:, is the graph G' = (V',E",R') with V' = {v e V|3re
R'.(r,v) € E*} (where E* is the reflexive transitive closure of E) and E' =
En(V/ x FxV’).

We next define common-roots isomorphism that requires two restrictions

to be isomorphic for the common roots.

Definition 4. Let G = (V,E,R) and G’ = (V,E'|R’) be two heap-graphs.
We say G is common-roots isomorphic with G, in notation G ~, G', iff

!/
G|ROR/ ~ G‘RQR’ .

Finally, we specify precisely that POLDET checks common-roots isomor-
phism of heap-graphs to find tests that pollute the heap-shared state. If two
heap-graphs are not common-roots isomorphic, POLDET reports a differ-
ence. More specifically, POLDET finds the difference by traversing the two
graphs simultaneously from each root and then reports some path, called
access path, that leads to two nodes that do not bijectively correspond. For
abstract heap-graphs, where some nodes may have multiple outgoing edges
with the same label, there could be many differences even for the same node.

We require the tool to report any one difference, rather than all differences.

Definition 5. Two graph nodes v € G and v' € G’ are not bijective if the

subgraphs rooted in v and v' are not isomorphic, i.e., Gy #n Gf{v,} when,

p(v) =0

3.3.4 Class Loading

The use of common-roots isomorphism to compare heap states before and

after a test run can lead to false negatives, i.e., not finding a difference
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between the graphs of two states even when a test does pollute the state.
Common-roots isomorphism would not detect a test that polluted a part of
the state only reachable from the roots (static fields) of classes that were
lazily loaded after the test has begun. For example, consider a test whose
execution loads a new class and initializes its static fields with class-specific
default values, but the test modifies those values (or the state reachable from
the static fields of the newly loaded class) before POLDET captures the state.
If another test relies on the state reachable from this newly loaded class, this
subsequent test could fail when the values are not the default from the class
initialization. Because common-roots isomorphism ignores the roots of the
new class, it misses this state pollution.

One solution we propose for lazy class loading is to eagerly load all classes
needed by a test before starting the test. Such eager loading keeps the set of
roots of the graphs the same at all capture points, reducing common-roots
isomorphism (Def. 4) to simple isomorphism (Def. 2). Determining what
classes a test needs can be done by running the test twice: first run just to
collect the set of loaded classes, and second run, after eagerly loading all the
classes, to actually compare the states. The granularity of the collection offers
a trade-off between the performance of collection and comparison: collection
at the test-suite level may load classes that are not needed for some tests
(resulting in bigger states being collected for each test, incurring a higher
comparison overhead), while collection at the test-class or test-method level
incurs a higher overhead for the collection itself. Moreover, eager class load-
ing is challenging, e.g., when code dynamically generates and loads/unloads
classes, uses specialized class loaders, or otherwise may change the behavior
based on the order in which classes are loaded.

Another solution to handle lazy class loading would be to capture and
compare states also right after the static class initializer finishes; however,

that requires more instrumentation and runtime overhead.

3.3.5 Finding File-System State Differences

A test can pollute not only heap-shared state but also file-system state. For
example, a test can create a new file or modify an existing file, without

deleting the new file or resetting the content of the existing file after it fin-
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ishes, resulting in a polluted file system that could affect the behavior of
some subsequent test. POLDET tracks file-system state by tracking which
files are present in a given portion of the file system, hashing their content,
and checking the file/directory last-modified timestamps provided by the op-
erating system. Before a test starts, POLDET iterates through each file,
computes a hash of the content for each file, and stores a map from the file
name to the file hash. POLDET also saves the time before the test starts.
After the test finishes, POLDET uses the last-modified timestamp of the files
in the portion of the file system to check if any file or directory was modified.
If an existing file was written to, POLDET hashes the new content of the
file to compare with the saved hash to check if the content indeed changed
(or if the write just rewrote the old value). If a file POLDET hashed before
no longer exists, then the file was deleted. If any existing file is changed or
deleted, or if some new file is created, POLDET reports that the test polluted
the file-system state.

3.4 Implementation

We have implemented a prototype of our POLDET technique in a tool, also
called POLDET, that finds polluting tests written in the JUnit testing frame-
work. We built POLDET on top of JUnit, so it can be run on any project
that uses JUnit. We first introduce the relevant background about JUnit,
then describe where and how POLDET captures and compares heap-shared

states, and finally describe how POLDET compares file-system states.

3.4.1 JUnit Background

We briefly summarize some details of JUnit 4. JUnit is the most popular unit
testing framework for Java, e.g., out of 666 most active Maven-based Java
projects from GitHub, 520 used JUnit [68]. JUnit test suites are organized in
test classes, with each test being an instance method annotated with @Test.
Test classes can also have methods that set up the state before the test
and clean it after the test; these methods are annotated with @Before and
@After, respectively. Figure 3.2 shows an example test class with two tests

and illustrates how JUnit invokes the constructor and methods of this class
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class T {
@Before void setUp() { ... }
@Test void t1() { ... }
@Test void t2() { ... }
Q@After void tearDown() { ... }
}
// before constructor
Tt =new T(O;
// before setup
t.setUp(Q);

© 00 N O U e W N -

_ =
_ O

// after setup
t.t1(); // main test body

—_ =
w N

// before teardown

—_
Ny

t.tearDown();

—_
(1

// after teardown

—_ =
N O

t = new TQ);
t.setUp();
£.t20;

t.tearDown() ;

[
S © @

Figure 3.2: JUunit workflow for running tests and illustration of capture
points

for each test.

First, JUnit creates a new instance of the test class. Next, it invokes on
the instance the setup method(s) annotated with @Before, if any. Then, it
invokes the test method itself on the instance, running the test. Finally, it
invokes the cleanup method(s) annotated with @After, if any. JUnit uses
each test-class instance to run only one test; hence, it creates a new instance
and repeats the same process for each test method defined in the test class.
Any instance fields defined in the test class cannot be accessed across test-
method runs because they belong to their own separate instances. Therefore,

the heap-shared state consists only of all objects reachable from static fields.

3.4.2 Capture Points

POLDET extends the JUnit’s test running mechanism to capture the state

before and after each test executes. Figure 3.2 shows various execution points
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in the JUnit’s workflow where the state could be captured. For example, the
state before the test is run can be captured at the point before or after the
setUp method runs, and the state after the test is run can be captured at the
point before or after the tearDown method runs. In general, all these points
could have different states because setUp and tearDown methods can mutate
the state either to set it up or clean it for the test execution. Moreover,
some software projects may enforce a discipline where tests only use @Before
methods to set up the entire state the test depends on, so one could compare
the states right after @Before methods across consecutive tests rather than at
various points for the same test. Our tool can be configured to these various

scenarios.

