
c© 2017 Shiv Verma

AN EXPERIMENTAL COMPARISON OF PARTITIONING
STRATEGIES IN DISTRIBUTED GRAPH PROCESSING

BY

SHIV VERMA

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2017

Urbana, Illinois

Adviser:

Associate Professor Indranil Gupta

ABSTRACT

In this thesis, we study the problem of choosing among partitioning strate-

gies in distributed graph processing systems. To this end, we evaluate and

characterize both the performance and resource usage of different partition-

ing strategies under various popular distributed graph processing systems,

applications, input graphs, and execution environments. Through our exper-

iments, we found that no single partitioning strategy is the best fit for all

situations, and that the choice of partitioning strategy has a significant effect

on resource usage and application run-time. Our experiments demonstrate

that the choice of partitioning strategy depends on (1) the degree distribu-

tion of input graph, (2) the type and duration of the application, and (3)

the cluster size. Based on our results, we present rules of thumb to help

users pick the best partitioning strategy for their particular use cases. We

present results from each system, as well as from all partitioning strategies

implemented in two common systems (PowerLyra and GraphX).

ii

To friends, family and teachers.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Contributions of this Thesis 3
1.2 Outline of this Thesis . 3
1.3 Summary of Results . 4

CHAPTER 2 RELATED WORK . 6
2.1 Graph Processing . 6
2.2 Graph Partitioning . 7
2.3 Other Evaluations . 7

CHAPTER 3 BACKGROUND . 9
3.1 The GAS Decomposition . 9
3.2 Edge Cuts and Vertex Cuts 10
3.3 Graph Applications . 10

CHAPTER 4 EXPERIMENTAL METHODOLOGY 13
4.1 Clusters . 13
4.2 Datasets . 13
4.3 Metrics . 14

CHAPTER 5 POWERGRAPH . 15
5.1 System Introduction . 15
5.2 Partitioning Strategies . 16
5.3 Experimental Setup . 19
5.4 Experimental Results . 19

CHAPTER 6 POWERLYRA . 25
6.1 System Introduction . 25
6.2 Partitioning Strategies . 26
6.3 Experimental Setup . 27
6.4 Experimental Results . 27

iv

CHAPTER 7 GRAPHX . 32
7.1 System Introduction . 32
7.2 Partitioning Strategies . 33
7.3 Experimental Setup . 34
7.4 Experimental Results . 34

CHAPTER 8 POWERLYRA: ALL STRATEGIES 36
8.1 Partitioning Strategies . 36
8.2 Experimental Results . 36

CHAPTER 9 GRAPHX: ALL STRATEGIES 40
9.1 Partitioning Strategies . 40
9.2 Experimental Results . 40

CHAPTER 10 CONCLUSIONS . 45

REFERENCES . 46

APPENDIX A OBLIVIOUS . 52

APPENDIX B HDRF . 53

v

CHAPTER 1

INTRODUCTION

There is a vast amount of information around us that can be represented in

the form of graphs. These include graphs of social networks, bipartite graphs

between buyers and items, graphs of road networks, dependency graphs for

software, etc. Moreover, the size of these graphs has rapidly risen and can

now reach up to hundreds of billions of nodes and trillions of edges [1].

Systems such as PowerGraph [2], Pregel [3], GraphX [4], Giraph [5], and

GraphChi [6] are some of the plethora of graph processing systems being

used to process these large graphs today. These frameworks allow users to

write vertex-programs which define the computation to be performed on the

input graph. Common applications including PageRank or Single Source

Shortest Path can be easily expressed as these vertex-programs.

To be able to compute on large graphs, these systems are typically run in a

distributed manner. However, to distribute graph computation over multiple

machines in a cluster, the input graph first needs to be partitioned before

computation starts by assigning graph elements (either edges or vertices) to

individual machines.

The partitions created have a significant impact on the performance and

resource usage in the computation stage. To avoid excess communication

between different partitions during computation, systems typically use vertex

mirroring, whereby some vertices may have images in multiple partitions. If

a partitioning strategy results in a large number of mirrors, then it will lead

to higher communication costs, memory usage, and synchronization costs.

These synchronization overheads and communication costs, in turn, lead to

higher job completion times. Besides reducing the number of mirrors, the

partitioning strategy needs to make sure that the partitions are balanced in

order to avoid overloading individual servers and creating stragglers.

Graph partitioning itself must also be fast and efficient; for some graph

applications, the time it takes to load and partition the graph can be much

1

Table 1.1: Systems and their Partitioning Strategies.

System Partitioning Strategies

PowerGraph (§5) Random, Grid, Oblivious, HDRF, PDS
PowerLyra (§6) Random, Grid, Oblivious, Hybrid, Hybrid-Ginger, PDS

GraphX (§7) Random, Canonical Random, 1D, 2D

larger than the time it takes to do the actual computation. In particular,

the authors of [7] found that when they ran PageRank for 30 iterations with

PowerGraph on 10 servers, around 80% of the time was spent in the ingress

and partitioning stage. Our own experiments reveal similar observations.

The characteristics of the graph also play an important role in the deter-

mining the efficiency of a partitioning technique. For example, many real

world graphs, such as social networks or web graphs [8], follow a power-law

distribution. Gonzalez et. al. demonstrate in [2] that the presence of very

high-degree vertices in power-law graphs present unique challenges from a

partitioning perspective, and motivate the use of vertex-cuts in such cases.

A large amount of research has been done to improve graph partitioning for

distributed graph processing systems, e.g., [9, 2, 10]. Current research is

typically aimed at reducing the number of mirrors and thus improving graph

processing performance while still keeping the graph ingress phase fast.

Today, many of the aforementioned graph processing systems [9, 2, 4] offer

their own set of partitioning strategies. For instance, as shown in Table 1.1,

PowerGraph [2] offers five different partitioning strategies, GraphX [4] offers

four, and PowerLyra [9] six. Even after a user has decided which system

to use, it is rarely clear which partitioning strategy is the best fit for any

given use case. In this thesis, we aim to address this dilemma. Our first

goal is to compare partitioning strategies within each system. This holds

value for developers planning to use a given system. It is not our goal to

compare graph processing systems against each other. They release new

versions frequently, and there is sufficient literature on this topic [11]. We

also implement all partitioning strategies in one common system (PowerLyra)

and present experiments and observations (with caveats).

2

1.1 Contributions of this Thesis

The main contributions of this thesis are:

• We present experimental comparisons of the partitioning strategies present

in three distributed graph processing systems (PowerGraph, GraphX,

PowerLyra);

• For each system we provide rules of thumb to help developers pick the

right partitioning strategy;

• We implement PowerGraph’s and GraphX’s partitioning strategies into

PowerLyra (along with a new variant);

• We similarly implement all strategies from PowerGraph and PowerLyra

into GraphX;

• We present experimental comparisons of all strategies across all systems,

and discuss our conclusions.

In particular, we find that the performance of a partitioning strategy de-

pends on: (1) the degree distribution of the input graph, (2) the character-

istics of the application being run, and (3) the number of machines in the

cluster. Our results demonstrate that the choice of partitioning strategy has

a significant impact on the performance of the system; e.g., for PowerGraph,

we found that selecting a suboptimal partitioning strategy could lead to an

overall slowdown of up to 1.9× times compared to an optimal strategy, and

a >3× slowdown in just computation time alone. Similarly, we have ob-

served significant differences in resource utilization based on the partitioning

strategy used, e.g., there is a 2× difference in PageRank peak memory uti-

lization between different partitioning strategies in PowerLyra. Finally, when

all partitioning strategies are implemented in one system we find that our

per-system decision trees do not change, but partitioning strategies tightly

integrated with the underlying engine perform better. This means that our

per-system results still hold value.

1.2 Outline of this Thesis

This thesis is organized as follows.

1. In Chapter 2, we discuss the related work in the areas of graph pro-

3

cessing and graph partitioning.

2. In Chapter 3 we provide some background on the graph computation

models (Pregel and GAS), edge-cuts vs vertex-cuts, and the applica-

tions used for the evaluation.

3. In Chapter 4, we cover the experimental methodology of our experi-

ments.

4. In Chapter 5, we introduce PowerGraph, its partitioning strategies and

discuss our results related to the system.

5. Chapters 6 and 7 similarly cover PowerLyra and GraphX respectively.

6. Additionally Chapters 8 and 9 cover these systems respectively with

all partitioning strategies ported from the other systems.

7. Finally, we conclude in Chapter 10.

1.3 Summary of Results

We now provide a brief summary of the results of our experiments. These

results are from experiments performed on three systems and their associated

partitioning strategies: PowerGraph, PowerLyra, and GraphX, as well as

multiple different applications and real-world graphs. Table 1.1 lists the

individual partitioning strategies we evaluate in this thesis.

For PowerGraph, we found that heuristic-based strategies, i.e., HDRF

and Oblivious, perform better (in terms of both ingress and computation

time) with graphs that have low-degree distribution and large diameters such

as road networks. Grid incurs lower replication factors as well as a lower

ingress time for heavy-tailed graphs like social networks. However, for power-

law-like graphs such as UK-web, the two heuristic strategies deliver higher

quality partitions (i.e., lower replication factors) but have a longer ingress

phase when compared to Grid. Therefore, for power-law-like graphs, Grid is

more suitable for short running jobs and HDRF/Oblivious are more suitable

for long running jobs.

For PowerLyra, we need to additionally consider if the application being

run is natural or not; Hybrid is significantly more efficient when used with

4

natural applications. Natural applications are defined as applications which

Gather from one direction and Scatter in the other (terms explained later

in Chapter 3). We have provided two decision trees based on these findings:

PowerGraph (Figure 5.9) and PowerLyra (Figure 6.6). These decision trees

and the results that build up to them have been discussed in more detail in

Sections 5.4 and 6.4, respectively.

For GraphX, all partitioning strategies have similar partitioning speed,

i.e., the partitioning phases took roughly the same amount of time. So, the

choice of partitioning strategy is based primarily on computation time. Our

results indicate that Canonical Random works well with low degree graphs,

and 2D edge partitioning with power-law graphs. These results are discussed

in Section 7.4.

When all partitioning strategies are implemented and run in a common

system (PowerLyra), we find that decision trees do not change, asymmetric

random performs worse than random, and that the engine enhances some

partitioning strategies more than others. We also find that CPU utiliza-

tion is not a good indicator of performance. Similarly when all partitioning

strategies are implemented in GraphX, we see that the decision process again

changes very little. While performing these experiments, we also look into

the effects of memory pressure on GraphX.

5

CHAPTER 2

RELATED WORK

Graph processing as well as Graph partitioning have been widely researched.

In this chapter we present related work in these fields.

