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Abstract

Regression testing is the most wide-spread method to ensure the quality of

software systems. Whenever a change is made to the software, tests are run

to ensure bugs are not introduced: if all tests pass, the change is merged into

the codebase; otherwise, the developer needs to identify the bug that was

introduced by the change. Developers assume that the outcomes of the tests

in the regression testing process are reliable, i.e., that the failure indicates

a bug introduced by the change. Unfortunately, unreliable tests manage

to get into the test suite, slowing down the developers’ workflow and having

developers debug not their software but rather the test code or infrastructure.

This dissertation presents two techniques to enable developers to more easily

and proactively detect and debug unreliable tests early, before they become

a problem and slow down the development process.

Developers write unreliable tests, which may pass on their machine but

may at a later point fail because the environment changes. This disserta-

tion presents a technique to detect when code makes wrong assumptions on

underdetermined APIs. While these assumptions may hold in the current

environment, they may not hold in the future, causing tests to fail. The

technique, NonDex, detects such wrong assumptions by exploring different

behaviors that may not manifest in the current implementation, but are al-

lowed by the specification. Furthermore, the dissertation presents PolDet,

a technique to detect when tests pollute their environment; such polluting

tests can cause other tests to fail or pass seemingly nondeterministically be-

cause of the environment pollution rather than changes in the code. The two

techniques enable developers to identify when they are introducing unrelia-

bility in their test suite and help identify the root causes of the unreliable

tests. The results of the evaluation on open-source projects show the tech-

niques are effective at identifying issues in open-source code and also that

developers are eager to fix the issues and adopt the tools.
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Chapter 1

Introduction

Software is ubiquitous in today’s society: from the now-classic computers,

phones, and tablets, to the more recent wearables, IoT devices in our homes,

smart cities, and critical infrastructure. While software is playing an increas-

ingly more critical role in our lives, it also changes faster than ever to add new

features, adapt to new requirements, eliminate bugs, improve performance,

etc. The fast pace in changing software makes it imperative for developers

to apply rigorous techniques to ensure the quality of the software as they

change it.

Regression testing is the most widely used approach to ensure the quality

of software systems while developers make changes to their code. When a

developer submits a change to a software repository, the regression-testing

system will run the tests and report the outcomes to the developers; this pro-

cess is used to protect the software from regressions, i.e., changes that would

break existing functionality. The software industry has developed large-scale

regression-testing systems for in-house use, e.g., Facebook Buck [12], Google

TAP [39, 89, 126, 128], Microsoft CloudBuild [27], and even released some

of the tools as publicly available services, e.g., AWS CodeBuild [6]. Many

more companies adopt a continuous deployment strategy which leverages re-

gression testing as a gatekeeper for the deployment phase [101,109,115]. The

open-source world in turn has also adopted a plethora of systems that perform

regression testing through continuous-integration services like Travis [56,130]

(overall the most used system on GitHub), AppVeyor [4] for Windows, and

CircleCI [18] for Android.

Test outcomes control whether a change can be merged; if tests fail, the

system does not merge the change into the codebase (although sometimes de-

velopers override this gate-keeping functionality in situations like hot-fixes).

In contrast, if all tests pass, the code change is merged into the codebase.

This quality-assurance process assumes that the outcomes of the tests are
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reliable, i.e., if any test fails, then the change is introducing a bug that

the current test suite can detect, and it is therefore beneficial that the test

failed early and did not let a bug slip in. Alternatively, if all tests pass,

then developers assume the change does not introduce any bug that the

current test suite could detect (although there may be other bugs that the

test suite misses because it is non-exhaustive). Unfortunately, this assump-

tion does not hold in practice because many times test outcomes are unreli-

able [7, 8, 24,30,31,44,75,85,89,90,124,131,134,137,148].

Unreliable tests fail without indicating a fault in the system under test

(SUT) or pass while missing faults that they should otherwise detect [131].

Tests whose pass/fail outcome is unreliable, i.e., tests that can pass or

fail without the developer changing the code, are traditionally called flaky

tests [85]. A recent study at Google indicates that over 40% of modules

have had at least one flaky test (out of all the modules that ever passed and

failed at least once) [89]. Such unreliable tests can slow down the developers

by making them waste time debugging failures that are not related to their

change, debugging failing tests that were potentially written by other devel-

opers and are not directly related to what they are developing, and therefore

increasing the debugging effort. Alternatively, unreliable tests may also let

bugs slip in (when they should fail but they pass), with potentially extreme

consequences, albeit this situation is more rare [131]. Unfortunately, the

false alarms not only waste developers time, but also render techniques that

use historical failures unusable [75,89], e.g., test prioritization may prioritize

tests that failed in the past to run earlier than tests that did not, based on

the assumption that their past failures were reliable and indicate that they

are effective at detecting bugs. Furthermore, while unreliable tests are an

important problem in software practice, we also encountered them in teaching

software development in general and software testing in particular [120].

There are several main causes for unreliable test outcomes [85] stemming

from concurrency, test-order dependency, time, I/O, environment assump-

tions, specific JDK or library assumptions, etc. Rothermel and Harrold pre-

cisely identified over two decades ago in the controlled regression testing as-

sumption the ideal environment in which regression tests should be run: “the

only factor that may change the outcome of a test is the code change” [110];

unfortunately, this assumption does not materialize in practice, and there

are no easy solutions to control all the (nondeterministic) factors in the test

2



execution to guarantee that when a test fails it is indeed due to only the code

change.

This dissertation aims to enable developers to make their tests resilient

to changes in the environment; our techniques help developers find common

causes of unreliable tests and provide debugging information that enables

developers to proactively fix their unreliable tests as soon as they write them,

rather than wait for a later time when problems are harder to fix. We envision

that developers, whenever they add new tests or periodically, would use our

techniques to check that their tests are not unreliable. We argue that fixing

the tests as soon as the problems are introduced lowers the future costs of

false alarms and missing bugs. This approach contrasts the current laissez-

faire approach that constitutes the state of the practice, where tests are rerun

until they all happen to pass and the code can be merged [89,122].

1.1 Thesis

Our thesis is the following:

Proactively detecting causes of unreliable tests is an effective and

efficient approach for developers to use in order to prevent future

slowdowns due to unreliable tests that appear in the test suites.

When the research in this dissertation started, the state of the art in

research and practice for remedying unreliable tests was centered around

detecting unreliable tests once they appear, isolating the environment that

unreliable tests run in to ensure that tests cannot manifest as unreliable, or

making the testing process resilient to unreliable tests by rerunning failing

tests to ensure the tests exhibit reliable failures. It was not even clear if

preventing the introduction of unreliable tests in the test suite was feasible

before a failure could be exhibited in the existing environment. Further, it

was not clear that it could be done efficiently; there are so many potential

sources of unreliability that it was not clear whether efficiently exploring

or controlling the space was feasible. Moreover, detecting unreliability may

yield false positives, therefore hindering the effectiveness of techniques based

on proactively detecting causes of unreliable tests. Detecting unreliable tests

3



early is more economical than waiting for problems to appear later down

the road. Developers are best equipped to fix problems when they introduce

them because the overhead of context-switching is rather minimal—they are

already familiar with the test and code they wrote so fixing the test to pre-

vent it from being unreliable is the easiest at that point. In this dissertation,

we not only show that it is feasible to proactively detect causes of unreliable

tests, but we demonstrate that we can do so efficiently and effectively, and we

present two techniques that achieve it. First, we describe NonDex, a tech-

nique to detect tests that make wrong assumptions about underdetermined

APIs by exploring behaviors allowed by the API specification [42, 43, 120].

Second, we present PolDet, a technique that detects state-polluting tests

in order to prevent test-order dependency [44]. Both techniques help devel-

opers proactively detect causes of unreliability and enable them to fix the

issues in their test-suites.

1.2 Terminology

In this section we define unreliable tests and also discuss some background

on terminology used in other research.

1.2.1 Flaky Tests

The term “flaky test” has been used in practice [31, 129] (along with other

informal names such as “flakey”, “intermittent”, “flapper”, etc.), and was

adopted in research [85, 90] to informally refer to any test that fails due to

uncontrolled/unknown factors that are perceived to not be a bug in the SUT.

There is no bright-line rule of what constitutes a flaky failure: a test that

fails because of network is not automatically flaky but may illustrate a bug

in the SUT that manifests when the network is not available; similarly, a

test that fails due to concurrency need not be flaky, but rather may expose a

bug only under certain thread schedules (albeit both examples would strictly

speaking meet the definition of “intermittently failing or passing without any

change to the code”). The key intuition is that flaky tests expose bugs in

the test (infrastructure) rather than the SUT.
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1.2.2 Unreliable Tests

Throughout this dissertation we use the term unreliable tests to refer not only

to tests that are flaky, but also to any tests that may fail intermittently in the

future, but may have never had a flaky failure yet. Such unreliable tests may

make undocumented assumptions that hold in the current environment, but

they are not in any way guaranteed to hold in the future, e.g., performance

of the underlying hardware or application programming interfaces (APIs)

with underdetermined specifications. In other words, any test that does not

either enforce the controlled regression testing assumption or make its oracle

robust to allowed but uncontrolled changes in the environment is unreliable.

Under this broad definition, is there any test that is reliable? Yes, of course!

For example, tests that mock the network when they depend on the network

control for network unreliability and therefore are reliable with respect to the

network (mocks could also simulate network outages, if tests are meant to

test for that). Note that we do not require test executions to be deterministic,

but rather we require that the oracles are robust to allowed but uncontrolled

changes in the environment for a test to be reliable.

1.2.3 Practical Considerations

One pragmatic consideration in dealing with unreliable tests is whether it

is practical to require all tests to be reliable, because that obviously incurs

a cost. There is a balance to be achieved between making tests resilient

to issues that may or may not arise in the future and addressing current

issues. We believe tools should empower developers to make this decision by

providing the appropriate amount of information needed to make an informed

decision. While it is rather hard for tools to predict the future and foresee

whether something that is uncontrolled by the test will end up making the

test fail, tools can still assist the developers to make a better decision. For

example, when a developer makes an assumption on the environment that

is not supported by the specification, a tool could inform the developer how

strong the assumption is (the stronger the assumption, the likelier for it to

not hold in the future). In general, tools that help developers identify causes

of unreliability need to offer a way for developers to prioritize or focus their

attention on the most relevant issues.
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1.3 Wrong Assumptions on Underdetermined APIs

Several commonly used Java APIs, both in the Java Standard Library and

in commonly used third-party libraries, have underdetermined specifications.

Following Liskov [84], we say that a specification is underdetermined if it al-

lows implementations to return different results for the same input, even if

each implementation is itself deterministic and always returns the same re-

sult for the same input. We refer to an API with such a specification as

an underdetermined API. An example underdetermined API is the iterator

method in java.util.HashSet, whose Javadoc specification states, “The ele-

ments are returned in no particular order” [53]. Similarly, libraries for gen-

erating JavaScript Object Notation (JSON) typically do not guarantee any

order for elements in a JSON document [65]. Having such underdetermined

specifications has advantages because it gives implementers of the underde-

termined APIs the flexibility to optimize the various implementations of the

API for different goals, e.g., they may optimize performance in different ways.

However, it is important to precisely document underdetermined specifica-

tions in the API documentation to express all expected behaviors of all the

implementations of an API.

Unfortunately, even when underdetermined APIs have precise documen-

tation, developers do make wrong assumptions about the underdetermined

APIs. While such APIs could allow even nondeterministic implementations,

each typical implementation is deterministic, i.e., two runs of the same im-

plementation (in the same environment) give the same result for the same

input. For example, two runs of a program that iterates over a HashSet may

return the elements in the same order. However, such deterministic imple-

mentations can mislead the developers of API clients, who may assume that

all API implementations are guaranteed to behave in the same deterministic

manner. For HashSet, while one Java version could provide a deterministic

iteration order, different Java versions provide different iteration orders (e.g.,

the order in Java 7 differs from the order in Java 8). If clients of an underde-

termined API assume stronger-than-specified guarantees, the resulting code

can fail when the API implementation changes, albeit the specification re-

mains the same. A well-known example of such wrong assumptions is that

many projects with JUnit tests relied on a particular order in which test

methods are executed; when these projects upgraded from Java 6 to Java 7,
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many tests failed because the order changed from Java 6 to Java 7 [69], albeit

the specification of the API producing the order did not change between the

two versions.

The state-of-the-practice in detecting the negative effects of wrong assump-

tions on underdetermined APIs is rather reactive. Most developers discover

such assumptions only after failures happen (e.g., after environments or li-

braries are changed). Unexpected behaviors cause unreliable tests, which

can pass or fail seemingly without any changes to the code. An unreliable

test that assumes a certain behavior, which is not guaranteed by the API

specification, can fail when the API implementation changes. The develop-

ers of several projects followed a reactive practice in the past by spending

a lot of time fixing their own code as a result of test failures due to wrong

assumptions [35,37,69,70,86,91].

We describe NonDex, a technique to proactively detect wrong assump-

tions on underdetermined APIs by exploring different allowed behaviors dur-

ing test execution. For example, HashSet, with its underdetermined itera-

tion order, NonDex randomly explores different iteration orders, which can

proactively detect failures of tests that iterate over HashSet, either directly in

the test code itself or in the SUT. NonDex can also systematically explore

the space of all possible behaviors allowed by underdetermined specifications

when it is tractable. Once a test fails during exploration, that failure demon-

strates that the code made some wrong assumption. NonDex also helps in

debugging by pinpointing the location where the assumption was made; the

debugging feature searches for the dynamic invocation of the API whose

exploration caused the failure. Developers can run NonDex, e.g., during

continuous integration, to check for wrong assumptions on Java APIs. It

is often more cost-effective to detect bugs proactively, right when they are

introduced, rather than reactively, after they manifest when the environment

changes.

Our evaluation of NonDex on 195 open-source projects downloaded from

GitHub and 72 student submissions from one homework assignment in a

recent offering of our software-engineering course shows that NonDex is

effective and efficient at pinpointing wrong assumptions in tests. We find

NonDex to be highly effective at detecting unreliable tests in both open-

source projects and student submissions. NonDex detected 60 unreliable

tests in 21 of the 195 open-source projects. We reported to developers the
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issues we found in 13 pull requests, and developers accepted 12. Further, the

Checkstyle project, in which we found 5 bugs, integrated NonDex into their

continuous-integration configuration to run on every push [15].

1.3.1 Main Contributions

The work on NonDex, detecting wrong assumptions on underdetermined

APIs, makes the following contributions:

• Defines the problem of code that makes wrong assumptions on under-

determined APIs and identifies it as a cause of unreliable tests.

• Systematically explores, quantifies, and characterizes the state spaces

of programs using underdetermined specifications.

• Presents the development of NonDex, a tool to explore underdeter-

mined APIs and identify wrong assumptions.

• Evaluates NonDex on real-world programs.

1.4 State Pollution

One common cause of unreliable tests in regression test suites is dependency

among tests [7,58,85,105,137,148]. These dependencies arise when the tests

read and write some shared resource, e.g., the heap state in the main memory,

file system, database, etc. Prior research showed that these dependencies oc-

cur in various projects (ranging from small projects such as Maven to medium

projects such as Apache Aries and to large projects such as Hadoop) [85],

and that most of these dependencies are on the heap state, reported to range

from 53% [85] to 61% [148] of all test dependencies. These dependencies

make the outcome of regression test-suite runs unreliable: even for the same

version of the SUT, the tests could pass when executed in one order but fail

when executed in another order, leading to unreliable tests [85, 93,148].

When tests fail due to test-order dependency, it is hard to pinpoint the root

cause of the dependency, i.e., identify which test “pollutes” what part(s) of

the shared state. For example, consider a test t that starts from a shared state

s, modifies it to s′ such that there could be another test t′ that would pass
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when started from s but fail when started from s′. Two issues are important

to highlight here. First, when the test t′ seemingly nondeterministically fails

or passes for the same code, the culprit is not necessarily the test t′ but the

polluting test t, which makes debugging harder.

Second, even if the current test suite does not have any test t′ that can be

affected by the polluting test t, it is still valuable to know that t is a polluting

test, so it could be fixed even before t′ is added and the test order is changed.

For example, the change in test order significantly affected a number of Java

projects when they upgraded to Java 7 [70]. The reason was that Java 7

changed the Reflection API implementation. Because JUnit uses reflection

to find the tests to run, the tests started running in different orders than in

previous versions of Java, exposing test dependencies as failing test suites.

Some of those test suites were years old, and debugging such old test suites

is rather hard, e.g., as reported by several blog posts [69, 86, 91]. Ideally a

polluting test should be caught right when the developer is about to add it to

the test suite because that is when the developer is in the best position to

fix the polluting test, or at least label it as a polluting test that could cause

problems in the future.

We describe PolDet, a technique that detects polluting tests. PolDet

proactively finds tests that pollute the state, enabling the developers to fix

the tests right away, rather than later when the pollution manifests in the

form of failing tests. Conceptually, PolDet is a rather simple idea that

finds polluting tests “by definition”: for each test in a test suite, PolDet

captures the shared state (on the heap and the file system) before and after

the test, and then compares these two states to determine if there were any

relevant differences.

To help developers find polluting tests, PolDet has to overcome several

challenges. One challenge is to capture and compare the states at the ap-

propriate abstraction level and appropriate program points such that the

reported differences are likely to be relevant pollutions. Some state differ-

ences are irrelevant, e.g., if states s and s′ differ only in the private content of

some caches that the test code cannot observe via the public API, then the

difference is irrelevant. An additional challenge is to offer information that

helps developers in fixing the pollution. The final challenge is to make the

technique efficient, but it is not the most important constraint: the technique

could be run only occasionally for the entire suite, or it could be run only for
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the newly added tests rather than for all the tests in the test suite. Indeed,

a prior study [85] shows that 78% of the polluting tests pollute the shared

state right when they are added (i.e., only 22% of the polluting tests start

polluting due to later changes in the test code or the SUT).

The experimental results show that PolDet effectively finds polluting

tests. In the default configuration, PolDet reported 324 tests (out of 6105

tests) as potential polluting tests, and our inspection found that 194 of those

are relevant polluting tests. The runtime overhead of our PolDet prototype

is a geometric mean of 4.50x, on a machine representative of a build-farm

server. We believe this overhead is acceptable for running PolDet occa-

sionally on the entire test suites and running always on the newly added

tests.

1.4.1 Main Contributions

The work on PolDet, detecting state-polluting tests to prevent test depen-

dencies, makes the following contributions:

• Defines the problem of state pollution and identifies it as a cause of

unreliable tests.

• Presents the development of PolDet, a technique to identify tests that

pollute the state shared across test executions and precisely pinpoint

the polluted state.

• Evaluates PolDet on real-world programs.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows.

Chapter 2: Detecting and Debugging Wrong Assumptions on API

Specifications

This chapter presents our work on NonDex, a technique to detect unre-

liable tests that make wrong assumptions on underdetermined APIs.

Chapter 3: Detecting State-Polluting Tests to Prevent Test De-

pendency
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This chapter presents our work on PolDet, a technique to detect state-

polluting tests, which can cause unreliable tests.

Chapter 4: Related Work

This chapter gives an overview of the related work in the area of regression

testing in general and test reliability in particular.

Chapter 5: Future Work

This chapter presents several directions for future work that build on this

dissertation.

Chapter 6: Conclusions

This chapter concludes the dissertation.
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Chapter 2

Detecting and Debugging Wrong Assumptions
on API Specifications

In this chapter we describe our approach to detecting tests that are unreli-

able because of wrong assumptions on underdetermined APIs. Section 2.1

provides an overview of the problem of ADIUS code, Section 2.2 precisely

defines underdetermined specifications, Section 2.3 describes NonDex, our

randomized technique for detecting wrong assumptions on underdetermined

specifications, Section 2.4 presents some of the implementation details of

NonDex, Section 2.5 presents the results of our evaluation of NonDex,

and Section 2.6 presents our NonDex implementation that uses systematic

exploration and our analysis of the state spaces resulting from exploring the

underdetermined APIs.

2.1 Overview

Underdetermined specifications allow several different results for the same

input. Underdetermined specifications are not uncommon for many meth-

ods, including in the standard libraries of many programming languages.

For example, the specification for the malloc function in C allows to re-

turn a pointer that is not guaranteed to have any specific value (if there is

space on the heap otherwise returns NULL); similarly, the specification for the

Object::hashCode method in Java can return any integer and is not guar-

anteed to return a specific value. Underdetermined specifications are not

restricted to simple APIs. For instance, the order in which elements of a set

are returned by an iterator is not-specified—it can be any order. As another

example, the order in which the entries resulting from a SQL query are re-

turned is also sometimes not specified—it depends on the query. Also, any

numerical API with ε-tolerance is underdetermined. Such specifications give

implementers more freedom to develop various implementations for different

12



goals, e.g., to optimize performance, while still satisfying the specification.

