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ABSTRACT 

 The Suzuki-Miyaura reaction is currently the most practiced cross-coupling reaction due to its 

broad applicability, low toxicity of the metal (B), and the wide variety of commercially available 

boronic acid substrates. Despite the popularity of the Suzuki-Miyaura reaction, the precise manner 

in which the organic fragment is transferred from boron to palladium has remained elusive for over 

30 years. The work described in this dissertation has focused on identifying such species by low 

temperature rapid injection NMR spectroscopy. For the first time, we were able to detect and 

characterize the first pre-transmetalation intermediate “The Missing Link” in the Suzuki-Miyaura 

reaction.  

 The ability to confirm the intermediacy of pre-transmetalation intermediates has provided the 

opportunity to clarify mechanistic aspects of the transfer of the organic moiety from boron to 

palladium in the key transmetalation step. Specifically, these studies establish the identity of two 

different intermediates containing Pd−O−B linkages, a tricoordinate (6-B-3) boronic acid complex 

and a tetracoordinate (8-B-4) boronate complex, both of which undergo transmetalation leading to 

the cross-coupling product. Two distinct mechanistic pathways have been elucidated for 

stoichiometric reactions of these complexes: (1) transmetalation via an unactivated 6-B-3 

intermediate that dominates in the presence of excess ligand, and (2) transmetalation via an 

activated 8-B-4 intermediate that takes place with a deficiency of ligand.  

 The successful formation of pre-transmetalation intermediates with arylboronic acids led to the 

investigation of whether some of the most common arylboronic esters utilized in the Suzuki-

Miyaura reaction could also form stable intermediates. Surprisingly, catechol and ethylene glycol 

arylboronate esters formed Pd-O-B linkages at low temperature and were found to transfer their 

organic groups directly from boron to palladium with enhanced rates. Specifically, the glycol 

arylboronate ester was found to transfer its organic group ~25 times faster than the corresponding 

arylboronic acid analog. These combined results provide the first structure activity relationships 

on the pre-transmetalation intermediates in the Suzuki-Miyaura reactions which are currently 

being applied to catalytic reactions.  
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CHAPTER 1. Introduction 

 

1.1 Palladium Catalyzed Cross-Coupling Reactions 

 

 The formation of sp2-sp2 carbon-carbon bonds is of profound importance due to the ubiquity 

of this connection in both synthetic and naturally occurring substances.  This fundamental process 

in organic synthesis is frequently accomplished by the interaction of an organic substrate with a 

metal catalyst or organometallic reagent. Specifically, palladium has emerged as an excellent metal 

catalyst for an entire class of reactions known as cross-coupling reactions. Palladium-catalyzed 

cross-coupling reactions such as the Kumada-Tamao-Corriu1 (Mg), Suzuki-Miyaura2 (B), Stille-

Migita-Kosugi3 (Sn), Hiyama-Denmark4 (Si) and the Negishi5 (Zn) reactions, have fundamentally 

changed the practice of organic synthesis in both the academic and industrial settings alike (Figure 

1).6  

 
Figure 1. Palladium catalyzed cross-coupling reactions. 

 

 Among these reactions, the Nobel Prize sharing Suzuki-Miyaura reaction is the premier cross-

coupling process, utilized across all disciplines of chemistry as well as in the industrial synthesis 

of fine chemicals7 and pharmaceuticals8 owing to its demonstrated reliability, broad functional 

group compatibility, and access to a wide variety of commercially available boron-based reagents. 

At a fundamental level, all of these reactions share the same basic catalytic cycle comprised of 

three elementary steps: oxidative addition, transmetalation, and reductive elimination (Figure 2). 

The oxidative addition and reductive elimination steps are common to all cross-coupling variants; 

however, because the organic donor is involved only in the transmetalation step, it is this event 

that preparatively and mechanistically differentiates all of these processes. The desire to 

understand the relationship between chemical structure and reactivity has led to many mechanistic 

investigations of these elementary steps. Particularly, the oxidative addition9 and reductive 

elimination10 steps have been extensively studied and those insights are applicable to all of the 

cross-coupling reactions. However, except for the Stille and more recently the Hiyama-Denmark11 
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couplings, far less is known about the intricate details of the transmetalation step for these cross-

coupling reactions. 