2.1 Graph Processing

There are several distributed graph processing systems that were not evalu-

ated in this thesis. They include Pregel [3], LFGraph [7], Apache Giraph [5],

GPS [12], Picollo [13], Pegasus [14] and Mizan [15].

Moreover, just as GraphX is built on Spark, other dataflow frameworks like

Naiad [16] can also be used for graph processing. Husky [17], which aims to

present a fine-grained yet high-level abstraction for distributed computation,

has also shown promising results for graph processing.

There are also works which try to perform large-scale graph processing

on a single large scale machine such as Ligra [18, 19] and GraphChi [6].

The motivation for these systems is that before scalability, a system should

focus on efficiency. Gemini [20] is a graph processing system that, while

distributed, prioritizes efficiency over scalability. Gemini shares a lot of opti-

mizations with Ligra (such as the hybrid push-pull mechanism and compact

vertex representation) and GraphChi (work-stealing). COST [21] is another

work that shows that over-prioritizing scalabity can lead to systems that just

“parallelize overheads”.

The aforementioned GraphChi system uses secondary storage to store

edges (which vastly outnumber vertices) to fit large graphs in a single ma-

chine. X-Stream [22] builds on top of this with an added edge-centric com-

putation model. Chaos [23] further builds on top of it and allows scaling

out.

There are also systems like Medusa [24] which aim to offload graph pro-

6

cessing to GPUs to get a performance boost.

Kineograph [25] is a distributed graph processing system that allows graph

processing on continuously changing graphs. Graph databases have also re-

cently emerged to store, update and query such ever-changing graphs. Ex-

amples of such databases include Neo4j [26], titan[27], and Weaver [28].

2.2 Graph Partitioning

The PowerGraph paper [2] contains descriptions of the Oblivious and Coordi-

nated strategies. Similarly, PowerLyra [29] covers the strategies Hybrid and

Hybrid-Ginger. Moreover, PowerLyra has also been extended with strategies

specifically catering to bipartite graphs [9]. A description of Grid and other

constrained strategies can be found in the Graphbuilder paper [30].

Gemini [20] also includes a chunk-based partitioning scheme that leverages

the natural locality in real world graphs.

There are several offline graph partitioning algorithms such as METIS [31],

Fennel [32] and Ja-be-ja [33].

GraphH [34] is a system that performs network-aware graph partitioning

as well as dynamic migration of edges during computation. LeBeane et. al.

[35] take the partitioning strategies from PowerGraph and PowerLyra and

modify them for heterogeneous clusters.

The Leopard [36] paper presents an edge partitioning algorithm tailored

for dynamically changing graphs.

Pundir et. al. [37], present algorithms for re-partitioning the graph for

mid-computation scale-out.

2.3 Other Evaluations

Anwar et. al. [38] present and compare offline partitioning strategies specif-

ically optimized for spatial road networks and for k-means clustering.

Zorro [39], a work that add zero-cost fault-tolerance to PowerGraph, also

evaluates the effects of different partitioning strategies on their fault-recovery

system.

7

Han et. al. [11] evaluate and analyze multiple pregel-like graph processing

systems and suggest ways to improve all of them.

All of these works differ in that they do not analyze online graph parti-

tioning strategies for general purpose and distributed graph processing.

8

CHAPTER 3

BACKGROUND

This Chapter provides background information on (1) the Gather-Apply-

Scatter (GAS) model, (2) the difference between edge-cuts and vertex-cuts,

and (3) the different graph applications used in the evaluation.

3.1 The GAS Decomposition

The Pregel [3, 40] model of vertex-centric computation involves splitting the

overall computation into supersteps. Vertices communicate with each other

by passing messages, where messages sent in one superstep are received in

the by neighbors in the next. This model is also available in systems such as

Giraph and GraphX.

Similarly to Pregel, Gather-Apply-Scatter (GAS) is a model for vertex-

centric computation used by systems such as PowerGraph, GraphLab [41, 42],

and PowerLyra. In this model, the overall vertex computation is divided

into iterations, and each iteration is further divided into Gather, Apply and

Scatter stages (also called minor-steps).

In the Gather stage, a vertex essentially collects information about adja-

cent edges and neighbors and aggregates it using the specified commutative

associative aggregator. In the Apply stage, the vertex receives the gath-

ered and aggregated data and uses it to update its local state. Finally, in

the Scatter stage, the vertex uses its updated state to trigger updates on

the neighbouring vertices’ values and/or activate them for the next iteration.

The vertex program written by the user specifies to which neighbouring ver-

tices to gather or scatter. The user specifies the gather, apply and scatter

methods to be executed in their corresponding stages. The user also specifies

a commutative associative aggregator for the gather stage.

9

3.2 Edge Cuts and Vertex Cuts

There are two main partitioning and computational approaches in distributed

graph processing: (1) edge-cuts, as used by systems such as GraphLab [41],

LFGraph [7], and the original version of Pregel, and (2) vertex-cuts, as used

by systems such as PowerGraph and GraphX. In LFGraph and Pregel, par-

titions themselves communicate with each other for each such cut edge. In

Distributed GraphLab, partitions maintain replicas of vertices connected by

cut edges.

For systems that utilize edge-cuts, vertices are assigned to partitions and

thus edges can span partitions. For systems that utilize vertex-cuts, edges

are assigned to partitions and thus vertices can span partitions. Unlike edges

which could be cut across only two partitions, a vertex can be cut across

several as its edges may be assigned to several partitions.

Edge-cuts and vertex-cuts are preferable in different scenarios as pointed

out by [9]. Edge-cuts are better for graphs with many low-degree vertices

since all adjacent edges of a vertex are allocated to the same machine. How-

ever, for power-law-like graphs with several very high degree nodes, vertex-

cuts allow better load balance by distributing load for those vertices over

multiple machines.

3.3 Graph Applications

Graph applications differ along multiple axes: initial conditions, direction

of data-flow, presence of edge-mutation, and synchronization. To capture a

wide swathe of this space, we have selected the following applications for use

in our subsequent experimental evaluations.

3.3.1 PageRank

PageRank is an algorithm used to rank vertices in a graph, where a vertex is

ranked higher if it has incoming edges from other high-rank vertices. PageR-

ank first starts by assigning each vertex a score of 1, and then updates the

10

vertex score p(v) in each superstep using v’s neighboring vertices as:

p(v) = (1− d) + d ·
∑

v′∈Ni(v)

p(v′)

|No(v′)|

Here, d is a dampening factor (typically set to 0.85) and No(v) and Ni(v) are

the set of out- and in-neighbors, respectively, of vertex v.

3.3.2 Weakly Connected Components

This identifies all the weakly connected components of a graph using label

propagation. All vertices start out with their vertex id as their label id. Upon

receiving a message form a vertex with a lower label id, they update their

label id and propagate that label to all of their neighbours. At the start of

computation, all vertices are active and send out their label IDs. The update

rule can be formalized as:

p(v) = min
v′∈N(v)

(p(v′))

where N(v) is the set of all neighbours of v. After convergence, all vertices

have the the lowest vertex ID in its weakly connected component as its value.

3.3.3 K-Core Decomposition

A graph is said to have a k-core if it contains a subgraph consisting entirely

of nodes of degree at least k; such a subgraph is called a k-core. K-core

decomposition is the process of finding all such k-cores, and is performed for a

given k by repeatedly removing nodes of degree less than k. The PowerGraph

application accepts a kmin and kmax value and finds all k-cores for all values

of k in between.

3.3.4 SSSP

Single Source Shortest Path (SSSP) finds the shortest path given a source

vertex to all reachable vertices. SSSP first starts by setting the distance

value of the source vertex to 0 and all other vertices to ∞. Initially only the

11

source is active. In each superstep, all active vertices send to their neighbours

their current distance from the source. In the next step, if a vertex receives

a distance smaller than its own, it updates its distance and propagates the

new distance value. This continues until there are no more active vertices

left. The update step for any active vertex is:

p(v) = min
v′∈N(v)

(p(v′) + 1)

This update step can be easily modified for cases that involve directed or

weighted edges.

3.3.5 Simple Coloring

The Simple Coloring application assigns colors to all vertices such that no two

adjacent vertices have the same color. Minimal graph coloring is a well-known

NP-complete problem [43]. This application, therefore, does not guarantee

a minimal coloring. All the vertices initially start with the same color and,

in each iteration, each active vertex assigns itself the smallest integer (color)

different from all of its neighbours’:

p(v) = arg min
k
{k|k 6= p(v′)∀v′ ∈ N(v)}

12

CHAPTER 4

EXPERIMENTAL METHODOLOGY

In this chapter we describe the clusters and datasets used for the experiments

as well as the metrics we measure during our experiments. Several system-

specific metrics and setup details are covered in their respective chapters.

4.1 Clusters

Detailed descriptions of our experimental environments are provided in Table

4.1. For both PowerGraph and PowerLyra, we performed our experiments on

three different clusters: (1) a local cluster of 9 machines (to accommodate the

perfect-square machine requirement for Grid partitioning), (2) an EC2 cluster

consisting of 16 m4.2xlarge instances, and (3) an EC2 cluster consisting of

25 m4.2xlarge instances. For GraphX we used a local cluster of 10 machines.

4.2 Datasets

The datasets were obtained from SNAP (Stanford Network Analysis Project)

[44], LAW (Laboratory for Web Algorithmics) [45] and DIMACS challenge 9

[46]. We used a mixture of low-degree and power-law-like graphs. A summary

of the datasets has been provided in Table 4.2. All the datasets were stored

in plain-text edge-list format.

Table 4.1: The Cluster Specifications.

Cluster Sizes Memory Storage vCPUs

Local 9 & 10 64GB 500GB SSD 16 (2 X 4-core Intel Xeon 5620 w/ hyperthreading)
EC2 (m4.2xlarge) 16 & 25 32GB 250GB EBS SSD 8 (2.4 GHz Intel Xeon E5-2676 v3 (Haswell))

13

Table 4.2: The graph datasets used.

Graph Dataset Edges Vertices Type

road-net-CA [44] 5.5M 1.9M Low-Degree
road-net-USA [46] 57.5M 23.6M Low-Degree
LiveJournal [44] 68.5M 4.8M Heavy-Tailed

Enwiki-2013 [47, 48] 101M 4.2M Heavy-Tailed
Twitter [49] 1.46B 41.6M Heavy-Tailed

UK-web [47, 48] 3.71B 105.1M Power-Law

4.3 Metrics

The primary metrics used in our experiments are:

• Ingress time: the time it takes to load a graph to memory (how fast

a partitioning scheme is).

• Computation time: the time that it takes to run any particular graph

application and always excludes the ingress/partitioning time.

• Replication factor: the average number of images per vertex for any

partitioning strategy.

• System-wide resource usage: we measured memory consumption,

CPU utilization and network usage at 1 second intervals.

