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ABSTRACT

Variability of the travel times on the United States freight rail network is
high due to large network demand relative to infrastructure capacity espe-
cially when traffic is heterogeneous. Variable runtimes pose significant op-
erational challenges if the nature of runtime variability is not predictable.
To address this issue, this article proposes a data-driven approach to predict
estimated times of arrival (ETAs) of individual freight trains, based on the
properties of the train, the properties of the network, and the properties of
potentially conflicting traffic on the network. The ETA problem is posed
as a machine learning regression problem and solved using a support vector
regression machine trained and cross validated on over two years of historical
data for a 140 mile stretch of track located primarily in Tennessee, USA.
The article presents the data used in this problem and details on feature en-
gineering and construction for predictions made across the full route. It also
highlights findings on the dominant sources of runtime variability and the
most predictive factors for ETA, identified by applying the data framework.
ETA improvement results exceeded 20% over baseline methods for predic-
tions made at some locations and averaged over 15% across the study area.
Ideas for further ETA improvement using the prediction algorithms are also

discussed.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The rail network in the United States has significant infrastructure capacity
limitations that cause congestion of the rail traffic. Few rail corridors contain
exclusively double (or more) track that allows simultaneous bi-directional
traffic [1|. In comparison, the double and triple track railroads in Europe pro-
vide for double the train density of US rail networks [2]. Many US corridors
contain a single track with short sections of double track known as sidings,
where trains may meet or pass each other. These movements (i.e., meets,
passes) are implemented in the railroad signaling system, but are directed
by human dispatchers. Dispatchers are experienced with working on specific
track corridors, but movements on sidings require planning and precise tim-
ing in order to achieve efficient operations [3, 4. Freight volume is expected
to increase in the US, so either infrastructure capacity must be increased or
operational improvements must be made to increase capacity [5, 6, 7].

In addition to the track infrastructure constraints, there are numerous
other factors that can contribute to variability of the runtime on a track
segment. Traffic heterogeneity and the train priority differences directly in-
fluence both the runtime of trains and also the variability in the runtime [8, 9.
Physical characteristics of trains such as the length, tonnage, and power fur-
ther influence the runtime due to track grade, track curvature and siding
lengths [8]. The ability of a train to complete a trip and exit the line of
road (i.e., the track segments connecting distant terminals) is also influenced
by the degree of congestion in the arrival terminal. This is compounded by
the possible actions required for the train in the terminal, such as refuel-
ing, inspection, switching of cars, or crew change |8, 10]. Railroad operating

strategies such as dynamically scheduled trains and maximizing train length



are particularly vulnerable to delay [11, 12].

In the presence of runtime variability, ETAs are necessary in order to
improve real-time decision making and the efficiency of the network [13, 14].
For example, future train schedules can be continually updated to provide
new train plans to allow traffic to flow smoothly between terminals on the
network [15]. Although there are many techniques available to derive optimal
schedules (see [16] for a thorough review), the schedule may be very sensitive
to delays when the network is near capacity. High capacity utilization leads
to more complex dispatching where small delays are created, leading to larger
deviations from the train plan; this is referred to as knock-on delay [3, 1, 17].

Highly variable runtimes increase operational uncertainty for the railroad
and for other transportation systems that depend on them. On the rail
network, propagation of delay to other trains is significant [18], and there are
large direct costs incurred due to additional operating time alone [19]. Delays
on the rail network can also influence non-rail transportation services. For
example, surface street traffic and emergency vehicles, which conflict with rail
freight traffic at grade crossings [20], can be significantly delayed if a grade
crossing is occupied by a train for an extended period of time. If accurate,
real-time ETAs are made available, revisions to the operating plan can be

implemented, and surface street transportation services can be re-routed.

1.2 Problem statement and solution approach

The main focus of the present article is the prediction problem for ETAs on
US freight railroads using real-time data in an online setting. Compared to
offline or batch algorithms, the online estimation problem requires new ETAs
to be produced as new information becomes available, (i.e., as time elapses
and the train progresses down the line of road). Each time the train reaches
one of a number of fixed locations on the track, data is collected and a new
estimated travel time to the destination is produced.

To produce the ETA estimate, a variety of routinely collected and main-
tained data sources available to freight railroads are used. This includes
track geometry data (containing grade and curvature information, single and
multi-track territory, length of sidings, etc.), historical runtimes of all trains,

properties of all trains (such as length and tonnage), and crew records.



Several methodologies to produce ETAs are available, including micro-
scopic simulation [21, 22, 23|, analytical approaches [24], and data-driven
techniques [25, 26]. Due to the complexity of the freight rail network (which
limits the accuracy of analytical abstractions) and the difficulty to capture
all delay inducing factors in a simulation based model (e.g., decisions made
by human dispatchers, special cases involving priority elevation, unplanned
maintenance, and weather), a data-driven approach is proposed in this arti-
cle [27]. This approach is made possible through access to one of the largest
and most comprehensive freight rail datasets, which is described in this arti-
cle.

Location-specific characteristics are critical in any approach. For example,
train length will vary in its impact on runtime depending on the lengths of
sidings available on each route and the track grade. These parameters can
be learned by a data-driven model trained on a historical dataset for each
location, in lieu of explicitly encoding them with location-specific character-
istics. Moreover, because of the increasing availability of data in this work,

all parameters may be assess as they vary in time and in space.

1.3 Related work

Several lines of research are related to the problem of ETA prediction. We
briefly summarize the most closely related works, and direct the interested
reader to the comprehensive reviews available in the works by Bonsra and
Harbolovic [25] and Gorman [28].

