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ABSTRACT

We propose different approaches to infer causal influences between agents in a network using only observed

time series. This includes graphical models to depict causal relationships in the network, algorithms to

identify the graphs in different scenarios and when only a subset of agents are observed. We demonstrate

the utility of the methods by identifying causal influences between markets and causal flow of information

between media sites.

We study the statistical and functional dependencies in network of processes. Statistical dependencies can

be encoded by directed information graphs (DIGs) and functional relationships using functional dependency

graphs (FDGs), both of which are graphical models where nodes represent random processes. DIGs are based

on directed information that is an information theoretic quantity. To capture the functional dependencies in

a dynamical system, we introduce a new measure in this work and show that the FDGs are a generalization

of DIGs. We also establish sufficient conditions under which the FDG defined by our measure is equivalent

to the DIG. As an example, we study the relationship between DIGs and linear dynamical graphs (LDGs),

that are also a type of graphical models to encode functional dependencies in linear dynamical systems. In

this case, we show that any causal LDGs can be reconstructed through learning the corresponding DIGs.

Another contribution is to propose an approach for learning causal interaction network of mutually exciting

linear Hawkes processes. In such processes, a natural notion of functional causality exists between processes

that is encoded in their corresponding excitation matrices. We show that such causal interaction network is

equivalent to the DIG of the processes. Furthermore, We present an algorithm for learning the support of

excitation matrix (or equivalently the DIG). The performance of the algorithm is evaluated for a synthesized

multivariate Hawkes network as well as real world dataset.

We also study the problem of causal discovery in presence of latent variables, in which only a subset

of processes can be observed. We propose an approach for learning latent directed polytrees as long as

there exists an appropriately defined discrepancy measure between the observed nodes. Specifically, we

use our approach for learning directed information polytrees. We prove that the approach is consistent for

learning minimal latent directed trees. Furthermore, we study the problem of structural learning in vector

autoregressive (VAR) models with latent variables. In this case, we extend the identifiability to a broader

class of structures. In particular, we show that most of the causal structure of a VAR model can be recovered

successfully when only the causal network among the latent variables is a directed tree.

Last but not least, we introduce a new statistical metric inspired by Dobrushin’s coefficient [1] to measure

the dependency or causal direction between variables from observational or interventional data. Our metric

has been developed based on the paradigm that the conditional distribution of the variable of interest given all

the direct causes will not change by intervening on other variables in the system. We show the advantageous

of our measure over other dependency measures in the literature.

We demonstrate the effectiveness of the proposed algorithms through simulations and data analysis.
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CHAPTER 1

INTRODUCTION

We begin by describing the main focus of our work, causal inference, and its applications in different dis-

ciplines. We continue by summarizing our contributions and the related works. Finally, we conclude by

introducing the notations used in the rest of this report.

1.1 Problem Overview and Significance

Research in many disciplines, including biology, economics, social sciences, computer science, and physics,

involves studying large networks of interacting agents. The goal of this dissertation is to establish a framework

to infer the causal structure in a network of interacting random processes/variables and to succinctly represent

it using graphical models. Such a framework is comprised of three components: metrics to measure causal

inference, well-defined graphical models that meaningfully represent causal influences between the variables,

algorithms that identify such graphs when all or a subset of the processes are observed.

In systems where a notion of time (past/future) exists, the causal influences between the variables maybe

categorized into strictly causal and simultaneous. In strictly causal systems, the direction of influences is

only from past to present. Such influences govern phenomena in the real word, while the simultaneous effects

are usually due to the following two artifacts: i) lack of a natural time axis or loss of it due to measurement

effects (e.g, low resolution measurements); ii) existence of confounders that were not factored into the model.

Yet both of aforementioned factors commonly occur in practice. As such a framework to capture both causal

and simultaneous influences are essential. In this dissertation, we study two types of networks: those with

a notion of time referred to as network of random processes or time series and those with only simultaneous

influences referred to as network of random variables.

A simple example of network of time series arises in quantitative finance. A market analyst observes the

value of different market indices or the price of different stocks for a period of time and his goal is to learn

the causal influences between the financial institutions during the observation time. Such knowledge may

be subsequently used to design investment strategies or regulatory actions. An example of network with

only simultaneous influences is in biological gene perturbation dataset. In this experiment, the activities of

different genes are observed or manipulated in order to identify the causal structure among them.

1.2 Our Contribution

Our first contribution is to study the connection between statistical and functional dependencies in a dy-

namical system. Most of the existing approaches to discover functional dependencies are based on interven-

tion [2–4]. Yet it is often impossible to perform such interventional manipulations. In this dissertation, we
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define a statistical measure that is able to capture the functional dependency among processes (variables) in

dynamical systems. Subsequently, using this measure, we define a new type of graphical model, functional

dependency graph (FDGs) that encodes such dependencies. While our metric is defined using basically

an interventional paradigm, we establish a relationship between our measure and the directed information

measure for capturing interdependencies in dynamical systems, which is calculated via mere observation [5].

More precisely, we show that the statistical dependency structure of a system (captured by DIG) does not

necessary reveal all the functional dependencies of that system (captured by FDG) in general. We also

introduce sufficient conditions under which the two graphical models (FDGs and DIGs) are equivalent. In

other words, learning the statistical relationships is enough to identify the functional dependencies without

any need for intervention.

Our second contribution is to propose an approach for learning causal interaction network of mutually ex-

citing Hawkes processes. In multivariate or mutually exciting point processes, occurrence of an event (arrival)

in one process affects the conditional probability of new occurrences that is captured by the excitation matrix

of the network. We prove that for linear multivariate Hawkes processes, the causal relationships implied by

the excitation matrix is equivalent to a specific factorization of the joint distribution of the system called

minimal generative model. Minimal generative models encode causal dependencies based on a generalized

notion of Granger causality, measured by causally conditioned directed information [6]. One significance of

this result is that it provides a surrogate to directed information measure for capturing causal influences for

Hawkes processes. We also provide an estimation method for learning the support of excitation matrices

with exponential form using second-order statistics of the Hawkes processes [7].

Our third contribution is to develop an approach for structure learning of directed graphical model with

polytree structure, when only a subset of random processes are observed. Specifically, we will consider

the scenario of latent directed information polytrees, where the directed information graph representing

observed and unobserved processes is a tree with multiple roots. Learning such graphs requires both finding

the number of hidden processes as well as recovering the connections among all hidden and observed nodes.

To perform the learning task, we define a discrepancy measure between nodes of a directed polytree and

introduce an algorithm that identifies the structure given the discrepancies between only a subset of nodes

(observed nodes). Furthermore, we study the problem of structural learning in vector autoregressive (VAR)

models with latent variables. We show that the entire causal structure can be identified successfully when

the topology of the VAR model is a directed tree and every latent node has at least two children and two

parents. Extending this result, we propose a set of sufficient conditions under which the causal influences

from latent to observed nodes, between observed nodes, and also between latent nodes can be recovered

when only the causal structure between the latent nodes is a directed tree [8]. We also propose an algorithm

that finds all possible minimal latent networks (networks with minimum number of latent nodes) if there

exists at most one directed path of each length between any two observed nodes through the latent part.

Our last but not least contribution is the introduction of a statistical metric inspired by Dobrushin’s coeffi-

cient [1] to measure the dependency or causal direction between variables from observational or interventional

data. Our metric has been developed based on the paradigm that the conditional distribution of the variable

of interest given all the direct causes will not change by intervening on other variables in the system. Despite

other dependency measures in the literature, this measure does not have shortcomings in detecting direct

influences and it has the ability for group selection in order to have effective interventions. We show the

applicability of the proposed algorithms through simulating both synthetic and real-world dataset.
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1.3 Literature Review

Causality Granger causality and the principle of intervention are two of most commonly used frameworks

to identify causal interactions in a network. The principle of intervention or the Pearl’s notion of causality [9]

infers the causal relationships by fixing certain variables and allowing others to change, to see how these

changes influence the statistics or the values of the other variables. This method was developed mainly based

on structural equation modeling (SEM).

The idea of Granger causality is that a random process X is causing Y, if incorporating the past of

X improves the prediction of the future of Y. Granger [10, 11] proposed a framework to capture such

influences in an auto-regressive (linear) setting. The work in [12] extended previous works on linear setting

such as [13–15] to more general settings using conditional independence tests known as “strong Granger

causality” [16,17].

Sims [18] proposed an alternative test for causality of autoregressive time series, equivalent to Granger’s.

He proposed that X influences Y if Xt is correlated with the whole future Y nt+1 given the past. The works

in [16, 17] developed general forms of Granger and Sims causality using conditional independencies. These

works only discussed testing the presence of statistical relationships, not measuring the strengths of such

relationships.

Graphical Models In order to visualize the causal structure in a network of random variables or time

series, several graphical models have been developed. Bayesian networks [9] and ancestral graphs [19] are

the two main graphical models for network of random variables. We will briefly explain the Bayesian

network in Chapter 2 but refer the interested reader to [4] and [20] for more details. Dynamic Bayesian

network (DBN) [21] is another class of graphical models that extends Bayesian networks to model probability

distributions over semi-infinite collection of random variables. For example, Hidden Markov Models (HMMs)

can be represented as DBNs. Since the size of DBNs depends on the time-homogeneity and the Markov order

of the time series, in general, the graphs can grow with time. Thus, they are not well suited for providing

succinct visualization of relationships between the past and the future of time series. As an example, the

DBN graph of a vector autoregressive (VAR) process X(t) ∈ Rm of order L requires mL nodes [13]. Directed

information graphs (DIGs), the alternative graphical model that we study, represent each random process

as a node in the graph. Therefore, their size neither depends on the Markov order of processes nor the time

(for the VAR example above, the size is m).

As part of the effort to generalize Granger’s causality to more general settings, another class of graphical

models called the Granger causality graph was developed [13–15,22]. This class of graphs consists of a mix

of both directed and undirected edges for multivariate autoregressive time series and the nodes in the graph

represent the time series.

Causality Measures Along side developing different paradigms to define the causal influences, several

measures have also been developed to capture such influences.

Average causal effect between X and Y that is defined based on do-operation [23] and it is given by [24],

ACE(X → Y ) := P (Y |do(X) = 0)−P (Y |do(X) = 1). Here, it is assumed that X is binary. Since this measure

focuses on pairwise influences, it is not suitable for capturing influences in a network. Other measures are

conditional mutual information [25] and information flow [26] that are defined analogous to each other.

The former compares two conditional probability measures without do-operation and the latter compares

them after do-operation. Recently, the authors in [27] developed a new measure based on four postulates
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to quantify the causal influence. Their measure is similar to the information flow as defined in [28]. By

studying the limitations of these measures, we will propose a new dependency measure in Section 7.2.

Influence measures that have been developed to quantify causal influence between time series are directed

information and transfer entropy.

Directed information (DI) is an information-theoretic quantity that generalizes Granger causality beyond

linear models [29,30]. DI was first introduces by Marko [31] and then later formalized by Massey [32]. Marko

assumed there is no instantaneous influence between time series, and showed the mutual information between

the input X and the output Y decomposes to a sum of directed information terms from X to Y and from

Y to X. Since then, DI has been used in many applications to infer causal relationships. For example, it

has been used for analyzing neuroscience data [33–37], gene regulatory data [38], and video recordings [39].

Directed information graphs (DIGs) define a graphical model that captures the generalization of Granger

causality using the DI metric among stochastic processes [40]. DIGs subsume Granger causal graphs. It was

shown in [41] that in order to guarantee uniqueness of directed information graphs, the joint dynamics of

the system must be strictly causal.

Transfer entropy, introduced by [42], is another measure of causality in the literature [43, 44]. The re-

lationship of Granger causality and transfer entropy is discussed in detail in [40, 45]. Transfer entropy is

only defined for processes that satisfy Markov property, in which case the DI can be written as a sum of a

sequence of transfer entropies.

Causal Learning Learning causal influences of a network of random variables may be done via passive

learning techniques that use mere observation of the network’s autonomous behavior [46–48]. To mention

some, [46,49] proposed an algorithm called LiNGAM that relies on a statistical method known as independent

component analysis (ICA). LiNGAM can discover the complete causal structure of continuous-valued data,

under the assumptions that the data generating process is linear, there are no unobserved confounders, and

disturbance variables have non-Gaussian distributions of non-zero variances.

On the other hand, active learning approaches allow for experimental manipulations (interventions). That

is, the learner may actively intervene and control some variable in the system and observe the effects on

other variables [2,50]. The difference between two aforementioned approaches has been compared to learning

from watching and learning by doing [23,51,52].

The authors in [41] proposed various algorithms to learn the causal structure of a stochastic systems using

directed information quantity. They also developed several efficient algorithms that recover the DIG when

upper bounds on the in-degrees are known.

Most of the learning methods in the literature for causal discovery of time series rely on finding a surrogate

to DI or transfer entropy. For instance, [53] proposed linear dynamical graphs as a graphical model to

describe the causal interactions in linear dynamical systems which depend only on the coefficient matrices of

the model. It was shown in [54] that such graphical model are equivalent to DIGs. Moreover, [53] developed

an algorithm based on Wiener filtering to learn the causal structure of such systems when the underlying

network is a tree. Later, [55] extended that result to a more general setting in which the causal structure

does not have cycles. Independently, [56] investigated learning tree structured networks of linear dynamical

systems.

Another parametric dynamical systems in which recovering the corresponding causal structure can be

done by learning a set of parameters in the model, excitation matrix, are multivariate Hawkes processes

(MHP). We will study such processes in chapter 4 but for more details, we refer the readers to [57]. Several
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approaches have been developed in the literature for learning the excitation matrix of an MHP. Most of

the existing works assume that the entries of the excitation matrix belong to a set of predefined parametric

functions, e.g., the exponential functions in [58–62] and the power-law functions in [63]. For instance, [64,65]

considered learning the excitation matrix of symmetric Hawkes processes. In a symmetric Hawkes process,

it is assumed that the excitation functions are exponential, the Laplace transform of the excitation matrix

can be factored into product of a diagonal matrix and a constant unitary matrix, and the expected values

of all intensities are the same.

The authors in [66] proposed the first non-parametric model of one dimensional Hawkes process based on

ordinary differential equation. This later has been extended to multi-dimensional case in [60, 67, 68]. For

example, in [60], the authors assumed that the excitation functions can be written as a linear combination of

a set of basis, then the coefficients as well as the basis functions were being iteratively updated such that the

likelihood function of the MHP is maximized. A similar approach were being used in [69] for learning sparse

MHPs. One potential drawback of such adaptive approaches is that they require a set of i.i.d. samples for

their training phases, which can be hard or costly to acquire in some scenarios.

The authors in [70] proposed a non-parametric estimator that solves a set of Wiener-Hopf equations. An-

other non-parametric strategy is the contrast function-based estimation in [71] that estimates the excitation

functions by linear combinations of a fixed dictionary. To force sparsity in this method, they used an `1-

penalized least squares criterion to learn the coefficients. The work in [72] proposed discretizing the point

process by considering the increments over equidistant time points and then fitting a vector autoregressive

model by least squares method. This discretization causes approximation error. To avoid that, [73] decom-

posed the excitation functions into basis functions using polynomial approximation. Finally, [61] proposed

an online learning algorithm that simultaneously learns the excitation matrix and tracks the dynamic (inten-

sity functions) of an MHP. However, they assumed that the triggering function are exponential with known

exponent parameters.

Tree Causal Structures Polytree models have applications in real world. For instance, polytrees were

implemented to enhance caching strategies in distributed databases [74]. Dependency polytrees were also

applied to develop an inference framework that optimizes hardware components according the performance

and price of architectures [75]. In [76], the authors applied polytree structure graphical model for ozone

prediction in Mexico City, where ozone level is used as global indicator for the air quality. Moreover, Protein

signaling pathways might be modeled by causal polytrees. For instance, NFkB protein signaling pathway,

which activates mammalian immune system cells to produce antibodies against inflammation [77]. In [78],

authors characterize dependency graphical models that are isomorphic to polytree graphs.

Even if the underlying structure is not a tree, there are efficient algorithms that approximate the underlying

causal structure by the best directed tree such as [79–82]. In [79], authors introduce an algorithm similar to

Chow-Liu algorithm [83] to construct a polytree-shaped network to approximates the probability distribution

of the network.

Since in a directed polytree, a natural notion of hierarchy (depth) exists, polytree approximation can be

used to infer the influence hierarchy among the processes. Such an inference could be helpful in, for instance,

determining root causes of events or where to intervene for regulatory action such that it could effectively

trickle down.
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Latent Graphical Models In practice it is usually difficult and even impossible to collect all relevant

time series when doing causal analysis on given ones. Herein, we review some of the previous relevant

latent learning algorithms. We categorize the learning approaches to graphs that represent conditional

independence relationships among (I) random processes such as DI graphs and (II) random variables such

as Bayesian networks or ancestral graphs. Note that some of the learning methods proposed for the latter

can be extended to the former, but the methods such as the one presented in this work that requires the

notion of time among processes are only applicable to the first type of graphical models. Timing not only

aids with causal inference, it also has been proven useful for general other signaling, inference, and control

purposes complex network [84–86].

One approach for learning latent graphical models is to fix the number of latent vertices and the structural

relationships between latent and observed variables and subsequently use the expectation maximization

(EM) algorithm to estimate the model parameters. Given that often the optimization is over a non-convex

function, the performance depends on initialization, and the algorithm may get trapped in sub-optimal local

minima [87].

The work in [88] considered learning a VAR model with hidden components. The model is identifiable

under the assumptions that connections between observed variables are sparse and each latent variable

interacts with many observed variables. Two other papers in [89] and [90] applied a method based on EM

algorithm to infer properties of partially observed Markov processes. The work in [89] relaxed the finite-

state condition required by [90] and provided sufficient conditions under which the partially observed Markov

process is identifiable. Essentially, they showed that when the noise is independent and non-Gaussian or the

observed variables do not influence the hidden variables, the model is identifiable.

Authors in [91] showed that if the exogenous noises of a VAR model are independent non-Gaussian and

additional so-called genericity assumptions hold, then the links between the observed processes as well as

the links from latent to observed processes are uniquely identifiable. They presented a result in which they

allowed Gaussian noises in their VAR model and obtained a set of conditions under which they can recover

the links among the observed processes up to several candidate. Their learning approach is also based on

EM and approximately maximizes the likelihood of a parametric VAR model with a mixture of Gaussians

as noise distribution. Somewhat similar results for linear models but with random variables were presented

in [92].

In [93], the authors considered learning latent graphical models in the setting in which the latent and

observed variables are jointly Gaussian, the conditional statistics of the observed variables given the latent

variables is a sparse graph, and the number of latent nodes is small relative to the number of observed

variables. They proposed a tractable convex program based on regularized maximum-likelihood for latent-

variable graphical model selection. Note that the proposed approach in this work does not specify any

model for the joint distribution between the observed and the latent variables. Furthermore, it may have a

relatively large number of latent variables.

An alternative method was proposed in [94] that is based on a greedy, combinatorial heuristic. It assigns

latent variables to groups of observed variables via clustering of the observed ones. This approach has no

consistency guarantees. In contrast, our approach guarantees consistency under mild assumptions.

Recently, the quartet1-based approaches were applied to learn linear multivariate tree models when only the

leaves are observed [95]. In such trees, nodes are multivariate random vectors. In [95], it is further assumed

that the conditional expected value of each node given the parent is a linear function of its parents. Recursive

1A quartet is an un-rooted binary tree on a set of four observed nodes.
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grouping (RG) and Chow-Liu recursive grouping (CLRG) proposed in [96] are two other distance-based

learning algorithms that can recover latent Markov graphical models, in which some of the observed nodes

are internal. Both RG and CLRG can only recover latent models on a set of hidden and observed random

variables that are jointly Gaussian or have a symmetric discrete joint distribution. No such restrictions on

the joint are required in the proposed approach in this thesis.

A provably sound2 algorithm known as FCI was developed for leaning maximal ancestral graphs (MAG)

[19,97]. A MAG is a mixed graph consisting of both directed and undirected edges on the set of observable

variables that probabilistically represents the conditional independence among both latent and observable

variables in an accompanying DAG. More precisely, consider any DAG (e.g. G over V = O ∪ L ∪ S) that

encodes a set of conditional independence relations among nodes in V , where O and L denotes the set

of observed and latent variables, respectively, and S denotes a set of unobserved selection variables to be

conditioned upon. Suppose there exists a MAG, M(G), over O such that for any three disjoint sets of

variables A,B,C ⊆ O, A and B are conditionally independent given C ∪ S in G if and only if A and B

are conditionally independent given C in M(G). In this case, M(G) is said to probabilistically represent G.

FCI algorithm does not recover the latent nodes and the relations between latent and observed nodes, but

rather the MAG on the set of observed nodes. Our algorithm, on the other hand, recovers the graph on both

observed and latent nodes.

Classical approaches to learning latent graphical models, in which nodes represent random variables are of

the following flavors; latent cluster models (LCMs) learn a tree structured Bayesian network, in which only

one single hidden variable exists [98]. Hierarchical latent class (HLC) models generalize the previous model

by allowing multiple hidden variables but they confine the observed variables to the leaves of the tree [99].

Since in HLC models, root walking3 leads to a marginally equivalent model (two models are marginally

equivalent if they share the same conditional distribution between the observable variables given the latent

variables), it is impossible to learn edge orientation from the data. Furthermore, learning algorithms for such

models has a greedy structure, which is both computationally expensive and not guaranteed to be consistent.

Other popular learning methods for latent Markov graphical models use quartet-based distances [100,101]

to discover the structure. Quartet-based methods first construct a set of quartets for all subsets of four

observable nodes and then combine them to form a latent tree. It is known that the problem of determining

a latent tree that agrees with the maximum number of quartets is NP-hard [102]. As a result many heuristics

have been developed [103], [104]. Authors in [105] propose a quartet based approach which uses rank

characterization of the tensor associated with the marginal distribution of a quartet. This characterization

allows them to design a nuclear norm based test for resolving quartet relations. Additionally, in practice,

quartet-based methods are often much less accurate than neighbor-joining (NJ) method [106]. NJ [107] is

another distance-based algorithm that proceeds by repeatedly pairing the two closest nodes from the list

by adding a new latent node as their parent and replacing the pair with the newly added node. Both NJ

and the quartet-based methods rely on the existence of a notion of distance between nodes of a tree, which

may not exist in many practical scenarios. In this work, we propose a new method based on a discrepancy

measure between the observed nodes, which is not required to be a distance measure.

2Soundness is defined as follows: given a perfect oracle of conditional independence, the algorithm outputs the Markov
equivalence class of the true causal maximal ancestral graph.

3Root walking is an operation on a directed tree that reverses an arrow which goes from the root to one of its neighbors.
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1.4 Notation and Definitions

• For a sequence a1, a2, . . ., denote (ai, . . . , aj) as aji . Denote [m] := {1, . . . ,m}, −{j} := [m] \ {j}, and

the power set of [m] by 2[m]. We will consider m random processes where the ith (with i ∈ {1, . . . ,m})
random process at time t takes values in a Borel space X. Denote the ith random variable at time t

by Xi,t : Ω→ X and the whole collection of m random processes by X = (X1, . . . ,Xm)>.

• For any Borel space Z, denote its Borel sets by B(Z) and the space of probability measures on (Z,B(Z))

as P (Z).

• Consider two probability measures P and Q on P (Z). P is absolutely continuous with respect to Q
(P � Q) if Q(A) = 0 implies that P(A) = 0 for all A ∈ B(Z). If P � Q, denote the Radon-Nikodym

derivative as the random variable dP
dQ : Z→ R that satisfies

P(A) =

∫
z∈A

dP
dQ

(z)Q(dz), A ∈ B(Z).

For example, for almost all x, we have PY|X=x � PY.

• The Kullback-Leibler divergence between P ∈ P (Z) and Q ∈ P (Z) is defined as D(P‖Q) := EP

[
log dP

dQ

]
if P� Q and ∞ otherwise. Moreover, the conditional KL divergence is given by

D
(
PY|W‖QY|W|PW

)
=

∫
W

D
(
PY|W=w‖QY|W=w

)
PW(dw). (1.1)

Note that D
(
PY|W‖QY|W|PW

)
= 0 if and only if PY|W=w(dy) = QY|W=w(dy) with PW probability

one.

• With slight abuse of notation, we denote causally conditioned distribution [108] of Y given X as

PY‖X(dy‖x) := PY‖X=x :=

n∏
t=1

PYt|Y t−1,Xt−1

(
dyt|yt−1, xt−1

)
. (1.2)

Note that in (1.2) the future (xnt ) is not conditioned on. Through this dissertation, for simplicity, we

will drop the term (dyt|yt−1, xt−1) from the probabilities.

PXj || X−{j} :=

n∏
t=1

PXj,t|Xt−1
1,1 ,...,X

t−1
j,1 ,...,Xt−1

m,1
. (1.3)

• In equation (1.3) the random process Xj depends on the set of random processes X−{j} by one time

delay. This notation may be generalized to d-step delay (d ∈ N). We denote the causal conditioned

distribution with d-step delay as follows

PXj ||d XK
:=

n∏
t=1

PXj,t|Xt−1
j,1 ,Xt−dK,1

, (1.4)

where Xt−d
K,1 stands for (Xt−d

k1,1
, ..., Xt−d

ks,1
). Figure 1.1 illustrates the time dependencies between two

processes for d = 1 and d = 3.

It is easy to see that for d = 1, equation (1.4) becomes Kramer’s causal conditioned distribution (1.3).

For simplicity, we will write PX||Y instead of PX||1Y.

• Let W = XA for some A ⊆ −{i, k}. The mutual information, directed information [31], and causally
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Figure 1.1. Time dependencies between random processes X and Y for a unit delay and 3-step delay. Directed edges
show the causal conditioned dependencies between variables in process Y and the corresponding variables in process
X.

conditioned directed information [108] are given by

I(X; Y) := D
(
PY|X‖PY|PX

)
=
∑n
t=1 I(Xn;Yt|Y t−1), (1.5)

I(X→ Y) := D
(
PY‖X‖PY|PX

)
=
∑n
t=1 I(Xt−1;Yt|Y t−1), (1.6)

I(X→ Y‖W) := D
(
PY‖X,W‖PY‖W|PX,W

)
=
∑n
t=1 I(Xt−1;Yt|Y t−1,W t−1). (1.7)

Conceptually, mutual information and directed information are related. However, while mutual in-

formation quantifies statistical correlation, directed information quantifies statistical causation. Note

that I(X; Y) = I(Y; X), but I(X→ Y) 6= I(Y → X) in general.

• Consequently, the directed information rate and the conditional directed information rate are defined,

respectively, as

I∞(X→ Y) := lim
t→−∞

1

n− t+ 1
I(Xn

t → Yn
t ),

I∞(X→ Y||W) := lim
t→−∞

1

n− t+ 1
I(Xn

t → Yn
t ||W

n
t ).

Since in this work, the length of processes are assumed to be finite, n < ∞, the directed information

and conditional directed information are finite. Thus, it suffices to work with (1.6) and (1.7). If

n → ∞, the same proof ideas hold by replacing (1.6) and (1.7) with the aforementioned information

rates instead.

• A path between two nodes in an undirected graph is a sequence of distinct vertices such that every

vertex in the sequence is adjacent to its predecessor and its successor, all nodes except the end-nodes on

a path are called internal nodes. Two paths are called disjoint if they do not have any internal vertex

in common. A path of the form v → · · · → u, on which every edge is an arrow with the arrowheads

pointing toward u is a directed path form v to u. The set of parents and children of a node v in
−→
T are

defined, respectively, by

PA(v) := {u ∈ V : (u, v) ∈
−→
E }, CH(v) := {u ∈ V : (v, u) ∈

−→
E }. (1.8)

Node w is called an ancestor of node v in
−→
T if there exists a directed path from w to v. In this case,

v is called a descendant of w. A node v is a non-descendant of w, if there is no directed path from w

to v.
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CHAPTER 2

GRAPHICAL MODELS

In this chapter, we review the most commonly used graphical models for succinctly representing the causal

structure of networks of stochastic processes; Bayesian networks, minimum generative model graphs and

directed information graphs.