To measure the system-wide resource metrics, we used a python library called

psutil1. The peak memory utilization (per-machine) for an application was

calculated by taking the difference between the maximum and minimum

memory used by the system during experiment. This allows us to filter

out the background OS memory utilization and still measure memory in

an system independent way. For network IO, we found the incoming and

outgoing IO patterns to be similar. So, we focus only on the incoming traffic.

We launched the system monitors on all machines a few seconds before

the experiment begins and terminated the monitors a few seconds after the

experiment ended. This ensured that the monitoring overhead was small

and constant and also helped us accurately estimate background memory

utilization. This method is similar to the one used by Han et. al. in [11].

1https://github.com/giampaolo/psutil

14

CHAPTER 5

POWERGRAPH

In this chapter we introduce the PowerGraph graph processing system, the

partitioning strategies it ships with, and our experimental results.

5.1 System Introduction

PowerGraph [2] is a distributed graph processing framework written in C++

and designed to explicitly tackle the power-law degree distribution typically

found in real-world graphs. The authors of PowerGraph discuss how edge-

cuts perform poorly on power-law graphs and lead to load imbalance at

the servers hosting the high-degree vertices. To solve the load-imbalance,

they introduced vertex-cut partitioning, where edges instead of vertices were

assigned to partitions.

A

B

D

A

C

D

M1 M2

A

B C

D

(a) An example graph (b) Vertex cut between two machines

Figure 5.1: PowerGraph’s vertex replication model.

15

5.1.1 Vertex Replication Model

Vertex cuts allow an even load balance but result in replication of the cut

vertices. Whenever an edge (u, v) is assigned to a partition, the partition

maintains a vertex replica for both u and v. For vertices which have images

in more than one partitions, PowerGraph randomly picks one of them as the

master and the remainder are called mirrors.

For a vertex, the total number of mirrors plus the master is called the

vertex’s replication factor. A common metric to measure the effectiveness

of partitioning in PowerGraph is to calculate the average replication factor

over all vertices [9, 2, 50]. Lower replication factors are associated with lower

communication overheads and faster computation.

5.1.2 Computation Engine

PowerGraph follows the GAS model of computation, and allows the Gather

and Scatter operations to be executed in parallel among machines. More

specifically, all of a vertex’s mirrors perform a local Gather, and then send the

partially aggregated data to the master which will in turn perform another

aggregation over the partial aggregates. Then in the Apply step, the master

updates its local value and synchronizes all its mirrors. Thereafter, all the

mirrors perform the Scatter step in parallel.

PowerGraph can be used with both synchronous and asynchronous en-

gines. When run synchronously, the execution is divided into supersteps,

each consisting of the Gather, Apply, and Scatter minor-steps. There are

barriers between the minor-steps as well as the supersteps. When run asyn-

chronously, these barriers are absent.

5.2 Partitioning Strategies

PowerGraph provides five partitioning strategies: (1) Random, (2) Oblivious,

(3) Grid, (4) PDS, and (5) HDRF.

16

5.2.1 Random

In PowerGraph’s Random hash-partitioning implementation, an edge’s hash

is the function of the vertices it connects. The hashing function ignores the

direction of the edge, i.e., directed edges (u, v) and (v, u) hash to the same

machine. Random is often appealing because it: (1) is fast, (2) distributes

edges evenly, and (3) is highly parallelizable. However, Random creates a

large number of mirrors.

5.2.2 Oblivious

The Oblivious graph partitioning strategy is based on a greedy heuristic with

the objective of keeping the replication factor as low as possible. Oblivious

incrementally and greedily places edges in a manner that keeps the replication

factor low. The heuristic devolves to a few simple cases which are described

in Appendix A in detail.

The heuristic requires some information about previous assignments to as-

sign the next edge. Therefore, unlike Random, this is not a trivial strategy

to parallelize and distribute. In the interest of partitioning speed, Oblivious

does not make machines send each other information about previous assign-

ments, i.e., each machine is “oblivious” to the assignments made by the other

machines and thus makes decisions based on its own previous assignments.

5.2.3 Constrained

Constrained partitioning strategies hash edges, but restrict edge placement

based on vertex adjacency in order to reduce the replication factor. This

additional restriction is derived by assigning each vertex v a constraint set

S(v). An edge (u, v) is then placed in one of partitions belonging to S(u) ∩
S(v). As a result, Constrained partitioning imposes a tight upper bound of

|S(v)| on the replication factor of v. There are two popular strategies from

constrained family offered by PowerGraph: Grid and PDS.

Grid [30] organizes all the machines into a square matrix. The constraint

set for any vertex v is the set of all the machines in the row and column

of the machine v hashes to. Thus, as shown in Figure 5.2, all edges can be

stored on at least 2 machines. As a result, Grid manages to place an upper

17

h(u) == 1 2 3

4 5 6

7 8 h(v) == 9

Figure 5.2: Grid Partitioning example: u hashes to 1, v hashes to 9. The
edge (u, v) can be placed on machines 7 or 3.

bound of (2
√
N − 1) on the replication factor where N is the total number

of machines.

While Grid partitioning can generally work for any non-prime number of

machines, whereby we construct an (m× n) rectangle (m and n are integers

such that m× n = N and neither m nor n equals 1), the version offered by

PowerGraph only works with a perfect square number of machines.

PDS uses Perfect Difference Sets [51] to generate constraint sets. However,

PDS requires (p2 + p+ 1) machines where p is prime. Since we were unable

to satisfy the constraints of both PDS and Grid on the number of machines

simultaneously, and therefore could not directly compare the two strategies,

we have not included PDS in our evaluation.

5.2.4 HDRF

HDRF is a recently-introduced partitioning strategy that stands for High-

Degree Replicated First [50]. HDRF is similar to oblivious, but while Obliv-

ious breaks ties by looking at partition sizes (to ensure load-balance), HDRF

looks at vertex degrees as well as partition sizes. As the name suggests, it

prefers to replicate the high degree vertices when assigning edges to parti-

tions. So, while assigning an edge (u, v), HDRF may make an assignment to

a more loaded machine instead, if doing so results in less replication for the

lower degree vertex between u and v.

To avoid making multiple passes, HDRF uses partial-degrees over actual

degrees. HDRF updates partial-degree counters for vertices as it processes

edges and uses these counters in its heuristics. The authors found no sig-

18

nificant difference in replication factor, upon using actual degree instead of

partial degree. Details can be found in Appendix B.

5.3 Experimental Setup

We ran all graph applications mentioned in the Section 3.3 with all partition-

ing strategies from Section 5.2. All applications were run until convergence.

k-core decomposition was run with kmin and kmax set to 10 and 20 re-

spectively. PowerGraph, by default, uses a number of threads equal to two

less than the number of cores. We used the Road-net-CA, Road-net-USA,

LiveJournal, Twitter, and UK-web datasets. All datasets were split into as

many blocks as there are machines in the cluster to allow parallel loading.

5.4 Experimental Results

In this section, we discuss the results for PowerGraph. These results hold for

PowerLyra as well.

5.4.1 Replication Factor and Performance

Figures 5.3, 5.4, and 5.5 show per-machine network IO, computation time

and per-machine peak-memory usage plotted against replication factor as it

is varied by picking different partitioning strategies. We see that all three

performance metrics are increasing linear functions of replication factor.

All plots illustrate results with UK-Web on the EC2-25 cluster. We found

similar behaviors for all graphs and cluster sizes, and we elide redundant

plots. The choice of application only affects the slope of the line. We can

see that this is true for all applications except Simple Coloring, which devi-

ates from the trend due to its execution on the asynchronous engine. The

asynchronous engine sometimes ‘hangs’ and consequently takes much longer

to finish (Oblivious) and sometimes just fails (HDRF).

The linear correlation between network usage and replication factors (Fig-

ure 5.3) results from synchronization between mirrors and masters after each

step. In the Gather step, (n− 1) replicas will send their partially aggregated

19

2 4 6 8 10 12 14

Replication Factors

0

5

10

15

20

25

In
b
o
u
n
d
 N

e
t

I/
O

 (
G

B
s)

R
a
n
d
o
m

H
D

R
F

O
b
liv

io
u
s

G
ri

d

K-Core
Coloring

PageRank(10)
WCC

SSSP
PageRank(C)

Figure 5.3: Incoming Network IO vs. Replication Factors. (PowerGraph,
EC2-25, UK-Web).

3000
3500
4000
4500
5000
5500
6000
6500

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s)

2 4 6 8 10 12 14

Replication Factors

0

50

100

150

200

250

300

R
a
n
d
o
m

H
D

R
F

O
b
liv

io
u
s

G
ri

d

K-Core
Coloring

PageRank(10)
WCC

SSSP
PageRank(C)

Figure 5.4: Computation Time in seconds vs. Replication Factors.
(PowerGraph, EC2-25, UK-Web).

20

2 4 6 8 10 12 14

Replication Factors

15

20

25

30
P
e
a
k

m
e
m

o
ry

 u
sa

g
e
 (

G
B

s)

R
a
n
d
o
m

H
D

R
F

O
b
liv

io
u
s

G
ri

d

K-Core
Coloring

PageRank(10)
WCC

SSSP
PageRank(C)

Figure 5.5: Memory usage vs Replication Factors. (PowerGraph, EC2-25,
UK-Web).

Figure 5.6: Replication Factors in Powergraph.

values to the master; after the Apply step, the master will send its (n − 1)

replicas the updated vertex state (where n is the vertex’s replication factor).

The linear correlation between replication factor and computation time (Fig-

ure 5.4) can be explained by: (1) the additional computation requirements

because of having more replicas, and (2) having to wait longer for network

transfers to finish as the amount of data to be transferred is larger. The lin-

ear correlation between vertex replication and memory usage occurs because

all vertex replicas are stored in memory (hence, having more replicas leads

directly to higher memory consumption).

In light of the observation that replication factors are a reliable indicator

of the resource usage due to partitioning (Figures 5.3, 5.4 and 5.5), from

here on we will primarily use replication factor to compare the partitioning

strategies. Figure 5.6 shows the replication factors for all of PowerGraph’s

partitioning strategies on all graphs and cluster sizes.

21

Figure 5.7: Ingress Time in seconds in PowerGraph.

(a) LiveJournal (b) Twitter (c) uk-web

100 102 104

In-Degree
106100

103

106

109

100 102 104
100

103

106

109

100 102 104 106

C
ou

nt

100

102

104

106

108

In-Degree In-Degree

C
ou

nt

C
ou

nt

Figure 5.8: In-degrees of the three powerlaw graphs used.