 

 
Figure 2. Palladium catalyzed cross-coupling reactions and general mechanism. 

 

1.2 The Mechanism of Cross-Coupling  

 

1.2.1. Oxidative addition step 

 
 The oxidative addition of organohalides or triflates is the first step for all palladium catalyzed 

reactions as well as the Heck process.12 Many investigations have been conducted on the 

mechanisms for the oxidative addition step of alkenyl and aryl halides with palladium.13 The rate 

of this step has been shown to decrease in the order of PhI > PhBr > PhCl, which is consistent with 

bond dissociation energies.14 Specifically, (Ph3P)4Pd has been shown to undergo a prior 

dissociation event ((Ph3P)2Pd) before oxidative addition with organic halides.15 After dissociation 

oxidative addition takes place via a three centered transition state to form an initial cis-(aryl)PdXL2 

1 complex that undergoes rapid isomerization to the thermodynamic product trans-(aryl)PdXL2  2 

because the phosphines exhibit transphobia (Figure 3).16  
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Figure 3. Cis- to trans isomerization of oxidative addition. 

 

 Interestingly, bulky electron rich phosphines have shown increased reactivity towards 

oxidative addition of aryl chlorides as demonstrated by pioneering work by Fu17 and Buchwald18  

(Scheme 1).  

Scheme 1 

 
 

 Moreover, the origins of the enhanced rate for bulky phosphines towards oxidative addition 

has been shown to originate from a prior dissociation event.2 Hartwig found an inverse dependence 

for phosphine in the oxidative addition reaction of [(2-CH3C6H4)3P]2Pd with aryl chlorides and 

bromides demonstrating that a LPd was the active species.19 Furthermore, palladium halide dimer 

3 was isolated. Since then a number of three coordinate T-shaped palladium complexes 4 have 

been isolated with t-Bu3P.20 Interestingly, these complexes exhibited a empty coordination site 

trans to the aryl substituent most likely due to the larger trans influence. Additionally, weak 

agnostic interactions were observed in the crystal structures of these complexes (Scheme 2).  
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Scheme 2 

 
1.2.2. Reductive elimination step 
 

 The reductive elimination step is the final step of the catalytic cycle and the bond forming 

event. Independent kinetic studies by Stille21 and Yamamoto22 revealed an inverse order in 

phosphine for the reductive elimination of isolated L2PdR2 complexes. This indicated that an 

empty coordination site was needed prior to reductive elimination. Moreover, cross-over 

experiments were executed to determine if an empty coordination site was involved during the 

reductive elimination step. Interestingly, when trans-(Et2PPh)2(CH3)2Pd 5 and trans-

(Et2PPh)2(CD3)2Pd 6 were heated a statistical mixture of CH3-CH3, CD3-CD3, and CH3-CD3 was 

observed indicating that a bimolecular trans to cis isomerization was involved. Furthermore, when 

cis-(Et2PPh)2(CH3)2Pd 7 and cis-(Et2PPh)2(CD3)2Pd 8 were heated only CH3-CH3, and CD3-CD3 

were observed indicating that the reductive elimination from cis complexes is unimolecular 

(Figure 4). 
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Figure 4. Cross-over experiments during reductive elimination. 

 

 To probe the effect of electron rich and poor aryl substituents on the reductive elimination 

step Hartwig prepared and isolated bis-aryl platinum DPPF complexes where interesting rate 

effects were observed.23 Upon reductive elimination of symmetrical electron deficient DPPF 

complex 12 resulted in the slowest rate for reductive elimination. Interestingly, the electron rich 

DPPF complex 13 was found to only reductive eliminate ~5.35 times faster than the electron 

deficient analog 12. Upon, subjecting unsymmetrical complex 14 employing both electron 

withdrawing and donating groups, a rate enhancement was observed ~17 times faster than complex 

12. This enhancement of rate is manifested from the stabilization of the transition state during the 

reductive elimination. The accelerating effects of matching electron rich with electron poor 

substrates is seen in many reactions including the Diels Alder reaction in which optimal reaction 

conditions involve substrates that can achieve effective LUMO and HOMO mixing (Figure 5).  
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Figure 5. Reductive elimination rates of (DPPF)Pt(Aryl)2 complexes. 