Even when specifications allow for nondeterminism in implementations,

typical implementations of such specifications are often deterministic, with

respect to certain controlled sources. For example, malloc could return the

same pointer on the same platform in two different runs (if one controls for

all other sources, such as address space layout randomization, timing/multi-

threaded effects, etc.). Similarly, Object::hashCode could return the same

integer (if one controls for all other sources, e.g., OpenJDK Java 8 could

return a deterministic value on the first call if the underlying random imple-

mentation in C is deterministic). Deterministic implementations are good

because they allow easier debugging [9, 97]. The implementation of HashSet

is such that iterating through the elements returns them in a deterministic

order for one Java version, but that order can change between Java versions.

Code that Assumes a Deterministic Implementation of an Underdetermined

Specification—which we call ADIUS code—is often bad. Such ADIUS code

can behave unexpectedly when the implementation changes, even if the spec-

ification remains the same. For example, Java code that would assume new

Object().hashCode() to always return 366712642 on the first call (as it hap-

pens to return for Oracle Java version 1.8.0 25-b17 running with glibc 2.12) is

ADIUS and fairly not robust: any change in the Java implementation could

easily invalidate that assumption. Similarly, code that assumes a specific

iteration order of a HashSet, e.g., that a HashSet with elements 1 and 2 will

be always represented as a string {1, 2} rather than {2, 1}, is ADIUS and

not robust: the Java implementation of HashSet can change such that the

iteration order of the elements changes and the string differs.

While ADIUS code can be a problem in general we are particularly inter-

ested in unreliable tests, which are tests that seem to nondeterministically

pass or fail. Unreliable tests are bad as they can mask bugs (pass when there

are bugs) or raise false alarms (fail when there are no bugs). A test that

executes ADIUS code can be unreliable if it assumes that some values are

deterministic even if they can change: when the assumptions hold, the test

passes, but when the assumptions do not hold, the test may fail. Not all

unreliable tests are due to ADIUS code, e.g., a test asserting that a file sys-

tem contains /tmp could pass on one machine but fail on another. Unreliable

tests are emerging as an active research topic, with recent work on charac-

terizing [85], detecting [8, 24, 44, 54, 58, 148], and avoiding [7, 75] unreliable
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tests. However, this work is the first to investigate ADIUS code as a cause

for unreliable tests.

While the present works identified unreliable tests are an important prob-

lem in software practice and research, we also encountered them in teaching

software development in general and software testing in particular. Typically,

the teaching staff grades students’ solutions to programming assignments us-

ing automated tests. The automated tests are either written by the teaching

staff, or sometimes they are written by the students as part of the assignment.

In either case, these tests can be unreliable, and as a result students with

correct solutions may have failing tests (resulting in lost points, discussions

with teaching staff, revision of grades, etc.), and students with incorrect so-

lutions may have passing tests (resulting in full points, and extremely rarely

in students complaining about not losing points when they should have lost).

Albeit teaching staff can make their tests to be reliable, students are often

asked to write their own tests that can be rather unreliable. We discuss more

details from one recent course in Section 2.5.3 and give just a brief anecdote

here.

We taught several courses on software engineering that require students

to run their tests in Jenkins, a continuous integration system [60]. One

representative example comment about an unreliable test is: “When we [...]

test locally with Eclipse[...] all tests passed. But when we commit [...] and

run tests on Jenkins, [some test fails]. We had no idea what happened here.”

Another example is: “I got this [test failure] information in the last few

lines [... I]s it supposed to be like this or am I making something wrong

here?”. One way to reduce or avoid the problem of unreliable tests is to

reduce the variability in the environments, e.g., (1) require all students to

use virtual machines that run the same OS with the same Java version,

but students prefer working on different local environments, and (2) more

importantly, in the real development practice, have developers use the same

system for development, testing, and deployment, but doing so just postpones

the problem of detecting unreliable tests until later when the code itself

inevitably evolves.

We present a novel technique, called NonDex, to detect unreliable tests

due to ADIUS code. We implemented NonDex for Java, but it can be easily

generalized to any other language (in fact one undergraduate student imple-

mented a prototype for Python). In a nutshell, we identified 41 methods with
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underdetermined specifications as discussed in Section 2.3.1, wrote models

for these methods to produce various nondeterministic choices, and used an

execution environment that can explore various combinations of these non-

deterministic choices. Our NonDex tool, instruments the regular Java APIs

to explore choices and reruns the test suites multiple times from scratch while

exploring different behaviors.

We evaluated NonDex on two sets of programs: (i) 195 open-source

projects from GitHub and (ii) 72 student submissions from one homework as-

signment in our software-engineering course. We find NonDex to be highly

effective at detecting unreliable tests in both open-source projects and stu-

dent submissions. NonDex detected 60 unreliable tests in 21 of the 195

open-source projects. Because our experiments used some older project re-

visions, three of these tests had been already fixed by the developers in the

latest revision. (This fixing additionally confirms that unreliable tests are

important and that developers are willing to address them.) We confirmed

that 57 tests are still present in the respective projects’ latest revision. For

student submissions, NonDex detected that 34 submissions, representing

almost half of 72 considered, fail due to some ADIUS code, with a total of

110 unreliable tests detected. It is important to note that the homework

assignment was designed a few years ago by a teaching assistant who had

no knowledge of our research on unreliable tests. We already devoted time

in our teaching to expose students to NonDex and teach them to better

detect and avoid ADIUS code and unreliable tests; increased training that

raises awareness about unreliable tests may help the most with preventing

unreliable tests.

This chapter makes the following contributions:

⋆ Problem. We define the problem of ADIUS code, identify it as a cause

of unreliable tests, and raise awareness about the problem of unreliable

tests in both software development practice and software engineering

education.

⋆ Technique and Implementation. We propose a simple technique

for detecting unreliable tests caused by ADIUS code and describe our

nondeterministic models and a tool that embody this technique.

⋆ Evaluation. We evaluated our NonDex technique on 195 open-source
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Java projects and 72 student code submissions. NonDex detected

57 previously unknown unreliable tests in open-source projects and

three unreliable tests that had been already fixed by the open-source

software developers. NonDex also detected 110 unreliable tests in

student submissions.

2.2 Underdetermined Specifications

An underdetermined specification allows for multiple implementations that

can yield different outputs when executed with the same input; we consider

“input” in a broad sense to include all interactions of the code with its envi-

ronment. For example, consider the specification for the method File::list

that returns a String array with the names of all the files and directories

present in the directory on which the method was invoked. The method’s

Javadoc specification [29] states “There is no guarantee that the name strings

in the resulting array will appear in any specific order; they are not, in par-

ticular, guaranteed to appear in alphabetical order.” This specification al-

lows implementations to return names in any order even when executed with

the exact same input (the state of the file system), hence this specification

is underdetermined. In contrast, consider the specification for the method

File::exists that returns a boolean value indicating whether or not the file

on which the method was invoked exists on the file system. This specification

is not underdetermined; while the returned value depends on the input (the

state of the file system) and can be true or false on different machines, when

executed on the same input (including the file system), any implementation

that conforms to the specification must return the same value.

2.2.1 An Example Unreliable Test

Code that (transitively) calls methods with underdetermined specifications

can be ADIUS and lead to unreliable tests. Figure 2.1 shows an example

unreliable test simplified from a student submission. The Book class has two

fields, title and author. The method under test, getStringRepresentation,

uses a third-party JSON library that turns an object into a string. The

test asserts that the resulting string equals a hard-coded string that has
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1 class Book {

2 String title;

3 String author;

4 String getStringRepresentation() { ... }

5 }

6 class BookTest {

7 @Test

8 public void testGetStringRepresentation() {

9 Book b = new Book("book", "name");

10 assertEquals("{\"title\":\"book\",\"author\":\"name\"}",

11 b.getStringRepresentation());

12 }

13 }

Figure 2.1: Example unreliable test simplified from student code

the two fields in a particular order, first title and then author. However,

the library uses a HashMap to store the mapping from fields to values, and

iterates over this map to produce the resulting string. The iteration order

over elements in a HashMap is not specified, so while this test can pass for

one implementation, it can fail for another implementation that puts author

before title. NonDex can detect such wrong assumptions by running the

tests with different choices for the HashMap iteration order.

2.2.2 Levels of Underdetermineness

Some underdetermined specifications, especially when written in a natural

language, can allow for multiple levels of underdetermineness. Figure 2.2

presents an example: the class HashSet has an underdetermined specifica-

tion that can be (mis)interpreted in different ways. The Javadoc specifica-

tion [53] states “[HashSet] makes no guarantees as to the iteration order of

the set; in particular, it does not guarantee that the order will remain con-

stant over time.” Hence, the order of the elements in the array returned by

HashSet::toArray can be any. The code first constructs an Integer HashSet

object s with the elements 1 and 2 (lines 1–2). Because the specification

allows for any iteration order, a deterministic implementation could return

either of the two orders shown in the two assertions on lines 4 and 5, and

one of the assertions should pass, while the other should fail.
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1 Set<Integer> s = new HashSet<Integer>();

2 s.add(1); s.add(2);

3 Integer[] a = s.toArray();

4 // assertArrayEquals(a, new Integer[]{1, 2});

5 // assertArrayEquals(a, new Integer[]{2, 1});

6

7 // assertArrayEquals(a, s.toArray()); // differ from "a"?

8

9 s.contains(1); // observer calls on "s" may matter

10 // assertArrayEquals(a, s.toArray());

11

12 s.add(3); s.remove(3); // "s" modified and restored

13 // assertArrayEquals(a, s.toArray()); // differ from "a"?

14

15 Set<Integer> t = new HashSet<Integer>();

16 t.add(1); t.add(2); // "t" constructed same way as "s"

17 // assertArrayEquals(a, t.toArray()); // differ from "a"?

18

19 Set<Integer> u = new HashSet<Integer>();

20 u.add(3); u.add(4); // "u" with different elements

21 Integer[] b = u.toArray();

22 // assertEquals(a[0] < a[1], b[0] < b[1]); // order?

Figure 2.2: Different levels of underdetermineness may fail different
assertions

Whether the remaining assertions pass or fail is more open to different in-

terpretations of this underdetermined specification. First, a developer could

assume that two iterations on the same unchanged set object should yield the

same order. However, the specification states that the order can vary “over

time”, which could mean that the order in which elements are returned can

change from one invocation to another even for the same set. Hence, the

assertion on line 7 may get a different order and fail. Second, one could

assume that the order should not change if the set is only read but not mod-

ified. Hence, the assertion on line 10 could pass or fail depending on whether

the assumption holds. Third, one could assume that if a set is modified and

then restored to its original state, the order in which the elements are it-

erated can change from that before the modification of the set. Hence, the

assertion on line 13 could either pass or fail. Fourth, one could assume that

two sets constructed in exactly the same way would yield the same order,
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but if that does not hold, the assertion on line 17 can fail. Fifth, one could

assume that elements are iterated in the order of addition that is consistent

with the original set s; line 19 creates a new set using different elements but

added in the same order as in set s. One could assume that both sets will

be iterated in the same order—in which elements are added, or the natural

order; depending on whether this assumption holds, the assertion on line 22

can pass or fail. (This final assumption is not completely unrealistic; the

specification for LinkedHashSet indeed guarantees the iteration order over

elements to be the same as that in which the elements are added [83].)

None of the (mis)interpretations are unambiguously supported by the doc-

umentation, but some of them may correspond to more reasonable assump-

tions than others. Developers may be more willing to remove wrong assump-

tions that are, in their intuition, least reasonable. While the specification

allows for a lot of nondeterminism, most implementations are not nondeter-

ministic; identifying assumptions that are more likely to break serves also as

a prioritization mechanism when deciding which assumptions to remove.

2.3 Technique

Our NonDex technique detects unreliable tests due to ADIUS code mak-

ing wrong assumptions on underdetermined specifications. Section 2.3.1 de-

scribes how we identified several underdetermined APIs in the Java Stan-

dard Library. Section 2.3.2 describes the models we developed for those

underdetermined APIs. Section 2.3.3 presents some implementation details

of NonDex.

2.3.1 Identifying Underdetermined APIs

Finding methods which have underdetermined specifications is challenging;

in particular, one cannot easily look for nondeterministic implementations

as individual implementations are deterministic most of the time. Rather,

nondeterminism occurs when underdetermined specifications allow multiple

implementations to behave differently from one another while still meeting

the specification, even if each implementation is deterministic. For example,

upgrading from Java 6 to Java 7 changed the order in which the method
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Table 2.1: Underdetermined APIs in the Java Standard Library

Class(es)::method(s) Kind

java.lang.Object::hashCode random

java.util.{Weak,Identity,}HashMap::keySet, values, entrySet permute

java.util.concurrent.ConcurrentHashMap:: permute

keySet, values, entrySet, keys, elements

java.util.PriorityQueue::iterator, toArray, toString permute

java.util.concurrent.{Delay, PriorityBlocking}Queue:: permute

iterator, toArray, toString

java.io.File::list, listFiles, listRoots permute

java.lang.Class:: permute

getClasses, getFields, getDeclaredFields, getConstructors

getAnnotations, getMethods, getDeclaredConstructors

getDeclaredMethods, getDeclaredClasses, getDeclaredAnnotations

java.lang.reflect.Method:: permute

getParameterAnnotations, getExceptionTypes

getGenericExceptyonTypes, getDeclaredAnnotations

java.lang.reflect.Field:: permute

getAnotationsByType, getDeclaredAnnotations

java.text.DateFormatSymbols::getAvailableLocales permute

java.text.BreakIterator::getAvailableLocales permute

java.text.Collator::getAvailableLocales permute

java.text.DecimalFormatSymbols::getAvailableLocales permute

java.text.NumberFormat::getAvailableLocales permute

java.text.DateFormat::getAvailableLocales permute

java.text.DateFormatSymbols::getZoneStrings extend
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Class::getDeclaredMethods from the Java Reflection API returned the list

of methods in a class. JUnit uses the Reflection API for obtaining the

list of methods to run. Thus, when run on Java 6, methods were returned

in one order, but were returned in a completely different order in Java 7.

This seemingly innocuous change caused tests run by JUnit to fail [70] due

to test-order dependencies [7, 8, 44, 58, 75, 148]. Finding underdetermined

APIs solely from the executable code is infeasible; one must reason about

the specification itself to find if a specification is underdetermined because

the method implementation need not be nondeterministic. This makes it

inherently hard for any static or dynamic analysis technique to find such

underdetermined APIs from one implementation.

To find underdetermined APIs in the Java Standard Library, we first

searched for methods whose documentation indicates that they may have

such specifications and then carefully reasoned from their Javadoc to deter-

mine if their specifications are indeed underdetermined. We used two queries,

based on (1) Javadoc keywords and (2) return types. Specifically, the first

query searches through Javadoc for the following keywords that could in-

dicate underdetermined specifications: “order”, “deterministic”, and “not

specified”. The second query searches for all public methods that return ar-

rays. These queries produced many false positives, e.g., because not every

method that mentions “order” is underdetermined, and some methods that

return arrays must return elements in a specified order. Our search is defi-

nitely not complete, and we leave as future work to develop better approaches

to find underdetermined specifications.

After inspection, we found the underdetermined APIs summarized in Ta-

ble 2.1. We tabulate the class name(s), method name(s), and the kind of

specification underdetermineness. We found three kinds, which we call “ran-

dom”, “permute”, and “extend”. For random, the specific int returned by

Object::hashCode is not specified, so relying on it to return some specific

value is ADIUS. For permute, the specifications of some methods that return

arrays or collections can have an unspecified order of elements. For extend,

the specification of one method specifies just a lower bound on the length of

the returned array but not the precise length.

We next describe some specific underdetermined APIs that we found. For

class Object, it is well known that hashCode is nondeterministic. In contrast,

the less known inner class HashMap$HashIterator does not have a specified it-
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eration order and can return the map’s elements in any order; this inner class

is exposed to the clients via some methods from Table 2.1 (keySet, entrySet

and values), so code that calls these methods can be ADIUS. Moreover,

HashMap is the underlying data structure for many other data structures,

e.g., HashSet; we do not count separately the other underdetermined APIs,

e.g., HashSet::iterator, that could lead to ADIUS code. However, changing

one piece of code in HashMap can affect many types of objects. The specifi-

cation for iterating through WeakHashMap, IdentityHashMap, PriorityQueue,

and ConcurrentHashMap is similar to the specification for iterating through

HashMap. The File class has multiple list methods that return an array of

files in a given directory; the specification allows these arrays to be in any

order. The classes Class, Method, and Field provide several reflection meth-

ods that return arrays of elements, e.g., an array of all methods in a class

or an array of all annotations on a field; the specifications for most of these

methods allow these arrays to be in any order. The classes in the package

java.text return arrays of available locales and zone strings which can be in

any order. Finally, the DateFormatSymbols::getZoneStrings method returns

an array of arrays, each of which has length at least five; these arrays are

indeed of length five in Java 7, but their length changed to seven in Java 8.

We also briefly explored an option of automatically finding underdeter-

mined APIs in the Java Standard Library. We attempted to automatically

generate tests that could show a behavior difference between Java 7 and

Java 8. To that end, we used Randoop [99] to generate tests. We first in-

structed Randoop to generate tests for a large number of classes in the Java

Standard Library on Java 8 and then ran the generated tests (that still com-

pile) on Java 7. However, the tests (and assertions) that Randoop generated

were unable to detect any changes in the behavior of the two Java versions.

Even focusing Randoop on only one class, HashMap, did not generate (after

one hour) a single test for Java 8 that would fail when run on Java 7. The

reason is that the search space for HashMap is large, with 29 methods, and

only a tiny ratio of method sequences in that space can show the difference

between the two Java versions. In the end, we were able to generate tests

that can reveal differences between Java 8 and Java 7 only after manually

focusing Randoop to only four methods in the HashMap. In the future, one

could try more advanced techniques for finding differences among (Java) im-

plementations [17].
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2.3.2 Nondeterministic Models

We first discuss different models with different levels of nondeterminism that

could satisfy an underdetermined specification. We next discuss approaches

to model nondeterminism in specifications of methods that return arrays

whose order could permute. We finally describe the models for methods

whose return values can be randomized, or whose return arrays can have

their sizes extended.

We developed models to explore potential nondeterminism allowed by the

underdetermined specifications of the identified methods. NonDex has a

model for each underdetermined API, and each model has up to four different

levels of nondeterminism: FULL, ID, EQ, and ONE.

FULL is the most nondeterministic level as it alters the regular execution

most aggressively. Every invocation of an underdetermined API, even with

the exact same object, can return a different result because the model allows

all the different behaviors to be explored. This level corresponds to checking

that code makes no wrong assumption.

ID is a level that constrains FULL to only explore the same behavior on

the same unchanged object for all different invocations of the same underde-

termined API (this same behavior can be different from the native behavior,

but it is consistent across two different invocations). In other words, this

behavior corresponds to the intuition that implementations are largely de-

terministic and explores only behaviors that preserve deterministic results as

long as the input to the API does not change.

EQ is a level that further constrains ID to explore the same behavior for all

input objects that are equal (not necessarily the same object, although the

same object is equal to itself) but allows different behaviors to be explored

for objects that are not equal.

ONE is the most deterministic level after the first invocation. It does not

introduce any additional nondeterminism to the execution; it only changes

the executions to explore a different behavior, which it keeps as deterministic

as the original execution would.

Table 2.2 shows which of the assertions in Figure 2.2 (referred to by line

numbers in the column headers) can fail under the four levels that NonDex

supports.

Either of the assertions on lines 4 and 5 can fail on any of the levels, be-
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Table 2.2: Levels that can fail (✓) assertions from Figure 2.2

Levels

Assertion
4,5 7 10 13 17 22

FULL ✓ ✓ ✓ ✓ ✓ ✓

ID ✓ - - ✓ ✓ ✓

EQ ✓ - - - - ✓

ONE ✓ - - - - -

cause all levels explore different orderings of the elements in the HashSet than

the orders in both assertions (recall that in a deterministic JVM, one of the

assertions will always pass and one will always fail, whereas in our explo-

ration, they can both pass, both fail, or swap the order of pass/fail during

different executions). Assertions 7 and 10 can only fail in FULL because they

will only fail in levels that allow different orders on two successive invocations

(including invocations of observer methods). Assertions 13 and 17 can fail

in FULL and ID because these levels explore different orderings of objects

based on their identity. Assertion 22 can fail in all levels except ID which

would permute elements in the same way for both objects.

For underdetermined APIs of the random kind, when using the Object

class, it should not be assumed that the hashCode method returns a specific

integer value. In particular, it should not be expected to return the same

value across different runs. However, the returned value should be unique

for an object in the same run. We model these potentially different values

by randomizing the value returned by hashCode on the initial invocation and

then caching this value for future calls. For underdetermined APIs of the

extend kind, we model the possibility that the lengths of arrays returned are

increased nondeterministically on any invocation.

