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Abstract 

 

Angiosperms, or flowering plants, form the largest group of plants, with more than 

350,000 extant species. They exhibit extensive diversity in shape, size, color, structure and 

organization of their reproductive organs contained within the flowers. With regard to the sexual 

nature of the flowers, males, females and hermaphrodites occur in nature, with hermaphroditism 

being the norm. About 6% of flowering plants are dioecious and 5% monoecious, supporting the 

widely accepted view that bisexual flowers are the ancestral condition. Unisexuality evolves from 

hermaphroditism by the process of random mutations affecting the female organ (carpel) or male 

organ (stamen) abortion. The ABCE model of floral development provides a basic underlying 

developmental framework of individual floral whorls across species. However, it stops short of 

universally explaining the occurrence of selective organ abortion, as in the case of unisexual 

flowers.  Abortion of either one of the sexual organs is the first step towards evolving a sexually 

dimorphic species, mostly by a loss-of-function mutation, rarely by a gain-of-function mutation, 

occurring in any of a number of genes and regulatory elements involved. Ontogenic similarities 

between the lateral organ leaf and the flower has also led to research demonstrating increasing 

roles played by the plant hormone auxin in the initiation and patterning of these organs. 

Reproductive organs are structurally complex and critical to survival, and have been under 

intense research for the last three decades. However, the genetic elements and interactions 

between that sculpt the organs are relatively poorly understood, and neither of these models 

sufficiently explain the occurrence of different sex types in plants.  

Stable dioecy results when the two functional genes affecting carpel and stamen 

development are linked in close proximity and their recessive alleles are linked in repulsion 

phase. The relatively low frequency of female sterile mutants in nature is indicative of the 

evolutionary constraints on the female organs by dint of their role in bearing the ovules and 

providing nutrition and protection to the next generation. It is also caused by the lesser 

probability of female mutations being fixed in a population as the sedentary recipient nature of 

carpels would drive the population to extinction. The model plant species Arabidopsis also 

reflects this dearth of female sterile mutants in laboratory studies. Being a hermaphrodite 
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species with perfect flowers, and with a fully sequenced genome, Arabidopsis is ideally suited to 

study floral organ development. 

Carica papaya variety AU9 is an improved dioecious variety with male and female sex 

types controlled by a pair of nascent sex chromosomes, and with a sequenced genome. It makes 

for an ideal system to study the underlying genetic basis for floral sex organ development. 

Arabidopsis and papaya are both in the order Brassicales, with papaya having 2 fewer whole 

genome duplications than Arabidopsis. To explore and identify genomic regions and gene loci 

involved in floral organ development, we combined the parallel study of gene expression 

differences between male and female shoot apical meristem tissue of AU9 with that of sequence 

analysis of EMS generated female-sterile mutants in Arabidopsis. 

The combined approach of our study identified a host of gene loci in both papaya and 

Arabidopsis, and 2 distinct genomic regions in Arabidopsis as putatively involved in the 

developmental program of the carpels. In papaya, significantly higher number of genes were 

found to be present in the male tissues compared to the female tissues. Known genes involved 

in organ development showed a distribution among transcription factors, hormone related 

functions, transporter proteins, and kinase proteins. We also identified chromatin related 

proteins which presumably work to maintain genome integrity and accuracy. Of the loci identified 

to be differentially expressed between males and females, a majority was found to be of 

unknown function. This was expected as many of the critical regulatory elements function 

upstream and downstream of the ABCE model and auxin responses are largely uncharacterized. 

In addition, there should also be crosstalk among effectors of the ABCE class genes and those of 

the auxin related genes as evident from the combined results of our parallel experiments. A large 

portion of these gene loci code for proteins containing WD40 repeats, ankyrin repeats, penta-, 

tetra- and tri- copeptide repeats. Although these protein motifs are found to be involved in a 

wide variety of physiological functions, emerging evidence of sub-functionalization and 

additional motif based studies are increasingly implicating them in developmental roles. 

In our analysis of Arabidopsis mutants, we found genomic regions on the long arms of 

Chromosome 1 and Chromosome 3 to harbor single nucleotide polymorphisms (SNPs) at a higher 
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frequency and greater density, compared to the rest of the genome. This was an expected 

situation given that our mutant FS322 displayed a distorted segregation ratio of 15:1, with the 

mutant phenotype failing to manifest in the second backcross generation. This is suggestive of 

more than one gene being affected to generate the mutant phenotype. The gene loci identified 

to be putative candidate genes show a variety of functional roles, and unknown functions. We 

identified ribosomal structural and functional protein components, F-Box and U-Box proteins, 

and ankyrin, penta-, tetra- and tri- copeptide repeat containing proteins. The known loci 

identified to have SNPs include key players such as HUELLENOS (HLL), MEIOSIS DEFECTIVE 1 

(MEI1), ESSENTIAL MEIOTIC ENDONUCLEASE 1B (EME 1B), SPATULA (SPT), RIBOSOMAL RNA 

PROCESSING 5 (RRP5), PRESEQUENCE PROTEASE 1 (PREP1) AND BRASSINOSTEROID-SIGNALING 

KINASE 2 (BSK2), all of which are known to play roles in female reproductive development. 
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Chapter 1: Introduction 

 

The primary objective of life on earth is to survive and reproduce. This ensures the 

persistence and propagation of the species, and to this end, life forms on earth have evolved a 

variety of mechanisms to ensure that organisms are reproduced faithfully and the genetic 

information is transmitted accurately from one generation to the next. Variation within a species 

is created and maintained by the process of sexual reproduction with haploid gametes being 

formed from diploid parents. Utilizing this mode of reproduction required the creation and 

proper development of distinct sex types- with division of labor and roles played by the 2 sexes. 

In animals, the general trend is for the ‘female’ of the species to bear the next generation and 

nurture it till birth, while the ‘male’ provides half of the genetic information in the form of the 

male gamete. In plants, there is a similar pattern of reproduction with males and females playing 

respective roles in the persistence of the species. However, as with any rule, there are exceptions 

as well. Hermaphrodites (male and female roles in the same individual) exist in both plants and 

animals, along with other alternate modes of reproduction. 

The reproductive roles played by the male and female counterparts require the presence 

of specialized organs to carry out the processes of gamete formation, union of the gametes and 

subsequent protection and nurturing of the young ones. In higher plants that produce flowers 

(angiosperms), these specialized organs are contained within the highly modified structures of 

the flowers. The male organs (androecium) and the female organs (gynoecium) each have their 

own specific developmental programs to ensure the success of reproduction. The gynoecium is 
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likely the biggest factor in the tremendous success of angiosperms over their 160 million year 

history, as the source of the next generation, as well as the physical structure providing 

protection and nutrition for the progeny. The gynoecia are also the source of many different 

types of food for humans- fruits, nuts, beans, and cereals, enabling the sustenance of human life 

over the ages. The incredible diversity of the angiosperms, with more than 250,000 extant species 

also reflects a similar level of diversity in shape, size, and structure of the gynoecia, along with 

the existence of variations in the sex types of the plants and flowers themselves. 

30 years ago, research into the developmental genetics of flowers helped in elucidating 

the first few genes involved in this process. Intense research in this area over the years, has 

helped in developing and fine tuning the ABCE model. This model postulated the combinatorial 

functions of 4 classes of genes (Coen & Meyerowitz 1991). Except for the A class gene APETALA2 

(AP2), all other members of these genes classes code for MADS-domain transcription factors. The 

partially redundant class E genes (SEPALLATA genes) function as higher-order functionally-

redundant complexes with the A, B and C class genes to identity of floral organs (Pelaz et al. 2000; 

Zahn et al. 2005). The B and C class of genes, namely APETALLA3 (AP3), PISTILLATA (PI), and 

AGAMOUS (AG), work with SEPALLATA genes to specify the anthers and carpels respectively. The 

C class gene AGAMOUS (AG), specifies carpel identity and floral determinacy. It also has cadastral 

functions that helps to restrict its expression domain (by action of AP2), and is regulated by a co-

repressor complex of LEUNIG (LUG) and SEUSS (SEU) (ÓMaoiléidigh et al. 2013; Ó’Maoiléidigh et 

al. 2014). HUA and HUA ENHANCER (HEN) functioning in RNA metabolism, also functions in post-

transcriptional regulation of AG (Chen & Meyerowitz 1999; Cheng & Chen 2004).  
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The ABCE model elegantly describes initiation and development of floral organs across 

species. However, it doesn’t explain the occurrence of unisexual flowers on individuals of the 

same species. The model also does not explain the various defects in carpel development as seen 

in yucca, pinoid and pinformed mutants ( Ellis et al. 2005; Cheng et al. 2006; Cheng & Zhao 2007; 

Cheng et al. 2008). The past 3 decades of intense research has uncovered a host of other genes 

that interact both directly and indirectly, with the ABCE genes in a spatial-temporal manner. 

These genes cover every aspect of development, starting from perception of the flowering signal, 

the initiation of the floral primordia, to the final stages of flower maturation (Krizek & Fletcher 

2005). These studies also revealed the intricate involvement of plant hormones in the 

developmental processes, specifically of the female organs. YUCCA1, YUCCA4, PIN, PINOID (auxin 

hormone biosynthesis and response pathways) (Youfa Cheng et al. 2006; Cheng et al. 2007; Xing 

et al. 2013; Bennett et al. 1995; Benjamins et al. 2001; Furutani et al. 2004; Christensen et al. 

2000; Lampugnani et al. 2013b), ACC synthase (ethylene biosynthesis pathway)(De Martinis & 

Mariani 1999; Boualem et al. 2008; Boualem et al. 2009; Sherif et al. 2009) are some of the well 

characterized hormone related genes that play roles in the female organ developmental 

processes. In addition to these, some other non-hormone genes such as COP1-interacting 

protein-related (Wei & Deng 2003; Stewart et al. 2016) have been identified, while some of the 

genes with unknown functions include ribosomal proteins (L39), Leucine-rich-repeat 

transmembrane proteins, zinc finger proteins, AP2/B3-like transcription factor family protein 

(Krogan et al. 2012; Zik & Irish 2003). 

From an evolutionary and ontogenic perspective, flowers are highly modified leaves, 

containing complex organs that have been derived from leaves. Reproductive organs 
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(androecium and gynoecium) consist of the innermost whorls of flowers. The gynoecium, or 

fused carpels, contains the ovules that develop into seeds upon fertilization and the androecium, 

or stamens, produce the pollen that fertilize the ovules. The carpel or gynoecia itself develops 

into the ‘fruit’, and is immense economic value. The widely accepted model of carpel 

development is thought to represent modified leaves or sporophylls. The resemblance of carpels 

to leaf-like lateral organs can be seen in the homology between carpels and leaves of certain 

angiosperm species such as the “mother of thousands” (Kalanchoe daigremontiana). Similar to 

leaves, carpels have an adaxial-abaxial pattern and demonstrate directional auxin transport and 

localized auxin synthesis. Auxin utilizes a pattern of ‘auxin-maxima’ and ‘auxin-minima’ to initiate 

cell wall loosening and organ primordia initiation. Defects in auxin transport and synthesis has 

been able to account for the defects in carpel development mentioned before. The apical-basal 

morphogenesis and development of gynoecium in the model species Arabidopsis was previously 

explained by Nemhauser et al. in 2000. This model relied on an auxin gradient to determine the 

apical-basal patterning and proper organ development. Although it is an attractive model, the 

auxin gradient proposed has been found to be inconsistent with later data (Benkova et al. 2003; 

Sorefan et al. 2009; Girin et al. 2011; Larsson et al. 2013; Grieneisen et al. 2013). The auxin model 

has been now revised to address the shortcomings of the Nemhauser Model and reflect the 

similarities with leaf development. The current model is the “early action model”, and is based 

on three main observations: timing of apical-basal patterning, the established evolutionary 

homology between carpels and leaves, and the emerging roles of auxin in transport, signaling 

and synthesis in lateral organ and leaf development (Hawkins & Liu 2014). This model emphasizes 

the early importance of auxin in establishment of the adaxial-abaxial boundaries and the defects 
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arising from the auxin disrupting mutation as well as mutations in genes that are functionally 

downstream of auxin function. 

The efficacy of the early action model is in describing the proper patterning as a result of 

abaxial-adaxial boundary establishment through counter-oriented auxin flows, and in explaining 

the phenotypes observed in YUCCA and PIN and PID mutants. To some extent, it also goes to 

explain the occurrence of repeating patterns and simplified blueprint for lateral organ 

development. Combined with the ABCE model, this leaves room for the identification of an 

increasing number of genes in regulatory hierarchies that function at both transcriptional and 

post-transcriptional levels controlling specific aspects of developments. 

To address these questions, we designed our study from two perspectives. We generated and 

analyzed the shoot apical meristem (SAM) transcriptome of males and females of the dioecious 

papaya variety AU9, to look for differences in gene expression profiles between the sexes. 

Simultaneously, we generated an Ethyl-methyl sulfonate (EMS) mutagenized population of 

Arabidopsis mutants and screened for female-sterile phenotypes to map genomic locations and 

identify candidate genes necessary for carpel development. 

Papaya is an important economic crop of the tropics. It is nutritious and has medicinal 

values. Carica papaya variety AU9 is uniquely suited to our study because of many reasons. It is 

a dioecious variety, has nascent sex chromosomes, and a relatively small genome (2n= 18; 372 

Megabases). The lesser number of whole genome duplications in papaya compared to 

Arabidopsis is also beneficial in studying the evolution of genetic control of floral organ 

development. Papaya and Arabidopsis belong to the order Brassicales and they diverged about 
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72 million years ago (Wikström et al. 2001). This facilitates comparative structural and 

evolutionary genomics research in both species, with the exception of copy number variation, 

and therefore, higher likelihood of genetic redundancy in Arabidopsis. We therefore performed 

RNA Sequencing to explore the differences in the expression patterns of genes in the shoot apical 

meristem tissue between the male and female sex types at different time points prior to 

flowering. The early stages were selected to identify genes involved in sex determination and 

differentiation of the sex types. 

We also generated an EMS mutagenized population of the model plant species 

Arabidopsis. We screened the mutants for female sterile phenotypes and defects in carpel 

development. Arabidopsis and papaya being close relatives, we designed this study to map 

genomic regions and gene loci involved in the female sterile Arabidopsis mutants to the genes 

identified to be differentially expressed in the papaya female SAM tissue. The identified mutants 

defective in female organ development were used to generate mutant mapping populations 

bulked into mutant-like and wild type-like groups. Genomic DNA was extracted from these 

groups and sequenced to obtain both sequence data and allele frequency data, which was then 

used to genomic locations and gene identities of the candidate genes. 

As discussed previously, the ABCE model is not able to fully explain the occurrence of 

unisexuality in angiosperms. Unisexuality has also evolved multiple times and independently 

throughout evolutionary history. This has occurred in different ancestral lineages and utilized 

different mechanisms. The current model of sex determination postulates the hermaphrodite 

state to be the ancestral state, and unisexual flowers evolve from this state through the selective 

abortion of either one of the sexual organs, by either gain or loss of function mutation (Ming et 
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al. 2011). These mutations could be in any of the immense number of genes that control the 

events at various developmental stage (Wellmer et al. 2004; Zhang et al. 2005). Auxin-based 

models, by themselves, also cannot explain the different sex types in the plant kingdom. 

Combining the ABCE model and the auxin based models to fine tune our understanding of the 

activity and regulation of genes in the development process. Linking the regulatory activities at 

the various levels of floral organ pattering regulatory hierarchy with the downstream events that 

lead to terminal differentiation of tissue types will enhance our understanding of these 

processes. It will also help discern the intricacies of the interactions between these models that 

lead to the proper sculpting of the different floral organs.  Integrating the various pathways and 

components that specify and maintain floral organ identity, pattering, number, size shape and 

symmetry into a comprehensive system will be an ambitious task, and can be achieved though 

further and more extensive studies in this area. 
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Chapter 2: Differentially expressed genes prior to flowering in male and female 

papaya 

 

Abstract 

Papaya is a major tropical fruit crop originated in Central America and hermaphrodite 

papaya was selected during the domestication process. All wild papaya is dioecious. Papaya 

variety AU9 is an improved but not released breeding variety, and it has male and female sex 

types controlled by a pair of nascent sex chromosomes. It is an ideal system to explore the 

underlying genetic basis of floral sex organ development. Here we performed differential gene 

expression analysis of the transcriptomes and compared the relative expression patterns 

between the shoot apical meristem of male and female plants at 2- and 5-week before flowering. 

In total 17,868 transcripts were identified, out of which 1187 were differentially expressed genes 

(DEGs) between the two sex types. These DEGs include 58 transcription factor (TF) coding genes, 

22 plant hormone related genes (HRG), 21 transporter proteins (TP), 35 chromatin related 

proteins and 62 kinase coding genes. DEGs showing increase in expression in Female tissue 2 

weeks before flowering (2F) vs Male tissue 2 weeks before flowering (2M) and 2F vs Female tissue 

5 weeks before flowering (5F) should be involved in female specification, whereas genes showing 

increase in 2M vs 2F and 2M vs 5M should be involved in male fate specification. DEGs associated 

with auxin and gibberellin mostly belong to the hormone response and transport processes, most 

likely involved in organ fate and sex specificity. A large portion of the upregulated genes are with 

‘unknown’ and ‘putative’ function, indicating potential novel genes involved in sex determination 
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and differentiation that are not present in hermaphroditic model plant species. Our study 

provides a foundation for functional analyses of these genes with unknown functions and will 

improve our understanding of the developmental programs controlling the specification of male 

and female sex organs. 

 

Introduction 

The current global scenario with regards to the rapid increase in human population brings 

unique problems to our needs as a society. One of the major challenges is food security. To be 

able to support the growing human population, food production must increase significantly by 

the year 2050, to avoid a looming crisis and potentially catastrophic consequences, including the 

rising levels of CO2 and greenhouse gases leading to a changing climate. Except in the developed 

countries, human society has been primarily agriculture based and all our food finds its basic 

source in plants, be it as livestock feed, processed foods, or cereal and other food crops. 

However, the amount of arable land suitable for agriculture is limited. Therefore, there is a 

growing need to focus on, and devise sustainable practices and approaches towards the optimal 

utilization of both land as well as the plant resources available to us. 