3.4.3 Capturing Heap-Shared State

To capture states, we (1) modified the JUnit runner to call our state-capturing
logic whenever a test execution reaches one of the capture points and (2)
wrote a Java agent that keeps track of all classes loaded (and unloaded) by
the JVM. Running our POLDET tool requires providing the agent to the
JVM and using our modified JUnit. The modified JUnit runner invokes
our state-capturing logic that first queries the agent to obtain all the classes
loaded at the point of capture. For each loaded class, POLDET uses reflec-
tion to obtain all the static fields for that class. POLDET ignores final static
fields that point to immutable objects because the heap values reachable
from these fields cannot be changed. All other static fields that are not final
or point to mutable objects become the roots of the heap-graph. The state
reachable from these roots can change, so POLDET needs to capture the
objects reachable from these fields. Note that POLDET does consider static
fields that are not public because the values referred to by these fields can
still be observed and modified through various getter or setter methods.

More specifically, POLDET first creates a map whose keys are fully qualified
names of static fields and values are the pointers to the actual heap objects
pointed by these fields. POLDET then invokes XStream [142], a Java library
for XML serialization, to traverse the entire heap reachable from this map
and to serialize it into an XML format. The produced XML string encodes
the captured state of the program.
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3.4.4 Comparing Heap-Shared States

After obtaining the serialized XML strings of the captured states, POLDET
diffs them using XMLUnit [140], an XML diffing library. XMLUnit compares
(XML) parse trees rather than graphs.

However, if XMLUnit reports no differences, the two heap-graphs encoded
in XML are definitely common-roots isomorphic (Def. 4). If XMLUnit does
report some difference, it also provides a path to some differing entry in the
trees; in other words, it provides an access path that leads to the difference
(Def. 5). Each access path starts from one of the roots (static fields), traverses
fields through the heap, and ends up with a differing value pointed to by the
last field on the path. Such access paths can aid the developer in debugging

the state modification.

3.4.5 Abstracting Heap State for Java

As discussed in Section 3.3.2, not all heap objects are relevant for state
pollution. Some regions of the state are expected to change between test runs
and are not observable by any natural code that developers would likely write
in a test. While one could always observe all the state changes via reflection—
indeed, that is how XStream traverses the state to produce XML-—most
natural code does not do that.

For example, common data structures found in the standard java.util
package, such as ArrayList or HashMap, have a field modCount, which is an
integer that counts how many times a data structure is modified in order to
detect concurrent iteration and modification of collections. As this counter
is private, the test code cannot easily access this field, and the developer
is unlikely to desire to observe this state. XStream abstracts away many
such implementation details when performing serialization. For example, by
default it serializes data structures from the java.util package at an abstract
level, e.g., serializes sets as unordered collections without storing the concrete
implementation details.

While some fields should be ignored when considering state pollution for all
projects, other fields may be ignored only for some projects. The developer
can decide whether or not some modified field could affect other tests, and

POLDET provides three options for the user to specify what fields to ignore
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when comparing states.

First, POLDET has an include roots option. Typically, the developer is
only concerned with problems in her own code. Any pollution accessible
only from some third-party library static field is less likely to be something
the developer can easily fix or even reason about. The include roots option
allows the developer to define a set of packages in which POLDET should
search for roots. For example, POLDET can include the static fields only
from classes that belong to the packages in the current SUT.

Second, POLDET allows the user to ignore certain roots by specifying
regular expressions for names of static fields. For example, many tests use
mocking frameworks, such as Mockito, that keep internal counters or other
static variables that do not affect the execution of the test. (Many static
fields that originate from Mockito are not filtered out by the include roots
option as the generated mocks are in some package from the SUT.) The
developer can opt to ignore such static fields with the exclude roots option.

Third, POLDET allows the user to apply a finer-grain control and ignore
certain instance fields of classes with the exclude fields option. Our inspec-
tion found fields that may refer to values such as caches, which are easily
affected by the execution of tests, yet will not affect their execution. As
POLDET uses XStream for state traversal, it can easily specify fields to ig-

nore by passing the class and field names to XStream, so it does not serialize

the field.

3.4.6 Eager Class Loading

We implemented eager class loading by (1) reusing the agent from POLDET
to keep track of all loaded classes, (2) adding a shutdown hook, which is a
thread that JVM runs right before it exits, and (3) adding code that uses
reflection to load a set of classes whose names are in a given file. We run
POLDET twice on all tests. The first run is with the agent but without state
capturing, and the hook queries the agent to obtain all classes loaded by
the tests and saves the class names to a file. The second run is with state
capturing, but before capturing any state, our code loads all the classes from
the first run.
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3.4.7 Comparing File-System State

To detect file-system state pollutions, POLDET hashes file contents and uses
the file last-modified timestamps provided by the operating system. To avoid
the high overhead of exploring the entire file system, POLDET allows the
user to specify the portions of the file system to consider. By default, we
consider the current directory where the tests are run and the temporary
directory (/tmp on Linux systems), because these are most likely places where
tests would modify files; other choices could have included the user’s home
directory or the parent of the current directory. Before the test suite starts
running, POLDET finds all files recursively reachable from these starting
directories, hashes each file’s content, and maps the file name to this hash.
Before each individual test run, POLDET creates a new file marked with
the current timestamp, conceptually executing touch f to create a fresh file
f. When the test finishes, POLDET conceptually runs find $d -newer f,
where f is the file created before the test started, and $d is either the current
directory or /tmp. This command finds all files (and directories) reachable
from $d whose last-modified timestamp is newer than the timestamp f. For
each such file, if it was mapped to some hash (i.e., it existed before the test),
POLDET hashes the file content again and compares it with the hash from
the map. If a file that was hashed before no longer exists, then the test
deleted the file. If any file is new, the hash of some old file differs, or a
file is deleted, the test polluted the file system, and POLDET reports the
polluting test and the file name. The map of file name to hash is updated
with any changed hash, and any deleted files are removed from the mapping

in preparation for the next test run.