2.3.3 Implementations of Models

We implemented our NonDex technique for the Java programming lan-

guage by instrumenting the regular implementations of the APIs in the Java

Standard Library, in particular, the OpenJDK JVM version b132, which

corresponds to Java 8. We also downloaded the publicly available OpenJDK

code, which consists of the C/C++ code that implements the core virtual
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1 class HashMap {

2 Node<K,V>[] table; // internal table of key-value pairs

3 int modCount = ... // stores modification count

4 class Node<K,V> { ... } // stores a key-value pair

5 class HashIterator { // inner class of HashMap

6 Node<K,V> next; // next entry to return

7 Node<K,V> current; // current entry

8 int expectedModCount; // for fast-fail

9 int index; // current slot

10 final boolean original_hasNext() {

11 return next != null; // original code

12 }

13 final Node<K,V> original_nextNode() {

14 // original code, advances "next", "current", and "index"

15 }

16 final void original_remove() {

17 // original code, can modify the entire "table"

18 }

19 HashIterator() {

20 // The code is shown in Figure 2.4

21 }

22 Iterator<Node<K, V>> NonDex_iter;

23 public final boolean hasNext() {

24 return NonDex_iter.hasNext();

25 }

26 final Node<K, V> nextNode() {

27 if (modCount != expectedModCount)

28 throw new ConcurrentModificationException();

29 current = NonDex_iter.next();

30 return current;

31 }

32 public final void remove() {

33 original_remove();

34 }

35 }

36 }

Figure 2.3: NonDex model for HashMap
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1 HashIterator() {

2 expectedModCount = modCount;

3 Node<K,V>[] t = table;

4 current = next = null;

5 index = 0;

6 if (t != null && size > 0) { // advance to first entry

7 do {}

8 while (index < t.length && (next = t[index++]) == null);

9 }

10 /** all (and only) the code below is NonDex extension **/

11 List<Node<K, V>> original = new ArrayList<>();

12 while (original_hasNext())

13 original.add(original_nextNode());

14 NonDex.shuffle(original, HashMap.this);

15 NonDex_iter = original.iterator();

16 }

Figure 2.4: NonDex model implementation for HashIterator constructor

machine, and the Java code for the Java Standard Library; for hashCode we

modified the C++ implementation to return different values. For each of the

other APIs we apply instrumentation that calls NonDex and shuffles the

returned value in the library code.

Figure 2.3 shows the model we use for exploring different orderings when

iterating over a HashMap object. The iteration is done using the inner class

HashIterator. We kept the original code and renamed its methods with the

prefix original . The constructor, with its implementation presented in Fig-

ure 2.4, computes, starting at line 11, the order that the original code would

have normally returned, applies a permutation depending on the NonDex

level, and stores the resulting order in an Iterator object called NonDex iter.

The next method returns the elements in the permuted order and updates

the internal state as required. The hasNext method is now based on the

new elements order and delegates the call to the new Iterator object. The

remove method just delegates the call to the original method that changes

the table.

Figure 2.5 shows how NonDex performs shuffling depending on the level.

For FULL, NonDex uses the same Random object to perform all shufflings,

which means two consecutive shufflings of the same object can yield different

orders. For ID, NonDex considers a value representing the identity of the
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1 class NonDex {

2 static Level level; // FULL, ID, EQ, or ONE

3 int seed = ...;

4 static Random full = new Random(seed);

5

6 public static <T> List<T> shuffle(List<T> l, Object o) {

7 int size = l.size();

8 Random rand = (level == FULL) ? full : // Full

9 (level == ID) ? new Random(seed +

10 System.identityHashCode(o)) : // Same object

11 (level == EQ) ? new Random(seed + o.hashCode()) : // Equal object

12 (level == ONE) ? new Random(seed); // Once

13 for (int i = 0; i < size - 1; i++) {

14 int s = rand.getNext(i, size);

15 if (s == i) continue;

16 T obj = l.get(i);

17 l.set(i, l.get(s));

18 l.set(s, obj);

19 }

20 return l;

21 }

22 }

Figure 2.5: Implementation of exploration
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Figure 2.6: High-level architecture of the key NonDex components; see
Section 2.3 for the description

object; for HashMap, this value is the sum of the identity hash code (a likely

unique number for each Java object provided by the Java Virtual Machine)

and the modCount field that counts the number of modifications, which means

that for the same object with the same modCount, NonDex uses a fresh

Random object with the same seed, therefore this Random object returns the

same sequence of values for permuting the order. Similarly, for EQ, NonDex

considers the value-based hash code of the object to produce a new Random

object. For ONE, NonDex always creates a fresh Random object using the

same seed therefore producing always the same ordering.

2.4 Implementation

NonDex is a Maven plugin that has two user-facing phases: (i) detection

finds tests that pass without NonDex but fail when NonDex explores dif-

ferent allowed behaviors—such failures indicate wrong assumption(s) made

on underdetermined APIs; and (ii) debugging searches through detected fail-

ures to find the underdetermined APIs on which wrong assumptions were

made and to identify the invocation(s) making such assumptions. Currently,

NonDex exploration handles 41 underdetermined APIs that we manually

identified from the following packages java.lang, java.util, java.io, and

java.text shown in Table 2.1; we first identified only 30 of these underde-

termined APIs in our earlier paper [120, Table I]1.

1The publicly released NonDex tool does not handle the native hashCode, because it
did not expose any bugs during our experiments and would unnecessarily complicate the
tool implementation and portability.
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Internally, NonDex consists of four components: (1) the instrumenta-

tion engine modifies the API classes in the Java Standard Library to add

code for random exploration, (2) the runner executes the program on the

instrumented library, (3) the detector reruns the program a specified num-

ber of times to randomly explore different behaviors, and (4) the debugger

identifies the API invocation(s) where a wrong assumption was made. Fig-

ure 2.6 shows an architectural overview of the NonDex components, and

the following subsections describe each component.

2.4.1 Instrumentation Engine

The goal of the instrumentation engine is to modify the Java Standard Li-

brary classes from the Java Standard Library to allow random exploration.

The challenge is to develop instrumentation that can automatically handle a

large number of Java versions. For our original prototype [120], we manually

modified the Java sources of the relevant files for one version, compiled them,

and used them in place of the original files. However, this solution was brit-

tle, because the tool would often not work unless the exact same Java version

(e.g., 1.8.0-b132) was used for the run as the version for which we manually

modified the sources. The reason our initial prototype did not work was that

some internal parts of the modified files changed between Java versions, even

when the signatures of the public APIs we modified did not change. Hence,

we developed our current solution based on instrumentation which is much

more robust, and we have tested it on 14 different versions of OpenJDK and

Oracle’s JDK implementations of Java 8, on Linux, OS X, and Windows.

The instrumentation engine takes as input the rt.jar file containing the

classfiles of the Java Standard Library that will be used when running the

tests. The instrumentation engine selects from rt.jar the classfiles corre-

sponding to the APIs that should be modified to add random exploration.

For APIs that should be modified and return an array, our instrumentation

simply adds a call to our NonDex helper method to explore different orders

of the returned array (effectively randomly permuting the array before re-

turning it). This modification is robust as long as the type signature of the

API does not change. The instrumentation is much more involved for the

(Concurrent)HashMap classes, because their iterators are lazy, implemented
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as private data structures that change even within the same Java major ver-

sion, e.g., the HashMap iterator was implemented using a class called Entry

until OpenJDK version 1.8.0-b108 [59] and using a class called Node since

then; we developed customized instrumenters that can generate appropriate

modified code based on whether rt.jar uses Entry or Node. This modification

would need to change in the future if the Java Standard Library implements

HashMap using a third approach. We used ASM [11] to implement all classfile

manipulation.

Performing instrumentation from scratch on every run is unnecessary, so

we reuse each previously instrumented class in subsequent runs, as long as

the instrumented class from rt.jar did not change. (The original class does

not change until/unless the user switches to another version of Java.) To

decide when to reuse the instrumented classes, NonDex stores for each

instrumented class the checksum of the classfile from the rt.jar that was

instrumented.

2.4.2 Runner

The runner is a thin layer of code that enables random execution for APIs

instrumented by NonDex. On every invocation of an instrumented API,

the runner randomly chooses one behavior from the behaviors appropriate

for that API. NonDex currently supports two kinds of behaviors: (1) per-

mutation for APIs where order is underdetermined, and (2) extensions for

APIs where only lower bounds on array size(s) are specified. The runner

takes as inputs (i) a random seed, which completely determines the choice

of behaviors, (ii) the mode of exploration—ONE or FULL (the two modes

differ in the kind of wrong assumptions they can detect, as described in detail

in Section 2.22), and (iii) optionally the range of choices to be randomized

(which is used by debugging).

2We originally evaluated four different modes, but the publicly released NonDex of-
fers only two modes, ONE and FULL, because they are the easiest to understand and
correspond to the two extremes of nondeterminism.
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2.4.3 Detector

The detector first runs all tests once without randomization and then calls

the NonDex runner a number of times, with different random seeds, to

rerun all the tests. The detector reports tests that pass without NonDex

randomization but fail with NonDex randomization; such tests likely3 make

wrong assumptions on underdetermined APIs. The detector first runs the

tests without NonDex because tests that fail on their own are due to some

other causes and should not be reported as failures due to wrong assumptions.

After the first run, the detector invokes the instrumentation engine to create

the instrumented APIs (or reuses cached copies of previously instrumented

APIs) before it starts running tests with NonDex.

The detector stores information about failing tests in a .nondex directory

which also contains information about each execution, without and with

NonDex, as well as the configuration used for test executions, the seed

needed to reproduce the failure, and the number of invocations of the runner’s

choice generator; the latter number helps the debugging phase to search for

the invocation(s) that caused the failure(s).

2.4.4 Debugger

When a test fails with NonDex, the test may invoke several underdeter-

mined APIs, e.g., it may iterate over several HashSet objects. Many of these

invocations are correct, making no wrong assumptions, so manually locating

the invocation(s) that caused the detected failure can be tedious. NonDex’s

debugging phase automatically identifies such invocation(s).

To identify such invocation(s), NonDex uses a binary search that keeps

track of a range of API invocations and selectively enables exploration for

half of them. Even for disabled invocations, our search advances the random-

number generator, i.e., NonDex still calls the random-number generator to

shuffle the order of elements, but NonDex returns the original, not the shuf-

fled, order. (Without this control, the search could get different behaviors for

the same random seed, making it harder to reproduce the failure.) Debug-

ging continues until a single invocation is identified or the remaining range

cannot be further halved. If a single invocation cannot be identified from

3The tests may be unreliable [85] due to other reasons and fail irrespective of NonDex.
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running just one test method, NonDex re-starts debugging for the entire

test class, and if again a single invocation cannot be identified, NonDex

re-starts debugging for the entire test suite. Debugging is repeated for each

failing test reported by the detector.

The debugging phase reports to the user an API call that causes the de-

tected failure together with the call stack of the API’s invocation which

further helps in localizing the context in which the wrong assumption was

made. In our prior work [120], we performed all debugging manually; after

implementing automated debugging, we found that we had made an error in

manually identifying the root cause of one failure, which anecdotally shows

that the automated debugging helps to more reliably identify the root causes.

2.5 Evaluation

We evaluated our NonDex technique on 195 open-source projects and 72

student submissions from a software-engineering course. Section 2.5.1 de-

scribes our experiments with the open-source projects and Section 2.5.2 de-

scribes our early efforts and results for NonDex adoption. Section 2.5.3

describes our experiments with the student code.

2.5.1 Experiments on Open-Source Projects

We evaluated NonDex on 195 open-source projects. We selected these

projects and their specific revisions from our previous studies with open-

source projects [24, 79, 121]. All these projects are from GitHub [36], use

Maven to build [88], and compile successfully using Java 8. For each project,

we first ran NonDex with 10 randomly generated seeds, using the FULL

level. If any test failed with these 10 seeds, we examined it to determine

what caused the failure.

We detected 60 unreliable tests in the 21 projects listed in Table 2.3. We

tabulate a short PID for ease of reference, the project name, and the project

revision on which we ran NonDex. For each project with an unreliable test

(found with 10 random seeds), we then reran that project’s tests again us-

ing NonDex with 100 randomly generated seeds, using all nondeterministic

levels. We obtained the number of times each unreliable test fails out of the
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Table 2.3: 21 projects (out of 195) with at least one unreliable test

PID Project SHA

P1 EsotericSoftware/reflectasm 455f612e

P2 EsotericSoftware/yamlbeans 2ccfbd9d

P3 JodaOrg/joda-time 07002501

P4 OryxProject/oryx 833c3fea

P5 Thomas-S-B/visualee 410a80f0

P6 apache/commons-cli a0dcd6a0

P7 apache/commons-lang fad946a1

P8 benas/easy-batch 4761ba5a

P9 bpsm/edn-java c1d891d6

P10 caelum/vraptor 443cf0ed

P11 fernandezpablo85/scribe-java 0311a435

P12 geosolutions-it/geoserver-manager a4268dda

P13 jknack/handlebars.java 83dd013a

P14 joel-costigliola/assertj-core e8a696e8

P15 jscep/jscep a224cc25

P16 junit-team/junit 1d63100e

P17 ning/org-json 9be37018

P18 qos-ch/slf4j 52fcbbe8

P19 sematext/ActionGenerator 10f4a3e6

P20 stickfigure/objectify 819eb72f

P21 versly/wsdoc 89480c5d

100 seeds.

Table 2.4 shows a partial list of the 60 tests that we examined. We tabu-

late the PID (from Table 2.3), the name of the test class and its unreliable

test method, the number of failures detected for each of the four levels, and

the underdetermined API that causes the failures. The apache/commons-lang

project has 14 tests similar to MultilineRecursiveToStringStyleTest::bool-

Array, and the caelum/vraptor project has 13 tests similar to XStream-

SerializerTest::shouldSerializeCollection, so the two table rows show

the total number of failures for each level across all 14 and 13 tests, respec-

tively. Our evaluation started on older revisions of these projects, and three

tests (GenericTest::testWrite, TestDateTimeZone::testGetShortName, and

TagTypeTest::collectSectionAndVars) are already fixed on the current re-
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visions of their respective projects.

Running NonDex using the FULL level may introduce too much nonde-

terminism, and one might initially consider some detected unreliable tests

to be false alarms. However, Table 2.4 shows that only six unreliable tests

(FieldAccessTest::testIndexSetAndGet, OptionGroupTest::testToString,

FieldUtilsTest::testGetAllFields, FieldUtilsTest::testGetAllFieldsList,

MethodSorterTest::testJvmMethodSorter, and EventLoggerTest::testEvent-

Logger) fail sometimes for the FULL level but not fail at all for any of the

100 randomly generated seeds for any of the other levels. The remaining 54

unreliable tests are also detected by the other levels, suggesting that these

are not false alarms.

For each unreliable test, the table shows the number of seeds/runs on which

it fails. For most unreliable tests, the number of seeds is fairly high, with

only 8–14 unreliable tests failing for fewer than 50 seeds for each level (not

counting unreliable tests that have 0 failures for a given level), and only two

of those tests fail fewer than 30 times for each level. These high numbers

suggest that it is likely that an unreliable test can be detected by running

NonDex with just a few seeds.

Assume that the actual probability of an unreliable test failing for a seed

is equal to the percentage of seeds that fail out of the 100 seeds that were

run. For example, if the probability of an unreliable test failing for a seed is

30%, then the probability of the unreliable test not failing for 10 different,

independent seeds is (1 − 0.3)10 = 0.028; in other words, there is a less than

3% chance of NonDex missing to detect that unreliable test running with

10 seeds. In the most extreme case we detected, in the Thomas-S-B/visualee

project, the expected probability of an unreliable test failing for a seed in

the FULL level is only 8%, so the chance of NonDex missing this unreliable

test running with 10 seeds is (1 − 0.08)10 = 0.434. Even in this case, there

is more than 50% chance of detecting such an unreliable test with 10 seeds,

despite the chance of it failing for any one seed being rather low.

In summary, a developer using NonDex to detect unreliable tests may

not need to run with many seeds and can still have some confidence that

NonDex does not miss to detect any unreliable tests. Therefore, albeit

NonDex runs 3 times by default to minimize the user wait time, for stronger

guarantees we recommend that NonDex by default be run for 10 seeds while

increasing the level of nondeterminism, from ONE to FULL.
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Table 2.4: Unreliable tests detected in open-source projects

PID TestClass::testName FULL ID EQ ONE Cause

P1 FieldAccessTest::testIndexSetAndGet 48 0 0 0 Class::getDeclaredFields

P2 GenericTest::testWrite 73 75 54 53 HashMap::entrySet

P3 TestDateTimeZone::testGetShortName 35 53 53 53 DateFormatSymbols::getZoneStrings

P4 TextUtilsTest::testJSONMap 51 52 60 53 HashMap::entrySet

P5 JPAExaminerTest::testFindAndSetAttributesManyT... 8 5 5 6 Class::getDeclaredMethods

P5 JavaSourceTest::testGetDependenciesOfType 12 12 12 4 Class::getDeclaredMethods

P6 OptionGroupTest::testToString 42 0 0 0 HashMap::values

P6 BugCLI162Test::testPrintHelpLongLines 51 55 55 53 HashMap::values

P7 MultilineRecursiveToStringStyleTest::boolArray 100 100 100 100 Class::getDeclaredFields

P7 ...other 14 similar tests, total failures... 1296 1216 1215 1138 Class::getDeclaredFields

P7 FieldUtilsTest::testGetAllFields 100 0 0 0 Class::getDeclaredFields

P7 FieldUtilsTest::testGetAllFieldsList 100 0 0 0 Class::getDeclaredFields

P7 FieldUtilsTest::testGetFieldsWithAnnotation 56 51 53 45 Class::getDeclaredFields

P8 GsonRecordMarshallerTest::marshal 86 77 77 84 Class::getDeclaredFields

P8 JacksonRecordMarshallerTest::marshal 87 81 81 84 Class::getDeclaredFields

P8 XstreamRecordMarshallerTest::marshal 96 94 94 97 Class::getDeclaredFields

P9 PrinterTest::testPrettyPrinting 69 73 54 53 HashMap::entrySet

P10 XStreamSerializerTest::shouldSerializeCollection 41 48 45 52 Class::getDeclaredFields

P10 ...other 13 similar tests, total failures... 736 709 737 764 Class::getDeclaredFields

P11 MapUtilsTest::shouldPrettyPrintMap 97 94 97 97 HashMap::entrySet

P12 GSLayerEncoder21Test::testMetadata 84 81 71 100 HashMap::entrySet

P13 TagTypeTest::collectSectionAndVars 100 100 100 100 HashMap::keySet

P14 Maps format Test::should format Map containing... 76 50 62 53 HashMap::entrySet

P15 DefaultCertStoreInspectorTest::example 92 94 59 53 HashMap::keySet

P15 HarmonyCertStoreInspectorTest::example 95 96 59 53 HashMap::keySet

P16 MethodSorterTest::testJvmMethodSorter 100 0 0 0 Class::getDeclaredMethods

P17 TestSuite::testJSONStringerObject 79 77 83 84 Class::getFields

P18 EventLoggerTest::testEventLogger 100 0 0 0 Class::getDeclaredMethods

P19 BulkJSONDataESSinkTest::testGetBulkData 49 37 47 43 HashMap::entrySet

P19 JSONUtilsTest::testGetElasticSearchAddDocument 35 35 43 47 HashMap::entrySet

P19 XMLUtilsTest::testGetSolrAddDocument 36 43 43 47 HashMap::entrySet

P20 CollectionTests::testBasicSets 100 96 91 84 HashMap::keySet

P20 CollectionTests::testCustomSet 85 79 91 84 HashMap::keySet

P21 JaxRSRestAnnotationProcessorTest::stabilitySet... 71 86 51 53 HashMap::keySet

P21 SpringMVCRestAnnotationProcessorTest::stabilit... 76 75 51 53 HashMap::keySet

Unreliable Tests Found 60 54 54 54

Total Failures 4362 3744 3643 3590

Min Failures 8 0 0 0

Max Failures 100 100 100 100



The common threats to validity apply to our study, therefore our results

may not generalize to other projects or unreliable tests. Of particular concern

is that our experiments could have missed some unreliable tests even in the

projects that we ran with 10 seeds. If some test fails infrequently, it may be

missed; there might be many such tests that NonDex missed, so we could

not have even studied them in more detail. In the future, we plan to evaluate

more systematic exploration to check whether this is indeed the case.

We next discuss in more detail three unreliable tests detected by NonDex

in open-source projects.