Most of the produce that we consume as food, is in the form of cereal, fruit, vegetables 

and tubers. Botanically speaking, the first 2 fall into the technical category of ‘fruit’, made by the 

female reproductive organs of a plant. In plant species that display sexual dimorphism, the sex 

ratio is usually 1:1. Typically, this translates to yield losses as well as losses in terms of time, 
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farming area and resources. It would, therefore, be of tremendous utility if it was possible to re-

engineer dioecious crop plants to true breeding hermaphrodites. 

In addition to having an important applied direction, the study of the dynamics of floral 

organ development is also a fundamental area of research that will advance our understanding 

of the complex nature of sex determination and sexual polymorphisms observed in the plant 

kingdom. Hermaphroditism is the norm in the plant kingdom, with only 6% of angiosperms having 

dimorphic sexual nature. Papaya (Carica papaya L.) is a major tropical fruit crop with outstanding 

nutritional and medicinal values. It also has certain characteristics such as small genome (2n = 

18, 372 Mb), incipient sex chromosome, and both dioecious and trioecious sex types that make 

genomic and genetic studies relatively easy and cost effective (Arumuganathan & Earle 1991), 

(Ming et al. 2008), (Wang et al. 2012). The model plant species Arabidopsis is considered to have 

perfect or bisexual flowers while papaya exhibits both tri and dimorphic characters. This makes 

the study of papaya shoot apical meristem in parallel with that of Arabidopsis especially 

interesting as contrasting features in terms of expression and regulation patterns of genes will 

expectedly stand out and will be relatively easy to dissect. Arabidopsis, with its extensive 

knowledgebase of gene families and functional descriptions and characterizations, serves as the 

ideal contrast to that of papaya, where the evolution of plant sex chromosomes is nascent. 

The lack of a recent whole genome duplication in papaya also helps to study angiosperm 

genome evolution and, in particular, the evolution and genetic control of floral organ 

development (Gschwend et al. 2012). Papaya and Arabidopsis belong to the order Brassicales and 

they diverged about 72 million years ago (Wikström et al. 2001). This facilitates comparative 

structural and evolutionary genomics research in both species, with the exception of copy 
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number variation, and therefore, higher likelihood of genetic redundancy in Arabidopsis. These 

characteristics make papaya an excellent model for tropical tree fruit crops while drawing 

comparisons and parallels with Arabidopsis. 

Papaya has a short juvenile phase and most cultivars flower in 3-4 months.  The objective 

of this project is to identify genes involved in sex determination and differentiation, which occur 

before flowers become visible. We designed this study to explore the differences in gene 

expression and patterns at 5 and 2 weeks before flowering between the 2 sex types in the shoot 

apical meristem (SAM) of the dioecious papaya variety AU9. 

 

Plant Material 

Carica papaya variety AU9 plants were grown in Kunia Station at Hawaii Agriculture 

Research Center on Oahu, Hawaii and two sex types of shoot apical meristem (SAM) were 

collected at two developmental stages (2 and 5 weeks before flowering). The SAM samples were 

then frozen in liquid nitrogen immediately and stored at -80°C. 

 

RNA extraction and library construction 

SAM tissues were collected at the two developmental stages, with two biological 

replications for each sex type. RNA was extracted from SAM tissues using TRIzol Reagent (Cat. 

No. 15596-026) and genomic DNA was removed by Ambion DNA-freeTM DNA removal kit (Life 

technologies, #AM1906). The DNase-treated RNA was then subjected to Illumina TruSeq 
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Stranded mRNA Sample Preparation Kit LT v2 (Illumina, #RS-122-9004DOC) for library 

construction according to manufacturer’s instruction. The multiplexed libraries were pooled and 

sequenced in two lanes of 150nt paired-end sequencing using HiSeq 2000. Quality control was 

performed using fastQC to remove adapters and low quality sequences, allowing retention of 

high quality reads of approximately 100bp read lengths, averaging 37,853,248 reads per library. 

 

Sequence read alignment and differential expression analysis 

The trimmed sequence reads were aligned to Carica papaya gene model (based on the 

draft genome of the ‘SunUp’ variety) using the splice junction mapping program Tophat version 

2.1.1 default settings (Trapnell et al. 2012). The alignment file was then subjected to Cufflinks 

Tool Suite version 2.2.0 (Trapnell et al. 2014) to assemble the transcriptome, and perform 

differential expression analysis between the samples according to best practices (a 

nonparametric, annotation-guided approach to estimate the means and variances of transcript 

FPKM values under different conditions, using Student's t-tests to identify differentially 

expressed transcripts). In this study, genes with more than 3-fold changes (i.e. log2 fold change 

≥ 1.58), p value ≤ 0.05, and false discovery rate (FDR) ≤ 0.05 are classified as differentially 

expressed genes. For each developmental stage, two pairwise tests were carried out: i) female 

versus male (2F vs 2M and 5F vs 5M); ii) female versus female (2F vs 5F); and iii) male versus male 

(2M vs 5M). The first two conditions are aimed at exploring genes regulated in both female and 

male SAM at similar stages of development, while the latter two conditions are aimed at genes 

involved in transition from 5 weeks to 2 weeks before flowering in both female and male shoot 
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apical meristem. Transcripts of interest were then functionally annotated using the Blast2GO 

software package version 4.0 (Conesa & Stefan 2012). 

 

Functional annotation 

Sequence-similarity Blast searches of all papaya predicted protein sequences were 

conducted with a typical cut-off E-value of 10−3 against several publicly available protein 

databases: The National Center for Biotechnology Information (NCBI) non-redundant (Nr) protein 

database, Clusters of Orthologous Groups (COGs), and Kyoto Encyclopedia of Genes and 

Genomes (KEGG). Gene Ontology (GO) terms describing biological processes, molecular functions 

and cellular components were assigned to the predicted genes. Biological pathway enrichment 

analysis was done based on known confirmed and putative pathways according to the KEGG 

database against all NR database hits and confirmed by matches with the Arabidopsis biological 

proteins and pathways. 

 

Results 

Differentially expressed genes between two sex types of papaya flowers 

Shoot apical meristem tissue from two sex types (female and male) at two developmental 

stages (2 weeks and 5 weeks before flowering) were sequenced with two biological replicates 

per samples. In total, 151,412,990 paired end 100nt reads were obtained for all 4x2 samples with 

an average of 37,853,248 reads.  
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During late floral development of meristem tissue (2 weeks before flowering), gene expression 

difference is the least between female and male SAM (2F vs 2M) with 372 genes expressed 

differently, compared to early stages (5F vs 5M) (Fig. 1.1 and 1.2) with 606 genes expressed 

differentially. Common differentially expressed genes showed a reversal of expression patterns 

between the two comparisons, in other words, over-represented genes in one comparison were 

underrepresented in the other. Similarly, there was a trend of expression pattern reversal 

between male and female SAM tissue in the transition from early stage to late stage (2F vs 5F 

and 2M vs 5M) with 408 and 724 genes over-represented respectively. Interestingly, a 

significantly high number of genes were up-regulated in the female transition compared to the 

male transition where a large number of genes were down-regulated. It is important to note here 

that the trend of expression reversal was observed in the same gene loci across all sample 

comparisons (Fig. 1.1). Many gene loci that qualified under the selection category of ‘differential 

expression’ in the above comparisons were expressed commonly across at least 2 sample types. 

For our purpose, we further filtered our list of gene loci by selecting for loci that are uniquely 

expressed in only one comparison (Fig. 1.2). 

 

Functional annotation, classification and KEGG mapping 

Sequence-similarity Blast searches of all papaya predicted protein sequences were 

conducted with a typical cut-off E-value of 10−3 against several publicly available protein 

databases: The National Center for Biotechnology Information (NCBI) non-redundant (Nr) protein 

database, Clusters of Orthologous Groups (COGs), and Kyoto Encyclopedia of Genes and 
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Genomes (KEGG). Gene Ontology (GO) terms describing biological processes, molecular functions 

and cellular components were assigned to the predicted genes by Blast2GO program (Conesa & 

Stefan 2012) based on the NR blastp output. 

In the comparisons between sex type SAM transcriptomes at 2 weeks before flowering 

stage, 23 gene loci (out of 73 loci) were upregulated in the female sample compared to the male 

sample (Fig. 1.3). Upregulated gene loci include transcription factor TRY, senescence specific 

cysteine protease SAG39, respiratory burst oxidase homolog D-like, zinc finger 4-like, glutathione-

s-transferase F13, epidermal patterning factor 2 etc. Out of these, epidermal patterning factor 2 

and respiratory burst oxidase homolog D-like show the highest difference in fold change (log2 

fold change of 3.1 each). In the comparison between sex type SAM transcriptome at 5 weeks 

before flowering, 51 gene loci (out of 152 loci) were upregulated in the female sample compared 

to the male sample (Fig. 1.3). Upregulated gene loci include sacsin, midasin, dnaJ homolog 

subfamily C GRV2-like isoform X1, auxin transport BIG, calcium-dependent lipid binding family 

isoform 1 and isoform 3, BEACH domain containing, Chromatin remodeling and maintenance, 

signaling pathways etc. It is interesting to note that the over represented gene loci in the 5F 

samples mostly represent gene loci that have been implicated in the maintenance of stem cell 

status of the developing meristem, while those in the 2F samples mostly hint towards 

differentiation pathways. However, some of the gene loci showing the highest fold changes are 

either hypothetical proteins or are without a match to the NCBI database. This could be the 

indication of novel transcript discovery and indicative of hitherto uncharacterized candidate 

genes responsible for female organ development.  
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In the comparisons between the two time points within the same sex type (i.e. between 2F and 

5F), 9 gene loci (out of 86) were upregulated in the 2F sample compared to the 5F sample (Fig. 

1.3). Upregulated gene loci include Ribosomal RNA small subunit methyltransferase E, Ras 

GTPase-activating IQGAP3, heptahelical transmembrane 4-like, neutral ceramidase-like, carbonic 

anhydrase family etc. Most notable is that the gene loci displaying the highest difference in fold 

change (log2fold change of 4), was found to have no match to the NCBI database. In the 

comparison between the 2 time points within the same sex type (2M vs 5M) 89 gene loci (out of 

231 loci) were upregulated in the 2M sample compared to the 5M sample (Fig. 1.3). These include 

RING-H2 finger ATL74-like, sacsin, serine threonine- kinase TOR-like, auxin transport BIG, Tudor 

PWWP MBT superfamily isoform 1, calcium and calcium calmodulin-dependent serine threonine- 

kinase, serine threonine- kinase ATM, midasin isoform X1, sacsin, endoribonuclease Dicer 

homolog 1. In this case too, one of the loci with the highest fold change in expression is a Cysteine 

Histidine-rich C1 domain family protein (log2FC=3.7 in 2Fv2M) while the other 

(evm.TU.supercontig_2050.1:7-234; log2FC=4.6 in 2Fv5M), has no blast hit but shows partial hits 

to AT4G24210.1 (F-box family protein) and AT5G42780.1 (homeobox protein 27), when searched 

against the Arabidopsis database (TAIR10). A list of the other loci with high fold changes and their 

matches in the TAIR10 database is shown in Table 1.1.  

The SAM in plants can be thought of as having 2 major roles. Maintenance of stem cell 

for the growth and proliferation of the plant, as well as differentiation of cells on the periphery, 

towards the fate of organ development. The transcriptome of the SAM should therefore be 

representative of biological pathways that are involved in these biological processes. Consistent 

with this notion, we observed an overrepresentation of both DNA repair, chromatin 



17 
 

maintenance, DNA replication and transcription pathways- geared towards maintaining the stem 

cell niche, as well as the overrepresentation of deterministic pathways such as hormone 

signaling, hormone biosynthesis, biosynthesis of secondary metabolites that form the backbone 

of phytohormones, ubiquitin mediated protein degradation, lipid biosynthesis and signaling 

pathways in our selected list of 1187 DEGs representing the global functional transcriptome.  

Global functional analysis of the DEGs was performed using the software Blast2GO, which 

gave us a total of 842 proteins which had at least one associated GO term. The assigned GO terms 

belonged to three main classes: molecular function, biological process and cellular component. 

The sequence distribution in the ‘molecular function’ was split into 43 categories, out of which, 

‘ATP binding’ (118), ‘anion binding’ (93), ‘protein binding’ (92), and ‘zinc-ion binding’ (81) were 

the most common (Fig. 1.6). Apart from these broadly general categories, ‘signal transducer 

activity’ (59), ‘transcription factor activity’ (58), DNA repair and chromatin maintenance (41), and 

‘protein serine/threonine kinase activity’ (39) are the other highly represented categories (Fig. 

1.6).  

In the Biological process class, ‘Regulation of biological process’ (278), ‘response to 

stimulus and signaling’ (256), ‘Growth and reproduction’ (94), and ‘developmental process’ (93) 

are predominant (Fig. 1.7). The ‘cellular component’ class ‘Intracellular component’, ‘membrane 

component’ and ‘protein complex’ comprised the majority of the sequence distribution. We then 

applied GO term enrichment analysis of the 1187 DEGs to understand the functional enrichment 

of the DEGs, using the Arabidopsis orthologs and comparing against the complete known 

database of the Arabidopsis functional ontology using PANTHER and GO Consortium (Thomas et 

al. 2003; Ashburner et al. 2000). A total of 144 GO terms were enriched in ‘biological process’, 
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‘molecular function’ and ‘cellular component’ (Table 1.2). Apart from the expected ‘metabolic’ 

and ‘catalytic’ general categories, the most significantly overrepresented terms were ‘cell 

differentiation’, ‘cytokinesis’, ‘response to endogenous stimulus’ within ‘biological process’ 

(Table 1.2); ‘voltage-gated potassium channel activity’, kinase activator activity’, ‘calmodulin 

binding’ within ‘molecular function’; and, ‘cell part’, ‘intracellular’ and ‘organelle’ in the ‘cellular 

components’. The enriched categories are consistent with each other, as well as with the 

expected role played by the SAM in stem cell propagation and differentiation. 

We performed analysis of biochemical pathways associated with the DEGs based on the 

orthology shared with Arabidopsis genes according to the KEGG database. A total of 35 pathways, 

grouped into 3 categories- metabolism, genetic information processing and signaling, were 

upregulated (Table 1.3). Among the metabolic pathways, phenylpropanoid biosynthesis 

(ko00940), diterpenoid biosynthesis (ko00904), terpenoid backbone biosynthesis (ko00900), 

sesquiterpenoid and triterpenoid biosynthesis (ko0009) and metabolism of xenobiotics by 

cytochrome P450 (ko00982) are the most biologically significant. Given the role of the shoot 

apical meristem, upregulation of genetic information processing pathways consisting of base 

excision repair (ko03410), nucleotide excision repair (ko03420), and mismatch repair (ko03440) 

are also consistent with the biological processes expected to be upregulated for the maintenance 

of the stem cell niche of the SAM. Signaling pathways that were upregulated globally were MAPK 

signaling (ko04071), mTOR signaling (ko04150), hormone signal transduction (ko04075) and 

sphingolipid signaling (ko04071). 
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DEGs related to transcription factors, plant hormones, Chromatin -related, transporters and 

kinases 

We categorized the DEGs according to their functional classification and were able to 

identify 58 transcription factor (TF) coding genes (Table 1.4), 22 plant hormone related genes 

(HRG) (Table 1.5), 21 transporter proteins (TP) (Table 1.7), 35 chromatin related proteins Table 

1.6) and 62 kinase coding genes. 

Heat maps constructed from the expression data of these DEGs show interesting dynamic 

patterns of expression (Fig: 1.1 and 1.2). Hierarchical clusters of these DEG classes contain genes 

that show a decrease in expression from 5W to 2W regardless of sex type and make a strong 

suggestion that they should be involved in stem cell maintenance. Genes that show increase from 

5W to 2W regardless of sex type, therefore, should be involved in fate determination and 

differentiation. Similarly, DEGs showing increase in expression in 2F vs 2M and 2F vs 5F should 

be involved in female specification, whereas genes showing increase in 2M vs 2F and 2M vs 5M 

should be involved in male fate specification. 

The HRGs showing these patterns of dynamic expression difference are related to ABA, 

Auxins, cytokinins, gibberellin and jasmonic acid pathways. DEGs associated with auxins mostly 

belong to the hormone response and transport processes, rather than being involved in the 

biosynthesis of the hormone (Table 1.5). This gives us an indication that appropriate regulation 

of auxin response and transport of the hormone biomolecule are more important for organ fate 

and sex specificity prior to the development of the floral organs. This is supported by the evidence 

of auxin playing a role in loosening of cell wall at locations of maximal accumulation, leading to 
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the formation of organ primordia (Okada et al. 1991; Friml et al. 2003; Lampugnani et al. 2013b). 

A similar trend is shown by the DEGs associated with the hormone gibberellin. This trend 

however, does not follow when it comes to jasmonic acid and ABA. In case of both these 

hormones, the DEGs are involved in the biosynthesis pathways of these hormones. 

Chromatin remodeling, replication, repair and assembly are critical to proper 

maintenance of stem cell niche in the growing SAM. Differentiation pathways are mostly 

observed in the peripheral zones of the SAM, where the development of the organs are guided 

by formation of zones of auxin minima and maxima, in concert with a gradient of cytokinin 

localization. The identification of the specific DEGs involved in chromatin maintenance and 

hormone localization are congruent with previous studies in similar areas (Mattsson et al. 2003; 

Mina & Hitoshi 2009; Lampugnani et al. 2013b) 

 

Putative and uncharacterized DEGs 

In our study we have also been able to identify 56 gene loci that are hitherto 

uncharacterized and 186 gene loci that have no matches with multiple publicly available 

databases. This suggests that organ development in flowers involves many gene loci that have 

not yet been identified or characterized. The current study therefore lays down the ground work 

for future explorations into the function and role of these uncharacterized gene loci in the 

developmental dynamics of sex specific organs in dioecious species of plants. Future work would 

involve protein motif identification and specific gene perturbation experiments to study the exact 

effect of these loci and could unravel a host of regulatory elements in terms of transcriptional 
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gene regulation, post transcriptional and translational modulations of gene as well as protein-

protein interactions that shape the developmental and morphological landscape of floral organ 

development downstream and upstream of the canonical ABCE model of flower development.  

 

Discussion 

The primary objective of this study was to identify genome wide changes in gene 

expression between the two sex types of papaya at 2 weeks and 5 weeks prior to flowering. Here 

we carried out paired end sequencing of RNA-Seq libraries prepared from mRNA isolated from 

the shoot apical meristem of the dioecious papaya variety AU9 grown under the same conditions 

at Hawaii Agricultural Research Center Kunia station. High throughput sequencing generated 

more than 151 million filtered reads with nearly 80% of the total reads being uniquely mapped 

to the papaya reference genome. The resulting transcriptome of unique mapped reads were then 

used to perform the downstream analysis of normalized gene expression (FPKM), gene 

ontologies, pathways and other functional categories.  