5.4.2 Minimizing Replication Factor

For Twitter and LiveJournal, Grid delivers the best (lowest) replication fac-

tor. For UK-web however, Grid’s replication factor is worse than that of

HDRF/Oblivious.1 Although all the three graphs are skewed, heavy-tailed,

and natural, they differ when it comes to low-degree nodes. In Figure 5.8,

we see that relative to the power-law regression line, Twitter and LiveJour-

nal have fewer low-degree nodes (unlike UK-web). This is why HDRF and

Oblivious perform better than Grid for UK-web but not for Twitter and Live-

Journal. The heuristic strategies perform better with low-degree vertices. In

fact, HDRF was explicitly designed to lower the replication factor for low-

degree vertices. As a result HDRF/Oblivious also deliver better replication

factors for the entirely low-degree road-network graphs. Therefore, in terms

of replication factor, HDRF/Oblivious are better for power-law-like graphs

and low-degree graphs while Grid is preferable for heavy-tailed graphs.

1HDRF is a parameterized variant of Oblivious, and we use the recommended value of
the parameter λ = 1. In practice, this causes HDRF and Oblivious to perform similarly.

22

5.4.3 Partitioning Quality vs Partitioning Speed

In Figure 5.7, we have plotted the ingress times for all the partitioning strate-

gies. Hash-based partitioners are faster for power-law graphs in all clus-

ter sizes, while all strategies perform similarly on low degree road network

graphs. From Figure 5.7, we can see that Grid is usually the fastest in terms

of ingress speed, followed by Random.

For low-degree road-network graphs, HDRF and Oblivious have the lowest

replication factors (Figure 5.6) as well as fast ingress (Figure 5.7). Mean-

while, for heavy-tailed graphs like social networks, Grid delivers the lowest

replication factors as well as the fastest ingress speed. However, for UK-

web, Grid has the fastest ingress but HDRF has the best replication factors.

Thus, for graphs like UK-web we need to look at the type of applications

being run. If the application spends more time in the compute phase than

in the partitioning phase, it will benefit more from lower replication factor;

if it spends longer in the partitioning phase, it will benefit more from faster

ingress.

Let us use the following example to demonstrate the effect of job dura-

tion on the choice of partitioning strategy: running PageRank and k-core

decomposition with UK-web on the EC2-25 cluster. We show the ingress

and computation times in Table 5.1. We see that for short running PageR-

ank, the ingress phase is much longer than the computation phase. Therefore

Grid, which has faster ingress, has a better total job duration, even though

HDRF has a faster compute phase. On the other hand, for applications with

a high compute/ingress ratio like k-core, a faster compute phase is better for

the overall job duration. Therefore, when the compute/ingress ratio is lower,

faster ingress is better.

When a graph may be partitioned, saved to disk, and reused later, such

cases should be treated similar to the high compute/ingress ratio case (as-

suming that partitions will be reused enough times, compute becomes larger

than ingress) and lower replication factor should be the priority.

5.4.4 Picking a Strategy

On the basis of these results, we present a decision tree to help users select

a partitioning strategy (Figure 5.9). For low-degree graphs we recommend

23

Table 5.1: Time taken (seconds) by HDRF and Grid in the ingress and
compute phases. Bold font highlights the stage which had the largest
impact on the total runtime. (PowerGraph, EC2-25, UK-web).

Strategy
PageRank (Conv.) K-Core Decomp.

ingress compute total ingress compute total
Grid 206.4 146.0 352.4 203.6 3794.9 3998.5

HDRF 322.0 103.6 425.6 320.6 3225.1 3545.7

Start HDRF/
Oblivious

Grid

HDRF/
Oblivious

Yes

Yes

High (>1)

Yes

No

No

No

Low (≤1)

Low degree graph?

Heavy-tailed graph? N2 machines?

Power-law/other graph Compute/Ingress?

Figure 5.9: Our decision tree for picking a partitioning strategy with
PowerGraph.

HDRF/Oblivious. For heavy-tailed graphs like social networks, we recom-

mend Grid, if the cluster size permits. If Grid is not possible, then fall back

on HDRF/Oblivious. For graphs that follow the power-law distribution more

closely, HDRF/Oblivious are the strategy of choice. Finally, we note that

because of Random’s consistently high replication factor, it should generally

be avoided. Even though Random has fast ingress, Grid demonstrates sim-

ilar (or better) ingress times consistently, while delivering better replication

factors.

24

CHAPTER 6

POWERLYRA

We introduce PowerLyra, its partitioning strategies, the setup used for it,

and present our experimental results.

6.1 System Introduction

PowerLyra [9] is a graph analytics engine built on PowerGraph that seeks to

further address the issue of skewed distribution in power-law graphs by per-

forming differentiated processing and partitioning for high- and low-degree

vertices. Its authors argue that applying vertex-cuts to low-degree vertices

can lead to high communication and synchronization costs. Similarly, apply-

ing edge-cuts to high-degree vertices leads to imbalanced load and high con-

tention. As a result, PowerLyra takes a best-of-both-worlds hybrid approach

and applies edge-cuts to low-degree vertices and vertex-cuts to high-degree

vertices.

PowerLyra’s new partitioning strategies follow the hybrid philosophy. Two

new strategies are proposed: (1) Hybrid, a random hash based strategy, and

(2) Hybrid-Ginger, a heuristic-based strategy. Both partitioning strategies

aim to perform vertex-cuts on high-degree vertices and edge-cuts on low-

degree vertices; we discuss both in more detail in the next section. In ad-

dition, PowerLyra’s new hybrid computation engine differentially processes

high-degree and low-degree vertices by performing a distributed gather for

high-degree vertices (as in PowerGraph), and a local gather for low-degree

vertices (as in GraphLab/Pregel). PowerLyra implements both synchronous

and asynchronous versions of this hybrid engine.

By performing edge-cuts on the low-degree vertices and placing them

with their in-edges, PowerLyra is able to efficiently support natural graph

applications–those algorithms that gather values in only one direction (e.g.,

25

from in-neighbors) and scatter in the other (e.g., to out-neighbors). Exam-

ples include PageRank, (directed) Single-Source Shortest Paths, etc. Since

the low-degree vertices are placed with either their gather-neighbours or their

scatter-neighbours, PowerLyra’s approach lowers communication and syn-

chronization costs significantly.

6.2 Partitioning Strategies

The latest version of PowerLyra, at the time of our writing, comes with

PowerGraph’s Random, Grid, PDS and Oblivious partitioning strategies,

along with its own novel Hybrid and Hybrid-Ginger partitioning algorithms.

As was the case with PowerGraph, we exclude PDS because of the reasons

explained in Section 5.2.3.

6.2.1 Hybrid

Hybrid performs vertex-cuts for high-degree vertices, edge-cuts for low-degree

vertices, and assigns each edge exclusively to its destination vertex. Hybrid

places the edges with low-degree destinations by hashing the destination

vertex, and the edges with high-degree destinations by hashing the source

vertex. Using this approach, Hybrid minimizes the replication factor for low-

degree vertices. Similarly to HDRF (Section 5.2.4), Hybrid also ensures that

high-degree vertices have high replication factors in order to allow for better

distribution and load balance for such vertices.

Unlike HDRF, Hybrid uses the actual degree of a vertex, rather than the

partial degrees. Consequently, the strategy requires multiple passes over the

data. During the first phase, Hybrid performs edge-cuts on all vertices and

also updates the degree counters. In the second phase, called the reassign-

ment phase, Hybrid performs vertex-cuts on the vertices whose degree is

above a certain threshold. We use the default threshold value of 100.

6.2.2 Hybrid-Ginger

Hybrid-Ginger seeks to improve on Hybrid using a heuristic inspired from

Fennel [32], a greedy streaming Edge-cut strategy. Hybrid-Ginger first par-

26

titions the graphs just like Hybrid but then in an additional phase, tries

to further reduce the replication factors for low degree vertices through the

heuristic. The heuristic is not used for high-degree vertices and is also mod-

ified to account for load-balance.

The heuristic tries to place a low degree vertex v in the partition that

has more of its in-neighbours. Here, v gets assigned to a partition p that

maximizes c(v, p) = |Ni(v) ∩ Vp| − b(p) where Ni(v) is the set of v’s in-

edge-neighbours and Vp is the set of vertices assigned to p. The first term

(|Ni(v) ∩ Vp|) is the partition specific in-degree and the second term b(p) is

the load-balance factor. b(p) represents the cost of adding another vertex to p

by accounting for the number vertices and edges in p: b(p) = 1
2
(|Vp|+ |V |

|E| |Ep|)
[9, 35].

6.3 Experimental Setup

The setup for PowerLyra was identical to that for PowerGraph (Section 5.3).

We enabled PowerLyra’s new hybrid computational engine and fixed a minor

bug with Hybrid-Ginger that prevented it from running on UK-web.1

6.4 Experimental Results

In this section, we discuss the results for PowerLyra.

6.4.1 Hybrid Strategies and Natural Algorithms

We generally see a correlation between replication factors and performance

for PowerLyra, similar to PowerGraph (Section 5.4.1). Unlike PowerGraph,

PowerLyra is optimized for when Hybrid strategies are paired with natural

algorithms which Gather from one direction and Scatter in the other (Section

6.1). Hybrid colocates the master replica of low-degree vertices with all in-

edges, allowing PowerLyra to perform a local gather instead of the usual

1The integer type used to store the number of edges from the command-line options
overflowed with UK-web.

27

2 4 6 8 10 12 14

Replication Factors

0

5

10

15

20

25

In
b
o
u
n
d
 N

e
t

I/
O

 (
G

B
s)

H
-G

in
g
e
r

H
y
b
ri

d

G
ri

d

R
a
n
d
o
m

O
b
liv

io
u
s

K-Core
Coloring

PageRank(10)
WCC

SSSP
PageRank(C)

Figure 6.1: Incoming network IO vs. Replication Factor. (EC2-25,
PowerLyra, UK-web).

2 4 6 8 10 12 14

Replication Factors

15

20

25

30

P
e
a
k

m
e
m

o
ry

 u
sa

g
e
 (

G
B

s)

R
a
n
d
o
m

H
y
b
ri

d
H

-G
in

g
e
r

O
b
liv

io
u
s

G
ri

d

K-Core
Coloring

PageRank(10)
WCC

SSSP
PageRank(C)

Figure 6.2: Peak memory utilization vs. Replication Factor. (EC2-25,
PowerLyra, UK-web).

distributed gather. As a result, PowerLyra eliminates associated network

and synchronization costs for low-degree vertices.

We can see the effect of this optimization when we look at compute-phase

network usage plotted against replication factors (Figure 6.1). The Hybrid

and Hybrid-Ginger datapoints have been intentionally ignored by the regres-

sion line to better highlight the effect of the optimization. We can see that

Hybrid and Hybrid-Ginger use less network IO than Oblivious while running

PageRank (a natural application), even though their replication factors are

higher. Therefore, Hybrid strategies perform well when paired with natural

algorithms. Since we used the undirected version of SSSP (which is not a

natural algorithm) for the PowerGraph and PowerLyra experiments, we are

28

0 50 100 150 200 250 300 350 400

Time (s)

0

5

10

15

20

25

30

35

M
e
m

o
ry

 U
ti

liz
a
ti

o
n
 (

G
B

s)

Random
Oblivious

Grid
Hybrid

H-Ginger

Figure 6.3: Average memory utilization over time. The black dots mark the
end of ingress phase for each partitioning strategy. (EC2-25, PowerLyra,
UK-web, PageRank).