The majority of freight trains operate according to a schedule that is con-
structed in an offline manner and robust to some random unplanned distur-
bances [12, 3]. When extreme disturbances cause the original schedule to
deteriorate, online rescheduling measures must be implemented to account
for the delay and to maintain robustness to further delay |29, 14, 30|. Numer-
ous efforts are aimed at understanding and quantifying the causes of delay
that influence scheduling, rescheduling, and predictability [1, 31, 9]. Delay is
typically formulated in terms of deviation from a train schedule or historical
performance, but it can be extended to arrival time prediction for individual
trains [25].

Several works have proposed to empirically produce delay or runtime esti-



mates using historical data for passenger rail networks. Kecman and Goverde [4]
proposed an ETA prediction framework for passenger rail arrival time pre-
diction using track occupancy data for conflict evaluation. Chapuis [32] used
artificial neural networks to predict arrival times of frequent passenger trains
using historical train and station delays. Compared to the proposed work,
the ETAs were evaluated in the Netherlands and France, respectively, on
high priority passenger traffic [33, 34|, which also operates with higher punc-
tuality compared to the freight or passenger traffic in the US [35]. Wang
and Work [26] estimate passenger rail delays on the Amtrak passenger rail
network in the US using vector regression techniques and only historical run-
times between passenger stations. The regression problems are formulated in
both a historical and online perspective, but the feature set for prediction is
limited and does not contain any data on the freight traffic, which constitutes
the majority of traffic on the shared line of road in the US. Online methods
presented for passenger rail, accessible because of the data stream created
by station arrivals and departures, have not been fully extended to freight
rail. Additionally, magnitude of delay for passenger rail is typically on the
order of minutes, while delay for non-priority freight rail traffic may exceed
multiple hours.

The most closely related estimation works on freight trains are the works of
Gorman [28] and Bonsra and Harbolovic [25]. In Gorman [28], an econometric
analysis of free-running and congestion related factors are used to identify the
primary causes of delay. The data was partitioned by geographic area and
priority groupings. Congestion related factors, such as meets, passes, and
overtakes that occur, are found to have the largest effect on delay. Bonsra
and Harbolovic [25] predict runtimes for individual freight trains in an offline
setting. Prediction improvements were attained when estimated at the time
of departure. The regression model used train and network parameters and

a historical runtime averaging technique for evaluating model performance.

1.4 Outline and contributions

The main contribution of this article is to show how to pose the online ETA
prediction problem on a rail network as a sequence of machine learning re-

gression problems, where one regression is performed for any given origin-



destination pair. We provide practical insights by highlighting the datasets
available to perform the prediction and describing some of the feature en-
gineering required when the feature vectors change in time and space. We
present a set of data features and several machine learning regression algo-
rithms used to achieve more accurate ETAs than common statistical methods
yield. Finally, the resulting models are discussed in detail with respect to
their performance.

The remainder of the article is organized as follows. Section 2 presents
the framework used to process and operate on the various data sources and
the preliminaries for the machine learning regression. Section 3 discusses
the datasets and the work that is necessary to process the data for use in
the machine learning framework as constructed data features. Section 4
details the model trials that are conducted as well as the means by which to
evaluate them. Section 5 describes the process for tuning and evaluating a
single model, which is then extended to models across the full testing route;
results are given for models using select feature combinations. The conclusion
in Section 6 summarizes the progress of this research and outlines the next

steps planned for investigation.



CHAPTER 2

FRAMEWORK AND PROBLEM
FORMULATION

This section briefly describes the machine learning framework used for online
ETA estimation and the implemented SVR algorithm [36, 37|. It reviews gen-
eral machine learning terminology and parameters specific to the algorithms,

both used later during analysis and discussion.

2.1 ETA Machine learning framework

The problem of predicting an estimated time of arrival for a train from an
origin point to a destination point on the rail network is posed as a supervised
machine learning regression problem. The goal of the regression problem is
to predict the true runtime y(i) € R! of a train ¢ given the properties of train
1, the network, and other traffic on the network, which are contained in the
feature vector z(i) € R™. Given a dataset of m trains with true runtimes
Y € R™! and corresponding feature vectors X = [z(1), z(2), z(3), ..., z(m)],
where X € R™ ™ the machine learning regression problem is to find a map-
ping f: R® — R! such that f(z(i)) is an accurate predictor of y(i). In
general, supervised machine learning regression uses a set of training data
{Xir, Yir} (where the subscript ¢r is used to indicate the training data) to
learn the function f, by minimizing prediction error between f(z(i)) and y(7)
over the m records in the training data.

The machine learning model f must generalize (i.e., make good predictions
on data that has not been used to train the model), in order to maintain high
accuracy on new data and to avoid overfitting the training data. To test the
degree of generalization, the accuracy of the prediction is assessed on hold
out testing data {Xie, Yie}, which is not used to train the model.

The central difficulty of posing the online train ETA prediction problem

into the framework above stems from the fact that many of the features



used for prediction change in time and in space as the train moves towards
the destination. For example, the amount of traffic on the line of road will
change as trains enter and leave the line of road. The number of available
sidings on a route in single track territory also changes across the route and
as other trains occupy or vacate sidings. If a single model is used for all
origin-destination predictions in the network, it may be difficult to predict
area-specific delays (e.g., due to local dispatching decisions and route char-
acteristics) that may not occur throughout the network; results pertaining
to origin-destination specificity are discussed in Section 5.2. Moreover, be-
cause some features change over time (as described above), while others may
not (e.g., train priority), construction of an unbiased training dataset is a
nontrivial engineering task. For example, one cannot simply create a new
training data point each time a single property of a train changes (e.g., cor-
responding to a new feature vector) without biasing the training data, since

the feature vector still corresponds to the same train trip.