Our results revealed changes in the expression profiles of multiple genes involved in 

hormone signaling pathways and regulatory networks, chromatin maintenance and DNA repair 

pathways, transcription factors and kinase mediated processes. In addition to these, there were 

also a significant portion of the DEGs with putative and predicted functions indicating that floral 

development after the initiation of primordia involves many uncharacterized players. As 

expected, these uncharacterized gene loci are also in agreement with differential expression 

levels in specific tissue types. Some of these loci, such as evm.TU.supercontig_25.161_179-378 
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(PREDICTED: uncharacterized protein LOC101291165 isoform X1) display 2 fold increase in 

expression while transitioning from 5 weeks to 2 weeks before flowering in the female sample 

and the opposing pattern of 3 fold decrease in expression in going from 5 weeks to 2 weeks in 

the male sample (supplemental data). 

Plant hormones play a vital role in flower sexuality and fertility. Some are required for the 

proper development and functioning of both male and female organs, while others play specific 

roles in the male or female organs. Auxins are essential in the development of both male and 

female organs (Okada et al. 1991), (Sessions & Zambryski 1995), (Y Cheng et al. 2006), (Wu et al. 

2006), (Signaling et al. 2013). In Arabidopsis, auxin is required for the formation of all floral 

organs, acting by promoting cell division and growth via creation of zones of auxin maxima and 

minima (Lampugnani et al. 2013a), (Li et al. 2016). Disruption of genes associated with auxin 

signaling, biosynthesis and transport results in flowers with aberrant organs (Okada et al. 1991), 

(Nagpal et al. 2005), (Cecchetti et al. 2008). The arf6 arf8 double mutant and mutants with 

miR167 resistant versions of ARF6 and ARF8 display defects such as shortened stamen, gynoecia, 

indehiscent anthers, abnormal ovules and short petals (Nagpal et al. 2005), (Wu et al. 2006). 

Abnormal female fertility is also observed in the Arabidopsis floral organs in carpel (foc) mutant, 

caused by the increased expression of ARF 10, 16 and 17 via lack of its negative regulator miR160 

(Liu et al. 2010). The auxin biosynthesis YUCCA genes in Arabidopsis result in non-functional 

reproductive organs in the yuc1yuc4 double mutant and non-elongating stamens in the yuc1yuc6 

double mutant (Y Cheng et al. 2006). The auxin transport genes such as PIN-FORMED (PIN) also 

result in various phenotypes in the range of pin allelic mutants. Here we see a 3-fold increase in 

expression of auxin transport BIG in the female tissue between 5 and 2 weeks before flowering, 
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while the opposite pattern is seen in the male sample. Similar expression patterns are observed 

in auxillin 1. On the other hand, auxin-responsive SAUR32-like and auxin-responsive SAUR68-like 

genes display a decrease in expression in the transition from 5 week to 2 week time points in 

both male and female tissues Fig. 1.10 and 1.11). 

Jasmonic acid is known to promote male but suppress female development in Arabidopsis 

(Stintzi & Browse 2000), (Mandaokar et al. 2006) and this trend follows in maize as well. 

Jasmonate biosynthesis is crucial for proper stamen elongation and opr3 mutants are defective 

in conversion of linolenic acid to JA. However, in papaya, there seems to be no conclusive 

evidence towards female suppression by the above-mentioned mechanism. In our study, gene 

loci involved in the jasmonate pathway exhibit similar patterns of increased expression in the 2-

week tissue compared to 5-week tissue in both sex types. However, it should be noted that the 

female tissue has a 4-fold increase while the male tissue only displays a 2-fold increase in 

expression (Fig. 1.10 and 1.11). This seems to be similar to tomato where JA is also important for 

maintaining female fertility (Li et al. 2004), indicating a potential divergence in the roles played 

by jasmonic acid. 

The role played by gibberellin in floral organ development is of contradictory nature. In 

Arabidopsis, GA is critical for proper male development, however in maize, it induces arrest of 

stamen development while preventing carpel abortion (Li et al. 2004), (Hu et al. 2008), (Fujioka 

et al. 1988), (Dellaporta & Calderon-urrea 1994). In Arabidopsis, the ga3ox1 ga3ox3 double 

mutant defective in GA biosynthesis exhibits high frequency of sterility on the lower siliques, with 

varying degree of fertility restoration of siliques higher up on the inflorescence around the 20th 

inflorescence. This is caused by the abnormal dehiscence of anthers and shortened filaments (Hu 
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et al. 2008). In maize however, GA deficient mutants fail to suppress or abort male organs on the 

female ears (Fujioka et al. 1988), (Dellaporta & Calderon-urrea 1994). This GA sensitivity in 

opposing terms could be due to the inherent differences in monocots and dicots. However, in 

papaya, gibberellin is not known to be an effector in the development of reproductive organs or 

sex expression. GA does play roles in enhancing secondary sexual characters such as an increase 

in peduncle length, number of flowers, and increased branching (Han et al. 2014). This is 

consistent with the lack of change in expression patterns in GA pathway genes in our RNA-Seq 

dataset (Fig. 1.10 and 1.11). 

Out of the 58 TFs identified as having significantly different expression patterns (Table 

1.4), a significant portion (16) exhibit expression changes in the transition from 5 week tissue to 

2 week tissue in both male and female sex types. These TFs include calmodulin binding 

transcription activators, ERRF114, myb A, NAC domain containing TFs, T-box transcription factor 

isoform 1, TATA-binding associated factor BTAF1 isoform X1, transcription factor jumonji domain, 

transcription factor TRY, transcription factor UPBEAT1, truncated transcription factor 

CAULIFLOWER A-like, and translational activator GCN1 (Fig. 1.8 and 1.9). In terms of our study, 

genes that exhibit a reduction in expression levels during the transition from 5 weeks to 2 weeks 

regardless of the tissue type, indicate their involvement in the maintenance of the 

undifferentiated stem cell niche. Following the same argument, genes displaying an increase in 

expression from 5 weeks to 2 week time points are suggestive of their involvement in 

deterministic pathways and processes leading to the differentiation of stem cells to either male 

or female cell types and therefore tissue formation of these sex types. Within this smaller group 

of genes, some show an increase only in one of the sex types. Some of the TFs we found to show 
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this pattern of increasing expression are CCR4-NOT transcription complex subunit 1-like (2F), NAC 

domain containing 35 like (2M), Probable WRKY transcription factor 70 isoform X2 (2M), 

transcription repressor OFP6-like (2M), transforming growth factor beta receptor associated 1 

(2M) (Fig. 1.8 and 1.9). Overall, the number of TFs that have their expression modulated in only 

one sex type are in the male subset rather than the female subset. This agrees with previous 

studies which demonstrate that a larger number of gene loci are involved in the processes leading 

to the proper development of male sexual organs, compared to female development programs. 

In addition to the TFs, most of the gene loci identified to be involved in chromatin 

maintenance and DNA repair are overrepresented in the 5 week samples regardless of sex type 

of the tissue. The only exceptions are DNAJ heat shock N-terminal domain containing, general 

DNA repair, chromatin structure remodeling BSH, and chromatin assembly factor 1 subunit FAS1 

like, that exhibit higher expression values in the 2-week tissue regardless of sex type (Fig. 1.12 

and 1.13). This suggests that these gene loci are involved in chromatin remodeling and repair 

processes, which are critical in ensuring reproductive success.   

Our study identified a large portion of known genes and the processes they are involved 

in various aspects of growth and development. The patterns of expression are consistent with 

previous studies and logical expectations, and provide support to the validity and accuracy of the 

RNA-Seq data. We were also able to identify a significant number of unknown gene loci and gene 

loci with putative and predicted functions. We demonstrated that many biological processes and 

genes involved in them are shared between developmental programs of male and female sex 

organs. Many of the DEGs that were upregulated in one sample compared to the other represent 

hormone pathways, stem cell maintenance pathways, cell differentiation pathways, and cellular 
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signaling pathways. Further study of the unknown gene loci will be required to identify these 

unknown loci and understand their physiological and molecular function in relation to the 

developmental programs of sexual organs. These genes may represent a host of potential targets 

for manipulation to re-engineer dioecious plant species to the ancestral hermaphroditic state, to 

improve our understanding of the intricate and complex gene regulatory networks underlying 

sex specification, and therefore, the evolution of sex chromosomes in land plants. 
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Tables and Figures 

Table 1.1: Manually curated orthologs for 25 gene loci with high degree of expression variance 

 

Locus BLAST hit Accession No. TAIR 10 BLAST hit (Protein DB) 2f fpkm 2m fpkm 5f fpkm 5m fpkm

evm.TU.supercontig_2050.1_7-234
NA AT5G56420.2

F-box/RNI-l ike/FBD-like domains-

containing protein
2.78352 36.4194 70.1816 32.314

evm.TU.supercontig_823.2_14-182 NA AT5G62230.2 ERECTA-like 1 18.4288 96.8251 NA 9.83469

evm.TU.supercontig_107.93_40-163 NA AT5G40010.1 AAA-ATPase 1 582.799 165.28 21.9093 922.202

evm.TU.supercontig_109.10_0-315 NA AT4G15460.1 glycine-rich protein 5.37432 1.44545 NA 4.58014

evm.TU.supercontig_126.23_0-124 NA AT4G33210.1 F-box family protein 510.816 168.821 325.489 916.172

evm.TU.supercontig_14.14_0-157
NA AT1G10640.1

Pectin lyase-l ike superfamily 

protein
978.871 386.224 427.412 1425.85

evm.TU.supercontig_16.102_57-235 NA AT5G64420.1 DNA polymerase V family 95.4006 24.1906 46.2781 129.866

evm.TU.supercontig_17.109_4-291
NA AT5G10370.1

helicase domain-containing 

protein
7.63361 2.61402 4.81939 11.9331

evm.TU.supercontig_2.140_280-540
NA AT2G20580.1

26S proteasome regulatory 

subunit S2
3.33959 4.74931 1.52091 15.7291

evm.TU.supercontig_229.9_4-237 NA AT1G10930.1 DNA helicase (RECQl4A) 14.3714 2.90226 5.28943 13.8696

evm.TU.supercontig_30.69_811-969
NA AT5G61940.1

Ubiquitin carboxyl-terminal 

hydrolase-related protein
38.2854 29.3737 17.8128 123.067

evm.TU.supercontig_44.105_56-182 NA AT2G42790.1 citrate synthase 3 466.335 48.4247 206.922 276.826

evm.TU.supercontig_53.62_38-428
NA AT5G66240.3

Transducin/WD40 repeat-like 

superfamily protein
4.79881 1.70075 1.68574 5.95007

evm.TU.supercontig_58.56_0-149 NA AT5G19700.1 MATE efflux family protein NA 85.0463 90.3973 252.965

evm.TU.supercontig_59.48_29-563
NA AT4G34830.1

Pentatricopeptide repeat (PPR) 

superfamily protein
NA 0.484586 0.512513 2.39222

evm.TU.supercontig_6.344_1-192 NA AT4G39040.2 RNA-binding CRS1 33.086 9.21766 3.11954 28.3273

evm.TU.supercontig_7.223_14-364
NA AT2G42100.1

Actin-like ATPase superfamily 

protein
5.03872 2.43462 0.524374 7.62703

evm.TU.supercontig_74.36_2-330 NA AT2G37020.2 Translin family protein 5.20955 1.04345 NA 3.85557

evm.TU.supercontig_96.4_39-246
NA AT3G61380.1

Phosphatidylinositol  N-

acetyglucosaminlytransferase 

subunit P-related

10.8382 7.17524 2.27645 29.8552

evm.TU.supercontig_107.93_40-163 NA AT3G12720.1 myb domain protein 67 582.799 165.28 21.9093 922.202

evm.TU.supercontig_14.117_61-442
NA AT5G12400.1

DNA binding;zinc ion binding;DNA 

binding
1.74902 1.30187 0.738198 3.9398

evm.TU.supercontig_14.14_0-157
NA AT3G10030.2

aspartate/glutamate/uridylate 

kinase f
978.871 386.224 427.412 1425.85

evm.TU.supercontig_4.87_5-154
NA AT5G38950.1

RmlC-like cupins superfamily 

protein
69.1913 69.7786 25.3172 241.376

evm.TU.supercontig_6.344_1-192
NA AT1G58037.

Cysteine/Histidine-rich C1 domain 

family protein
33.086 9.21766 3.11954 28.3273

evm.TU.supercontig_7.223_14-364 NA AT2G42100.1
Actin-like ATPase superfamily 

protein
5.03872 2.43462 0.524374 7.62703
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Figure 1.1: Hierarchical heat map showing log2 transformed fold change in expression (fpkm). Left panel shows expression 
difference between timepoints of 2 weeks and 5 weeks before flowering event in the female SAM (2F vs 5F). Right panel shows 
expression difference bewteen same timepoints in the male SAM (2m vs 5M). Green depicts downregulation and red depicts 
upregulation. 

  

2F vs 5F 2M vs 5M 
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Figure 1.2: Hierarchical heat map showing log2 transformed fold change in expression (fpkm) between sex types. Left panel shows 
expression difference between SAM of female vs male plants at 2 weeks before flowering event (2F vs 2M). Right panel shows 
expression difference bewteen female and male SAM at 5 weeks before flowering event (5F vs 5M). Green depicts 
downregulation and red depicts upregulation. 

2F vs 2M 5F vs 5M 
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Figure 1.3: Venn diagram showing relative differences in overlapping and exclusively expressed gene counts in the SAM tissue. 
73 genes are exclusively expressed in the female tissue 2 week before flowering compared to the male, 86 genes exclusively in 
the female SAM 2 weeks before flowering compared to 5 weeks before flowering, 231 genes exclusively in the male SAM 2 weeks 
before flowering compared to 5 weeks, and 152 genes exclusively expressed in the female SAM tissue at 5 weeks before flowering 
stage compared to the male SAM. 
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Figure 1.4: Distribution of the top 20 GO annotation terms (level 3) by number of DEGs. We sorted the distribution by 3 major 
GO ontologies biological process (BP), molecular function (MF) and cellular component (CC) 
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Figure 1.5: InterPro scan result, sequence distribution among the DEGs. The most commonly found protein motifs are 
Pentatricopeptide repeats, WD40 repeats, Leucine-rich repeat, and Ankyrin repeats. 

InterPro Scan distribution: Protein motifs 
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Figure 1.6: Sequence distribution in class Molecular Function': ATP binding’ (118), ‘anion binding’ (93), ‘protein binding’ (92), and 
‘zinc-ion binding’ (81) were the most common. Apart from these broadly general categories, ‘signal transducer activity’ (59), 
‘transcription factor activity’ (58), DNA repair and chromatin maintenance (41), and ‘protein serine/threonine kinase activity’ (39) 
are the other highly represented categories. 

Number of Sequences [Molecular Function] 
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Figure 1.7: Sequence distribution in class ‘Biological Process’. The categories of ‘Regulation of biological process’ (278), ‘response 
to stimulus and signaling’ (256), ‘Growth and reproduction’ (94), and ‘developmental process’ (93) are predominant. 

Number of Sequences [Biological Process] 
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Table 1.2: GO term enrichment analysis of DEGs. Enrichment analysis of 1187 DEGs compared to PANTHER and GO Consortium 
database of known Arabidopsis functional ontology resulted in an enrichment of 144 GO terms. Ontology (far right) refers to 
the classification of the GO term sorted according to Biological process (P), Molecular function (F) and Cellular component (C). 

GO ID Description 
Number in 
Reference list 

Number in 
Input List P-value Ontology 

 (GO:0030154) cell differentiation  44 42 0.0000312 P 

 (GO:0000910) cytokinesis  57 54 0.000000796 P 

 (GO:0009719) response to endogenous stimulus  108 99 3.21E-12 P 

 (GO:0006778) 
porphyrin-containing compound 
metabolic process  

69 
58 0.0000127 P 

 (GO:0048731) system development  54 44 0.000936 P 

 (GO:0008643) carbohydrate transport  142 112 8.06E-10 P 

 (GO:0006109) 
regulation of carbohydrate metabolic 
process  

45 
35 0.0193 P 

 (GO:0009605) response to external stimulus  55 42 0.00648 P 

 (GO:0006869) lipid transport  58 44 0.00501 P 

 (GO:0006631) fatty acid metabolic process  149 111 2.56E-08 P 

 (GO:0006644) phospholipid metabolic process  128 95 0.000000606 P 

 (GO:0006732) coenzyme metabolic process  140 103 0.000000215 P 

 (GO:0006766) vitamin metabolic process  66 48 0.00627 P 

 (GO:0006897) endocytosis  157 112 0.000000225 P 

 (GO:0009110) vitamin biosynthetic process  62 44 0.0218 P 

 (GO:0006790) sulfur compound metabolic process  235 162 7.57E-10 P 

 (GO:0019219) 
regulation of nucleobase-containing 
compound metabolic process  

201 

137 6.46E-08 P 

 (GO:0006898) receptor-mediated endocytosis  72 49 0.0249 P 

 (GO:0008203) cholesterol metabolic process  140 95 0.0000343 P 

 (GO:0032501) multicellular organismal process  108 73 0.000923 P 

 (GO:0044707) single-multicellular organism process  108 73 0.000923 P 

 (GO:0009628) response to abiotic stimulus  101 67 0.00382 P 

 (GO:0008104) protein localization  216 143 0.000000171 P 

 (GO:0015931) 
nucleobase-containing compound 
transport  

111 
73 0.00224 P 

 (GO:0005977) glycogen metabolic process  197 127 0.00000597 P 

 (GO:0006520) cellular amino acid metabolic process  661 418 7.45E-20 P 

 (GO:0019748) secondary metabolic process  224 140 0.00000737 P 

 (GO:0016192) vesicle-mediated transport  516 319 1.11E-13 P 

 (GO:0070271) protein complex biogenesis  166 101 0.00148 P 

 (GO:0006461) protein complex assembly  165 100 0.0019 P 

 (GO:0006887) exocytosis  124 75 0.0231 P 

 (GO:0006820) anion transport  182 108 0.00208 P 

 (GO:0009058) biosynthetic process  1477 875 1.6E-33 P 

 (GO:0006796) 
phosphate-containing compound 
metabolic process  

1237 
731 2.39E-27 P 

 (GO:0035556) intracellular signal transduction  425 251 1.03E-08 P 

 (GO:0005976) polysaccharide metabolic process  362 213 0.00000037 P 

 (GO:0005975) carbohydrate metabolic process  757 445 9.27E-16 P 
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(Table contd.) 