3.5 Evaluation

To evaluate POLDET, we ask the following questions:
RQ1. What percentage of tests pollute heap-shared state?
RQ2. How accurate is POLDET (true vs. false positives)?
RQ3. What is the time overhead of running POLDET?
RQ4. How does eager loading compare with lazy loading?
RQ5. What percentage of tests pollute file-system state?
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3.5.1 Experimental Setup

To scale our experiments to a wide variety of projects, we automated the
integration of POLDET into Maven. Maven is a popular build system for
Java projects, widely used by open-source projects from GitHub. Because
POLDET builds on top of JUnit, we integrated POLDET into Maven by
replacing the junit.jar file in the Maven dependency repository with our
version that invokes POLDET instead of the original JUnit. Moreover, we
automatically modify the Maven pom.xml configuration file(s) for each project
to add our Java agent to run alongside our modified JUnit. With this setup,
any Maven project using JUnit 4 can be run with POLDET to find polluting
tests.

For our evaluation, we randomly selected 26 diverse Maven-based Java
projects from GitHub, varying in size (from 1,353 to 78,497 LOC), number
of tests, number of static fields, and application domains (including web
frameworks, gaming servers, or networking libraries). Figure 3.1 shows some
statistics about these projects.

PoOLDET has four main configuration options:

-capture_points determines where to capture the states to be compared.
Figure 3.2 illustrates several points at which POLDET can capture the state,
and the user can configure POLDET to use any pair of capture points. Our
default uses the point before setUp paired with the point after tearDown. We
have also evaluated several other pairs and obtained almost identical results.

-include_roots determines whether the graph roots should include static
fields from all loaded classes or only from the classes whose name matches
given regular expressions. In our experiments, we set the expressions to
match the packages from the project under test such that POLDET ignores
fields from library classes. Figure 3.1 shows some statistics about classes
and static fields. It shows the number of classes that are loaded during the
execution of the project’s test suite and have at least one static field; it
shows this number both “All” from all packages (i.e., as if running POLDET
with no specified include roots, considered disabled) and SUT only from the
packages whose source belongs to the project source code (i.e., as if running
POLDET with the include_roots option matching package names, considered
enabled). Likewise, it shows the number of static fields as if include roots

was both disabled and enabled. However, disabling include roots results in
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many more roots and much larger heap-graphs. (In fact, our POLDET pro-
totype would often run out of memory if comparing states for include roots
disabled.) All our subsequent experiments run with include_roots enabled.
We automatically find the packages in the project under test by finding the
source files in the project’s source code and inferring the packages from the
directory structure.

-exzclude_roots specifies the set of roots to ignore when serializing the states;
while this set can be arbitrary, our experiments evaluate two settings: (1)
not ignoring any roots and (2) ignoring roots from classes that are known to
lead to irrelevant state, in particular mock classes, certain fields of the Java
Standard Library, and automatically generated classes that have $$ in their
name (but not the inner classes that have only one $ in their name).
-ezclude_fields specifies the set of instance fields to ignore when serializing
the states; while this set can be arbitrary, our experiments evaluate two set-
tings: (1) not ignoring any fields and (2) ignoring the minimum number of
fields that makes POLDET report no pollution (which is used just in the ex-
periments to measure the size of pollutions and is not a recommended option

as it makes POLDET miss both all true positives and all false positives).

3.5.2 Results

Table 3.2 shows the results of running POLDET. For both test methods and
test classes, it tabulates the total number, the number that POLDET reports
as polluters when run without exclude roots (AR #Pol), the number that
POLDET reports as polluters when run with exclude roots (ER #Pol), the
number of true positives among the latter reports (ER #TP), and the number
that POLDET reports as polluting the file-system state (F'S #Pol).
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Classes w/ Number of
Static Fields | Static Fields

Project LOC All  SUT All SUT
android-rss 1733 80 5 244 9
Athou Commafeed 11095 62 1 220 5
FizzBuzzEE 1353 29 0 72 0
Maven-Plugins 2061 | 216 0] 1093 0
JSoup 14925 52 23 242 170
Mozilla Metrics 4180 | 255 10 981 19
Spring JDBC 3170 47 1 106 8
Jopt Simple 9655 88 5 241 13
slf4j 14085 42 13 129 57
Spring MVC 3675 | 364 1] 1397

Spring Petclinic 2970 | 219 0] 1161 0

Spring Test MVC 8240 | 446 17 | 1575 22
Apache Httpclient 78497 | 437 106 | 4593 355

Bukkit 32984 | 166 90 | 1393 1108
Caelum Vraptor 33898 | 449 62 | 5837 94
cuke4duke 8104 | 429 5| 2230 5
Dropwizard 25838 | 1910 44 | 15886 105
Fakemongo Fongo 13755 | 458 76 | 2904 1616
Scribe Java 6049 60 21 151 46
Kuujo Vertigo 27708 | 165 12 484 43
Java APNS 5462 | 264 17 | 1006 62
Spark 6075 | 277 23 | 1096 58
Square Retrofit 9729 | 388 40 | 1482 104
Square Wire 13998 109 o1 499 299
twitter Ambrose 5927 | 248 10 866 37
twitter hbc 6025 | 215 13 | 1595 54
Total 351191 | 7475 646 | 47483 4293