2.2 'Towards online, network-wide prediction

To address these difficulties, we propose to build a distinct regression model
for each origin-destination pair for which predictions are required. Because
the models are independent, each model can be trained using all trips that
pass between the corresponding origin-destination pair by constructing fea-
tures according to the state of the train and network at the time the train
reaches the origin node. Localized and geography-specific performance effects
may be captured in the individual models without explicitly constructing
them in the feature vector. For example, longer travel times will be observed
for heavy or underpowered trains in areas of high track grade. Feature con-
struction can also vary between models (e.g., in dimensionality) since each
uses a custom dataset built for the origin-destination pair.

The primary disadvantage of building a model for each origin-destination
pair in the network is the number of models required. In a rail network
with & nodes, in principle &2 predictors are required. In contrast to road
networks where the number of nodes and the number of viable paths between
any two node pairs may be large, rail networks have fewer nodes and less

path redundancy. In practice, few locations are relevant destination points
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Figure 2.1: Graph vertices align with OS-points and each track segment
between them is represented by a graph edge in each direction. Double
track areas and sidings, therefore, are represented by four graph edges in
order to enumerate all unique routes across the network.

from a given origin because a single route (excluding small deviations for
sidings) is typically used to connect two points on the network. Therefore,
the number of relevant origin-destination paths for which predictions are
required is tractable. In the area of study in this work, there exist 35 points
that can serve as origin points; there are only four practical destination points
from each origin point, which results in at most 148 predictors.

In order to map spatiotemporal train data to the network topology, infras-
tructure data can be reconstructed into a directed graph format, G = (V, E)
where V' is a set of vertices and E is a set of directed edges. Vertices are
points where the track merges and splits (e.g., endpoints of sidings). Data
on passing trains is recorded at OS-points, which are fixed locations v C V.
Directed edges represent track segments across which trains travel between
OS-points and a direction of travel. This alignment between track infrastruc-
ture and the constructed graph is shown in Figure 2.1. OS-points are denoted
ap, a1, as, az with corresponding graph vertices vy, v1, vo, v3. Pairs of directed
edges representing each delineated track segment allow distinct runtimes and
feature values in each direction, which is necessary when properties such as
grade are considered [25]. In this formulation, all trains can be routed on
the graph across their unique path considering track usage (e.g., siding track
versus main line track). Data can be gathered on the behavior of trains for
each directed edge with respect to speed and other train attributes. Also,
features that consider estimates of the positions of multiple trains and track

topology can be mined from this data.



2.3 Summary of predictors

We briefly describe the primary regression algorithm explored in this work, as
well as the naive benchmark used to assess the performance of the regression

approach.

2.3.1 Regression via support vector machines

The regression problem of predicting ETAs from a vector of features is solved
with a support vector regression (SVR) machine, first introduced in [38].
Support vector regression is a popular machine learning algorithm grounded
in statistical learning theory and for which training is efficient due to the
convexity of the training problem. In the training step, the optimal regression
parameters are selected to minimize prediction errors larger than a threshold
¢, while penalizing complex models through a norm on the feature weights.

Precisely, the loss function is an e-insensitive loss | - |-, constructed as [39]:

0 if |¢] <
€le = el < e (2.1)

|€] — e otherwise,

where £ is a prediction residual. The SVR formulation also provides for ex-
tension to nonlinear regression via kernel functions. Additionally, the model
parameters in linear SVR are straightforward to interpret, which can be in-
valuable in the application of the algorithm. Other applicable algorithms
include linear ridge regression [40|, elastic net regression [41], and kernel
ridge regression, to name a few.

The training step in SVR involves the following convex optimization prob-

lem:

migipie vl + € D60 +€0)
subject to (i) —wz(i) — b < e+ £(3), (2.2)
whz(i) +b—y(i) <e+&(),
§(@), £°(@) = 0.
Feature weights are denoted w € R™ and the two norm of these weights is
included in the minimization in order to penalize an overly complex model

that is overfitted to training data. This characteristic is referred to as model



flatness. Residual prediction errors are denoted by ) € R™ and are non-
zero for predictions outside the margin . The problem is subject to the
constraints of the e-insensitive loss function, where w’z(i) + b = f(z(i)).
The total e-insensitive loss (i.e., accuracy of model fit) is balanced against
model flatness by a scalar factor C. The value b € R! is the regression
intercept.

The optimization of (2.2) can be solved via the Lagrange dual problem,
which introduces the Lagrange multipliers a(k) € R' and o*(k) learned from
the training data in the dual problem. These dual variables provide for
solving the feature weights by leveraging the relationship w = ", (a(i) —

a*(1))z(z). This results in a predictor of the form:

m

fl@) =" (a(i) — a*(i))x(i) "z +b (2.3)

=1

The resulting f(z) = w”z + b minimizes (2.2) by choosing the best w via the
dual variables; see [36] for a comprehensive description.

When the ETAs in the training data are not linearly related to the features,
an alternative strategy is to transform the training data into a much higher
dimensional feature vector denoted by ®(z), where ®: R® — RY with N >>

n, which can then be used for regression. The new predictor becomes:

m

flx) = (alk) = a”(k))® (x(k))" @(z) +b. (2.4)
k=1

Interestingly, it is not necessary to explicitly define the mapping to the high
dimensional space, since only the inner product ®7® is needed in the regres-
sion function. The inner product can instead be defined through a kernel
function K (z(k),2(j)) = ® (x(k))" ®(x(j)). The use of the kernel function
directly in (2.4) is known as the kernel trick [42] in machine learning. In
the present work, we adopt the radial basis function (RBF) kernel [43] of the

form:

Ka(h)20)) = exp (5 109 — =) (25)

where o is a parameter controlling the decay rate of the kernel, effectively
limiting the influence that any single observation may have on the trained

model.