Figure 6.4: Ingress Times for PowerLyra.

unable to see network savings of similar magnitude.

6.4.2 Hybrid Strategies and Memory Overheads

From Figure 6.2, we can see that Hybrid and Hybrid-Ginger have a higher

peak memory utilization than expected from their replication factor. We

have again ignored the hybrid data points while drawing the regression line

to highlight how much they deviate from the trend. In the timeline plot

of memory utilization (Figure 6.3), we see that peak memory utilization is

reached during the ingress phase (before the black dot) for each partitioning

strategy. Therefore, we attribute Hybrid and Hybrid-Ginger’s higher peak-

memory usage to their partitioning overheads from additional phases. Unlike

the other partitioning strategies (Section 5.2) which are all streaming single-

pass strategies, Hybrid and Hybrid-Ginger have multiple phases. Hybrid

Figure 6.5: Replication Factors for PowerLyra.

29

Oblivious

Grid

Hybrid

Yes

Yes

High (>1)

Yes

No

No

No

Low (≤1)

Yes

No

Low degree graph?

Natural Application?

Heavy-tailed graphs?

Power-law-like/other graphs Compute/Ingress?

N2 machines?

Start

Oblivious

Figure 6.6: Our decision tree for PowerLyra’s partitioning strategies.

reassigns high-degree vertices in its second-phase and Hybrid-Ginger has an

additional phase on top of Hybrid to perform low-degree vertex reassignments

on the basis of the Ginger heuristic. These additional phases contribute to

the memory overhead. We can see the Hybrid-Ginger which has more phases

also has a higher overhead.

6.4.3 Minimizing Replication Factor

Barring the above exceptions, replication factors are still a good indicator of

performance in terms of network usage, memory and computation time. We

have therefore provided ingress times and replication factors for PowerLyra’s

strategies on all graphs and cluster sizes in Figures 6.4 and 6.5.

Here, as in PowerGraph, Oblivious delivers the best replication factors for

the low-degree road networks and UK-web graph. On the other hand, Grid

and Hybrid both have low replication factors for LiveJournal and Twitter

graphs. Thus, for heavy-tailed graphs, Grid would be preferable when possi-

ble as it has lower memory consumption even when it has a higher replication

factor.

6.4.4 Picking a Strategy

We have provided a decision tree for PowerLyra in Figure 6.6. Most of the

tree is similar to that for PowerGraph, but for PowerLyra, we also take into

account if the application is natural as Hybrid synergizes well with such appli-

cations. Even so, Oblivious is a better choice for low-degree graphs because

of the lower replication factors. Thus, we place the “Natural Application?”

30

decision node after the “Low degree graph?” node. For heavy-tailed graphs

we again pick Grid if the cluster size allows it. When the cluster size is

not a perfect square, we choose to fall back on Hybrid because of its sim-

ilar performance (except for the higher memory usage). We also note that

Hybrid-Ginger should generally be avoided in favor of Hybrid. Unlike [9],

we do not find Hybrid-Ginger to be an improvement over Hybrid. Our results

demonstrate that Hybrid-Ginger has significantly slower ingress (Figure 6.4),

has a much higher memory footprint (Figure 6.3), and, in return, delivers

only slightly better replication factor than Hybrid (Figure 6.5).

31

CHAPTER 7

GRAPHX

In this chapter, we introduce GraphX and its partitioning strategies, discuss

the experimental setup and present the experimental results.

7.1 System Introduction

GraphX [4] is a distributed graph processing framework built on top of

Apache Spark that enables users to perform graph processing while tak-

ing advantage of Spark’s data flow functionality. The GraphX project was

motivated by the fact that using general dataflow systems to directly per-

form graph computation is difficult, can involve several complex joins, and

can miss optimization opportunities. Meanwhile, using a specialized graph

processing tool in addition to a general dataflow framework leads to data-

migration costs and additional system complexity in the overall data pipeline.

GraphX addresses these challenges by providing graph processing APIs em-

bedded into Spark.

GraphX leverages Spark’s Resilient Distributed Datasets (RDDs) [52] to

store the vertex and edge data in memory. RDDs are a distributed, in-

memory, lazily-evaluated and fault-tolerant data structure provided by Spark.

RDDs are connected via lineage-graphs (logs recording which operations

on which old RDDs created the new RDD) and, through them, support

lazy computation as well as fault-tolerance (based on checkpointing and re-

computation). Therefore, unlike PowerGraph/PowerLyra which only sup-

port slow checkpointing, GraphX benefits from the fault-tolerance inherent

to RDDs. Thus GraphX is structurally significantly different from Power-

Graph/PowerLyra. GraphX also utilizes vertex-cuts to divide graph data

into partitions.

32

7.2 Partitioning Strategies

GraphX comes with a variety of graph partitioning strategies: (1) Random,

(2) Canonical Random, (3) 1D, and (4) 2D partitioning. These strategies are

hash-based and stateless (they assign each edge independent of previous as-

signments), making them highly parallelizable streaming graph partitioning

strategies. Moreover, as opposed to PowerGraph and PowerLyra, which typ-

ically assign one partition to each machine, GraphX allows for an arbitrary

number of partitions per machine. A recommended rule of thumb is to use

one partition per core in order to maximize parallelism.

7.2.1 Random and Canonical Random

GraphX’s Random partitioning strategy assigns edges to partitions by hash-

ing the source and vertex IDs. The Canonical Random strategy is similar,

except that it hashes the source and vertex IDs in a canonical direction, e.g.,

edges (u, v) and (v, u) hash to the same partition under Canonical Random,

but not necessarily under Random. Therefore, the Canonical Random strat-

egy from GraphX is similar to PowerGraph’s Random partitioning strategy

(Section 5.2.1).

7.2.2 1D Edge Partitioning

1D Edge partitioning hashes all edges by their source vertex. As a result,

this partitioning strategy ensures that all edges with the same source are

collocated in the same partition. This strategy is similar to how PowerLyra’s

Hybrid strategy (Section 6.2.1) partitions its low-degree vertices.

7.2.3 2D Edge Partitioning

2D Edge partitioning is similar to PowerGraph’s Grid (Section 5.2.3). This

strategy also arranges all the partitions into a square matrix, and picks the

column on the basis of the source vertex’s hash and the row on the basis of

the destination vertex’s hash. As with the Grid partitioning strategy, this

ensures a replication upper bound of (2
√
N − 1) where N is the number of

partitions. Moreover, the strategy works best if the number of partitions is a

33

Table 7.1: Computation time-based rankings for GraphX.

Application Road-net-ca Road-net-usa LiveJournal Enwiki-2013
PageRank (1D,CR),(2D,R) (1D,CR),(2D,R) 2D,1D,(CR,R) (2D,1D),(CR,R)
SSSP (CR,1D),(2D,R) CR, (1D,R,2D) CR,2D,1D,R (1D,2D),(CR,R)
WCC CR, 1D, 2D, R CR, 1D, 2D, R (2D,1D,CR),R (1D,2D),(CR,R)

Local-9

Road-net-CA

0
10
20
30
40
50
60
70
80
90

C
o
m

p
u
te

 t
im

e
 (

w
/o

 i
n
g
re

ss
)

(s
)

1D 2D Canonical Random Random

Local-9

Road-net-USA

0

50

100

150

200

250

Local-9

LiveJournal

0

50

100

150

200

250

Local-9

enwiki-2013

0

20

40

60

80

100

120

140

Figure 7.1: Computation times for PageRank on GraphX.

perfect square otherwise the next largest square number is used to build the

grid and then the assignments are mapped back down to the correct number

of partitions (potentially leading to imbalanced load).

7.3 Experimental Setup

For GraphX, we used SSSP, PageRank and WCC with 10 iterations.We ran

our on experiments on a local cluster of 10 machines. GraphX ran out of

memory while trying to load Twitter and UK-web. So we used Enwiki-2013

instead (Table 4.2). In GraphX, the partitioning phase is separate from, and

follows after, the ingress phase. As a result partitioning time is measured

separately from ingress and computation.

7.4 Experimental Results

Unlike PowerGraph/PowerLyra, GraphX only has hash-based partitioning

schemes. Since all of GraphX’s partitioning strategies are stateless and hash-

based, they all run at similar speeds. The differences in peak memory uti-

lizations were also not found to be noticeably large. Thus, computation time

becomes the only metric on which to base the choice of partitioning strat-

egy especially because, in GraphX, computation time was always found to

34

be much larger than partitioning time. We show in Figure 7.1 the compute

times for PageRank with all graphs used. The plots for other applications

have been elided. We arrange, for each combination of graph application and

input graph, the partitioning strategies in ascending order of computation

time in Table 7.1. Partitioning strategies with performance close to each

other parenthesized. We see that for road-network graphs, Canonical Ran-

dom is consistently the fastest or the second fastest. Similarly for power-law

graphs 2D edge partitioning is fastest or close to fastest.

This can be explained by the fact that for low-degree graphs, replication

factor of a vertex is naturally bounded by its degree–thus the upper bound

imposed by 2D edge partitioning (25 for 160 partitions) is not effective for

road-networks (max degree 12). On the other hand, for the heavy-tailed and

power-law-like graphs, where the max degree is much greater than 25, the

upper bound helps keep the replication factor and thus execution time low.

Thus, we recommend Canonical Random for low-degree and high-diameter

graphs such as road-networks and 2D partitioning for power-law-like graphs.

Due to the straightforward conclusions we do not provide a decision tree.

35

CHAPTER 8

POWERLYRA: ALL STRATEGIES

In order to provide a uniform platform to compare partitioning strategies

from across all three systems, we implemented all strategies in PowerLyra.

We wished to implement faithful versions, and PowerGraph’s and GraphX’s

strategies were significantly simpler than PowerLyra’s.

8.1 Partitioning Strategies

From GraphX, we implemented 1D, 2D and Asymmetric Random (referred

to as just ‘Random’ in GraphX). From PowerGraph we implemented HDRF.

We also implemented a new strategy called 1D-Target (Section 8.2.3).1 For

GraphX, we used the Scala implementations as reference and ported it to

C++ in PowerLyra. Since PowerLyra is a fork of PowerGraph, migrating the

latter’s strategies required fewer changes. We did not implement GraphX’s

“Canonical Random” as it is equivalent to PowerLyra’s “Random”. Sim-

ilarly, PowerGraph’s Random, Grid, and Oblivious are already present in

PowerLyra.