Overly Nondeterministic Level

A case where the FULL level detects an unreliable test that is never de-

tected for any other level is OptionGroupTest::testToString from the project

apache/commons-cli. Figure 2.7 shows that unreliable test. Lines 4 and 5

add two options to the OptionGroup g1. OptionGroup stores options in a

HashMap (line 16), and its toString method (lines 19–27) iterates over this

map. The code encodes that the iteration order over the HashMap is not

guaranteed, so lines 6 and 7 check that the result of calling toString on

g1 is either of the two hard-coded strings. However, toString is invoked

twice, and in the FULL level, NonDex can reshuffle the order differently for

the two invocations, causing the assertion to potentially fail. The developer

made a reasonable assumption that calling toString on the same, unchanged

object twice returns the same string both times; we see that the other levels

of NonDex never flag this test as unreliable. Nevertheless, the test could be

still changed to call toString only once, capture the result, and then assert

that it is one of the two possible values.

Example New Unreliable Test

We detected 57 unreliable tests that were not fixed on the then-current re-

vision of the projects, and Figure 2.8 shows one such unreliable test, Map-

UtilsTest::shouldPrettyPrintMap from the fernandezpablo85/scribe-java

project. The test (lines 3–7) makes and populates a HashMap and then com-

pares the result of calling MapUtils::toString with a hard-coded string (lines

8–10). However, MapUtils::toString calls entrySet on its input Map, and the
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1 public class OptionGroupTest {

2 public void testToString() {

3 OptionGroup g1 = new OptionGroup();

4 g1.addOption(new Option(null, "foo", false, "Foo"));

5 g1.addOption(new Option(null, "bar", false, "Bar"));

6 if (!"[--bar Bar, --foo Foo]".equals(g1.toString())) {

7 assertEquals("[--foo Foo, --bar Bar]", g1.toString());

8 }

9 ...

10 }

11 }

12

13 public class OptionGroup ... {

14 Map<String, Option> om = new HashMap<String, Option>();

15 public OptionGroup addOption(Option option) {

16 om.put(option.getKey(), option);

17 return this;

18 }

19 public String toString() {

20 StringBuilder buff = new StringBuilder();

21 Iterator<Option> iter = getOptions().iterator();

22 buff.append("[");

23 while (iter.hasNext()) {

24 /* ... populate buff with the values in iter ... */

25 return buff.toString();

26 }

27 }

28 }

Figure 2.7: Example unreliable test from apache/commons-cli

order of iteration is not fixed, so the assertion on lines 8–10 can sometimes

fail. More precisely, it fails in all but one of the 4! orderings, i.e., in about

96% of cases, as also obtained in our experiments.

2.5.2 Practical Impact and Adoption

Detecting Failures

To test the NonDex tool in general and the NonDex Maven plugin in par-

ticular, we integrated NonDex in the pom.xml files of several Maven-based
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1 public class MapUtilsTest {

2 @Test public void shouldPrettyPrintMap() {

3 Map<Integer, String> map = new HashMap<>();

4 map.put(1, "one");

5 map.put(2, "two");

6 map.put(3, "three");

7 map.put(4, "four");

8 assertEquals(

9 "{ 1 -> one , 2 -> two , 3 -> three , 4 -> four }",

10 MapUtils.toString(map));

11 }

12 }

13

14 public class MapUtils {

15 public static <K,V> String toString(Map<K,V> map) {

16 ...

17 StringBuilder result = new StringBuilder();

18 for(Map.Entry<K,V> entry : map.entrySet()) {

19 result.append(String.format(", %s -> %s ",

20 entry.getKey().toString(),

21 entry.getValue().toString()));

22 }

23 return "{" + result.substring(1) + "}";

24 }

25 }

Figure 2.8: Example unreliable test from fernandezpablo85/scribe-java

projects from GitHub. Our goal was to test whether NonDex works with

these projects “out-of-the-box” and not necessarily to detect any new unreli-

able tests. We found that integrating NonDex into these projects was indeed

easy, and that by just adding a few lines to pom.xml, we could run NonDex

on all these projects. NonDex worked well with projects that use different

testing frameworks (e.g., JUnit 4, JUnit 3, and TestNG) and even various test

runners (e.g., parameterized tests [114,127]). Along the way, we also detected

21 new unreliable tests in eight projects (eight tests in alibaba/fastjason,

five tests in checkstyle/checkstyle, three tests in nutzam/nutz, and one

test in each of alibaba/druid, bukkit/bukkit, jankotek/mapdb, pedrovgs.al-

gorithms/algorithms, and perwendel/spark).
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Debugging Failures

We further applied the automated NonDex debugging on these 21 newly

detected and 54 previously detected failing tests to determine the root cause

of each failure. The number of underdetermined API invocations that Non-

Dex randomized per failure ranged from 5 to 9,710. The results showed that

our simple binary-search debugging works extremely well for these cases—

for 74 out of 75 failures, NonDex minimized the cause down to only one

invocation; the remaining failure is for a test written in JUnit 3 for which

the Surefire Maven plugin (used by NonDex to run tests) cannot easily

run single test methods. We also counted the number of wrong assumptions

on various APIs supported by NonDex; the invocations causing the fail-

ures were getDeclaredFields (41 cases), HashMap iteration (32 cases), and

getGenericExceptionTypes (1 case). Because binary search is simple, we

were surprised that it sufficed to identify precisely one invocation in all but

one of the cases we tried. In the future, we plan to explore more sophisticated

search strategies, such as delta debugging [145], and automated fixing.

Case Studies and Adoption

We opened 13 pull requests (PRs) for failures detected by NonDex, re-

porting the issue and providing a fix, in four open-source projects: five

PRs in alibaba/fastjson, five PRs in checkstyle/checkstyle, two PRs in

scribejava/scribejava, and one PR in square/retrofit. We did not open

PRs for all unreliable tests that NonDex detected because we are not ex-

perts in the projects and could not easily provide a fix for each unreliable

test. All PRs we opened were accepted by developers except one PR in

alibaba/fastjson. One of the developers of Checkstyle was quite pleased

with the PRs we opened, asked us about the tool we used to detect the

issues, and recommended that we integrate NonDex in their continuous in-

tegration; we indeed integrated NonDex in both pom.xml and .travis.yml

for Checkstyle [15]. Furthermore, we have piloted the use of NonDex in

a software testing course to educate students about wrong assumptions on

underdetermined APIs. Students have used NonDex to find issues both in

their own code and in open-source projects they are familiar with. Overall,

we found our currently released NonDex tool to be robust enough for use
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1 public class DefaultNameProvider implements NameProvider {

2 public String getName(...) {

3 String[] nameSet = getNameSet(...);

4 return nameSet[0];

5 }

6 private synchronized String[] getNameSet(...) {

7 String[][] z = DateTimeUtils.getDateFormatSymbols(...).getZoneStrings();

8 String[] setEn = null;

9 ...

10 for (String[] s : z) {

11 if (s != null && s.length == 5 && id.equals(s[0])) {

12 setEn = s;

13 break;

14 }

15 }

16 ...

17 }

18 }

Figure 2.9: Code for DefaultNameProvider from JodaOrg/joda-time

both in real-world projects and in teaching.

Example Fixed Unreliable Test

We next describe an unreliable test that NonDex detected when run on

an older revision of the JodaOrg/joda-time project; the test has been fixed

since then. Figure 2.10 shows TestDateTimeZone::testGetShortName and the

relevant portions of the SUT. The call to getShortName on line 4 eventually

leads to a call to the DefaultNameProvider::getNameSet method defined on

lines 6–17. The problem is the guard condition, s.length == 5 on line 11.

In Java 7, the call to DateFormatSymbols::getZoneStrings on line 7 indeed

returned each array element of z of exactly length five. However, the speci-

fication of that method only guarantees that each element of z has length of

at least five. In fact, in Java 8, the implementation changed such that each

array element has length exactly seven, which still satisfies the specification

but is different from what was the case in Java 7. This change in the imple-

mentation revealed the developer’s reliance on the length of the elements of

z. NonDex was able to detect this on an older revision of the code, and the
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1 public class TestDateTimeZone extends TestCase {

2 public void testGetShortName() {

3 DateTimeZone zone = DateTimeZone.forID(...);

4 assertEquals("BST", zone.getShortName(...));

5 ...

6 }

7 }

8

9 public abstract class DateTimeZone ... {

10 public String getShortName(...) {

11 String name;

12 NameProvider np = getNameProvider();

13 if (np instanceof DefaultNameProvider) {

14 name = ((DefaultNameProvider) np).getShortName(...);

15 }

16 ...

17 return name;

18 }

19 private static NameProvider getDefaultNameProvider() {

20 NameProvider nameProvider = null;

21 ...

22 if (nameProvider == null) {

23 nameProvider = new DefaultNameProvider();

24 }

25 return nameProvider;

26 }

27 }

Figure 2.10: Example unreliable test from JodaOrg/joda-time

developers have since fixed this problem by changing checks such as the one

shown on line 11 to be s.length >= 5 instead.

Unrelated Unreliable Tests

We discuss one example unreliable test that we accidentally detected during

our evaluation. Although detecting unreliable tests is a positive outcome in

general, we are careful to mark this unreliable test as a false alarm (FA) in

our evaluation because the source of flakiness is not related to any of the

models that we are evaluating in NonDex.

Figure 2.11 shows the unreliable test T1 that nondeterministically passes or

41



1 public class ClassLoaderTest extends TestCase {

2 public void testAutoUnloadClassloaders () throws Exception {

3 int ic = ACL.activeACLs();

4 ClassLoader tcLoader1 = new TestClassLoader1();

5 Class testClass1 = tcLoader1.loadClass(..);

6

7 ClassLoader tcLoader2 = new TestClassLoader2();

8 Class testClass2 = tcLoader2.loadClass(...);

9

10 tcLoader1 = null; testClass1 = null; ...

11 tcLoader2 = null; testClass2 = null; ...

12

13 // Force GC to reclaim unreachable

14 // (or only weak-reachable) objects

15 System.gc();

16 ...

17 System.gc();

18 while (ACL.activeACLs() > 1 && times < 50) {

19 Thread.sleep(100); // test again

20 }

21 // Yeah, both reclaimed!

22 assertEquals(Math.min(ic, 1), ACL.activeACLs());

23 }

24 }

Figure 2.11: Example unreliable test T1 detected during our experiments

fails because it (incorrectly) assumes deterministic behavior of the garbage

collector. Specifically, the calls to System::gc on lines 14 and 15 do not

force garbage collection, per the official Java API documentation. Thus, the

assertion on line 22 can sometimes fail when ACL::activeACLs does not return

1, as the developers of the tests assume.

2.5.3 Experiments on Student Code

We also evaluated NonDex on 72 student submissions for a programming

assignment. We first describe the assignment that the students were supposed

to do. We then describe how we set up our experiments for the student

submissions. We finally describe high-level results concerning our findings of

running NonDex on the student submissions.
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Assignment

The assignment asked the students to create a simple library-management

application. This library-management assignment was first created four years

ago and has been minimally updated by different teaching staff members over

the years; this year’s iteration of the assignment was updated by two teaching

assistants who were not involved in this study. The students were expected

to write both code that implements such an application and unit tests using

JUnit [68] to test the different components of the application.

The teaching staff provided the students some skeleton code outlining the

basic expected components of the application. The application should repre-

sent a library containing books which can be organized into collections. The

Book class represents a book and has only two fields, a title and an author,

both represented by String objects. This Book class extends the abstract

class Element. The Collection class represents a collection of such Element

objects that are stored in a List. Furthermore, the Collection class also

extends Element, so a Collection is allowed to contain other Collection ob-

jects, creating a hierarchy that illustrates the composite design pattern [33].

Finally, at the top level, there is a Library class that can hold a List of

Collection objects.

Students were expected to implement several methods and constructors

for each of these classes. We discuss those that are most relevant for this

study. For both Book and Collection, students must implement a method

getStringRepresentation that returns String representations of objects of

those classes. Given such a string representations, students must implement

a constructor for Book that takes the string representation and constructs the

corresponding Book object. For Collection, students must similarly imple-

ment a static method restoreCollection that takes a string representation

of a Collection and constructs the corresponding Collection object. For

Library, students must implement (1) the constructor that takes a file con-

taining string representations of a sequence of Collection objects and con-

structs the corresponding Library and (2) the method saveLibraryToFile

that writes out the Library to a file.

Along with the skeleton code and implementation requirements, the teach-

ing staff made further restrictions and suggestions. First, the students’ code

must build successfully in a common environment used by the entire class.
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This environment uses OpenJDK Java 7, so students’ code must also compile

to Java 7 bytecode and run successfully using the OpenJDK Java 7 JVM.

Students must also write tests for each of the three classes they implement,

with at least nine tests for the entire application. Finally, the staff strongly

encouraged the students to use some third-party library to handle the pretty-

printing/parsing of objects to/from strings, as the Library can potentially

have complex structures involving deeply nested Collection objects. How-

ever, the staff did not restrict the students to a specific third-party library, so

the students chose whatever library they felt comfortable with. Many used

various libraries for JSON or XML.

Experimental Setup

For our evaluation on student code, we started from the 89 submissions that

built successfully (both compiled and had all tests pass) in the common envi-

ronment that uses OpenJDK Java 7. With these 89 submissions, we ran the

tests in another environment that is exactly the same as the environment pro-

vided to the students, except this other environment uses OpenJDK Java 8

instead. By running the students’ tests against their own code an an environ-

ment using Java 8, we already detected some students’ tests to be unreliable

as they assumed specific behavior of the libraries (either the Java Standard

Library or the third-party libraries used), and most likely failing due to the

presence of ADIUS code.

Running the students’ tests in this Java 8 environment, we found 17 sub-

missions that fail. In fact, in the past, running in multiple environments (e.g.,

on Linux virtual machines and on Mac and Windows laptops from teaching

assistants) was the only approach that we could use to detect (some) un-

reliable tests. Using NonDex, we can have a more thorough detection of

unreliable tests; even if some tests pass on both Java 7 and Java 8, it does

not imply they do not contain any ADIUS code that could fail on some fu-

ture Java 9 (or even on Java 8 on another OS or by another JVM provider,

say, IBM). We therefore focus the rest of our evaluation on the remaining 72

submissions.
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Table 2.5: Unreliable tests detected in student submissions

FULL ID EQ ONE

Unreliable Tests Found 110 88 34 34

Total Failures 8159 6785 2031 1827

Min Failures 37 0 0 0

Max Failures 100 100 81 78

Results

We ran the student submissions using our NonDex tool in all four nonde-

terministic levels and for 100 randomly generated seeds. (The tests from

students submissions run much faster than the open-source projects, so we

could immediately use 100 seeds.) NonDex detected 34 student submissions

with at least one unreliable test. In total, NonDex detected 110 unreliable

tests. Table 2.5 summarizes the results. We tabulate the number of unreli-

able tests detected in each level (up to 110), and the total, minimum, and

maximum number of the 100 seeds that cause a failure for one of those un-

reliable tests in each level. We elide detailed results for each individual test

as in Table 2.4 because there are too many tests.

From the table, we see that the FULL level detects the most unreliable

tests, followed by ID, and then by EQ and ONE, which both detect the same

number of unreliable tests. Unlike for open-source projects where all three

partial levels behaved the same (either all three had at least one failure or all

three had no failure), for student submissions, ID detected more unreliable

tests than either EQ or ONE that detected exactly the same unreliable tests.

Considering the total number of failures, like for open-source projects, we see

that the FULL level detects more failures than the ID level, followed by the

EQ level and finally by the ONE level.

Discussion

In the 17 cases where the students’ tests fail just by switching from Java 7 to

Java 8, the unreliable tests check the functionality of the methods that get

the string representation of a Book or a Collection object. The tests gen-

erally construct some Book or Collection objects and assert that the return

of the method that gets the string representation matches some hard-coded
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string value. In all but one of these submissions, students either directly

use a Java HashMap as part of their implementation for constructing a string

representation, or they use a third-party library (e.g., JSON in Java [66] or

JSON.Simple [67]) where the serialization is backed by a Java HashMap. The

assertions against the hard-coded strings succeed in Java 7 because the order

remains consistent across different runs of the JVM, but in Java 8, the under-

lying implementation of HashMap changed such that the iteration order can

differ from that of Java 7. The one remaining failing submission uses an XML

serialization library (XStream [141]) to construct a string representation of

a Collection object, but the order of the declared fields for a class is also

not guaranteed, so the comparison with a hard-coded string value here once

again fails in this later version of Java. In summary, all these 17 submissions

have ADIUS code and fail due to relying on some assumed order that is not

guaranteed to hold.

In the student submissions that do not fail on Java 8, NonDex detected

additional unreliable tests that fail due to the nondeterminism in the or-

dering provided by the iterator for a HashMap. As with the tests that fail

on Java 8, these unreliable tests generally construct Book and Collection

objects and assert their string representation to be equal to a hard-coded

string. Similar to some cases in the open-source projects, some failures are

due to “too much” nondeterminism in the orderings, e.g., when a test calls

getStringRepresentation on an object and then compares the string against

another call of getStringRepresentation of an equal object rather than as-

serting the string to be the same as a hard-coded string. In such a case, the

FULL or ID level would shuffle both calls to getStringRepresentation (be-

cause FULL shuffles always and ID shuffles when objects are different) and

potentially end up failing the assertion where the other two levels do not fail.

Moreover, the FULL level also detects as unreliable some cases that depend

on the field ordering, which other levels never detect.

2.6 Systematic Exploration using Java PathFinder

Running NonDex even with 100 different seeds may not detect all unreliable

tests, because the random choices explored can miss some cases that would

cause a test to fail. To more systematically explore these tests, we used
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JPF [64, 132]. JPF provides a specialized JVM, implemented in Java, that

can explore all nondeterministic choices. However, JPF cannot handle all

Java code out-of-the-box. In particular, it cannot handle code that depends

on native methods, such as those in the Gson or XStream libraries that some

students used. We only ran the student’s code on JPF because JPF did not

work with the open-source projects used in our study.

Our NonDex implementation for systematic exploration uses the Java

PathFinder [64,132] tool and can systematically explore the choices by model

checking the nondeterministic models. We focused on the HashMap iterator,

because it can find a large number of ADIUS code and unreliable tests.

We used the JPF’s provided facility for nondeterministic choices, based on

Verify.getInt which we use to return a permutation of the original iteration

order, to encode a model that is between our partial and fully nondetermin-

istic models. The advantage of using JPF is that it can provide guarantee on

the completeness of the exploration, unlike random exploration. As a result,

we had to extend JPF support for the Java Standard Library to attempt to

run it on more code. But in the end we were able to run it only on a subset

of student submissions.

2.6.1 Motivating Example

Figure 2.12 shows some test simplified from a student homework in the soft-

ware engineering class used in our study. Recall that the students were

asked to write code for a Book class and tests for their code. The method

testGetStringRepresentation1 aims to test that the Book object produces

a correct string representation: the test checks that the round-trip from the

string representation of a Book to a Book object and back to its string repre-

sentation yields the same String result used to construct the Book object.

The problem with the test in Figure 2.12 is that it assumes the order

of the fields in the JSON representation of the Book object to be the same

every time, either {author="Die...", title="Cos..."} or {title="Cos...",
author="Die..."}. This assumption is wrong; it is not supported by the

JSON specification: the author and title could appear in any order in the

resulting string. In fact, the data structures used to implement the underlying

JSONObject do not guarantee the order assumed by this test. Specifically, a
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1 public class BookTest {

2 private String toJSON(String s) throws JSONException {

3 JSONObject obj = new JSONObject();

4 String[] info = s.split(",");

5 obj.put("author", info[0].trim());

6 obj.put("title", info[1].trim());

7 return obj.toString();

8 }

9 @Test

10 public void testGetStringRepresentation1()

11 throws JSONException {

12 Book book = new Book(toJSON("Diego et al., Costization"));

13 assertEquals(toJSON("Diego et al., Costization"),

14 book.getStringRepresentation());

15 }

16 }

Figure 2.12: Example test that fails due to an underdetermined
specification

HashMap is used to store a mapping between field names and their values,

and the code in JSONObject (not shown here) iterates the HashMap to produce

the String representation. The specification of the HashMap explicitly states:

“This class makes no guarantees as to the order of the map; in particular, it

does not guarantee that the order will remain constant over time.” [53]. Code

making such wrong assumptions, unsupported by the specification, is brittle

because whenever the library changes, the assumptions may stop holding,

and the code can break [58,70].

Our NonDex technique finds assumptions on certain APIs by exploring

different behaviors permitted by the specification. If exploring these dif-

ferent behaviors triggers a failure, it indicates that the code makes some

wrong assumption on the API. In the example in Figure 2.12, NonDex

would explore different orders of iteration for the underlying HashMap of each

JSONObject. Note that it is necessary to explore an execution where the two

iteration orders for the two JSONObject objects differ, i.e., {author="Die...",
title="Cos..."} and {title="Cos...", author="Die..."}. We manually

create models for APIs based on their specifications, and we use JPF to

explore these models for all allowed behaviors to find wrong assumptions.