2.1 Bayesian Networks

A Bayesian network is a graphical model that represents the conditional independencies among a set of

random variables via a directed acyclic graph (DAG) [47]. A set of random variables X is Bayesian with

respect to a DAG
−→
G , if

P (X) =

m∏
i=1

P (Xi|XPAi). (2.1)

Up to some technical conditions [109], this factorization is equivalent to the causal Markov condition.

Causal Markov condition states that a DAG is only acceptable as a possible causal hypothesis if every node

is conditionally independent of its non-descendant given its parents.

Corresponding DAG of a joint distribution possesses Global Markov condition if for any disjoint set of

nodes A, B, and C for which A and B are d-separated by C, then XA ⊥⊥ XB|XC , i.e.,

I(XA; XB|XC) = 0.

Before defining d-separation in DAGs, let us introduce concept of a collider. In a DAG, a non-endpoint

vertex c on a path is said to be a collider if both edges are directed toward c on this path. For example, X

in Figure 2.2(a) is a collider on the path Y → X ← Z.

Definition 1. Let
−→
G = (V,

−→
E ) be a DAG and U,W , and Z be three disjoint subsets of V . Z d-separates U

from W , if for every path (not necessarily directed) from a node in U to a node in W , there exists a node c

such that either

1. c is not a collider and it belongs to Z or

2. c is a collider and neither c nor any of c’s descendants are in Z.

Remark 1. It is possible that two DAGs
−→
G1 and

−→
G2 with the same vertex set capture the same independence

relations, i.e., for all disjoint sets U , W , and Z, where U and W are non-empty, Z d-separates U from W

in
−→
G1 if and only if Z d-separates U from W in

−→
G2. In this case, it is said that

−→
G1 and

−→
G2 are Markov

10
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Figure 2.1. A graphical model of the causal influences in the stochastic dynamical system of Example 1.

equivalent. For example, two DAGs in Figure 2.2 are Markov equivalent. [110] gives simple conditions for

determining whether two DAGs are Markov equivalent.

It is shown in [109] that causal Markov condition and Global Markov condition are equivalent.

Moreover, a joint distribution is called faithful with respect to a DAG if all the conditional indepen-

dence (CI) relationships implied by the distribution can also be found from its corresponding DAG using

d-separation and vice versa1 [4].

2.2 Minimal Generative Model Graphs

Dynamical systems have a natural representation that is the coupled differential equations which characterize

the dynamics of the system over time. Such a representation explicitly describes the inter-dependencies

among the processes.

Example 1. Let xt, yt, and zt be three processes comprising a deterministic dynamical system. Suppose

that the differential equations

dx = g1(x, y, z)dt, dy = g2(x, y)dt, dz = g3(y, z)dt,

are known. For small ∆, the system becomes

xt+∆= xt + ∆g1(xt, yt, zt), yt+∆= yt + ∆g2(xt, yt), zt+∆= zt + ∆g3(yt, zt). (2.2)

A natural graphical representation simply depicts the remaining dependencies. See Figure 2.1. Note that

for sufficiently small ∆, (2.2) is strictly causal (e.g. xt+∆ depends on yt but not yt+∆).

Consider a stochastic dynamical system X of m processes with joint distribution PX. The dynamics of

the system are fully described by PX. First, we can factorize PX over time as follows

PX(dx) =

n∏
t=1

PXt|Xt−1 .

If PX is strictly causal, then similar to difference equations (2.2) in Example 1, it can be factorized over the

indices of the processes,

PX(dx) =

n∏
t=1

m∏
i=1

PXi,t|Xt−1 =

m∏
i=1

PXi‖X−{i} . (2.3)

1The set of distributions that do not satisfy this assumption has measure zero [111].
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Notice that each Xi is still conditioned on the full past of every other process. We will assume that PX is

both non-degenerate and strictly causal.

Assumption 1. For the remainder of this dissertation, we only consider joint distributions that are strictly

causal and non-degenerate, i.e., there exists a measure φ such that PX is absolutely continuous with respect

to φ (PX � φ) and
dPX

dφ (x) > 0 for all x in the support of PX.

Remark 2. Assumption 1 is to avoid degenerate cases that arise with deterministic relationships. Moreover,

this assumption holds for any continuous-time generative model described by coupled stochastic differential

equations such as the one presented in Example 1.

Next, we remove unnecessary dependencies between processes in (2.3). For each process Xi, let A(i) ⊆
−{i} denote a subset of processes that does not contain i-th process and define the corresponding induced

probability measure PA,

PA(dx) :=

m∏
i=1

PXi‖XA(i)
.

We want to pick the sets {A(i)}mi=1 so that their cardinalities are small, while still capturing the full dynamics2

of PX,

D
(
PX‖PA

)
= 0. (2.4)

In Example 1, we have A(X) = {Y,Z}, A(Y ) = {X}, and A(Z) = {Y }.

Definition 2. Under Assumption 1, for a joint distribution PX, a minimal generative model is a function

A : [m]→ 2[m] where the cardinalities of the sets {|A(i)|}mi=1 are minimal and (2.4) holds.

Minimal generative models represent reduced factorizations of the joint distribution of the system. They

encode causal relationships by only selecting those subsets of processes that are necessary and sufficient

to describe the full dynamics. This model was motivated by reducing coupled differential equations for

deterministic systems.

Definition 3. A minimal generative model graph is a directed graph for a minimal generative model, where

each process is represented by a node, and there is a directed edge from Xk to Xi for i, k ∈ [m] if and only

if k ∈ A(i).

Note that unlike Bayesian networks, minimal generative model graphs can have directed loops, as is the

case in Figure 2.1.

2.3 Directed Information Graphs

In 1969, motivated by earlier work by Wiener [112], Nobel laureate Clive Granger proposed a framework for

identifying when one process statistically “causes” another [11]: “We say that X is causing Y if we are better

able to predict [the future of] Y using all available information than if the information apart from [the past

2The A(i)’s are defined over the whole time horizon. The A(i)’s could be defined over sliding windows of time, but that is
outside the scope of this dissertation.
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Figure 2.2. Two possible Bayesian networks for one joint distribution.

of] X had been used.” While this definition is general, its first formulations have mostly been restricted to

specific classes of models, such as autoregressive linear models.

It is shown in [113] that for any class of distributions, the directed information explicitly quantifies

Granger’s statement in the setting of sequential prediction with causal side information. We now define

a graphical model using directed information.

Definition 4. For a set of random processes X, the directed information graph is a directed graph where

each node represents a process and there is a directed edge from process Xk to process Xi (for i, k ∈ [m]) if

and only if

I(Xk → Xi ‖ X−{i,k}) > 0.

Since edges are found separately, directed information graphs are unique. Also, directed cycles are possi-

ble. Minimal generative model graphs and directed information graphs are alternative graphical models to

characterize the relationships in stochastic dynamical systems. Next result shows their relationship.

Theorem 1. [6] For any joint distribution PX satisfying Assumption 1, the corresponding minimal gener-

ative model graph and directed information graph are equivalent.

In the remainder of this dissertation, we will refer to generative model graphs and directed information

graphs interchangeably.

2.3.1 Bayesian Networks and Directed Information Graphs

As we mentioned, Bayesian networks represent conditional dependencies in a reduced factorization of the

joint distribution. Hence, Bayesian networks depend on the order variables. Figure 2.2 shows two possible

Bayesian network pertaining to PX,Y,Z .

Notice that the Bayesian networks are acyclic, since a variable can only have incoming arrow from the

preceding variables. Therefore, in general, DIGs are not in the family of Bayesian networks. However, DIGs

and the Bayesian networks share some similar properties, which we review next.

Analogous to Bayesian networks, the causal independences in a DIG can be determined through a graphical

separation criterion which we call c-separation.

Definition 5. Let
−→
G = (V,

−→
E ) be a DIG and U and Z be two disjoint subsets of V , and w ∈ V \ (U ∪Z). Z

c-separates U from w if for every path between a node in U and w there exists a node on that path in Z ∪w
with an outgoing arrow or a collider in V \ (Z ∪ w).
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Figure 2.4. The DIG and its underlying variable dependences.

For example, in Figure 2.3, Z c-separates U from W. Notice that c-separation, unlike d-separation, is not

symmetric, i.e., if Z c-separates U from W , it is not necessary that Z c-separates W from U . A directed graph

is said to satisfy global causal Markov property, if each c-separation corresponds to a causal independences.

In other words, if there exists three disjoint subsets U , {w}, and Z such that Z c-separates U from w, the

corresponding process sets XU and Xw are causally independent given the processes in XZ , i.e.,

I(XU → Xw|| XZ) = 0.

Theorem 2. For any joint distribution PX that satisfies Assumption 1, the DIG is a minimal directed graph

with global causal Markov property.

Proof. See Appendix A.1.1.

Next, we study the relationship between the DIG of a set of random processes and the independence map

among the underlying random variables. Let V be a network of dependent variables, and let σ be an ordering

{v1, ..., vm} of the elements in V . The boundary strata of this network relative to σ is an ordered set of subsets

of V , (B1, B2..), such that each Bi is a Markov boundary of vi with respect to the set Vi := {v1, ..., vi−1},
i.e., Bi is a minimal set satisfying Bi ⊆ Vi and vi is independent of Vi \ Bi given Bi. The DAG created by

designating each Bi as parents of vertex vi is called a boundary DAG of this network relative to σ. By [114],

boundary DAGs are Bayesian networks (minimal independence maps under d-separation).

A simple observation is that due to the nature of random processes; there already exists an ordering among

the underlying variables, which is time. Hence, if X is a set of random processes that satisfies Assumption 1

with the corresponding minimal generative model graph
−→
G , then one can define a unique boundary DAG for

the underlying variables relative to time ordering. Notice that the boundary DAG relative to time ordering is

unique since there are no simultaneous influences between variable, and therefore any causal ordering results

in the same DAG. Now, by the definition of minimal generative model graph, the Markov boundary of the

t-th variable in process Xi contains Xj,t′ , t
′ < t if and only if Xj is a parent of Xi in

−→
G . For example, in

Figure 2.4, Yt is in the Markov boundary of Xt+1, hence Y must be a parent of X in the corresponding DIG.
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CHAPTER 3

MEASURING FUNCTIONAL DEPENDENCIES

In dynamical systems with specified functional dependencies among the variables, a natural notion of causa-

tion exists. That is, a process (or a variable) X is influenced by another process (or a variable) Y, if X is a

function of Y. Given that the goal of introduction of various graphical models in statistical learning theory

is to understand the causal influence structure among the processes, the following natural question arises.

Does a statistical measure of influence that can capture functional relationships exist? In this chapter, we

give an affirmative answer to this question. We define a statistical measure that is able to capture the func-

tional dependency among processes (variables) in dynamical systems. Subsequently, using this measure, we

define a new type of graphical model, functional dependency graph (FDGs) that encodes such dependencies.

Moreover, we study the relationship between FDG and DIG of a dynamical system.

3.1 Functional Dependencies

Most of the existing approaches to discover functional dependencies are based on intervention [2, 3]. Dis-

covering causal structure by intervention measures the influence of a variable (potential cause) on another

variable (effect) in a network through the following processes. The behavior of the effect variable is observed

when different values are assigned to the potential cause, while other variables’ effects are removed [4]. We

use similar paradigm to define our functional dependency measure.

Let (E , d) be a complete, metric, and separable space equipped with the Borel field B. Consider a causal

discrete-time dynamical system with output processes1 X = {X1, ...,Xm} such that Xi,t ∈ E and is given by

Xi,t = Fi(X
t−1,Wi,t, t), i = 1, ...,m, (3.1)

where Fis are arbitrary functions, and Wis are exogenous independent random processes such that Wi,t is

independent of Xt−1 for any i and any t. In this setting, a natural notion of causation among the processes.

Namely, Xj causes Xi, if Fi is a function of Xj .

Remark 3. Notice that in (3.1), it is assumed that there are no simultaneous influences among the processes.

However, our results in this chapter can be extended to the setting in which simultaneous influences are also

allowed. For more details see [5].

To visualize the causal structure in (3.1), we introduce a graphical representation of the causal dependency

among the processes. In this graph, nodes represent random processes and there is an arrow from node j to

1We use the terminology output that is taken from the context of system identification in control theory. Input processes
are W.
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Figure 3.1. Functional dependency graph of Example 2.

nodes i, if Xi functionally depends on Xj . The following example demonstrates a simple causal system and

its corresponding graphical model.

Example 2. Consider a causal system with 3 processes such that their dynamic is given by

X1,t = e−t|X1,t−1|/3−X2,t−1/2 +W1,t,

X2,t = X2,t−3/3 + sin(tπ +X3,t−1)W2,t,

X3,t =
√
|X1,t−2X2,t−1|+W3,t,

where Wis are independent exogenous noises. Figure 3.1 depicts the functional dependency graph of this

system.

We say a random process Xi functionally depends on process Xj over the time horizon n, if there exists

a time 1 ≤ t′ ≤ n such that changing the value of Xj,t′ while keeping all the other variables fixed results in

a change in Xi at some time 1 ≤ t ≤ n (t′ < t). Next, we define our measure to capture such functional

dependencies in systems whose joint dynamics is described by (3.1).

Definition 6. We define functional dependency of Xi,t on Xj,t′ in a causal dynamical system, for t′ < t

and i 6= j as follows:

αi,j(t, t
′) := sup

x=y

off Xj,t′

EWi

d2
(
Fi(x,Wi,t, t), Fi(y,Wi,t, t)

)
d2(x, y)

1/2

, (3.2)

where d denotes the metric. In this equation, x and y are two realizations of Xt−1 that are the same

everywhere except at Xj,t′ . Further, assume x at position Xj,t′ equals x and y equals y (y 6= x) at this

position.

Equation (3.2) measures whether varying the value of Xj,t′ while keeping the other variables fixed, changes

the value of Xi,t. Clearly, αi,j(t, t
′) is always non-negative and if it is positive, it implies the functional

dependency of Xi,t on Xj,t′ .

Remark 4. For real-valued random variables, i.e., E = R, one possible choice for the metric d in (3.2) is

Euclidean metric given by

d(x, y) = |x− y|. (3.3)

Figure 3.2 summarizes the above definitions. In this figure, columns represent the index of processes and

rows represent time. To observe the dependency of Xi,t on Xj,t′ , we change the value of (t′, j)-th entry that

is symbolized by a hammer and observe the value of (t, i)-th entry that is symbolized by an eye while fixing

all the other entries.
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Figure 3.2. A representation of m processes each of length n. Rows represent time and columns represent index of
processes. To observe the dependency of Xi(t) on Xj(t

′), we change the value of Xj(t
′) (symbolized by a hammer),

fix all other variables except Xi(t) (symbolized by crosses), and observe the value of Xi(t) (symbolized by an eye).

Equation (3.2) captures the causal dependency of Xi,t on Xj,t′ . To capture the overall causal functional

dependency of process Xi on process Xj , we aggregate the dependencies over the time and define the

functional dependency graph (FDG) of a causal system as follows:

Definition 7. Consider a set of random processes X = {X1, ...,Xm} whose joint dynamics is given by

(3.1). The corresponding functional dependency graph of this system
−→
GFD = (V,

−→
E FD) is defined as follows:

V = {1, ...,m} and for i 6= j, (j, i) ∈
−→
E FD if and only if

αi,j :=
1

n

n∑
t=1

t−1∑
t′=1

αi,j(t, t
′) > 0, (3.4)

where αi,j(t, t
′) is given by (3.2).

Consequently, (j, i) /∈
−→
E FD iff αi,j = 0.

It is important to emphasize that in general, the FDGs are not necessary unique.

Example 3. Consider the following dynamical system, X1,t = W1,t = W1, X2,t = X1,t−1. In this system,

we have

F1(Xt−1,W1,t, t) = W1,t,

F2(Xt−1,W2,t, t) = X1,t−1.

Following the Definition 7, the corresponding FDG of this system is X1 → X2. However, the above equations

can be written as

X1,t = X2,t−1, X2,t = W ′2,t,

where W ′2,t = W1. In this new setup, the corresponding FDG is X2 → X1. Such situations occur because of

fully deterministic relationship between processes, i.e., degeneracy.

This phenomena arises because of degenerate relationships between processes. For instance, in Example

3, PX1,X2
is not positive since PX1|X2

is a point mass.

Theorem 3. Consider a system with positive joint distribution (satisfies Assumption 1) whose dynamic is

described by (3.1). Then the corresponding FDG of this system is unique.
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Proof. See Appendix A.2.1.

Another observation is that the functional dependency measure of Xi,t on Xj,t′ , αi,j(t, t
′), is not necessary

bounded. However, if Fis are Lipschitz functions, i.e.,

d(Fi(x,w, t), Fi(y, w, t)) ≤ L d(x, y),

for some constant L, then it is straightforward to show that αi,j(t, t
′) is bounded.

In the special case where the functions Fi in (3.1) are real-valued and differentiable, i.e., E ⊆ R, and

∂Fi/∂Xj,t′ exists for all j and t′, then we can easily verify whether process Xj influences process Xi (i.e.,

αi,j > 0) by calculating partial derivatives of function Fi with respect to Xj . More precisely, suppose there

exists a realization of Xt−1, say x, such that

EWi

[
| ∂Fi
∂Xj,t′

|
∣∣∣Xt−1 = x

]
6= 0.

This implies that there exist two realizations of Xt−1, x and x+ w, such that

EWi

[∣∣∣Fi(x,Wi,t, t)− Fi(x+ w,Wi,t, t)

w

∣∣∣] 6= 0,

and consequently, αi,j(t, t
′) 6= 0.

In general, learning the corresponding FDG of a causal system by evaluating (3.4) is complicated. However,

if some side information about the system dynamic exists, learning its FDG can be significantly simplified.

In Section 3.1.2, we discuss a special scenario in which the side information on the dynamics of the system,

i.e., knowing the dynamics are linear, allows us to learn its causal structure efficiently.

3.1.1 FDGs for Random Variables

Equation (3.4) in Definition 7 determines whether process Xj influences process Xj by identifying a time

index (or indices) in Xj which influence Xj at some point. Thus, FDGs essentially define influences among

random variables. This sets them apart from directed information graphs [41] and linear dynamical graphs

[55] which are only defined for random processes. Below, we establish the definition of FDG for a set of

random variables.

Suppose a system of random variables ζ := {ζ1, ..., ζm} such that their dependency is captured by ζi =

Gi(ζ−i, ωi), i = 1, ...,m, where ζ−i = ζ \{i}, Gis are arbitrary functions, and ωis are exogenous independent

random variables independent of ζ−i. In this case, similar to the random processes scenario, we can define

the corresponding FDG of the system as a directed graph whose nodes represent random variables. There

is an arrow from node j to i, i.e., ζi functionally depends on ζj , if and only if

αi,j := sup
ζ=ζ′

off ζj

Eωi d2
(
Gi(ζ, ωi), Gi(ζ

′, ωi)
)

d2(ζ, ζ ′)

1/2

> 0,

where ζ and ζ ′ are two realizations of ζ−i that are the same everywhere except at ζj . Further, assume ζj

equals ζ in ζ and it equals ζ ′ in ζ ′.
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3.1.2 Linear Dynamical systems

Perhaps the most studied class of functional dependencies are linear systems which come with their own

graphical model, the so-called linear dynamical graphs (LDGs) [55]. Linear dynamical systems are a major

subclass of dynamical systems that have been studied extensively in literature and are used in different fields

such as economy, finance [115], climatology [116], and biology [117]. In linear systems, the causal influence

structure is easy to assess by looking at an appropriate set of coefficients [54]. Furthermore, different

approaches for discovering causal structure of such systems given observation of the output processes exist

in the literature [118].

Specifically, in [55], the authors study the causal structure in a subclass of causal linear time-invariant

systems and introduce a type of graphical model called linear dynamical graphs to capture causal structure

in this subclass of linear systems. Similar to the FDGs, linear dynamical graphs are also defined based

on the functional dependencies. Next, we formally define the linear dynamical graphs and establish their

connection with FDGs.

Consider a set of m real-valued random processes {X1, ...,Xm} such that their joint dynamics is given by

Xi,t =

m∑
j=1

∑
s>0

gi,j(s)Xj,t−s +Wi,t, i = 1, ...,m, (3.5)

where Wi are exogenous independent random processes and gi,i(s) = 0 for every i.

Let X̃i denotes the Z-transform of Xi. Then the set of equations in (3.5) can be represented in the

Z-domain, by taking Z-transform of both sides of the equations:

X̃(z) = G(z)X̃(z) + W̃(z), (3.6)

where G(z) is an m×m matrix whose (i, j)th entry is

Gi,j(z) :=
∑
s>0

gi,j(s)z
−s,

and Gi,i(z) = 0. We denote such a system by (G(z),W̃).

Definition 8. [55] The associated linear dynamical graph of a system described in (3.6) is a directed graph,

where random processes are represented by nodes and there is an arrow from j to i if and only if Gi,j(z) 6= 0.

Next example demonstrates a simple linear time-invariant system and its corresponding linear dynamical

graph (LDG).

Example 4. Consider the following linear systems

X̃(z) =


0 G1,2(z) 0 G1,4(z)

G2,1(z) 0 0 G2,4(z)

0 G3,2(z) 0 G3,4(z)

0 0 0 0

 X̃(z) +


W̃1

W̃2

W̃3

W̃4

.

Figure 3.3 depicts its corresponding linear dynamical graph (LDG).

Proposition 1. Consider a causal linear time-invariant system (G(z),W̃). Then, the corresponding linear

dynamical graph and the FDG of this system are equivalent.
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Figure 3.3. Linear dynamical graph of Example 4.

Proof. See Appendix A.2.2.

Next, we generalize the linear dynamical graphs using FDGs to encompass causal linear systems with time

varying coefficient. Let

Xi,t =

m∑
j=1

∑
s>0

fi,j(t, s)Xj,t−s +Wi,t, i = 1, ...,m. (3.7)

If the coefficients in (3.7) are time invariant, i.e., fi,j(t, s) = gi,j(s), and fi,i(t, s) = 0, the system reduces to

a causal linear time-invariant system described by (3.5). Next result characterizes the corresponding FDG

of the system given by (3.7).

Proposition 2. In a linear causal system of (3.7), using Euclidean metric (3.3), we have αi,j(t, t − s) =

|fi,j(t, s)|, and consequently,

αi,j =
1

n

n∑
t=1

∑
s>0

|fi,j(t, s)|. (3.8)

Proof. From equations (3.1) and (3.7), we have

d
(
Fi(x,Wi,t, t), Fi(y,Wi,t, t)

)
= |fi,j(t, s)(x− y)|,

where x and y are two realizations of Xt−1 that are the same everywhere except at Xj,t−s. Further, x at

position Xj,t′ equals x and y equals y (y 6= x) at this position. Substituting this result into Equation (3.2)

implies the results.

The following example shows a linear causal system and its corresponding FDGs. Note that linear dy-

namical graph is not able to capture the causal structure of such system.

Example 5. Consider a linear causal system with 3 processes and the following dynamic

X1,t = X1,t−1/3− e−tX3,t−1 +W1,t,

X2,t = X2,t−2/3 + e−tX1,t +W2,t,

X3,t = tan(tπ/2)X1,t−1 +X2,t−1/6 +W3,t,

where Wis are independent exogenous noises. For example, to asses whether there exists an edge from X3

to X1, we have to check α1,3 form (3.4). By Proposition 2, we have

α1,3 =
1

n

n∑
t=1

e−t > 0

Figure 3.4 demonstrates the corresponding FDG of this system.
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Figure 3.4. FDG of the network in Example 5.

3.2 Measuring Functional Causal Dependency via Directed Information
Graphs

In this section, we explore the relationship between statistical dependencies captured by directed information

graphs and functional dependencies captured by FDGs in dynamical systems. We further study different

conditions under which the two graphical models are equivalent.

Theorem 4. Consider a set of m random processes with joint dynamics captured by (3.1). Assume their

joint distribution is positive. Then
−→
EDI ⊆

−→
E FD.

Proof. See Appendix A.2.3.

It is important to emphasize that in general, the converse of Theorem 4 does not hold. Thus, the FDG

of a dynamical system might contain an arrow between two processes while the corresponding DIG does

not recover such a relationship. In another words, in a causal dynamical system, existence of statistical

dependency implies also functional dependency among processes but not the other way around. We illustrate

this using an example.

Example 6. Consider, a system of two random processes X1 and X2 such that X1,t ∼ U [0, 1] (U stands

for uniform distribution), and

X2,t = X1,t−1 +Wt mod 1,

where Wt ∼ U [0, 1] and it is independent of X1,t−1. Note that the joint distribution of this system is positive.

In this case, X2,t will also have uniform distribution over [0, 1] and it is independent of X1,t−1. This implies

that I(X1 → X2) = 0. However, by the definition in (3.2), we obtain α2,1(t, t − 1) > 0. The corresponding

DIG and FDG of this systems are, (X1 X2) and (X1 −→ X2), respectively.

As we mentioned earlier, the corresponding DIG of a system is recoverable via mere observation by

estimating the directed information quantities in (1.7) [40, 119] or a surrogate when side information is

available [120]. Hence, in general, by learning the corresponding DIG of a system using observational data,

we can identify some functional dependencies as well.

3.2.1 Special Case: Equivalence between DIGs and FDGs

Previously, we showed that the statistical dependencies recovered by directed information measure as cap-

tured by DIGs imply functional dependencies captured by the FDGs in a dynamical system. In this section,

we study special dynamical systems and introduce conditions under which the functional dependencies in

these systems also imply the statistical dependencies. In other words, their corresponding DIGs and FDGs

are equivalent.
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Nonlinear Systems with Additive Exogenous Noise:

Let E ⊆ R and d(·, ·) be the Euclidean metric. Further, consider a special subclass of dynamical system

mode of (3.1),

Fi = fi(X
t−1, t) + gi(X

t−1, t)Wi,t, i = 1, ...,m, (3.9)

where fi and gi are arbitrary real-valued functions.

Next result introduces a set of sufficient conditions under which the FDG and the DIG in such systems

are equivalent. Hence, a possible approach for learning FDGs of dynamical systems with additive exogenous

noise is via estimating the directed information quantities in (1.7). Before stating our result, we need the

following definition.

Definition 9. A random variable Wt is called symmetric if Wt − E[Wt] and −Wt + E[Wt] have the same

distribution. W is called asymmetric otherwise.

For instance, standard normal variable, N (0, 1), is a symmetric random variable.

Theorem 5. Consider a dynamical system with positive joint distribution described by (3.9) with corre-

sponding DIG,
−→
GDI , and FDG,

−→
GFD. Further, suppose that for any given t, either Wi,t is asymmetric or

for all t′ < t

sup
x=y

off Xj,t′

|gi(x, t)− gi(y, t)| = 0. (3.10)

Then,
−→
EDI =

−→
E FD.

Proof. See Appendix A.2.4.

Next example shows a simple system with additive exogenous noise that does not satisfy the conditions

in Theorem 5. In this example, while clearly a functional dependency exists between the processes, no

statistical dependency is identified by the DI measure among them.

Example 7. Consider the following dynamical system with two output processes,

X1,t = W1,t, X2,t = (−1)bX1,t−1cW2,t,

where W1,t and W2,t are distributed i.i.d. according to normal distribution with mean zero and variance 1

and bxc denotes the floor of x. This system has a positive joint distribution. Furthermore, it is easy to check

that I(X1 → X2) = 0. However, there is functional dependency between the two processes i.e., α2,1 6= 0.

Linear systems:

The linear systems described in Section 3.1.2 are clearly a subclass of dynamical systems with additive

exogenous noises, when for all t and 1 ≤ i ≤ m,{
gi(X

t−1, t) = 1,

fi(X
t−1, t) =

∑m
j=1

∑
s>0 fi,j(t, s)Xj,t−s.
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Figure 3.5. Recovered CFDG of (G(z), W̃ ) for sample sizes {50, 60, 80} are depicted. The graph (c) is the true FDG.

In this case, the condition in (3.10) holds. Thus, the corresponding FDG and DIG of a causal linear system

are equivalent. Combining this result and Proposition 4 imply that the corresponding DIG and the linear

dynamical graphs of a causal linear time-invariant system are also equivalent. This result was previously

proven tediously in [54] using information-theoretical tools and under more restrictive assumptions.