8.2 Experimental Results

We ran all experiments on Local-9 and EC2-25 clusters, with the same setup

as in Section 6.3. The plots comparing all 9 strategies appear in Figures 8.1

and 8.2. We describe below our key observations.

1See https://gitlab-beta.engr.illinois.edu/sverma11/

powerlyra-extra-partitioners for source code.

36

https://gitlab-beta.engr.illinois.edu/sverma11/powerlyra-extra-partitioners
https://gitlab-beta.engr.illinois.edu/sverma11/powerlyra-extra-partitioners

Local-9 EC2-25

Road-net-CA

0

1

2

3

4

5

6

1D 2D Assym-Rand Grid HDRF Hybrid H-Ginger Oblivious Random

Local-9 EC2-25

Road-net-USA

0

1

2

3

4

5

6

Local-9 EC2-25

LiveJournal

0

2

4

6

8

10

12

Local-9 EC2-25

Twitter

0

2

4

6

8

10

12

14

Local-9 EC2-25

UK-web

0

2

4

6

8

10

12

14

16

Figure 8.1: Replication Factors for PowerLyra with all Strategies.

Local-9 EC2-25

Road-net-CA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
a
rt

it
io

n
in

g
 t

im
e
s

(s
)

1D 2D Assym-Rand Grid HDRF Hybrid H-Ginger Oblivious Random

Local-9 EC2-25

Road-net-USA

0

5

10

15

20

25

30

35

40

Local-9 EC2-25

LiveJournal

0
2
4
6
8

10
12
14
16
18

Local-9 EC2-25

Twitter

0

50

100

150

200

250

300

350

Local-9 EC2-25

UK-web

0

100

200

300

400

500

600

700

800

Figure 8.2: Ingress Times for PowerLyra with all Strategies.

8.2.1 No Effect on Decision Trees

We observe that a non-native strategy almost never outperform best pre-

existing PowerLyra strategy. The only exception is HDRF, which has sim-

ilar performance to Oblivious. As a result, the decision tree for PowerLyra

including all partitioning strategies is almost identical to that without (Fig-

ure 6.6), with the only difference being the replacement of ‘Oblivious’ with

‘HDRF/Oblivious’. The relative performances of PowerGraph’s strategies

remained similar. The relative performances of GraphX’s strategies were dif-

ferent after they were implemented in PowerLyra. This could have been due

to multiple reasons:

(1) GraphX’s use of RDDs, which are not present in the PowerLyra; and

(2) PowerLyra’s Hybrid engine favoring 2D and 1D (see Section 8.2.3).

This indicates to us that the performance of a partitioning strategy in

practice is correlated to how tightly it is integrated into its native system. It

is possible that with further effort and optimizations the non-native strategies

performance in PowerLyra could be improved (but this is beyond the scope

of this thesis).

8.2.2 Asymmetric Random worse than Random

Random initially was the partitioning strategy that consistently incurred the

highest replication factors in PowerLyra (Figure 6.5). However, Asymmetric

Random (which doesn’t guarantee that edges (u, v) and (v, u) get placed to

37

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Replication Factors

0

5

10

15

20

25

30

35

40
In

b
o
u
n
d
 N

e
t

I/
O

 (
G

B
s)

1
D

2
D

H
-G

in
g
e
r

A
ss

y
m

-R
a
n
d

H
y
b
ri

d

H
D

R
F

G
ri

d

1
D

-T
a
rg

e
t

O
b
liv

io
u
s

R
a
n
d
o
m

K-Core
Coloring

PageRank(10)
WCC

SSSP
PageRank(C)

Figure 8.3: Incoming network IO vs. Replication Factor. (Local-9,
PowerLyra, Twitter).

the same partition) yields even higher replication factors (Figure 8.1). Thus,

we recommend avoiding both of these strategies while running PowerLyra.

8.2.3 Hybrid Engine Enhances 1D/2D Partitioning

PowerLyra’s Hybrid Engine has low network traffic for natural applications

when using a partitioning strategy that tends to co-locate “Gather-edges”.

PageRank, for example, gathers along only the in-edges, thus they are the

gather-edges. Hybrid partitioning accounts for the gather direction of the

application and accordingly co-locates gather-edges. On the other hand,

1D hashes edges by their source vertex and thus co-locates all the out-edges.

Thus, the standard 1D implementation uses more network I/O. This is visible

in Figure 8.3, where we interpolate (linear curve-fit) a line using the points;

any performance point above the interpolation line is worse than expected

according to its replication factor (this is true for 1D PageRank(C)).

To confirm this hypothesis, we implemented a variant of 1D, called 1D-

Target, that hashes edges by their target vertex, thus co-locating in-edges.

As demonstrated in Figure 8.3, this strategy performs better and is below

the interpolation line for PageRank.

Next, we observe that 2D is also able to benefit from the Hybrid engine (2D

for PageRank is below the line in Figure 8.3). This is since 2D, in addition

to imposing a (2
√
N − 1) upper bound on the overall replication factor, also

imposes a tighter
√
N upper bound on the number of machines a vertex’s

in-edges (or out-edges) can be assigned to. Having a smaller set of machines

38

100 150 200 250 300 350

Compute time (s)

25

30

35

40

45

50

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
)

1
D

2
D

H
-G

in
g
e
r

H
D

R
F

H
y
b
ri

d

A
ss

y
m

-R
a
n
d

G
ri

d

O
b
liv

io
u
s

R
a
n
d
o
m

(a) PageRank

2400 2600 2800 3000 3200 3400 3600

Compute time (s)

10

15

20

25

30

35

40

45

C
P
U

 u
ti

liz
a
ti

o
n
 (

%
)

1
D

2
D

H
-G

in
g
e
r

H
D

R
F

H
y
b
ri

d

A
ss

y
m

-R
a
n
d

G
ri

d

O
b
liv

io
u
s

R
a
n
d
o
m

(b) K-core

Figure 8.4: CPU utilization vs Compute phase duration (Local-9, UK-Web,
PowerLyra-All). The box plots show min, 25th percentile, median, 75th
percentile, and max but excluding outliers which can be seen as flier points.

on which the in-edges have to be placed increases the probablity that all

in-edges will be co-located (especially for very low-degree vertices). Thus,

we see 2D performing slightly better than the trend.

8.2.4 CPU Utilization Patterns

In Figure 8.4 we test the hypothesis of whether average CPU utilization

is correlated with computation time. Here we see that the correlation to

replication factor (and thus compute time) varies by application: increasing

(Figure 8.4(b)) or decreasing (Figure 8.4(a)). We also note there are no clear

correlations between load imbalance (spread of boxes’ ranges in Figure 8.4)

and compute time.

39

CHAPTER 9

GRAPHX: ALL STRATEGIES

Since GraphX’s engine is significantly different in design from PowerGraph

and PowerLyra, we implemented all (non-GraphX) strategies in GraphX and

we compare them here.

9.1 Partitioning Strategies

We used Chen et. al’s [9] implementation of Hybrid and Oblivious in GraphX

as our baseline. On top of it, we implemented HDRF, Hybrid-Ginger and

Grid to get all strategies on GraphX. In the process we also reported and

fixed a bug in the implementation of Oblivious1. The bug caused incorrect

clearing of the bit-sets used to keep track of the partitions a vertex has been

replicated to – which essentially just made it random.

We also made Grid resilient to non-square number of machines by using

a strategy similar to 2D’s, whereby we construct a grid the size of the next

largest square and then map it back down to the correct number of partitions.

9.2 Experimental Results

We ran our experiments on a local cluster of 9 machines. We ran all experi-

ments to 25 iterations and additionally measured per-iteration times.

9.2.1 For Low-degree/Road-networks

For low-degree graphs (Fig 9.1), as seen in Section 7.4, we find that (Canon-

ical) Random, for smaller number of iterations, delivers the fastest speed.

1Source code for our additional strategies can be found at https://gitlab-beta.

engr.illinois.edu/sverma11/graphx-extra-partitioners

40

https://gitlab-beta.engr.illinois.edu/sverma11/graphx-extra-partitioners
https://gitlab-beta.engr.illinois.edu/sverma11/graphx-extra-partitioners

0 5 10 15 20 25

Iterations of SSSP

20

25

30

35

40

45

50

55

T
im

e
 (

se
c)

Grid Oblivious HDRF Assym-Rand Hybrid 2D 1D H-Ginger Random

0 5 10 15 20 25

Iterations of WCC

20

30

40

50

60

70

80

90

T
im

e
 (

se
c)

0 5 10 15 20 25

Iterations of PageRank(C)

20

30

40

50

60

70

80

90

T
im

e
 (

se
c)

Figure 9.1: Total time takes at the end of each iteration. (GraphX-All,
Road-net-CA, Local-9).

0 2 4 6 8 10 12 14

Iterations of SSSP

40

60

80

100

120

140

160

180

T
im

e
 (

se
c)

Grid Oblivious HDRF Assym-Rand Hybrid 2D 1D H-Ginger Random

0 2 4 6 8 10 12

Iterations of WCC

60

80

100

120

140

160

T
im

e
 (

se
c)

0 5 10 15 20 25

Iterations of PageRank(C)

40

60

80

100

120

140

160

180

200

220

T
im

e
 (

se
c)

Figure 9.2: Total time takes at the end of each iteration. (GraphX-All,
LiveJournal, Local-9).

41

Start
Canonical
Random

2D

Yes
No High

Low degree graph?

Power-law/other graph

Compute/Ingress?
Low

HDRF/
Oblivious

Figure 9.3: Decision Tree for Graphx-All.

As the number of iterations increases, HDRF and Oblivious catch up. The

greedy strategies catch up faster when there are more active vertices. For

example, the cross-over point between HDRF and Random appears earliest

in PageRank (all vertices active), then in WCC (fewer active vertices) and

finally in SSSP (fewest active vertices) it doesn’t appear at all. That the

greedy strategies generally have a lower average per-iteration time (lower

slope in the charts), suggests that they yield higher quality partitions for

low-degree graphs. This is similar to our conclusions for PowerGraph/Lyra.

However, for short jobs on GraphX, it is preferable to pick Canonical Random

and HDRF/Oblivious for long jobs.

9.2.2 For Power-law/Heavy-tailed Graphs

For Power-law-like graphs we see in Fig 9.2 that 2D is always the best or

among the best strategies. This reconfirms our hypothesis from Section 7.4

that due to large number of partitions and presence of high-degree vertices,

2D’s upper bound of (2
√
N − 1) on replication factor delivers higher quality

partitions than other strategies. Grid, which has similar upper bounds on

replication factor, usually follows 2D pretty closely in Fig 9.2. Because of 2D’s

fast partitioning speed, it is ideal for both long running and short-running

jobs on such graphs.