Figure 2.13 shows the entire state-space graph resulting from the JPF’s ex-
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Figure 2.13: State-space graph for the example test

ploration of different behaviors of APIs with underdetermined specifications

in this example. In the execution of the test testGetStringRepresentation1,

the program executes three underdetermined APIs, corresponding to the

three choice points. Two of these are in the translation of the JSONObject

to String in the method toJSON (called twice from the test), and one is in

the body of the method getStringRepresentation (not shown here). Each

of these choice points is over a collection with two elements (corresponding

to the fields author and title), hence it has two possible orders.

Even this simple graph illustrates some interesting properties. For exam-

ple, the nondeterministic choice point in state 0 is rather local, and both of its

orders lead to the same state 1. The reason is that the first call to toJSON can

produce two different string objects, but both of them produce the same Book

object. Effectively, this choice point does not matter for the failure. What

does matter is the relationship between the second and third choice points:

if they choose the same order, the test passes, but if they choose different

orders, the test fails. The probability that a uniformly randomly selected

execution finds this failure is exactly 50%. Moreover, a simple strategy that

always switches between choosing the natural order (the first outgoing edge,

marked 0) and its opposite (the last outgoing edge, in this case, marked 1)

would definitely find the failure in this example, but this is not always the

case. We discuss in Section 2.6.3 the results from more examples.
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1 // in jpf-core/src/classes/java/lang/Class.java

2 ... class Class ... {

3 ...

4 public native Field[] getDeclaredFields() throw...;

5 }

6 // in jpf-core/src/peers.../JPF_java_lang_Class.java

7 ... class JPF_java_lang_Class extends NativePeer {

8 ...

9 @MJI

10 public int getDeclaredFields_____3Ljava_lang_reflect_Field_2

11 (MJIEnv env, int objRef) {

12 ...

13 for (i=0; i<nStatic; i++) {

14 FieldInfo fi = ci.getStaticField(i);

15 ...

16 }

17 for (i=0; i<nInstance; i++) {

18 FieldInfo fi = ci.getDeclaredInstanceField(i);

19 ...

20 }

21 }

22 }

Figure 2.14: Original Class::getDeclaredFields in JPF

2.6.2 Technique and Implementation

Recall that the overall NonDex technique is rather simple: we first manually

find methods in the Java Standard Library with underdetermined specifica-

tions, then manually build models of these methods, and finally use an appro-

priate execution environment to explore various behaviors of these models.

We next describe how we implemented NonDex models in JPF. We pre-

sented already one implementation of the HashMap iterator in Section 2.3.

Thus, we illustrate here the implementation of another method, and also

mention one change we made in the former implementation of the HashMap

iterator. The key goal of our implementation of NonDex in JPF is to enable

systematic exploration of all possible behaviors of methods with underdeter-

mined specifications.

To illustrate our encoding of models in JPF, consider the getDeclaredFields

method from the class java.lang.Class. This method returns an array of
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1 // modified Class.java

2 ... class Class ... {

3 ...

4 public Field[] getDeclaredFields() throw... {

5 return NonDex.shuffle(getDeclaredFieldsO());

6 }

7 public native Field[] getDeclaredFieldsO() ...;

8 }

9 // modified JPF_java_lang_Class.java

10 ... class JPF_java_lang_Class extends NativePeer {

11 ...

12 @MJI

13 public int getDeclaredFieldsO_____3Ljava_lang_reflect_Field_2

14 (MJIEnv env, int objRef) {

15 /* body the same as was in getDeclaredFields */

16 }

17 }

Figure 2.15: Modified Class::getDeclaredFields

the type Field[] which represents all the fields declared by the class (but ex-

cludes inherited fields). The Javadoc for this method states: “The elements

in the returned array are not sorted and are not in any particular order.” [19].

A typical implementation of this method is deterministic and returns the

fields in some particular order. For example, in JPF, this method is imple-

mented as a native peer with the relevant parts shown in Figure 2.14. The

Class implementation declares only that the method getDeclaredFields is

native, and the actual implementation in JPF java lang Class.java returns

the array that has static fields before instance fields. Interestingly, the same

JPF java lang Class.java uses a different order in the method getFields

which returns an array which represents all the public fields in the class and

includes inherited fields—that method returns instance fields before static

fields and has a comment “the spec says there is no guaranteed order so we

keep it simple” [20].

To support NonDex, we modify getDeclaredFields such that JPF can

explore all possible orders of the fields. We modified the implementation

directly at the JPF level as shown in Figure 2.15: (1) we renamed the original

getDeclaredFields peer to getDeclaredFieldsO and kept its body and (2) we

added the method getDeclaredFields to first obtain the original array of
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1 import gov.nasa.jpf.vm.Verify;

2 class NonDex {

3 public static <T> T[] shuffle(T[] objs) {

4 return shuffle(Arrays.asList(objs)).toArray(objs);

5 }

6 public static <T> List<T> shuffle(List<T> objs) {

7 int permutation = Verify.getInt(0, factorial(objs.size()) - 1);

8 return nthPermutation(permutation, objs);

9 }

10 public static <T> List<T> shuffleOld(List<T> objs){

11 int k = objs.size();

12 for (int i = 0; i < k - 1; i++) {

13 Collections.swap(objs, i, Verify.getInt(i, k-1));

14 }

15 return objs;

16 }

17 ...

18 }

Figure 2.16: NonDex methods for shuffling

fields and then shuffle it using our NonDex method shuffle (described in

the next paragraph). Note that we effectively modified the behavior of an

existing native method to add shuffling, which is easy to do in JPF because

the native methods are themselves implemented in Java.

We next describe how we implemented the NonDex::shuffle methods. Fig-

ure 2.16 shows the key parts of our implementation. The shuffle method for

arrays is the one invoked from getDeclaredFields, but many other methods

require shuffling a list, so our key logic is in the shuffle method for lists. Its

implementation is straightforward: given a list objs, it computes the total

number of permutations of this list (k!, where k is the length of the list) and

then selects one particular permutation to explore in each invocation, using

the JPF library method Verify::getInt. (Note that both bounds in getInt

are inclusive, hence subtracting one from the number of permutations.) The

method nthPermutation computes the n-th permutation of a given list in the

lexicographic order, using a traditional algorithm [117]. Note that several

methods in the NonDex library modify their given arguments in place, but

we ensure that they are called only when the arguments are copies that can

be modified without affecting Java semantics. (While our goal is to explore
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all possible orders using NonDex, we do not want to generate some impossible

order.) For example, the Javadoc for several Class methods explicitly states:

“The caller of this method is free to modify the returned array; it will have

no effect on the arrays returned to other callers.”

Figure 2.16 also shows an old shuffle method that we used in our first

NonDex paper [120]. This method also enumerates all k! permutations of

the input objs list of length k, but it creates a different state-space graph

that does not precisely capture the nondeterminism inherent in these permu-

tations. This method uses the Knuth shuffle [74] for random permutations

but applies it to systematically explore all possible permutations. For each

position i, it chooses some position between i and k − 1 to swap with i.

To illustrate the difference between the methods shuffle and shuffleOld,

consider a list with 4 elements. The current shuffle creates a single choice

point with 4! = 24 outgoing edges, i.e., the state-space graph has 25 nodes (1

choice point and 24 successor states). In contrast, the old shuffle would create

one choice point with 4 outgoing edges of which each leads to a choice point

with 3 outgoing edges of which each leads to a choice point with 2 outgoing

edges, creating a factorial tree. This also gives 24 choices in the end, but the

state-space graph now has 40 edges and 41 nodes, i.e., 16 more edges and 16

more nodes than our current nondeterministic choice tree. These additional

edges and nodes do not properly capture the amount of nondeterminism but

are just the consequence of how permutations are computed. For this reason,

all our experiments use the current shuffle implementation, not only for the

new methods that we added but also for the HashMap iterator.

2.6.3 Evaluation

We next present the results of our experiments on 46 student-written tests;

we know from our previous work that (1) JPF can run these tests, at least for

some executions, and (2) the tests contain wrong assumptions on APIs (Sec-

tion 2.5.3). In the past, we ran these tests in JPF with only one underdeter-

mined method and to find only one error state, thus we stopped the explo-

ration on the first failure. In the current evaluation, our key goal is to analyze

the state-space graphs, thus we run JPF with search.multiple errors=true,

and we also run with all 11 models of methods with underdetermined speci-
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fications (HashMap iterator and 10 methods similar to getDeclaredFields).

Table 2.6 shows the statistics about the state-space graphs. We obtained

the full graphs for 46 failing tests. We previously had five additional tests in

Section 2.5.3. During the exploration of two tests, JPF ran out of memory

(the default 1GB) after finding 450,463 and 1,321,584 errors, respectively.

Two tests were affected by a real bug in JPF, namely the JPF native peers

in JPF java lang StringBuilder.java and JPF java lang StringBuffer.java

do not work with the latest Java versions. The fifth test was mistakenly

reported as failing in the past, because the SUT throws some exceptions

that are caught, printed, and “swallowed”; the code does have some bugs

but not of the kind that NonDex should find.

State-Space Graph Size

We tabulate the graph size (number of nodes and edges) as a measure of the

uses of underdetermined APIs. We find that many tests have rather simple

graphs, similar to the example from Section 2.6.1. However, a few tests have

large graphs, with the largest (T36) having 6,438,913 nodes and 12,747,262

edges. Note that all the code is single-threaded, so the choice points are

due only to the methods with underdetermined specifications. The largest

choice point that we allow to be exhaustively explored is for collections with

six elements, i.e., 720 outgoing transitions. For larger collections, we explore

only one order, as provided by the underlying implementation.

Failure Probability

We also show the number of failing nodes and the failure probability. The

latter is computed under the assumption that each (local) choice for each

choice point is equally likely, e.g., if a choice point has 6 outgoing edges,

each has 1/6 probability to be chosen. The overall failure rate is computed

over a reverse topological sort of the graph: each failing node has the failure

probability of 1.0, each passing node has the failure probability of 0.0, and

an inner node with n children has the failure probability (p1 + . . . + pn)/n,

where p1, . . . , pn are failure probabilities of the successor nodes. The failure

probability of the start node in the graph gives the overall failure probability

for the graph. We can see that it can be as high as 99.61%, and is at least
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Table 2.6: Statistics of tests exploration

ID #Nodes #Edges #Fail Pf [%] #Merges #Crit

T1 7 7 2 50.00 0 2

T2 7 7 2 50.00 0 2

T3 208 283 64 75.00 29 32

T4 16 19 4 50.00 1 4

T5 7 7 2 50.00 0 2

T6 23 26 8 62.50 1 4

T7 5 4 1 50.00 0 1

T8 941099 950699 875520 98.96 386 9216

T9 53 71 36 72.22 4 6

T10 8 9 2 50.00 1 2

T11 8 9 2 50.00 1 2

T12 8130 8192 4032 98.44 0 64

T13 8 9 2 50.00 1 2

T14 35 42 12 75.00 5 4

T15 140 164 56 87.50 18 8

T16 150279 169994 65280 99.61 1797 256

T17 1124 1348 448 87.50 158 64

T18 10468 13252 3840 93.75 864 256

T19 8 8 2 50.00 0 2

T20 155 194 56 87.50 17 8

T21 224 332 56 87.50 22 8

T22 4 3 1 50.00 0 1

T23 6 5 2 75.00 0 1

T24 8825 9711 3968 96.88 700 128

T25 4 3 1 50.00 0 1

T26 885 1175 296 99.22 47 16

T27 17221 18311 8064 98.44 964 128

T28 7 7 2 50.00 0 2

T29 8 8 2 50.00 0 2

T30 8 8 2 50.00 0 2

T31 2645 3365 960 93.75 222 64

T32 9 8 3 87.50 0 1

T33 11 10 4 87.50 0 1

T34 15 15 6 75.00 0 2

T35 8 9 2 50.00 1 2

T36 6438913 12747262 65280 99.61 2113793 256

T37 5 4 1 50.00 0 1

T38 32 53 3 75.00 10 1

T39 24 37 3 75.00 6 1

T40 6 6 1 50.00 1 1

T41 5 4 1 50.00 0 1

T42 11 12 2 50.00 1 2

T43 1056 1106 552 95.83 28 24

T44 9 9 2 50.00 0 2

T45 20 23 6 87.50 3 2

T46 160 331 56 88.89 41 8

50% in all cases; it means that a uniformly random local selection of choices

has a good chance to find any of these unreliable tests, which confirms why
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our results with NonDex on JVM are already quite good (Section 2.5).

Irrelevant Nondeterminism

We further measure how much of the nondeterminism becomes irrelevant as

the execution leads to the same state irrespective of the choices made at some

choice point. Specifically, we count the number of “merge” nodes that have

in-degree greater than one. (These are only the internal nodes and do not

include the final, pass or fail, nodes.) While some tests have no merge nodes,

other tests have quite a few, even up to almost one third of all nodes (T36

and T38). These merge nodes post-dominate some choice points that can be

safely ignored when debugging the cause of failures due to underdetermined

specifications in these cases.

Critical States

Collecting the entire state space enables us to determine the number of criti-

cal states, i.e., states with choice points from which at least one choice leads

to paths that end either only in failure(s) or only in pass(es), while other

choices lead to paths with different outcomes. In other words, these are the

points where the exploration diverges, and so these are the key points for

the developer to focus on when debugging failures that NonDex detects.

We find that the number of critical states is relatively small compared to all

states, the highest ratio being 32/208 for T3. Many cases have just one or

two critical states. When JPF can analyze some code, our NonDex tool

in JPF can greatly complement our NonDex tool in JVM: we envision a

system where the tool in JVM is run first (because it can check all Java code

and runs much faster for one execution) for some random choices, and if it

detects a failure, then JPF is used to explore the neighborhood around this

failure to determine which choice points are critical.

Choice Prioritization

Random exploration has a good chance to find the failure (e.g., with 50%

failure probability for each path, trying just 7 independent paths gives over

1 − (1/2)7 > 99% probability to find the failure), but we evaluate whether
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some prioritization heuristics could increase that chance. One seemingly

good heuristic could be to first explore for each choice point the order that

is opposite (O) of the natural (N) order, e.g., if some collection naturally

returns foo, bar, baz, we could first explore baz, bar, foo. The intuition

is that most tests pass for the natural order, and the opposite may create

a completely unexpected situation. However, this heuristic finds failures in

only 9 out of 46 tests. The reason is that many cases require two choices to

be related for the failure (e.g., our running example requires two choices to

differ). Additional heuristics are then to explore orders that alternate O and

N , i.e., ONONON... or NONONO.... All three heuristics together can find

failures in 37 out of 46 cases, which is greater than 9 but still not perfect. In

the future, we hope to identify heuristics that are even more likely to produce

failures in most if not all cases.
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Chapter 3

Detecting State-Polluting Tests to Prevent
Test Dependency

In this chapter we describe our approach to detecting tests that pollute the

state shared across test executions. Section 3.1 presents an overview of the

problem of polluting tests, Section 3.2 presents our motivating example, Sec-

tion 3.3 outlines PolDet, our general approach to detecting polluting tests,

Section 3.4 presents some details on our implementation of PolDet, Sec-

tion 3.5 presents the results of our evaluation, and Section 3.6 discusses the

threats to the validity of our experiments.

3.1 Overview

Regression testing is a crucial activity in software development. Developers

rely on regression testing to determine whether the newly made code changes

break software functionality. If a run of the regression test-suite produces a

failure, developers need to debug it. For a reliable test suite, failures should

indicate a problem introduced by the code change and not a problem in

the test suite itself. If the problem is indeed in the SUT, then it is highly

beneficial that a test in the test suite failed. However, if the problem is in

the test code itself, then the test code should be changed.

One common problem [7, 58, 85, 105, 137, 148] in regression test suites is

dependency between tests. These dependencies arise when the tests read

and write some shared resource, e.g., the heap state in the main memory, file

system, database, etc. Prior research showed that these dependencies occur

in various projects (ranging from small projects such as Maven to medium

projects such as Apache Aries and to large projects such as Hadoop) [85],

and that most dependencies are on the heap state, reported to range from

53% [85] to 61% [148] of all test dependencies. These dependencies make the

outcome of regression test-suite runs unreliable: even for the same version
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of the SUT, the tests could pass when executed in one order but fail when

executed in another order leading to unreliable tests [85,93,148].

Several research groups have started developing techniques that can com-

bat test dependencies. We discuss related work in Section 4 but highlight

two techniques here. Zhang et al. [148] present a technique that can find ex-

isting test dependencies by running a test suite in various, carefully selected,

orders and checking if any order fails. However, their technique requires that

the test dependency already be present in the test suite, i.e., it does not

proactively find potential test dependencies even before they can manifest.

Bell and Kaiser [7] present VMVM, a technique that can tolerate the pres-

ence of test dependencies by restoring shared heap state, which may have

been modified, after each test run. However, their technique does not report

whether there is a modification or not; it always restores the state under the

assumption that it may have been modified.

The existing techniques do not directly provide the information about the

root cause of the dependencies, i.e., do not report which test “pollutes” what

part(s) of the shared state. For example, consider a test t that starts from a

shared state s, modifies it to s′ such that there could be another test t′ that

would pass when started from s but fail when started from s′. Two issues are

important to highlight. First, when the test t′ seemingly nondeterministically

fails or passes for the same code, the culprit is not necessarily the test t′ but

the polluting test t, which makes debugging harder.1

Second, even if the current test suite does not have any test t′ that can

be affected by the polluting test t, it is still valuable to know that t is a

polluting test, so it could be fixed even before t′ is added and the test order

is changed. For example, the change in test order significantly affected a

number of Java projects when they upgraded to Java 7 [70]. The reason was

that Java 7 changed the Reflection API implementation. Because JUnit uses

reflection to find the tests to run, the tests started running in different orders

than in previous versions of Java, exposing test dependencies as failing test

suites. Some of those test suites were years old, and debugging such old test

suites is rather hard as reported by several blog posts [69, 86, 91]. Ideally a

polluting test should be caught right when the developer is about to add it to

1While this dissertation does not consider fixing of test pollution, a typical fix is either
for t to clean the state after it finishes its logic, or for t′ to clean the state before it starts
its logic.
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the test suite because that is when the developer is in the best position to

fix the polluting test, or at least label it as a polluting test that could cause

problems in the future.

We present PolDet, a technique that detects polluting tests. PolDet

proactively finds tests that pollute the state, enabling the developers to fix

the tests right away, rather than later when the pollution manifests in a test

failure. Conceptually, PolDet is rather simple and finds polluting tests “by

definition”: for each test in a test suite, PolDet captures the shared state

(on the heap and the file system) before and after the test, and then compares

these two states to determine if there were any relevant differences.

To help developers find polluting tests, PolDet has to overcome several

challenges. One challenge is to capture and compare the states at the ap-

propriate abstraction level and appropriate program points such that the

reported differences are likely to be relevant pollutions. Some state differ-

ences are irrelevant, e.g., if states s and s′ differ only in the private content

of some library caches that the test code cannot observe via the public API,

then the difference is irrelevant. An additional challenge is to offer informa-

tion that helps developers in fixing the pollution. The final challenge is to

make the technique efficient enough, but it is not the most important: the

technique could be run only occasionally for the entire suite, or it could be

run only for the newly added tests rather than for all the tests in the test

suite. Indeed, a prior study [85] shows that 78% of the polluting tests pollute

the shared state right when they are added (i.e., only 22% start polluting

due to later changes in the test code or the SUT).

This chapter makes the following contributions:

⋆ Problem We formalize the problem of test pollution

⋆ Technique and Implementation We present the PolDet technique

that detects pollutions on shared heap or file system and tool for Java

⋆ Evaluation We evaluate PolDet on 26 projects from GitHub

The experimental results show that PolDet effectively finds polluting

tests. In the default configuration, PolDet reported 324 tests (out of 6105

tests) as potential polluting tests, and our inspection found that 194 of those

are indeed relevant polluting tests. The runtime overhead of our PolDet

prototype is a geometric mean of 4.50x, on a machine representative of a

60



powerful build-farm server. We believe this overhead is acceptable for run-

ning PolDet occasionally on the entire test suites and running always on

the newly added tests.

3.2 Motivating Example

We next discuss a real example of a polluting test that was added to the

Apache Hadoop project [47] at one revision and then created problems in

the test suite much later. Figure 3.1 shows a simplified code snippet from

the TestPathData class. This snippet includes two tests of interest with their

full names—testAbsoluteGlob and testWithStringAndConfForBuggyPath; for

brevity, we will refer to them as FT and PT , respectively. The bug issue

HADOOP-8695 [46] reported that the test FT occasionally fails. Debugging

showed the cause was the pollution of the field testDir.