Different approaches have been developed in literature to learn the coefficients of a linear time-invariant

system [118]. These approaches depend on different parameters of the system such as their underlying causal

structure. For instance, in [55], the authors propose a learning method for self-kin linear networks. In such

systems, there is at least one arrow between any two nodes which share a common child. In [121], the

authors study linear systems in which their underlying causal structure is a directed acyclic graph (DAG)

by observing all the output processes.

3.3 Experimental Results

Herein, we present two simulation results for both linear and nonlinear systems. Note that in both systems

there is no control variables that allows the learner to intervene the system. Thus, discovering the causal

structure of these systems via intervention is not straightforward. However, because both systems satisfy

conditions of Theorem 5 their DFGs and DIGs are equivalent. Thus, it is possible to learn the causal

dependencies via mere observation by estimating the directed information quantities in (1.7).

Linear System:

In this section, we consider a causal linear time-invariant system and reconstruct its corresponding FDG

by observing all the output processes. The dynamic is given by (G(z),W̃), where W̃ ∼ N (0,Σ1), Σ1 =

diag{.2, .5, .3, .2, .5}, and

G1(z) =
1

6


0 z−2 0 0 0

0 0 2z−2 0 0

0 0 0 0 0

3z−1 1.2z−1 0 0 z−3

0 z−3
√

2z−4 0 0

 .

We learned the FDG by learning the corresponding DIG based on Theorem 5. To do so, we sampled each of

the output processes, N times over a time horizon of length n = 10. Because this system is jointly Gaussian,
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the directed information between each pair of the output processes is given by [54],

I(X→ Y||Z) =
1

2

n∑
t=1

log
|ΣY t1 Zt−1

1
||ΣXt−1

1 Y t−1
1 Zt−1

1
|

|ΣY t−1
1 Zt−1

1
||ΣXt−1

1 Y t1 Z
t−1
1
|
, (3.11)

where ΣY t1 Z
t−1
1

is the covariance matrix of (Y1, ..., Yt, Z1, ..., Zt−1). We estimated the directed information

using the above equation with sample covariance matrix. Using the concentration result for empirical mutual

information of Gaussian distribution [122], we decided on whether the estimated DI were positive with

confidence 1− δ by comparing them against the following threshold

τ = min
i,j

I(Xj → Xi||X−{i,j})−O(
√

log(M/δ)/N),

where 0 < δ < 1, M = o(nmp), and p denotes the Markov-order of the system. In this example p = 4 and

τ = 0.53. Figure 3.5 depicts the recovered DIG (equivalently FDG) for different sample sizes N ∈ {50, 60, 80}.
Note that the above system is a self-kin network. Therefore, as we discussed in Section 3.2.1, the corre-

sponding FDG of this system is also identifiable by learning the corresponding linear dynamical graph using

the approach of [55].

Nonlinear System with Additive Exogenous Noise:

We simulated a network of m = 6 processes with the following joint dynamics

X1,t = 0.2X1,t−3 + 0.1X2
1,t−2 +W1,t,

X2,t = X2
1,t−1/

√
2− 0.1|W2,t|,

X3,t = 0.1X2,t−1 − 0.5
√
|X1,t−1|+W3,t,

X4,t = −0.2X2,t−1 + 0.3
√
|X2,t−3|3 +W4,t,

X5,t = 0.2X3,t−2 − 0.2X2,t−1 +
√
|W5,t|,

X6,t = 0.3X5,t−2 − 0.5X4,t−2 + |W6,t|,

(3.12)

where Wis were generated i.i.d. Gaussian with mean zero and variance one. The output processes {X1, ...,X6}
were each of length n = 20 and N ∈ {5× 103, 104} number of samples from each of them was collected. In

order to estimate the directed information measures, i.e., Equation (1.7), we used the fact that the directed

information can be written as a sum of different mutual information [41] and then estimated them using

K-nearest neighbor method of [123]. The recovered networks are depicted in Figure 5.7.

FDGs and DIGs Are Not the Same in General:

We simulated a network of m = 3 processes with the following dynamics

X1,t = 0.45X1(t− 1) +W1,t,

X2,t =

{
0.2W2,t, if X1,t−1 ∈ {0, 1}
0.3X2,t−1 +W2,t, otherwise

X3,t = 0.4X2,t−1 +W3,t,

(3.13)
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Figure 3.6. Recovered causal structure of the non-linear model in (3.13) are depicted. The graph (b) is the true FDG.

Name code
Dell Inc. DEL
Hewlett-Packard HP
Intel INT
Texas Instruments TXN
International Business Machines IBM
Cisco Systems CSCO
Apple Inc. APPL
Oracle ORC
Xerox XRX
Google Inc. GOG
Microsoft MSFT
EMC Corporation EMC

Table 3.1. List of Companies in the analysis

where Wi,t ∼ N (0, 1) for i = 1, 2, 3. The output processes {X1,X2,X3} are each of length n = 10. N = 70

samples from each process is observed. Directed information cannot discover the relationship between X1

and X2, because they are statistically independent with probability one. Thus, the DIG of this system is

(X1 X2 → X3).

In order to recover the FDG of this network, we intervened in X1 and set it to fixed values in {−1, 0, 1}
and observed the values of the other two processes over the time horizon of length n = 10. The recovered

FDG is (X1 → X2 → X3) that is the correct functional dependencies.

Stock Price Analysis

In this section, we analyse the causal relationship between stock prices of 12 technology companies (Table I)

of the New York Stock Exchange sourced from Google Finance. These prices were sampled every 2 minutes

for twenty market days (03/03/2008 - 03/28/2008). We assumed the underlying joint dynamics was jointly

Gaussian. Therefore, directed information values were estimated using Equation 3.11. The resulting DIG is

shown in Figure 3.7.

Fig. 3.7 illustrates interesting interactions between these companies during 2008. For instance the DIG

suggests that one of the most influential companies in that period of time was HP. Looking into the global

PC market share during 2008, we can find that the Hewlett-Packard company had place one among others.2

2Gartner, http://www.gartner.com/newsroom/id/856712
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Figure 3.7. The DIG obtained for the stock market using estimating the directed information.

Another example is that Apple has been using Intel processors in its products since 2006. However, in

2008 Apple released MacBook Air and upgraded the processors of MacBook and MacBook Pro to Intel

core 2 Duo Penryn.3 This was a kind of revolution in laptop’s market. Hence, we see an influence from

Apple on Intel during that period of time. We have also applied similar method to learn the interconnections

between the financial institutions by analysing the monthly returns of different banks, brokers, and insurance

companies [124].

3Apple Press Info, http://www.apple.com/pr/
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CHAPTER 4

CAUSAL STRUCTURE OF MULTIVARIATE HAWKES

PROCESSES

In this chapter, we study the causal structure of a specific type of time series, multivariate linear Hawkes

process [120]. Hawkes processes were originally motivated by the quest for statistical models for earthquake

occurrences. Since then, they have been successfully applied to seismology [125], biology [126], criminology

[127], computational finance [57,128,129], etc.

In multivariate or mutually exciting point processes, occurrence of an event (arrival) in one process affects

the conditional probability of new occurrences, i.e., the intensity function of other processes in the network.

Such interdependencies between the intensity functions of a linear Hawkes process are modeled as follows:

the intensity function of processes j is assumed to be a linear combination of different terms, such that each

term captures only the effects of one other process (See Section 4.1).

This dependency is captured by the support of the excitation matrix of the network. As a result, estimation

of the excitation (kernel) matrix of multivariate processes is crucial both for learning the structure of their

causal network and for other inference tasks and has been the focus of research.

4.1 Multivariate Hawkes Processes

Fix a complete probability space (Ω,F , P ). Let Nt denotes the counting process representing the cumulative

number of events up to time t and let {F t}t≥0 be a set of increasing σ-algebras such that F t = σ{N t}. The

non-negative, F t-measurable process λ(t) is called the intensity of Nt if

P (Nt+dt −Nt = 1|F t) = λ(t)dt+ o(dt).

A classical example of mutually exciting processes, a multivariate Hawkes process [120], is a multidimensional

process N = {N1, ...,Nm} such that for each i ∈ [m]

P
(
dNi,t = 1|F t

)
= λi(t)dt+ o(dt), (4.1)

P (dNi,t > 1|F t) = o(dt),

where F t = σ{N t}. The above equations imply that E[dNi,t/dt|F t] = λi(t). Furthermore, the intensities are

all positive and are given by

λi(t) = vi +

m∑
k=1

∫ t

0

γi,k(t− t′)dNk(t′). (4.2)
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Figure 4.1. Intensities of the multivariate Hawkes process.

The exciting functions γi,k(·)s are in `1 such that λi(t) ≥ 0 for all t > 0. Equivalently, in matrix representa-

tion:

Λ(t) = v +

∫ t

0

Γ(t− t′)dN(t′), (4.3)

where Γ(·) denotes an m × m matrix with entries γi,j(·); dN,Λ(·), and v are m × 1 arrays with entries

dNi, λi(·), and vi, respectively. Matrix Γ(·) is called the excitation (kernel) matrix. Figure 4.1 illustrates

the intensities of a multivariate Hawkes process comprised of two processes (m = 2) with the following

parameters

v =

(
0.5

0.4

)
, Γ(t) =

(
0.1e−t 0.3e−1.1t

0.5e−0.9t 0.3e−t

)
u(t),

where u(t) is the unit step function.

4.2 Two Equivalence Notations of Causality for Hawkes Processes

Next, we establish the relationship between the excitation matrix of multivariate Hawkes processes and their

generative model graph. First notice that the corresponding minimal generative model graph and the DIG

of a causal dynamical system are equivalent [6]. Thus, to characterize the minimal generative model graphs

of a multivariate Hawkes system, we study the properties of its corresponding DIG.

Recall that the directed information as it is defined in 1.7 is for discrete time dynamical systems. However,

multivariate Hawkes processes are continuous processes. Hence, the first step would be to generalized the

directed information to continuous time dynamical systems.

Notice that in a DIG, to determine whether Xj causes Xi over a time horizon [0, T ] in a network of m

random processes, two conditional probabilities are compared in KL-divergence sense: one is the conditional

probability of Xi,t+dt given full past, i.e., F t := σ{Xt} and the other one is the conditional probability of

Xi,t+dt given full past except the past of Xj , i.e., F t−{j} := σ{Xt
−{j}}. It is declared that there is no influence

from Xj on Xi, if the two conditional probabilities are the same. More precisely, there is an influence from

Xj on Xi if and only if the following directed information measure is positive [41],

IT (Xj →Xi||X−{i,j}) := inf
t∈T (0,T )

Ĩt(Xj →Xi||X−{i,j}), (4.4)
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where T denotes the set of all finite partitions of the time interval [0, T ] [130], and

Ĩt(Xj → Xi||X−{i,j}) :=

n∑
k=0

I
(
Xtk
i,tk−1

;Xtk
j,0|F

tk−1

−{j}

)
,

where t := (0 = t0, t1, ..., tn = T ).

Proposition 3. Consider a set of mutually exciting processes N with excitation matrix Γ(t). Under As-

sumption 1, IT (Nj → Ni||N−{i,j}) = 0 if and only if γi,j ≡ 0 over time interval [0, T ].

Proof. See Appendix A.3.1.

Proposition 3 signifies that the support of the excitation matrix Γ(·) determines the adjacency matrix

of the DIG and vice versa. Therefore, learning DIG of a mutually exciting Hawkes processes satisfying

Assumption 1 is equivalent to learning the excitation matrix given samples from each of the processes. In

other word, in the presence of side information that the processes are Hawkes, it is more efficient to learn

the causal structure through learning the excitation matrix rather than the directed information needed for

learning the DIG in general.

4.3 Learning the Excitation Matrix

Herein, we present an approach for learning the causal structure of a stationary Hawkes network with

exponential exciting functions through learning the excitation matrix. This method is based on second

order statistic of the Hawkes processes and it is suitable for the case when no i.i.d. samples are available.

Note that when i.i.d. samples are available, non-parametric methods for learning the excitation matrix

such as MMEL algorithm [131] exist. As mentioned earlier, we focus on learning the excitation matrix of

multivariate Hawkes processes with exponential exciting functions. This class of Hawkes processes has been

widely applied in many areas such as seismology, criminology, and finance [125–128].

Definition 10. The excitation matrix of a multivariate Hawkes processes with exponential exciting functions

is defined as follows

Exp(m) :=

{
D∑
d=1

Ade
−βdtu(t) : Ad ∈ Rm×m, (

D∑
d=1

Ade
−βdt)i,j ≥ 0, ρ(

D∑
d=1

Ad
βd

) < 1, D ∈ N

}
,

where {βd} > 0 is called the set of exciting modes.

Example 8. Consider a set of m = 5 mutually exciting processes with the following exponential excitation

matrix 
2 0 0 0 0

0 0 .5 0 0

0 1.5 0 0 0

0 0 0 1.3 0

0 0 0 0 1


e−t

20
+


0 0 .5 0 0

0 0 0 0 2

0 1 0 2.5 0

.1 0 0 0 0

0 0 0 1 0


e−1.4t

20
+


1 1.5 1 0 0

0 0 0 0 −1

0 0 2 0 0

2 0 0 0 0

0 0 0 0 0


e−2t

20
(4.5)

In this example D = 3 and the exciting modes are {1, 1.4, 2}. By Proposition 3, the adjacency matrix of the

corresponding DIG of this network is given by the support of its excitation matrix. Figure 4.2 depicts the

corresponding DIG.
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Figure 4.2. Corresponding DIG of the network in Example 8 with the excitation matrix given by (4.5)

Before describing our algorithm, we need to derive some useful properties of moments of the process.

A multivariate Hawkes process with the excitation matrix Γ has stationary increments, i.e., the intensity

processes is stationary, if and only if the following assumption holds [120,132]:

Assumption 2. The spectral radius (the supremum of the absolute values of the eigenvalues) of the matrix

Γ, where [Γ]i,j = ||γi,j ||1 is strictly less than one, i.e., ρ(Γ) < 1.

In this case, from (4.3) and Equation (4.1), we obtain

Λ = E[Λ(t)] = v +

∫ t

0

Γ(t− t′)E[dN(t′)] = v +

∫ t

0

Γ(t− t′)Λdt′ = v + ΓΛ. (4.6)

By Assumption 2,
∑
i≥0 Γ

i
converges to (I −Γ)−1, thus Λ = (I −Γ)−1v. The normalized covariance matrix

of a stationary multivariate Hawkes process with lag τ and window size z > 0 is defined by

Σz(τ) :=
1

z
E
[∫ t+z

t

dN(x)

∫ t+τ+z

t+τ

(dN(y))T
]
− ΛΛT z, (4.7)

where
∫ t+t′
t

dN(x) denotes the number of events in time interval (t, t+ t′].

Theorem 6. [64] The Fourier transform of the normalized covariance matrix of a stationary multivariate

Hawkes process with lag τ and window size z > 0 is given by

F [Σz](−ω) = 4
sin2 zω/2

ω2z
(I −F [Γ](ω))

−1
diag(Λ) (I −F [Γ](ω))

−†
, (4.8)

where A† denotes the Hermitian conjugate of matrix A, and diag(Λ) is a diagonal matrix with vector Λ as

the main diagonal.

In order to learn the excitation matrix with exponential exciting functions, we need to learn the exciting

modes {βd}, the number of components D, and coefficient matrices {Ad}. Next results establishes the

relationship between the exciting modes and the number of components D with the normalized covariance

matrix of the process.

Corollary 1. Consider a network of a stationary multivariate Hawkes processes with excitation matrix Γ(t)

belonging to Exp(m). Then the exciting modes of Γ(t) are the absolute values of the zeros of 1/TrF [Σz]
−1(ω).

Proof. See Section A.3.2.

Next, we need to find the coefficient matrices {Ad}. To do so, we use the covariance density of the
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processes. The covariance density of a stationary multivariate Hawkes process for τ > 0 is defined as [120]

Ω(τ) := E

[(
dN(t+ τ)

dt
− Λ

)(
dN(t)

dt
− Λ

)T]
. (4.9)

Since the processes have stationary increments, we have Ω(−τ) = ΩT (τ).

Lemma 1. [120] We have

Ω(τ) = Γ(τ)diag(Λ) + Γ ∗ Ω(τ), τ > 0. (4.10)

It has been shown in [70] that the above equation admit a unique solution for Γ(τ). Next proposition

provides a system of linear equations that allows us to learn the coefficient matrices.

Proposition 4. Consider a network of a stationary multivariate Hawkes processes with excitation matrix

Γ(t) ∈ Exp(m), and exciting modes {β1, ..., βD}. Then {Ad} are a solution of the linear system of equations:

S = AH, where Hm2×m2 is a block matrix with (i, j)th block given by

Hi,j =
diag(Λ) + L[Ω](βj) + L[Ω]T (βi)

βj + βi
,

and A = [A1, ..., AD] and S = [L[Ω](β1), ...,L[Ω](βD)].

Proof. See Section A.3.3.

Combining the results of Corollary 1 and Proposition 4 allows us to learn the excitation matrix of exponen-

tial multivariate Hawkes processes from the second order moments. Consequently applying Proposition 3, the

causal structure of the network can be learned by drawing an arrow from node i to j, when
∑D
d=1 |(Ad)j,i| > 0.

4.3.1 Estimation and Algorithm

This section discusses estimators for the second order moments, namely the normalized covariance matrix

and the covariance density of a stationary multivariate Hawkes processes from data. Once such estimators

are available, the approach of previous section maybe used to learn the network. The most intuitive estimator

for Λ defined by Equation (4.6) is NT /T . It turns out that this estimator converges almost surely to Λ as

T goes to infinity [133]. Furthermore, [133] proposes an empirical estimator for the normalized covariance

matrix as follows

Σ̂z,T (τ) :=
1

T

bT/zc∑
i=1

(Xiz −X(i−1)z)(Xiz+τ −X(i−1)z+τ )T , (4.11)

where Xt := Nt − Λt. In the same paper, it has been shown that under Assumption 2, the above estimator

converges in `2 to the normalized covariance matrix (4.7), i.e., Σ̂z,T (τ) −→
T→∞

Σz(τ). Notice that the nor-

malized covariance matrix and the covariance density are related by Σdt(τ)/dt = ΩT (τ). Therefore, we can

estimate the covariance density matrix using Equation (4.11) by choosing small enough window size z = ∆.

Namely, Ω̂T∆(τ) = Σ̂∆(τ)/∆.
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Algorithm 1

1: Input : NT .

2: Output : DIG.

3: Λ̂← NT /T

4: Choose σ > 0, z > 0, and small ∆ > 0.

5: Compute Σ̂z,T (τ) and Ω̂∆(τ) using (4.11).

6: {β̂d}D̂d=1 ← Zeros of 1/TrF [Σz]
−1(ω).

7: Compute L[Ω̂∆](β̂d) for d = 1, ..., D̂.

8: Solve the set of equations arises from (A.21) for Âd.

9: Draw (j, i) if
∑D̂
d=1 |(Âd)i,j | ≥ σ.

Algorithm 1 summarizes the steps of our proposed approach for learning the excitation matrix and conse-

quently the causal structure of an exponential multivariate Hawkes process.

4.4 Experimental Results

In this section, we present our experimental results for both synthetic and real data.

Synthetic Data:

We applied the proposed algorithm to learn the causal structure of the multivariate Hawkes network in

Example 8 with v = (0.5, 0.4, 0.5, 1, 0.3)T . This network satisfies Assumption 2, since ρ(Γ) ≈ 0.16. The

exciting modes are {1, 1.4, 2}. We observed the arrivals of all processes during a time period T . Figure

4.3 depicts the outputs of algorithms 1 for ∆ = 0.2, z = 2, and observation lengths T ∈ {1000, 2100}. As

illustrated in Figure 4.3, by increasing the length of observation T , the output graph converges the true

DIG shown in Figure 4.2. As a comparison, we applied the MMEL algorithm proposed in [131] to learn the

excitation matrix for this example and the numerical method based on Nystrom method proposed in [70]

with T = 2100 and the number of quadrature Q = 70. Since MMEL requires i.i.d. samples, we generate

35 i.i.d. samples each of length 60 to obtain Figure 4.3(MMEL). Our proposed algorithm outperforms both

MMEL and the numerical method of [70].

Furthermore, we conducted another experiment for a network of 15 processes with 102 edges illustrated

in Figure 4.4. For a sample of length T = 2500, our algorithm was able to recover 70 edges correctly but

identified 34 false arrows. MMEL could only recover 58 arrows correctly while detecting another 41 false

arrows. The input for MMEL was 25 sequences each of length 100.

Stock Market Data:

As an example of how our approach may discover causal structure in real-world data, we analyzed the causal

relationship between stock prices of 12 technology companies of the New York Stock Exchange sourced from

Google Finance. The prices were sampled every 2 minutes for twenty market days (03/03/2008 - 03/28/2008).

Every time a stock price changed by ±1% of its current price an event was logged on the stock’s process. In

order to prevent the substantial changes in stock’s prices due to the opening and closing of the market, we
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Figure 4.3. Recovered DIG of the network in Example 8 with the excitation matrix given by (4.5), (a), (b) Algorithm
1 with ∆ = 0.2, z = 2, and T ∈ {1000, 2100}, (c) the numerical method of [70] with Q = 70 and T = 2100, and
(d) MMEL with 35 i.i.d. samples each of length 60. Our approach learns the graph with T = 2100, while other
approaches fail at the same sample size.
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Figure 4.4. True causal structure of the synthesized example.

ignored the samples at the beginning and at the end of each working day. For this part, we have assumed

that the jumps occurring in stock’s prices are correlated through a multivariate Hawkes process. This model

class was advocated in [133,134]. Figure 5.8(a) illustrate the causal graph resulting from Algorithm 1, with

z = 30 and ∆ = 2 minutes.

To compare our learning approach with other approaches, we applied the MMEL algorithm to learn the

corresponding causal graph. For this scenario, we assumed that the data collected from each day is generated

i.i.d. Hence, a total of 20 i.i.d. samples were used. Figure 5.8(c) illustrates the resulting graph. As one

can see, Figures 5.8(a) and 5.8(c) convey pretty much a similar causal interactions in the dataset. For

instance both of these graphs suggest that one of the most influential companies in that period of time was

Hewlett-Packard (HP). Looking into the global PC market share during 2008, we find that this was indeed

the case.1

To use another modality, we derive the corresponding DIG of this network applying Equation (4.4). For

this part, we used the market based on the Black-Scholes model [135] in which the stock’s prices are modeled

1Gartner, http://www.gartner.com/newsroom/id/856712
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Figure 4.5. Causal structures for the S&P (a) using Algorithm 1, (b) by estimating the directed information DIG,
and (c) using MMEL algorithm.

Alg. 1 DIG MMEL
Alg. 1 33 25 26
DIG 25 30 24
MMEL 26 24 34

Table 4.1. Number of edges that the approaches jointly recover.

via a set of coupled stochastic PDEs. We assumed that the logarithm of the stock’s prices are jointly Gaussian

and therefore the corresponding DIs were estimated using Equation (3.11). The resulting DIG is shown in

Figure 5.8(b). Note that this DIG is derived from the logarithm of prices and not the jump processes we

used earlier. Still it shares a lot of similarities with the two other graphs. For instance, it also identifies HP

as one of the most influential companies and Microsoft as one the most influenced companies in that time

period. Table 4.1 shows the number of edges that each of the above approaches recovers and the number

of edges that they jointly recover. This demonstrates the power of exponential kernels even when data does

not come from such a model class.

MemeTracker Data:

We also studied causal influences in a blogosphere. The causal flow of information between media sites may

be captured by studying hyperlinks provided in one media site to others. Specifically, the time of such linking

can be modeled using a linear multivariate Hawkes processes with exponential exciting functions [131, 136].

This model is also intuitive in the sense that after emerging a new hot topic, in the first several days, the

blogs or websites are more likely feature that topics and it is also more likely that the topic would trigger

further discussions and create more hyperlinks. Thus, exponential exciting functions are well suited to

capture such phenomenon as the exiting functions should have relatively large values at first and decay fast

as time elapses.

For this experiment, we used the MemeTracker2 dataset. The data contains time-stamped phrase and

hyperlink information for news media articles and blog posts from over a million different websites. We

extracted the times that hyperlinks to 10 well-known websites listed in Table 4.2 are created during August

2http://memetracker.org/data/links.html
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Cr craigslist.org

Ye yelp.com

Am amazon.com

Sp spiegel.de

Wi wikipedia.org

Yo youtube.com

Cn cnn.com

Gu guardian.co.uk

Hu humanevents.com

Bb bbc.co.uk

Table 4.2. List of websites studied in MemeTracker experiment.

Cr

Ye

Am Sp

Wi

Bb

Cn

GuHu

Yo

(a) Alg. 1 (30).
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Figure 4.6. Recovered causal structure of the MemeTracker dataset using (a) Algorithm 1, (b) MMEL for 30 different
phrases, and (c) both Algorithm 1 and MMEL for 110 different phrases.

2008 to April 2009. When a hyperlink to a website is created at a certain time, an arrival events is recorded

at that time. More precisely, in this experiment, we picked 30 different phrases that appeared on different

websites at different times. If a website that published one of the phrases at time t also contained a hyperlink

to one of the 10 listed websites, an arrival event was recorded at time t for that website in our list.

Figure 4.6(a) illustrates the resulting causal structure learned by Algorithm 1 for z = 12 hours and ∆ = 1

hour. In this graph, an arrow from a node to another, say node Ye to Yo, means creating a hyperlink to

yelp.com triggers creation of further hyperlinks to youtube.com.

We also applied the MMEL algorithm with one exponential kernel function to learn the excitation matrix.

For this experiment, the data corresponding to each phrase was treated as an i.i.d. realization of the system.

The resulting causal structure is depicted in Figure 4.6(b).

As Figure 4.6(a) illustrates, the nodes can be clustered into two main groups: {Cr, Ye, Am, Yo} and {Bb,

Cn, Gu, Hu, Sp, Wi}. The first group consists of mainly merchandise and reviewing websites and the second

group contains the broadcasting websites. However, this is not as clear in Figure 4.6(b). This is because

MMEL requires more i.i.d. samples (phrases) to be able to identify the correct arrows. Note that as we

increase the number of phrases (110), Figure 4.6(c), both graphs become similar with two clearly visible

main clusters.
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CHAPTER 5

LEARNING MINIMAL LATENT POLYTREES

In practice it is often difficult and even impossible to collect all the relevant time series when performing

causal analysis on a dataset. The causal structure recovery literature currently is of two flavors when it comes

to dealing with latent variables: one assumes that the underlying network has a specific causal structure,

that is the flavor of this chapter. The other assumes a model that describes the dynamic among the latent

and observed processes, which is the flavor of Chapter 6.

This chapter studies the problem of learning the causal structure of dynamics, where only a subset of

random processes are observed. More specifically, we develop an approach for recovering directed graphs

whose underlying structure is a polytree and introduced an algorithm that can learn the entire casual

structure (observed and latent nodes) using a so-called discrepancy measure.

5.1 Minimal Latent Polytree

Consider a set of random processes X whose directed information graph is a polytree
−→
T = (V,

−→
E ), abbre-

viated as DIT. Denote O = {X1, ...,Xm} as the set of observable processes and their corresponding nodes

in the DIT is denoted by O. Likewise, denote L = {Y1, ...,Yk} as the set of latent processes and their

corresponding nodes are denoted by L. Briefly, X = O ∪L is the set of random processes and V = O ∪L is

their corresponding nodes in the DIT.

A probability distribution PO is called polytree-decomposable if there exists a joint distribution of the form

PO∪L that satisfies Assumption 1 and its corresponding DIG is a polytree. In this case, PO∪L is called a

polytree-extension of PO.

Example 9. Consider an array of five random processes X = (X1,X2,X3,Y1,Y2) with the joint dynamics:

Xt = Xt−1A + Xt−2B + Wt,

where Xt is the row vector (X1,t, X2,t, X3,t, Y1,t, Y2,t), and A and B are 5 × 5 real matrices such that their

non-zero entries are A(4, 2),A(1, 4),A(4, 5), and B(4, 3) and they are all equal to 0.5. W is a set of 5 jointly

independent random processes. Figure 5.1(a) illustrates the corresponding DIG of the whole system. Figure

(b) and (c) are obtained by marginalizing over Y2 and {Y1,Y2}, respectively. Since there exists at least one

joint distribution such that its corresponding DIG has polytree structure, PO is polytree-decomposable, where

O = {X1,X2,X3}.