Table 3.1: Project statistics; the upper half had no pollution and the lower
half had some pollution
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Test Methods Test Classes
AR ER ER FS AR ER ER FS
Project #Tot #Pol #Pol #TP #Pol #Tot #Pol #Pol #TP #Pol Roots Fields Overhead
android-rss 24 0 0 n/a 0 4 0 0 n/a 0 0 0 2.37
Athou Commafeed 8 0 0 n/a 0 2 0 0 n/a 0 0 0 1.13
FizzBuzzEE 1 0 0 n/a 0 1 0 0 n/a 0 0 0 1.07
Maven-Plugins 28 0 0 n/a 1 5 0 0 n/a 1 0 0 1.18
JSoup 410 0 0 n/a 0 24 0 0 n/a 0 0 0 23.56
Mozilla Metrics 33 0 0 n/a 0 14 0 0 n/a 0 0 0 1.95
Spring JDBC 12 0 0 n/a 0 1 0 0 n/a 0 0 0 1.34
Jopt Simple 701 0 0 n/a 1 115 0 0 n/a 1 0 0 1.76
slf4j 13 0 0 n/a 0 2 0 0 n/a 0 0 0 1.21
Spring MVC 36 0 0 n/a 0 9 0 0 n/a 0 0 0 1.22
Spring Petclinic 2 0 0 n/a 0 2 0 0 n/a 0 0 0 1.17
Spring Test MVC 288 3 3 0 0 44 1 1 0 0 1 14 4.15
Apache Httpclient 1634 129 94 78 0 138 35 20 14 0 6 7 1.72
Bukkit 285 11 9 1 0 38 2 2 1 0 3 4 24.07
Caelum Vraptor 1132 172 36 5 165 66 4 1 4 8 5 56.01
cukedduke 51 25 25 0 0 10 3 3 0 0 1 4 1029.57
Dropwizard 419 37 3 1 108 22 3 1 1 3 5 27.54
Fakemongo Fongo 359 68 64 50 0 15 14 13 2 0 2 4 4.17
Scribe Java 99 3 3 0 0 18 1 1 0 0 1 3 2.14
Kuujo Vertigo 63 13 13 13 0 4 2 2 2 0 1 5 1.55
Java APNS 89 18 15 0 0 15 10 9 0 0 10 6 1.82
Spark 54 42 42 39 0 6 4 4 3 0 5 18 622.74
Square Retrofit 197 9 1 0 0 17 4 1 0 0 1 3 2.14
Square Wire 61 5 5 0 0 8 3 3 0 0 1 3 2.70
twitter Ambrose 13 8 8 8 0 7 3 3 3 0 2 2 3.09
twitter hbc 93 32 3 3 0 14 4 1 1 0 1 1 2.00
Total || 6105 575 324 194 8 786 174 70 28 7 46 84 4.50

Table 3.2: State pollution results; the columns are described in Section 3.5.2
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3.5.3 Heap-State Pollution

Inspection Procedure: We manually inspect each report to determine if it
is a true positive or a false positive. We label a report as a true positive if one
can write a reasonable test that would pass or fail depending on whether it
was run before or after the reported polluting test. Otherwise, if one cannot
write a test that would observe the state difference using the available API
but would need to resort to reflection, we label the report as a false positive.
We inspect the access path from a static root to the polluted field reported
by POLDET to find how to access the polluted state. For each field on the
path, we check how it can be accessed starting from the static root. If we
find a reasonable way to read each polluted field, we consider the case a true
positive. When the path is short, it is relatively easy to determine whether a
report is a true positive or a false positive. In contrast, if the access path is
long or the polluted field is in some third-party library code, then the SUT
likely cannot directly observe the value of the field, suggesting it to be a false
positive. Indeed, we used the length of the path and the location of the field
to prioritize our inspection of the reported polluting tests; we examine first
the reports where the polluted field has a relatively short access path and
is in the SUT. We recommend such simple prioritization for developers to
inspect the reports. We discuss one example of each true positive and false
positive later in this section. When POLDET reports no pollution, we mark
the true positive cell in Table 3.2 as n/a; we still show the other statistics
about POLDET, e.g., runtime overhead.

Inspection Results: Our brief, initial inspection of the reports without
exclude_roots (i.e., with all roots — AR) found many cases of false positives
due to a small number of common issues across projects. As one example,
several projects use the Mockito library that internally keeps various coun-
ters, e.g., SequenceNumber.sequenceNumber that tracks the number of times
a mock instance is created. A developer using Mockito would not care that
such an internal counter changed as it is effectively inaccessible. As another
example, several states include java.lang.ref.SoftReference objects that
have a field updated by the JVM to track the timestamp of when an ob-
ject was garbage collected. We want to avoid such fields. Finally, we found
several projects with automatically generated classes whose name includes

double $$. We also want to avoid such classes.
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Our default configuration for the POLDET tool is therefore to run with
exclude roots (ER) to exclude mockito, standard library fields for times-
tamps, and classes with $$. In this configuration, we provide the answers to
our first two questions. RQ1: POLDET reported 5.30% (324 out of 6105)
tests as polluting tests. RQ2: Of those, 59.87% (194 out of 324) tests are
true positive polluters.

While POLDET reports test methods, we also present the results for test
classes: a test class is considered a polluter if it has at least one method
that is a polluter, and a test class is considered a true positive if it has at
least one method that is a true positive. The ratios for classes are similar as
for methods: POLDET reported 8.90% (70 out of 786) classes, and of those,
40.00% (28 out of 70) are true positive polluters. An interesting finding is
that classes often have both true positive and false positive test methods.

We have even more interesting findings for roots that lead to the heap-
shared state differences for the tests in our projects. Given the overall small
number of such roots (46), we wonder if we can classify the reported pol-
luting tests based on these roots. Intuitively, a developer determines if a
report is a true positive by examining some portion of the polluted state,
and the developer can begin examining the state from the static root. We
clustered all the reports by the 46 static roots that lead to the pollution. We
found that the number of polluting tests associated with a reported static
root ranges from 1 to 76, with an average of 10.02 tests per root. We also
found that for almost all of the roots (43 out of 46), the tests associated
with the root are either all true positives or all false positives. Only three
of the roots are associated with tests that are a mix of both. Two roots
are in Apache Httpclient: NTLMEngineImpl.RND GEN has 3 associated tests,
and LocalTestServer.TEST_SERVER_ADDR has 15 associated tests. One root
is in Spark: Spark.server has 33 associated tests. In all these cases, tests
associated only with this static root are false positives, while the other tests
associated also with another, different static root are true positives. More-
over, all the tests associated with that other static root are true positives.
Overall, for all tests reported by POLDET, a developer could just examine
the static root(s) that lead(s) to the state difference and with high confidence
determine if the report is a true positive or a false positive.

While we expect a developer would inspect the POLDET reports starting

from the roots of the access paths that lead to differences, the developer
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could also inspect starting from the differences themselves. The column
“Fields” in Table 3.2 shows the minimum number of fields that should be set
in exclude_fields to obtain zero reports from POLDET, and it is a measure
of how much the states differ. Note that these fields are instance fields,
close to the difference, rather than static fields that are roots from which the
differences are reachable. Overall we find that the user would need to ignore
a larger number of fields than roots to cover all the differences. As a result,
we recommend the users to inspect POLDET reports starting from the roots.

Example True Positive: One example true positive found by POLDET
is the PotionTest.setExtended test from the Bukkit project [13]. Bukkit
implements a server for the popular Minecraft game. The root static field
PotionEffectType.byName (declared in the SUT) has type java.util.Map and
tracks the added potion effects (which are one of the game features to modify
game entities).