GO ID Description 
Number in 
Reference list 

Number in 
Input List P-value Ontology 

 (GO:0007154) cell communication  717 420 1.38E-14 P 

 (GO:0007067) mitosis  303 176 0.0000196 P 

 (GO:0006996) organelle organization  597 345 4.19E-11 P 

 (GO:0007165) signal transduction  672 386 3.59E-12 P 

 (GO:0006807) nitrogen compound metabolic process  1827 1047 3.84E-35 P 

 (GO:0006412) translation  503 288 9.78E-09 P 

 (GO:0071840) 
cellular component organization or 
biogenesis  

1341 
766 1.12E-24 P 

 (GO:0006605) protein targeting  156 89 0.0404 P 

 (GO:0006091) 
generation of precursor metabolites 
and energy  

347 
197 0.0000172 P 

 (GO:0006629) lipid metabolic process  631 354 7.31E-10 P 

 (GO:0006950) response to stress  718 402 3.37E-11 P 

 (GO:0050896) response to stimulus  1280 716 9.99E-21 P 

 (GO:0009987) cellular process  6108 3401 1.26E-123 P 

 (GO:0016043) cellular component organization  1048 578 2.62E-15 P 

 (GO:0044085) cellular component biogenesis  575 315 0.000000123 P 

 (GO:0006351) transcription, DNA-dependent  793 433 1.29E-10 P 

 (GO:0008202) steroid metabolic process  317 172 0.00134 P 

 (GO:0008652) 
cellular amino acid biosynthetic 
process  

354 
192 0.000427 P 

 (GO:0032502) developmental process  346 186 0.00101 P 

 (GO:0006810) transport  1963 1054 2.06E-25 P 

 (GO:0022904) respiratory electron transport chain  230 123 0.0415 P 

 (GO:0051179) localization  2044 1091 1.58E-25 P 

 (GO:0007049) cell cycle  786 415 2.58E-08 P 

 (GO:0008152) metabolic process  7375 3891 1.56E-112 P 

 (GO:0006366) 
transcription from RNA polymerase II 
promoter  

654 
343 0.00000192 P 

 (GO:0050789) regulation of biological process  888 465 6.04E-09 P 

 (GO:0065007) biological regulation  1210 633 1.82E-12 P 

 (GO:0044238) primary metabolic process  6057 3164 7.48E-80 P 

 (GO:0006259) DNA metabolic process  396 206 0.00238 P 

 (GO:0042592) homeostatic process  334 173 0.0135 P 

 (GO:0009056) catabolic process  1327 687 9.33E-13 P 

 (GO:0006139) 
nucleobase-containing compound 
metabolic process  

2544 
1305 1.79E-24 P 

 (GO:0015031) protein transport  1215 618 4.47E-10 P 

 (GO:0006886) intracellular protein transport  1197 608 8.45E-10 P 

 (GO:0006357) 
regulation of transcription from RNA 
polymerase II promoter  

428 

217 0.00648 P 

 (GO:0016070) RNA metabolic process  1525 758 1.12E-10 P 

 (GO:0019538) protein metabolic process  2562 1182 5.1E-09 P 

 (GO:0006464) cellular protein modification process  1228 559 0.00425 P 
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(Table contd.) 

GO ID Description 
Number in 
Reference list 

Number in 
Input List P-value Ontology 

 (GO:0005249) voltage-gated potassium channel activity  30 30 4.81E-04 F 

 (GO:0005244) voltage-gated ion channel activity  36 35 1.46E-04 F 

 (GO:0019209) kinase activator activity  39 37 1.29E-04 F 

 (GO:0016209) antioxidant activity  56 52 1.88E-06 F 

 (GO:0004601) peroxidase activity  51 47 1.12E-05 F 

 (GO:0005216) ion channel activity  61 55 1.94E-06 F 

 (GO:0042626) 
ATPase activity, coupled to transmembrane 
movement of substances  

140 
126 

1.99E-15 

F 

 (GO:0015144) 
carbohydrate transmembrane transporter 
activity  

113 
92 

7.47E-09 
F 

 (GO:0008483) transaminase activity  64 51 2.24E-04 F 

 (GO:0005484) SNAP receptor activity  62 49 4.40E-04 F 

 (GO:0005516) calmodulin binding  76 59 8.31E-05 F 

 (GO:0008324) cation transmembrane transporter activity  261 199 8.10E-17 F 

 (GO:0015078) 
hydrogen ion transmembrane transporter 
activity  

92 
70 

1.67E-05 
F 

 (GO:0015926) glucosidase activity  72 54 6.34E-04 F 

 (GO:0016831) carboxy-lyase activity  63 47 2.85E-03 F 

 (GO:0000981) 
sequence-specific DNA binding RNA 
polymerase II transcription factor activity  

96 
70 

7.51E-05 

F 

 (GO:0005509) calcium ion binding  129 94 1.03E-06 F 

 (GO:0016829) lyase activity  295 207 7.32E-14 F 

 (GO:0003735) structural constituent of ribosome  427 288 2.83E-17 F 

 (GO:0016407) acetyltransferase activity  154 102 2.29E-05 F 

 (GO:0016746) transferase activity, transferring acyl groups  279 183 9.01E-10 F 

 (GO:0016836) hydro-lyase activity  130 83 1.13E-03 F 

 (GO:0016853) isomerase activity  246 155 4.77E-07 F 

 (GO:0016462) pyrophosphatase activity  478 300 5.08E-14 F 

 (GO:0016779) nucleotidyltransferase activity  163 99 1.22E-03 F 

 (GO:0005198) structural molecule activity  800 480 3.05E-19 F 

 (GO:0016301) kinase activity  834 500 5.07E-20 F 

 (GO:0016740) transferase activity  2167 1278 3.84E-51 F 

 (GO:0016491) oxidoreductase activity  1273 745 1.39E-27 F 

 (GO:0005215) transporter activity  1562 912 6.43E-34 F 

 (GO:0022857) transmembrane transporter activity  1433 834 2.21E-30 F 

 (GO:0016757) 
transferase activity, transferring glycosyl 
groups  

391 
221 

2.11E-06 
F 

 (GO:0004672) protein kinase activity  586 327 3.50E-09 F 
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(Table contd.) 

GO ID Description 
Number in 
Reference list 

Number in 
Input List P-value Ontology 

 (GO:0000989) 
transcription factor binding 
transcription factor activity  

 
192 107 

 
1.57E-02 

F 

 (GO:0000988) 
protein binding transcription factor 
activity  

 
194 

107 
 
2.27E-02 F 

 (GO:0003700) 
sequence-specific DNA binding 
transcription factor activity  

 
594 325 

 
3.22E-08 

F 

 (GO:0005515) protein binding  1286 703 9.80E-19 F 

(GO:0003700) 
Sequence-specific DNA binding 
transcription factor 

594 
325 

3.22E-08 
F 

 (GO:0003677) DNA binding  847 453 2.31E-10 F 

 (GO:0005200) structural constituent of cytoskeleton  339 180 1.58E-03 F 

 (GO:0003824) catalytic activity  6645 3501 5.67E-100 F 

 (GO:0005488) binding  3770 1900 3.91E-35 F 

 (GO:0016787) hydrolase activity  2326 1159 2.09E-18 F 

 (GO:0016788) hydrolase activity, acting on ester bonds  689 341 1.85E-04 F 

 (GO:0003676) nucleic acid binding  2177 1062 3.07E-14 F 

 (GO:0003723) RNA binding  935 427 1.45E-02 F 

 (GO:0004842) ubiquitin-protein ligase activity  340 54 5.73E-12 F 

 (GO:0031201) SNARE complex  65 52 0.000063 C 

 (GO:0005768) endosome  49 39 0.00134 C 

 (GO:0005794) Golgi apparatus  171 134 2.95E-12 C 

 (GO:0016021) integral to membrane  393 306 1.02E-27 C 

 (GO:0005840) ribosome  266 199 3.34E-16 C 

 (GO:0030312) external encapsulating structure  97 68 0.000159 C 

 (GO:0005618) cell wall  97 68 0.000159 C 

 (GO:0005829) cytosol  546 377 1.28E-24 C 

 (GO:0030054) cell junction  101 66 0.00179 C 

 (GO:0005874) microtubule  77 49 0.0285 C 

 (GO:0005886) plasma membrane  825 493 1.91E-19 C 

 (GO:0016020) membrane  1261 741 1.18E-27 C 

 (GO:0005773) vacuole  152 89 0.00468 C 

 (GO:0005783) endoplasmic reticulum  148 86 0.00767 C 

 (GO:0043226) organelle  2646 1524 4.04E-55 C 

 (GO:0005737) cytoplasm  2440 1366 9.15E-43 C 

 (GO:0044464) cell part  4461 2469 3.7E-80 C 

 (GO:0005622) intracellular  4248 2318 4.1E-69 C 

 (GO:0005654) nucleoplasm  206 110 0.0236 C 

 (GO:0030529) ribonucleoprotein complex  538 287 0.00000188 C 

 (GO:0005634) nucleus  1064 549 2.5E-10 C 

 (GO:0032991) macromolecular complex  1574 761 3.89E-09 C 

 (GO:0043234) protein complex  1110 489 0.0475 C 
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Table 1.3: Pathway enrichment of the DEGs based on KEGG pathway database 

Group Pathway Identifier 

Metabolism Fatty acid elongation ko00062 

  Phenylpropanoid biosynthesis ko00940  

  Pyrimidine metabolism ko00240 

  
N-Glycan biosynthesis ko00510, ko00513 

  Purine metabolism ko00230 

  Oxidative phosphorylation ko00190 

  Diterpenoid biosynthesis ko00904 

  Sphingolipid metabolism ko00600 

  Terpenoid backbone biosynthesis ko00900 

  Sesquiterpenoid and triterpenoid biosynthesis ko00909 

  Glycine, serine and threonine metabolism ko00260 

  Glyoxylate and dicarboxylate metabolism ko00630 

  Carbon metabolism ko01200 

  Glutathione metabolism ko00480 

  Metabolism of xenobiotics by cytochrome P450 ko00980 

  Drug metabolism - cytochrome P450 ko00982 

  Platinum drug resistance ko01524 

  Chemical carcinogenesis ko05204 

  Glycerolipid metabolism ko00561 

     

   

Genetic information processing RNA degradation ko03018   

  RNA transport ko03013   

  mRNA surveillance pathway ko03015   

  Base excision repair ko03410 

  Nucleotide excision repair ko03420 ko00513 

  Basal transcription factors ko03022   

  DNA replication ko03030   

  Mismatch repair ko03430   

  Homologous recombination ko03440   

      

   

Signaling FoxO signaling pathway ko04068   

  Sphingolipid signaling pathway ko04071 

  MAPK signaling pathway - plant ko04016   

  mTOR signaling pathway ko04150 

  Plant hormone signal transduction ko04075   

  MAPK signaling pathway - plant ko04016   

  Plant hormone signal transduction ko04075   
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Table 1.4: List showing 58 differentially expressed transcription factors represented among the 1187 DEGs. 

Sequence name Sequence description 

evm.TU.supercontig_142.60_4-412 bZIP transcription factor family 

evm.TU.supercontig_1675.1_1-506 calmodulin-binding transcription activator 2-like 

evm.TU.supercontig_213.9_4-412 calmodulin-binding transcription activator 3 isoform X1 

evm.TU.supercontig_914.1_1-3956 CCR4-NOT transcription complex subunit 1-like 

evm.TU.supercontig_104.52_2-285 E2F transcription factor 3 

evm.TU.supercontig_89.35_3-210 ethylene-responsive transcription factor 2-like 

evm.TU.supercontig_50.28_2-306 ethylene-responsive transcription factor ERF095-like 

evm.TU.supercontig_38.72_4-212 Ethylene-responsive transcription factor ERF114 

evm.TU.supercontig_21.243_0-531 General transcription factor 3C polypeptide 3 

evm.TU.supercontig_52.111_1-639 heat stress transcription factor A-6b 

evm.TU.supercontig_27.45_4-702 heat stress transcription factor B-2a-like 

evm.TU.supercontig_224.11_2-803 heat stress transcription factor B-3 

evm.TU.supercontig_3486.1_0-181 MADS-box transcription factor 6 

evm.TU.supercontig_119.43_0-629 mediator of RNA polymerase II transcription subunit 13 isoform X1 

evm.TU.supercontig_1346.1_1-208 mediator of RNA polymerase II transcription subunit 14 

evm.TU.supercontig_2756.3_0-1270 mediator of RNA polymerase II transcription subunit 14 

evm.TU.supercontig_25.148_0-355 mediator of RNA polymerase II transcription subunit 15a isoform X2 

evm.TU.supercontig_75.48_0-299 mediator of RNA polymerase II transcription subunit 17 

evm.TU.supercontig_2.207_16-1698 mediator of RNA polymerase II transcription subunit 23 isoform X1 

evm.TU.supercontig_12.295_25-1738 myb A 

evm.TU.supercontig_123.16_11-225 myb X isoform X1 

evm.TU.supercontig_798.1_138-946 myb-related 305-like 

evm.TU.supercontig_138.21_2-653 myb-related 308-like 

evm.TU.supercontig_566.3_22-268 NAC domain-containing 35-like 

evm.TU.supercontig_2586.1_3-972 NAC domain-containing 73-like 

evm.TU.supercontig_6.222_4-437 NAC domain-containing 7-like isoform X1 

evm.TU.supercontig_106.75_56-629 NAC domain-containing 83-like 

evm.TU.supercontig_435.1_140-495 NAC transcription factor 25-like 

evm.TU.supercontig_2794.2_124-349 probable transcription factor KAN4 isoform X3 

evm.TU.supercontig_11.67_0-461 probable WRKY transcription factor 43 

evm.TU.supercontig_169.18_5-367 probable WRKY transcription factor 49 

evm.TU.supercontig_86.65_0-260 probable WRKY transcription factor 70 isoform X2 

evm.TU.supercontig_1195.3_6-908 probable WRKY transcription factor 71 

evm.TU.supercontig_43.76_3-501 probable WRKY transcription factor 75 

evm.TU.supercontig_2.26_1-1110 probable WRKY transcription factor 9 

evm.TU.supercontig_73.36_0-1450 TATA-binding -associated factor BTAF1 isoform X1 

evm.TU.supercontig_1.81_0-440 T-box transcription factor isoform 1 

evm.TU.supercontig_4.168_12-661 transcription factor bHLH118-like 

evm.TU.supercontig_138.9_57-346 transcription factor DIVARICATA-like 

evm.TU.supercontig_2174.1_1-376 transcription factor jumonji  domain 

evm.TU.supercontig_3.92_0-1367 Transcription factor jumonji domain-containing isoform 2 

evm.TU.supercontig_16.21_0-368 transcription factor MUTE 
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(Table contd.) 

Sequence name Sequence description 

evm.TU.supercontig_7.125_100-541 transcription factor MYB44 

evm.TU.supercontig_642.1_0-239 transcription factor PAR1-like 

evm.TU.supercontig_51.95_40-163 transcription factor TFIID 

evm.TU.supercontig_3.56_20-250 transcription factor TRY 

evm.TU.supercontig_18.75_34-378 transcription factor UPBEAT1 

evm.TU.supercontig_471.1_2-1870 transcription initiation factor TFIID subunit 1 isoform X1 

evm.TU.supercontig_1020.1_70-999 transcription initiation factor TFIID subunit 2 isoform X2 

evm.TU.supercontig_705.1_96-717 transcription initiation factor TFIID subunit 7-like 

evm.TU.supercontig_104.56_2-214 transcription repressor OFP6-like 

evm.TU.supercontig_50.48_1-521 transcriptional regulator SUPERMAN-like 

evm.TU.supercontig_6.243_86-922 transformation transcription domain-associated 

evm.TU.supercontig_6.244_50-3589 transformation transcription domain-associated -like 

evm.TU.supercontig_6.244_3743-4984 transformation transcription domain-associated -like 

evm.TU.supercontig_21.93_0-310 transforming growth factor-beta receptor-associated 1 

evm.TU.supercontig_51.22_1-2363 translational activator GCN1 

evm.TU.supercontig_1.158_1-722 truncated transcription factor CAULIFLOWER A-like 
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Table 1.5: List showing the 22 differentially expressed genes encoding Hormone related genes (HRGs) from the 1187 DEGs 

Sequence name Sequence description 

evm.TU.supercontig_1525.3_416-567 abscisic acid 8 -hydroxylase 1 

evm.TU.supercontig_99.39_148-876 abscisic acid 8 -hydroxylase 2 

evm.TU.supercontig_21.181_13-855 abscisic acid 8 -hydroxylase 3-like 

evm.TU.supercontig_6.143_1-1868 auxilin 1 

evm.TU.supercontig_14.238_0-2790 auxin transport BIG 

evm.TU.supercontig_3603.1_1-353 auxin transport BIG 

evm.TU.supercontig_37.207_1-279 auxin-induced 15A-like 

evm.TU.supercontig_6.232_2-304 auxin-induced 15A-like 

evm.TU.supercontig_37.55_7-344 auxin-induced 6B-like 

evm.TU.supercontig_37.208_50-237 auxin-induced X15-like 

evm.TU.supercontig_144.5_1-285 auxin-responsive SAUR32-like 

evm.TU.supercontig_99.56_2-367 auxin-responsive SAUR32-like 

evm.TU.supercontig_20.149_40-357 auxin-responsive SAUR68-like 

evm.TU.supercontig_279.6_2-247 cytokinin riboside 5 -monophosphate phosphoribohydrolase LOG1 

evm.TU.supercontig_320.1_6-645 cytokinin riboside 5 -monophosphate phosphoribohydrolase LOG5 

evm.TU.supercontig_823.1_10-1135 gibberellin 20 oxidase 1-B-like 

evm.TU.supercontig_111.7_0-213 gibberellin-regulated 4-like 

evm.TU.supercontig_20.146_4-413 indole-3-acetic acid-induced ARG7-like 

evm.TU.supercontig_99.41_1-946 jasmonate O-methyltransferase-like 

evm.TU.supercontig_65.135_365-481 probable auxin efflux carrier component 1c 

evm.TU.supercontig_6.73_4-1799 probable indole-3-acetic acid-amido synthetase 

evm.TU.supercontig_19.55_31-548 two-component response regulator ARR17 
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Table 1.6: List showing the 35 differentially expressed genes coding for chromatin related proteins among the 1187 DEGs 