A latent node h ∈ L is called redundant if the directed information graph corresponding to the joint

distribution of observed and latent nodes excluding Yh, (PO,L\{Yh}) remains a forest, i.e., a collection of
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Figure 5.1. The DIGs of Example 3. (a) shows the DIT corresponding to PX. (b) is the DIT corresponding to
PX\{Y2}. (c) is the DIG corresponding to PO. Latent nodes are indicated by circles.

polytrees. For instance in Example 9, Y2 is a redundant hidden node. A latent directed information polytree

(LDIT) is called minimal if it has no redundant hidden nodes1. The polytree in Figure 9(b) is minimal.

Assumption 3. We assume that the joint distribution of the set of observed processes is polytree-decomposable.

The next example demonstrates cases in which one is polytree-decomposable and the other is not.

Example 10. Consider a set of 3 observable processes X comprising a physical, dynamical system, such

that the evolution of the processes over time satisfies the following stochastic equations:

X1,t = X3,t−1/3 + V1,t, (5.1)

X2,t = X1,t−1/2 + V2,t,

X3,t = X2,t−1/2 + V3,t,

where (V1, V2, V3) are three exogenous, independent processes. Figure 5.2(a) demonstrates the corresponding
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Figure 5.2. Directed information graphs of Example 10.

DIG. For this small example, by checking all possible sets of auxiliary variables, we can conclude that there

is no set of auxiliary variables L such that PX∪L both satisfies Assumption 1 and its corresponding DIG is a

polytree. Now, consider the following discrete-time dynamical system with the corresponding DIG shown in

Figure 5.2(b):

X1,t = V1,t,

X2,t = X1,t−2/2 + V4,t−1/2 + V2,t, (5.2)

X3,t = X1,t−2/3 + V4,t−1/3 + V3,t,

1A redundant hidden node in [4] is defined as a hidden node that the joint distribution without it remains a tree instead of
a forest.
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where (V1, V2, V3, V4) are exogenous, independent processes. By defining Yt := X1,t−1 + V4,t, we can obtain

a DIT as shown in Figure 5.2(c).

5.1.1 Some Properties of a Minimal LDIT

This section presents some properties of the DIT and the minimal LDIT, which will be used in Section 5.2

for structure learning.

Lemma 2. Let
−→
T = (V,

−→
E ) be the DIT corresponding to the joint distribution of a collection of random

processes X. Let X ∈ X and A1 and A2 be two disjoint subsets of the parents of X, i.e., PA(X). Then XA1

and XA2
are independent.

Proof. See Appendix A.4.1.

Lemma 3. In a minimal LDIT, all hidden nodes have at least two children.

Proof. See Appendix A.4.2.

Lemma 4. Consider a collection of random processes X with a DIT T = (V,
−→
E ). If there is a directed path

from j to i of length d, i.e., there is a sequence of nodes (i1, ..., id−1) where j is the parent of i1, ik is the

parent of ik+1 for (1 ≤ k ≤ d− 2), and id−1 is the parent of i then

D(PXi|Xj || PXi||dXj ) = 0 . (5.3)

Proof. See Appendix A.4.3.

Lemma 4 implies that by walking along the path between two random process Xi and Xj , each time we

pass a node, the time dependency between Xi and Xj is shifted by at least one unit. In the next sections

we will see that these time delays will help us recover the structure of a minimal LDIT. Time delays have

also been used for infernce tasks in network forensic applications such as traffic analysis [137–140].

Lemma 5. Suppose there exist two disjoint directed paths from W to X and Y in a minimal LDIT. Then

D
(
PX,Y,W||PWPX||WPY||W

)
= 0. (5.4)

Proof. See Appendix A.4.4.

Lemma 6. In a minimal LDIT, if the root ancestors 2 of two nodes are disjoint, they are independent.

Proof. See Appendix A.4.5.

Another property which plays an essential role in learning the latent structure is what we call sibling

resemblance.

Definition 11. A collection of random processes X with a corresponding minimal LDIT,
−→
T = (V,

−→
E ),

satisfies sibling resemblance property, if for every pair (Xi,Xj), (i 6= j), of sibling with common parent Xk

the following property holds: If there exists a time s such that I(Xs
i,1;Xk) > 0, then I(Xi,s;Xj |Xs−1

i,1 ) > 0

2The set of roots that are ancestors of a given node in a directed tree is called root ancestors of that node.
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This property simply states that in a minimal LDIT, the information inherited from a node to its children

is not independent. Many dynamical systems such as autoregressive models satisfy this property. Next

example illustrates the importance of this property for learning latent polytrees.

Example 11. Consider a minimum LDIT with two observable and one latent random processes denoted

by X = {X1,X2,Y1}. Let X1,t+1 = 0.2Y1,2t−1 + ε1,t+1 and X2,t+1 = −0.9Y1,2t + ε2,t+1, where ε1,t, ε2,t,

and Y1 are jointly independent. The corresponding DIG of this system is X1 ← Y1 → X2. Suppose that

{Y1,2t} and {Y1,2t−1}, i.e., the even and odd sub processes of Y1 are independent. In this case X1 and

X2 are independent and detecting the hidden confounder between them is impossible. This system does not

satisfy the sibling resemblance property since X1 and X2 are sibling with Y1 as their common parent and

I(X2
1 ;Y1) > 0, (s = 2), but I(X1,2;X2|X1,1) = 0.

5.1.2 Presence of Simultaneous Influences

Excluding simultaneous influences helps us write equation (2.3) which consequently leads to the definition

of generative model graphs in Section 2.2. Now the question is, what if there were in fact simultaneous

influences?

In this section, we show that if there are simultaneous influences between processes, the corresponding

DIG is not a polytree and hence it cannot be recovered by our proposed method. To make the statement

rigorous, we need to modify the definition of the directed information graph by using the original Kramer’s

causal conditioning that allows for simultaneous influences. For K ⊆ −{j} define

P̃Xj || XK :=

n∏
t=1

PXj,t|Xt−1
j,1 ,XtK,1

, (5.5)

and the modified conditional directed information as

Ĩ (Xj → Xi||XK) := EPXK∪{i,j}

[
log

dP̃Xi||Xj ,XK

dP̃Xi||XK

]

Using the above measure, we are able to define the modified directed information graph (MDIG) that captures

the simultaneous effects as such: there is an arrow from node j to node i for i, j ∈ {1, ...,m} in the MDIG

if and only if

Ĩ
(
Xj → Xi||X−{i,j}

)
> 0.

Theorem 7. Let
−→
T to be a MDIG over a set of random processes X which is a polytree and let PA(X) to

be the parent set of X in
−→
T , then

D
(
P̃X|| XPA(X)

||PX|| XPA(X)

)
= 0.

Proof. See Appendix A.4.6.

A consequence of the above result is that the corresponding DIG of a system with simultaneous influences

is not a polytree. This is because, when the corresponding MDIG of a dynamical system is a polytree, based

on the above result, all the simultaneous influences can be dropped.
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5.2 Recovery of Latent Polytrees

A simple observation about a directed ploytree is that each pair of nodes that are the descendants of the

same root has a unique common ancestor. In this section, we define a notion of distance on a polytree in

order to determine the distance of each pair of nodes to their common ancestor, if it exists. Moreover, we

will show that given these distances for a subset of nodes, the graph is uniquely recoverable.

Definition 12. Given a polytree
−→
T = (V,

−→
E ) with the root set R, every function γ : V × V → R that

satisfies the following criterion is called a discrepancy on
−→
T . γ assigns a real number to the path from v1 to

the common ancestor of v1 and v2, such that

1. γ(v1, v2) = 0 if and only if either v1 is the ancestor of v2 or v1 = v2.

2. If the common ancestor of v1 and v2 is the same as the common ancestor of v1 and v3, then

γ(v1, v2) = γ(v1, v3).

3. If the common ancestor of v1 and v2 is on the path from the common ancestor of v1 and v3 to v1, then

γ(v1, v2) < γ(v1, v3).

4. γ(v1, v2) < 0 if and only if v1 and v2 have no common ancestor.

The image of such these functions can be presented by the discrepancy matrix:

ΓV := [γr(vi, vj)] , vi, vj ∈ V.

Note that for a given polytree, the discrepancy matrix is not unique. Any function that satisfies the conditions

in Definition 12 is a valid discrepancy measure.

Example 12. Consider the polytree depicted in Fig.5.3 with roots {v5, v6} and the following discrepancy

matrix:

ΓV =



0 2 3 1 3 4

0 0 −2 0 −1 1

1 −3 0 1 1 −3

0 1 2 0 2 3

0 −1 0 0 0 −2

0 0 −1 0 −1 0


.

For instance, looking at the third row, this particular discrepancy function assigns 1 to the path from v3 to

its common ancestor with v1, i.e., v5. Since v2 and v3 have no common ancestor, ΓV (3, 2) < 0.

We prove that the discrepancy matrix suffices to uniquely learn the topology of a polytree
−→
T = (V,

−→
E ).

We also present an algorithm that learns the structure of a polytree given the discrepancies between all the

pairs of observed nodes.

Definition 13. In a polytree
−→
T = (V,

−→
E ), we call a subset L ⊂ V learnable, if every node v ∈ L has at least

two outgoing arrows. We call O := V \ L the set of observed nodes.
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Figure 5.3. The directed tree of Example 12.

For example, {v5} is a learnable subset of the polytree shown in Figure 5.3. From Definition 13, if L is a

learnable subset of a polytree, then all the leaves belong to O = V \ L.

Theorem 8. Let
−→
T = (V,

−→
E ) be a polytree with the root set R and let L ⊆ V be a learnable subset. Then

existence of a discrepancy matrix ΓO for O = V \ L suffices for learning
−→
T .

Proof. See Appendix A.4.7.

Next, inspired by the steps in the proof of Theorem 8, we present an algorithm for structure learning of

polytrees.

5.2.1 Structure Recovery Algorithm

The rational of the proposed algorithm in this section follows the three main steps of proof of Theorem 8:

the first step is to discover the number of roots |R| of the underlying polytree and all their descendants in

the set of observed nodes (O) given the discrepancy matrix ΓO. This can be done by fixing a node v ∈ O
and finding a maximal subset of O containing v in which every pairs of nodes have positive discrepancy

(Algorithm 2).

Next step is to recover the underlying tree for every root r ∈ R given its discovered descendants in the set

O. This can be done using the recursive approach summarized in Algorithm 3.

The last step is to merge the recovered trees from the previous step to recover the underlying polytree. This

too is possible, since if two recovered trees are connected, their common subgraph is also a tree; thus, it can

be learned using Algorithm 3. Algorithm 4 describes the required steps.

Next, we present our algorithm that learns a polytree given a discrepancy matrix on its observed nodes

using the aforementioned three main steps.. A simple example that illustrates the algorithm is also provided.

First, we need the following definition.

Definition 14. A tree merger is an operator that takes two directed trees
−→
T 1,
−→
T 2 and a given sub-tree of

both of them, say
−→
T 3 and merges them at

−→
T 3. We denote this operation by

−→
T 1 ◦

−→
T 2|−→T 3

.

Figure 5.4 depicts one such tree merger.

Polytree(ΓO) presents an algorithm for learning the polytree
−→
T (V,

−→
E ) with the root set R given the

discrepancy matrix ΓO on its observed nodes O. First, it calls the subroutine Separation(ΓO) which finds

subsets Ois, where O = ∪iOi such that each subset corresponds to observed nodes in a directed tree with a

single root. Each of these single rooted sub-trees can be learned by Algorithm Tree(O). To complete the

task, Algorithm Polytree(ΓO) must connect these sub-trees to recover the original polytree. This is done

by using the fact that if a polytree
−→
T and a directed tree

−→
T i have an intersection, then their intersection will

be a directed tree. Thus it also could be learned by Algorithm Tree(O). After learning the intersection part,
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Figure 5.4. An example that illustrates the merger operator between two directed trees.

Algorithm 2 : Separation(ΓO)

1: Input : ΓO
2: Output : O1, ..., O|R|
3: M ← ∅, i← 1
4: while O \M 6= ∅ do
5: Choose v in O \M
6: Find all C ⊆ O such that v ∈ C and

for all (u,w) ∈ C × C, γ(u,w) ≥ 0.
7: Oi ←maximal C
8: Return Oi
9: M ←M ∪Oi

10: i← i+ 1
11: end while

Algorithm Polytree(ΓO) uses the tree merger operator defined in Definition 14 to connect these together.

In Algorithm Tree(O),
−→
T 1⊕

−→
T 2(h) is an operator that connects a directed tree

−→
T 1 = (V1,

−→
E 1) with root r1

to a polytree
−→
T 2 = (V2,

−→
E 2) given a leaf of

−→
T 2, h, by simply substituting h in

−→
T 2 by

−→
T 1. More precisely,

−→
T 1 ⊕

−→
T 2(h) :=

(
V1 ∪ V2 \ {h},

−→
E
)
,

where
−→
E =

−→
E 1 ∪ {(PA2(h), r1)} ∪

−→
E 2 \ {(PA2(h), h)},

and PA2(h) is given by (1.8) and it represents the set of parents of h in
−→
T 2. Figure 5.5(b) depicts an

example.

Example 13. Consider the polytree in Example 12. Assume O = {v1, v2, v3, v4, v6}. Then, by the definition

V \O = {v5} is a learnable subset. Given the discrepancy matrix

ΓO =


0 2 3 1 4

0 0 −2 0 1

1 −3 0 1 −3

0 1 2 0 3

0 0 −1 0 0

 ,

Algorithm 4 calls Separation to find all sub-trees with single roots, which are O1 = {v1, v2, v4, v6} and

O2 = {v1, v3, v4}. As one can see in Figure 5.3, the sub-trees induced by O1 and O2 each have a single root.
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Algorithm 3 : Tree(O)

1: Input : ΓO
2: Output :

−→
T = (V,

−→
E )

3: For all v ∈ O
4: Bv ← arg minu∈O\{v} γ(v, u)
5: if Bv = O \ {v} ∀v ∈ O then
6: if ∃w ∈ O : minu∈O\{w} γ(w, u) = 0 then

7:
−→
T is a star graph with w as the root in the center.

8: else
9:

−→
T is a star graph with a hidden node as the root in the center.

10: end if
11: else
12: Choose w such that Bw 6= O \ {w}
13:

−→
T ′ ←Tree(Bw ∪ {w})

14:
−→
T ′′ ←Tree(O \Bw)

15: Substitute w in
−→
T ′′ by another node, say h.

16:
−→
T ←

−→
T ′ ⊕

−→
T ′′(h)

17: end if
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Figure 5.5. (a) Illustrate the steps and outputs of Tree({v1, v2, v4, v6}). (b) Illustrate the steps and outputs of
Tree({v1, v3, v4}). (c) Illustrates merging the first two directed trees by sharing their common sub-tree which is
obtained by Tree({v1, v4}).

Subsequently, Algorithm 4 calls Tree to build the sub-trees. Figures 5.5(a) and 5.5(b) illustrate these

sub-trees. For instance, the subtree in Figure 5.5(a) is obtained as follows: Algorithm 3 computes Bvis for

i ∈ {1, 2, 4, 6} at step 4. Since Bv2 = {v1, v4} 6= O1 \ {v2}, the condition in step 5 is not satisfied and

Algorithm 3 will jump to step 12 and chooses w to be v2. In step 13 and 14, the algorithm recursively calls

itself but this time given {v1, v2, v4} and {v2, v6}, respectively. Since the sub-tree induced by {v2, v6} is a

star, it will be constructed in steps 5 to 10. On the other hand, the sub-tree induced by {v1, v2, v4} is not a

star. It is learned by breaking it into two stars as shown in Fig. 5.5(a).

Finally, Algorithm 4 must reconnect the sub-trees depicted in Fig. 5.5(a) and 5.5(b). To do so, it finds the

common sub-tree between them at steps 8 and 9, and it merges the trees in Fig. 5.5(a) and 5.5(b) together

at step 11. The final result is shown in Figure 5.5(c).
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Algorithm 4 : Polytree(ΓO)

1: Input : ΓO
2: Output :

−→
T = (V,

−→
E )

3: Separation(ΓO).

4:
−→
T ←Tree(O1)

5: S ← O1, I ← {1}
6: while I 6= {1, 2, ..., |R|} do
7: Find i ∈ {1, 2, ..., |R|} \ I such that Oi ∩ S 6= ∅
8:

−→
T sub ←Tree(S ∩Oi)

9:
−→
T i ←Tree(Oi)

10:
−→
T ←

−→
T ◦
−→
T i|−→T sub

11: S ← S ∪Oi
12: I ← I ∪ {i}
13: end while

5.3 Discrepancy Measure for Latent Directed Information Polytrees

In this section, we establish a discrepancy measure for learning minimal directed information polytrees.

Recall that Lemma 4 states that the lag between random processes grows by walking along the directed

paths in a minimal DIT. This allows us to have the following definition in such graphs.

Definition 15. For any pair of random processes (Xj ,Xk) ∈ O ×O, we define the directed measure from

Xj to Xk denoted by γ(Xj ,Xk) as follows: If I(Xk;Xj) = 0, then γ(Xj ,Xk) = −1, and

γ(Xj ,Xk) :=

{
maxd≥0

{
d : I

(
Xd
j,1;Xk

)
= 0
}

j 6= k

0 j = k.
(5.6)

Note that I
(
X0
j,1;Xk

)
= 0.

Theorem 9. Let X = O∪L be a collection of random processes which form a minimal LDIT,
−→
T = (V,

−→
E ),

where V = O ∪ L. If X satisfies Assumptions 1, 3, and the sibling resemblance property, then the directed

measure defined above is an admissible discrepancy and L is a learnable subset.

Proof. See Appendix A.4.8.

5.4 Sample Complexity for Empirical Estimator

This section studies the complexity of the proposed algorithm to recover the minimal LDIT given N i.i.d.

samples of the observed random processes, {O(1), ...,O(N)}, where O(q) = {X(q)
1 , ...,X(q)

m } denotes the q-th

sample from all the m processes. X
(q)
i ∈ Xn for each i. Consider the case that the alphabet set X is finite.

In order to learn the minimal LDIT we need to estimate the directed measures introduced in the previous

section between all pairs of observed processes. To do so, first we estimate the joint distributions for each

pair (Xi,Xj) using the empirical estimator defined as

P̂Xi,Xj
(xi,xj) :=

1

N

N∑
q=1

I{
(xi,xj)=(X

(q)
i ,X

(q)
j )

}, (5.7)
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where (xi,xj) ∈ Xn × Xn and I is the indicator function. Using the empirical distribution of (5.7), we can

compute the empirical entropies and consequently, the empirical mutual information.

Lemma 7. Given N i.i.d. samples of two random processes, X1 ∈ |X |d1 and X2 ∈ |X |d2 , d1, d2 ≤ n, we

have

P
(
|I(X1;X2)− Î(X1;X2)| ≥ ε

)
≤ 6|χ|2n e−Nξn(ε),

where ξn(ε) > 0 and it is given by

ξn(ε) = 2 exp

(
2 log ε

3|χ|2n

log ε
3|χ|2n − 1

log
ε

3|χ|2n log 3|χ|2n
ε

)
. (5.8)

Proof. See Appendix A.4.9.

As long as there exists an estimator for the mutual information Î(· ; ·), such as the empirical estimator in

(5.7), we can estimate the directed measure (5.6) from Xi to Xj by estimating Î(Xj ;X
d
i,1) for d = 1, ..., n.

After choosing an appropriate threshold ρ > 0, our estimate of directed measure will be the smallest d for

which Î(Xj ;X
d
i,1) > ρ:

γ̂(Xi,Xj) := min{d : Î(Xj ;X
d
i,1) > ρ}. (5.9)

Theoretically, the best possible threshold is

ρ∗ := min
i6=j

{
I(X

γ(Xi,Xj)+1
i,1 ; Xj)

}
. (5.10)

The next theorem presents a concentration bound for our estimate.

Theorem 10. Given N i.i.d. samples of two random processes X1 and X2 each of length n, and threshold

0 < ρ ≤ ρ∗ in (5.10), we have

P (γ(X1,X2) 6= γ̂(X1,X2)) ≤ 6n|χ|2n e−Nξn(ρ),

where ξn(·) is given in (5.8).

Proof. Using definition (5.10), one can show {γ(X1,X2) 6= γ̂(X1,X2)} ⊆
⋃n
k=1{|Ik − Îk| ≥ ρ}, where

Ik := I(Xk
1,1; X2), Îk := Î(Xk

1,1; X2).

Applying the union bound and Lemma 7 concludes the proof.

Most of the practical dynamical systems have finite memory, i.e., they have finite Markov order. In such

scenarios, the sample complexity reduces extensively. More precisely, consider a dynamical system with

finite Markov order p, then in order to estimate I(Xd
i,1; Xj), it suffices to estimate the estimating mutual

information between two random processes each of length at most p+ 1. This is true because for a process

Xj of length n and finite Markov order p, we have

H(Xj) =

n∑
t=1

H(Xj,t|Xt−1
j,t−p) =

n∑
t=1

H(Xt
j,t−p)−H(Xt−1

j,t−p). (5.11)

Using the result of Lemma 7, Theorem 10, and Equation (5.11), we obtain the following sample complexity

for a network with finite Markov order.
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Corollary 2. Given N i.i.d. samples of two random processes X1 and X2 each of length n with finite

Markov order p, and threshold 0 < ρ ≤ ρ∗ in (5.10), we have

P (γ(X1,X2) 6= γ̂(X1,X2)) ≤ 6n2|χ|2p+2 e−Nξp+1(ρ/n).

Let
−̂→
T N = (V̂N ,

−̂→
EN ) denote the reconstructed polytree using the empirical directed measures (5.9) given

N i.i.d. samples from the observable processes and assume that the true minimal LDIT was
−→
T = (V,

−→
E ).

Define the error event as

{
−→
T 6≡

−̂→
T N} := {V 6= V̂N} ∪ {

−→
E 6=

−̂→
EN}.

That is, an error occurs in the reconstruction algorithm, if the set of constructed nodes and edges are not

precisely those of the true polytree
−→
T .

Corollary 3. Consider a minimal LDIT X = O ∪ L consisting of m observable nodes. Given N i.i.d.

samples from each of the observable processes,

P
(
−→
T 6≡

−̂→
T N

)
≤ 12

(
m

2

)
n|χ|2n e−Nξn(ρ),

where 0 < ρ ≤ ρ∗ and ξn(·) is given in (5.8).

Proof. Theorem 8 states that given the discrepancies between all pair of observed nodes,
−→
T is recoverable.

Since there are m such nodes, 2
(
m
2

)
directed measures need to be estimated. Theorem 10 and union bound

establish the result.

5.5 Experimental Results

In this section, we present our experimental results for both synthetic linear system and non-linear system,

and a real dataset.

Autoregressive Model:

We simulated a network of 14 processes corresponding to a polytree with 3 roots in which 4 processes were

latent. We observed N ∈ {2000, 4000} i.i.d. samples from every observed process each of length n = 20. They

were modeled as zero-mean multivariate normal autoregressive time-series such that Zt =
∑3
i=1 AiZt−i+Wt,

where Zt,Wt ∈ R14 and Ai ∈ R14×14. Wis were generated i.i.d. Gaussian with mean zero and variance

one. The non-zero entries of Ais are given in Table 5.1. The first four processes of Z denoted by (Y1, ...,Y4)

were the latent ones.

Mutual information between two jointly Gaussian random processes X and Y is given by [25] I(X; Y) =

−0.5 log
|ΣX,Y|
|ΣX||ΣY| , where ΣX is the covariance matrix of process X, and ΣX,Y is the covariance matrix of

(X,Y). Hence, we were able to estimate the discrepancies (5.9) by estimating the covariance matrices

between the observed processes. Figure 5.6(a) and 5.6(b) illustrate the recovered structure for N = 2000

and N = 4000, respectively.

To compute each directed measure pair γjk, we estimated quantities fj,k(d) := Î
(
Xd
j,1; Xk

)
, for 1 ≤ d ≤ 20

using the above expression for the mutual information. If for all 1 ≤ d ≤ 20, fj,k(d) is less than τ , a sufficiently
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Figure 5.6. Recovered polytree of the AR model. Latent nodes are indicated by circles.

small threshold (in this example τ = 0.05), we set the directed measure from j to k, γj,k to −1. Otherwise,

it is set to equal a value d∗, where d∗ is the first value at which fj,k(d) makes a significant jump. That is,

fj,k(d∗) is greater than its preceding values {fj,k(i), i < d∗}. This means ρ in Section 5.4 was set to equal

fj,k(d∗ − 1).

The reason we see cycles for small number of sample is because of estimation errors. When the number of

samples are not sufficient to estimate the entries of the discrepancy matrix correctly, the resulting discrepancy

matrix will violate some constraints in Definition 12, particularly constraint (2), which will enforce the

algorithm to add cycles in order to be consistent with the estimated discrepancy matrix.

A1 A1(1, 1) = 1, A1(2, 1) = 1, A1(2, 2) = 0.5, A1(2, 5) =
√

2/2, A1(3, 4) = 1, A1(5, 5) =
1, A1(6, 1) = −2, A1(8, 8) = 1, A1(8, 7) = 0.1, A1(10, 10) = 0.3, A1(12, 12) =

√
2,

A1(13, 13) = −0.2, A1(13, 3) = −1, A1(14, 5) = 0.2.

A2 A2(3, 3) = −1, A2(5, 5) = 0.2, A2(7, 7) =
√

2, A2(8, 8) = 1, A2(8, 7) = 0.2, A2(9, 9) = 3,
A2(9, 2) = 2.5, A2(10, 4) = −1, A2(11, 11) = 1, A2(12, 3) = −

√
2.

A3 A3(4, 2) =
√

3, A3(6, 6) = 1, A3(8, 6) = 0.6, A3(11, 4) = −2.

Table 5.1. Non-zero coefficients of the AR model.

A Non-linear Model:

We simulated a network of 7 processes, which formed a polytree with 2 roots in which 2 processes were

latent. Denoting the latent processes with Y and the observed ones with X, the model is expressed as

Y1,t = Y1,t−3 + 0.1Y 2
1,t−2 + ζ1,t,

X1,t = X2
1,t−1/

√
2− 0.1|ζ2,t|,

Y2,t = Y2,t−1 −X1,t−1 + 1.5
√
|Y1,t−1|+ ζ3,t,

X2,t = −2Y2,t−1 + 0.3
√
|X2,t−3|3 + ζ4,t,

X3,t = 2X3,t−2 − 0.2Y2,t−1 + ζ5,t,

X4,t = X4,t−1 +
√
|2X4,t−2| − Y1,t−1+2Y1,t−2 + 0.7 log |Y1,t−3|+ ζ6,t,

X5,t = 3X5,t−2 + 2.5X4,t−2 + ζ7,t,
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Figure 5.7. Recovered polytree of the non-linear model. Latent nodes are indicated by circles.

where ζis were generated i.i.d. Gaussian with mean zero and variance one. The observed variables

{X1, ..., X5} were each of length n = 20 and N ∈ {103, 104} number of samples from each of them was

collected. The directed measures were estimated using Equation (5.9) and the mutual information was es-

timated using 1-nearest neighbour method in [141]. The same thresholding procedure of Section 5.5 was

used to decide whether the estimated mutual information are zero or positive. The recovered networks are

depicted in Figure 5.7.

Market Analysis:

As an example of how our approach may discover causal structure in real-world data, we analyzed the causal

relationship between stock prices of 10 technology companies of the New York Stock Exchange sourced from

Google Finance for twenty market days (03/03/2008 -03/28/2008). In this simulation, we assumed that

the underlying causal structure did not change during the sampling period. Furthermore, we assumed that

influences took a business day to propagate among the stocks. Hence, the difference between, t and t+ 1, is

one business day. To obtain i.i.d. samples, the price of each stock was sampled every two minutes during a

business day. This amounted to N = 200 number of i.i.d. samples for each stock and n = 20.

For this experiment, we used the Black-Scholes model [135] for the market in which, the stock prices

are modeled via a set of coupled stochastic partial differential equations. This model allows to model the

logarithm of the stocks prices as an autoregressive model [142]. Thus, the directed measure were estimated

similar to Section 5.5 from the logarithm of the stock’s prices.