Figure 3.3 shows the relevant code snippet. The body of the polluting
test setExtended calls the method registerPotionEffectType, which leads
to adding the PotionEffectType passed as the argument to a list of potions.
In this case, the argument passed is 19, representing the type of potion ef-
fect to be created and registered. The problem is that the potion type still
resides inside the static map byName even after the test finishes execution,
and other tests could depend on that map. To confirm this is a true posi-
tive, we generate the test unreliableTest, which adds the PotionEffectType
18 (which increases damage to an entity over time), and assert that the
PotionEffectType 19 (which decreases damage to an entity over time) does
not exist. This added test passes if run before setExtended and fails if run
after setExtended.

We chose this, relatively simple example for the ease of presentation. In
many other cases, the difference would be hard to understand without the
access paths from POLDET.

Example False Positive: Some of the pollutions reported by POLDET
are false positives, i.e., no reasonable test may fail because of the polluted
state. Figure 3.4 shows an example from the Java APNS project [96].
POLDET reports that the test ApnsConnectionTest.sendOneQueued pollutes
the field marshall reachable from the static root msgl declared in the test
class. We omit details of the test body not relevant to the pollution; the key

is the assert statement that calls the method marshall on msgl. The code of
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1 public class PotionTest {

2 .

3 QTest

4 public void setExtended() {

5 PotionEffectType.registerPotionEffectType (new
6 PotionEffectType(19) { ... }

7 b;

8 }

9 .

10 QTest

11 public void unreliableTest() { // we added this test
12 PotionEffectType.registerPotionEffectType (new
13 PotionEffectType(18) { ... %}

14 H;

15 assertNull(PotionEffectType.getByName (new

16 PotionEffectType(19) { ... }

17 s

18 }

19 3}

Figure 3.3: The bukkit/bukkit true positive example with a test written to
confirm the pollution

marshall inside the class SimpleApnsNotification lazily initializes the field
marshall, so the state modification is a false positive. In fact, we find lazy
initialization to be a common cause of false positives in POLDET, and we

plan in the future to devise a heuristic to automatically remove such reports.

3.5.4 Efficiency

We evaluate the overhead of POLDET by measuring the ratio of the run-
times of executing the test suites with and without POLDET. We ran our
timing experiments on a 64-core Scientific Linux machine with 64 GB of
RAM. While such a machine is not a common developer’s desktop/laptop,
it is representative of a build-farm server on which many projects run their
continuous integration systems. All time measurements are wall-clock time.
Note that our POLDET prototype is not optimized for real deployment but
aimed for experimental purposes, e.g., it collects states at several points in

the test execution for each test, whereas a real tool would collect states at
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public class ApnsConnectionTest {

1

2

3 static SimpleApnsNotification msgl =
4 new SimpleApnsNotification(...);
5 @Test (timeout = 2000)

6 public void sendOneQueued() {

7

8

9

assertArrayEquals (msgl.marshall(), ...);
}
10 ¥
11
12 public class SimpleApnsNotification {
13 .
14 private byte[] marshall = null;
15 public byte[] marshall() {

16 if (marshall == null)

17 marshall = Utilities.marshall(COMMAND,
18 deviceToken, payload);

19 return marshall;

20 }

21 %

Figure 3.4: The notnoop/java-apns false positive example

two or even fewer points.

The last column of Figure 3.2 shows the POLDET overhead. It ranges
from 1.07x to 1029.57x. The two outliers, Spark and cuke4duke, have large
overhead due to heavy use of highly complex objects. For example, cuke4duke
is a specification framework that embeds JRuby, a Ruby JVM interpreter,
and hence the state that POLDET traverses is highly complex, including
all JRuby data structures. In such cases, using good state abstractions or
filtering out static roots and fields in POLDET can be useful not only to stop
the traversal of irrelevant state and reduce the high overhead but also to
control false positives. The last row (“Total”) reports the geometric mean
of overheads: 4.50x. RQ3: POLDET has a reasonable overhead on a build-
farm server even when run on the entire test suite, but we expect that most

developers would run POLDET only on their newly added tests.
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3.5.5 Eager Class Loading

We also apply the eager loading of POLDET on all 26 projects except Jopt
Simple, where eager loading causes the tests to deadlock. POLDET reports
468 polluting tests (144 more than with the default lazy loading) and has a
geometric mean overhead of 12.29x (which is higher than 4.50x because test
suites are run twice, and bigger heap-graphs are created and compared). The
new reports stem from common-roots isomorphism in lazy loading ignoring
static field roots of classes not loaded before the test. Many new reports are
tests that are the first to run in their test class, often with some other test(s)
from the same test class previously reported by the default lazy loading, and
the true or false positive status of the new reports being the same as the other
reports in the test class. However, with eager loading, POLDET reports more
false positives than with lazy loading. The majority of the new false positives
(120 out of 135) are from Bukkit and largely due to eager loading including a
static field to an instance of a server whose fields indirectly point to thread-
related services from the JVM; the only heap-shared state modifications are
to these thread services, which are rather nondeterministic and not controlled
by the SUT. In total, of 468 reports, 203 are true positives, i.e., eager loading
detected 9 true positives not detected by lazy loading. RQ4: With eager
loading, POLDET can detect more true positives, but at the cost of many

more false positives and higher overhead.

3.5.6 File-System Pollution

Table 3.2 also shows the results for file-system state pollutions (F'S #Pol).
PoLDET found only eight file-system state polluting tests, much fewer than
heap-shared state polluting tests, with a geometric mean overhead of 2.73x
when running only file pollution checks, without heap pollution checks. In-
terestingly, two projects that had no heap-shared state polluting tests had
file-system state polluting tests.

We examined all eight reports and found that each pollutes the /tmp di-
rectory. More precisely, each test adds some new temporary file, using Java’s
File.createTempFile method, which creates a file guaranteed to have a fresh
name. POLDET reports these tests because they do not delete the new files.

Although the pollution is mostly benign because the name is guaranteed to
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be fresh every time the test is run, one can still consider this pollution un-
necessary as the file system has extra files added, potentially resulting in
filling up the disk space or reaching the limit on the number of inodes. Com-
puting hashes of files removes some false positives, e.g., a Caelum Vraptor
test writes to an existing file in /tmp, but writes the same content. RQ5:
POLDET reports that few tests pollute the file system and just create fresh

temporary files in /tmp.