10



CHAPTER 3

FEATURE CONSTRUCTION AND DATA
CLEANING STEPS

This section discusses the process of combining and mining datasets to be
used in feature construction. The data used in this work is described first,
before describing the features that are calculated from the datasets which
are subsequently used to train the machine learning ETA algorithm. Due to
the proprietary nature of the data, some descriptions are reported in relative

terms.

3.1 Description of raw data

This work uses a series of datasets describing the rail network and operations
from December 1, 2014 through January 31, 2017 inclusive. It consists of
freight train movement, train car operations, crew, and locomotive data in
the CSX Transportation network, extracted from dispatching and signaling
data.

The movement data consists of records generated at OS-points between
terminals. The data includes the track on which the train was reported
and the time at which the train triggered the OS-point. This dataset also
contains information about track mileage covered, direction of travel, and
the next location at which work on the train will occur.

The train car operations data details the actions performed on the train
once it enters the terminal from the line of road. This includes the switching
operations (i.e., picking up and setting out rail cars) that are referred to as
train work, inspections, refueling, and crew changes that are scheduled to
occur at intermediate destinations/terminals and may incur delay in getting
track space in the terminal. The planned work schedule, as well as adherence
to the schedule, is reported in this data. Changes in physical train charac-

teristics (e.g., total number of cars, length, tonnage) are inferred based on
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Figure 3.1: GIS network view depicting a portion of the Nashville division,
with multi-track segments shown in bold red lines and single-track segments
in thin blue lines. The primary study route is bounded with the dashed line.

the work reported on the train.

Crew data contains information about the crew assigned to the train, the
originating location, the time at which they were called on duty, and the time
at which the crew must legally go off duty (i.e., 12 hours after going on duty).
The time between a crew going on duty and the departure of the train is non-
negligible and is referred to as on duty time to departure (ODTOD). Crew
information is important because the maximum crew on-duty requirement
must always be satisfied, even at the large expense of stopping a train and
transporting a replacement crew to finish the trip.

Locomotive assignment data indicates the equipment and total locomotive
power available on each train, which can be important for predicting delays
in regions with large grades.

This work also uses GIS data describing the physical infrastructure of the
network, which includes individual tracks, switches, mileposts, and terminals.
All locations referenced in the movement, work, crew, and locomotive data
map to physical infrastructure locations, such as track mileposts and control
points. Reconciling these GIS data sources is necessary to gather data on the
number of tracks and siding locations and lengths on each route and build the
network graph described in Section 2.2. Figure 3.1 depicts this data, along
with the distinction between single track sections (shown by the thin blue
lines) and multiple track sections or sidings (shown by the bold red lines).
The study area is bounded by the dashed line.

12



3.2 Data cleaning and standardization tasks

A variety of data cleaning and data transformation tasks are necessary to
organize the input for any prediction algorithm. With over 150,000 trips in
the division in a two year period, the decision was made to neglect trips with
data completeness issues or data errors instead of devising a scheme to impute
missing or erroneous values; this resulted in the discarding of approximately
10% of trains. Errors consist of fields that contain missing data, or fields
that contain illogical values. Examples include non-physical train lengths, or
an arrival time prior to the train departure time.

The GIS data is examined to ensure proper connectivity and accuracy
before being transformed into the network graph. Common errors encoun-
tered include duplicate geometries, disconnected track components, and mi-
nor mislabeling of infrastructure components. Many errors are automatically
identified and resolved, while some errors require manual correction.

The detection and resolution methods for each of these data fields are
summarized in Table 3.1. Each was implemented at the time of data mining
and feature construction, so that an origin-destination dataset is clean at the

time of model training.

3.3 Handling of recrewed trains

In the process of early prediction efforts and data exploration efforts, a dom-
inant source of runtime variability was discovered. Specifically, it was found
that recrewed trains (i.e., a train that did not reach its destination before the
crew reached its maximum on-duty time and needed a relief crew) define the
dominant source of runtime variability on the study route.

To further investigate the impact of recrews on train variability, all trains
were ex post facto labeled as either recrewed or non-recrewed. Less than 10%
of the trains on the route were recrewed. The two classes (recrewed and non-
recrewed trains) were separated and descriptive statistics were calculated for
each class at each of the 35 OS-points, which are spread across the route
depicted in Figure 3.1. The standard deviation of runtimes was used to
quantify the runtime variability of trains in each class as well as the variability

of all trains in the dataset (not separated on recrew). As shown in Figure 3.2,
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Figure 3.2: Comparison of variability in runtime, between recrewed trains,
non-recrewed trains, and all trains, for each origin OS point. Variance is
normalized by the largest variance OS-point, OS-point #21. OS-point IDs
increase from Nashville (1) to Chattanooga (42).

the runtime variability of the recrewed trains is several times larger than
that of the non-recrewed trains across all OS-points; runtime variability is
expressed as a relative value to protect proprietary operational properties in
the data. Despite recrewed trains representing less than 10% of the trips,
they represent 53% of the variability within the dataset of all trains, when
averaged across the full route.

Recrewed trains introduce high variability in runtime and their runtimes
are not predictable by features inside the scope of the train and network state
features (e.g., location and status of potential relief crews is a significant
factor and is not in our dataset). It is likely, however, that the circumstances
leading to a recrew will enable its preemptive classification and could be
captured with the available data. For the scope of this project, recrewed
trains were historically identified and removed from the training data as part

of data cleaning and standardization steps.