Since the underlying true DIG of these 10 companies is not necessarily a polytree, we first approximated

the DIG graph of the network by the best directed tree, where best is in the sense of minimizing the Kullback-

Leibler (KL) divergence between the true joint and the one resulting from the directed tree approximation.

It was shown in [80] that the optimal approximate directed tree maximizes the sum of pair-wise directed

information terms. Thus, to obtain the best tree approximation, we estimated the pair-wise directed infor-

mation and found the maximum spanning tree. As depicted in Figure 5.8(a), the approximation identified

two disjoint trees. In order to obtain a polytree, we connected the two sub-trees by the arrow with maximum

directed information weight between the nodes of the two sub-trees. This edge was (HP,EMC) as shown in

Figure 5.8(b).

HP and IBM are the roots in polytree depicted in Figure 5.8(b). This suggests that they had significant

influences on the other companies’ stock prices during 2008. In fact, Gartner, Inc. had ranked IBM as the

worldwide share leader in the enterprise portal software market based on total software revenue3. Further-

3IBM, https://www-03.ibm.com/press/us/en/pressrelease/24507.wss
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Figure 5.8. The polytree of the market data. In (b) latent nodes are indicated by circles. Recovered polytree of the
market is in (c).

more, HP was the global PC market share leader during the same period followed by Dell Inc4. Another

observation is the detected influence of Apple on Intel and Microsoft. Although Apple had begun using Intel

processors in its products since 2006, it was only in 2008 that it released MacBook Air and upgraded the

processors of MacBook and MacBook Pro to Intel core 2 Duo Penryn. Thus, it causes Intels stock price

to increase. The arrow from Apple to Microsoft might be a result of the following phenomenon, during

2007-2008, Apples Mac OS X posted its biggest gain, while Windows OS market share dived below 90% for

the first time5.

To test out latent learning algorithm, we removed the data for the following three companies: Apple, HP,

and Dell in the polytree of Figure 5.8(b) and ran our algorithm with the data from the remaining 7 companies.

We used the same thresholding procedure of Section 5.5 to obtain the directed measures. The estimated

discrepancy matrix is given in (23) and the recovered polytree is shown in Figure 5.8(c). The algorithm

successfully recovered the hidden nodes, but it added one spurious edge. As a result the recovered structure

is not a polytree. This could be predicted by investigating the estimated discrepancy matrix in (5.12); since

entries {(In,Or),(Go,Or),(Ms,Or),(Go,Xr),(Or,Go),(Or,Ib),(Xr,Go),(Xr,In),(Xr,Ms)} are positive when they

should have been -1 due to the fact that these pairs have no common ancestor in Figure 5.8(b). The reason

for this is maybe due to estimation error resulting from insufficiency of the number of samples or the fact

that the true underlying graph is not a polytree.

ΓV =

Em Go In Ms Ib Or Xr



Em 0 1 1 1 1 1 1

Go 3 0 2 1 3 1 1

In 2 1 0 1 2 1 −1

Ms 2 0 1 0 2 1 −1

Ib 0 0 0 0 0 −1 −1

Or 2 1 −1 −1 1 0 1

Xr 2 1 1 1 −1 1 0

. (5.12)

4Gartner, http://www.gartner.com/newsroom/id/856712
5http://www.computerworld.com/article/2529379/microsoft-windows/windows-market-share-dives-below-90–for-first-time.html
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CHAPTER 6

LATENT RECOVERY IN VAR MODELS

This chapter studies the dependency graph of vector Auto Regressive (VAR) models from samples when a

subset of the variables are latent. More precisely, we assume that the available measurements are a set of

random processes Xt ∈ Rn which, together with another set of latent random processes Zt ∈ Rm, where

m ≤ n form a first order VAR model as follows:[
Xt+1

Zt+1

]
=

[
A11 A12

A21 A22

][
Xt

Zt

]
+

[
ωX,t+1

ωZ,t+1

]
. (6.1)

As we showed in Section 3.2, in VAR models, the support of the coefficient matrix encodes the causal

structure in a VAR model. We propose a learning approach that recovers the observed sub-network (support

of A11) from linear regression on the observed variables X as long as the latent sub-network (support of

A22) is a DAG. We also derive a set of sufficient conditions under which we can uniquely recover the causal

influences from latent to observed processes, (support of A12) and also the causal influences among the latent

variables, (support of A22). Additionally, we propose a sufficient condition under which the complete causal

structure can be recovered uniquely.

6.1 Problem Setting

Consider the VAR model in (6.1). Let ωZ,t ∈ Rm be i.i.d random vectors with mean zero. For simplicity, we

denote the matrix [A11, A12;A21, A22] by A. Our goal is to recover Supp(A) from observed data, i.e., {Xt}.
Rewrite 6.1 as follows

X(t+ 1) =

t∑
k=0

A∗kXt−k +A12A
t
22Z0 +

t−1∑
k=0

ÃkωZ,t−k + ωX,t+1,

where A∗0 := A11, A∗k := A12A
k−1
22 A21 for k ≥ 1, and Ãk := A12A

k
22. In the remainder, we will assume that

the A22 is acyclic, i.e., ∃ 0 < l ≤ m, such that Al22 = 0. Thus, for t ≥ l, the above equation becomes

Xt+1 =

l∑
k=0

A∗kXt−k +

l−1∑
k=0

ÃkωZ,t−k + ωX,t+1. (6.2)

Note that the limits of summations in (6.2) are changed.

We are interested in recovering the set {Supp(A∗k)}lk=0 because it captures important information about

the structure of the VAR model. Specifically, Supp(A∗0) = Supp(A11); so it represents the direct causal

influences between the observed variables and Supp(A∗k) for k ≥ 1 determines whether at least one directed
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Figure 6.1. Two unobserved networks with the same linear measurements. Observed and latent nodes are depicted
by black and white circles, respectively.

path of length k + 1 exists between any two observed nodes which goes through the latent sub-network1.

We will make use of this information in our recovery algorithm. We call the set of matrices {Supp(A∗k)}k≥0,

linear measurements. In Section 6.3, we present a set of sufficient conditions under which given the linear

measurements, we can recover the entire or most parts of the unobserved network uniquely.

Note that in general, the linear measurements cannot uniquely specify the unobserved network. For

example, Figure 6.1 illustrates two different unobserved networks that both share the same set of linear

measurements,

A∗1 =


0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0

 , A∗2 =


0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0

 ,

and A∗k = 0 for k > 2.

6.2 Identifiability of the Linear Measurements

As we need the linear measurements for our structure learning, in this section, we study the conditions

required for recovering the linear measurements from the observed processes {Xt}. To do so, we start off by

rewriting Equation (6.2) as follows

Xt+1 = AX t−l:t +

l−1∑
k=0

ÃkωZ,t−k + ωX,t+1, (6.3)

where A := [A∗0, ..., A
∗
l ]n×n(l+1), and X t−l:t := [Xt; · · · ;Xt−l]n(l+1)×1.

By projecting ÃkωZ(t−k) onto the vector space spanned by the observed processes, i.e., {X(t), ..., X(t−l)},
we obtain

ÃkωZ,t−k =

l∑
r=0

CsrXt−r +NZ,t−k, 0 ≤k≤ l− 1, (6.4)

where {NZ,t−k} denote the residual terms and {Csr} are the corresponding coefficient matrices. Substituting

(6.4) into (6.3) implies

Xt+1 = BX t−l:t + θt+1, (6.5)

1Herein, we exclude degenerate cases where there is a direct path from an observed node to another one with length k but
the corresponding entry in matrix Supp(A∗k) is zero. In fact, such special cases can be resolved by small perturbation of nonzero
entries in matrix A.
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where B := [B∗0 , ..., B
∗
l ], and

B∗k := A∗k +

l−1∑
s=0

Csk, θt+1 := ωX,t+1 +

l−1∑
k=0

NZ,t−k.

Note that by this representation, θt+1 is orthogonal to X t−l:t, i.e., E[θTt+1Xt−k] = 0, for 0 ≤ k ≤ l. Hence,

Equation (6.5) shows that the minimum mean square error (MMSE) estimator can learn the coeffiecient

matrix B given the observed processes. More precisely, we have

B = [γX(1), ..., γX(l + 1)]× ΓX(l)−1, (6.6)

where ΓX(l) := E{X t−l:t X
T
t−l:t}. Let us denote the Fourier transform of g by F [g], that is given by∑∞

h=−∞ g(h)e−hΩj .

Proposition 5. For the stationary VAR model in (6.1) in which the latent sub-network is a DAG, i.e.,

Al22 = 0, we have

max
0≤k≤l

||B∗k −A∗k||1 ≤
√
nl
M

L
||A12||2,

where L := infΩ∈[0,2π] λmin(F [γX ]) and M :=supΩ∈[0,2π] λmax(F [γωZ ]).

Proof. See Appendix A.5.1.

This result implies that we can asymptotically recover the support of {A∗k}lk=0 as long as the absolute

values of non-zero entries of {A∗k}lk=0 are bounded away from zero by 2
√
nlML ||A12||2. Note that the direct

causal influences among the observed nodes (support of A11) can be recovered from A∗0. We will make use

of {Supp(A∗k)}k>0 to recover the unobserved network in the next section.

Proposition 6. Let ΣX and ΣZ be the autocovariance matrices of ωX,t and ωZ,t, respectively. Then, the

ratio M/L strictly increases by decreasing σ2
X/σ

2
Z where ΣX = σ2

XIn×n and ΣZ = σ2
ZIm×m.

Proof. See Appendix A.5.2.

When only a finite number of samples from the observed processes are available, say {Xt}Tt=1, we can

estimate the coefficient matrix B, using an empirical estimator for ΓX(l), {γX(h)}, and then applying (6.6).

Denote the result of this estimation by BT . It can be shown that [143]

√
Tvec(BT − B)

d−−−−→
T→∞

N (0,Γ−1
X (l)⊗ Σ).

where
d−→ denotes convergence in distribution. Matrix Σ is given by (ΣX +

∑l−1
k=0(ÃkΣZÃ

T
k )). The vec(·)

operator transforms a matrix to a vector by stacking its columns and ⊗ is the Kronecker product.

6.3 Learning the Unobserved Network

Recall that we refer to Supp([0, A12;A21, A22]) as the unobserved network and Supp(A22) as the latent sub-

network. We present three algorithms that take linear measurements {Supp(A∗k)}k≥0 as their input. First

algorithm recovers the entire unobserved network uniquely as log as it is a directed tree and each latent node

has at least two parents and two children. The output of the second algorithm is Supp([0, A12; Â21, A22]),
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where Supp(A21) ⊆ Supp(Â21). This means that [A21]ij = 0 whenever [Â21]ij = 0. This output is guaranteed

whenever the latent sub-network is a directed tree and some extra conditions are satisfied on how the latent

and observed variables are connected (see Assumption 4 in Section 6.3.2). Third algorithm finds the set of

all possible networks that are consistent with the measurements and have the minimum number of latent

nodes. This algorithm is able to do so when there exists at most one directed “latent path” of any arbitrarily

length between two observed nodes (see Assumption 5 in Section 6.3.3). A directed path is called latent if

all the intermediate variables on that path are latent.

6.3.1 Unobserved Network is a Directed Tree

The work in [144] introduced a necessary and sufficient condition and also an algorithm to recover a weighted

directed tree uniquely2 from a valid distance matrix D defined on the observed nodes. The condition is as

follows: every latent node must have at least two parents and two children. A matrix D, in [144], is a valid

distance matrix over a weighted directed tree, when [D]ij equals the sum of all the weights of those edges

that belong to the directed path from i to j, and [D]ij = 0, if there is no directed path from i to j.

The algorithm in [144] has two phases. In the first phase, it creates a directed graph among the observed

nodes with the adjacency matrix Supp(D). In the second phase, it recursively finds and removes the circuits3

by introducing latent nodes for each circuit. For more details see [144].

In order to adopt [144]’s algorithm for learning the unobserved network, we introduce a valid distance

matrix using our linear measurements as follows,

[D]ij =

k + 1 [Supp(A∗k)]ji 6= 0,

0 Otherwise.

Recall that [Supp(A∗k)]ji indicates whether there exists a directed latent path from i to j of length k + 1 in

the unobserved network. From theorem 8 in [144], it is easy to show that the unobserved network can be

recovered uniquely from above distance matrix if its topology is a directed tree.

6.3.2 Latent Sub-network is a Directed Tree

We need the following definition to present our results.

Definition 16. We denote the subset of observed nodes that are parents of a latent node h by POh and denote

the subset of observed nodes that h is their parent, by COh . We further denote the set of all leaves in the

latent sub-network by L.

We consider learning an unobserved network G that satisfies the following assumptions.

Assumption 4. Assume that the latent sub-network of G is a directed tree. Furthermore, for any latent

node h in G; (i) POh 6⊆ ∪h6=jPOj and if h is a leaf of the latent sub-network, then (ii) COh 6⊆ ∪i∈L,i6=hCOi .

This assumption states that the latent sub-network of G must be a directed tree such that each latent

node in G has at least one unique parent in the set of observed nodes. That is, a parent who is not shared

with any other latent node. Furthermore, each latent leaf has at least one unique child among the observed

2The skeleton of the recovered tree is the same as the original one but not necessary the weights.
3In a directed graph, a circuit is a cycle after removing all the directions.
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Figure 6.2. Observed and latent nodes are indicated by black and white circles, respectively. Graph (a) satisfies (ii)
but not (i) and it can be reduced to (b). Graph (c) satisfies (i) but not (ii) and it can be reduced to (d).
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Figure 6.3. Both graphs satisfying Assumption 4 and have the same induced linear measurements but Supp(A21)(b)⊂
Supp(A21)(a).

nodes. For instance, when Supp(A22) represents a directed tree and both Supp(A12) and Supp(A21) contain

identity matrices, Assumption 4 holds.

Figure 6.3(a) illustrates a simple network that satisfies Assumption 4 in which the unique parents of latent

nodes a, b, c, and d are {1}, {3}, {2}, and {4}, respectively. The unique children of latent leaves c and d are

{5} and {2, 4}, respectively.

Theorem 11. Among all unobserved networks that are consistent with the linear measurements induced

from (6.1), graph G that satisfies Assumption 4 has the minimum number of latent nodes.

Proof. See Appendix A.5.3.

Note that if Assumption 4 is violated, one can find many unobserved networks that are consistent with

the linear measurements but are not minimum (in terms of the number of latent nodes). For example, the

network in Figure 6.2(a) satisfies Assumption 4 (ii) but not (i). Figure 6.2(b) depicts an alternate network

with the same linear measurements as the network in Figure 6.2(a) but it has fewer number of latent nodes.

Similarly, the graph in Figure 6.2(c) satisfies Assumption 4 (i) but not (ii). Figure 6.2(d) shows an alternate

graph with one less latent node.

Theorem 12. Consider an unobserved network G with adjacency matrix Supp([0, A12;A21, A22]). If G satis-

fies Assumption 4, then its corresponding linear measurements uniquely identify G upto Supp([0, A12; Â21, A22]),

where Supp(A21) ⊆ Supp(Â21).

Proof. See Appendix A.5.4.

Figure 6.3(a) gives an example of a network satisfying Assumption 4 and an alternate network, Figure

6.3(b), with the same linear measurements which departs from the Figure 6.3(a) in A21 component.

Next, we propose the directed tree recovery (DTR) algorithm that takes the linear measurements of an

unobserved network G satisfying Assumption 4 and recovers G upto the limitation in Theorem 12. This
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Algorithm 5 The DTR Algorithm

1: Input: {Supp(A∗k)}k≥1

2: Find {li} using (6.7) and set U := ∅.
3: for i = 1, ..., n do
4: Find Ri,Mi from (6.8) and (6.9)
5: Yi := {j : j 6= i ∧ lj = li}
6: if ∀j ∈ Yi, (Rj 6⊆ Ri) ∨ (Rj = Ri ∧Mi ⊆Mj) then
7: Create node hi and set Phi = {i}, U ← {i} ∪ U
8: end if
9: end for

10: for every latent node hs do
11: if ∃hk, (lk = ls + 1) ∧ (Rs ⊆ Rk) then
12: Phs ← {hk} ∪ Phs
13: end if
14: Chs ← {j : [A∗1]js 6= 0}
15: end for
16: for i = 1, ..., n do
17: if ∃ j ∈ U , s.t. Mj ⊆Mi then
18: Phj ← {i} ∪ Phj
19: end if
20: end for

algorithm consists of three main loops. Recall that Assumption 4 implies that each latent node has at least

one unique observed parent. The first loop finds all the unique observed parents for each latent node (lines:

3-9). The second loop reconstructs Supp(A22) and Supp(A12) (lines: 10-15). And finally, the third loop

constructs Supp(Â21) such that Supp(A21) ⊆ Supp(Â21) (lines: 16-20).

The following lemma shows that the first loop of Algorithm 5 can find all the unique observed parents

from each latent node. To present the lemma, we need the following definitions.

Definition 17. For a given observed node i, we define

li := max{k : [A∗k−1]si 6= 0, for some s}, (6.7)

Ri := {j : [A∗li−1]ji 6= 0}, (6.8)

Mi := {(j, r) : [A∗r−1]ji 6= 0}. (6.9)

In the above equations, li denotes the length of longest directed latent path that connects node i to any

other observed node. Ri is the set of all observed nodes that can be reached by i with a directed latent path

of length li and set Mi consists of all pairs (j, r) such that there exists a directed latent path from i to j

with length r.

Lemma 8. Under Assumption 4, an observed node i is the unique parent of a latent node if and only if for

any other observed node j s.t. li = lj, we have

(Rj 6⊆ Ri) ∨ (Rj = Ri ∧Mi ⊆Mj).

Proof. See Appendix A.5.5.

The second loop recovers Supp(A22) based on the following observation. If a latent node hk is the parent

of latent node hs, then hk can reach all the observed nodes in Rs, i.e, Rs ⊆ Rk and lk = ls + 1 (line: 11).
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Furthermore, Supp(A12) can be recovered using the fact that an observed node j is a children of a latent

node hs, if a unique parent of hs, e.g., s can reach j by a directed latent path of length 2 (line: 14). Finally,

the third loop reconstructs Supp(Â21) by adding an observed node i to the parent set of latent node hj , if i

can reach all the observed nodes that a unique parent of hj , e.g., j reaches (lines: 17-18).

Proposition 7. Suppose network G satisfies Assumption 4. Then given its corresponding linear measure-

ments, Algorithm 5 recovers G upto the limitation in Theorem 12.

Proof. See Appendix A.5.6.

6.3.3 Learning More General Unobserved Networks with Minimum Number of Latent
Nodes

In general, there may not be a unique minimal unobserved network consistent with the linear measurements

(see Fig. 6.1). Hence, we try to find an efficient approach for recovering all possible minimal unobserved

networks under some conditions. In fact, without any extra conditions, finding a minimal unobserved network

is NP-hard.

Theorem 13. Finding an unobserved network that is both consistent with a given linear measurements and

has minimum number of latent nodes is NP-hard.

Proof. See Appendix A.5.7.

In the remainder of this section, after some definitions, we propose the Node-Merging (NM) algorithm.

This algorithm returns all possible unobserved networks with minimum number of latent nodes that are

consistent with the linear measurements if we consider the following assumption.

Assumption 5. Assume that there exists at most one directed latent path of each length between any two

observed nodes.

For example, the graph in Figure 6.3-right satisfies this assumption but not the one in Figure 6.3-left.

This is because there are two directed latent paths of length 2 from node 5 to node 4.

Definition 18. (Merging) We define merging two nodes i′ and j′ in graph G as follows: remove node j′ and

the edges between i′ and j′, then give all the parents and children of j′to i′. We denote the resulting graph

after merging i′ and j′ by Merge(G, i′, j′). We say that two nodes i′ and j′ are mergeable if Merge(G, i′, j′)

is consistent with the linear measurements of G.

Definition 19. (Contentedness) Consider an undirected graph Ḡ over the observed nodes which is con-

structed as follows: there is an edge between two nodes i and j in Ḡ, if there exists k ≥ 1 s.t. Supp([A∗k]ij) = 1

or Supp([A∗k]ji) = 1; We say that two observed nodes i and j are “connected” if there exist a path between

them in Ḡ.

It can be seen that if pairs i, j and j, k are connected then node i and k are also connected. Thus, we can

define a connected class. That is, a subset of observed nodes in which any two nodes are connected.

The Node-Merging algorithm has two phases: initialization and merger.

Initialization: We first find the set of all connected classes, say S1, S2, ..., SC . For each class Sc, we

create a directed graph G0,c that is consistent with the linear measurements. To do so, for any two observed
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Algorithm 6 The Node-Merging (NM) Algorithm

1: Initialization: Construct graph G0.
2: G0 := G0, Gs := ∅,∀s > 0
3: k := 0
4: while Gk 6= ∅ do
5: for G ∈ Gk do
6: for i′, j′ ∈ G do
7: if Check(G, i′, j′) then
8: Gk+1 := Gk+1 ∪Merge(G, i′, j′).
9: end if

10: end for
11: end for
12: k := k + 1
13: end while
14: Output: Gout := Gk−1

nodes i, j ∈ Sc, if [A∗r ]ji 6= 0, we construct a directed path with length r+ 1 from node i to node j by adding

r new latent nodes to G0,c.

Merger: In this phase, for any G0,c from the initialization phase, we merge its latent nodes iteratively

until no further latent pairs can be merged. Since order of mergers leads to different networks with minimum

number of latent nodes, the output of this phase will be the set of all such networks. Algorithm 6 summarizes

the steps of the NM algorithm. In this algorithm, subroutine Check(G, i′, j′) checks whether two nodes i′

and j′ are mergeable.

Theorem 14. Under Assumption 5, the NM algorithm returns the set of all networks that are consistent

with the linear measurements and have minimum number of latent nodes.

Proof. See Appendix A.5.8.

6.4 Experimental Results

Synthetic Data:

We considered a directed random graph denoted by DRG(p, q), such that there exists a directed link from

an observed node to a latent node and vice versa independently, with probability p. Furthermore, there is a

directed link from a latent node to any other latent node with probability q. If there is a link between two

nodes, we set the weight of that link uniformly from {−a, a}.
In order to evaluate how well we can estimate the linear measurements, we generated 1000 instances of

DRG(0.4, 0.4) with n+m = 100, E{[ωX(t)]2i } = E{[ωZ(t)]2i } = 0.1, and a = 0.1. The length of time series was

set to T = 1000. We considered two cases for estimating A11 using linear regression in (6.5) with lag length

l = 1 and l = 3. Let Â11 be the output of linear regression. We computed Supp(Â11) by setting entry (i, j) to

one if |[Â11]ij | > a/2. In Figure 6.4-left, the expected estimation error, i.e. ||Supp(Â11)− Supp(A11)||2F /n2,

is computed where ||.||F is the Frobenius norm. As it can be seen, the estimation error decrease as we

increase the lag length.

We also studied the effect of observed to latent noise power ratio (OLNR), E{[ωX(t)]2i }/E{[ωZ(t)]2i }, in

estimating the linear measurements. We generated 1000 instances of DRG(0.1, 0.1) with n = 10, m = 5,
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Figure 6.4. Average error in computing linear measurements. Left: The average normalized error versus number of
observed nodes. Right: The average of maximum estimation error versus OLNR.
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and a = 0.5. Figure 6.4-right illustrates maxk ||Supp(Â∗k) − Supp(A∗k)||2F , as a function of OLNR. As it

can be seen, the average of maximum estimation error decreases as OLNR increases which is expected from

Proposition 6.

We investigated what percentage of instances of random graphs satisfy Assumption 4. We generated 1000

instances of DRG(p, 1/n) with n = 100, and p ∈ [0.04, 0.2]. In Figure 6.5, the probability of satisfying

Assumption 4, Psat., is depicted versus p for different number of latent variables in the VAR model. As it

can be seen, for large value of m, the probability Psat. decreases. This is because it becomes less likely to

see a unique observed parent for each latent node. For a fixed number of latent nodes, the same event will

occur if we increase p. Furthermore, for small p, there might exist some latent nodes that have no observed

parent or no observed children.

We also evaluated the performance of the NM algorithm in random graphs. We generated 1000 instances

of DRG(1/2n, 1/2n) with n = 10, 20, ..., 100, m = n/2, and computed the linear measurements. If for a class

of connected nodes, the number of latent nodes generated in the initial phase exceeds 40, we assumed that

the corresponding instance cannot be recovered efficiently in time and did not proceed to the merging phase.

In Figure 6.6-left, we depicted the percentage of instances in which the algorithm can recover all possible

minimal unobserved networks. As it is shown, large portion of instances (at least 96.9%) can be recovered
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Figure 6.7. The histogram of ||Supp(Â11)− Supp(A11)||2F for high power and low power conditions.

even for the case n = 100. In Figure 6.6-right, the average run time of the algorithm is depicted4. This

plot shows that we can recover all possible minimal unobserved networks for a large portion of instances

efficiently even in relatively large networks. This observation is not surprising since we know that the size

of each connected class nodes is of order log(n) in sparse random graphs [145].

US Macroeconomic Data:

We considered the following set of time series from the quarterly US macroeconomic data for the period

from 31-Mar-1947 to 31-Mar-2009 collected from the St. Louis Federal Reserve Economic Database (FRED)

(http://research.stlouisfed.org/fred2/): gross domestic product (GDP), gross domestic product price

deflator (GDPDEF), paid compensation of employees (COE), non-farm business sector index of hours worked

(HOANBS), three-month treasury bill yield (TB3MS), personal consumption expenditures (PCEC), and

gross private domestic investment (GPDI).

We selected any four times series as observed processes and computed Supp(Â11) with lag length l = 3.

We divided the
(

7
4

)
= 35 possible selections into two classes: 1) High power: tr(E{ωX(t)ωX(t)T }) > τ for a

fixed threshold τ . 2) Low power: tr(E{ωX(t)ωX(t)T }) < τ . In this experiment, we set τ = 0.02. In Figure

4This experiment was performed on a on a Mac Pro with 2 × 2.4 GHz 6-Core Intel Xeon processor and 32 GB of RAM.
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Figure 6.8. The causal structure in US macroeconomic data.

6.7, we plotted the histograms of ||Supp(Â11)−Supp(A11)||2F for these two classes. As it can be seen, in the

high power regime, most of the possible selections have small estimation error.

We also considered the following six time series of US macroeconomic data during 1-Jun-2009 to 31-Dec-

2016 from the same database: GDP, GPDI, PCEC, TBSMS, effective federal funds rate (FEDFUND), and

ten-year treasury bond yield (GS10). We obtained the causal structure among these six time series using a

linear regression with lag length l = 1 and considered the result as our ground truth (see Figure 6.8). Then,

we removed GPDI from the dataset and considered the remaining five time series as observe processes. We

performed a linear regression with lag length l = 2 to obtain the linear measurements and detected non-zero

entries of linear measurements by considering a threshold of 2.2. Algorithm 5 recovered the ground truth in

Figure 6.8 correctly.

Dairy Prices and West German Macroeconomic Data:

A collection of three US dairy prices has been observed monthly from January 1986 to December 2016 (http:

//future.aae.wisc.edu/tab/prices.html): milk price, butter price, and cheese price. We performed a

linear regression with lag length l = 1 on the whole time series and considered the resulting graph as our

ground truth (see Figure 6.9-left). We used 0.25 as the threshold to detect the non-zero entries of the

coefficient matrix. Next, we omitted the butter prices from the dataset and considered the milk price and

cheese prices as observed processes. We performed the linear regression with lag length l = 2 and detected

the nonzero entries with a threshold of 0.15. The linear measurements were: Supp(A∗0) = Supp(A11) =

[1, 1; 1, 0] and Supp(A∗1) = [0, 0; 1, 0]. Algorithm 5 recovered correctly the true causal graph using this linear

measurements.
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Figure 6.9. The true causal structure. Left: US Dairy prices. Right: West German macroeconomic data.