 
1.2.3. Transmetalation step 

 

1.2.3.1. Transmetalation from organotin compounds 

 In 1977, Migita, Kosugi and Shimizu demonstrated that palladium catalyzed reactions between 

organo tin compounds were possible.24 In 1978, Stille’s first study appeared on the palladium 

catalyzed cross-coupling between acid chlorides and organotin compounds to form ketones 

(Scheme 3).25 Over the next 10 years Stille performed both extensive mechanistic and synthetic 

investigations with various electrophiles which is why this reaction bears his name.26,27  

Scheme 3 

 
 An early investigation on the transfer of the organic group from tin to palladium by Stille and 

co-workers revealed that electron rich substrates increased the rate. 28 Furthermore, a p = + 1.2 

value was obtained indicating that a build-up of negative charge was present suggesting that the 

organic group was transferring to the palladium center in an SE2 fashion or “open transition state.” 

Moreover, the open SE2 mechanism was further supported by the observation that benzylic 

stereocenters underwent inversion of stereochemistry upon transfer from tin to palladium (Scheme 

4).  
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Scheme 4 

 
 Since then numerous investigations have been undertaken for the transmetalation step in the 

Stille reaction which have led to two different mechanistic proposals (associative and dissociative) 

for the transmetalation event (Figure 6). The initial oxidative addition product cis-L2PdAryl(X) 

has been shown kinetically to react directly with the active tin transmetalating agent through an 

associative pentacoordinate intermediate by Espinet and co-workers.29 Alternatively, the 

dissociative process is centered on the proposal that oxidative addition product trans-L2PdR(X) is 

the precursor which needs a prior ligand dissociation (excess ligand slows rate of 

transmetalation)30 ,31 to open a coordination site on palladium so the active tin transmetalation 

agent can transfer its organic group.  

 

 
 

Figure 6. Proposed transition states for transmetalation event with stereochemistry. 

 

 These pathways ultimately depend on the reaction conditions; however bulky phosphines are 

known to form T-shaped organo palladium halides after oxidative addition. 19c On this note 

Hartwig and co-workers investigated the transmetalation event between dimeric halide dimer 15 

with PhSnMe3 (Figure 7).32 Interestingly, the reaction was found to exhibit a half order dependence 
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on the concentration of the dimer 15 indicating that the active species was a T-shaped bromide 

complex 16 and most likely proceeded through a cyclic SE2 pathway 17.31  

 
Figure 7. Empty coordination site is needed for the transmetalation event. 

 

 1.2.3.2. Transmetalation from organo silicon compounds 

 In 1982, Kumada and co-workers demonstrated the first silicon mediated cross-coupling 

between penatafluorosilicates and aryl halides in the presence of a palladium catalyst (Scheme 5, 

1).33 In 1988, Hiyama and co-workers demonstrated that vinyl trimethylsilanes underwent cross-

coupling in the presence of a fluoride activator (Scheme 5, 2).34  

Scheme 5 

 
Historically, it was thought that silicon needed an activator to induce transmetalation (ie fluoride 

activation). However, computational35 by Hiyama and kinetic studies by Amatore and Jutand36 

have established three roles for fluoride during the transmetalation event. Specifically, the main 

conclusion was that fluoride does not activate silicon but rather forms a Pd-F intermediate 20 that 

allows for transmetalation to take place (Figure 8).  