Sequence name Sequence description 

evm.TU.supercontig_88.2_0-244 chromatin assembly factor 1 subunit FAS1-like 

evm.TU.supercontig_3234.2_1-223 chromatin assembly factor 1 subunit FAS2 

evm.TU.supercontig_51.12_14-657 CHROMATIN REMODELING 20 

evm.TU.supercontig_1026.2_0-1191 CHROMATIN REMODELING 35-like isoform X1 

evm.TU.supercontig_84.19_22-979 CHROMATIN REMODELING 5 

evm.TU.supercontig_146.9_44-234 chromatin structure-remodeling complex BSH 

evm.TU.supercontig_16.101_313-1507 chromatin structure-remodeling complex SYD isoform X1 

evm.TU.supercontig_16.95_1-3015 chromatin structure-remodeling complex SYD isoform X1 

evm.TU.supercontig_6080.1_0-1723 chromatin structure-remodeling complex SYD isoform X1 

evm.TU.supercontig_59.113_92-841 chromosome transmission fidelity 18 homolog 

evm.TU.supercontig_2632.1_0-1243 DNA annealing helicase and endonuclease ZRANB3 

evm.TU.supercontig_1221.1_1-429 DNA gyrase subunit chloroplastic mitochondrial isoform X1 

evm.TU.supercontig_170.6_1-204 DNA ligase 1 

evm.TU.supercontig_50.138_0-524 DNA mismatch repair MSH6 

evm.TU.supercontig_5.338_3-783 DNA polymerase beta isoform X1 

evm.TU.supercontig_32.112_1-1624 DNA polymerase epsilon catalytic subunit A-like 

evm.TU.supercontig_30.92_4-788 DNA polymerase eta isoform X2 

evm.TU.supercontig_30.95_10-429 DNA polymerase eta isoform X2 

evm.TU.supercontig_48.64_4-208 DNA polymerase zeta catalytic subunit isoform X1 

evm.TU.supercontig_2894.1_0-154 DNA polymerase zeta processivity subunit 

evm.TU.supercontig_2949.1_258-417 DNA repair 

evm.TU.supercontig_140.31_3-995 DNA repair UVH3 isoform X1 

evm.TU.supercontig_10.19_0-1869 DNA replication ATP-dependent helicase nuclease DNA2 isoform X2 

evm.TU.supercontig_1735.1_5-187 DNA topoisomerase 4 subunit B 

evm.TU.supercontig_74.63_59-471 DNA topoisomerase 4 subunit B (DUF810) 

evm.TU.supercontig_14.252_4-299 DNA-directed RNA polymerase chloroplastic mitochondrial 

evm.TU.supercontig_92.7_5-1267 DNA-directed RNA polymerase I subunit 1 

evm.TU.supercontig_17.33_4-856 DNA-directed RNA polymerase III subunit RPC2 

evm.TU.supercontig_271.2_315-2639 DNA-directed RNA polymerase V subunit 1 

evm.TU.supercontig_271.4_0-226 DNA-directed RNA polymerase V subunit 1 

evm.TU.supercontig_3599.1_0-211 DNAJ heat shock N-terminal domain-containing 

evm.TU.supercontig_52.147_691-834 DNAJ heat shock N-terminal domain-containing isoform 2 

evm.TU.supercontig_23.130_11-586 dnaJ homolog subfamily C GRV2-like isoform X1 

evm.TU.supercontig_23.134_1-3229 dnaJ homolog subfamily C GRV2-like isoform X1 

evm.TU.supercontig_953.3_3-404 dnaJ P58IPK homolog 
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Table 1.7: List showing the 21 differentially expressed genes coding transporter proteins (TP) among the 1187 DEGs 

Sequence name Sequence description 

evm.TU.supercontig_224.5_0-801 ABC transporter A family member 1 isoform X1 

evm.TU.supercontig_224.7_6-343 ABC transporter A family member 1 isoform X1 

evm.TU.supercontig_3.35_5657-6000 ABC transporter C family member 10-like 

evm.TU.supercontig_10.181_287-1945 boron transporter 4-like 

evm.TU.supercontig_2.233_22-909 calcium uniporter mitochondrial-like 

evm.TU.supercontig_79.62_1-2658 intracellular transport USO1 

evm.TU.supercontig_850.1_14-1926 intracellular transport USO1-like 

evm.TU.supercontig_52.19_1-2086 oligopeptide transporter 1-like 

evm.TU.supercontig_80.121_21-1613 organic cation carnitine transporter 4 

evm.TU.supercontig_1552.1_0-1772 phospholipid-transporting ATPase 1-like 

evm.TU.supercontig_1088.2_1-231 sugar transporter ERD6-like 3 

evm.TU.supercontig_1088.3_1-749 sugar transporter ERD6-like 3 

evm.TU.supercontig_29.159_0-1571 transport SEC16B homolog 

evm.TU.supercontig_1109.2_12-1117 UDP-galactose UDP-glucose transporter 2-like 

evm.TU.supercontig_21.183_1-679 vacuolar iron transporter homolog 4-like 

evm.TU.supercontig_34.191_279-949 tyrosine-specific transport isoform X3 

evm.TU.supercontig_122.41_10-244 probable GABA transporter 2 

evm.TU.supercontig_170.63_1-722 probable manganese-transporting ATPase PDR2 

evm.TU.supercontig_1208.1_564-1340 probable polyol transporter 6 

evm.TU.supercontig_53.38_701-1649 probable potassium transporter 17 

evm.TU.supercontig_5.297_2-163 phospholipid-transporting ATPase 3 
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Figure 1.8: Figure showing relative expression among the TF coding genes between Female and Male SAM samples at 2 weeks 
before flowering. Blue bars represent male expression and green bars represent female expression. 
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Figure 1.9: Relative expression among TF coding genes between male and female SAM samples at the 5 week before flowering 
stage. Brown bars represent female and gray bars represent male samples. 
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Figure 1.10: Relative expression variance among hormone related genes between male and female SAM samples at the 2 week 
before flowering stage. Red bars represent male samples and blue bars represent female samples. 
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Figure 1.11: Relative expression variance among the hormone related genes between male and female SAM samples at the 5 
week before flowering stage. Brown bars represent male samples and green bars represent female samples. 
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Figure 1.12: Expression variance among the genes encoding chromatin maintenance related proteins between female SAM 
samples at 2 and 5 weeks before flowering stages. Blue bars represent 2 week samples and grey bars represent 5 week 
samples. 
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Figure 1.13: Expression variance among genes encoding chromatin maintenance related proteins within male SAM samples at 
the 2 and 5 week before flowering stage. Yellow bars represent 2 week samples and maroon bars represent 5 week samples. 
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Chapter 3: Generation and analysis of female sterile mutants in Arabidopsis 

 

Abstract 

Female sterile mutants in Arabidopsis are underrepresented compared to male sterile 

mutants in mutant databases. Most available mutants in this category display female 

reproductive defects in conjunction with defects in other reproductive organs as well as non-

reproductive pleiotropic defects. Most ‘female sterile only’ mutants have perturbations in 

pathways regulating ovule development, pollen recognition, and transmitting tract development.  

EMS was tested for half lethal dose to optimize the frequency to generate female sterile mutants. 

After screening 2386 Arabidopsis M2 mutant lines, 3 individual mutant lines, FS21, FS23, and 

FS322, were found defective in the female reproductive organs leading to female sterility. FS21 

showed highly reduced stigmatic papillae and lack of fertilization. FS23 had similar morphology 

as shown in FS21 and displayed random abortion of siliques. FS322 displayed deformed stigma 

in the shape of an upturned saucer. Identifying the causal genes involved will help to solve one 

of the most challenging and interesting biological problems in reproductive biology in land plants 

and help us in improving our understanding of the evolution of sex determination and sex 

chromosomes in land plants. 

Introduction 

Arabidopsis thaliana is used as a model organism for studies in various aspects of plant biology 

research owing to the extensive database of genes and their mutant phenotypes as well as the 

small size of the sequenced genome of 125Mb from the Columbia (Col-0) accession (The 
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Arabidopsis Genome Initiative 2000; (Somerville & Koornneef 2002). Arabidopsis mutants cover 

all aspects of plant development, physiology and metabolism and are excellent starting points 

for fundamental research. However, previously documented mutant phenotypes for 

reproductive processes extensively cover mainly the ‘male sterile’ aspect of development. The 

‘female sterile’ aspect is under-represented in Seed Genes Project, the manually curated 

comprehensive collection of 2400 genes with loss-of-function mutant phenotypes (Lloyd & 

Meinke 2012), and also in the recently constructed RIKEN database RARGE-II, which is an 

integrated database of mutant phenotypes in Arabidopsis (Akiyama, 2014). These databases 

returned a list of 152 reproductive mutants, among which only 14 were in the ‘abnormal 

flowers’ and ‘abnormal gynoecium’ mutant categories. Most of the other mutant phenotypes 

occur in conjunction with male reproductive organ (androecium) defects and embryo defects, 

and a host of other pleiotropic effects of the mutation. In addition to these, most female sterile 

mutants described are in pathways regulating ovule development, pollen recognition by stigma, 

and transmitting tract development. Our efforts are to study the developmental processes 

affecting proper initiation and development of the gynoecia (comprising 2 fused carpels), 

through generation and study of mutants defective only in the development of female organs 

(gynoecium) and gametophyte while other floral organs are unaffected.  

The ABCE model 

The classic ABC model of plant floral development was a major milestone in 

understanding the genetics of flower development. This model postulated how three regulatory 

gene functions A, B and C work in a combinatorial fashion to give organ identity in a whorl-specific 

manner (Coen & Meyerowitz 1991). With the exception of the A function gene APETALA2, which 
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is a founding member of the AP2/ETHYLENE RESPONSE FACTOR transcription factor family (Zik & 

Irish 2003), all of the other Arabidopsis ‘ABC’ genes code for MIKCc-type MADS-domain 

transcription factors (Krizek & Fletcher 2005; Irish 2006). The ABC model was expanded in recent 

times with the addition of the class E floral-homeotic genes which also encode MADS-domain 

transcription and exhibit flower specific expression. The partially redundant class E genes, the 

SEPALLATA genes function redundantly with the class A, B and C genes to confer sepal, petal, 

stamen and carpel identity (Pelaz et al. 2000; Zahn et al. 2005). The modified ABCE model now 

takes precedence in providing a basis for the development of the flower (Zahn et al. 2006) 

through intricate higher-order and highly redundant genetic functions via interactions with a host 

of other gene products and cofactors, such as UNUSUAL FLORAL ORGANS (UFO), LEAFY (LFY), 

WUSCHEL (WUS), LEUNIG (LUG), CRABS CLAW (CRC), SEUSS (SEU), SUPERMAN (SUP), KNUCKLES 

(KNU) and miR172 (reviewed in Krizek & Fletcher 2005) to name a few, in a spatial-temporal 

manner, starting from the signals and events required for the initiation of floral primordia, to the 

separation of the floral organs into ‘whorls’ and including the continued presence of these gene 

products in the later stages of development of the floral organs. In addition to these well-known 

genes that act both upstream and downstream of the ABCE model, the databases mentioned 

also reveal a host of other genes, both with known functions and unknown, that are implicated 

in the development process of the female organs. Some of these genes are YUCCA1, YUCCA4, 

PIN, PINOID (working in the auxin hormone biosynthesis and response pathways)(Youfa Cheng 

et al. 2006; Cheng et al. 2007; Xing et al. 2013; Bennett et al. 1995; Benjamins et al. 2001; Furutani 

et al. 2004; Christensen et al. 2000; Lampugnani et al. 2013b), ACC synthase (working in the 

ethylene biosynthesis pathway)(De Martinis & Mariani 1999; Boualem et al. 2008; Boualem et al. 
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2009; Sherif et al. 2009), COP1-interacting protein-related ( Wei & Deng 2003; Stewart et al. 

2016), while some of the genes with unknown functions include ribosomal proteins (L39), 

Leucine-rich-repeat transmembrane proteins, zinc finger proteins, AP2/B3-like transcription 

factor family protein (Krogan et al. 2012; Zik & Irish 2003). 

The class C gene AGAMOUS (AG) that specifies carpel identity and confers floral 

determinacy, also bears cadastral functions. The expression domain of AG itself is maintained by 

AP2 and a co-repressor complex of LUG and SEU (ÓMaoiléidigh et al. 2013; O’Maoileidigh et al. 

2014). Other genes, such as the HUA and HEN (HUA ENHANCER) functioning in RNA metabolism, 

have been found to regulate AG at the post-transcriptional level (Chen & Meyerowitz 1999), 

(Cheng & Chen 2004). Studies on the downstream targets of AG have found most of the genes 

known to be involved in carpel and stamen development (Gómez-Mena et al. 2005). In addition 

to this, a microarray-based global analysis of comparative expression profiles of the floral-

homeotic mutants identified 260 putative carpel-specific genes, most of which lack the CArG box 

required for MADS protein binding suggesting that these floral genes are potentially indirectly 

regulated by the floral homeotic gene products (Wellmer et al. 2004). The relatively small number 

of canonical genes in this regulatory network also indicates that this regulation might be mostly 

carried out by regulatory elements that have not yet been correlated with the genetics of the 

organogenesis process, both direct and indirect, to fine tune the proper anatomical structures 

necessary for successful reproduction.  

Unisexuality in the plant kingdom has evolved independently multiple times, and in 

different ways in different lineages with different mechanisms, from a hermaphrodite ancestor 

over the course of millions of years of evolution. The ABCE model of floral development elegantly 
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explains the basic underlying developmental framework of the individual whorls across species. 

However, it stops short of universally explaining the occurrence of selective organ abortion, as in 

the case of unisexual flowers. This is possibly indicative of the presence of a more refined Gene 

Regulatory Network (GRN) controlling organ development after specification of the organ 

primordia, and acting upstream and downstream of ABCE activity (Ainsworth et al. 1997; 

Wellmer et al. 2004; Stilio et al. 2011). The first step towards sexual dimorphism is the abortion 

of either one of the sexual organs, by either a gain of function mutation, or a loss of function 

mutation, leading to the development of unisexual flowers (Ming et al. 2011). This can be 

affected by mutations in the immense number of genes controlling the large number of 

specialized genetics functions required at various developmental stages as well as mutations in 

the many regulatory genes (Wellmer et al. 2004; Zhang et al. 2005).  

Male and female sterile mutations however, have different rates and probabilities of 

being fixed in a population owing to the abundant and mobile nature of pollen and sedentary 

recipient nature of gynoecia. The relative nature of the male and female sterile mutations 

(dominant or recessive to each other) can give rise to a variety of scenarios leading to different 

outcomes depending on their locations on the chromosomes. Stable dioecy and sex 

chromosomes only arises when the sex determining genes are closely linked on the same 

chromosome and exhibit dominance over each other (Charlesworth & Charlesworth 1978), 

(Charlesworth 1996) followed by suppression of recombination between the two genes (Ming et 

al. 2011). In other words, the two mutations have to be dominant over recessive or null alleles, 

and closely linked on the same chromosome.  
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Hormones in floral development 

Plant growth hormones are also directly and indirectly involved in sex expression with 

various underlying genetic mechanisms. In recent studies, ethylene in the determination of sex 

in Cucumis melon (Boualem et al. 2008), (Boualem et al. 2009), (Martin et al. 2009) and 

brassinosteroid in maize (Hartwig et al. 2011) has been found to affect the development of 

specific reproductive organs. However, being effected by growth hormones which are involved 

in a host of other biological functions also involves pleiotropic effects in the plants. Even so, 

hormonal interactions can drive a response pathway to induce a certain amount of plasticity in 

sex determination which can ultimately be modulated by environmental factors. In Arabidopsis, 

the growth hormones auxin and cytokinin play important roles in the correct specification and 

patterning of the gynoecium structure and suppression of stamen development. Auxin 

biosynthesis (Y Cheng et al. 2006), auxin transport (Cheng et al. 2008) as well as auxin response 

(Ellis et al. 2005) mutants have been observed with floral defects. YUCCA and PIN mutants further 

cement the role of auxin and its transport in this context. Cytokinin also regulates floral meristem 

size through regulation of the meristem maintenance gene CLV1 and WUS (Lindsay et al. 2006). 

GA is involved in promoting stamen and anther development (Cheng et al. 2004) and it works 

through regulation of the floral meristem control gene LFY.  Jasmonate signaling is required for 

stamen and pollen maturation (Park et al. 2002), (Ito et al. 2007). Brassinosteriod mutants show 

a dwarfed phenotype and reduced male fertility (Ye et al. 2010). Ethylene, also regarded as a 

feminizing hormone, plays roles in floral development, fruit ripening and senescence and has 

been found to be expressed in the stigma, style and the ovary but not in the pollen and anther 

(De Martinis & Mariani 1999); however, no specific hormone can be identified as a feminizing or 
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masculinizing agent only given that the hormones are important parts of the stress stimuli 

response mechanisms so very important for the sedentary lifestyle of plants (Golenberg & West 

2013). 

In the plant kingdom, hermaphroditism is the norm, with only about 6% of flowering 

plants (angiosperms) being dioecious (15,600 dioecious angiosperms in 987 genera and 175 

families) and 5% monoecious. The distribution of dioecious species is also patchy and uneven 

(Renner 2014). The widely accepted view is that bisexual flowers are an ancestral, or early trait, 

from which, unisexuality evolves by the process of random mutations affecting the carpel or 

stamen abortion (Ming et al. 2011). Taken together, unisexuality evolved multiple times, and with 

a variety of mechanisms. However, the underlying genes and gene networks of these processes 

have a potential of having some extent of commonality by the way of having tissue specific roles 

that are selectively activated or de-activated. Theoretically, it should therefore be possible to 

generate unisexual flowers in the laboratory by disrupting gene functions, thereby uncoupling 

the developmental processes governing male and female organs. The stage of developmental 

arrest, in this case, should also identify early and late acting components of these processes. 

Exploring the organ specific developmental gene network will therefore give an insight 

into the separation of reproductive functionality in flowering plants and help us contribute to the 

growing knowledge about the genetics of the reproductive developmental pathways in plants. 

We hope to be able to eventually dissect and identify key players in the sex-determination gene 

networks in land plants. 