We also considered the quarterly West German consumption expenditures X1, fixed investment X2, and

disposable income X3 during 1960-1982 (http://www.jmulti.de/data_imtsa.html). Similar to the previ-

ous experiment with dairy prices, we found entire causal structure among {X1, X2, X3} using a threshold

of 0.2. Figure 6.9 depicts the resulting graph. Next, we considered X3 to be latent and used {X1, X2} to

estimate the linear measurements Supp(A∗0) = Supp(A11) = [0, 0; 1, 1] and Supp(A∗1) = [1, 0; 1, 0], where the

threshold for detecting nonzero entries was set to 0.1. Using this linear measurements, Algorithm 5 recovered

correctly the true network in Figure 6.9-right.
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CHAPTER 7

A DEPENDENCY MEASURE BASED ON WASSERSTEIN

DISTANCE

By studying the limitations of the existing dependencies measures such as their shortcomings in detecting

direct influences or their lack of ability for group selection in order to have effective interventions, we introduce

a new dependency measure to overcome them. More precisely, we define a new measure that is capable of

capturing dependencies that occur rarely or even over a zero measure set. On contrary, this is not possible

via other measures such as mutual information that are limited to those realizations with positive probability.

Despite other measures such as conditional mutual information, our measure can encode the direct influence

between two variables in a network independent of the other indirect influences between them. As a result,

the direct influence between two variables can still be detected using this measure even when some variables

in the indirect causal path depend on the cause almost deterministically.

This new measure has computational advantageous over other similar measures such as mutual information

and information flow. Furthermore, it allows identifying the range of covariates in which the causal influence

is obvious, or to find the group of subjects on which the treatment is most effective. In other words, we can

determine the range for a common cause of two variables in which the influence between these two variables

is maximized or minimized.

7.1 Defination

Pearl in [23] proposes that the influence of a variable (potential cause) on another variable (effect) in a network

is assessed by assigning different values to the potential cause, while other variables’ effects are removed,

and observing the behavior of the effect variable. This can be done by intervention or “do-operation”. This

proposal defines a paradigm that can be used to identify the dependency or influence between the variables

of a network. That is the conditional distribution of a variable given all its direct causes will not change

by assigning different values to other variables in the system. Herein, we use this paradigm to define a new

dependency measure.

Consider X a collection of m “random variables”. In order to identify the dependency of Xi on Xj , we

select a set of indices K, where K ⊆ −{i, j} and consider the following two probability measures:

µi(xK∪{j}) := P
(
Xi

∣∣∣XK∪{j} = xK∪{j}

)
,

µi(yK∪{j}) := P
(
Xi

∣∣∣XK∪{j} = yK∪{j}

)
,

(7.1)

where xK∪{j} and yK∪{j} ∈ E
|K|+1 are two realizations for XK∪{j} that are the same every where except

at Xj . Further, assume xK∪{j} at position Xj equals x and yK∪{j} equals y (y 6= x) at this position. If there

exists a subset K ⊆ −{i, j} such that for all such realizations µi(xK∪{j}) and µi(yK∪{j}) are the same, then
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we say Xi has zero dependency on Xj [146]. This is analogous to the conditional independence that states

if Xj and Xi are independent given some XK, then there is no causal influence between them. Note that

using mere observational data, comparing the two conditional probabilities in (7.1) reveals the dependency

between Xi and Xj . However, when interventional data is available, we can identify whether Xj causes Xi,

i.e., the direction of influence.

In order to compare the two probability measure in (7.1), a metric on the space of probability measures is

required. There are several metrics that can be used such as KL-divergence, total variation, etc [147]. For

instance, using the KL-divergence will lead to develop CI test-based approaches [148]. In this work, we use

Wasserstein distance. We will discuss the advantage of using such metric later in Sections 7.3 and 7.3.1.

Definition 20. Let (E, d) be a metrical complete and separable space equipped with the Borel field B, and

let M be the space of all probability measures on (E,B). Given ν1, ν2 ∈M, the Wasserstein metric between

ν1, ν2 is given by

Wd(ν1, ν2) := inf
π

(Eπ[d(x, y)]) , (7.2)

where the infimum is taken over all probability measures π on E×E such that its marginal distributions are

ν1 and ν2, respectively.

Using the above distance, we define the dependency of Xi on Xj given K ⊆ −{i, j} as follows:

cKi,j := sup
xK∪{j}=yK∪{j}

off j

Wd

(
µi(xK∪{j}), µi(yK∪{j})

)
d(x, y)

. (7.3)

The suprimum is over all realizations xK∪{j} and yK∪{j} that only differ at the jth variable. Moreover,

we assume xK∪{j} at jth position equals x and yK∪{j} equals y (y 6= x) at this position. When K = −{i, j},
cKi,j is called Dobrushin’s coefficient [1]. Similarly, we define the dependency of a set of nodes B on a disjoint

set A given K, where K ∩ (A ∪ B) = ∅, as follows,

cKB,A := sup
xK∪A=yK∪A

off A

Wd

(
µB(xK∪A), µB(yK∪A)

)
d(xA, yA)

. (7.4)

Remark 5. An alternative way of interpreting the above measure is via an equivalent network in which

all the nodes in the set K ∪ {j} are injected with independent inputs that have distributions equal to their

marginals, i.e., node k is injected with an independent random variable that has distribution P (Xk). In this

equivalent network, the dependency of i on j given K can be expressed by

∫
E

∏
k∈K

P (Xk = xk)P (Xj = y)P (Xj = x)
Wd

(
µi(xK∪{j}), µi(yK∪{j})

)
d(x, y)

dxkdxdy.

Clearly, this expression is bounded above by (7.3).
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7.1.1 Maximum Mean Discrepancy

Using a special case of the duality theorem of Kantorovich and Rubinstein [149], we obtain an alternative

approach for computing the Wasserstein metric in (7.2) as follows:

Wd(ν1, ν2) = sup
f∈FL

∣∣∣∣∫
E

fdν1 −
∫
E

fdν2

∣∣∣∣ , (7.5)

where FL is the set of all continuous functions satisfying the Lipschitz condition:

||f ||Lip := sup
x 6=y
|f(x)− f(y)|/d(x, y) ≤ 1.

This representation of the Wasserstein metric is a special form of integral probability metric (IPM) [150]

that has been studied extensively in probability theory [151] with applications in empirical process theory

[152], transportation problem [149], etc. IPM is defined similar to (7.5) but instead of FL, the suprimum is

taken over a class of real-valued bounded measurable functions on E.

One particular instance of IPM is maximum mean discrepancy (MMD) in which the suprimum is taken

over FH := {f : ||f ||H ≤ 1}. More precisely, MMD is defined as

MMD(ν1, ν2) := sup
f∈FH

∣∣∣∣∫
E

fdν1 −
∫
E

fdν2

∣∣∣∣ , (7.6)

Here, H represents a reproducing kernel Hilbert space (RKHS) [153] with reproducing kernel k(·, ·). MMD

has been used in statistical applications such as independence testing and testing for conditional independence

[154–156].

It is shown in [157] that when H is a universal RKHS [158], defined on the compact metric space E, then

MMD(ν1, ν2) = 0 if and only if ν1 = ν2. In this case, MMD can also be used to compare the two conditional

distributions in (7.1). This is because, MMD(µi(xK∪{j}), µi(yK∪{j})) = 0 implies that the two conditional

distributions are the same. This allows us to define a new dependency measure which we denoted it by c̃Ki,j
similar to (7.3) that uses MMD instead of Wasserstein distance, i.e.,

c̃Ki,j := sup
xK∪{j}=yK∪{j}

off j

MMD
(
µi(xK∪{j}), µi(yK∪{j})

)
d(x, y)

. (7.7)

It is straight forward to show that this measure has similar properties as the one in (7.3). The main difference

between these two measures is their estimation method that we discuss in Section 7.3.1.

7.2 Comparison With Other Dependency Measures

In this section, we study the relationship between our measure in (7.3) and other measures in the literature

that are introduced to encode the dependencies between variables of a network.
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7.2.1 Mutual Information

Conditional mutual information is an information theoretic measure that has been used in the literature

to identify the independence structure of a network. This measure compares two probability measures

P (Xi|Xj , XK) and P (Xi|XK) as follows,

I(Xi;Xj |XK) :=
∑

xi,xj ,xK

P (xi, xj , xK) log
P (xi|xj , xK)

P (xi|xK)
. (7.8)

This measure is symmetric and hence it cannot capture the direction of influence. Moreover, it only

compares the probability measures over all pairs (Xi, Xj) that have positive probability.

Example 14. Consider a network of two variables X and Y , in which X ∼ N (0, 1) is a zero mean Gaussian

variable and Y is N (0, 1) whenever X is a rational number and N (1, 2) otherwise. In this network, X has

influence on Y but it cannot be captured using CI. This is because I(X;Y ) = 0. On the other hand, we have

cy,x > 0 and cx,y = 0.

Note that any other measures in the literature that is based on conditional independence test such as the

kernel-based methods in [156,159] have the similar limitation.

7.2.2 A Better Measure for Direct Influences

Consider a network comprises of three random variables {X,Y, Z}, in which Y = f(X,W1) and Z =

g(X,Y,W2), where W1 and W2 are independent exogenous noises. Functions f and g belong to appropriately

constrained functional class that the transformations from (X,W1) to (X,Y ) and from (X,Y,W1) to (X,Y, Z)

are invertible. In other words, there exist functions φ and ϕ such that W1 = φ(X,Y ) and W2 = ϕ(X,Y, Z).

Furthermore, f is an injective function in its first argument, i.e., if f(x1, w) = f(x2, w) for some w, then

x1 = x2.

In order to measure the direct influence from X to Z, one may compute the conditional mutual information

between X and Z given Y , i.e., I(X;Z|Y ). However, this is not a good measure because as the dependency of

Y on X grows, i.e., H(Y |X)→ 0, then I(X;Z|Y )→ 0. This can be seen by the definition of the conditional

mutual information,

I(X;Z|Y ) = H(Y |X) + E
[
log

∑
x′ PY |X(y|x′)PX(x′)

PX(x)

]
+ E

[
log

PY |X(y|x)PX(x)PZ|X,Y (z|x, y)∑
x′ PY |X(y|x′)PX(x′)PZ|X,Y (z|x′, y)

]
.

(7.9)

As H(Y |X) goes to zero, in other words, as PW1
tends to a Dirac measure, i.e., δw0

(W1) for some fixed

value w0, then by specifying the value of X, the ambiguity about the value of Y will go to zero. In this case,

given X = x, we imply that Y will take f(x,w0) with high probability. Thus, using the injective property

of f , it is straight forward to see that the right hand side of (7.9) tends to zero.

This analysis shows that I(X;Z|Y ) fails to capture the direct influence between X and Z when the

dependence can be explained by Y , which depends on X almost in a deterministic manner. However,

looking at cyz,x, we have

cyz,x= sup
y,x,x′

Wd (Px,y(Z), Px′,y(Z))

d(x, x′)
,
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where

Px,y(Z) := PW2(ϕ(x, y, Z))| ∂g
∂W2

(x, y, ϕ(x, y, Z))|−1.

This distribution depends only on realizations of (X,Y ) and it is independent of PX,Y . Hence, changing the

dependency between X and Y will not affect cyz,x, which makes it a better candidate to measure the direct

influences between variables of a network. As an illustration, we present the following simple example.

Example 15. Consider a network of three variables {X,Y, Z} in which Y = aX+W1 and Z = bX+cY +W2

for some non-zero coefficients {a, b, c} and exogenous noises W1 and W2. In this example, it is straight

forward to see that

I(X;Z|Y ) = H(bX +W2|aX +W1)−H(W2). (7.10)

As we mentioned earlier, by reducing the variance of W1, the first term in (7.10) tends to H(bX+W2|X) =

H(W2). Hence, the conditional mutual information goes to zero. But, using the result of Theorem 15, we

have cyz,x = |b|, which is independent of the variance of W1.

Theorem 15. Consider a linear system X = AX+W , where A has zero diagonals and its support represents

a DAG. W is a vector of m independent random variables with mean zero. Then, c
Pai\{j}
i,j = |Ai,j |.

Proof. See Appendix A.6.1.

7.2.3 Information Flow

Another quantity that has been introduced in the literature to capture the strength of the impact of in-

terventions is information flow [26]. This quantity is defined using Pearls do-calculus [23]. Intuitively, the

intervention on Xi removes the dependencies of Xi on its parents, and thus replaces P (Xi|XPai
) with the

delta function.

Below, we introduce the formal definition of information flow. Consider three disjoint subsets A, B, and

K of V . The information flow from XA to XB imposing XK is defined by

I(XA → XB |do(XK)) :=
∑

xA∪B∪K

P (xK)P (xA|do(xK))P (xB |do(xA∪K)) log
P (xB |do(xA∪K))∑

x′A
P (x′A|do(xK))P (xB |do(x′A, xK))

.

(7.11)

This is defined analogous to the conditional mutual information in (7.8). But unlike the conditional mutual

information, the information flow is defined for all pairs (xA;xC) rather than being limited to those with

positive probability. Similar measures are introduced in [27,28] which are also based on do-calculation.

Our measure in (7.3) is more similar to the aforementioned measures than the mutual information, in the

sense that it is defined for all pairs rather than being limited to those with positive probability.

However, since Wasserstein metric can be estimated using a linear programming (see Section 7.3.1), our

measure has computational advantageous over the information flow or other similar causal measures that

uses KL-divergence. Another advantage of (7.3) over the information flow is that it requires less number of

interventions. More precisely, calculating (7.11) requires at least two do-operations that are P (xB |do(xA∪K))

and P (xA|do(xK)) but (7.3) requires only one such intervention. There are also some technical differences

between our measure and information flow that we show one such differences through a simple example.
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Figure 7.1. DAGs for which information flow fails to capture the influence.

Example 16. Consider a network of three binary random variables {X,Y, Z} with Z = X ⊕ Y an XOR.

Suppose the underlying DAG of this network is given by Figure 7.1(b), in which X takes zero with probability

b. In this case, I(X → Z|do(Y )) = H(B(b)), where H denotes the entropy function and B(b) denotes

Bernoulli distribution with parameter b. This is because for this DAG, we have P (X|do(Y )) = P (X).

However, if the underlying DAG is given by Figure 7.1(a), we have I(X → Z|do(Y )) = H(B(ε)), because

P (X|do(y)) = P (X|y). Now, consider a scenario in which ε tends to zero. In this scenario, both DAGs

describe a system in which X = Y and Z = X⊕Y . However, in the first DAG, we have I(X → Z|do(Y )) =

H(B(b)) > 0 while in the second DAG, we have I(X → Z|do(Y ))→ 0. Hence, the information flow depends

on the underlying DAG. But cyz,x in both DAGs is independent of ε and it is positive.

7.2.4 Group Selection for Effective Intervention

Consider the network shown in Figure 7.2 in which C is a common cause for two variables X and Y .

In this network, to measure the influence of X on Y , one may consider P (Y |do(X)) that is given by∑
c P (Y |X, c)P (c) = Ec[P (Y |X, c)]. See, e.g., the back-door criterion in [23]. This conditional distribution

is an average over all possible realizations of the common cause C.

Consider an experiment that is been conducted on a group of people with different ages C in which the

goal is to identify the effect of a treatment X on a special disease Y . Suppose that this treatment has clearer

effect on that disease for elderly people and less obvious effect for younger ones. In this case, averaging the

effect of the treatment on the disease for all people with different ages, i.e., P (Y |do(X)) might not reveal the

true effect of the treatment. Hence, it is important to identify a regime (in this example age range) of C in

which the influence of X on Y is maximized. As a consequence, we can identify the group of subjects on

which the intervention is effective.

Note that this problem cannot be formalized using do-operation or other measures that take average over

all possible realizations of C. However, using the measure in (7.3), we can formulate this problem as follows:

given X = x and two different realizations for C, say c and c′, we obtain two conditional probabilities

P (Y |x, c) and P (Y |x, c′). Then, we say in group C = c, the causal influence between X and Y is more

obvious compare to the group C = c′, if given C = c, changing the assignments of X leads to larger variation

of the conditional probabilities compared to changing the assignment of X given C = c′. More precisely, if

cC=c
y,x ≥ cC=c′

y,x , where

cC=c
y,x := sup

x 6=x′

Wd

(
P (Y |x, c), P (Y |x′, c)

)
d(x, x′)

. (7.12)
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Figure 7.2. C is a common cause for X and Y .

Note that ccy,x = supc c
C=c
y,x , where ccy,x is given in (7.3). Using this new formulation, we define the range

of C in which the influence from X to Y is maximized as arg maxc c
C=c
y,x .

Example 17. Suppose that Y = CX + W2 and X = W1/C, where C takes value from {1, ...,M} w.p.

{p1, ..., pM} and W1,W2 ∼ N (0, 1). In this case, we have cC=c
y,x = |c|. Thus, C = M will show the influence

of X on Y more clearer. On the hand, such property cannot be detected using other measures. For instance,

considering the information flow (that is the same as mutual information in this example), we obtain

I(X → Y |do(C) = c) = I(X;Y |C = c) = 0.5 log(2).

This is because, (Y |X = x,C = c) ∼ N (cx, 1), (X|C = c) ∼ N (0, 1/c2), and (Y |C = c) ∼ N (0, 2).

7.3 Properties of the Measure

Herein, we study the properties of our measure.

Lemma 9. The measure defined in (7.3) possesses the following properties:

• Asymmetry: In general cKi,j 6= cKj,i. c
K
i,j ≥ 0 and when it is zero, we have Xi ⊥⊥ Xj |XK.

• Decomposition: cKi,{j,k} = 0 implies cKi,j = cKi,k = 0.

• Weak union: If cKi,{j,k} = 0, then c
K∪{k}
i,j = c

K∪{j}
i,k = 0.

• Contraction: If cKi,j = ci,K = 0, then ci,K∪{j} = 0.

• Intersection: If c
K∪{k}
i,j = c

K∪{j}
i,k = 0, then cKi,{j,k} = 0.

Proof. See Appendix A.6.2.

Note that unlike the intersection property of the conditional independence, which does not always hold,

the intersection property of the dependency measure in (7.3) always holds. This is due to the fact that

(7.3) is defined for all realizations (xj , xK) not only those with positive measure. See Example 14 for the

asymmetric property of cKi,j .

We say a DAG possesses global Markov property with respect to our measure if for any node i and disjoint

sets B, and C for which i is d-separated from B by C, we have cCi,B = cCB,i = 0.

Theorem 16. Consider a faithful network of m random variables whose causal structure that is captured by

the measure in (7.3) can be represented by a DAG. The corresponding joint distribution of this network can

be factorized as in (2.1). Furthermore, its corresponding DAG possesses the global Markov property.

Proof. See Appendix A.6.3.
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Figure 7.3. Recovered DAGs of the system given in (7.16) for different sample sizes. (a)-(b) use the measure in (7.3)
and pure observation. (c)-(d) use kernel-based method and pure observation. (e)-(f) use the measure in (7.3) and
interventional data.

Similar to the Bayesian networks, the global Markov property can be used to develop a reconstruction

algorithm for the causal structure of a network defined using the measure in (7.3). The output of this

algorithm will be a mixed graph that belongs to the Markov equivalence class of the true influence structure

graph.

7.3.1 Estimation

The measure introduced in (7.3) can be computed explicitly for special probability measures. For instance, if

the joint distribution of X is Gaussian with mean ~µ and covariance matrix Σ, then using the results of [160]

about the Wasserstein distance between two Gaussian distributions and Equation (7.5), we obtain

cKi,j = |Σi,{j,K}
(
Σ{j,K},{j,K}

)−1
e1|,

where Σi,{j,K} denotes the sub-matrix of Σ comprising row i and columns {j,K}. In this equation, we

have e1 = (1, 0, ..., 0)T . Hence, in such systems, one can estimate the dependency measure by estimating

the covariance matrix. However, this is not the case in general. Therefore, we introduce a non-parametric

method for estimating our dependency measure using kernel method.

Given {x(1), ..., x(N1)} and {x(N1+1), ..., x(N1+N2)} that are i.i.d. samples drawn randomly from ν1 and ν2,

respectively, the estimator of (7.5) is given by [161],

Ŵd(ν̂1, ν̂2) := max
{αi}

1

N1

N1∑
i=1

αi −
1

N2

N2∑
j=1

αj+N1 , (7.13)

such that |αi − αj | ≤ d(x(i), x(j)), ∀i, j. In this equation, ν̂1 and ν̂2 are empirical estimator of ν1 and ν2,

respectively.

The estimator of MMD is given by [161]

(M̂MD(ν̂1, ν̂2))2 :=

N1+N2∑
i,j=1

yiyjk(x(i), x(j)), (7.14)

where yi := 1/N1 for i ≤ N1 and yi := −1/N2, elsewhere. k(·, ·) in the above equation represents the

reproducing kernels of H.

It is shown in [161] that (7.13) converges to (7.5) as N1, N2 →∞ almost surely as long as the underlying

metric space is totally bounded. It is important to mention that the estimator in (7.13) depends on {x(j)}s
only through the metric d(·, ·), and thus its complexity is independent of the dimension of x(i), unlike the
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KL-divergence estimator [162]. The estimator in (7.14) also converges to (7.7) almost surely with the rate

of order O(1/
√
N1 + 1/

√
N2), when k(·, ·) is measurable and supx∈E k(x, x) is bounded.

Consider a network of m random variables X. Given N i.i.d. realizations of X, {z(1), ..., z(N)}, where

z(l) ∈ Em, we use (7.13) and define

ĉKi,j := max
1≤l,k≤N

Ŵd

(
µ̂i

(
z

(l)
K∪{j}

)
, µ̂i

(
z

(k)
K∪{j}

))
d(z

(l)
j , z

(k)
j )

, (7.15)

such that z
(l)
K∪{j} = z

(k)
K∪{j} off j. Similarly, one can introduce an estimator for c̃Ki,j using (7.14). By

applying the result of Corollary 5 in [163], we obtain the following result.

Corollary 4. Let (E, d) be a totally bounded metric space and a network of random variables with positive

probabilities, then ĉKi,j converges to cKi,j almost surely as N goes to infinity.

Proof. This is a direct consequence of Corollary 5 in [163] and the fact that all the influences occur with

positive probability.

7.4 Experimental Results

We simulated the following synthesized non-linear system and learned its corresponding causal structure

form samples of observational and interventional data, respectively.

X1 = W1, X2 = X2
1 + 2X4 − |X5|+W2,

X3 = W3, X4 = X3 −X5 +W4, (7.16)

X5 = W5, if X3 is natural, X5 = 2
√
|X1|+W5, o.t,

where Wi ∼ U [−1, 1].

Learning from Observational Data:

We used the estimator of MMD given in (7.14) with Gaussian kernels and estimated the dependency measures.

We obtained the corresponding DAG of this network given a set of observation of size N ∈ {900, 2500}.
Using the results on the convergence rate of the MMD estimator, we used a threshold of order O(1/

√
N)

to distinguish positive and zero measure. Figure 7.3 depicts the resulting DAGs. We also compared the

performance of our measure with the kernel-based method proposed in [159]. Note that in this particular

example, since the influence of X3 on X5 is not detectable by mere observation, the best we can learn from

mere observation is the DAG presented in Figure 7.3(b). In this DAG, the direction of edge between X5 and

X1 is not identifiable using the Meek rule.

Learning via Intervention:

We intervened at node X3 and fixed its value to be natural number and irrational, separately and observed

the outcome of the other nodes for different sample sizes. Figure 7.3 depicts the outcome of the learning

algorithm that uses our measure. In this case, X3 → X5 was identified and then the Meek rules helped to

detect all the directions even the direction of X1 −X5 as it is shown in Figure 7.3(f).
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CHAPTER 8

CONCLUSION AND FUTURE DIRECTIONS

8.1 Conclusion

In this dissertation, we studied the causal influences between variables in a network. We used graphical

models to depict causal influences between variables in a well-defined manner. More specifically, we studied

the functional and statistical dependencies in a dynamical systems and established their connection. To do

so, we defined a statistical measure that is able to capture the functional dependency among processes of

dynamical systems. Subsequently, using this measure, we defined a new type of graphical model, functional

dependency graph that can encode functional dependencies. We showed that the statistical dependency

structure of a system (captured by DIG) does not necessary reveal all the functional dependencies of that

system (captured by FDG) in general.

We proposed an approach for learning causal interaction network of a specific network of point processes,

mutually exciting linear Hawkes processes. We proved that for such point processes, the causal relationships

implied by the excitation matrix is equivalent to a specific factorization of the joint distribution of the system

called minimal generative model. One significance of this result is that it provides a surrogate to directed

information measure for capturing causal influences for Hawkes processes. Furthermore, we provided an

estimation method for learning the support of excitation matrices with exponential kernels using second-

order statistics of the Hawkes processes.

We then developed an approach for structure learning of directed graphical model when only a subset

of processes are observed. Specifically, we studied the scenario in which the directed information graph

representing observed and unobserved processes is a directed tree with multiple roots. Learning such graphs

requires both finding the number of hidden processes as well as recovering the connections among all hidden

and observed nodes. We defined a discrepancy measure between nodes of a directed tree and introduced an

algorithm that identifies the structure given the discrepancies between only the observed nodes. Moreover,

we studied the problem of learning the dependency graph between variables of a vector autoregressive model

with latent variables and showed that the entire or most of the causal structure can be identified successfully

under some sufficient topological constraints.

At last, we introduced a new statistical measure to capture the dependency or causal direction between

variables of a network from observational or interventional data. We discussed the advantageous of this

dependency measures over other related measures in the literature.

We then showed how useful this framework can be in practice by finding the causal structure between

different technology companies by analyzing their stock prices as well as influences between media sites by

studying hyperlinks provided in one media site to others.
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8.2 Future Directions

This thesis studied the causal influences between variables of a network in different scenarios such as linear

dynamical systems, multivariate Hawkes processes, and VAR models. There are a number of avenues for

extending this dissertation. In particular, latent processes, sparse networks, and Bayesian methods are

important lines of future work.

In this dissertation, we developed an algorithm to recover the causal network of systems that have polytree

structure. Also, the algorithm do not require any parametric model, the important step will be to extend

these results beyond polytrees. However, due to the challenge of the general problem, extensions might only

be feasible for specific classes of distributions or parametric models.

Suppose the causal network of a system is sparse. The proposed algorithms in this work do not incorporate

such knowledge. There is a large body of work on sparse model selection, such as with L1 regularization. For

linear regression, lasso is an example of a sparsity-inducing fitting procedure using L1 regularization [164].

For Markov networks of jointly Gaussian variables, [165,166] and references therein use the lasso to identify

sparse graphical models. An important avenue of future research will be to identify when similar methods

could be adopted to identify sparse directed information graphs or sparse approximations for more general

classes of distributions.

Another direction of future research is to extend the proposed algorithm for learning the excitation matrix

of a multivariate Hawkes process with exponential kernels to a broader class of functions. More specifically,

there are plenty of works that applied online learning methods in reproducing kernel Hilbert space to identify

a set of parameters (e.g. exciting functions) by minimizing a certain loss function [153,167,168]. Developing

similar online learning algorithms for learning the causal structure in Hawkes processes will be another

direction for future research.

Notice that through this dissertation, there was an important assumption that the underlying causal

structure does not change over the time of analysis. Although, this is a valid assumption for many real

application, there are several situations in which the causal structure might vary by joining new processes to

the dynamic, vanishing some of the processes, or changing the direction of influences. There are not many

works that address this problem in the literature. New line of research will be studying such problem and

developing algorithms that not only can identify the time that causal network changes but also learn the

structure of the network as it varies.
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Hochschule ETH Zürich, Nr. 18403, 2009, 2009.

[58] M. Farajtabar, N. Du, M. G. Rodriguez, I. Valera, H. Zha, and L. Song, “Shaping social activity by
incentivizing users,” in Advances in neural information processing systems, 2014, pp. 2474–2482.

[59] J. G. Rasmussen, “Bayesian inference for hawkes processes,” Methodology and Computing in Applied
Probability, vol. 15, no. 3, pp. 623–642, 2013.

[60] K. Zhou, H. Zha, and L. Song, “Learning triggering kernels for multi-dimensional hawkes processes,”
in Proceedings of The 30th International Conference on Machine Learning, 2013, pp. 1301–1309.

[61] E. C. Hall and R. M. Willett, “Tracking dynamic point processes on networks,” IEEE Transactions
on Information Theory, vol. 62, no. 7, pp. 4327–4346, 2016.