3.6  Threats to Validity

There are several threats to the validity of our evaluation. As usual, our
results may not generalize beyond the projects used in our evaluation. To
mitigate this threat, we randomly selected a diverse set of actively developed
and popular open-source projects that vary in size, number of developers,
and number of tests, and that span domains such as web frameworks, gaming
servers, or networking libraries.

Second, we implemented our POLDET tool only for JUnit 4 and for heap-
shared state and file-system state pollutions. Our results may be affected by
the way JUnit runs tests, but JUnit is the most popular testing framework for
Java. POLDET does not report pollutions in the database state or network-
connected storage systems. While those were not found as widespread in the
past [85,148], they are becoming more important, and future work is needed
to address the other persistent cross-test-shared state.

Third but most important, we manually examined the polluting tests re-
ported by POLDET to label false positives and true positives. Because we are
not developers on the projects and lack domain knowledge, our labeling can
be wrong. Several collaborators on our study [44] discussed the inspection
results with one another to minimize the risk of mislabeling. However, a fur-
ther study with real developers is required to establish that POLDET reports
are useful and prompt changes of polluting tests. Note that reordering the
existing test suite [148] to find a failure due to test-order dependency may
not work in many cases because the test suite may have no test that can fail
due to the pollution. Indeed, the goal of POLDET is to help proactively find

pollutions even before they can manifest in test failures.
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Chapter 4

Related Work

In this chapter we discuss research related to unreliable tests in general and

to the techniques this dissertation has presented in particular.

4.1  General Studies Related To Test Unreliability

Luo et al. [85] performed the first extensive study of unreliable tests; the
study identifies common root causes of unreliable tests and common pat-
terns that developers use to fix the unreliable tests. The study identifies
wrong assumptions on the environment and test-order dependency as some
root causes of unreliability, and it served as motivation and inspiration for
this dissertation. NONDEX and POLDET build on this study and presented
techniques to help developers proactively identify some kinds of unreliable
tests. Waterloo et al. [134] performed a broader study to identify bugs in
tests; test unreliability is just one category of bugs in tests. Vahabzadeh
et al. [131] also performed an empirical study of bugs in tests and identify
unreliable tests as a class of bugs in tests and presented several causes of un-
reliability. This dissertation focuses mostly on designing techniques to detect
unreliable tests and less on quantifying the extent of the problem in practice.

Regression testing techniques such as test selection [10,25,26,38,40,51,52,
111, 149], prioritization [16,23,50,73,87,92,123, 144], reduction [49,57,112,
147], and parallelization [8,76,102] are hindered by unreliable tests because
any of the techniques can change the environment in which tests are run.
Lam et al. [75] are the first to quantify the effect of test-order dependency on
regression testing techniques. The findings motivate the research presented
in this dissertation and show that unreliable tests are an important problem.
Zhang et al. [148] empirically studied test-order dependency and proposed a

technique to find dependent tests in existing test suites. Their study of issue-
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tracking systems for five projects found 96 dependent tests, of which 61% are
due to heap-shared state. Their technique explores random permutations of
test suites to manifest dependent tests. While their technique can actively
detect dependent tests among the tests in the existing test suite, POLDET
can proactively detect polluting tests even before a dependency can manifest.

Haidry and Miller [48] presented a set of prioritization techniques that
take into account test-order dependencies and schedule tests to run in an
order that preserves the dependencies. Bell et al. [8] presented ElectricTest,
a technique to automatically detect dependencies between tests. ElectricTest
instruments the JVM and finds data dependencies between tests (in contrast
to manifest dependencies, data dependencies may or may not cause unre-
liable tests); the technique accounts for the dependencies when scheduling
tests for parallel execution and ensures that the dependencies are preserved
at run-time either by scheduling tests in the required order, or by simulating
the data (if the data that the dependency is on is of a primitive type). Parsa
et al. [102] use an Ant Colony System to optimize the scheduling of tests
for parallelization in the presence of dependencies; their goal is to achieve
a close to optimal schedule while preserving the dependencies. Similarly,
Kappler [71] proposes an algorithm to work around test-order dependencies.
This line of research demonstrates that dealing with unreliability after the
fact is painful; our techniques are related in that we also aim to help de-
velopers deal with unreliable tests, but our approach is to help developers
identify problems early and enable them to remove the problems, rather than
make downstream techniques resilient to unreliable tests after they were in-
troduced.

Shamshiri et al. [119] show that even automated test generation is impacted
by the issue of unreliable tests. The empirical study shows that overall, over
15% of tests that are automatically generated by state-of-the-art tools such
as Randoop [99], EvoSuite [32], and AgitarOne [1] are unreliable. Arcuri et
al. [5] improve EvoSuite by enforcing that generated tests not make certain
assumptions on the OS environment. The improvements isolate generated
tests from the file system, console input, system state, and heap state.

Another related area of research is finding bugs due to environment. Parizek
et al. [100] explore different environments to find faults in Java systems; the
technique uses model checking to explore different environments. Gao et

al. [34] performed a study to quantify how differently software behaves in
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different environments. The study shows that when tests run in different
environments, their coverage could vary wildly (up to 184 lines covered),
showing that even evaluating the quality of tests in the presence of unreli-

able tests is challenging.

4.2 Techniques to Detect Unreliable Tests

Herzig and Nagappan [54] developed a technique based on association rules
to identify when a test failure is a false alarm, i.e., the failure is not due
to the SUT but rather to the test code or test infrastructure; the approach
focuses developers’ inspection and debugging effort by alerting the developer
that a failure is likely to be a false alarm. This dissertation takes a different
approach: rather than waiting for tests to fail and then decide if the fail-
ures are false alarms, we proactively detect unreliable tests. Our approaches
are complementary, because it is likely uneconomical to proactively fix all
unreliable tests (further, some causes may not be known a priori); our set
of techniques could be used even after a false alarm is identified, to provide
to developers more precise debugging information. Another more general
technique that may help developers identify when a failure is unreliable was
developed by Jiang et al. [61] who designed a technique that leverages infor-
mation retrieval to identify what causes a test alarm; different from Jiang et

al.’s technique, we help developers detect and debug unreliable tests.

4.2.1 Assumptions on APIs

Detecting problems due to wrong assumptions that developers make about
specifications and implementations has been explored in many domains. For
example, Jin et al. [62] reported how wrong assumptions about code can
lead to performance bugs, in particular, they find the second most common
reason for the introduction of performance bugs to be that “developers mis-
understand the performance feature of certain functions”. NONDEX does not
target performance bugs but helps detect another class of bugs that are due
to specification misunderstanding. As another example, from a security per-
spective, Wang et al. [133] proposed a technique to analyze implicit assump-

tions that are necessary for the secure use of libraries. Their work involves
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building models of methods which are then used to find bugs in software that
fail to meet these implicit assumptions, finding serious security vulnerabili-
ties in the process. Their techniques are mostly static, while NONDEX uses
a dynamic exploration of methods with nondeterministic specifications.