9.2.3 Picking a Strategy

Putting together our results, we recommend that for low-degree graphs we use

Canonical Random with short running jobs and HDRF/Oblivious with long

running ones. For power-law graphs we prefer 2D regardless of job length.

This can be summarized by the decision tree in Figure 9.3. Note that this

42

400 600 800 1000 1200 1400 1600 1800
MBs of memory provided to each executor

0

500

1000

1500

2000

2500

3000

T
im

e
 t

a
ke

n
 f

o
r

e
x
e
cu

ti
o
n
 (

se
c)

Figure 9.4: Affect of provided executor memory on the execution time
(GraphX-All, Road-net-CA, Local-9).

is very similar to the original decision strategy for GraphX mentioned in

Section 7.4

That the decision tree changes very little when the entire partitioning

strategy set is implemented on both GraphX and PowerLyra implies that

the partitioning strategies from other systems do not usually fare as well

as the already-present strategies. As shown by our 1D-target experiment in

Section 8.2.3 this is likely because the native strategies, unlike the migrated

ones, have been optimized for their systems.

9.2.4 Memory Utilization Patterns in GraphX

Due to the uniqueness of the GraphX engine, memory is a critical resource.

We analyze the effect of memory pressure on how GraphX assigns its parti-

tions. To do this, we varied the “executor-memory” parameter and measured

the resultant execution time. Fig 9.4 shows the results.

GraphX partition loading as follows. It incrementally adds edges to each

partition. It first tries to co-locate partitions on a smaller number of ma-

chines (to reduce the cost of inter-partition communication). If this results in

executors running out of memory, GraphX increases the number of machines

to see if it fits (and so on). Because of this, the execution patterns fall into

3 cases:

• Case 1: The graph cannot fit on the entire cluster. (500MB in Fig

9.4).

43

• Case 2: The graph can fit on the cluster but not in a select few

executors. (600MB – 1200MB).

• Case 3: The graph can fit in a select few (such as just 2) executors.

(1300MB onwards).

In the first case, Spark tries to initially load the entire graph on just two

executors. When they run out of memory, Spark tries to load the graph using

the whole cluster. Spark may try several times to fit the job on the cluster

by redistributing the partitions. After encountering too many out-of-memory

errors, Spark finally fails the job. In Figure 9.4, this happens at the 500 MB

point.

In the second case, Sparks’ attempts to fit the graph by evenly distributing

the partitions eventually succeed. But this is only after its initial attempt

to load the graph in just two executors fails. Given that it can take an

unknown number of attempts for Spark to fit the graph, it is hard to predict

the execution time in this case. In Figure 9.4, this occurs in the 600 MB to

1200 MB range.

In the final case, the very first attempt to load the graph succeeds, this

leads to a really fast execution time. In Figure 9.4, this happens after 1300

MB of memory. We also see that execution time decreases as more memory

is provided. This is because when memory pressure is decreased, garbage

collection overhead also reduces.

Therefore, even if the whole graph fits in memory (case 3), we recommend

having some spare memory in order to 1) reduce the garbage collection over-

head and 2) avoid the insidious “GC overhead limit exceeded” error.

44

CHAPTER 10

CONCLUSIONS

In this thesis we performed a thorough experimental evaluation and compar-

ison of the partitioning strategies found in three leading distributed graph

processing systems, namely PowerGraph, PowerLyra and GraphX.

For PowerGraph, we found that replication factor is a good indicator of

partitioning quality as it is linearly correlated with network usage, computa-

tion time and memory utilization. We showed that HDRF/Oblivious strate-

gies are ideal for low-degree graphs while Grid is ideal for heavy-tailed graphs.

For power law-like graphs, job duration should be taken into account: Grid is

better for short jobs due to its fast ingress, and HDRF/Oblivious are better

for long jobs due to lower replication factors (this includes when partitions

are reused across jobs). For PowerLyra, we need to additionally consider if

the application is natural or not, as Hybrid strategies synergize well with

natural applications. We also show that Random and Hybrid-Ginger should

generally be avoided due to high replication factors and memory overheads,

respectively. We present two decision trees to help users of these systems pick

a partitioning strategy. For GraphX, Canonical Random should be used with

low-degree graphs and 2D partitioning with power-law-like graphs.

When all techniques were implemented in PowerLyra, we found some

strategies perform better if they have tighter integration with the underlying

engine (also confirmed via our 1D-target variant). We also found that CPU

utilization and load imbalance are not clearly correlated with performance.

Finally, when all the techniques were implemented in GraphX, we see that

HDRF/Oblivious continue to deliver high quality partitions for low-degree

graphs. Although Canonical Random is generally better for shorter running

jobs, for heavy-tailed graphs 2D remains the partitioning strategy of choice.

45

REFERENCES

[1] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrish-
nan, “One trillion edges: graph processing at Facebook-scale,” Proc. of
VLDB Endowment, 2015.

[2] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Power-
graph: Distributed graph-parallel computation on natural graphs,” in
Proc. of Symposium on Operating Systems Design and Implementation
(OSDI). USENIX, 2012.

[3] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in Proc. of Int’l. Conf. on Management of Data (SIGMOD). ACM,
2010.

[4] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, “GraphX: Graph processing in a distributed dataflow frame-
work,” in Proc. of Symposium on Operating Systems Design and Imple-
mentation (OSDI). USENIX, 2014.

[5] “Apache Giraph,” http://giraph.apache.org/, last accessed 2016-04-18.

[6] A. Kyrola, G. E. Blelloch, and C. Guestrin, “GraphChi: Large-scale
graph computation on just a PC.” in Proc. of Symposium on Operating
Systems Design and Implementation (OSDI). USENIX, 2012.

[7] I. Hoque and I. Gupta, “LFGraph: Simple and fast distributed graph
analytics,” in Proc. of Conf. on Timely Results In Operating Systems
(TRiOS). ACM, 2013.

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law
relationships of the internet topology,” in Proc. of Conf. on
Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM). ACM, 1999. [Online]. Available:
http://doi.acm.org/10.1145/316188.316229 pp. 251–262.

46

http://giraph.apache.org/
http://doi.acm.org/10.1145/316188.316229

[9] R. Chen, J. Shi, Y. Chen, and H. Chen, “Powerlyra: Differentiated
graph computation and partitioning on skewed graphs,” in Proc. of
European Conf. on Computer Systems, ser. (EuroSys). ACM, 2015.
[Online]. Available: http://doi.acm.org/10.1145/2741948.2741970 pp.
1:1–1:15.

[10] S. Schelter, S. Ewen, K. Tzoumas, and V. Markl, “All roads lead to
Rome: Optimistic recovery for distributed iterative data processing.”
in Proc. of Int’l. Conf. on Information and Knowledge Management
(CIKM). ACM, 2013.

[11] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin,
“An experimental comparison of pregel-like graph processing systems,”
in Proc. of VLDB Endowment, vol. 7. VLDB Endowment, Aug. 2014,
pp. 1047–1058.

[12] S. Salihoglu and J. Widom, “GPS: A graph processing system.” in Proc.
of Int’l. Conf. on Scientific and Statistical Database Management (SS-
DBM). ACM, 2013.

[13] R. Power and J. Li, “Piccolo: Building fast, distributed programs with
partitioned tables.” in Proc. of Symposium on Operating Systems Design
and Implementation (OSDI). USENIX, 2010.

[14] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale
graph mining system implementation and observations,” in Proceedings
of the 2009 Ninth IEEE International Conference on Data Mining,
ser. ICDM ’09. Washington, DC, USA: IEEE Computer Society,
2009. [Online]. Available: http://dx.doi.org/10.1109/ICDM.2009.14 pp.
229–238.

[15] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, “Mizan: A system for dynamic load balancing in large-scale
graph processing,” in Proceedings of the 8th ACM European Conference
on Computer Systems, ser. EuroSys ’13. New York, NY, USA: ACM,
2013. [Online]. Available: http://doi.acm.org/10.1145/2465351.2465369
pp. 169–182.

[16] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and
M. Abadi, “Naiad: A timely dataflow system,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, ser.
SOSP ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2517349.2522738 pp. 439–455.

[17] F. Yang, J. Li, and J. Cheng, “Husky: Towards a more efficient
and expressive distributed computing framework,” Proc. VLDB
Endow., vol. 9, no. 5, pp. 420–431, Jan. 2016. [Online]. Available:
http://dx.doi.org/10.14778/2876473.2876477

47

http://doi.acm.org/10.1145/2741948.2741970
http://dx.doi.org/10.1109/ICDM.2009.14
http://doi.acm.org/10.1145/2465351.2465369
http://doi.acm.org/10.1145/2517349.2522738
http://dx.doi.org/10.14778/2876473.2876477

[18] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph
processing framework for shared memory,” in Proceedings of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’13. New York, NY, USA: ACM, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2442516.2442530 pp.
135–146.

[19] J. Shun, L. Dhulipala, and G. E. Blelloch, “Smaller and faster:
Parallel processing of compressed graphs with ligra+,” in Proceedings
of the 2015 Data Compression Conference, ser. DCC ’15. Washington,
DC, USA: IEEE Computer Society, 2015. [Online]. Available:
http://dx.doi.org/10.1109/DCC.2015.8 pp. 403–412.

[20] X. Zhu, W. Chen, W. Zheng, and X. Ma, “Gemini: A
computation-centric distributed graph processing system,” in 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). GA: USENIX Association, 2016. [Online]. Avail-
able: https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/zhu pp. 301–316.

[21] F. McSherry, M. Isard, and D. G. Murray, “Scalability! but at
what cost?” in 15th Workshop on Hot Topics in Operating Systems
(HotOS XV). Kartause Ittingen, Switzerland: USENIX Association,
2015. [Online]. Available: https://www.usenix.org/conference/hotos15/
workshop-program/presentation/mcsherry

[22] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
graph processing using streaming partitions.” in Proc. of Symposium on
Operating Systems Principles (SOSP). ACM, 2013.

[23] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, “Chaos:
Scale-out graph processing from secondary storage,” in Proceedings of
the 25th Symposium on Operating Systems Principles. ACM, 2015, pp.
410–424.

[24] J. Zhong and B. He, “Medusa: Simplified graph processing on gpus,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6,
pp. 1543–1552, 2014.

[25] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu,
F. Yang, L. Zhou, F. Zhao, and E. Chen, “Kineograph: Taking
the pulse of a fast-changing and connected world,” in Proceedings
of the 7th ACM European Conference on Computer Systems, ser.
EuroSys ’12. New York, NY, USA: ACM, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2168836.2168846 pp. 85–98.

48

http://doi.acm.org/10.1145/2442516.2442530
http://dx.doi.org/10.1109/DCC.2015.8
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
http://doi.acm.org/10.1145/2168836.2168846

[26] “Neo4j Graph Database,” https://neo4j.com/product/, last accessed
2017-04-5.