 

 
Figure 8. Proposed role of fluoride during transmetalation event. 
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analysis of several compounds containing Pd-O-Si linkages.37 These complexes enabled a 

systematic study on the requirements for the transfer of the organic group from silicon to palladium 

for both neutral (8-Si-4) and anionic (10-Si-5) pathways.11b The N-X-L nomenclature, as 

introduced by Martin and co-workers designates the bonding about any atom (X) in a resonance 

structure in terms of the valence shell of electrons (N) formally associated directly with that atom 

and the number of ligands (L) directly bonded to it.38 These conclusions contradicted the paradigm 

that organosilicon compounds must be anionically activated to participate in the transmetalation 

processes. In general, arylsilanolates, require anionic activation and react via 10-Si-5 intermediate 

22 whereas alkenylsilanolates undergo transmetalation directly from 8-Si-4 intermediate 23 

(Figure 9). The ability to perform a similar study with Pd-O-B linkages would be ideal however, 

the high propensity for transmetalation at room temperature makes their isolation and 

characterization of them difficult in practice. 

 
Figure 9. Hiyama-Denmark transmetalation pathways.   

 

 1.2.3.3. Transmetalation from organo boron compounds 

  1.2.3.3.1. Proposed pathways for the organic group transfer from boron to palladium  

 Currently, two alternative processes (Path A and Path B) have been proposed to initiate the 

transmetalation event which differ in the precise role of the hydroxide ion which is required for 

the reaction to proceed.39 Path A proceeds through saturation of the boron valence in 26 to yield a 

metal trihydroxyarylboronate salt 27 which then displaces halide from the oxidative addition 
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product 28 generating species 29 containing the critical Pd-O-B linkage. Path B, proceeds through 

displacement of halide from the oxidative addition product 28 by hydroxide thus creating a 

palladium hydroxide complex 30 which then combines with the Lewis acidic arylboronic acid 1 

forging the same pre-transmetalation intermediate 29 (Figure 10).  

 
Figure 10. Proposed transmetalation pathways in the Suzuki-Miyaura coupling process. 

 

  1.2.3.3.2. Preliminary evidence for a Pd-O-B linkage 

 Preliminary evidence for the involvement of a Pd-O-B moiety was provided by an early 

investigation by Soderquist40 in which the diastereospecificity of the transmetalation step was 

examined. Subjecting both syn (31) and anti (32) deuterium-labeled isomers of B-(3,3,-dimethyl-

1,2-dideuterio-1-butyl)-9-BBN to standard Suzuki-Miyaura cross-coupling conditions ((THF, 

NaOH, (Ph3P)4Pd)) leads to complete retention of configuration in the coupling product (Scheme 

6). Although no pre-transmetalation intermediate was observed, the retention of configuration 

indirectly establishes that a Pd-O-B linkage is involved in the transmetalation event.   
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Scheme 6 

 
 

  1.2.3.3.3. Computational studies 

 Distinguishing the way in which Pd-O-B linkages are formed in the Suzuki-Miyaura reaction 

has proven to be challenging as mechanistic studies are complicated by biphasic reaction 

conditions (e.g. THF and aqueous base), and by the poor solubility of inorganic bases and metal 

organoboronate salts in many organic solvents. Consequently, DFT computational studies have 

provided insights that suggest Path A is responsible for the formation of pre-transmetalation 

intermediates. Interestingly, in Ph3P-ligated complexes Maseras and Ujaque41 have calculated that 

the displacement of bromide from the oxidative addition product 35 with 

trihydroxyphenylboronate 27 was slightly lower ( DDG† = 2.6 kcal/mol) in energy than the reaction 

of palladium hydroxide complex 36 with 26 suggesting that both paths are capable of forming Pd-

O-B linkages. However, the displacement of bromide with hydroxide from complex 35 was found 

to have a transition state barrier of 18.6 kcal/mol, which suggests that Path A is more favorable 

than Path B (Figure 11).42 Moreover, the impact of phosphine ligand on the transmetalation event 

has been computationally studied in depth by Lloyd-Jones and Harvey using t-Bu3P, (CF3)3P, 

(CH3)3P and Ph3P. In this investigation, the steric parameters were found to be twice as important 

as the electronic parameters on the transmetalation event.43 
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Figure 11. DFT calculated values for transmetalation.   