[62] J. Etesami, N. Kiyavash, and T. Coleman, “Learning minimal latent directed information polytrees,”
Neural Computation, 2016.

[63] Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, and J. Leskovec, “Seismic: A self-exciting point
process model for predicting tweet popularity,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2015, pp. 1513–1522.

[64] E. Bacry, K. Dayri, and J.-F. Muzy, “Non-parametric kernel estimation for symmetric hawkes processes.
application to high frequency financial data,” The European Physical Journal B, vol. 85, no. 5, pp.
1–12, 2012.

[65] S.-H. Yang and H. Zha, “Mixture of mutually exciting processes for viral diffusion,” in Proceedings of
the 30th International Conference on Machine Learning (ICML-13), 2013, pp. 1–9.

[66] E. Lewis and G. Mohler, “A nonparametric em algorithm for multiscale hawkes processes,” Journal of
Nonparametric Statistics, pp. 1–16, 2011.

[67] D. Luo, H. Xu, Y. Zhen, X. Ning, H. Zha, X. Yang, and W. Zhang, “Multi-task multi-dimensional
hawkes processes for modeling event sequences,” 2015.

[68] H. Xu, M. Farajtabar, and H. Zha, “Learning granger causality for hawkes processes,” 2016.

[69] K. Zhou, H. Zha, and L. Song, “Learning social infectivity in sparse low-rank networks using multi-
dimensional hawkes processes.” in AISTATS, vol. 31, 2013, pp. 641–649.

[70] E. Bacry and J.-F. Muzy, “Second order statistics characterization of hawkes processes and non-
parametric estimation,” preprint arXiv:1401.0903, 2014.

[71] N. R. Hansen, P. Reynaud-Bouret, V. Rivoirard et al., “Lasso and probabilistic inequalities for multi-
variate point processes,” Bernoulli, vol. 21, no. 1, pp. 83–143, 2015.

[72] M. Eichler, R. Dahlhaus, and J. Dueck, “Graphical modeling for multivariate hawkes processes with
nonparametric link functions,” Journal of Time Series Analysis, 2016.

[73] R. Lemonnier and N. Vayatis, “Nonparametric markovian learning of triggering kernels for mutually
exciting and mutually inhibiting multivariate hawkes processes,” in Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer, 2014, pp. 161–176.

[74] O. Messaouda, J. B. Oommen, and S. Matwin, “Enhancing caching in distributed databases using
intelligent polytree representations,” in Advances in Artificial Intelligence. Springer, 2003, pp. 498–
504.

[75] M. S. Zaveri and D. Hammerstrom, “Cmol/cmos implementations of bayesian polytree inference: Dig-
ital and mixed-signal architectures and performance/price,” Nanotechnology, IEEE Transactions on,
vol. 9, no. 2, pp. 194–211, 2010.

75
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APPENDIX A

PROOFS OF THEOREMS

A.1 Proofs of Chapter 2

A.1.1 Proof of Theorem 2

Suppose Z c-separates U from w in a DIG. Then, we need to show

I (XU → Xw||XZ) = 0.

Let A := PA(Xw) \ Z be the parent set of w except the ones that are already in Z. By the definition of

DIG, we have

I (XU → Xw||XA,XZ) = 0. (A.1)

If for any t,

D
(
PXtA,1| XtU∪{w}∪Z,1 || PXtA,1| Xt{w}∪Z,1

)
= 0. (A.2)

Then, (A.2) and (A.1) will imply the result. In order to show (A.2), we use the d-separation criterion for

the corresponding boundary DAG introduced in Section 2.3.1. Notice that every path from a node in U and

a node in A contains at least a node in Z ∪ {w} with an outgoing arrow, or contains a collider that is not

in Z ∪ {w}, which implies that every path in the corresponding boundary DAG between Xt
A,1 and Xt

U,1 is

d-separated by Xt
{w}∪Z,1, consequently, (A.2) holds.

A.2 Proofs of Chapter 3

A.2.1 Proof of Theorem 3

We use proof by contradiction. Suppose there exist two FDGs
−→
G1 and

−→
G2 associated with a dynamical

system given by (3.1) with positive joint distribution. Assume (j, i) belongs to
−→
G1 but it does not belong

to
−→
G2. Corresponding to the FDG

−→
G2, there exists a set of exogenous noises {Wi} and a set of functions

{Fi}s such that

Xi,t = Fi(Xj,t′ ,R,Wi,t, t), (A.3)
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in which R denotes Xt−1 \ {Xj,t′} and Wi,t is independent of {R, Xj,t′} ∪ {W t
k : k 6= i}. We define a new

random process as follows

X̃i,t := Fi(x,R,Wi,t, t), (A.4)

where x ∈ E is a realization of Xj,t′ . We will show that d(X̃i,t, Xi,t) = 0 with probability one. Hence, Xi,t

can be written as a function of (R,Wi,t, t), i.e., there exists a function Ψ, such that

Xi,t = Ψ(R,Wi,t, t). (A.5)

To show this we use the fact that (j, i) does not belong to
−→
G2. Therefore, αi,j(t, t

′) define in (3.2) equals

zero for all t and t′. This implies that for any triple (x, y,R) in which d(x, y) > 0, measure of the following

set is zero,

S1 := {w : d(Fi(x,R,w, t), Fi(y,R,w, t)) > 0},

where R denotes a realization of R. In another words, for every pair (R, y), we have

P
(
d(X̃i,t, Xi,t) = 0|R = R,Xj,t′ = y

)
= 1.

Using the total probability law and the above equality, we obtain

P
(
d(X̃i,t, Xi,t) = 0

)
=
∑
R,y

P
(
d(X̃i,t, Xi,t) = 0|R = R,Xj,t′ = y

)
×P (R = R,Xj,t′ = y) = 1.

On the other hand, corresponding to the FDG
−→
G1, there exists a set of exogenous noises {W′

i} and a set

of functions {Gi}s such that

Xi,t = Gi(Xj,t′ ,R,W ′i,t, t), (A.6)

where W ′i,t denotes the exogenous noise and it is independent of {R, Xj,t′} ∪ {W ′tk : k 6= i}. Using (A.5),

(A.6), with probability one, we have

Gi(Xj,t′ ,R,W ′i,t, t) = Ψ(R,Wi,t, t). (A.7)

Recall that R denotes Xt−1 \ {Xj,t′} and both Wi,t and W ′i,t are independent of R∪{Xj,t′}. Below, we use

this independency and the fact that (j, i) belongs to
−→
G1 to derive the contradiction.

Because (j, i) belongs to
−→
G1 and using the Definition 7, we obtain that there exist t and t′ such that

αi,j(t, t
′) > 0. Consequently, there exist realizations (x∗, y∗, R∗) in which d(x∗, y∗) > 0 and the following set

has positive measure

S2 := {w′ : d(Gi(x
∗, R∗, w′, t), Gi(y

∗, R∗, w′, t)) > 0}.

Equivalently,

d(Gi(x
∗, R∗,W ′i,t, t), Gi(y

∗, R∗,W ′i,t, t)) > 0,
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with positive probability. We define tow random variables as follows,

Z0 := Ψ(R∗,Wi,t, t),

Z1 := Gi(Xj,t′ , R
∗,W ′i,t, t). (A.8)

Note that such random variables are well define because of positivity assumption, i.e., P (Xj,t′ = x∗|R =

R∗) > 0. Because Wi,t is independent of Xj,t′ , Z0 is also independent of Xj,t′ , and because Z0 is not a

function of Xj,t′ , varying Xj,t′ will not change the value of Z0, i.e., the following set has measure one,

{w : d(Z0|Xj,t′=x∗ , Z0|Xj,t′=y∗) = 0}, (A.9)

where Z0|Xj,t′=x∗ denotes the value of Z0 after fixing the value of Xj,t′ to be x∗. On the other hand, from

(A.7) and (A.8), we imply

Z0|Xj,t′=x∗ = Gi(x
∗, R∗,W ′i,t, t), (A.10)

Z0|Xj,t′=y∗ = Gi(y
∗, R∗,W ′i,t, t).

Combining (A.9), (A.10), and the fact S2 has positive measure, the contradiction will follow.

A.2.2 Proof of Proposition 1

We prove it by showing that (j, i) does not belong to the linear dynamical graph if and only if (j, i) /∈
−→
E FD.

Suppose, (j, i) does not belong to the linear dynamical graph, by the Definition 8, Gi,j(z) = 0, equivalently,

gi,j(s) = 0 for s > 0. This implies that αi,j = 0, i.e.,∑
s>0

|gi,j(s)| = 0.

The converse can be shown similarly.

A.2.3 Proof of Theorem 4

In order to prove the above statement, we show that if (j, i) /∈
−→
E FD, then (j, i) /∈

−→
EDI .

Suppose, (j, i) /∈
−→
E FD, then by the Definition 7, αi,j = 0, which implies αi,j(t, t

′) = 0 for all t and t′ ≤ t.

Consequently, using Equation (3.2), we obtain that for every t and (x, y) ∈ E2, the following set has measure

zero, {
w ∈ E : d

(
Fi(x,w, t), Fi(y, w, t)

)
> 0
}
.

Recall that x and y are two realizations of Xt−1. We consider the following conditional probability for an

event set W ∈ B,

P (Xi,t ∈ W|Xt−1} = x) = P (Fi(x,Wi,t, t) ∈ W|Xt−1} = x) = P (F−1
i,x (W)), (A.11)

where F−1
i,x (W) := {w ∈ E : Fi(x,w, t) ∈ W}.
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Observe that F−1
i,y (W) can be written as the union of the following two events:

{
w : Fi(y, w, t) ∈ W, d

(
Fi(x,w, t), Fi(y, w, t)

)
= 0
}

∪
{
w : Fi(y, w, t) ∈ W, d

(
Fi(x,w, t), Fi(y, w, t)

)
> 0
}
.

Note that the second term in the above expression has zero measure and the first term is a subset of F−1
i,x (W).

Hence, F−1
i,y (W) ⊆ F−1

i,x (W). Similarly, one can show F−1
i,x (W) ⊆ F−1

i,y (W) and thus, we have

F−1
i,y (W) = F−1

i,x (W),

with probability one. This implies

P (Xi,t ∈ W|Xt−1} = x) = P (Xi,t ∈ W|Xt−1} = y),

for all W ∈ B and x and y that are only different in Xj,t′ . Using this fact and total probability law, we

obtain

P (Xi,t|Xt−1 \ {Xj,t′} = x \ {x}) =

∫
x∈E
P
(
Xi,t, Xj,t′

∣∣Xt−1 \ {Xj,t′} = x \ {x}
)
dXj,t′

=

∫
x∈E

P
(
Xi,t|Xt−1 = x

)
P
(
Xj,t′ |Xt−1 \ {Xj,t′} = x \ {x}

)
dXj,t′

= P
(
Xi,t|Xt−1 = x

)
.

The above equation implies that for any t and t′ < t, Xi,t is independent of Xj,t′ given Xt−1 \ {Xj,t′}.
Using Assumption 1 and the above result, we will show that for any t, Xi,t is also independent of ∪t′≤bXj,t′

given Xt−1 \ {∪t′≤bXj,t′} for any b < t. To do this, we use induction on b.

First case, b = 2: from the above results, i.e., for any t and t′, Xi,t is independent of Xj,t′ given Xt−1\{Xj,t′},
we have

P (Xi,t|Xt−1) = P (Xi,t|Xt−1 \ {Xj,1}) = P (Xi,t|Xt−1 \ {Xj,2}).

By total probability law and the above equalities, we obtain

P (Xi,t|Xt−1 \ {Xj,1, Xj,2}) =

∫
Xj(2)

P (Xi,t, Xj,2|Xt−1 \ {Xj,1, Xj,2})dXj,2 (A.12)

=

∫
Xj,2

P (Xi,t|Xt−1 \ {Xj,1})× P (Xj,2|Xt−1 \ {Xj,1, Xj,2})dXj,2

=

∫
Xj,2

P (Xi,t|Xt−1 \ {Xj,2})× P (Xj,2|Xt−1 \ {Xj,1, Xj,2})dXj,2

= P (Xi,t|Xt−1 \ {Xj,2}).

Suppose that the case b = t − 2 holds true, then following the same steps as in (A.29), we can show the

final case b = t− 1, i.e.,

P (Xi,t|Xt−1) = P (Xi,t|Xt−1
−{j}).

Thus, Xi,t is independent of Xj given Xt−1
−{j} for all t, which means I(Xj → Xi|| X−{i,j}) = 0.
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A.2.4 Proof of Theorem 5

From Theorem 4, we know that if (j, i) /∈
−→
E FD, then (j, i) /∈

−→
EDI . Here, we prove the converse. If

I(Xj → Xi||X−{i,j}) = 0,

then for any t, Xt−1
j and Xi,t are independent given Xt−1

−{j}. In this case, we obtain

E[Xi,t|Xt−1 = x] = E[Xi,t|Xt−1 = y],

V ar[Xi,t|Xt−1 = x] = V ar[Xi,t|Xt−1 = y],

where x and y are two realizations of Xt−1 that are only different in Xj,t′ for some t′ < t.

The above equalities and (3.9) imply

fi(x, t) + gi(x, t)µi,t = fi(y, t) + gi(y, t)µi,t, (A.13)

g2
i (x, t) = g2

i (y, t), (A.14)

where µi,t := E[Wi,t]. From equations (3.9), (A.13), and (A.14), we obtain

d2
(
Fi(x,Wi,t, t), Fi(y,Wi,t, t)

)
/d2(x, y) =(

(fi(x, t)− fi(y, t)) + (gi(x, t)− gi(y, t))Wi,t

)2
/(x− y)2.

On the other hand, by the definition of αi,j(t, t
′) and (3.9), one can simplify (7.3) as follows:

sup
x=y

off Xj(t
′)

[(
fi(x, t)− fi(y, t)

x− y

)2

+

(
gi(x, t)− gi(y, t)

x− y

)2

σ2
i (t) (A.15)

+2
(fi(x, t)− fi(y, t))(gi(x, t)− gi(y, t))

(x− y)2
µi,t

]1/2

, (A.16)

where σ2
i (t) := E[W 2

i,t].

If gi satisfies (3.10), then (A.13)-(A.15) imply that (A.15) is zero and consequently αi,j(t, t
′) = 0 for all

t′ < t.

Otherwise, assume Wi is asymmetric. Using Equation (A.14), we have either:

(i) gi(x, t) = gi(y, t) or

(ii) gi(x, t) + gi(y, t) = 0.

In the first case (i), clearly we have αi,j(t, t
′) = 0. In the second case (ii), i.e., gi(x, t) + gi(y, t) = 0, using

Equation (A.13), we have

fi(x, t) + 2gi(x, t)µi,t = fi(y, t). (A.17)

Since Xi,t and Xt
j are independent given Xt

−{j} \ {Xi,t}, the following two random variables must have the

same distributions,

Xi,t|Xt−1 = x, Xi,t|Xt−1 = y,
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where x and y are two realizations of Xt−1 that only differ at Xj,t′ . By the definition of Xi,t, we imply

fi(x, t) + gi(x, t)Wi,t ∼ fi(y, t) + gi(y, t)Wi,t.

Substituting (A.17) into the above expression, the fact that gi(x, t)+gi(y, t) = 0, and adding and subtracting

gi(x, t)µi,t, we obtain

fi(x, t) + gi(x, t)µi,t + gi(x, t) (Wi,t − µi,t) ∼ fi(x, t) + gi(x, t)µi,t − gi(x, t) (Wi,t − µi,t) .

This can only happen if Wi is symmetric, which contradicts our assumption.

A.3 Proofs of Chapter 4

A.3.1 Proof of Proposition 3

Suppose γi,j ≡ 0. (4.2) implies that for every t ≤ T , λi(t) is F t−{j}(= σ{N t
−{j}})-measurable and from (4.1),

we have

P
(
dNi(t) = 1|F t

)
= P (dNi(t) = 1|F t−{j}).

Equivalently, for every 0 ≤ tk−1 < tk,

I
(
N tk
i,tk−1

;N tk
j,0|F

tk−1

−{j}

)
= 0, (A.18)

and thus, Ĩt(Nj → Ni||N−{i,j}) = 0, for any finite partition t ∈ T (0, T ).

For the converse we use proof by contradiction. Suppose IT (Nj → Ni||N−{i,j}) = 0 and γi,j 6= 0. Using the

definition in (4.4), it is straightforward to observe that for any t < T ,

It(Nj → Ni||N−{i,j}) = 0.

Similarly, It+dt(Nj → Ni||N−{i,j}) = 0. Consequently,

0 = It+dt(Nj → Ni||N−{i,j})− It(Nj → Ni||N−{i,j}) = I
(
dNi,t;N

t
j,0|F t−{j}

)
.

This implies P (dNi,t = 1|F t−{j}) = λi(t)dt + o(dt), or λi(t) is F t−{j}-measurable. Since, we have assumed

γi.j 6= 0, we obtain Nj,t is F t−{j}-measurable, for all t ≤ T . In words, jth process is determined by other

processes which contradicts with the Assumption 1 that states there is no deterministic relationships between

processes.

A.3.2 Proof of Corollary 1

If the excitation matrix belongs to Exp(m), from Equation (4.8) we have(
I −

D∑
d=1

ATd
jω + βd

)
diag(Λ)−1

(
I −

D∑
d=1

Ad
−jω + βd

)
=

4 sin2 zω/2

ω2z
F [Σz]

−1(ω).
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By evaluating the trace of the above equation, we obtain

m∑
i=1

|1− ai,i|2

λi
+
∑
i6=j

|ai,j |2

λi
=

4 sin2 zω/2

ω2z
TrF [Σz]

−1(ω), (A.19)

where ai,j =
∑D
d=1

a
(d)
i,j

−jω+βd
, and Ad = [a

(d)
i,j ]. To learn the entire set {±jβd}, we have to show that there are

no pole zero cancellations in (A.19). That is, the nominator and denominator of (A.19) have no common

roots. Let

g(ω) :=

 m∑
i=1

|1− ai,i|2

λi
+
∑
i 6=j

|ai,j |2

λi

 D∏
d=1

| − jω + βd|2,

which is the nominator of Equation (A.19). It is straightforward to check that for ω = −jβk, the above

quantity is non-zero, due to the fact that βds are distinct and Ak 6= 0. Since g(ω) is a polynomial with

real coefficients, from complex conjugate root theorem [169], we have g(jβk) 6= 0. Therefore, the set {±jβd}
contains all the poles of (A.19).

A.3.3 Proof of Proposition 4

From Lemma 1, the Laplace transform of the covariance density can be written as

L[Ω](s) = L[Γ](s) (diag(Λ) + L[Ω](s)) +

∫ ∞
0

∫ ∞
t

Γ(t′)ΩT (t)e−s(t
′−t)dt′dt. (A.20)

When Γ(t) ∈ Exp(m), it can be shown that (A.20) becomes

L[Ω](s) =

D∑
d=1

Ad
s+ βd

(
diag(Λ) + L[Ω](s) + L[Ω]T (βd)

)
. (A.21)

If the set of exciting modes are given, we can insert s = βd, for d = 1, . . . , D in the above equation and

obtain the system of D equations.

A.4 Proofs of Chapter 5

A.4.1 Proof of Lemma 2

We consider two cases: i) If A1,A2 ⊂ R (the root set). Using the chain rule we have

PX =
∏n
t=1 PXt|X

t−1
1

=∏n
t=1

∏
a∈A1

∏
b∈A2

PXa,t|Xt−1
1 ,XS(a),t

PXb,t|Xt−1
1 ,XS(b),t

PX−A1∪A2,t
|Xt−1

1
, (A.22)

where for every x, S(x) ⊆ −{x} such that the above equation holds. Note that, if we consider no simultaneous

influences, then S(x) = ∅ for every x. By the definition of DI, we also have

D(PXa||X−{a} || PXa
) = 0, ∀a ∈ A1 ∪ A2.
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Figure A.1. DIG in Lemma 4. A ∪ {X} is the parent set of Y, and B ∪ {Y} is the parent set of Z.

Combining the above equations implies

PX = PXA1
PXA2

n∏
t=1

PX−A1∪A2,t
|Xt−1

1

On the other hand, again using chain rule we have PX = PXA1,A2
PX\(A1∪A2)|A1,A2

. The equivalence between

the two last equations and the positivity assumption, implies that XA1
and XA2

are independent.

ii) Otherwise, let B1 and B2 to be the set of all parents of A1 and A2, respectively. Since the system has a

tree structure, then, B1 ∩ B2 = ∅. Similar to the previous case, one can obtain

D
(
PXA1

|XA2∪B1∪B2
||PXA1

||XB1

)
= 0.

Therefore, XA1
and XA2

are independent if XB1
and XB2

are independent. By continuing the same pro-

cedure, we will end up with two disjoint subsets, R1 and R2 of the root set R, such that Ri is the set of

ancestors of Ai. Since XR1
and XR2

are independent, XA1
and XA2

become independent.

A.4.2 Proof of Lemma 3

Suppose Yh is a hidden node in a minimal LDIT with no outgoing edges and let {X1, ...,Xs} to be its

parents. Since Yh has no descendant, by marginalizing over Yh, we obtain s disjoint subtrees. This is a

contradiction with the minimality assumption. Now suppose there exists a latent node, Y, in a minimal

LDIT with k parents XK := {X1, ...,Xk} and one child X0. From the definition of a generative model graph:

D(PX0|Y,XK ||PX0||Y) = 0, D(PY|XK ||PY||XK) = 0. (A.23)

By the chain rule:

PXt0,1|XK =
∑
Y t−1
1

PXt0,1|Y
t−1
1 ,XK

PY t−1
1 |XK

. (A.24)

From (A.23), (A.24), we have D(PX0|XK ||PX0||XK) = 0.

A.4.3 Proof of Lemma 4

It suffices to prove the lemma for d = 2, as the case for larger d, can be proved by induction. Consider the

case where d = 2 (X→ Y→ Z). Let A = XPA(Y) \ {X} and B = XPA(Z) \ {Y} to be the set of parents of

Y and Z excluding X and Y, respectively, as shown in Fig. A.1. First, we show that

D(PZt|Zt−1
1 ,X||PZt|Zt−1

1 ,Xt−2
1

) = 0, ∀t ≤ n . (A.25)
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Note that if (A.25) holds, then by multiplying all terms for t = 1, ..., n, we obtain

PZ|X =

n∏
t=1

PZt|Zt−1
1 ,Xt−2

1
,

which proves our claim. By the chain rule for any t, we have

PZt1|X =
∑
Bt−1

1 Y t−1
1

PZt|Zt−1
1 ,Y t−1

1 ,Bt−1
1 ,X PZt−1

1 |Bt−1
1 ,Y t−1

1 ,X PBt−1
1 |Y t−1

1 ,X PY t−1
1 |X. (A.26)

Theorem 1, Lemma 2, and the definition of generative model imply the following equalities

PZ|Y,B,X,A = PZ||Y,B = PZ||Y,B,X,A,

PB|Y,X,A = PB = PB||X,A,Z,

PY|X,A = PY||X,A = PY||X,A,Z,B. (A.27)

The above equalities imply

PZt|Zt−1
1 ,Y t−1

1 ,Bt−1
1 ,X = PZt|Zt−1

1 ,Y t−1
1 ,Bt−1

1 ,Xt−2
1

, (A.28)

PZt−1
1 |Y t−1

1 ,Bt−1
1 ,X = PZt−1

1 |Y t−1
1 ,Bt−1

1 ,Xt−2
1

,

PBt−1
1 |Y t−1

1 ,X = PBt−1
1 |Y t−1

1 ,Xt−2
1

.

Moreover, one can obtain the following equation using chain rule, Lemma 6, and equalities in (A.27)

PY t−1
1 |X =

∑
At−2

1
PY t−1

1 |At−2
1 ,X PAt−2

1 |X

=
∑
At−2

1
PY t−1

1 |At−2
1 ,Xt−2

1
PAt−2

1 |Xt−2 = PY t−1
1 |Xt−2

1
. (A.29)

Substituting (A.28)-(A.29) into the right-hand side of (A.26) proves our claim.

A.4.4 Proof of Lemma 5

It suffices to show

D(PY|W,X||PY||W) = 0. (A.30)

Suppose the length of the path from W to Y is d. We will prove (A.30) by induction on d. For d = 1, define

A := XPA(Y) \ {W}. In this case similar to the proof of Lemma 4 the following equalities hold

D(PY|A,W,X||PY||A,W) = 0, D(PA|W,X||PA) = 0. (A.31)

From chain rule,

PY t1 |W,X =
∑
A
PYt|Y t−1

1 ,A,W,XPY t−1
1 |A,W,XPA|W,X.
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Then by applying (A.31) to the above equation, we obtain (A.30).

Assume that equation (A.30) holds for paths of length d < k. In order to prove the case d = k, let Z to be

the parent of Y on the path from W to Y, and B := XPA(Y) \ {Z}. The path from W to Z is of length

k − 1 so by induction hypothesis we have

D(PZ|W,X||PZ||W) = 0. (A.32)

Moreover, by the definition of generative model graph and Theorem 1:

D(PY|B,Z,W,X||PY||B,Z) = 0, D(PB|Z,W,X||PB) = 0. (A.33)

Chain rule implies

PY t|W,X =
∑
B,Z

PY t|B,Z,W,XPB|Z,W,XPZ|W,X.

Applying (A.32) and (A.33) to the above equation proves the claim.

A.4.5 Proof of Lemma 6

Let R1 and R2 be two disjoint subsets of the root set R in a minimal LDIT. Furthermore, assume R1 and

R2 are root ancestors for nodes X and Y, respectively. Denote all the nodes on the paths from R1 to X by

A. It is easy to check that if a node belongs to A, so do all of its parents. Therefore, XPA(X) ⊆ A, where

PA(X) is the parent set of X. Similarly, we denote all the nodes on the paths from R2 to Y by B. By the

definition of generative model, we obtain

PX,Y,R1,R2,A,B = PR1
PR2

ΨA,R1
ΦB,R2

PX||PA(X)PY||PA(Y), (A.34)

where Ψ and Φ represent the terms including the causal conditioned distributions of all processes on the

paths from A1 to X, and from A2 to Y, respectively. On the hand, from chain rule we obtain

PX,Y,R1,R2,A,B = PR1,R2
PA|R1,R2

PB|A,R1,R2
PX|B,A,R1,R2

PY|X,B,A,R1,R2
.

The equivalence between (A.34) and (A.35), and the positivity assumption imply that X and Y are inde-

pendent, whenever PA(X) and PA(Y) are independent. Continuing the same procedure, we can show X

and Y are independent, if R1 and R2 are independent.

A.4.6 Proof of theorem 7

Proof consists of two parts: first we show that if PAi is the parent set of Xi in a MDIG, then

D
(
PXi,t|Xt−1

i,1 ,Xt
−{i},1

|| PXi,t|Xt−1
i,1 ,Xt

PAi,1

)
= 0. (A.35)
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To do so, we use the definition of MDIG in Section 5.1.2. Let R = −{i} \ PAi to be the set of all nodes

except i and its parents. Since there is no arrow in MDIG from R to Xi, we have

Ĩ(Xr → Xi||X−{i,r}) = 0, ∀r ∈ R.

The positivity assumption together with the above equalities imply

D
(
PXi,t|Xt−1

i,1 ,Xt
−{i},1

|| PXi,t|Xt−1
i,1 ,

⋂
r∈RXt

−{i,r},1

)
= 0.

Noticing that
⋂
r∈RXt

−{i,r},1 = Xt
PAi,1, one can establish (A.35). Next we will show that if there is an

arrow from Xj to Xi in a MDIG with polytree structure (e.g., Ĩ(Xj → Xi||X−{i,j}) > 0), then

D
(
PXi,t|Xt−1

i,1 ,Xt
−{i},1

|| PXi,t|Xt−1
i,1 ,Xt−1

j,1 ,Xt
−{i,j},1

)
= 0. (A.36)

In words, given the past of Xj is enough for predicting the Xi,t. To prove (A.36), we use the fact that the

graph is a polytree, and thus if there is an arrow from Xj to Xi, there will be no arrow in the opposite

direction, i.e., Ĩ(Xi → Xj ||X−{i,j}) = 0. Consequently,

D
(
PXj,t|Xt−1

j,1 ,Xt
−{j},1

|| PXj,t|Xt−1
j,1 ,Xt

−{i,j},1

)
= 0.