3.4 List of calculated features

This section lists and discusses the features that are generated from the raw
data in Section 3.1 and used to train machine learning algorithms in ETA pre-
diction. A summary of the implemented scalar features appears in Table 3.2.
These features include six train characteristics, two features that capture the

state of the crew on each train, and multiple scalar features quantifying the

15



network characteristics and traffic. Numerous series of features describe the
traffic state of the network in the vicinity of prediction. These all depend on
segmentation of the track between OS-points. The network traffic state is
described for these segments in terms of occupancy, direction, and priority;
these are summarized in Table 3.3. All of the features chosen for exploration
were based on extensive discussions with operations research personnel from
CSX Transportation.

The priority of a train is determined by its cargo (e.g., bulk, merchan-
dise, automotive, intermodal), and its type of service (e.g., local, yard, road).
These combinations are categorized and ranked in different levels of granular-
ity. At the highest resolution, all trains are placed into one of twenty priority
classes. The relative priority ranking is understood to be non-linear based on
its construction. The high resolution ranking was aggregated to a medium-
resolution ranking using five priority classes and a low-resolution ranking of
three priority classes. For example, scheduled merchandise trains have signif-
icantly higher priority than bulk/unit trains (e.g., loaded coal train), but in
medium- and low-resolution classifications, the two types will get the same
priority designation.

The physical train characteristics such as train length and train tonnage
were calculated by examining the work data which contains the train dimen-
sions after the most recent work was completed. Similarly, the most recent
crew change can be identified in the crew data, which is used to calculate the
maximum time the current crew may continue to operate the train, called
crew time remaining. The practical importance of this feature is in terms
of the difference between crew time remaining and expected train runtime
(constant), called slack time. If the crew time remaining is less than the typ-
ical train runtime, then a train may be expedited in order to avoid a recrew.
In terms of feature construction, crew time remaining and slack time reduce
to the same values under min-max normalization applied to each element in
the feature vector used for the model input X.

A total of six scalar quantifying measures of traffic are constructed, each
based on the line of road between the current location of a train and the
destination. First, within the remaining line of road, all other trains including
local trains are counted, and then categorized based on the direction of travel
for each (e.g., same direction, subscript w, or opposite direction, subscript

psi, relative to the train being predicted). A second parameter categorizes
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directional traffic counts (two counts) by their priority, as higher (subscript
«) or lower /equal priority (subscript () relative to the train being predicted,
resulting in another four features.

The exact traffic state of the origin-destination route and surrounding area
is described further using numerous feature series, the components of which
correspond geographically to track segments. The segments refer to the
connections between OS-points, and span the origin-destination route and
distances around the origin and destination limited to 50% of the origin-
destination route length. The dimension of each feature series is equal to
the number of track segments that are considered. In our study area of
approximately 140 miles, the 35 OS-points delineate the segments on the
origin-destination route. OS-points within 70 miles of the origin and 70 miles
of the destination not included on the origin-destination route delineate the
track segments around the origin and around the destination. These series
features are enumerated and explained in Table 3.3. Segment occupancy is
a series of binary features, each of which is non-zero when another train is
present in a track segment at the time that a prediction is made for a train
at the origin point. Likewise, trains that are present on these segments can
be described with respect to their relevant properties, namely direction of
travel and priority. This process of describing the traffic state via network
segments and traffic properties is illustrated in Figure 3.3. Predictions are
made at the origin OS-point ag and OS-points delineating segments are la-
beled ag through a; (for origin-destination route, only). An example traffic
scenario for the moment at which a prediction is made for train Z, at the
origin is shown with trains Z;, Zy, Z3. The relevant features (i.e., direction
and priority) of each train are listed, and are mapped to the track segments

corresponding to the location of each train.
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Train | Direction  Priority Relative priority
Z, East 0.8 n/a
° 7, West 0.2 lower
% Z, East 1.0 higher
S
Z, East 0.6 lower
,—l segments around destination
route segments
segments around origin
= Z, —
0 Z Z, mm>
. | -
OS-point: a, EN a, az a, as ag a,
track segment -3, | a-3, | 3,3 33-3 | -3 | -3
segment occupancy = [ 0 1 0 1 1 0 ]
occupying train direction = [ 0 1.0 0 0.5 0.5 0 ]
occupying train priority = [ 0 0.2 0 1.0 0.6 0 o]
occupying train relative priority = [ 0 0.0 0 1.0 0.0 0 ]

Figure 3.3: Segment-wise series features are calculated for the area around
an origin point, on the origin-destination route, and around the destination.
Each is segmented by OS-points, ag through a; on the origin-destination
route in this case. The occupancy series feature is constructed, followed by
series based on properties of the occupying train, if present.
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CHAPTER 4

MODEL IMPLEMENTATION AND
EVALUATION

This section describes a set of model experiments and a metric to assess the
machine learning methods described above. The feature sets used in the

models are composed of the features described previously in Section 3.4.

4.1 Description of models

Numerical experiments were performed with concentration on a single route,
shown by the dashed area in Figure 3.1, in the Nashville division of the CSX
Transportation network which contains a mix of single and double track
segments, highly heterogeneous traffic, and high volume relative to capac-
ity. The route represents one of the most challenging segments on which
to estimate ETAs within the CSX Transportation network. Without loss of
generality of the methods, the present analysis is restricted to common train
types with sufficient trips in the two year dataset and includes the automo-
tive, merchandise, and intermodal trains. These train types have differing
priorities, and consequently have distinct behaviors in meet/pass movements
and when delays occur. The dataset for trains running the full study route in
the correct direction of travel initially contains over 10,000 trips. When the
dataset is filtered by train type, recrewed trains are removed, local trains and
trains with intermediate work are eliminated, and data errors and incomplete
records are removed, there are still approximately 4,200 trips.