The static field testDir (line 2) is of type org.apache.hadoop.fs.Path.

This class represents the name of a file or a directory, and it performs opera-

tions on that name, e.g., extracting the components of the path.2 The field is

initialized in the initialize method, which is annotated with @BeforeClass

so that JUnit executes it once before all the tests in the test class (and not

once before each test in the test class).

In revision 1099612 in the Hadoop SVN repository [45], the developers

added the test PT (while FT did not exist yet). PT sets the field testDir

(line 22) and leaves it polluted. In that revision, no other test read the value

of testDir, so no technique (e.g., Zhang et al.’s technique [148] based on test

reordering or Huo and Clause’s technique [58] based on taint analysis) prior

to our work would report PT as a polluting test.

Later on, in revision 1186529, the developers added the test FT . This test

reads the value of testDir and expects to get its initial value set by the

initialize method. In Java 6, JUnit indeed ran tests in the order they were

listed in the source of the test class; because FT was listed before PT , FT

was run first, causing no problems. However, in Java 7, the order in which

JUnit runs the tests became seemingly nondeterministic, which led to FT

failing seemingly nondeterministically. This failure is reported in HADOOP-

2While the objects in this example represent directory and file names, all objects are
still in memory, and the example does not pollute the file system but only the heap.
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1 public class TestPathData {

2 static Path testDir;

3 ...

4 @BeforeClass

5 public static void initialize() {

6 ...

7 testDir = new Path(System.getProperty("test.build.data",

8 "build/test/data") + "/testPD");

9 }

10 @Test // FT

11 public void testAbsoluteGlob() {

12 PathData[] items = PathData.expandAsGlob(testDir +

13 "/d1/f1*", conf);

14 assertEquals(

15 sortedString(testDir + "/d1/f1", testDir + "/d1/f1.1"),

16 sortedString(items));

17 }

18 ...

19 @Test // PT

20 public void testWithStringAndConfForBuggyPath() {

21 dirString = "file:///tmp";

22 testDir = new Path(dirString);

23 assertEquals("file:/tmp", testDir.toString());

24 ...

25 }

26 }

Figure 3.1: apache/hadoop example of a polluting test that led to the failure
of other tests later on
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8695, and debugging showed that FT fails whenever it is run after PT. In

this example, it is easy to establish that the cause is the pollution of the field

testDir.3

This example shows how test pollution can create problems, sometimes

much later from when the polluting test is added, making it potentially hard

to debug and fix. In this example, the polluted shared state is directly the

static field in the test class. However, in general, the polluted shared state

can be an object much deeper in the heap (not directly pointed to by the

static field), and the polluted shared state can be reachable starting from a

static field in the code under test (not in the test code). Debugging such cases

is much harder, especially long after the code is written. Most importantly,

the developers may not be aware that their tests pollute the shared state

until such pollution results in failures, when it is likely disrupting to their

workflow to debug failing tests.

PolDet helps developers find polluting tests early. If PolDet were run

on the class TestPathData when the test PT was added (although FT did

not exist yet), PolDet would report that PT polluted the shared state.

Moreover, PolDet would also report where the states differ. Given such a

report, the developer can then choose to either fix the test right away or to

provide a configuration option for PolDet to avoid reporting this pollution

in the future. Had the Hadoop developers used a PolDet(-like) tool in

revision 1099612, they could have avoided the problems that started from

revision 1186529 and lasted until revision 1374447.

3.3 Technique

We next describe our PolDet technique for finding polluting tests. PolDet

takes as input a set of tests (and configuration options that specify how to

compare states). PolDet produces as output a subset of tests that modify

the state, and for each such test produces some description of the state

difference, identified by an access path through the heap or a file name.

Test executions operate on the system state that consists of parts shared

across tests (program heap, local file system, and network-accessible persis-

3The fix in revision 1374447 moves the initialization of testDir to a new method
annotated with @Before such that JUnit sets up the state before each test.
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tent state, e.g., services, databases, etc.) and parts not accessible across tests

(e.g., the stack of each test invocation). We are interested in the parts that

are shared and can be polluted from one test run to another. We refer to

these parts as the cross-test-shared state. In general, pollutions could occur

via network or databases, but in this dissertation, we focus on pollutions

via heap state and file system; prior studies show these two to be the most

prevalent causes of test dependency [85,148].

We first discuss program points at which to compare states. We then

formalize the concept of heap-shared state, describe the state abstraction

that PolDet uses, define heap-shared state differences, and describe what

differences PolDet reports. We finally discuss the comparison of file-system

states.

3.3.1 Program Points

To find state pollutions, PolDet captures the state before the test starts

executing and after the test finishes executing. So far we have intuitively re-

ferred to the program points before and after the test execution. To precisely

define these points, we need to consider how a test framework invokes the

tests. Most test frameworks allow the developer to provide some setUp and

tearDown code to execute before each test (to set up the state) and after the

test (to clean the state at the end), respectively. Ideally, the states should

be captured before the setUp code and after the tearDown code. We elabo-

rate more on the choice of capture points in Section 3.4.2. Interestingly, in

our experiments we find that the setUp and tearDown code fragments do not

themselves pollute the state; if a test pollutes the state, then (almost) always

the test body itself pollutes the state.

3.3.2 Heap-State Representation

Formally, we model the heap-shared state of an object-oriented program as a

graph with labeled edges. Nodes represent the heap-allocated objects, classes,

and primitive values including null. Edges represent object fields: if the

graph models a concrete heap, then there exists an edge with a label f from

node o1 to node o2 iff the field f of the object represented by node o1 points
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to the object represented by node o2 or holds a primitive value represented

by node o2. Each object has a field representing its class, hence some nodes

represent classes themselves. Arrays are modeled as objects whose outgoing

edges are labeled with array indexes and point to array elements. We also

allow for abstract heaps whose labels need not be fields, as discussed later in

this subsection.

Definition 1. A heap-shared state is a multi-rooted graph G = ⟨V,E,R⟩ with

V ⊆ O ∪ C ∪P, E ∈ 2(O∪C)×F×(O∪C∪P), and R ⊆ V, where O is the set of objects

in the heap, C is the set of classes in the program, P is the set of primitive

values (including null), and F is the set of object fields in the program,

integers (for array indexes), and additional labels introduced by abstraction.

If the graph models a concrete heap, then ⟨o1, f, o2⟩ ∈ E iff o1.f = o2 on the

heap.

The heap-shared state represents the parts of the program state reachable

from the roots R. The roots correspond to the variables in the global scope

that are accessible across test executions. For example, in the Java language,

the roots are the static fields of all classes loaded in the current execution,

while in the C language, the roots are the global variables. The general

definition of roots needs to be instantiated for each language and even for

each test framework for the same language. For example, JUnit and TestNG

are the two most popular test frameworks for Java, and they share different

parts of the heap across tests: JUnit shares only the state reachable from the

static fields, while TestNG also shares the state reachable from the test-class

instance.

State abstraction can ignore some parts of the state that are overly complex

or contain regions irrelevant for the tests. For example, consider a state with

an object representing a set. The concrete set implementation uses some data

structure, e.g., an array, a tree, or a hashtable. For most tests (unless they

focus on testing the set library itself), the particular set implementation

is irrelevant, and only the elements that the set contains are relevant. A

concrete heap-shared state that captures all objects, including all the data-

structure implementation details, is usually not the best choice. To compare

the states and present the differences, it is preferable to consider two sets

with the same elements to be the same regardless of their implementation

details. This is similar to how Java serialization ignores some fields when
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writing object graphs to the disk. Abstraction can also reduce the size of the

captured state and runtime overhead.

Our technique allows for abstraction that omits some concrete edges from

the heap-shared state or introduces new edges to it. In a concrete heap-

graph, every edge label corresponds to some concrete field or array index in

the heap, but an abstract heap-graph can have additional edge labels. More

importantly, in an abstract heap-graph, some objects may have multiple

outgoing edges with the same label, e.g., a node representing a set may have

multiple outgoing edges labeled element. In general, PolDet users can

define abstractions specific to their program; by default, our implementation

uses some generic abstractions from the XStream library [142] as described

in Section 3.4.5.

3.3.3 Finding Heap-Shared State Differences

PolDet compares heap-graphs using graph isomorphism based on node bi-

jection [139]. In other words, the actual identity of the objects in the two

states does not matter, but only the shape that connects these objects and

the primitive values stored in the objects do matter. The rationale for this

is twofold. First, the two captured states come from the same program ex-

ecution, so two nodes that bijectively correspond in the two heap-graphs

most likely represent only one object in the actual program state. Second,

most tests do not depend on the object identity, so even if two nodes that

bijectively correspond do not represent the same object but represent two

different objects that have equivalent field values, the test execution is un-

likely to observe the difference. (In Java, code can observe the identity of an

object o, e.g., with System.identityHashCode(o).)

We first define isomorphism for two heap-graphs that have exactly the

same set of roots.

Definition 2. Two multi-rooted graphs G = ⟨V,E,R⟩ and G′ = ⟨V′,E′,R⟩ are

isomorphic, in notation G ≈ G′, iff there exists a bijection ρ ∶ V → V′ that is

identity for all classes and primitive values (ρ(x) = x for all x ∈ C ∪ P) and

E′
= {⟨ρ(o), f, ρ(o′)⟩ ∣ ⟨o, f, o′⟩ ∈ E}.

Because this definition requires the two graphs to have the same set of

roots, it is too strict for comparing heap-graphs in most popular languages,
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because the set of roots can change during program execution. For example,

languages that run on the JVM [82] or CLR [72] have lazy class loading that

can add static fields, increasing the number of roots, and programs can also

dynamically unload classes, decreasing the number of roots. To accommodate

different sets of roots, we define a restriction of a heap-graph with respect to

a set of roots, intuitively capturing only the subgraph that is reachable from

the given set of roots.

Definition 3. A root-restriction of a graph G = ⟨V,E,R⟩ for a set of roots

R′
⊆ R, in notation G∣R′, is the graph G′

= ⟨V′,E′,R′
⟩ with V′

= {v ∈ V ∣∃r ∈

R′.⟨r, v⟩ ∈ E∗
} (where E∗ is the reflexive transitive closure of E) and E′

=

E ∩ (V ′ ×F × V ′).

We next define common-roots isomorphism that requires two restrictions

to be isomorphic for the common roots.

Definition 4. Let G = ⟨V,E,R⟩ and G′
= ⟨V′,E′,R′

⟩ be two heap-graphs.

We say G is common-roots isomorphic with G′, in notation G ≈∩ G′, iff

G∣R∩R′ ≈ G′
∣R∩R′.

Finally, we specify precisely that PolDet checks common-roots isomor-

phism of heap-graphs to find tests that pollute the heap-shared state. If two

heap-graphs are not common-roots isomorphic, PolDet reports a differ-

ence. More specifically, PolDet finds the difference by traversing the two

graphs simultaneously from each root and then reports some path, called

access path, that leads to two nodes that do not bijectively correspond. For

abstract heap-graphs, where some nodes may have multiple outgoing edges

with the same label, there could be many differences even for the same node.

We require the tool to report any one difference, rather than all differences.

Definition 5. Two graph nodes v ∈ G and v′ ∈ G′ are not bijective if the

subgraphs rooted in v and v′ are not isomorphic, i.e., G∣{v} /≈∩ G′
∣{v′} when

ρ(v) = v′.

3.3.4 Class Loading

The use of common-roots isomorphism to compare heap states before and

after a test run can lead to false negatives, i.e., not finding a difference
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between the graphs of two states even when a test does pollute the state.

Common-roots isomorphism would not detect a test that polluted a part of

the state only reachable from the roots (static fields) of classes that were

lazily loaded after the test has begun. For example, consider a test whose

execution loads a new class and initializes its static fields with class-specific

default values, but the test modifies those values (or the state reachable from

the static fields of the newly loaded class) before PolDet captures the state.

If another test relies on the state reachable from this newly loaded class, this

subsequent test could fail when the values are not the default from the class

initialization. Because common-roots isomorphism ignores the roots of the

new class, it misses this state pollution.

One solution we propose for lazy class loading is to eagerly load all classes

needed by a test before starting the test. Such eager loading keeps the set of

roots of the graphs the same at all capture points, reducing common-roots

isomorphism (Def. 4) to simple isomorphism (Def. 2). Determining what

classes a test needs can be done by running the test twice: first run just to

collect the set of loaded classes, and second run, after eagerly loading all the

classes, to actually compare the states. The granularity of the collection offers

a trade-off between the performance of collection and comparison: collection

at the test-suite level may load classes that are not needed for some tests

(resulting in bigger states being collected for each test, incurring a higher

comparison overhead), while collection at the test-class or test-method level

incurs a higher overhead for the collection itself. Moreover, eager class load-

ing is challenging, e.g., when code dynamically generates and loads/unloads

classes, uses specialized class loaders, or otherwise may change the behavior

based on the order in which classes are loaded.

Another solution to handle lazy class loading would be to capture and

compare states also right after the static class initializer finishes; however,

that requires more instrumentation and runtime overhead.

3.3.5 Finding File-System State Differences

A test can pollute not only heap-shared state but also file-system state. For

example, a test can create a new file or modify an existing file, without

deleting the new file or resetting the content of the existing file after it fin-
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ishes, resulting in a polluted file system that could affect the behavior of

some subsequent test. PolDet tracks file-system state by tracking which

files are present in a given portion of the file system, hashing their content,

and checking the file/directory last-modified timestamps provided by the op-

erating system. Before a test starts, PolDet iterates through each file,

computes a hash of the content for each file, and stores a map from the file

name to the file hash. PolDet also saves the time before the test starts.

After the test finishes, PolDet uses the last-modified timestamp of the files

in the portion of the file system to check if any file or directory was modified.

If an existing file was written to, PolDet hashes the new content of the

file to compare with the saved hash to check if the content indeed changed

(or if the write just rewrote the old value). If a file PolDet hashed before

no longer exists, then the file was deleted. If any existing file is changed or

deleted, or if some new file is created, PolDet reports that the test polluted

the file-system state.

3.4 Implementation

We have implemented a prototype of our PolDet technique in a tool, also

called PolDet, that finds polluting tests written in the JUnit testing frame-

work. We built PolDet on top of JUnit, so it can be run on any project

that uses JUnit. We first introduce the relevant background about JUnit,

then describe where and how PolDet captures and compares heap-shared

states, and finally describe how PolDet compares file-system states.

3.4.1 JUnit Background

We briefly summarize some details of JUnit 4. JUnit is the most popular unit

testing framework for Java, e.g., out of 666 most active Maven-based Java

projects from GitHub, 520 used JUnit [68]. JUnit test suites are organized in

test classes, with each test being an instance method annotated with @Test.

Test classes can also have methods that set up the state before the test

and clean it after the test; these methods are annotated with @Before and

@After, respectively. Figure 3.2 shows an example test class with two tests

and illustrates how JUnit invokes the constructor and methods of this class

69



1 class T {

2 @Before void setUp() { ... }

3 @Test void t1() { ... }

4 @Test void t2() { ... }

5 @After void tearDown() { ... }

6 }

7 // before constructor

8 T t = new T();

9 // before setup

10 t.setUp();

11 // after setup

12 t.t1(); // main test body

13 // before teardown

14 t.tearDown();

15 // after teardown

16

17 t = new T();

18 t.setUp();

19 t.t2();

20 t.tearDown();

Figure 3.2: JUnit workflow for running tests and illustration of capture
points

for each test.

First, JUnit creates a new instance of the test class. Next, it invokes on

the instance the setup method(s) annotated with @Before, if any. Then, it

invokes the test method itself on the instance, running the test. Finally, it

invokes the cleanup method(s) annotated with @After, if any. JUnit uses

each test-class instance to run only one test; hence, it creates a new instance

and repeats the same process for each test method defined in the test class.

Any instance fields defined in the test class cannot be accessed across test-

method runs because they belong to their own separate instances. Therefore,

the heap-shared state consists only of all objects reachable from static fields.

3.4.2 Capture Points

PolDet extends the JUnit’s test running mechanism to capture the state

before and after each test executes. Figure 3.2 shows various execution points
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in the JUnit’s workflow where the state could be captured. For example, the

state before the test is run can be captured at the point before or after the

setUp method runs, and the state after the test is run can be captured at the

point before or after the tearDown method runs. In general, all these points

could have different states because setUp and tearDown methods can mutate

the state either to set it up or clean it for the test execution. Moreover,

some software projects may enforce a discipline where tests only use @Before

methods to set up the entire state the test depends on, so one could compare

the states right after @Before methods across consecutive tests rather than at

various points for the same test. Our tool can be configured to these various

scenarios.

3.4.3 Capturing Heap-Shared State

To capture states, we (1) modified the JUnit runner to call our state-capturing

logic whenever a test execution reaches one of the capture points and (2)

wrote a Java agent that keeps track of all classes loaded (and unloaded) by

the JVM. Running our PolDet tool requires providing the agent to the

JVM and using our modified JUnit. The modified JUnit runner invokes

our state-capturing logic that first queries the agent to obtain all the classes

loaded at the point of capture. For each loaded class, PolDet uses reflec-

tion to obtain all the static fields for that class. PolDet ignores final static

fields that point to immutable objects because the heap values reachable

from these fields cannot be changed. All other static fields that are not final

or point to mutable objects become the roots of the heap-graph. The state

reachable from these roots can change, so PolDet needs to capture the

objects reachable from these fields. Note that PolDet does consider static

fields that are not public because the values referred to by these fields can

still be observed and modified through various getter or setter methods.

More specifically, PolDet first creates a map whose keys are fully qualified

names of static fields and values are the pointers to the actual heap objects

pointed by these fields. PolDet then invokes XStream [142], a Java library

for XML serialization, to traverse the entire heap reachable from this map

and to serialize it into an XML format. The produced XML string encodes

the captured state of the program.
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3.4.4 Comparing Heap-Shared States

After obtaining the serialized XML strings of the captured states, PolDet

diffs them using XMLUnit [140], an XML diffing library. XMLUnit compares

(XML) parse trees rather than graphs.

However, if XMLUnit reports no differences, the two heap-graphs encoded

in XML are definitely common-roots isomorphic (Def. 4). If XMLUnit does

report some difference, it also provides a path to some differing entry in the

trees; in other words, it provides an access path that leads to the difference

(Def. 5). Each access path starts from one of the roots (static fields), traverses

fields through the heap, and ends up with a differing value pointed to by the

last field on the path. Such access paths can aid the developer in debugging

the state modification.

3.4.5 Abstracting Heap State for Java

As discussed in Section 3.3.2, not all heap objects are relevant for state

pollution. Some regions of the state are expected to change between test runs

and are not observable by any natural code that developers would likely write

in a test. While one could always observe all the state changes via reflection—

indeed, that is how XStream traverses the state to produce XML—most

natural code does not do that.

For example, common data structures found in the standard java.util

package, such as ArrayList or HashMap, have a field modCount, which is an

integer that counts how many times a data structure is modified in order to

detect concurrent iteration and modification of collections. As this counter

is private, the test code cannot easily access this field, and the developer

is unlikely to desire to observe this state. XStream abstracts away many

such implementation details when performing serialization. For example, by

default it serializes data structures from the java.util package at an abstract

level, e.g., serializes sets as unordered collections without storing the concrete

implementation details.

While some fields should be ignored when considering state pollution for all

projects, other fields may be ignored only for some projects. The developer

can decide whether or not some modified field could affect other tests, and

PolDet provides three options for the user to specify what fields to ignore
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when comparing states.

First, PolDet has an include roots option. Typically, the developer is

only concerned with problems in her own code. Any pollution accessible

only from some third-party library static field is less likely to be something

the developer can easily fix or even reason about. The include roots option

allows the developer to define a set of packages in which PolDet should

search for roots. For example, PolDet can include the static fields only

from classes that belong to the packages in the current SUT.

Second, PolDet allows the user to ignore certain roots by specifying

regular expressions for names of static fields. For example, many tests use

mocking frameworks, such as Mockito, that keep internal counters or other

static variables that do not affect the execution of the test. (Many static

fields that originate from Mockito are not filtered out by the include roots

option as the generated mocks are in some package from the SUT.) The

developer can opt to ignore such static fields with the exclude roots option.

Third, PolDet allows the user to apply a finer-grain control and ignore

certain instance fields of classes with the exclude fields option. Our inspec-

tion found fields that may refer to values such as caches, which are easily

affected by the execution of tests, yet will not affect their execution. As

PolDet uses XStream for state traversal, it can easily specify fields to ig-

nore by passing the class and field names to XStream, so it does not serialize

the field.