 

  1.2.3.3.4. Experimental studies 

 Understanding the role of hydroxide in the formation of the “missing link” 29 (i.e. Path A or 

Path B) has inspired many investigations by Soderquist,40 Hartwig,44 Amatore/Jutand45 and 

Schmidt.46 By performing stoichiometric reactions of pre-formed (Ph3P)2PdPhBr 35 and 

(Ph3P)2PdPhOH47 36 with 38 and 39 respectively, Hartwig established that Path B is favored over 

Path A kinetically by more than 4 orders of magnitude (Scheme 7). Moreover, they established 

that the equilibrium population of 4-methylphenylboronic acid 39 and potassium 4-

methylphenyltrihydroxyboronate 37 in acetone/H2O in the presence of 2.5 equiv of K2CO3 is ca. 

1:1. Interestingly, the relative populations of trans-(Cy3P)2(C6H5)Pd(OH) 40 and trans-

(Cy3P)2(C6H5)Pd(I) 41 are also approximately equal under simulated catalytic reactions conditions 

(Scheme 6). This conclusion was reinforced by extensive kinetic studies by Amatore and Jutand 

who also identified multiple antagonistic roles for hydroxide ion. Although kinetic studies have 

provided evidence for these pathways, the actual composition and structure of the Pd-O-B 

containing species has not been determined. 
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Scheme 7 

 
Scheme 8 

 
 

 

  1.2.3.3.5. Attempts to detect reactive intermediates 

 To observe pre-transmetalation intermediates Canary and co-workers used electrospray mass 

spectrometry (ESI-MS) to probe the catalytic reaction between phenylboronic acid (26) and 3-

bromopyridine (43) in toluene using (Ph3P)4Pd and sodium carbonate as the base.48 During the 

course of these experiments, both [(pyrH)(Br)Pd(Ph3P)2]+ (44) and [(pyrH)(Ph)Pd(Ph3P)2]+ (45) 

were detected. The observation of only the oxidative addition intermediate 44 and transmetalation 

product 45 clearly demonstrates the difficulty in investigating the central transmetalation step of 

the catalytic process (Scheme 9, top).  
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Scheme 9 

 
Cid and co-worker’s investigation on the transmetalation step of the Suzuki-Miyaura 

reaction involved the use of 31P NMR spectroscopy and computational methods.42a  The authors 

combined 4-bromo-2-phenylpyridine 47 with phenylboronic acid 26 with (Ph3P)4Pd and were able 

to observe a 31P NMR signal at 22.41 ppm, which was assigned to (Ph3P)2PdAr[(HO)3BAr] 48 

(Scheme 9, bottom). The predicted structure is based solely on DFT calculations. Although a new 

peak is observed by 31P NMR spectroscopy no further structure determination was performed thus 

precluding an assignment.   
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are required to probe the mechanism of this crucial transmetalation step in the Suzuki-Miyaura 

reaction as low barriers (DG† = 14-22 kcal/mol) to transmetalation have been calculated.41,42,43 One 

such technique that has proven invaluable in similar mechanistic studies is Rapid Injection Nuclear 

Magnetic Resonance spectroscopy (RI-NMR).49  

 RI-NMR is a conceptually simple technique that was developed by McGarrity and co-workers 

in 1981. 50 His seminal paper entitled Rapid Injection NMR: a simple technique for the observation 

of reactive intermediates appropriately highlights perhaps the most useful feature of RI-NMR, the 

observation and characterization of reactive intermediates with relatively short half-lives. 

Furthermore, this investigation led to the first kinetic information for the rate of hydrolysis of the 

trimethyloxonium tetrafluoroborate (Scheme 10). Since then, various instruments have been 

developed by Ogle, Reich, and Denmark and used to execute mechanistic investigations.  

Scheme 10 

 
 

 In practical terms, an RI-NMR experiment involves charging a substrate, typically the more 

sensitive compound, in an NMR tube spinning in the probe of NMR spectrometer. Next, a 

calibrated syringe assembly is lowered into the magnet, to allow for temperature equilibration, 

shimming, locking, etc. which is then followed by the injection of another reagent. Acquisition 

begins simultaneously with injection, which allows for rapid data collection. From the integration 

of the signals, the quantification of each species in solution can be performed with an internal 

standard. As a result, detailed quantitative kinetic data can be accessed even for fleeting 

intermediates. 