The selected route is composed of 35 points along the 140 mile route for
which an ETA to the destination must be produced. For each of the 35
ETA problems, a total of five models are implemented and compared. The
models include the baseline median predictor algorithm as well as four SVR-
based algorithms. Many combinations of algorithm type and feature set were

explored, and the presented models are representative of the model type and
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performance. For example, the various priority features were each evaluated
for predictive performance by performing single-feature model trials and ps ;
was found to be the most informative.

The exact model configurations are as follows:

e Model 0: baseline median predictor where f(x(i)) = mediany(i) | y(i) € Y.

e Model 1: linear SVR with all scalar features (length, tonnage, hp/ton,
priority, crew time, ODTOD, traffic counts, and sidings fit); the feature
vector is constructed as: x(2) = [Ni, fi, Mis P5.is Vis Gis Tis Tuis Twrsis Tuwais

TwBis Tasis T pis Tis |, Where z(1) € R,

e Model 2: linear SVR with all scalar features plus track segment occu-

pancy (i) = [N, ti, Wi, Psis Vir Ois Tis Twis Tirsis Twneis TwBris Tbsasis Tip,Bris
i, [O14, ..., Or4]], where z(i) € RM¥H.

e Model 3: linear SVR with all scalar features and all series features
37(1) = [/\i7 His Miy P54y Vis 6@'7 Tiy Twyis Tapyis Tw,ayiy Tw,Bris Tap,ais Tap,Bis iy
[Ol,ia cey Ol,i]v [Dl,iy cey Dl7i:|7 [Ql,iv ) Ql,i]7 [Rl,iv ) Rl,i]a [G—l,ia sy G—h,i]a
(Eis1y -y Bt 4., where z(i) € RI4+4l+htp

e Model 4: RBF kernel SVR with all scalar features and all series fea-

tures (i) = [Ni, fis Wiy P54, Vis Ois Tis Tussis Tesir Twseis TewBi> Tobrcvsis Top,Bris Tis
[Ol,ia “eey Ol,i]a [Dl,ia crey Dl,i]; [Ql,’i; ceey Ql,i]? [Rl,ia ceey Rl,i]7 [Gfl,ia seey G*h,i]?
[El+l,i7 ey El_;,_fﬂ']], where {L'(Z) € Rl4+dlthtp,

4.2 Model evaluation

The error metric used to evaluate a given model is mean absolute error

(MAE), defined as:

MAE = 237 11(a(0) - ()| (4.1)

where f(z(7)) and y(i) correspond to the predicted runtime and true runtime
of train i, respectively, and p denotes the number of records in the testing
dataset. It follows that low MAE scores are better than high scores. Perfor-

mance of each model is compared to that of the historical median predictor,
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Model 0. The improvement for each model is given as the reduction in the
MAE relative to the historical median predictor.

The machine learning algorithms and benchmark predictors are imple-
mented in Python and leverage the scikit-learn package [44|. The data pro-
cessing steps are completed once for each origin-destination pair and the
feature set is stored in a database. Model trials are performed by loading
the feature set, selecting the desired data, normalizing features, and training
the model and testing the performance via cross-validation. Data processing
and model testing both occur on a dedicated, modern workstation computer
with 4 GHz quad-core processor, 64 GB DDR4 RAM, and NVMe solid state
drives. Building the feature set is the most time consuming step in the pro-
cess, due primarily to the size of the raw data. This process can take up to
15 minutes per origin-destination pair but is only required once, and adding
more features and data does not require reprocessing of previous data. Model
training is accomplished in 5.0 to 15.0 seconds, with prediction on all test

data taking no more than 3.0 seconds.
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CHAPTER 5

RESULTS

This section first presents the process for choosing hyper-parameters C' and
e in (2.2) for a single origin-destination model with scalar features. We
then analyze the series of models trained with scalar features on the full 35-
OS-point route and the differences between them, specifically with respect
to feature weights. Performance results are then shown for each model in

Section 4.1 across the route, as well as the impact of the nonlinear kernel.

5.1 Choosing hyper parameters for a single model

For each origin-destination model, the SVR parameters, C' and ¢ are chosen
to minimize MAE on testing data. The training and testing process is per-
formed using a dataset containing approximately 4200 trips using a 5-fold
cross validation with an 80/20 training/testing data split. The parameter
space is explored using a grid search that explores all combinations of pa-
rameters within the bounds of each. The trained model must be checked for
suitability such that it generalizes well to testing data. This check is done
using validation curves for C' and € and a learning curve for the amount of
data used to train the model.

The interpretation of these parameters as well as analysis of training and
testing behavior kept the search space limited. The e parameter is directly
related to residual values between f(z(i)) and y(i) and, therefore, can be
limited to a search space proportional to the normalized spread of the true
outputs y(7). The C' parameter penalizes the model training error, summed
across all observations (i), relative to the model flatness, given by the two
norm of feature weights. We normalize C' such that it is scaled by the number
of features and inversely scaled by the number of observations in the training

dataset. This maintains the impact of the parameter across models with
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different dimensionalities.

A validation curve explores training and testing scores across a range of
a model parameter, with other parameters fixed. Using a fixed C' value of
0.1, the validation curve for the £ parameter in Figure 5.1 shows relatively
little effect of € value on training and testing scores. Within the acceptable
parameter range, high values nor low values make an appreciable effect on
testing MAE. Approaching ¢ = 0.0, the e-insensitive loss disappears and
the algorithm converges to linear regression. When ¢ is set too high, more
emphasis is placed on the number of observations that lie within 4+¢ and less
is placed on minimization of prediction error. In comparison, the value of C'
has significantly higher impact on model score. The validation curve is also
shown in Figure 5.1 with ¢ fixed at 0.2 and plotted with common normalized
MAE score for comparison. Small values of C' emphasize model flatness, but
result in low training and testing scores because model complexity is low.
Large values of C' achieve low training MAE but generalize poorly to the
testing data because of overfitting.