 



58 
 

Mutagenesis 

Female sterile mutants are less common, relative to male sterile mutants. This lack of 

numbers has hindered the study and understanding of effectors and regulators of the gene 

networks (both upstream and downstream) concerned with the female reproductive organ 

development. Given the understanding of the GRNs and the complexity and redundancy of these 

processes, many of the established methodology are not applicable to exploratory research of 

these GRNs as they mostly target one gene or genomic region at a time. In addition to the classical 

techniques such as chemical, radiation and insertional mutagenesis, currently available 

techniques and experimental approaches including but not limited to the application of high-

throughput genomics along with Translating ribosome affinity purification (TRAP); (Heiman et al. 

2008), (Jiao & Meyerowitz 2010), Isolation of nuclei tagged in specific cell types (INTACT; (Deal & 

Henikoff 2010)), a combination of Fluorescence Activated Cell Sorting (FACS) and Laser Capture 

Microscopy (LCM) (Wuest et al. 2010), (Liu et al. 2011), ChIP-Seq and proteomics will enable us 

to garner information to fill the gaps in our knowledge about the stage-specific development of 

the floral organs.  

To circumvent the problem of redundancy and to target phenotypes, we generated a 

collection of Arabidopsis mutants via chemical mutagenesis using ethyl-methyl-sulfonate (EMS). 

EMS induces point mutations in the nature of G/C to A/T transitions, which could be detected as 

single nucleotide polymorphisms (SNPs) in the population. The advantage of this process is that 

EMS induces random mutations, allowing us to simultaneously target multiple genes in a 

genome-wide fashion. We then screened the mutants as separate families for specific 

phenotypes defective in reproductive processes leading to disruption or reduction of seed set. 
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Through this approach, we hoped to be able to screen for mutants defective only in female 

gynoecium development.  We also sought to maintain a seed pool so that we could trace back 

the mutant of interest to its originating family, and thereby identify the genes and their roles in 

development. 

 

Methods 

EMS Mutagenesis 

Ethylmethylsulfonate (EMS) induces single nucleotide polymorphisms (SNP) into the 

genome by the alkylation of guanine residues leading to a G:C to A:T base transition. We carried 

out pilot experiments to deduce the range of EMS concentrations and treatment time variations 

suited to our aims. We found that EMS concentrations of 40 mM for a treatment time of 14 hours 

gave the preferred 50% lethality rate associated with approximately 1 SNP in 300 kb of genomic 

DNA (Table 2.1). 

Prior to EMS treatment, wildtype Col-0 Arabidopsis seeds were stratified by soaking them 

in 100 mM phosphate buffer (pH 7.5) at 4 C for 4 days. The buffer was then aspirated and 

replaced with 40 mM EMS solution in phosphate buffer for a duration of 14 hours by gentle 

rotation. Seeds were then washed 5 times with equal volume of 100 mM Na-thiosulphate to 

remove traces of EMS, followed by 5 washes with equal volume of ddH2O and planted 

immediately. 
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Growing and screening of treated plants 

EMS treated seeds were planted in a 3:1 ratio of potting mix: vermiculite and grown in 

growth room conditions of 20-22 C and 16h/8h daylight period with 125 molm-2s-1 of incident 

light intensity. Seeds harvested from each M1 plant were maintained as distinct M2 families. This 

strategy of harvesting allows us to recover sterile mutants as heterozygous siblings. Additionally, 

this strategy almost guarantees that two mutants with similar phenotypes from different M1 

plants will have been a result of independent mutation events (Maple & Møller 2007). Primary 

screening was done by scoring defects in floral development, reduction in fertility (reduced seed 

set), and distortion in segregation ratios. Secondary screening was done by dissection of selected 

mutants to look for defects in gynoecium development. Twenty-four seeds from each M2 line 

was planted to maximize probability of observing obvious visible defects and to make note of the 

segregation ratio of the observed defects. 

To test for female sterility versus male sterility, suspected mutant plants were used as 

pollen donors (male parent) to fertilize emasculated flowers of wildtype Col-0 ecotype (isogenic 

unmutagenized progenitor). Simultaneously, WT Col-0 plants were used as pollen donors to 

fertilize emasculated mutants. This step has the added advantage of generating our backcrossed 

mutant F1 population. 

 

Results and Discussion 

Through our study, we independently generated 2386 individual mutant lines (M2 lines) 

from the mutagenized progenitor seed stock of Arabidopsis thaliana Col-0 ecotype by EMS 
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induced mutagenesis. As expected from an EMS induced mutagenesis screen, we observed a 

random distribution of mutants with aberrations in almost every possible physiological and 

developmental aspect of the plant. We identified a wide variety of morphological, physiological 

and reproductive phenotypes ranging from chlorophyll biosynthesis (variegated leaves, pale 

green leaves, albino lethal plants), altered architecture (dwarf mutants) (Figure 2.1), altered leaf 

phyllotaxy, altered leaf morphology (serrated margins, altered leaf shape size and number), 

complete lack of rosette leaves, altered trichome development (increase and decrease in 

trichomes), flowering time mutants (both early and late flowering), reduced fertility, altered 

floral architecture (complete lack of petals, sepalloid petals) (Figure 2.2), reproductive defects, 

non-viable seed-set, miniature flowers and even one instance of an aberrant phenotype with 3 

cotyledons. Some of the more interesting mutants in our collection that are relevant to this study 

show dramatically changed floral and morphological structures and characteristics, i.e. ranging 

from complete lack of petals to petaloid sepals to fused stamens, severely deformed gynoecia, 

reduced fertility, a mutant with flowers and buds clustered at apical meristem (reminiscent of 

ap1-cal mutants) (Figure 2.1.H) and miniature flowers. 

In addition to these mutant phenotypes, we also observed mutants that have aborted 

siliques, or siliques that failed to mature and elongate. This appeared to be random along the 

same inflorescence that contained mature and fertile siliques. Mutants showing these 

phenotypes appeared multiple times in our collection of M2 families as separate instances and 

could be indicative of a) independent mutations which are possibly allelic, or b) ‘leaky’ 

phenotypes expected from EMS mutagenesis experiments. One of our mutants of interest, M2 
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line 23, seems to belong to this particular class of mutants, while displaying additional mutant 

traits in general plant architecture and size. 

Previous studies yielded and documented very few female reproductive organ mutants 

while other mutant phenotypes such as male reproductive organ defective, embryo defective, 

reduced fertility and various other morphological defects have been reported with relatively 

much higher frequency. The rarity of female mutants may be a consequence of the fact that they 

do not set seeds, or set seed with very low frequency, making it is easy to miss this class of 

mutants from pooled seeds as generally practiced in high throughput screen. The only way to 

maintain and explore mutants of this type is through heterozygous mutant lines which can then 

be traced back by maintaining the mutant lines as distinct individual families, necessitating the 

use of a strategy whereby we harvest seeds from each M1 plant (plants grown from EMS-treated 

seeds) separately and generate a collection of M2 families (second generation derived from M1 

plants). 

The other reason that can be hypothesized for the low occurrence of the female sterile 

mutations is that in random-mating populations, a plant without functional androecium can still 

reproduce sexually with pollen from other plants and achieve full seed set because pollen is 

relatively abundant and typically mobile. On the other hand, a female sterile plant that only 

makes functional pollen, must compete with other pollen for fertilization for the mutation to 

persist. In this case, unless there is a significant increase in pollen production or survival leading 

to a much higher reproductive fitness (greater than 1.00), female sterility has a very small chance 

of being established in the population (Charlesworth & Charlesworth 1978). This applies an 
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evolutionary constraint, thereby increasing genetic redundancy in the controlling gene networks 

(Ming et al. 2011). 

 

Mutant Lines 

The primary goal of this study was to identify female sterile mutations. Screening of the 

2386 M2 lines for reduced seed set, abortion and defects in gynoecia allowed us to identify 3 

individual female sterile mutant lines. Male sterile mutants range in the categories of fused 

stamens, increased and decreased number of stamens, indehiscent anthers, infertile pollen and 

changes in pollen color and shape and were more numerous. 

Female sterile mutants that we observed are in the categories of ovule abortion, 

gametophyte defects, randomly distributed whole silique abortion in the same individual plant, 

and severe defects in gynoecium structure and shape. Since we are mainly focused of gynoecium 

structural and morphological defects, aberrations in any gynoecium structure, particularly in the 

early stages of development were our primary interest, rather than female gametophytic 

mutants. In this context, we have been able to identify morphological defects with implications 

in fertility. The 3 identified mutant M2 lines have resulted in a complete lack of post fertilization 

silique elongation and maturation even after anthesis. In addition, in each of these 3 M2 lines 

FS21, FS23, and FS322 (Figure 2.3, 2.4 and 2.5) mutant phenotypes occur at very low frequency 

(approximately 1 in 16 plants) suggesting that the mutant phenotype is recessive or harbors a 

loss-of-function mutation. Closer microscopic examination of the dissected flowers of these lines 
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revealed that the stamens bear morphologically normal anthers with dehiscing pollen, except in 

M2 line 322, which bears defective and non-dehiscing anthers. 

To test whether these mutant M2 plants produce viable pollen and if the lack of 

fertilization is due to self-incompatibility, we made reciprocal crosses with WT Col-0 plants of 

Arabidopsis as both pollen parent and pollen recipient. These crosses did not result in the 

expected silique elongation and maturation when WT Col-0 was used as the pollen parent. 

However, when the mutant was used as a pollen donor, the crosses gave viable seeds with 

varying degree of germination and survival of the progeny generation. This indicates that the 

mutants are likely female sterile with functioning male counterparts.  Additionally, these 

reciprocal crosses will also help to reduce the non-causal SNPs in their genetic background. 

 

M2 line FS21 

When line 21 was used as the male parent with a WT as the female parent both 

fertilization and seed set were observed. However, a reduced degree of germination was 

observed in the progeny.  In contrast, the reciprocal cross (Line 21 as female parent and WT as 

male parent) did not display signs of fertilization or seed set (silique elongation and maturation). 

This indicated that mutant line 21 is likely female sterile while producing viable male pollen. 

Closer inspection of the floral parts of line 21 revealed subtle defects in stigma structure when 

compared to WT stigma (Figure 2.3.B and G). The stigma of the stage 13 flowers (Smyth et al. 

1990), 1 day after anthesis, of line 21 shows highly reduced stigmatic papillae while other parts 
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are morphologically normal. In comparison, WT stigma show elongated stigmatic papillae at this 

stage. 

Morphologically, this mutant shows an altered plant growth habit compared to WT Col-

0. The rosette and cauline leaves are reduced in size and display a slightly altered phyllotaxy. In 

addition, the mutant exhibits a much higher frequency of axillary branches and inflorescences 

along with a reduced overall plant height. Inflorescence meristem of this mutant also contains 

reduced number of flowers and floral buds compared to the WT (8-10 flowers and buds 

compared to 20-25 in the WT). This is however offset by the increase in lateral branching and 

increase in lateral flowers compared to the WT phenotype.  

The structure of the flower in the mutant is not very different from the WT condition. The 

mutant flowers are slightly smaller than the WT flowers and more rounded in shape. The 

arrangement and number of floral organs within the mutant flower is similar to that of the WT, 

with no other visible defects (apart from the stigma).  

The backcrossed progeny resulting from a cross using the mutant as a pollen donor and 

WT as the female parent does show a reduced seed set as well as reduced germination frequency, 

compared to that of a WT progeny in our lab growth conditions. 

 

M2 line FS23 

Mutant M2 line 23 (Fig. 2.4) also displays a phenotype similar to the one shown by mutant 

M2 line 21, i.e. with lack of fertilization in the ovules on the mutant plant, short plant stature and 
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smaller leaves. Initially it was difficult to generate a backcrossed population form this mutant 

line, leading us to expect a complete loss of fertility in both male and female systems. However, 

we were able to use the pollen from the mutant to fertilize WT ovules. Some individuals from the 

same M2 line do fertilize the WT ovules readily and self-fertilize while having other phenotypic 

features such as short stature and smaller than WT flowers. This may indicate 2 separate point 

mutations that create a total loss of fertility not related to the aberration in the growth stature 

of the plant. This could also indicate the segregation of the traits as well as the heterozygote and 

homozygote dominant (WT like) genotypes within the M2 line. The pollen of the mutants from 

this line however, do not show any obvious visible defects or lack of dehiscence. 

The morphology of the mutants from M2 line 23 are also notable because it displays 

characteristics observed in the M2 line 21. However, there are some distinct differences too. 

Segregating mutants of line 23 display random abortion of siliques on the same inflorescence 

that contains properly elongating mature and fertile siliques (Fig. 2.4). This could be a pleiotropic 

effect of a disrupted function, or a ‘leaky’ phenotype that is dependent on additional factors 

apart from exclusively genetics interactions. Mutants in this family also display significantly 

smaller leaves, flowers, and stature. The mutants don’t show a reduction in the number of leaves, 

flowers, and inflorescences compared to the WT Col-0 phenotype. These characters make it 

similar, yet different from the mutant line 21. Given the design of our mutagenesis experiment, 

each family or M2 line arises from an independent mutation event, and therefore, mutants 23 

and 21 might represent allelic mutations of the same gene, or mutations in regulatory elements 

acting as a higher order complex in the same developmental pathway. 
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M2 Line FS322 

M2 line FS322, displays some interesting phenotypes. The individuals grown from the M2 

line show a segregation in severity of the mutant phenotype, with some plants displaying 

deformed and non-functional anthers, while some others harbor functional and dehiscing 

anthers with viable pollen- indicating that this could be a recessive mutant and could only be 

maintained as a heterozygote. This necessitated the use of siblings of the suspected homozygous 

recessive mutant to generate a backcrossed mapping population. The backcrossed (BC) progeny 

generated using siblings of mutant FS322 as a male parent and WT Col-0 as female parent shows 

segregation of phenotypes in a ratio that is distorted from the typical expected Mendelian ratios 

(Expected 7:1, observed ~1:15) (Page & Grossniklaus 2002). Individual plants from the BC progeny 

segregated by severity of the mutant condition as well as in the variation in phenotypes. Some 

plants display phenotype similar to the PINOID (PID) and PINFORMED (PIN) mutant defective in 

auxin transport (Bennett et al. 1995), (Christensen et al. 2000), (Benjamins et al. 2001), (Furutani 

et al. 2004), (Y Cheng et al. 2006). The inflorescence meristems in such cases terminated with a 

pin-like appendage with purple coloration (Fig. 2.5 A and C) and reduced number of flowers 

(Figure 2.6 I), and the deformed stigma taking the shape of an upturned saucer (Fig. 2.5 E and H). 

These plants also had a reduced number of cauline leaves, reduced number of inflorescences, 

and reduced lateral branching (Fig. 2.5 I). 

At the same time, other plants from the same BC progeny (constructed using a 

heterozygous sibling) display only the inflorescence meristem terminating in a pin-like 

appendage, and a highly deformed gynoecium, while the other deviations from the WT 

phenotype were not visible. These plants however, still do not undergo self-fertilization and 
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silique elongation and maturation, but undergo post fertilization silique elongation and 

maturation when used as the pollen donor in crosses with the WT Col-0 plants with highly 

reduced seed set (3-4 mature seeds in each silique). These phenotypes show similarities with the 

YUCCA (YUC) mutant defective in auxin biosynthesis, particularly yuc1-1yuc4-1 double mutants, 

i.e., complete absence of ovary valve with enlarged apical stigma in the shape of an upturned 

saucer (Cheng et al. 2007). The stigma itself does not have much in terms of papillae on the top 

surface, rather, the papillae are mostly concentrated on the sides (Figure 2.5 E and G, compare 

to J). 

The yuc1-1yuc4-1 phenotypes are also visible on other individual plants within the same 

M2 line without either the pin or pid mutant phenotypes. It should also be noted that none of 

the mutant phenotypes of this M2 line display changes to petal number and organization, as is 

to be expected from the mutant phenotypes of PINFORMED or PINOID. However, the petals are 

much thinner and ribbon like and smaller than that of a WT phenotype.  

 

Discussion 

The main purpose of this study was to generate and characterize reproductive mutants 

deficient in the female floral organ developmental processes. The flower in an angiosperm is an 

incredibly complex structure, which is ontogenetically a highly modified leaf. It is expected that 

certain fundamental and basic developmental programs would tend to be similar between leaves 

and flowers. At the same time however, the extent of modification and the sheer range and 

variety in structure and organization of the flower is highly suggestive of the canonical ‘ABCE’ 
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model based on homeotic genes. Contrary to expectations, gene perturbation studies in the ABCE 

model have not yet resulted in complete transformation of a leaf into a floral organ or that of a 

floral organ to a leaf in its native configuration. Efforts to understand this paradox led to the 

identification of a lot of additional genetic and environmental players that fine tune the canonical 

model. The simplicity and effectiveness of the ABCE model although, is unable to explain the 

differences in floral structure and sexuality that arise without either the modification of this 

model and/or the existence of sex chromosomes in many angiosperm species. The mutants 

developed during this study would help improve our understanding and add to the 

knowledgebase of developmental biology. 

The generation of mutants specific to the female organ abortion, followed by a detailed 

process of mutant identification and characterization will be the key to the dissection of the 

gene regulatory network specific to the determination and development of the female organs 

and identify genes other than the homeotic genes, possibly upstream or downstream acting 

genes, cis- or trans-acting regulatory elements involved in the process. Having a repertoire of 

genes in these categories will eventually help us to be able to predict the sex determination 

network and in the future, be able to engineer plants to the goal of having hermaphrodite 

populations, bypassing or avoiding the huge losses incurred by the agriculture community in 

dealing with the 1:1 segregation of male: female plants in dioecious crops. Hermaphrodite 

plants in populations have the advantage of being able to simultaneously bear fruit and still 

allow outcrossing (to maintain genetic diversity) when the mutations or sex-determining genes 

are on non-recombining chromosomes, and therefore minimizing the possibility of reversion to 

the state of dioecy. 
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Tables and Figures 

Table 2.1: Germination and survival rates of EMS treated seeds at different treatment conditions. 