On the other hand, the chain rule implies

PXi,t|Xt−1
i,1 ,Xt

−{i},1
= PXj,t|Xt−1

j,1 ,Xt
−{j},1

PXi,t|Xt−1
i,1 ,Xt−1

j,1 ,Xt
−{i,j},1

PXj,t|Xt−1
j,1 ,Xt−1

i,1 ,Xt
−{i,j},1

Combining the last two equations will imply (A.36).

A.4.7 Proof of theorem 8

First we prove that ΓO suffices to learn
−→
T when R = {r}. The proof is by induction on |O|. The base

case, |O| = 1 is trivial, since by Definition 13, L must be empty and
−→
T is the single node. Suppose, a tree

−→
T = (V,

−→
E ) can be recovered, given any learnable subset L such that |O| ≤ k−1. For the case that |O| = k,

let v ∈ O and Bv := arg minu∈O\{v} γr(v, u). Note that in a single root tree all the discrepancies must be

non-negative. We claim that
−→
T is a star with a root in the center if and only if Bv = O \ {v} for all v ∈ O.

If
−→
T is a star, then clearly Bv = O \ {v} for all v ∈ O. The other direction is proved by arguing that if

−→
T

is not a star then there exists a directed path of length two and because L is learnable, then one can find a

node on this path such that Bv 6= O \ {v}.
If there exists v ∈ O such that Bv 6= O \ {v}, and minu∈O\{v} γr(v, u) = 0, then all the nodes in Bv

are the descendants of v. In this case by induction hypothesis, the subtree of
−→
T containing v and all its

descendant, is recoverable by Bv ∪ {v} as well as the rest of the tree by O \ Bv. Similarly for the case

minu∈O\{v} γr(v, u) > 0.

We show that if |R| > 1, learning
−→
T can be done by learning |R| single rooted trees, separately.

For v ∈ O, let Mv be a maximal subset of O containing v such that for every u,w ∈ Mv, γ(u,w) ≥ 0.

Clearly, if w belongs to Mv, so does all its descendants which are also in O.
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Denote the minimal induced polytree of
−→
T containing Mv by

−→
T |Mv = (V ′,

−→
E ′). Note that from the

maximality of Mv, O ∩ V ′ ⊆ Mv. First we show that V ′ \Mv is a learnable subset in
−→
T |Mv , i.e., all nodes

with out-degree at most one in
−→
T |Mv belong to Mv. All leaves in

−→
T |Mv belong to Mv otherwise they can be

eliminated from
−→
T |Mv and it is a contradiction with the minimality assumption on

−→
T |Mv . Let u′ ∈ V ′ \Mv

be a node with out-degree one in
−→
T |Mv . Since O ∩ V ′ ⊆ Mv, then u′ ∈ L. If the out-degree of u′ is also

one in
−→
T , then we have a contradiction with the learnability assumption of L. Hence, there exists at least

one descendent of u′ in O which does not belong to
−→
T |Mv in which case, we have a contradiction with the

maximality of Mv.

Next, we claim that
−→
T |Mv has only one root from the root set R. Suppose

−→
T |Mv has more than one root.

Since a tree has no cycles, then there must exist at least two nodes with degree one (either a root with degree

one or a leaf) with no common ancestor in
−→
T |Mv , which contradicts the definition of Mv.

The final step is to prove that these single rooted sub-trees can be merged uniquely. This can be done by

observing that if two single rooted trees
−→
T 1 = (V1,

−→
E 1) and

−→
T 2 = (V2,

−→
E 2) have an intersection in

−→
T , then

that intersection is also a single rooted tree that can be learned from O ∩ V1 ∩ V2.

A.4.8 Proof of Theorem 9

To show this we prove that the directed measure in (5.6) is a discrepancy measure on T . First it is important

to note that by Lemma 3 the set of hidden nodes is a learnable subset in a minimal LDIT. The rest of the

proof verifies that directed measure in (5.6) satisfies the properties of a discrepancy measure introduced in

Definition 12.

(1) From Definition 15, γ(X,X) = 0. Suppose X is an ancestor of Y. By the sibling resemblance

property, since X is the common ancestor of X and Y and I(X1; X) > 0, then I(X1; Y) > 0. In other word

γ(X,Y) = 0.

(2) This property is also a consequence of the sibling resemblance property. Let W to be the common

ancestor of X and Y. If γ(X,W) = d, then by using Lemma 5 we obtain I(Xd
1 ; Y) = 0. Which implies

γ(X,Y) ≥ d. On the other hand, since I(Xd+1
1 ; W) > 0 and I(Y; W) > 0, by sibling resemblance property

we obtain I(Xd+1; Y|Xd
1 ) > 0, which implies γ(X,Y) = γ(X,W) = d.

(3) This is shown by proving that for a given path X → Y → Z in a minimal LDIT, if γ(Y,X) = l and

γ(Z,Y) = d then γ(Z,X) > max{l, d}.
First we prove γ(Z,X) > d. It suffices to show

I(Zd+1; X|Zd1 ) = 0. (A.37)

Using the chain rule we obtain

PZd+1|Zd1 ,X =
∑
Y1

PZd+1|Zd1 ,Y1,XPZd1 |Y1,X

PY1|X

PZd1 |X
. (A.38)

Since γ(Z,Y) = d, Y is an ancestor of Z, and by using the same argument as in the proof of Lemma 4, we

obtain

D(PZd1 |Y,X||PZd1 ) = 0, D(PY1|X||PY1) = 0, (A.39)

D(PZd+1|Zd1 ,Y1,X||PZd+1|Zd1 ,Y1
) = 0. (A.40)
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Finally, the claim follows by substituting (A.39) and (A.40) into the right-hand side of (A.38). The statement

γ(Z,X) > l may be proven by showing I(Zl+1; X|Zl1) = 0.

PZl+1|Zl1,X =
∑
Y l1

PZl+1|Zl1,Y l1 ,XPZl1|Y l1 ,X
PY l1 |X∑

Y ′l−1
1

PZl1|Y
′l−1
1 ,XPY ′l−1

1 |X
,

since γ(Y,X) = l, and using the same argument as above, one can prove the claim.

(4) This property is a direct consequence of Lemma 6 and Definition 15.

A.4.9 Proof of Lemma 7

First we prove the following Lemma which will be used in the Proof of Lemma 7.

Lemma 10. Let 1 ≤ a/x and x ≥ 0. For any 0 < λ < 1, x log a
x is bounded from above by aλx1−λ

λ .

Proof. Since 1 ≤ a/x, then log
(
a
x

)λ ≤ (ax)λ, for any 0 < λ < 1. Hence, λx log a
x ≤ a

λx1−λ.

Proof of Lemma: Using the McDiarmid’s inequality [170] and the union bound for the empirical estimator

(5.7), we obtain

P
(

max
(x1,x2)∈|X|d1+d2

|PX1,X2(x1,x2)− P̂X1,X2(x1,x2)| ≥ δ
)
≤ 2|X |d1+d2e−2Nδ2 ≤ 2|X |2ne−2Nδ2 . (A.41)

For simplicity, denote (X1,X2) by Z. From ||PZ − P̂Z||1 ≤ |X |2n maxZ |PZ(Z) − P̂Z(Z)| and (A.41), we

obtain

P
(
||PZ − P̂Z||1 ≥ |X |2nδ

)
≤ 2|X |2ne−2Nδ2 . (A.42)

Using an `1-norm bound on entropy [25], if ||PZ − P̂Z||1 < 0.5, then

|H(Z)− Ĥ(Z)| ≤ ||PZ − P̂Z||1 log
|X |d1+d2

||PZ − P̂Z||1
.

Applying Lemma 10, we have

|H(Z)− Ĥ(Z)| ≤ 1

λ
||PZ − P̂Z||1−λ1 |X |λ(d1+d2). (A.43)

Therefore,

P
(
|H(Z)− Ĥ(Z)| ≥ ε

)
≤ P

(
||PZ − P̂Z||1−λ1 ≥ λε

|X |λ(d1+d2)

)
.

From (A.42), we have

P
(
|H(Z)− Ĥ(Z)| ≥ ε

)
≤ 2|X |2n exp

(
−2N

(
λε

|X |2n

) 2
1−λ
)
. (A.44)
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Using the definition of mutual information, I(X1; X2) = H(X1) +H(X2)−H(X1,X2), we obtain

P
(
|I(X1;X2)− Î(X1;X2)| ≥ ε

)
≤ P

(
|H(X1)− Ĥ(X1)| ≥ ε/3

)
+

P
(
|H(X2)− Ĥ(X2)| ≥ ε/3

)
+ P

(
|H(X1,X2)− Ĥ(X1,X2)| ≥ ε/3

)
.

Applying the upper bound in (A.44) to the above inequality will conclude the lemma. It only remains to

choose λ to minimize the right hand side of (A.44). We choose λ = 1/ log( 3|X |2n
ε ).

A.5 Proofs of Chapter 6

A.5.1 Proof of Proposition 5

The set of equation in (6.4), can be written in a matrix form as follows

Ã


ωZ,t

...

ωZ,t−l+1

 = C


Xt

...

Xt−l

+


NZ,t

...

NZ,t−l+1

 , (A.45)

where Ã = diag(Ã0, ..., Ãl−1), and C a block matrix with Csr as its (s, r)th block for s = 0, ..., l − 1 and

k = 0, ..., l. Since NZ and X are orthogonal, we imply

||ÃΓωZ (l−1)ÃT ||2 ≥ ||CΓX(l)CT ||2. (A.46)

Using (A.46) and the relationship between `2 and `1 norms of a matrix, we obtain

λmax (ΓωZ (l − 1)) ||Ã||22 ≥ λmin (ΓX(l)) ||C||21/(nl) (A.47)

where λmin(·) and λmax(·) denote the minimum and maximum eigenvalues of a given matrix, respectively.

Since ΓX(l) and ΓωZ (l−1) are block-Toeplitz matrices, their eigenvalues can be bounded as follows [171]:

L := inf
Ω∈[0,2π]

λmin(F(γX)) ≤ λmin(ΓX(l)), (A.48)

M := sup
Ω∈[0,2π]

λmax(F(γωZ )) ≥ λmax(ΓωZ (l−1)), (A.49)

where j denotes
√
−1. Using (A.47)-(A.49) and the fact that Ã is diagonal and ||A22||2 < 1, we obtain√

nl
M

L
||A12||2 ≥

√
nl
M

L
||A12||2 max

0≤k≤l−1
||A22||k2 ≥ ||C||1. (A.50)

From (6.5), we have B∗k − A∗k =
∑l−1
s=0 C

s
k, where the right hand side can be obtain by summing up

the appropriate columns of matrix C. This implies that max0≤k≤l ||B∗k − A∗k||1 ≤ ||C||1. Combining this

inequality and the bound in (A.50) concludes the result.
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A.5.2 Proof of Proposition 6

The spectral density of matrix γX(h) can be computed as follows:

F(γX) = σ2
XFX(Ω)FX(Ω)H + σ2

ZFZ(Ω)FZ(Ω)H (A.51)

where H denotes Hermitian of a matrix and

FX(Ω) := [ejΩIn×n −A11 −
l−1∑
k=0

A∗ke
−kjΩ]−1,

FZ(Ω) := FX(Ω)

(
A12

l−1∑
k=0

Ak22e
−kjΩ

)
.

We define the function ψσX
σZ

(Ω, v) := vTF(γX)v/σ2
Z where v is a unit vector. Suppose that (Ω∗, v∗)

minimizes the function ψσX
σZ

(.). By the definition of L and M , the ratio M/L is equal to 1/ψσX
σZ

(Ω∗, v∗).

Now if we decrease σX
σZ

to
σ′X
σ′Z

, then we have: ψσ′
X
σ′
Z

(Ω∗, v∗) < ψσX
σZ

(Ω∗, v∗). Moreover, for the optimal

solution (Ω′∗, v′∗) of ψσ′
X
σ′
Z

(.), we know that: ψσ′
X
σ′
Z

(Ω′∗, v′∗) ≤ ψσ′
X
σ′
Z

(Ω∗, v∗). Thus, we can conclude that:

1/ψσ′
X
σ′
Z

(Ω′∗, v′∗) > 1/ψσX
σZ

(Ω∗, v∗).

A.5.3 Proof of Theorem 11

First, we show such G has minimum number of latent nodes. We do this by means of contradiction. But

first observe that since the latent subnetwork of G is a directed tree, we can assign a non-negative number lh

to latent node h that represents the length of longest directed path from h to its latent descendants. Clearly,

all such descendants are leaves which we denote them by L̃h. For instance, if the latent subnetwork of G is

a→ b→ c, then la = 2 and L̃a = {c}.
Suppose that G contains m latent nodes {h1, ..., hm} and there exists another network G1 (not necessary

with tree-structure induced latent subgraph), with m1 < m number of latent nodes that it is also consistent

with the same linear measurements as G. Due to assumption (i), there is at least m distinct observed nodes

that have out-going edges to the latent subnetwork. More precisely, each hi has at least a unique observed

node as its parent. We denote a unique observed parent of node hi by oi.

Because m1 < m, there exists at least one observed node in Ō := {o1, ..., om} that has shared its latent

children with some other latent nodes in G1. Among all such observed nodes, let oi∗ to be the one1 that its

corresponding latent node in G, (hi∗) has maximum lhi∗ . Furthermore, let Ĩi∗ ⊂ {1, ...,m} \ {i∗} to be the

index-set of those observed nodes that oi∗ has shared a latent child with them in G1.

1If there are several such observed node, let oi∗ to be one of them.
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By the choice of oi∗ , we know that lhj ≤ lhi∗ for all j ∈ Ĩi∗ and if for some 1 ≤ k ≤ m, lhk > lhi∗ , then ok

has not shared its latent child in G1 with any other observed nodes in Ō. Moreover, there should be at least

a latent node hj∗ where j∗ ∈ Ĩi∗ such that lhj∗ = lhi∗ . Otherwise, G1 will not be consistent with the linear

measurements of G. Let Ĩ∗∗ := {j : lhj = lhi∗} ∩ Ĩi∗ . Because, oi∗ shares its latent children with ∪j∈Ĩ∗∗oj
in G1 and the fact that both G and G1 consistent with the same linear measurements, then the following

holds in graph G,

CO
L̃hi∗

(G) ⊆ ∪j∈Ĩ∗∗C
O
L̃hj

(G),

where CO
L̃hj (G)

indicates the set of observed children of the set L̃hj . This indeed contradicts with assumption

(ii).

A.5.4 Proof of Theorem 12

First, we require the following definition. For a network G with corresponding latent sub-network that is a

tree, we define Uk(G) := {h ∈ G : lh = k}. To prove the equivalency, suppose there exists another network

G2 such that its latent sub-network is a tree and has minimum number of latent nodes. Let {h1, ..., hm} to

denote the latent nodes in G. Since G satisfies Assumption (i), for every latent node hi there exists a unique

observed node oi such that oi ∈ POhi(G) and oj 6∈ POhi(G) for all j 6= i.

Since both G and G2 are consistent with the same linear measurement, it is easy to observe that if

hi ∈ Uk(G), then oi must have at least a latent child in G2, say h′i, such that lhi = lh′i . Note that lhi is

computed in G and lh′i in G2. Moreover, we must have:

CO
L̃hi

(G) =
⋃

h′∈H′(oi)∩Ulhi (G2)

CO
L̃h′

(G2),

where H ′(oi) denotes the set of latent nodes in G2 that have oi as their observed parent. In other words,

observed nodes that can be reached by a directed path of length lhi + 2 from oi should be the same in both

graph G and G2. This results plus the fact that G satisfies Assumption (ii), imply:

I) For every hi ∈ Uk(G), there exists a unique latent node h′i ∈ Uk(G2), such that oi ∈ POh′i(G2) and

oj 6∈ POh′i(G2) for all j 6= i, and

CO
L̃h

(G) = CO
L̃h′

i

(G2).

Using I) and knowing that both G and G2 have the same number of latent nodes, we obtain:

II) |Uk(G)| = |Uk(G2)|, for all k.

Using I) and II), we can define a bijection φ between the latent subnetworks of G and G2 as follows φ(hi) =

h′i. Using this bijection and Assumption (ii) of G conclude that if h ∈ Uk(G) is the common parent

of {hj1 , ..., hjs} ⊆ Uk−1(G), then φ(h) ∈ Uk(G2) should be the common parent of {φ(hj1), ..., φ(hjs)} ⊆
Uk−1(G2) and the proof is complete.
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A.5.5 Proof of Lemma 8

Suppose that oi is the unique observed node of a latent node hi. Then, for any oj such that li = lj , if hi is

not a child of oj , then from assumption ii we have Rj 6⊆ Ri. If hi is a child of oj , since we know that li = lj ,

then Mi ⊆Mj and Ri = Rj .

Now, suppose that the observed node oi satisfies conditions but it is not unique parent of any latent node.

Let hi and h′i be children of oi. At least one of them, say node hi, can reach an observed node by a path

of length li − 1. If h′i has the same property, then consider the unique observed parent of h′i, say node oj .

Based on Assumption (ii), we have Rj ⊆ Ri, which is in contradiction with the assumption that node oi

satisfies conditions of Lemma. Moreover, if h′i does not have a path to observed node with a length of li− 1,

then for any observed parent of hi, one of the conditions in the Lemma is not satisfied. Thus, the proof is

complete.

A.5.6 Proof of Proposition 7

Notice that the first loop in Algorithm 5 uses the result of Lemma 8 and finds all the latent nodes and their

corresponding unique observed parents. The next loop uses the fact that the latent sub-network is a tree

and also it satisfies Assumption 4. Hence, if there exist two latent nodes h and h′, one with depth l and the

other one with depth l + 1, such that Rh ⊆ Rh′ , then h′ must be the parent of h in the latent sub-network.

Moreover, since each latent node has a unique observed parent, using A∗1, Algorithm 5 can identify all the

observed children of a latent node. Finally, the last loop in this algorithm locates the rest of observed nodes

as the input of the right latent nodes. The algorithm does it by using the fact that if an observed node i

shares a latent child with another observed node j ∈ U , then Mj ⊆ Mi. Clearly, if the true unobserved

network satisfies Assumption 4, the output of this algorithm will have a latent sub-network that is a tree

and consistent with the linear measurement. Thus, by the result of Theorem 11, it will be the same as the

true unobserved network up to some permutations in Supp(A21).

A.5.7 Proof of Theorem 13

Consider the instance of the problem where A22 = 0m×m. Without loss of generality, we can assume

that entries of A12 and A21 are just zero or one. Thus, we need to find [A12]n×k and [A21]k×n such that

Supp(A12A21) = Supp(A∗1) and k is minimum. We will show that the set basis problem [172] can be reduced

to the decision version of finding the minimal unobserved network which we call it the latent recovery

problem. But before that, we define the set basis problem:

The Set Basis Problem [172]: given a collection C of subsets of a finite set U = {1, · · · , n} and an integer

k, decide whether or not there is a collection B ⊆ 2U of at most k sets such that for every set C ∈ C, there

exists a collection BC ⊆ B where
⋃
B∈BC B = C.

Any instance of the basis problem can be reduced to an instance of latent recovery problem. To do so,

we encode any set C in collection C to a row of A∗1 = A12A21 where i-th entry is equal to one if i ∈ C, and

otherwise zero. It is easy to verify that the rows of matrix A21 correspond to sets in collection B if there

exist a solution for the basis problem. Since the basis problem is NP-complete, we can conclude that finding

the minimal unobserved network is NP-hard.
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A.5.8 Proof of Theorem 14

Consider a minimal unobserved network Gmin. Pick any latent node i′ which its in-degree or out-degree

is greater than one. Let V −i′ and V +
i′ be the sets of nodes that are going to and incoming from node i′,

respectively. We omit the node i′ and create |V −i′ | × |V
+
i′ | latent nodes {i′j′k′ |j′ ∈ V

−
i′ , k

′ ∈ V +
i′ }. We also

add a direct link from node j′ ∈ V −i′ to i′j′k′ and from i′j′k′ to k′ ∈ V +
i′ in order to be consistent with

measurements. We continue this process until there is no latent node with in-degree or out-degree greater

than one. Since there exists at most one path with length k from any observed node to another observed

node, the resulted graph is exactly equal to graph G0. Hence we can construct the minimal graph Gmin just

by reversing the process of generating latent nodes from Gmin to merging latent nodes from G0. But the

NM algorithm consider all the sequence of merging operations. Thus, Gmin would be in the set Gout and the

proof is complete.

A.6 Proofs of Chapter 7

A.6.1 Proof of Theorem 15

In order to complete the proof, we need the following technical lemmas. When d(·, ·) is the Euclidean

distance, we denote the Wasserstein metric by WE(·, ·).

Lemma 11. For real-valued random variables, we have

|Eν1 [x]− Eν2 [y]| ≤ WE(ν1, ν2) ≤
√
Eν1 [x2] + Eν2 [y2]− 2Eπ[xy], (A.52)

where π is any joint distribution of x and y such that its marginals are ν1 and ν2.

Proof. The lower bound is due to the dual representation of the Wasserstein metric and the fact that f(x) = x

is Lipschitz.

For the upper bound, we use the Jensen’s inequality, that is

Wd(ν1, ν2) ≤ inf
π

(Eπ[dp(x, y)])
1/p

, (A.53)

for p ≥ 1. For p = 2, we use the monotonicity of
√
x, and the fact that the space of probability measures is

complete and obtain the result.

Here, we consider a more general form than a simple linear model. Consider a network of variables in

which every variable Xi functionally depends on a subset of other variables XFpi
(the parent set of node i)

as follows,

Xi = Fi(XFpi
) +Gi(XFpi

)Wi, ∀i, (A.54)

where Fi, Gi are arbitrary functions such that Gi 6= 0. Wis denote exogenous noises with mean zero and

variance σ2
i and have no influence on each other, i.e., for any K ⊆ −{Wi,Wj}, cKWi,Wj

= 0.
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Lemma 12. For a system described by (A.54), the influence of node j on its child i given the rest of i’s

parents Fpi \ {j} under Euclidean metric, is bounded as follows

sup
xFpi=yFpi

off j

∣∣∣Fi(xFpi)− Fi(yFpi)
x− y

∣∣∣ ≤ c
Fpi\{j}
i,j ≤

sup
xFpi=yFpi

off j

[(
Fi(xFpi)− Fi(yFpi)

x− y

)2

+

(
Gi(xFpi)−Gi(yFpi)

x− y
σi

)2
]1/2

. (A.55)

where the suprimum is taking over all realizations of X−{i} that are only different at Xj.

Proof. Using the lower bound in Lemma 11 and the fact that Wis have zero mean, we obtain the lower

bound in (A.55).

To obtain the upper bound, we again use the result of Lemma 11, with the following joint distribution

π(Xi, Yi),

1

|Gi(xFpi)|
fWi

(
ΘxFpi

(Xi)
)
I{ΘxFpi (Xi)=ΘyFpi

(Yi)},

where

ΘxFpi
(Xi) :=

Xi − Fi(xFpi)
Gi(xFpi)

,

and fWi
denotes the probability density function of Wi and I denotes the indicator function. Using this joint

distribution, we obtain the upper bound in (A.55).

Applying the above result to a linear system in which Fi(yFpi) = (Ax)i and Gi(xFpi) = 1, we obtain that

c
Fpi\{j}
i,j = |Ai,j |.

A.6.2 Proof of Lemma 9

• cKi,j ≥ 0 since Wasserstein is a metric. If cKi,j = 0, we have Wd (P (Xi|xj , xK), P (Xi|yj , xK)) = 0, for all

realizations xj , yj and xK. Using the fact that Wasserstein is a metric on the space of probability measures,

the above equality, and total probability law, we obtain

P (Xi|xK) =
∑
xj

P (Xi|xj , xK)P (xj |xK) = P (Xi|yj , xK)
∑
xj

P (xj |xK) = P (Xi|yj , xK).

The above equality holds for all yj and xK. This implies Xi ⊥⊥ Xj |XK.

• We show this by an example. Let X = U[0,1] to be uniformly distributed between zero and one, and

Y =

V[0,1] if X ∈ A,

U[0,1] otherwise,
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where A = { i
i+1 : i ∈ N}, and V[0,1] is a random variable independent of U that is distributed non-uniformly

over [0, 1]. In this case, we have

0 <
Wd(P (Y |X = 1/2), P (Y |X =

√
2))

d(1/2,
√

2)
≤ cy,x.

On the other hand, it is easy to see that Y has a uniform distribution over [0, 1] almost surely. Furthermore,

for two measurable sets C and B in the σ-algebra, we have

P (X ∈ C|Y ∈ B) =
P (Y ∈ B|X ∈ C) P (X ∈ C)

P (Y ∈ B)
=

P (Y ∈ B|X ∈ C ∩ A) P (X ∈ C ∩ A) + P (Y ∈ B|X ∈ C \ A) P (X ∈ C \ A)

P (Y ∈ B)

=
P (Y ∈ B|X ∈ C \ A) P (X ∈ C \ A)

P (Y ∈ B)
= P (X ∈ C \ A).

The last equality uses the fact that P (Y ∈ B) = P (Y ∈B|X 6∈A) = P (Y ∈ B|X ∈ C \ A). Thus, changing

the value of Y will not affect the conditional distribution of X given Y , i.e., cx,y = 0.

• If cKi,{j,k} = 0, Wd(P (Xi|xj , xk, xK), P (Xi|yj , yk, xK)) = 0, for all realization xj , yj , xk, yk, xK. By the total

probability law, we obtain

P (Xi|xk, xK) =
∑
xj

P (Xi|xj , xk, xK)P (xj |xk, xK)

= P (Xi|yj , yk, xK)
∑
xj

P (xj |xk, xK) = P (Xi|yj , yk, xK).

This implies that P (Xi|xk, xK) = P (Xi|yj , yk, xK) = P (Xi|yk, xK). Hence, cKi,k = 0. Similarly, we can prove

that cKi,j = 0.

• Suppose cKi,{j,k} = 0, then from the previous proof, we have P (Xi|xk, xK) = P (Xi|yk, yj , xK), for all

realizations yj , xk, yk, xK. Thus, P (Xi|xk, xK) = P (Xi|yk, xj , xK) This is equivalent to say c
K∪{j}
i,k = 0. The

other part can be shown similarly.

• If cKi,j = ci,K = 0, then from cKi,j = 0 and total probability law, we obtain that

Wd(P (Xi|xj , xK), P (Xi|xK)) = 0. (A.56)

On the other hand, using the triangle inequality of the Wasserstein metric, we have

Wd(P (Xi|xj , xK), P (Xi|yj , yK)) ≤Wd(P (Xi|xj , xK), P (Xi|xK)) +Wd(P (Xi|xK), P (Xi|yK))

+Wd(P (Xi|yK), P (Xi|yj , yK)).

The first and third expressions on the right hand side are zero due to (A.56) and the second expression is

zero due to ci,K = 0.

• If c
K∪{k}
i,j = 0,

Wd(P (Xi|xj , xk, xK), P (Xi|yj , xk, xK)) = 0.

101



This implies that P (Xi|xj , xk, xK) = P (Xi|xk, xK) for all realizations xj , xk, and xK. Similarly, because

of c
K∪{j}
i,k = 0, we have P (Xi|xj , xk, xK) = P (Xi|xj , xK) for all realizations xj , xk, and xK. Hence, for all

realizations, we have

P (Xi|xj , xK) = P (Xi|xk, xK).

This result and the total probability law will establish the result.

A.6.3 Proof of Theorem 16

Since the influence structure of this network is a DAG, there exists an ordering of the variables such that for

every node i, all its parents have indices less that i. Without loss of generality suppose that {X1, ..., Xm} is

that ordering. Furthermore, using the chain rule, we have

P (X) =

m∏
i=1

P (Xi|X{<i}), (A.57)

where X{<i} denotes all the variables with indices less than i. Due to the nature of this ordering, all the

nodes in {< i} that do not belong to Pai are non-descendants of node i. Hence, by the definition of ID, they

have zero influence on Xi given the parents of i and because of the first property in Lemma 9, they can be

dropped from the conditioning in (A.57).

The global Markov property is a direct consequence of Lemma 9 and Theorem 3.27 in [109].
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