Randomness has been applied in different contexts to detect bugs, with
many of these applications for concurrent code. For example, Eytani et
al. [28] developed a tool that monitors shared variable accesses and applies
random context switching when shared variables are accessed in order to
trigger bugs in concurrent code. Parizek and Kalibera [100] used an abstract
environment in software model checkers that randomly selects sequence of
method calls in each thread to detect bugs in concurrent programs. Nistor
et al. [95] randomly generated test sequences for concurrent programs in
order to expose concurrency bugs. Joshi et al. [63] applied randomness in
thread scheduling to create resource deadlocks in multi-threaded programs.
Moreover, JPF can also control thread schedules to potentially explore all
paths in the code [132]. In contrast, NONDEX focuses on sequential code
and exploration of underdetermined specifications.

Nondeterminism has been also studied for various other domains. For
example, for map-reduce programs, Xiao et al. [138] studied nondeterminism
that arises due to non-commutative reducers and found many bugs due to
non-commutative reducers that make assumptions on the order of input data
rows. For GUI code, Memon and Cohen [90] showed various factors that
may cause nondeterminism and hence impact the results of analyses and
experiments based on GUI software.

For state machines, testing conformance of deterministic implementations
against nondeterministic specifications has a long history [55,103,104,116].
More recently, Cook and Koskinen [22] aim to design a unified approach to
reason about nondeterminism in real time systems; they apply their technique
to examples drawn from real code. NONDEX explores nondeterminism in the
context of abstract data-type specifications using concrete exploration of real
code.

API unit tests have previously been proposed for use in helping devel-
opers learn how to use the API, in addition to the documentation of the
API [94]. Such an approach can be potentially made even more effective
by adding “negative” unit tests that show how not to use the API, in the

sense that they show what can happen when developers make deterministic
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assumptions on nondeterministic API specifications. Applying our NONDEX
to code that currently uses an API can help to generate such tests, by first
running NONDEX on the existing tests and writing new API unit tests to
capture the behavior of the code whenever deterministic assumptions do not
hold.

Various research projects proactively detect software problems. For exam-
ple, Shacham et al. [118] proposed a technique that finds atomicity violations
that can lead to potential bugs after software changes; Lin et al. [81] proposed
a technique for retrofitting parallelism into existing applications to prevent
performance problems; and Yabandeh et al. [143] proposed a technique for
distributed systems where nodes predict distributed consequences of their ac-
tions and can avoid errors. We share the common philosophy of proactively
detecting problems but focus on test suites.

Detecting differences between implementations and finding what is the
impact of those differences is a well-established area of research. Change-
impact analysis has been widely explored in static and dynamic program
analysis context [2,3,14,41,77,78,80,98,108,113] to find the entities impacted
by a change. Such techniques could be used to find when changes in libraries

may affect any of the tests.

4.2.2 State Pollution

Researchers have developed techniques that compare states. For example,
Cleve and Zeller [21] and Sumner and Zhang [125] used the state differences
between a passing run and a failing run to isolate the cause of a failure. In
contrast, POLDET uses state comparison to determine whether or not a test
pollutes state and also helps in debugging by pinpointing the pollution.

Researchers have also proposed techniques to refactor shared state into
private state. For example, Wloka et al. [135] proposed a program transfor-
mation for re-entrant programs to refactor shared state to thread-local state,
and Wrigstad et al. [136] proposed a simple type system to annotate thread-
local data for Java. Similar research could be applied to refactor data to be
test local to remove pollution. We plan in the future to consider automatic
fixing of polluting tests.

Bell and Kaiser [7] presented VM VM, a tool that runs multiple tests in the
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same JVM but selectively resets state regions that may have been written
by tests such that each test runs from the initial state as if run in a separate
JVM. VMVM instruments all classes and re-initializes the static fields that
can be shared across tests. The goal is to speed up testing compared to
running each test in a separate JVM. VMVM can tolerate test pollution by
providing support for automatically resetting state, but it does not determine
if a pollution occurred or not. Muslu et al. [93] also proposed to handle test
dependence by running each test in an isolated environment. In contrast,
POLDET uses a less intrusive instrumentation than VMVM, can also detect
and not only avoid/tolerate test dependence, and proactively encourages de-
velopers to fix polluting tests.

Huo and Clause [58] use taint analysis to find brittle assertions, i.e., cases
when a test reads from state regions not explicitly written by the test. These
reads can find potential test dependencies on heap-shared state. Our common
goal is to find potential dependencies, but POLDET finds writes to the shared
state rather than reads from the shared state. Combining the two techniques
could give more accurate reports by pairing the tests that pollute certain

state regions with the tests that read from those state regions.
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Chapter 5

Future Work

There are many causes for unreliable tests that our techniques do not directly
help with. In this section we discuss alternative approaches to tackling the
problem of unreliable tests.

In NONDEX we use a dynamic exploration approach to find when code
makes wrong assumptions on APIs. Most of the underdetermined APIs are
related to iteration of unordered collections; static analysis techniques that
can show that the body of a loop iterating over an unordered data structure is
an associative-commutative operation can identify safe and unsafe iterations
over unordered collections and could help identify unreliable tests. Our JPF
results in Section 2.6.3 show that the failure probability is high when there is
a wrong assumption therefore just random sampling of some behaviors may
expose wrong assumptions.

Our NONDEX technique was most useful to identify unreliable tests, but
wrong assumptions could also be bugs in the SUT; developers may make
wrong assumption in their SUT which may cause code to break in produc-
tion. Because most APIs are deterministic, many issues are hard to spot.
An alternative and complementary solution is to make the underdetermined
APIs exhibit different behaviors in different runs and provide developers a
knob allowing them to natively turn on or off the nondeterminism in the exe-
cution environment. Python 3 [106] allows developers to control the hash seed
which controls the iteration order for most of the unordered collections [107].
Unfortunately, the JVM does not offer this functionality; furthermore, more
generally, because of the more pervasive overriding of hashCode in Java, it
would be more challenging to introduce uniform and controllable nondeter-
minism in the JVM.