Though validation curves show single parameter sensitivity, the optimal
parameters are chosen simultaneously by evaluating the model on the grid
space of all parameter combinations (C' € [107°,10%,e € [0.0,1.0]. For
origin-destination model at OS-point #1, the optimal values that minimize
MAE are found to be C' = 0.75 and ¢ = 0.4; the difference in training and
testing scores is less than 3% of training error, which is clearly avoiding
overfitting.

The learning curve for a model shows the convergence of training and
testing performance by increasing the amount of data available to build the
model. The curve is analyzed after hyper-parameters have been chosen. The
learning curve shows the MAE score against the number of training examples
available to the model. With smaller amounts of data available, training
scores will be improved, but at the expense of the model generalizing poorly
to testing data. The learning curve in Figure 5.2 indicates that the model
is trained on a sufficient amount of data because the curves converge before
the full training dataset is used. The mean training and testing scores are
denoted by the lines with the shaded areas showing one standard deviation in
each direction between cross-validation folds. The model training and testing
occur at 10%, 32.5%, 55%, 77.5% and 100% of available data. The residual

disparity in training and testing scores begins at over 40% of training score
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Figure 5.1: The validation curves for the C' and ¢ parameters on a single
origin-destination model are plotted with a common MAE score axis, which
is min-max normalized across both parameters. The sensitivity of the
model to ¢ is relatively low compared to that of C.

with only 10% of available data and decreases to less than 4% with 100% of
available data.

Testing performance of the model can be further assessed in the distribu-
tion of errors around the true values, shown in Figure 5.3. Perfect prediction
would align points on the line f(x) = y, with true output equal to predicted
output. The predictions made by the model at OS-point #1 have smaller
range than that of the true output values, meaning the model made more
conservative estimates for the more extreme points. It is possible that factors
causing extreme output values are occur rarely (e.g., special priority elevation
or maintenance on the route) and make the relationship difficult to capture
from the data.

For any SVR model with a linear kernel, the feature weights can be inter-
preted meaningfully in both magnitude and sign. The feature weights were
recorded at all cross validation folds and for each origin-destination model to
assess the relative impact of each. The feature weights are normalized by ab-
solute sum within each model, such that 2?;1 |lw;| = 1, to allow comparison
between models. They are reported in absolute terms for ranking in terms
of absolute impact. The results for the origin-destination model at OS-point
#1 (the beginning of the route in Nashville) are shown in Table 5.1. For this

model, the effect of train priority is the dominant feature; this is supported

26



Learning Curve
OS-point #1 to OS-point #35

—8— Training score
0.9 1 —e— Testing score
o
Q 4
O
2]
w
<
=
3 0.5
N
®
£
]
Z -
0.1
500 1000 1500 2000 2500 3000 3500

Training examples

Figure 5.2: The learning curve for a single origin-destination model shows
convergence of the training and testing error scores given increasing
availability of observations in the full dataset.
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Error distribution of prediction
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Figure 5.3: Comparison of predicted outputs f(z(i)) to true output values
y(7). Both are normalized runtimes with the origin-destination median
runtime subtracted.

by the statistically distinct runtimes between priority classes at this distance
from the destination. Crew time remaining has a large impact because it can
affect the runtime of a train at this distance if the train experienced signifi-
cant delay leaving its last terminal. Tonnage also play a large role due to the
lower overall performance of the train during acceleration and deceleration.
Features with particularly low impact include traffic counts separated by di-
rection and priority, which is an overly simplistic view of the traffic state on
long routes. Horsepower per ton also has less of an impact because few trains

are under powered in an area such as this with significant terrain.

5.2 Model training across route

The hyper-parameter selection process and model evaluation was replicated
for origin-destination predictions made at each of the 35 OS-points on the
full route. Because the C' parameter is normalized by the training data size
and feature dimension, and the ¢ parameter demonstrated little sensitivity,
the optimal set of hyper-parameters found by the selection process varied
little across the route.

The main finding is that reported feature weights show significant vari-
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Table 5.1: Average feature weights for 5-fold cross validation on
origin-destination prediction at OS-point #1 (Nashville). Exact model
output weights are normalized by absolute sum.

Feature Average weight
Priority, Ps 0.346
Crew time remaining, C' 0.137
Tonnage, M 0.110
Traffic opposite direction lower/equal priority, Ty, 0.089
Available sidings, S 0.067
Total traffic, T 0.055
Traffic opposite direction, Ty 0.050
Length, L 0.047
Traffic same direction, Ty, 0.040
Horsepower per ton, () 0.019
Traffic opposite direction higher priority, Ty i 0.011
Traffic same direction higher priority7yy, g 0.011
Traffic same direction lower /equal priorityTw 0.011
On duty time to departure, ¢ 0.008
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ability across the route. This supports the idea that dispatching techniques
have fundamental differences based on relative location of the train to a ter-
minal point. All scalar feature weights are shown at each prediction point
in Figure 5.4. The means of each feature at each location are represented
by the lines and min-max ranges for each are shown by the shaded area
around the lines. In prediction of the full route, at OS-point #1, the fac-
tor most heavily impacting train runtime is priority. Other factors certainly
play into the dispatching decisions made for the route, but do not appear to
have strong relationships far from the destination. Closer to the destination,
traffic counts and train tonnage are driving factors due to decisions around
the yard and natural choke point in the network. The changing importance
of train characteristics supports the domain understanding that many fac-
tors contribute to train ETA and the impact of these factors is not constant.
Along the route, feature weight experience some sharp changes, but some of
these can be explained by certain characteristics of the route. For example,
the sharp dip in the weight of priority and crew time remaining, along with
the sharp increase in weight on traffic in the same direction, is located on
the most significant hill on the route. At this location, a separate helper
locomotive attaches to and assists trains in climbing the hill. Availability of
this locomotive is a driving factor in runtime from this location and its pres-
ence is captured indirectly in the feature set without being explicitly defined.
This separation of origin-destination models is, after all, intended to encode
these geographic features in the data via specificity.