3.4.6 Eager Class Loading

We implemented eager class loading by (1) reusing the agent from PolDet

to keep track of all loaded classes, (2) adding a shutdown hook, which is a

thread that JVM runs right before it exits, and (3) adding code that uses

reflection to load a set of classes whose names are in a given file. We run

PolDet twice on all tests. The first run is with the agent but without state

capturing, and the hook queries the agent to obtain all classes loaded by

the tests and saves the class names to a file. The second run is with state

capturing, but before capturing any state, our code loads all the classes from

the first run.
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3.4.7 Comparing File-System State

To detect file-system state pollutions, PolDet hashes file contents and uses

the file last-modified timestamps provided by the operating system. To avoid

the high overhead of exploring the entire file system, PolDet allows the

user to specify the portions of the file system to consider. By default, we

consider the current directory where the tests are run and the temporary

directory (/tmp on Linux systems), because these are most likely places where

tests would modify files; other choices could have included the user’s home

directory or the parent of the current directory. Before the test suite starts

running, PolDet finds all files recursively reachable from these starting

directories, hashes each file’s content, and maps the file name to this hash.

Before each individual test run, PolDet creates a new file marked with

the current timestamp, conceptually executing touch f to create a fresh file

f. When the test finishes, PolDet conceptually runs find $d -newer f,

where f is the file created before the test started, and $d is either the current

directory or /tmp. This command finds all files (and directories) reachable

from $d whose last-modified timestamp is newer than the timestamp f. For

each such file, if it was mapped to some hash (i.e., it existed before the test),

PolDet hashes the file content again and compares it with the hash from

the map. If a file that was hashed before no longer exists, then the test

deleted the file. If any file is new, the hash of some old file differs, or a

file is deleted, the test polluted the file system, and PolDet reports the

polluting test and the file name. The map of file name to hash is updated

with any changed hash, and any deleted files are removed from the mapping

in preparation for the next test run.

3.5 Evaluation

To evaluate PolDet, we ask the following questions:

RQ1. What percentage of tests pollute heap-shared state?

RQ2. How accurate is PolDet (true vs. false positives)?

RQ3. What is the time overhead of running PolDet?

RQ4. How does eager loading compare with lazy loading?

RQ5. What percentage of tests pollute file-system state?
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3.5.1 Experimental Setup

To scale our experiments to a wide variety of projects, we automated the

integration of PolDet into Maven. Maven is a popular build system for

Java projects, widely used by open-source projects from GitHub. Because

PolDet builds on top of JUnit, we integrated PolDet into Maven by

replacing the junit.jar file in the Maven dependency repository with our

version that invokes PolDet instead of the original JUnit. Moreover, we

automatically modify the Maven pom.xml configuration file(s) for each project

to add our Java agent to run alongside our modified JUnit. With this setup,

any Maven project using JUnit 4 can be run with PolDet to find polluting

tests.

For our evaluation, we randomly selected 26 diverse Maven-based Java

projects from GitHub, varying in size (from 1,353 to 78,497 LOC), number

of tests, number of static fields, and application domains (including web

frameworks, gaming servers, or networking libraries). Figure 3.1 shows some

statistics about these projects.

PolDet has four main configuration options:

-capture points determines where to capture the states to be compared.

Figure 3.2 illustrates several points at which PolDet can capture the state,

and the user can configure PolDet to use any pair of capture points. Our

default uses the point before setUp paired with the point after tearDown. We

have also evaluated several other pairs and obtained almost identical results.

-include roots determines whether the graph roots should include static

fields from all loaded classes or only from the classes whose name matches

given regular expressions. In our experiments, we set the expressions to

match the packages from the project under test such that PolDet ignores

fields from library classes. Figure 3.1 shows some statistics about classes

and static fields. It shows the number of classes that are loaded during the

execution of the project’s test suite and have at least one static field; it

shows this number both “All” from all packages (i.e., as if running PolDet

with no specified include roots, considered disabled) and SUT only from the

packages whose source belongs to the project source code (i.e., as if running

PolDet with the include roots option matching package names, considered

enabled). Likewise, it shows the number of static fields as if include roots

was both disabled and enabled. However, disabling include roots results in
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many more roots and much larger heap-graphs. (In fact, our PolDet pro-

totype would often run out of memory if comparing states for include roots

disabled.) All our subsequent experiments run with include roots enabled.

We automatically find the packages in the project under test by finding the

source files in the project’s source code and inferring the packages from the

directory structure.

-exclude roots specifies the set of roots to ignore when serializing the states;

while this set can be arbitrary, our experiments evaluate two settings: (1)

not ignoring any roots and (2) ignoring roots from classes that are known to

lead to irrelevant state, in particular mock classes, certain fields of the Java

Standard Library, and automatically generated classes that have $$ in their

name (but not the inner classes that have only one $ in their name).

-exclude fields specifies the set of instance fields to ignore when serializing

the states; while this set can be arbitrary, our experiments evaluate two set-

tings: (1) not ignoring any fields and (2) ignoring the minimum number of

fields that makes PolDet report no pollution (which is used just in the ex-

periments to measure the size of pollutions and is not a recommended option

as it makes PolDet miss both all true positives and all false positives).

3.5.2 Results

Table 3.2 shows the results of running PolDet. For both test methods and

test classes, it tabulates the total number, the number that PolDet reports

as polluters when run without exclude roots (AR #Pol), the number that

PolDet reports as polluters when run with exclude roots (ER #Pol), the

number of true positives among the latter reports (ER #TP), and the number

that PolDet reports as polluting the file-system state (FS #Pol).
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Classes w/ Number of

Static Fields Static Fields

Project LOC All SUT All SUT

android-rss 1733 80 5 244 9

Athou Commafeed 11095 62 1 220 5

FizzBuzzEE 1353 29 0 72 0

Maven-Plugins 2061 216 0 1093 0

JSoup 14925 52 23 242 170

Mozilla Metrics 4180 255 10 981 19

Spring JDBC 3170 47 1 106 8

Jopt Simple 9655 88 5 241 13

slf4j 14085 42 13 129 57

Spring MVC 3675 364 1 1397 4

Spring Petclinic 2970 219 0 1161 0

Spring Test MVC 8240 446 17 1575 22

Apache Httpclient 78497 437 106 4593 355

Bukkit 32984 166 90 1393 1108

Caelum Vraptor 33898 449 62 5837 94

cuke4duke 8104 429 5 2230 5

Dropwizard 25838 1910 44 15886 105

Fakemongo Fongo 13755 458 76 2904 1616

Scribe Java 6049 60 21 151 46

Kuujo Vertigo 27708 165 12 484 43

Java APNS 5462 264 17 1006 62

Spark 6075 277 23 1096 58

Square Retrofit 9729 388 40 1482 104

Square Wire 13998 109 51 499 299

twitter Ambrose 5927 248 10 866 37

twitter hbc 6025 215 13 1595 54

Total 351191 7475 646 47483 4293

Table 3.1: Project statistics; the upper half had no pollution and the lower
half had some pollution
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Test Methods Test Classes

AR ER ER FS AR ER ER FS

Project #Tot #Pol #Pol #TP #Pol #Tot #Pol #Pol #TP #Pol Roots Fields Overhead

android-rss 24 0 0 n/a 0 4 0 0 n/a 0 0 0 2.37

Athou Commafeed 8 0 0 n/a 0 2 0 0 n/a 0 0 0 1.13

FizzBuzzEE 1 0 0 n/a 0 1 0 0 n/a 0 0 0 1.07

Maven-Plugins 28 0 0 n/a 1 5 0 0 n/a 1 0 0 1.18

JSoup 410 0 0 n/a 0 24 0 0 n/a 0 0 0 23.56

Mozilla Metrics 33 0 0 n/a 0 14 0 0 n/a 0 0 0 1.95

Spring JDBC 12 0 0 n/a 0 1 0 0 n/a 0 0 0 1.34

Jopt Simple 701 0 0 n/a 1 115 0 0 n/a 1 0 0 1.76

slf4j 13 0 0 n/a 0 2 0 0 n/a 0 0 0 1.21

Spring MVC 36 0 0 n/a 0 9 0 0 n/a 0 0 0 1.22

Spring Petclinic 2 0 0 n/a 0 2 0 0 n/a 0 0 0 1.17

Spring Test MVC 288 3 3 0 0 44 1 1 0 0 1 14 4.15

Apache Httpclient 1634 129 94 78 0 138 35 20 14 0 6 7 1.72

Bukkit 285 11 9 1 0 38 2 2 1 0 3 4 24.07

Caelum Vraptor 1132 172 36 1 5 165 66 4 1 4 8 5 56.01

cuke4duke 51 25 25 0 0 10 3 3 0 0 1 4 1029.57

Dropwizard 419 37 3 1 1 108 22 3 1 1 3 5 27.54

Fakemongo Fongo 359 68 64 50 0 15 14 13 2 0 2 4 4.17

Scribe Java 99 3 3 0 0 18 1 1 0 0 1 3 2.14

Kuujo Vertigo 63 13 13 13 0 4 2 2 2 0 1 5 1.55

Java APNS 89 18 15 0 0 15 10 9 0 0 10 6 1.82

Spark 54 42 42 39 0 6 4 4 3 0 5 18 622.74

Square Retrofit 197 9 1 0 0 17 4 1 0 0 1 3 2.14

Square Wire 61 5 5 0 0 8 3 3 0 0 1 3 2.70

twitter Ambrose 13 8 8 8 0 7 3 3 3 0 2 2 3.09

twitter hbc 93 32 3 3 0 14 4 1 1 0 1 1 2.00

Total 6105 575 324 194 8 786 174 70 28 7 46 84 4.50

Table 3.2: State pollution results; the columns are described in Section 3.5.2



3.5.3 Heap-State Pollution

Inspection Procedure: We manually inspect each report to determine if it

is a true positive or a false positive. We label a report as a true positive if one

can write a reasonable test that would pass or fail depending on whether it

was run before or after the reported polluting test. Otherwise, if one cannot

write a test that would observe the state difference using the available API

but would need to resort to reflection, we label the report as a false positive.

We inspect the access path from a static root to the polluted field reported

by PolDet to find how to access the polluted state. For each field on the

path, we check how it can be accessed starting from the static root. If we

find a reasonable way to read each polluted field, we consider the case a true

positive. When the path is short, it is relatively easy to determine whether a

report is a true positive or a false positive. In contrast, if the access path is

long or the polluted field is in some third-party library code, then the SUT

likely cannot directly observe the value of the field, suggesting it to be a false

positive. Indeed, we used the length of the path and the location of the field

to prioritize our inspection of the reported polluting tests; we examine first

the reports where the polluted field has a relatively short access path and

is in the SUT. We recommend such simple prioritization for developers to

inspect the reports. We discuss one example of each true positive and false

positive later in this section. When PolDet reports no pollution, we mark

the true positive cell in Table 3.2 as n/a; we still show the other statistics

about PolDet, e.g., runtime overhead.

Inspection Results: Our brief, initial inspection of the reports without

exclude roots (i.e., with all roots – AR) found many cases of false positives

due to a small number of common issues across projects. As one example,

several projects use the Mockito library that internally keeps various coun-

ters, e.g., SequenceNumber.sequenceNumber that tracks the number of times

a mock instance is created. A developer using Mockito would not care that

such an internal counter changed as it is effectively inaccessible. As another

example, several states include java.lang.ref.SoftReference objects that

have a field updated by the JVM to track the timestamp of when an ob-

ject was garbage collected. We want to avoid such fields. Finally, we found

several projects with automatically generated classes whose name includes

double $$. We also want to avoid such classes.
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Our default configuration for the PolDet tool is therefore to run with

exclude roots (ER) to exclude mockito, standard library fields for times-

tamps, and classes with $$. In this configuration, we provide the answers to

our first two questions. RQ1: PolDet reported 5.30% (324 out of 6105)

tests as polluting tests. RQ2: Of those, 59.87% (194 out of 324) tests are

true positive polluters.

While PolDet reports test methods, we also present the results for test

classes: a test class is considered a polluter if it has at least one method

that is a polluter, and a test class is considered a true positive if it has at

least one method that is a true positive. The ratios for classes are similar as

for methods: PolDet reported 8.90% (70 out of 786) classes, and of those,

40.00% (28 out of 70) are true positive polluters. An interesting finding is

that classes often have both true positive and false positive test methods.

We have even more interesting findings for roots that lead to the heap-

shared state differences for the tests in our projects. Given the overall small

number of such roots (46), we wonder if we can classify the reported pol-

luting tests based on these roots. Intuitively, a developer determines if a

report is a true positive by examining some portion of the polluted state,

and the developer can begin examining the state from the static root. We

clustered all the reports by the 46 static roots that lead to the pollution. We

found that the number of polluting tests associated with a reported static

root ranges from 1 to 76, with an average of 10.02 tests per root. We also

found that for almost all of the roots (43 out of 46), the tests associated

with the root are either all true positives or all false positives. Only three

of the roots are associated with tests that are a mix of both. Two roots

are in Apache Httpclient: NTLMEngineImpl.RND GEN has 3 associated tests,

and LocalTestServer.TEST SERVER ADDR has 15 associated tests. One root

is in Spark: Spark.server has 33 associated tests. In all these cases, tests

associated only with this static root are false positives, while the other tests

associated also with another, different static root are true positives. More-

over, all the tests associated with that other static root are true positives.

Overall, for all tests reported by PolDet, a developer could just examine

the static root(s) that lead(s) to the state difference and with high confidence

determine if the report is a true positive or a false positive.

While we expect a developer would inspect the PolDet reports starting

from the roots of the access paths that lead to differences, the developer
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could also inspect starting from the differences themselves. The column

“Fields” in Table 3.2 shows the minimum number of fields that should be set

in exclude fields to obtain zero reports from PolDet, and it is a measure

of how much the states differ. Note that these fields are instance fields,

close to the difference, rather than static fields that are roots from which the

differences are reachable. Overall we find that the user would need to ignore

a larger number of fields than roots to cover all the differences. As a result,

we recommend the users to inspect PolDet reports starting from the roots.

Example True Positive: One example true positive found by PolDet

is the PotionTest.setExtended test from the Bukkit project [13]. Bukkit

implements a server for the popular Minecraft game. The root static field

PotionEffectType.byName (declared in the SUT) has type java.util.Map and

tracks the added potion effects (which are one of the game features to modify

game entities).

Figure 3.3 shows the relevant code snippet. The body of the polluting

test setExtended calls the method registerPotionEffectType, which leads

to adding the PotionEffectType passed as the argument to a list of potions.

In this case, the argument passed is 19, representing the type of potion ef-

fect to be created and registered. The problem is that the potion type still

resides inside the static map byName even after the test finishes execution,

and other tests could depend on that map. To confirm this is a true posi-

tive, we generate the test unreliableTest, which adds the PotionEffectType

18 (which increases damage to an entity over time), and assert that the

PotionEffectType 19 (which decreases damage to an entity over time) does

not exist. This added test passes if run before setExtended and fails if run

after setExtended.

We chose this, relatively simple example for the ease of presentation. In

many other cases, the difference would be hard to understand without the

access paths from PolDet.

Example False Positive: Some of the pollutions reported by PolDet

are false positives, i.e., no reasonable test may fail because of the polluted

state. Figure 3.4 shows an example from the Java APNS project [96].

PolDet reports that the test ApnsConnectionTest.sendOneQueued pollutes

the field marshall reachable from the static root msg1 declared in the test

class. We omit details of the test body not relevant to the pollution; the key

is the assert statement that calls the method marshall on msg1. The code of
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1 public class PotionTest {

2 ...

3 @Test

4 public void setExtended() {

5 PotionEffectType.registerPotionEffectType(new

6 PotionEffectType(19) { ... }

7 });

8 }

9 ...

10 @Test

11 public void unreliableTest() { // we added this test

12 PotionEffectType.registerPotionEffectType(new

13 PotionEffectType(18) { ... }

14 });

15 assertNull(PotionEffectType.getByName(new

16 PotionEffectType(19) { ... }

17 });

18 }

19 }

Figure 3.3: The bukkit/bukkit true positive example with a test written to
confirm the pollution

marshall inside the class SimpleApnsNotification lazily initializes the field

marshall, so the state modification is a false positive. In fact, we find lazy

initialization to be a common cause of false positives in PolDet, and we

plan in the future to devise a heuristic to automatically remove such reports.

3.5.4 Efficiency

We evaluate the overhead of PolDet by measuring the ratio of the run-

times of executing the test suites with and without PolDet. We ran our

timing experiments on a 64-core Scientific Linux machine with 64 GB of

RAM. While such a machine is not a common developer’s desktop/laptop,

it is representative of a build-farm server on which many projects run their

continuous integration systems. All time measurements are wall-clock time.

Note that our PolDet prototype is not optimized for real deployment but

aimed for experimental purposes, e.g., it collects states at several points in

the test execution for each test, whereas a real tool would collect states at
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1 public class ApnsConnectionTest {

2 ...

3 static SimpleApnsNotification msg1 =

4 new SimpleApnsNotification(...);

5 @Test(timeout = 2000)

6 public void sendOneQueued() {

7 ...

8 assertArrayEquals(msg1.marshall(), ...);

9 }

10 }

11

12 public class SimpleApnsNotification {

13 ...

14 private byte[] marshall = null;

15 public byte[] marshall() {

16 if (marshall == null)

17 marshall = Utilities.marshall(COMMAND,

18 deviceToken, payload);

19 return marshall;

20 }

21 }

Figure 3.4: The notnoop/java-apns false positive example

two or even fewer points.

The last column of Figure 3.2 shows the PolDet overhead. It ranges

from 1.07x to 1029.57x. The two outliers, Spark and cuke4duke, have large

overhead due to heavy use of highly complex objects. For example, cuke4duke

is a specification framework that embeds JRuby, a Ruby JVM interpreter,

and hence the state that PolDet traverses is highly complex, including

all JRuby data structures. In such cases, using good state abstractions or

filtering out static roots and fields in PolDet can be useful not only to stop

the traversal of irrelevant state and reduce the high overhead but also to

control false positives. The last row (“Total”) reports the geometric mean

of overheads: 4.50x. RQ3: PolDet has a reasonable overhead on a build-

farm server even when run on the entire test suite, but we expect that most

developers would run PolDet only on their newly added tests.
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3.5.5 Eager Class Loading

We also apply the eager loading of PolDet on all 26 projects except Jopt

Simple, where eager loading causes the tests to deadlock. PolDet reports

468 polluting tests (144 more than with the default lazy loading) and has a

geometric mean overhead of 12.29x (which is higher than 4.50x because test

suites are run twice, and bigger heap-graphs are created and compared). The

new reports stem from common-roots isomorphism in lazy loading ignoring

static field roots of classes not loaded before the test. Many new reports are

tests that are the first to run in their test class, often with some other test(s)

from the same test class previously reported by the default lazy loading, and

the true or false positive status of the new reports being the same as the other

reports in the test class. However, with eager loading, PolDet reports more

false positives than with lazy loading. The majority of the new false positives

(120 out of 135) are from Bukkit and largely due to eager loading including a

static field to an instance of a server whose fields indirectly point to thread-

related services from the JVM; the only heap-shared state modifications are

to these thread services, which are rather nondeterministic and not controlled

by the SUT. In total, of 468 reports, 203 are true positives, i.e., eager loading

detected 9 true positives not detected by lazy loading. RQ4: With eager

loading, PolDet can detect more true positives, but at the cost of many

more false positives and higher overhead.

3.5.6 File-System Pollution

Table 3.2 also shows the results for file-system state pollutions (FS #Pol).

PolDet found only eight file-system state polluting tests, much fewer than

heap-shared state polluting tests, with a geometric mean overhead of 2.73x

when running only file pollution checks, without heap pollution checks. In-

terestingly, two projects that had no heap-shared state polluting tests had

file-system state polluting tests.

We examined all eight reports and found that each pollutes the /tmp di-

rectory. More precisely, each test adds some new temporary file, using Java’s

File.createTempFile method, which creates a file guaranteed to have a fresh

name. PolDet reports these tests because they do not delete the new files.

Although the pollution is mostly benign because the name is guaranteed to
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be fresh every time the test is run, one can still consider this pollution un-

necessary as the file system has extra files added, potentially resulting in

filling up the disk space or reaching the limit on the number of inodes. Com-

puting hashes of files removes some false positives, e.g., a Caelum Vraptor

test writes to an existing file in /tmp, but writes the same content. RQ5:

PolDet reports that few tests pollute the file system and just create fresh

temporary files in /tmp.

3.6 Threats to Validity

There are several threats to the validity of our evaluation. As usual, our

results may not generalize beyond the projects used in our evaluation. To

mitigate this threat, we randomly selected a diverse set of actively developed

and popular open-source projects that vary in size, number of developers,

and number of tests, and that span domains such as web frameworks, gaming

servers, or networking libraries.