Many times, developers are unaware that a specification is underdeter-
mined. There is a need for more tools and specification languages to pre-

cisely document underdetermined specifications in practice. In our research,
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we did not benefit from having formally specified APIs, but rather we had
to rely on imprecise documentation, written in English; while it is good that
this documentation exists, having formal specifications would make it eas-
ier to check that code does not make wrong assumptions. Having formal
specifications would enable a whole set of static techniques that could alert
developers when they are likely to misuse an API. An area of future work
is to automatically mine or infer specifications of underdetermined APIs; a
technique may leverage multiple implementations of the same API to infer an
underdetermined specification that is satisfied by either implementation—for
Java Standard Library APIs there is the advantage that there are multiple
implementation of each API that are available, but there is also the chal-
lenge that sometimes the implementations of these underdetermined APIs
is native and written in C. A technique to effectively mine underdetermined
specifications needs to consider these factors.

Our NONDEX technique could be generalized to document underdeter-
mined APIs. Library developers may annotate underdetermined APIs in
their own library with annotations indicating the kind of underdetermineness
the API has. We plan to generalize NONDEX to support these annotations
and add exploration capabilities to the annotated APIs. This capability
enables users of the libraries to test that they are not misusing the APIs.
NONDEX easily supports APIs that return collections that need to be per-
muted. We foresee that other kind of return values may need different kind
of randomization.

NONDEX can be enhanced with better debugging support. Our implemen-
tation assumes a single wrong assumption is enough to expose a test failure.
This assumption indeed held in our experiments, but we foresee that it does
not always hold. We could explore techniques such as delta debugging [146]
which do not assume a single assumption to be enough to expose the wrong
assumption.

Our POLDET technique detects when tests pollute the state and informs
the developer, but we foresee that it is possible to synthesize teardown meth-
ods that clean-up the environment for a test. POLDET can naturally help
with this goal as it can provide to a synthesis algorithm the input-output
pairs, i.e., the clean and polluted state. The challenge is to synthesize mean-
ingful and readable code for recreating the clean state—in theory one could

clean-up the state using reflection but that would yield unmaintainable code.
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Cleaning up the state after every test may break subsequent tests that de-
pend on the polluted state; to aid with this issue, setup methods could be
synthesized that set-up the required state for a test.

POLDET is unaware (by design) of whether a test exists that depends on
the polluted state because POLDET aims to encourage developers to follow
good engineering practices as they write their tests. Information flow analysis
techniques could assist developers in determining which tests if any depend
on the polluted state.

POLDET sometimes reports pollution when the polluted state is likely
inaccessible because the access path is long or the state is stored in private
fields and it is hard to reach to. POLDET could be improved to add heuristics
that filter out the false positives based on the length of the access path and
the accessibility of the polluted data.

PoLDET works well for heap pollution and even file system pollution, but
it runs into limitations if other kinds of local environments get polluted, e.g.,
system environment variables. Another challenge is represented by remote
environments, e.g., remote storage services or databases. Sometimes for re-
mote systems it may be easier to simply reset the remote system than to
check whether there was any pollution, but while this is easier, it can be also
very expensive, so it may prove beneficial to detect and clean-up only the
polluted state.

We conjecture that one of the most beneficial and impactful ways of reduc-
ing the pervasiveness of unreliable tests may be through education. Raising
awareness about unreliable tests and exposing students to tools that help
with detecting unreliable tests may make tomorrow’s developers less likely to
introduce unreliable tests in their test suites. We did incorporate discussions
about unreliable tests and exposed our students to NONDEX throughout our
teaching. More research is required to establish what are the best ways to

educate our students about unreliable tests.
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Chapter 6

Conclusions

Unreliable tests are an important problem in practice, teaching, and research
because unreliable tests slow down the testing and development process. We
live in a world where fast software evolution is the norm, and unreliable
tests slow down development and the necessary quality assurance process by
failing without exposing a bug in the SUT.

This dissertation argues for a proactive approach to detecting unreliable
tests by detecting unreliability causes as soon as they are introduced. The
alternative—postponing the fixing of unreliability causes—increases the costs
later when unreliable tests can impact many developers and slow down the
development process unnecessarily. Fixing the unreliability as soon as it is
introduced even before it can manifest and negatively impact developers is
desirable. Fixing the unreliability as soon as it is introduced is also the easiest
for the developer that introduced the unreliability.

Underdetermined specifications are good because they allow implementers
to provide various implementations. However, wrong assumptions on un-
derdetermined specifications are bad because they can result in seemingly
random failures. In particular, ADIUS code that assumes a deterministic
implementation of nondeterministic specification is susceptible to failures
that arise from changing implementations. Tests that depend on ADIUS
code can become unreliable tests that seemingly nondeterministically pass
or fail. We presented a novel NONDEX technique to detect unreliable tests
due to ADIUS code. NONDEX detected many unreliable tests in both larger,
open-source projects and small-sized student code submissions.

When a test fails without exposing a bug in the SUT, the testing pro-
cess becomes less reliable. Polluting tests introduce dependencies, leading
developers to waste time and resources. We formalize the test pollution
problem and present POLDET, a technique to find polluting tests by captur-

ing and comparing heap states and file-system states during test execution.
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Our POLDET prototype runs relatively fast on build machines, incurring on
average 4.50x overhead. Our manual inspection of POLDET reports found
194 polluting tests that could easily cause other tests to fail. We envision
POLDET to be used during testing to prevent the introduction of polluting
tests in the test suite. We believe the philosophy of proactively maintaining
a reliable test suite can help software teams to develop and test software
faster and better.

To conclude, this dissertation introduces two techniques that assist de-
velopers to proactively identify causes of unreliable tests. Bugs in tests
are important because they not only slow down developers but also hin-
der the developers’ trust in their regression testing process because of false
alarms in test failures. This dissertation argues that problems with unreliable
tests should be addressed in a proactive fashion (this is not a controversial
idea—developers do it with most other kinds of bugs because it appears cost-
beneficial). There are many future directions in the area of unreliable tests
that look interesting and useful. First, detecting more causes of unreliable
tests would help developers identify other unreliable tests, e.g., due to net-
work flakiness. Second automated fixing, while challenging, would ease the
developers’ work by assisting in removing unreliability from their test suites.
Finally, putting more effort in educating today’s students and tomorrow’s
developers about unreliable tests is a very effective way to act in a proactive

fashion to prevent the introduction of unreliable tests in test suites.
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