 In the Denmark laboratories, the RI-NMR apparatus in use incorporates a stationary syringe 

with a movable titanium rod that is filled with a solution of the reagent. The syringe is controlled 

by a piston coupled to a ceramic pump which is used to dispense the substrate into the tube while 

providing extremely accurate liquid delivery via a ceramic pump. The NMR tube containing the 

substrate lies inside the magnet, and typically spins at 20 Hz, requiring the liquid to be injected 

radially for rapid mixing to occur. The injector has a titanium paddle brazed to it, which aids in 

mixing along with three injection ports 120° apart (Figure 12). If pre-transmetalation intermediates 
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could be generated and characterized by this method, it would provide the first opportunity to 

interrogate structure and reactivity relationships of this crucial step. 

 
Figure 12. Box diagram of RI-NMR apparatus. 

 
1.4 Project Goals 

 
 The aim of this project is to provide a complete understanding for the mechanism of the 

Suzuki-Miyaura reaction by forming pre-transmetalation intermediates by low temperature and 

RI-NMR spectroscopy along with computational analysis. Specific goals include: (1) full 

characterization of reaction intermediates such as the pre-transmetalation species; (2) validation 

of structure of the proposed intermediates through independent synthesis; (3) demonstration of the 

kinetic competence of the characterized species containing Pd-O-B linkages to form cross-

coupling product, and (4) quantum mechanical simulation of the transmetalation process involving 

these intermediates by computational modeling.51 The work described in this dissertation can be 

best described as follows: 

 

1. The structure elucidation of Pd-O-B linkages from arylboronic acids using various 

ligands and palladium sources by rapid injection and low temperature NMR 

spectroscopy (Chapter 2).  

2. Kinetic and computational analysis of the identified 6-B-3 and 8-B-4 pre-

transmetalation intermediates (Chapter 3). 

3. Investigate the effects of aryl boron sources on the structure and reactivity of Pd-O-B 

linkages structurally, kinetically, and computationally (Chapter 4).  
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CHAPTER 2: Structure Elucidation and Independent Synthesis of Pd-O-B Linkages in the 

Suzuki-Miyaura Cross-Coupling Reaction 

 

2.1 Introduction and Background 

 The transmetalation of arylboronic acids with complexes of late transition metals such as 

Pd, Rh, and Pt has been postulated in cross-coupling reactions as well as conjugate addition 

reactions. However, the intermediates involved in the transmetalation steps have rarely been 

observed for these processes. To date, stable Pt and Rh complexes of arylboronic acids have been 

characterized by single crystal X-ray diffraction analysis. For example, Osakada52 prepared Pt-O-

B compound 50 by combining (Me2PhP)2Pt(I)Ph 51 and 4-methoxyphenylboronic acid 52 with 

Ag2O. Complex 50 is stable in THF until base is added, which induces transmetalation to the 

diarylpalladium intermediate 53 (Scheme 11).   

Scheme 11 

 
 

 A similar Rh-O-B complex 54 prepared by Hartwig, undergoes transmetalation to form 

(Et3P)2Rh(Ph)(C6H4-OMe) 55 when heated to 70 °C (eq 4).53 Interestingly, both of these M-O-B 

complexes contain trigonal boron centers in which the Rh-O-B complex is proposed to undergo 

transmetalation without prior activation of the boron center (Scheme 12).  
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Scheme 12 

 
 

2.2. Objectives 

 

 As the transmetalation pathway in the Suzuki-Miyaura is the often the cross-coupling 

method of choice in both the academic and industrial settings it is crucial to know the structures 

of the active transmetalating agent. Moreover, the ability to identify such a complex would allow 

for reaction conditions to be optimized to ensure adequate formation of such intermediate 

complexes. Although the intermediacy of a species containing a Pd−O−B linkage has been 

proposed, its observation and characterization have eluded chemists for over 30 years. Indeed, a 

recent review by Lennox and Lloyd-Jones states that,39  

 

“The barrier of this process was predicted computationally to be low (14–22 kcal mol−1), 

suggesting specialist techniques will need to be applied to detect and confirm the identity of [37] 

experimentally.”  