This specificity serves as a justification for the separation of origin-destination
predictions to distinct models, as opposed to a unified model predicting ETAs
for all origins and destinations. Feature weights may be learned optimally for
a single model, instead of forcing feature weighting conditioned upon location
information. It is possible that some features may change weight predictably
relative to the distance from the destination point such that a distance nor-
malization in feature construction could account for weight change. However,
the results of feature weights across the route show that many of the trends

are inconsistent.
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Feature weight changes across route
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Figure 5.4: Feature weight change of scalar features in origin-destination
SVR models across the route, Nashville (1) to Chattanooga (35).

5.3 Performance comparison of SVR models

Performance of each model detailed in Section 4.1 is evaluated across all OS-
points on the route. The four non-baseline models demonstrate increasingly
levels of model complexity based on the features included in each, but are
not a comprehensive list of all feature combinations that were tested.

The model results are shown in Figure 5.5 in terms of relative reduction in
MAE over the historical median predictor (Model 0). A features set with only
scalar features (i.e., Model 1), as explored in the choice of hyper-parameters
and examination of feature weights, represents the largest performance gain
for every origin-destination predictor. Inclusion of the segment-wise occu-
pancy feature series (Model 2) and inclusion of all segment-wise features
series (Model 3) each attain small MAE improvements in addition to im-
provements gained by the scalar features. The RBF kernel, however, does
not provide any substantive performance gain over the fully featured linear
model. The v parameter in the RBF kernel was chosen by exploring the
range v € [1074,10%] in a grid search alongside the & and C parameters.

Based on the relative performance improvements of the SVR models over
the baseline, it is evident that the addition of the segment-wise network

traffic state features (Models 2 and 3) show clear advantages by providing
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Table 5.2: Comparison of SVR model performance to baseline predictor,
averaged across the 35 OS-points on the full route, for each model.

Predictor Mean % Maximum % Minimum %
improvement
Model 0 0.0% 0.0% 0.0%
(Baseline)
Model 1 9.4% 14.2% 4.0%
Model 2 12.2% 19.9% 4.6%
Model 3 14.0% 21.6% 6.2%
Model 4 14.3% 21.8% 7.0%

high-resolution information compared to the simple counts of network traffic
(Model 1). The larger gains are achieved by the segment-wise occupancy
feature series, but the additional information on the direction and priority of
the traffic improve the model performance by better informing on the likely
meets and passes that will occur. For instance, the mere presence of another
train on the route will be somewhat likely to increase runtime, but if this
train is traveling in the direction opposing trains on the origin-destination
route and has high priority then it may be highly likely to increase runtime.

Model performance varies somewhat across the origin OS-points due to
the distribution of route delay. The spacing of sidings and the likelihood
of each to be used varies due to their length and topological characteristics
of the route. Overall, the relative performance of the models to each other
is consistent across the route. Prediction performance decreases closer to
the destination. We expect this is due to the more unpredictable nature of
operations close to rail yards. The factors that affect the exact arrival of a
train when it gets close are not necessarily present in the data (e.g., ability
of the yard to accept more trains, availability of the next train crew)

These route results are summarized in Table 5.2 in terms of mean, maxi-
mum, and minimum percent improvement over the baseline. The minimum
improvement values are consistently observed for models close to the desti-
nation point and the maximum improvement is observed at the beginning of

the route.
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Figure 5.5: Improvement in MAE over baseline historical median predictor
for each model at all OS-points between Nashville (1) and Chattanooga
(35).
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CHAPTER 6

CONCLUSION

This article presented a data driven approach to predict ETAs on freight rail
networks in an online setting. The online ETA generation problem is posed
as a series of independent origin-destination ETA prediction problems to
avoid bias in the training data of a single general model due to time varying
features, and is tractable for rail networks due to relative network complex-
ity. Plus, it is shown to demonstrate specificity with respect to distinct
feature weights (i.e., relative importance) between origin-destination models.
ETA prediction models are constructed using combinations of features and
linear and nonlinear SVR algorithms. Compared to naive prediction based
on historical median runtimes, average improvements of 14% and maximum
improvements of over 21% are achieved by the best performing SVR models

Based on these findings, our future research steps include the following.
Due to the large variance caused by recrews, we are interested in developing
a data-driven classifier to preemptively classify trips that are likely to be
recrewed. Such a classifier would be needed to implement ETA prediction
algorithms that rely on a dataset free of this large source of variability. For
the trains that are not likely to be recrewed, further improvements in the
ETA accuracy are possible with the construction of additional targeted traf-
fic features. The current feature set includes sufficient information on the
number of likely meets and passes that a train will incur, but only indirectly
quantifies the delay that will be experienced as a result. A naive version of
meet /pass planning could be implemented to generate additional features for
the current models. Data describing yard operations is not present in the
datasets at hand, but the addition of this information could assist predictions

made close to the yards, which were shown to exhibit decreased performance.
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