 

Treatment Total no. of seeds planted Germination rate Survival rate (after 30 days) 

40mM, 14hrs 400 219 (54%) 196 (49%) 

40mM, 18hrs 400 180 (45%) 162 (40.5%) 

40mM, 22hrs 400 160 (40%) 144 (36%) 
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Figure 2.1: Variation in mutant phenotypes. (A) Dwarf with increased trichomes, (B) Severe dwarf and early flowering along with 
altered leaf phyllotaxy, (C) Serrated leaf margins, (D) Early flowering, (E) Dwarf and late flowering, (F) Variegated leaves, (G) Early 
flowering, (H) Altered inflorescence meristem. 
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Figure 2.2: Mutant flowers showing altered floral structure. (A) and (B) Flowers showing complete lack of petals, (C) and (D) 
Flowers showing petaloid sepals. In addition, these flowers also lack the normal number of anthers (arrow). 
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Figure 2.3: Mutant M2 line FS21: (A) Growth habit and architecture of mutant plant, (B) Micro-photograph of mutant gynoecium 

(note reduced stigmatic papillae shown by arrow), (C) Magnified view of stigma with pollen (arrow), (D) Micro-photograph of 

mutant anther, (E) and (F) Magnified view of dehiscent anther with pollen (arrow). 

(G) Side panel shows Wildtype stigma and anther for comparison (petals have been removed) 

G 
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Figure 2.4. Mutant M2 line FS23: (A) Growth habit and architecture of mutant plant, (B & D) Siliques displaying lack of 
maturation and elongation (arrows), (C) Flower morphology showing subtle changes to structure, (E & F) Stigma displaying 
reduced papillae (arrow). 

(G) Side panel shows Wildtype stigma and anther for comparison (petals have been removed)   

F
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Figure 2.5. Mutant M2 line FS322: (A) and (B) Structure of inflorescence (note pin-like apical meristem shown by arrow), (C) Tip 

of apical meristem and open flower showing defective stigma (arrow), (D) Open flowers showing severely deformed gynoecia 

(arrow), (E)Magnified view of gynoecia and stigma with characteristic ‘dome-shaped’ stigma, (F) Magnified view showing non-

dehiscent and deformed anther, (G) and (H) Complete flower showing characteristic stigma, petal and anther deformity, (I) 

Growth habit and architecture of mutant plant. 

(J) Side panel shows Wildtype stigma and anther for comparison (petals have been removed) 

  

J 

I 
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Chapter 4: Identification of genomic regions associated with female sterility 

mutant FS322 

 

Abstract 

Female sterility has not been systematically investigated because of the difficulty to 

maintain such mutants in heterozygous state, low throughput, and extra generation with 

recorded pedigree required for screening female sterile mutants. The deficiency of female sterile 

genes hindered the establishment of sex determination gene network.  The developmental 

program of reproductive organs is highly coordinated and involve multiple genes with 

overlapping functions. Furthermore, these genes can be located anywhere in the genome. Here 

we used EMS mutagenesis with the technique of whole genome sequencing to identify 

chromosomal regions related to the phenotype of the female sterile mutant FS322. The single 

nucleotide polymorphisms (SNPs) induced by EMS clustered on the long arms of chromosome 1 

and 3, with many of the SNPs causing non-synonymous and STOP codon changes in genes known 

to have roles in floral development. We also identified genes with unknown functions and with 

primary roles other than in reproductive morphology. These candidate genes provide the basis 

for further exploration of the causal gene of FS322 and elucidation of floral organogenesis; and 

will improve our understanding of reproductive development in plants.   
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Introduction 

Forward genetic screens utilizing map-based cloning approaches have been instrumental 

in revealing the identity and functions of genes in plants as well as many other organisms. In case 

of plants, Arabidopsis has served as the model organism for dicots for over 3 decades owing to 

its ease of cultivation and manipulation in a laboratory, and small genome size of 125Mb. The 

sequenced genome of Arabidopsis from the Columbia (Col-0) accession has been extensively 

used to understand plant development, physiology and metabolism (Arabidopsis Genome 

Initiative, 2000; reviewed in The Arabidopsis Book, 2008). Much of our knowledge and 

understanding of gene identity and functions have come from gene perturbation studies and 

molecular analyses of mutant phenotypes resulting from these studies. However, generation of 

these mutants and the subsequent mapping of the involved genes using traditional approaches 

are time consuming and laborious. With the advent of next generation sequencing (NGS) 

technologies, combining the traditional methods with high throughput sequencing has 

accelerated the identification of the underlying causal mutations for a wide range of mutant 

phenotypes.  

Initiation and development of reproductive organs in plants are highly complex and 

coordinated biological processes. The ABCE model elegantly explains the initiation and 

development of floral organs orchestrated in a combinatorial fashion (Coen & Meyerowitz 1991; 

Zahn et al. 2005; Zahn et al. 2006). Many of the components of this model, including the canonical 

genes with the A, B, C, and E functions were identified by the analysis of mutants using a forward 

genetic approach. Increasingly, the study of the gene regulatory networks (GRNs) involved in this 

developmental process have shown a high level of genetic redundancy. The proper development 
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of the reproductive organs also involve the interactions  of the A, B, C and E class of genes with a 

host of other gene products and cofactors, such as UNUSUAL FLORAL ORGANS (UFO), LEAFY (LFY), 

WUSCHEL (WUS), LEUNIG (LUG), CRABS CLAW (CRC), SEUSS (SEU), SUPERMAN (SUP), KNUCKLES 

(KNU) and microRNAs miR160 and miR172 to name a few (reviewed in Krizek & Fletcher 2005). 

These higher order interactions take place in a spatial-temporal manner, starting from the signals 

and events required for the initiation of floral primordia, to the separation of the floral organs 

into ‘whorls’ and including the continued presence of these gene products in the later stages of 

development of the floral organs. 

In addition to these well-known genes that act both upstream and downstream of the 

ABCE model, the databases such as RARGE II and Seed Genes Project also reveal a host of other 

genes, both with known functions and unknown, that are implicated in the development process 

of the female organs (Akiyama et al. 2014; Lloyd & Meinke 2012). Some of these genes are 

YUCCA1, YUCCA4, PIN, PINOID (working in the auxin hormone biosynthesis and response 

pathways), ACC synthase (working in the ethylene biosynthesis pathway), and COP1-interacting 

protein-related, while some of the genes with unknown functions include ribosomal proteins 

(L39), leucine-rich-repeat transmembrane proteins, and zinc finger proteins, AP2/B3-like 

transcription factor family protein (Youfa Cheng et al. 2006; Cheng et al. 2007; Xing et al. 2013; 

Bennett et al. 1995; Benjamins et al. 2001; Furutani et al. 2004; Christensen et al. 2000; 

Lampugnani et al. 2013; De Martinis & Mariani 1999; Boualem et al. 2008; Boualem et al. 2009; 

Sherif et al. 2009; Wei & Deng 2003; Stewart et al. 2016; Krogan et al. 2012; Zik & Irish 2003). 

This redundancy can be explained by the necessity of faithful transfer of genes and reproduction 

of functional progeny to ensure survival of the species. As such, the phenotypic identification of 
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mutant phenotypes can be hindered by the necessity to simultaneously perturb multiple genes. 

Variation in severity of phenotypes further complicate and slow down the mapping process. 

Single nucleotide polymorphisms (SNPs) caused by radiation or chemical methods are therefore 

the most well suited tools for maximum probability of observing mutants defective in flower 

development. 

SNPs generated by chemical mutagenesis using ethyl-methyl sulfonate creates G:C to A:T 

transition mutations that are randomly distributed across the genome. However, EMS creates a 

high mutation load, and limits the use of direct whole genome re-sequencing of an individual 

mutant. A combination of bulked segregant analysis and genome re-sequencing provides a 

method of reducing the number of point mutations and enables fast identification of the putative 

genomic region harboring the genes responsible for the mutant phenotype. Here we re-sequence 

the female sterile mutant FS322 and its corresponding wild type bulked siblings to identify the 

causal mutation(s) and the genomic region containing the genes associated with the mutation.  

 

Materials and methods 

Plant material 

A previously identified female sterile mutant FS322 generated from the Columbia 0 (Col-

0) background utilizing EMS mediate mutagenesis was used in this study. FS322 was backcrossed 

with its isogenic un-mutagenized progenitor line (Col-0), and the resulting F1 progeny was 

allowed to self-fertilize to give rise to the backcrossed F2 progeny (BC1F2). The segregating F2 

population was then screened for the mutant phenotype and bulked into a mutant pool and a 
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WT-like pool. All plants were grown from seeds stratified by soaking them in 100 mM phosphate 

buffer (pH 7.5) for 4 days at 4C. Plants were grown in 3:1 mixture of LC1 potting soil and 

vermiculite under growth room conditions of 16 hours light/8 hours dark cycles at 22-24C and 

light intensity of 125 mol m-2 s-1. 

DNA isolation, library preparation and sequencing 

Approximately 700 BC1F2 were grown, and leaf samples of equal quantity were collected 

from 30 plants scored as exhibiting the mutant phenotype of FS322. In parallel, leaf samples were 

collected from another 30 plants categorized as displaying the WT-like phenotype. Genomic DNA 

was extracted individually from each leaf sample using the CTAB method and then quantified 

using Nanodrop 2000 spectrophotometer (ThermoScientific, USA) and visualized on agarose gel 

(1% TAE-agarose) by electrophoresis. Equal amounts of genomic DNA from each individual 

sample was pooled to construct the mutant bulk as well as the WT-like bulk. DNA library was 

prepared using NEBNext Ultra DNA Library Prep Kit (Illumina, Cat # E3730) according to the 

manufacturer’s instructions. Pooled and indexed libraries were sequenced on the Illumina HiSeq 

X system, using 150nt paired-end protocol. Quality control was performed using FastQC to 

remove adapters and low quality sequences, allowing an average retention of 11,709,434 clean 

reads per library (Q30 = ~90%). 

Sequence analysis 

We used BWA (Li & Durbin 2009) to independently align the clean read sets of both 

mutant bulk and the WT-like bulk to the Col-0 reference genome of Arabidopsis (Li & Durbin 

2009; Garcia et al. 2016; The Arabidopsis Information Resource 10). The resulting alignments for 
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both pools were then manipulated using SAMtools and variant calls were made using the 

‘mpileup’ function built into SAMtools (Li & Durbin 2009; Li et al. 2009). The resulting variant files 

containing the SNPs were then analyzed and annotated with the TAIR 10 and AraPort 11 gene 

models for Arabidopsis in parallel using the Galaxy web based platform, a standalone software 

package snpEff and the web based tool suite SNPTrack (Afgan et al. 2016; Lindner et al. 2012; 

Leshchiner et al. 2012; http://genetics.bwh.harvard.edu/snptrack/). Filtering of SNPs were 

carried out using the VCFtools program package based on sequence quality, read coverage and 

depth at the SNP site (Danecek et al. 2011). 

 

Results 

FS322 is a female sterile mutant that was identified from a previously described EMS 

mutagenesis study that we conducted. This mutant displays interesting phenotypes as well as 

segregation of the severity of the mutant phenotype. Some plants display phenotypes similar to 

the PINOID (PID) and PINFORMED (PIN) mutant defective in auxin transport (Bennett et al. 1995; 

Christensen et al. 2000; Benjamins et al. 2001; Furutani et al. 2004; Y Cheng et al. 2006). The 

inflorescence meristems in such cases terminated with a pin-like appendage with purple 

coloration and reduced number of flowers (Figure 3.1). Others show similarities with the YUCCA 

(YUC) mutant defective in auxin biosynthesis, particularly yuc1-1yuc4-1 double mutants, i.e., 

complete absence of ovary valve with enlarged apical stigma in the shape of an upturned saucer 

(Cheng et al. 2007). In this case, the stigma, itself does not have much in terms of papillae on the 
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top surface, rather, the papillae are mostly concentrated on the sides (Figure 3.1.E and G, 

compare to J). 

The yuc1-1yuc4-1 phenotypes are also visible on other individual plants within the same 

M2 line without either the pin or pid mutant phenotypes. It should also be noted that none of 

the mutant phenotypes of this M2 line display changes to petal number and organization, as is 

to be expected from the mutant phenotypes of PINFORMED or PINOID. However, the petals are 

much thinner and ribbon like and smaller than that of a WT phenotype. These plants also had a 

reduced number of cauline leaves, reduced number of inflorescences, and reduced lateral 

branching. Some of the mutants have deformed and non-functional anthers, while others harbor 

functional and dehiscing anthers with viable pollen- indicating that this could be a recessive 

mutant and could only be maintained as a heterozygote. We therefore used a mutant individual 

that made viable and dehiscing pollen but did not set seed when allowed to self-pollinate, as the 

male parent and used a wild-type Col-0 plant as the female parent for the generation of the 

backcrossed (BC) mapping population. The BC progeny showed segregation of phenotypes (Table 

3.1) in a ratio that is distorted from the typical expected Mendelian ratios of 3:1 (expected in BC 

population for recessive gene) and 7:1 (expected in M2 for chimeric mutant plant). This situation, 

as discussed earlier, is in agreement with the genetically equivalent cell number (GECN) of 

Arabidopsis seeds (GECN=2), where EMS mutagenized only one of the two cells (Page & 

Grossniklaus 2002). 

The BC1F2 population was generated by crossing the FS322 as the male parent with the 

Col-0 line as unmutagenized progenitor female parent and then allowing the resulting F1 plants 

to self-pollinate. Leaf samples were collected from 30 individuals of mutant-like and WT-like 
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phenotype and the extracted DNA was pooled into a mutant and WT pool. A total of 11,969,277 

and 11,449,591 high quality reads (Q30 ~90%) with an average of approximately 25X coverage 

depth were generated for the mutant and WT pools respectively. The reference genome for 

Arabidopsis line Col-0 (TAIR-10) was then used to make variant calls for the mutant bulk and the 

WT bulk independently. The resulting SNPs from the WT bulk were then subtracted from the 

SNPs in the mutant bulk, and then filtered by coverage depth (threshold minimum of 10X), quality 

(>10, <100) and canonical G/C to A/T substitutions (EMS induced) to reduce the ubiquitous low 

background of false positive resulting from systemic error and background noise. In this study, 

we focused exclusively on SNPs because insertions and deletions are not associated with EMS 

mutagenesis. This resulted in a total of 852 SNPs across the genome, an average of 1 SNP in 

~150kb. 

Annotation and filtering of the SNPs based on the TAIR-10 gene models for non-

synonymous SNPs in coding regions and for STOP site mutations further reduced the SNP count 

to 312. Of these, 35 SNPs resulted in a premature STOP codon being gained, 1 STOP codon being 

lost, 1 START codon being lost, and 21 splice site variants, while the remaining 254 SNPs were 

non-synonymous mutation in the coding regions. 12 of these SNPs (AT1G01120, AT1G15310, 

AT1G17090, AT1G17600, AT1G17910, AT1G24430, AT1G64100, AT2G17660, AT4G22485, 

AT1G51190, AT1G09620, AT1G64060) were filtered based on allele frequencies (AF > 0.5, < 1.0) 

and localized on the long arm of chromosome 1 (Figure 3.2). The STOP codon changes mostly 

clustered along the long arm of chromosome 3, with some isolated aggregations on other 

chromosomes as well (Figure 3.3). 18 of the SNPs causing premature STOP codons did not have 

a known protein function, and were distributed randomly across the genome, with 3 of them 
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(AT3G11890, AT3G12150, AT3G12835) clustered on a 326kb region on the long arm of 

chromosome 3 (Figure 3.4).  

The 12 non-synonymous SNPs in the mutant pool (AF> 0.5) all have known protein 

functions, with the exception of AT1G17090 (Table 3.2). The most notable gene on this list is 

PLETHORA2 (PLT2) which is a member of the AINTEGUMENTA-LIKE (AIL) subclass of AP2/EREB 

family of transcription factors. The activity of PLT2 is dependent on auxin response transcription 

factors and plays a role in stem cell maintenance and pattern formation in response to auxin 

transport (Mudunkothge & Krizek 2012; Jia et al. 2015). SOC3, a gene coding a Toll/interleukin 

receptor (TIR)-nucleotide binding protein was also identified as having a non-synonymous 

mutation. SOC3 is involved in defense responses and chilling sensitivity and takes part in 

temperature mediated activation of cell death (Tan et al. 2007; Zhang et al. 2005). The others on 

this list are involved in signaling, seed storage, cell wall biosynthesis and wax biosynthesis (Table 

3.2). The only gene on this list that gains a STOP codon, incidentally codes for a kinase-related 

protein with unknown function. 

Most of the 36 SNPs that resulted in STOP codon changes that we found, had known 

functions attributed to the genes in which they appeared (Table 3.3). Included in this list are 

HUELLENOS (HLL), MEIOSIS DEFECTIVE 1 (MEI1), ESSENTIAL MEIOTIC ENDONUCLEASE 1B (EME 

1B), SPATULA (SPT), RIBOSOMAL RNA PROCESSING 5 (RRP5), PRESEQUENCE PROTEASE 1 (PREP1) 

AND BRASSINOSTEROID-SIGNALING KINASE 2 (BSK2), all of which are known to play roles in 

development of the female reproductive organs. This list of gene loci also includes the genes 

AT3G12835, AT1G66680 (AR401) which are expressed in flower tissue but with unknown protein 

functions. PREP1 is an interesting gene coding a signal peptide involved in enzyme degradation 
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in mitochondria and chloroplast. It is expressed only in siliques and flower tissues and may be 

involved in processes that confer female sterility. 

Discussion 

The main purpose of this study was to identify genomic regions harboring mutations in a 

female sterile phenotype in Arabidopsis. Given that the developmental program of the female 

reproductive organs is a highly complex and coordinated process, we expected a significant 

amount of redundancy in gene function. It is interesting to note that except a few known genes 

that are members of transcription factor families, most other genes that were identified have 

primary roles not implicitly related to reproductive development. This suggests that we were 

successful in targeting genes taking part in processes upstream and downstream of the known 

floral specification and development genes. The identified SNPs in our study cluster on the long 

arm of chromosome 1 and chromosome 3, suggesting that the genes responsible for the 

observed phenotype of FS322 reside in those genomic regions.  

The female sterile mutant FS322 displays a phenotype similar to the pin, pid and yuc1-

4yuc4-1 mutants (Figure 1). However, these genes did not appear in our list of candidate genes 

indicating that the phenotype is not caused by mutations in the genes involved in the pin, pid and 

yucca mutants (Bennett et al. 1995; Benjamins et al. 2001; Furutani et al. 2004; Trigueros et al. 

2009; Xing et al. 2013). In addition, the mutant phenotype appeared in the M2 and BC1F2 

population, but not in the BC2F2 progeny from additional backcrosses. These observations, when 

considered along with the GECN of Arabidopsis as discussed before, suggests that the phenotype 

is a multigenic trait that requires the simultaneous presence of mutations in multiple genes for 
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the. Scoring of the mutant phenotype in the F2 progenies was also made difficult by the fact that 

the subtle changes in fertility of FS322, typical of multigenic traits, may have resulted in 

overlooking or mis-scoring of the mutants. 