Second, we implemented our PolDet tool only for JUnit 4 and for heap-

shared state and file-system state pollutions. Our results may be affected by

the way JUnit runs tests, but JUnit is the most popular testing framework for

Java. PolDet does not report pollutions in the database state or network-

connected storage systems. While those were not found as widespread in the

past [85,148], they are becoming more important, and future work is needed

to address the other persistent cross-test-shared state.

Third but most important, we manually examined the polluting tests re-

ported by PolDet to label false positives and true positives. Because we are

not developers on the projects and lack domain knowledge, our labeling can

be wrong. Several collaborators on our study [44] discussed the inspection

results with one another to minimize the risk of mislabeling. However, a fur-

ther study with real developers is required to establish that PolDet reports

are useful and prompt changes of polluting tests. Note that reordering the

existing test suite [148] to find a failure due to test-order dependency may

not work in many cases because the test suite may have no test that can fail

due to the pollution. Indeed, the goal of PolDet is to help proactively find

pollutions even before they can manifest in test failures.
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Chapter 4

Related Work

In this chapter we discuss research related to unreliable tests in general and

to the techniques this dissertation has presented in particular.

4.1 General Studies Related To Test Unreliability

Luo et al. [85] performed the first extensive study of unreliable tests; the

study identifies common root causes of unreliable tests and common pat-

terns that developers use to fix the unreliable tests. The study identifies

wrong assumptions on the environment and test-order dependency as some

root causes of unreliability, and it served as motivation and inspiration for

this dissertation. NonDex and PolDet build on this study and presented

techniques to help developers proactively identify some kinds of unreliable

tests. Waterloo et al. [134] performed a broader study to identify bugs in

tests; test unreliability is just one category of bugs in tests. Vahabzadeh

et al. [131] also performed an empirical study of bugs in tests and identify

unreliable tests as a class of bugs in tests and presented several causes of un-

reliability. This dissertation focuses mostly on designing techniques to detect

unreliable tests and less on quantifying the extent of the problem in practice.

Regression testing techniques such as test selection [10,25,26,38,40,51,52,

111, 149], prioritization [16, 23, 50, 73, 87, 92, 123, 144], reduction [49, 57, 112,

147], and parallelization [8, 76, 102] are hindered by unreliable tests because

any of the techniques can change the environment in which tests are run.

Lam et al. [75] are the first to quantify the effect of test-order dependency on

regression testing techniques. The findings motivate the research presented

in this dissertation and show that unreliable tests are an important problem.

Zhang et al. [148] empirically studied test-order dependency and proposed a

technique to find dependent tests in existing test suites. Their study of issue-
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tracking systems for five projects found 96 dependent tests, of which 61% are

due to heap-shared state. Their technique explores random permutations of

test suites to manifest dependent tests. While their technique can actively

detect dependent tests among the tests in the existing test suite, PolDet

can proactively detect polluting tests even before a dependency can manifest.

Haidry and Miller [48] presented a set of prioritization techniques that

take into account test-order dependencies and schedule tests to run in an

order that preserves the dependencies. Bell et al. [8] presented ElectricTest,

a technique to automatically detect dependencies between tests. ElectricTest

instruments the JVM and finds data dependencies between tests (in contrast

to manifest dependencies, data dependencies may or may not cause unre-

liable tests); the technique accounts for the dependencies when scheduling

tests for parallel execution and ensures that the dependencies are preserved

at run-time either by scheduling tests in the required order, or by simulating

the data (if the data that the dependency is on is of a primitive type). Parsa

et al. [102] use an Ant Colony System to optimize the scheduling of tests

for parallelization in the presence of dependencies; their goal is to achieve

a close to optimal schedule while preserving the dependencies. Similarly,

Kappler [71] proposes an algorithm to work around test-order dependencies.

This line of research demonstrates that dealing with unreliability after the

fact is painful; our techniques are related in that we also aim to help de-

velopers deal with unreliable tests, but our approach is to help developers

identify problems early and enable them to remove the problems, rather than

make downstream techniques resilient to unreliable tests after they were in-

troduced.

Shamshiri et al. [119] show that even automated test generation is impacted

by the issue of unreliable tests. The empirical study shows that overall, over

15% of tests that are automatically generated by state-of-the-art tools such

as Randoop [99], EvoSuite [32], and AgitarOne [1] are unreliable. Arcuri et

al. [5] improve EvoSuite by enforcing that generated tests not make certain

assumptions on the OS environment. The improvements isolate generated

tests from the file system, console input, system state, and heap state.

Another related area of research is finding bugs due to environment. Parizek

et al. [100] explore different environments to find faults in Java systems; the

technique uses model checking to explore different environments. Gao et

al. [34] performed a study to quantify how differently software behaves in
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different environments. The study shows that when tests run in different

environments, their coverage could vary wildly (up to 184 lines covered),

showing that even evaluating the quality of tests in the presence of unreli-

able tests is challenging.

4.2 Techniques to Detect Unreliable Tests

Herzig and Nagappan [54] developed a technique based on association rules

to identify when a test failure is a false alarm, i.e., the failure is not due

to the SUT but rather to the test code or test infrastructure; the approach

focuses developers’ inspection and debugging effort by alerting the developer

that a failure is likely to be a false alarm. This dissertation takes a different

approach: rather than waiting for tests to fail and then decide if the fail-

ures are false alarms, we proactively detect unreliable tests. Our approaches

are complementary, because it is likely uneconomical to proactively fix all

unreliable tests (further, some causes may not be known a priori); our set

of techniques could be used even after a false alarm is identified, to provide

to developers more precise debugging information. Another more general

technique that may help developers identify when a failure is unreliable was

developed by Jiang et al. [61] who designed a technique that leverages infor-

mation retrieval to identify what causes a test alarm; different from Jiang et

al.’s technique, we help developers detect and debug unreliable tests.

4.2.1 Assumptions on APIs

Detecting problems due to wrong assumptions that developers make about

specifications and implementations has been explored in many domains. For

example, Jin et al. [62] reported how wrong assumptions about code can

lead to performance bugs, in particular, they find the second most common

reason for the introduction of performance bugs to be that “developers mis-

understand the performance feature of certain functions”. NonDex does not

target performance bugs but helps detect another class of bugs that are due

to specification misunderstanding. As another example, from a security per-

spective, Wang et al. [133] proposed a technique to analyze implicit assump-

tions that are necessary for the secure use of libraries. Their work involves
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building models of methods which are then used to find bugs in software that

fail to meet these implicit assumptions, finding serious security vulnerabili-

ties in the process. Their techniques are mostly static, while NonDex uses

a dynamic exploration of methods with nondeterministic specifications.

Randomness has been applied in different contexts to detect bugs, with

many of these applications for concurrent code. For example, Eytani et

al. [28] developed a tool that monitors shared variable accesses and applies

random context switching when shared variables are accessed in order to

trigger bugs in concurrent code. Parizek and Kalibera [100] used an abstract

environment in software model checkers that randomly selects sequence of

method calls in each thread to detect bugs in concurrent programs. Nistor

et al. [95] randomly generated test sequences for concurrent programs in

order to expose concurrency bugs. Joshi et al. [63] applied randomness in

thread scheduling to create resource deadlocks in multi-threaded programs.

Moreover, JPF can also control thread schedules to potentially explore all

paths in the code [132]. In contrast, NonDex focuses on sequential code

and exploration of underdetermined specifications.

Nondeterminism has been also studied for various other domains. For

example, for map-reduce programs, Xiao et al. [138] studied nondeterminism

that arises due to non-commutative reducers and found many bugs due to

non-commutative reducers that make assumptions on the order of input data

rows. For GUI code, Memon and Cohen [90] showed various factors that

may cause nondeterminism and hence impact the results of analyses and

experiments based on GUI software.

For state machines, testing conformance of deterministic implementations

against nondeterministic specifications has a long history [55, 103, 104, 116].

More recently, Cook and Koskinen [22] aim to design a unified approach to

reason about nondeterminism in real time systems; they apply their technique

to examples drawn from real code. NonDex explores nondeterminism in the

context of abstract data-type specifications using concrete exploration of real

code.

API unit tests have previously been proposed for use in helping devel-

opers learn how to use the API, in addition to the documentation of the

API [94]. Such an approach can be potentially made even more effective

by adding “negative” unit tests that show how not to use the API, in the

sense that they show what can happen when developers make deterministic
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assumptions on nondeterministic API specifications. Applying our NonDex

to code that currently uses an API can help to generate such tests, by first

running NonDex on the existing tests and writing new API unit tests to

capture the behavior of the code whenever deterministic assumptions do not

hold.

Various research projects proactively detect software problems. For exam-

ple, Shacham et al. [118] proposed a technique that finds atomicity violations

that can lead to potential bugs after software changes; Lin et al. [81] proposed

a technique for retrofitting parallelism into existing applications to prevent

performance problems; and Yabandeh et al. [143] proposed a technique for

distributed systems where nodes predict distributed consequences of their ac-

tions and can avoid errors. We share the common philosophy of proactively

detecting problems but focus on test suites.

Detecting differences between implementations and finding what is the

impact of those differences is a well-established area of research. Change-

impact analysis has been widely explored in static and dynamic program

analysis context [2,3,14,41,77,78,80,98,108,113] to find the entities impacted

by a change. Such techniques could be used to find when changes in libraries

may affect any of the tests.

4.2.2 State Pollution

Researchers have developed techniques that compare states. For example,

Cleve and Zeller [21] and Sumner and Zhang [125] used the state differences

between a passing run and a failing run to isolate the cause of a failure. In

contrast, PolDet uses state comparison to determine whether or not a test

pollutes state and also helps in debugging by pinpointing the pollution.

Researchers have also proposed techniques to refactor shared state into

private state. For example, Wloka et al. [135] proposed a program transfor-

mation for re-entrant programs to refactor shared state to thread-local state,

and Wrigstad et al. [136] proposed a simple type system to annotate thread-

local data for Java. Similar research could be applied to refactor data to be

test local to remove pollution. We plan in the future to consider automatic

fixing of polluting tests.

Bell and Kaiser [7] presented VMVM, a tool that runs multiple tests in the
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same JVM but selectively resets state regions that may have been written

by tests such that each test runs from the initial state as if run in a separate

JVM. VMVM instruments all classes and re-initializes the static fields that

can be shared across tests. The goal is to speed up testing compared to

running each test in a separate JVM. VMVM can tolerate test pollution by

providing support for automatically resetting state, but it does not determine

if a pollution occurred or not. Muslu et al. [93] also proposed to handle test

dependence by running each test in an isolated environment. In contrast,

PolDet uses a less intrusive instrumentation than VMVM, can also detect

and not only avoid/tolerate test dependence, and proactively encourages de-

velopers to fix polluting tests.

Huo and Clause [58] use taint analysis to find brittle assertions, i.e., cases

when a test reads from state regions not explicitly written by the test. These

reads can find potential test dependencies on heap-shared state. Our common

goal is to find potential dependencies, but PolDet finds writes to the shared

state rather than reads from the shared state. Combining the two techniques

could give more accurate reports by pairing the tests that pollute certain

state regions with the tests that read from those state regions.
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Chapter 5

Future Work

There are many causes for unreliable tests that our techniques do not directly

help with. In this section we discuss alternative approaches to tackling the

problem of unreliable tests.

In NonDex we use a dynamic exploration approach to find when code

makes wrong assumptions on APIs. Most of the underdetermined APIs are

related to iteration of unordered collections; static analysis techniques that

can show that the body of a loop iterating over an unordered data structure is

an associative-commutative operation can identify safe and unsafe iterations

over unordered collections and could help identify unreliable tests. Our JPF

results in Section 2.6.3 show that the failure probability is high when there is

a wrong assumption therefore just random sampling of some behaviors may

expose wrong assumptions.

Our NonDex technique was most useful to identify unreliable tests, but

wrong assumptions could also be bugs in the SUT; developers may make

wrong assumption in their SUT which may cause code to break in produc-

tion. Because most APIs are deterministic, many issues are hard to spot.

An alternative and complementary solution is to make the underdetermined

APIs exhibit different behaviors in different runs and provide developers a

knob allowing them to natively turn on or off the nondeterminism in the exe-

cution environment. Python 3 [106] allows developers to control the hash seed

which controls the iteration order for most of the unordered collections [107].

Unfortunately, the JVM does not offer this functionality; furthermore, more

generally, because of the more pervasive overriding of hashCode in Java, it

would be more challenging to introduce uniform and controllable nondeter-

minism in the JVM.

Many times, developers are unaware that a specification is underdeter-

mined. There is a need for more tools and specification languages to pre-

cisely document underdetermined specifications in practice. In our research,
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we did not benefit from having formally specified APIs, but rather we had

to rely on imprecise documentation, written in English; while it is good that

this documentation exists, having formal specifications would make it eas-

ier to check that code does not make wrong assumptions. Having formal

specifications would enable a whole set of static techniques that could alert

developers when they are likely to misuse an API. An area of future work

is to automatically mine or infer specifications of underdetermined APIs; a

technique may leverage multiple implementations of the same API to infer an

underdetermined specification that is satisfied by either implementation—for

Java Standard Library APIs there is the advantage that there are multiple

implementation of each API that are available, but there is also the chal-

lenge that sometimes the implementations of these underdetermined APIs

is native and written in C. A technique to effectively mine underdetermined

specifications needs to consider these factors.

Our NonDex technique could be generalized to document underdeter-

mined APIs. Library developers may annotate underdetermined APIs in

their own library with annotations indicating the kind of underdetermineness

the API has. We plan to generalize NonDex to support these annotations

and add exploration capabilities to the annotated APIs. This capability

enables users of the libraries to test that they are not misusing the APIs.

NonDex easily supports APIs that return collections that need to be per-

muted. We foresee that other kind of return values may need different kind

of randomization.

NonDex can be enhanced with better debugging support. Our implemen-

tation assumes a single wrong assumption is enough to expose a test failure.

This assumption indeed held in our experiments, but we foresee that it does

not always hold. We could explore techniques such as delta debugging [146]

which do not assume a single assumption to be enough to expose the wrong

assumption.

Our PolDet technique detects when tests pollute the state and informs

the developer, but we foresee that it is possible to synthesize teardown meth-

ods that clean-up the environment for a test. PolDet can naturally help

with this goal as it can provide to a synthesis algorithm the input-output

pairs, i.e., the clean and polluted state. The challenge is to synthesize mean-

ingful and readable code for recreating the clean state—in theory one could

clean-up the state using reflection but that would yield unmaintainable code.
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Cleaning up the state after every test may break subsequent tests that de-

pend on the polluted state; to aid with this issue, setup methods could be

synthesized that set-up the required state for a test.

PolDet is unaware (by design) of whether a test exists that depends on

the polluted state because PolDet aims to encourage developers to follow

good engineering practices as they write their tests. Information flow analysis

techniques could assist developers in determining which tests if any depend

on the polluted state.

PolDet sometimes reports pollution when the polluted state is likely

inaccessible because the access path is long or the state is stored in private

fields and it is hard to reach to. PolDet could be improved to add heuristics

that filter out the false positives based on the length of the access path and

the accessibility of the polluted data.

PolDet works well for heap pollution and even file system pollution, but

it runs into limitations if other kinds of local environments get polluted, e.g.,

system environment variables. Another challenge is represented by remote

environments, e.g., remote storage services or databases. Sometimes for re-

mote systems it may be easier to simply reset the remote system than to

check whether there was any pollution, but while this is easier, it can be also

very expensive, so it may prove beneficial to detect and clean-up only the

polluted state.

We conjecture that one of the most beneficial and impactful ways of reduc-

ing the pervasiveness of unreliable tests may be through education. Raising

awareness about unreliable tests and exposing students to tools that help

with detecting unreliable tests may make tomorrow’s developers less likely to

introduce unreliable tests in their test suites. We did incorporate discussions

about unreliable tests and exposed our students to NonDex throughout our

teaching. More research is required to establish what are the best ways to

educate our students about unreliable tests.

94



Chapter 6

Conclusions

Unreliable tests are an important problem in practice, teaching, and research

because unreliable tests slow down the testing and development process. We

live in a world where fast software evolution is the norm, and unreliable

tests slow down development and the necessary quality assurance process by

failing without exposing a bug in the SUT.

This dissertation argues for a proactive approach to detecting unreliable

tests by detecting unreliability causes as soon as they are introduced. The

alternative—postponing the fixing of unreliability causes—increases the costs

later when unreliable tests can impact many developers and slow down the

development process unnecessarily. Fixing the unreliability as soon as it is

introduced even before it can manifest and negatively impact developers is

desirable. Fixing the unreliability as soon as it is introduced is also the easiest

for the developer that introduced the unreliability.

Underdetermined specifications are good because they allow implementers

to provide various implementations. However, wrong assumptions on un-

derdetermined specifications are bad because they can result in seemingly

random failures. In particular, ADIUS code that assumes a deterministic

implementation of nondeterministic specification is susceptible to failures

that arise from changing implementations. Tests that depend on ADIUS

code can become unreliable tests that seemingly nondeterministically pass

or fail. We presented a novel NonDex technique to detect unreliable tests

due to ADIUS code. NonDex detected many unreliable tests in both larger,

open-source projects and small-sized student code submissions.

When a test fails without exposing a bug in the SUT, the testing pro-

cess becomes less reliable. Polluting tests introduce dependencies, leading

developers to waste time and resources. We formalize the test pollution

problem and present PolDet, a technique to find polluting tests by captur-

ing and comparing heap states and file-system states during test execution.
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Our PolDet prototype runs relatively fast on build machines, incurring on

average 4.50x overhead. Our manual inspection of PolDet reports found

194 polluting tests that could easily cause other tests to fail. We envision

PolDet to be used during testing to prevent the introduction of polluting

tests in the test suite. We believe the philosophy of proactively maintaining

a reliable test suite can help software teams to develop and test software

faster and better.

To conclude, this dissertation introduces two techniques that assist de-

velopers to proactively identify causes of unreliable tests. Bugs in tests

are important because they not only slow down developers but also hin-

der the developers’ trust in their regression testing process because of false

alarms in test failures. This dissertation argues that problems with unreliable

tests should be addressed in a proactive fashion (this is not a controversial

idea—developers do it with most other kinds of bugs because it appears cost-

beneficial). There are many future directions in the area of unreliable tests

that look interesting and useful. First, detecting more causes of unreliable

tests would help developers identify other unreliable tests, e.g., due to net-

work flakiness. Second automated fixing, while challenging, would ease the

developers’ work by assisting in removing unreliability from their test suites.

Finally, putting more effort in educating today’s students and tomorrow’s

developers about unreliable tests is a very effective way to act in a proactive

fashion to prevent the introduction of unreliable tests in test suites.
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Ernst, M. D., and Notkin, D. Empirically revisiting the test
independence assumption. In ISSTA (2014), pp. 385–396.

[149] Zheng, J., Robinson, B., Williams, L., and Smiley, K. Ap-
plying regression test selection for COTS-based applications. In ICSE
(2006), pp. 512–522.

107

http://www.xmlunit.org/
http://x-stream.github.io/
http://xstream.codehaus.org/

	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1 Introduction
	Thesis
	Terminology
	Flaky Tests
	Unreliable Tests
	Practical Considerations

	Wrong Assumptions on Underdetermined APIs
	Main Contributions

	State Pollution
	Main Contributions

	Dissertation Organization

	Chapter 2 Detecting and Debugging Wrong Assumptions on API Specifications
	Overview
	Underdetermined Specifications
	An Example Unreliable Test
	Levels of Underdetermineness

	Technique
	Identifying Underdetermined APIs
	Nondeterministic Models
	Implementations of Models

	Implementation
	Instrumentation Engine
	Runner
	Detector
	Debugger

	Evaluation
	Experiments on Open-Source Projects
	Practical Impact and Adoption
	Experiments on Student Code

	Systematic Exploration using Java PathFinder
	Motivating Example
	Technique and Implementation
	Evaluation


	Chapter 3 Detecting State-Polluting Tests to Prevent Test Dependency
	Overview
	Motivating Example
	Technique
	Program Points
	Heap-State Representation
	Finding Heap-Shared State Differences
	Class Loading
	Finding File-System State Differences

	Implementation
	JUnit Background
	Capture Points
	Capturing Heap-Shared State
	Comparing Heap-Shared States
	Abstracting Heap State for Java
	Eager Class Loading
	Comparing File-System State

	Evaluation
	Experimental Setup
	Results
	Heap-State Pollution
	Efficiency
	Eager Class Loading
	File-System Pollution

	Threats to Validity

	Chapter 4 Related Work
	General Studies Related To Test Unreliability
	Techniques to Detect Unreliable Tests
	Assumptions on APIs
	State Pollution


	Chapter 5 Future Work
	Chapter 6 Conclusions
	References