[27] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph
engine on a memory cloud,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, ser.
SIGMOD ’13. New York, NY, USA: ACM, 2013. [Online]. Available:
http://doi.acm.org/10.1145/2463676.2467799 pp. 505–516.

[28] A. Dubey, G. D. Hill, R. Escriva, and E. G. Sirer, “Weaver: A high-
performance, transactional graph database based on refinable times-
tamps,” Proceedings of the VLDB Endowment, vol. 9, no. 11, 2016.

[29] R. Chen, J. Shi, B. Zang, and H. Guan, “Bipartite-oriented distributed
graph partitioning for big learning,” in Proc. of 5th Asia-Pacific
Workshop on Systems, ser. APSys ’14. ACM, 2014. [Online]. Available:
http://doi.acm.org/10.1145/2637166.2637236 pp. 14:1–14:7.

[30] N. Jain, G. Liao, and T. L. Willke, “Graphbuilder: scalable graph
ETL framework,” in First Int’l. Workshop on Graph Data Management
Experiences and Systems, (GRADES), 2013. [Online]. Available:
http://event.cwi.nl/grades2013/04-jain.pdf

[31] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM J. Sci. Comput.,
vol. 20, no. 1, pp. 359–392, Dec. 1998. [Online]. Available:
http://dx.doi.org/10.1137/S1064827595287997

[32] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in Proc. of 7th
ACM Int’l. Conf. on Web Search and Data Mining (WSDM). ACM,
2014. [Online]. Available: http://doi.acm.org/10.1145/2556195.2556213
pp. 333–342.

[33] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and
S. Haridi, “A distributed algorithm for large-scale graph partitioning,”
ACM Trans. Auton. Adapt. Syst., vol. 10, no. 2, pp. 12:1–12:24, June
2015. [Online]. Available: http://doi.acm.org/10.1145/2714568

[34] C. Mayer, M. A. Tariq, C. Li, and K. Rothermel, “Graph:
Heterogeneity-aware graph computation with adaptive partitioning,”
in 2016 IEEE 36th International Conference on Distributed Computing
Systems (ICDCS), June 2016, pp. 118–128.

49

https://neo4j.com/product/
http://doi.acm.org/10.1145/2463676.2467799
http://doi.acm.org/10.1145/2637166.2637236
http://event.cwi.nl/grades2013/04-jain.pdf
http://dx.doi.org/10.1137/S1064827595287997
http://doi.acm.org/10.1145/2556195.2556213
http://doi.acm.org/10.1145/2714568

[35] M. LeBeane, S. Song, R. Panda, J. H. Ryoo, and L. K. John, “Data
partitioning strategies for graph workloads on heterogeneous clusters,”
in Proc. of Int’l. Conf. for High Performance Computing, Networking,
Storage and Analysis, ser. (SC ’15). ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2807591.2807632 pp. 56:1–56:12.

[36] J. Huang and D. J. Abadi, “Leopard: lightweight edge-oriented parti-
tioning and replication for dynamic graphs,” Proceedings of the VLDB
Endowment, vol. 9, no. 7, pp. 540–551, 2016.

[37] M. Pundir, M. Kumar, L. M. Leslie, I. Gupta, and R. H. Campbell,
“Supporting on-demand elasticity in distributed graph processing,” in
Proc. of Int’l. Conf. on Cloud Engineering (IC2E). IEEE, 2016, best
Paper Award.

[38] T. Anwar, C. Liu, H. L. Vu, and C. Leckie, “Spatial partitioning of large
urban road networks.” in openproceedings.org, 2014.

[39] M. Pundir, L. M. Leslie, I. Gupta, and R. H. Campbell,
“Zorro: Zero-cost reactive failure recovery in distributed graph
processing,” Technical Report, IDEALS, 2015. [Online]. Available:
https://ideals.illinois.edu/handle/2142/75959

[40] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, Aug. 1990. [Online]. Available:
http://doi.acm.org/10.1145/79173.79181

[41] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed GraphLab: A framework for machine learning
and data mining in the cloud,” in Proc. of VLDB Endowment. VLDB
Endowment, 2012.

[42] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “GraphLab: A new parallel framework for machine learn-
ing,” in Conf. on Uncertainty in Artificial Intelligence (UAI), 2010.

[43] R. M. Karp, “Reducibility among combinatorial problems,” in Proc.
of a Symposium on the Complexity of Computer Computations, 1972.
[Online]. Available: http://www.cs.berkeley.edu/∼luca/cs172/karp.pdf
pp. 85–103.

[44] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, June 2014.

[45] “Laboratory For Web Algorithms,” http://law.di.unimi.it/datasets.php,
last Accessed 2016-04-18.

50

http://doi.acm.org/10.1145/2807591.2807632
https://ideals.illinois.edu/handle/2142/75959
http://doi.acm.org/10.1145/79173.79181
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://snap.stanford.edu/data
http://law.di.unimi.it/datasets.php

[46] “DIMACS Challenge 9 - Shortest Paths,” http://www.dis.uniroma1.it/
challenge9/, last Accessed 2016-05-30.

[47] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered Label Propa-
gation: A MultiResolution Coordinate-Free Ordering for Compressing
Social Networks,” in Proc. of Int’l. Conf. on World Wide Web (WWW).
ACM, 2011.

[48] P. Boldi and S. Vigna, “The WebGraph framework I: Compression tech-
niques,” in Proc. of Int’l. Conf. World Wide Web (WWW). ACM, 2004.

[49] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in Proc. of Int’l. Conf. on World Wide Web
(WWW). ACM, 2010.

[50] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and G. Iacoboni,
“Hdrf: Stream-based partitioning for power-law graphs,” in Proc.
of 24th ACM Int’l. on Conf. on Information and Knowledge
Management (CIKM). ACM, 2015. [Online]. Available: http:
//doi.acm.org/10.1145/2806416.2806424 pp. 243–252.

[51] H. Halberstam and R. R. Laxton, “Perfect difference sets,”
Proc. of Glasgow Mathematical Association, vol. 6, pp. 177–
184, July 1964. [Online]. Available: http://journals.cambridge.org/
article S2040618500034985

[52] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proc.
of Conf. on Networked Systems Design and Implementation (NSDI).
USENIX, 2012.

51

http://www.dis.uniroma1.it/challenge9/
http://www.dis.uniroma1.it/challenge9/
http://doi.acm.org/10.1145/2806416.2806424
http://doi.acm.org/10.1145/2806416.2806424
http://journals.cambridge.org/article_S2040618500034985
http://journals.cambridge.org/article_S2040618500034985

APPENDIX A

OBLIVIOUS

Consider the task of placing the i+1th edge after having placed i edges. The

objective function for Oblivious [2] reduces to:

arg min
k

[
|A(v)|+ |A(u)|

∣∣∣Ai, A(ei+1) = k
]
,

where A(v) is the set of machines v is replicated on, Ai is the set of edge

placements we have done so far, A(ei+1) is where we will assign the i + 1th

edge (u, v). This devolves into a few simple cases.

Case 1: A(v) ∩ A(u) 6= φ. I.e. on at least one machine, replicas of u and

v both are already present. The edge is placed at the least loaded

machine in A(v) ∩ A(u).

Case 2: Only one of the vertices have been placed so far. So, without loss

of generality: A(v) = φ and A(u) 6= φ. The edge will be placed on the

least loaded machine in A(u).

Case 3: A(v) = A(u) = φ. The edge will be placed on the least loaded

machine.

Case 4: A(u) 6= φ and A(v) 6= φ but A(u) ∩ A(v) = φ. The edge will be

placed on the least loaded machine in A(u) ∪ A(v).

Ties are broken randomly. In this context, least loaded refers to the machine

which has been assigned the fewest edges.

52

APPENDIX B

HDRF

When processing edge (u, v) the partial degree counters (δ) of u and v are

incremented. Then they are assigned a normalized value θ :

θ(v) =
δ(v)

δ(u) + δ(v)

Each machine M is assigned a score C as follows:

C(u, v,M) = CREP (u, v,M) + λ× CBAL(M)

CREP (u, v,M) = g(u,M) + g(v,M)

g(v,M) =

1 + (1− θ(v)) ifM ∈ A(v)

0 else

CBAL is a score in [0, 1) assigned to a machine on the basis of the number

of edges assigned to it so far. A more loaded machine will have a lower CBAL.

The machine with the higher C score is selected.

Thus the λ parameter is used to tune the systems prioritization towards

load-balance. When λ ≤ 1 the balance parameter is used as a tie breaker.

After that point balance importance rises in proportion to λ. In the Power-

Graph implementation, λ is hardcoded to 1.

53

	CHAPTER 1 Introduction
	Contributions of this Thesis
	Outline of this Thesis
	Summary of Results

	CHAPTER 2 Related Work
	Graph Processing
	Graph Partitioning
	Other Evaluations

	CHAPTER 3 Background
	The GAS Decomposition
	Edge Cuts and Vertex Cuts
	Graph Applications
	PageRank
	Weakly Connected Components
	K-Core Decomposition
	SSSP
	Simple Coloring

	CHAPTER 4 Experimental Methodology
	Clusters
	Datasets
	Metrics

	CHAPTER 5 PowerGraph
	System Introduction
	Vertex Replication Model
	Computation Engine

	Partitioning Strategies
	Random
	Oblivious
	Constrained
	HDRF

	Experimental Setup
	Experimental Results
	Replication Factor and Performance
	Minimizing Replication Factor
	Partitioning Quality vs Partitioning Speed
	Picking a Strategy

	CHAPTER 6 PowerLyra
	System Introduction
	Partitioning Strategies
	Hybrid
	Hybrid-Ginger

	Experimental Setup
	Experimental Results
	Hybrid Strategies and Natural Algorithms
	Hybrid Strategies and Memory Overheads
	Minimizing Replication Factor
	Picking a Strategy

	CHAPTER 7 GraphX
	System Introduction
	Partitioning Strategies
	Random and Canonical Random
	1D Edge Partitioning
	2D Edge Partitioning

	Experimental Setup
	Experimental Results

	CHAPTER 8 PowerLyra: all strategies
	Partitioning Strategies
	Experimental Results
	No Effect on Decision Trees
	Asymmetric Random worse than Random
	Hybrid Engine Enhances 1D/2D Partitioning
	CPU Utilization Patterns

	CHAPTER 9 GraphX: all strategies
	Partitioning Strategies
	Experimental Results
	For Low-degree/Road-networks
	For Power-law/Heavy-tailed Graphs
	Picking a Strategy
	Memory Utilization Patterns in GraphX

	CHAPTER 10 Conclusions
	REFERENCES
	APPENDIX A Oblivious
	APPENDIX B HDRF