Mutations in ribosomal proteins give rise to a variety of developmental phenotypes. The 

molecular basis for such defects are not fully understood. However, female fertility is sensitive 

to levels of ribosomal proteins and can give rise to variation in phenotype severity, as in the case 

of Ribosomal Protein L27a (RPL27a) and it’s paralogs RPL27aB and ROL27aC in a dosage 

dependent manner (Zsogon et al. 2014; Devis et al. 2015),  Ribosomal protein mutants are also 

reported to be viable, but with subtle changes in leaf shape, inflorescence defects and flowering 

(Ito et al. 2000; Pinon et al. 2008; Byrne 2011; Szakonyi & Byrne 2017; Stirnberg et al. 2012). We 

identified 6 SNPs in genes involved in ribosome biogenesis and are structural components of 

ribosomes (AT1G17560.1, AT1G64600.1, AT3G11964.1 AT3G25470.1, AT4G08350.1 and 

AT4G34730.1). Among these, AT1G17560.1 (HUELLENLOS) and AT3G11964.1 Ribosomal RNA 

processing 5 (RRP5) have been shown to be involved in the female reproductive organogenesis 

(Skinner et al. 2001; Missbach et al. 2013). AT4G08350.1 (Global transcription factor group A2, 

GTA2) and AT4G34730.1 (RBFA domain containing protein 1, RBFA1) are necessary for ribosome 

structure and function, but have no roles ascribed to them in female fertility so far.  

The gene loci on chromosome 1 that were found to have non-synonymous or STOP codon 

changes identified some candidate genes for female sterility in the mutant FS322. Some of the 

most interesting ones include genes that have known functional domains but no associated 

molecular and biological functions (based on TAIR10 annotations). These include SNARE 

associated Golgi proteins, F-Box/RNI-like superfamily proteins, PLANT RING/U-BOX 18 (PUB18), 
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Receptor like protein 1(RLP1), Leucine Rich Repeat transmembrane protein kinase, GPI 

transamidase subunit PIG-U and protein-protein interaction regulator family protein. These gene 

loci are not inclusive of the other identified gene loci with unknown domain structures and 

functions and known players such as ARF12, SPL10, WD40 domain proteins, BEL-1 like 

homeodomain, PLETHORA2, CULLIN3. 

Chromosome 3 contains a collection of SNPs that affect the functions of many genes 

known to influence female reproductive development. These include MYB77, Embryo Defective 

2423, RRP5, Embryo Sac Development Arrest 30, Citrate synthase 1. Chromosome 3 also contains 

a significant number of Tetratricopeptide protein genes, Pentatricopeptide protein genes, and 

Ankyrin repeat protein genes with non-synonymous and STOP mutations. Interestingly, we also 

found an over-representation of these genes in the female tissue in our previous study of 

differential gene expression between male and female floral development (unpublished data).  

Candidate genes identified through the current study therefore, present a potential for 

data mining and exploration of their functions specific to female sterility. We were successful in 

mapping EMS-induced SNPs in the FS322 line to the long arms of chromosome 1 and 3, suggesting 

that additional genes involved in the proper development of the female reproductive program 

are located on these chromosomes. Further study, involving larger pools of mutant plants 

followed by complementation analysis, is required to unequivocally associate genes in those 

regions with the phenotype and characterize their biological and physiological roles played in 

maintaining fertility of the female organs.  
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Additional studies could involve targeted gene editing protocols, such as the CRISPR-Cas9 

system, to generate mutation in specific genes, or T-DNA insertion lines for complementation 

studies, timing specific and tissue specific gene expression localization studies, and in-silico 

protein-protein interaction studies based on predicted 3-dimensional protein structures, in order 

to sort potential roles of the genes in female reproductive development.  
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Tables and Figures 

 

  

J 

I 

Figure 3.1. Mutant M2 line FS322: (A) and (B) Structure of inflorescence (note pin-like apical meristem shown by arrow), (C) Tip 

of apical meristem and open flower showing defective stigma (arrow), (D) Open flowers showing severely deformed gynoecia 

(arrow), (E)Magnified view of gynoecia and stigma with characteristic ‘dome-shaped’ stigma, (F) Magnified view showing non-

dehiscent and deformed anther, (G) and (H) Complete flower showing characteristic stigma, petal and anther deformity, (I) 

Growth habit and architecture of mutant plant. 

(J) Side panel shows Wildtype stigma and anther for comparison (petals have been removed) 
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Figure 3.2: Chromosomal distribution and location of SNPs in 12 genes with unknown protein function 
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Figure 3.3: Chromosomal distribution and location of SNPs creating STOP codon changes 
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Figure 3.4: Chromosomal distribution and location of SNPs causing STOP codon changes in genes with unknown function 
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Table 3.1: Segregation ratio of mutant phenotype in backcross generations of the mutants (BC1F2). All backcrosses were 
conducted using WT progenitor as female parent and M2 mutant as male parent. 

M2 Mutant Line No. of seeds 
planted 

(approx.) 

No. of plants 

Wild Type 
phenotype 

Mutant 
phenotype 

Segregation ratio 

FS 21 200 191 16 1:12.04 

FS 23 200 189 14 1:13.51 

FS 322 700 686 48 1:14.30 
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Table 3.2: Table 2. SNPs with known function that display allelic frequency (AF) higher than 0.5 
 

Gene Model 
Name 

Gene Model Description Primary Gene 
Symbol 

SNP Effect Amino 
Acid 

change 

AT1G17090.1 Unknown protein; INVOLVED IN: biological 
process unknown;  

- NON SYNONYMOUS A->D 

AT1G01120.1 Involved in the critical fatty acid elongation 
process in wax biosynthesis. 

3-KETOACYL-COA 
SYNTHASE 1 

(KCS1) 

NON SYNONYMOUS A->T 

AT1G09620.1 ATP binding; FUNCTIONS IN: nucleotide 
binding, Arabidopsis thaliana protein match 
is: tRNA synthetase class I (I, L, M and V) 
family protein (TAIR:AT4G04350.1) 

- NON SYNONYMOUS A->D 

AT1G15310.1 54 kDa protein subunit of SRP that interacts 
with the signal peptide of secreted proteins 

SIGNAL 
RECOGNITION 

PARTICLE 54 KDA 
SUBUNIT 

(ATHSRP54A) 

NON SYNONYMOUS I->K 

AT1G17600.1 SOC3 is a TIR-NB-leucine-rich repeat (TNL) 
protein. 

(SOC3) NON SYNONYMOUS L->H 

AT1G17910.1 Wall-associated kinase family protein; 
FUNCTIONS IN: kinase activity; BEST 
Arabidopsis thaliana protein match is: Wall-
associated kinase family protein 
(TAIR:AT1G19390.1) 

- NON SYNONYMOUS R->L 

AT1G24430.1 HXXXD-type acyl-transferase family protein; 
FUNCTIONS IN: transferase activity, BEST 
Arabidopsis thaliana protein match is: HXXXD-
type acyl-transferase family protein 
(TAIR:AT3G26040.1) 

- NON SYNONYMOUS M->I 

AT1G51190.1 Encodes a member of the AINTEGUMENTA-
like (AIL) subclass of the AP2/EREBP family of 
transcription factors and is dependent on 
auxin response transcription factors. 

PLETHORA 2 
(PLT2) 

NON SYNONYMOUS R->H 

AT1G64100.1 pentatricopeptide (PPR) repeat-containing 
protein; BEST Arabidopsis thaliana protein 
match is: Tetratricopeptide repeat (TPR)-like 
superfamily protein (TAIR:AT1G12300.1) 

- NON SYNONYMOUS R->I 

AT2G17660.1 RPM1-interacting protein 4 (RIN4) family 
protein, functions in defense response; BEST 
Arabidopsis thaliana protein match is: RPM1-
interacting protein 4 (RIN4) family protein 
(TAIR:AT4G35655.1) 

- NON SYNONYMOUS R->W 

AT4G22485.1 Encodes a Protease inhibitor/seed 
storage/LTP family protein 

- NON SYNONYMOUS Q->K 
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Table 3.3: SNPs with allelic frequency > 0.5 and causing STOP codon changes 
 

 

Gene Model 
Name 

Gene Model Description Primary Gene 
Symbol 

SNP Effect Amino acid 
change 

AT1G66680.1 Unknown function (AR401) STOP GAINED S->Stop 
AT1G17560.1 Encodes HUELLENLOS (HLL), HLL is essential for 

normal ovule development. 
HUELLENLOS (HLL) STOP GAINED S->Stop 

AT1G31840.1 Tetratricopeptide repeat (TPR)-like superfamily 
protein 

- STOP GAINED E->Stop 

AT1G77320.1 Mutant is defective in meiosis and produces 
abnormal microspores. 

MEIOSIS 
DEFECTIVE 1 

(MEI1) 

STOP GAINED K->Stop 

AT2G07680.1 Encodes ABCC13/MRP11, a member of the 
multidrug resistance associated protein 
MRP/ABCC subfamily, expression is induced by 
gibberellic acid. 

ATP-BINDING 
CASSETTE C13 

(ABCC13) 

STOP GAINED C->Stop 

AT2G07777.1 ATP synthase 9 mitochondrial - STOP GAINED W->Stop 
AT2G16365.1 PCH1 binds and stabilizes the active (Pfr) form of 

phytochrome B and is involved in the formation of 
photobodies in the nucleus. 

PHOTOPERIODIC 
CONTROL OF 
HYPOCOTYL 1 

(PCH1) 

STOP GAINED K->Stop 

AT2G22140.1 Forms a complex with MUS81 that functions as 
endonuclease in DNA recombination and repair 
processes. 

ESSENTIAL 
MEIOTIC 

ENDONUCLEASE 
1B (EME1B) 

STOP GAINED R->Stop 

AT2G33160.1 Predicted exo-polygalacturonase gene NIMNA STOP GAINED E->Stop 
AT2G33270.1 Encodes a member of the thioredoxin family 

protein.  Located in the chloroplast. 
ATYPICAL CYS-HIS 

RICH 
THIOREDOXIN 3 

(ACHT3) 

STOP GAINED C->Stop 

AT2G43160.3 ENTH/VHS family protein - STOP Lost Stop->L 

AT3G12835.1 Unknown protein - STOP GAINED Q->Stop 
AT3G25610.1 Encodes aminophospholipid ATPase10 (ALA10), a 

P4-type ATPase flippase that internalizes 
exogenous phospholipids across the plasma 
membrane. 

AMINOPHOSPHOL
IPID ATPASE10 

(ALA10) 

STOP GAINED S->Stop 

AT3G26782.1 Tetratricopeptide repeat (TPR)-like superfamily 
protein 

- STOP GAINED Y->Stop 

AT3G61180.1 RING/U-box superfamily protein; BEST Arabidopsis 
thaliana protein match is: Zinc finger, C3HC4 type 
(RING finger) family protein (TAIR:AT4G11680.1) 

- STOP GAINED G->Stop 

AT3G02460.1 Ypt/Rab-GAP domain of gyp1p superfamily 
protein; BEST Arabidopsis thaliana protein match 
is: plant adhesion molecule 1 (TAIR:AT5G15930.1) 

- STOP GAINED K->Stop 

AT3G03950.3 Physically interacts with CIPK1. Located in the 
nucleus. 

EVOLUTIONARILY 
CONSERVED C-

TERMINAL REGION 
1 (ECT1) 

STOP GAINED Y->Stop 

AT3G05390.1 S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

- STOP GAINED R->Stop 

AT3G08580.1 mitochondrial ADP/ATP carrier ADP/ATP CARRIER 
1 (AAC1) 

STOP GAINED Q->Stop 

AT3G09990.1 Nucleoside transporter family protein; BEST 
Arabidopsis thaliana protein match is: Major 
facilitator superfamily protein (TAIR:AT4G05120.1) 

- STOP GAINED K->Stop 
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(Table contd.) 

Gene Model 
Name 

Gene Model Description Primary Gene 
Symbol 

SNP Effect Amino acid 
change 

AT3G11964.1 Encodes a nucleolar protein that is a ribosome 
biogenesis co-factor. Mutants display aberrant 
RNA processing and female gametophyte 
development. 

RIBOSOMAL RNA 
PROCESSING 5 

(RRP5) 

STOP GAINED K->Stop 

AT3G17240.1 lipoamide dehydrogenase precursor LIPOAMIDE 
DEHYDROGENASE 

2 (mtLPD2) 

STOP GAINED K->Stop 

AT3G19170.1 Zinc metalloprotease pitrilysin subfamily A. Signal 
peptide degrading enzyme targeted to 
mitochondria and chloroplasts. Expressed only in 
siliques and flowers 

PRESEQUENCE 
PROTEASE 1 

(PREP1) 

STOP GAINED R->Stop 

AT4G10370.1 Cysteine/Histidine-rich C1 domain family protein  
involved in intracellular signaling pathway 

- STOP GAINED S->Stop 

AT4G18150.1 Kinase-related protein of unknown function 
(DUF1296) 

 
STOP GAINED R->Stop 

AT4G28560.1 Encodes a member of a novel protein family that 
contains contain a CRIB (for Cdc42/Rac-interactive 
binding) motif required for their specific 
interaction with GTP-bound Rop1 (plant-specific 
Rho GTPase). 

ROP-INTERACTIVE 
CRIB MOTIF-
CONTAINING 

PROTEIN 7 (RIC7) 

STOP GAINED Y->Stop 

AT4G28920.1 Protein of unknown function (DUF626) - STOP GAINED L->Stop 
AT4G36930.1 Encodes a transcription factor of the bHLH protein 

family. Mutants have abnormal, unfused carpels 
and reduced seed dormancy. 

SPATULA (SPT) STOP GAINED Q->Stop 

AT4G39060.1 BEST Arabidopsis thaliana protein match is: 
Galactose oxidase/kelch repeat superfamily 
protein (TAIR:AT4G19250.1) 

- STOP GAINED K->Stop 

AT4G39952.1 Pentatricopeptide repeat (PPR) superfamily 
protein 

- STOP GAINED R->Stop 

AT5G13890.1 Family of unknown function (DUF716) 
 

STOP GAINED C->Stop 
AT5G46570.1 Encodes BR-signaling kinase 2 (BSK2), one of the 

three homologous BR-signaling kinases (BSK1, 
BSK2, BSK3, 

BRASSINOSTEROID
-SIGNALING 

KINASE 2 (BSK2) 

STOP GAINED K->Stop 

AT5G56730.1 Insulinase (Peptidase family M16) protein - STOP GAINED S->Stop 
AT5G58200.2 Calcineurin-like metallo-phosphoesterase 

superfamily protein 
- STOP GAINED K->Stop 

AT5G58490.1 NAD(P)-binding Rossmann-fold superfamily 
protein 

- STOP GAINED K->Stop 

 

  



97 
 

Chapter 5: Conclusions 

 

The parallel design of our experiments identified a large portion of known genes and the 

processes they are involved, in various aspects of growth and development. The patterns of 

expression are consistent with previous studies and logical expectations, and provide support to 

the validity and accuracy of the RNA-Seq data. We were also able to identify a significant number 

of unknown gene loci and gene loci with putative and predicted functions. We demonstrated that 

many biological processes and genes involved in them are shared between developmental 

programs of male and female sex organs. Many of the DEGs that were upregulated in one sample 

compared to the other, represent hormone pathways, stem cell maintenance pathways, cell 

differentiation pathways, and cellular signaling pathways. Further study of the unknown gene 

loci will be required to identify these unknown loci and understand their physiological and 

molecular function in relation to the developmental programs of sexual organs. These genes may 

represent a host of potential targets for manipulation to re-engineer dioecious plant species to 

the ancestral hermaphroditic state, to improve our understanding of the intricate and complex 

gene regulatory networks underlying sex specification, and therefore, the evolution of sex 

chromosomes in land plants. 

 

The generation of mutants specific to the female organ abortion, followed by a detailed 

process of mutant identification and characterization will be the key to the dissection of the gene 

regulatory network specific to the determination and development of the female organs, and 

help identification of genes other than the homeotic genes, possibly upstream or downstream 
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acting genes, cis- or trans-acting regulatory elements involved in the process. Having a repertoire 

of genes in these categories will eventually help us to be able to predict the sex determination 

network, and in the future, be able to engineer plants to the goal of having hermaphrodite 

populations. This will enable us to bypass or avoid the huge losses incurred by the agriculture 

community in dealing with the 1:1 segregation of male: female plants in dioecious crops. 

Hermaphrodite plants in populations have the advantage of being able to simultaneously bear 

fruit and still allow outcrossing (to maintain genetic diversity) when the mutations or sex-

determining genes are on non-recombining chromosomes, and therefore minimizing the 

possibility of reversion to the state of dioecy. 

 

Candidate genes identified through the current study therefore, present a potential for 

data mining and exploration of their functions specific to female sterility. We were successful in 

mapping EMS-induced SNPs in the FS322 line to the long arms of chromosome 1 and 3, suggesting 

that additional genes involved in the proper development of the female reproductive program 

are located on these chromosomes. Further study, involving larger pools of mutant plants 

followed by complementation analysis, is required to unequivocally associate genes in those 

regions with the phenotype and characterize their biological and physiological roles played in 

maintaining fertility of the female organs. 

Our combined approach in studying floral sex determination has provided evidence 

towards the involvement of many genes that have not been directly associated with floral 

development. These genes include genes coding for proteins with the functional motifs of 

Ankyrin repeats, WD40 repeats, tri- tetra- and penta-tricopeptides. Given the intricate 
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involvement of the hormone auxin and the ABCE gene model in specifying the structure and 

functional morphology of the floral organs, and the analogy between leaf and floral 

development, our findings are indicative of the domain repeat containing proteins playing 

important roles downstream of both the ABCE genes and auxin hormone. Domain repeats in 

protein coding genes can serve many functions, such as the transmembrane domains of proteins 

in signaling cascades, in protein-recognition and protein-protein interactions, as anchor points 

for multimeric protein complexes, as binding sites for transcription factors, metal ion cofactors, 

and as chaperones guiding proper protein folding. WD40, Ankyrin and penta-tricopeptide repeat 

containing proteins have previously been found to be involved in a multitude of developmental 

processes, as well as defense responses, programmed cell death, protein kinase activity etc., and 

as such, provide a reference point to future research in deciphering the functional physiological 

roles played by these genes in floral development. 
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