 

 The primary objective of this chapter is to identify and fully characterize pre-

transmetalation intermediates in the Suzuki-Miyaura cross-coupling reaction by rapid injection 

and low temperature NMR spectroscopy. Various 2D NMR techniques were employed for 

structure determination and the validity of these structures were confirmed via independent 

synthesis.   

  

PEt3

toluene
70 °C

PEt3

Rh
N

Et3P 52PEt3

THF

56

PEt3

RhEt3P

O

PEt3

55

O

B(OH)2

(1.0 equiv)
PEt3

Rh

O

Et3P

B

O

PEt3

54

OH

CH3

CH3

CH3

SiMe3Me3Si



 
 

19 

2.3. Results and Discussion 

 

2.3.1. Investigations of trans-(Ph3P)2(Aryl)Pd(OH) with Arylboronic Acids 

  
 Previous investigations that employed palladium complex [(Ph3P)(C6H5)Pd(OH)]2 as 

described above directed our studies to the use of fluorine labeled derivatives [(Ph3P)(4-

FC6H4)Pd(OH)]2 (57) and 4-fluorophenylboronic acid (58) using 19F and 31P NMR spectroscopy 

.54 To be a viable route, a convenient and reproducible preparation of 57 was needed therefore two 

different reaction sequences were explored. Following literature precedent oxidative addition 

product trans-(Ph3P)2(4-FC6H4)Pd(I) (59) (from (Ph3P)4Pd0 and 4-fluoroiodobenzene 60)55 was 

reacted with 10.0 equiv of CsOH•H2O in THF at room temperature for 12 h yielding 87 mg 

(30%).56 However, the reproducibly of this reaction was found to be highly stir rate dependent 

which led to minimal success upon scale up due to incomplete conversions and side reactions. 

Additionally, the hydration state of CsOH•H2O was found to be batch dependent which led to 

drastic changes in yield further complicating the reaction system. An alternative approach for the 

synthesis of 57 involved the combination of (Ph3P)2PdCl2 (61) 4-fluoroiodobenzene, and KOH in 

an aqueous benzene mixture employing a catalytic amount of phase transfer catalyst 18-crown-6 

at 80 °C for 3 h yielding 192 mg 42% (Scheme 13, 2).57 This reaction was found to be successful 

up to a 1.0 g scale allowing for bulk quantitates of 57 to be prepared.  

Scheme 13 
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only trace conversion to trans-(Ph3P)2(4-FC6H4)Pd(OH) 62 indicating a thermodynamic 

preference for the Pd-(µ-OH)-Pd moiety (Scheme 14, 1).58 However, the addition of 4-

fluorophenylboronic acid (58) (1.0 equiv/Pd in ) to this solution at −50 °C followed by warming 

to −50 °C resulted in the observation of a new complex (63) by 31P and 19F NMR spectroscopy. 

Interestingly, the 31P NMR spectrum displayed two singlets at −6.5 ppm (free Ph3P) and 20.60 

ppm in a ratio of 1:1, implying that the complex contained two molecules of Ph3P based on the 

initial stoichiometry of starting materials (Figure 13). The 19F NMR spectrum displayed a new set 

of signals at −116.74 and −125.40 ppm in a 1:1 ratio (Figure 14). The observation of two 19F NMR 

resonances excluded the assignment of the new species as the product of transmetalation, trans-

(Ph3P)2(4-FC6H4)2Pd, (should appear as a single resonance) and was consistent with the 

assignment of an unsymmetrical species containing a Pd-O-B linkage such as 63.  

Scheme 14 

 

 
Figure 13. 31P NMR spectrum of complex 63. 
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Figure 14. 19F NMR spectrum of complex 63.   

The ability to observe an intermediate prior to transmetalation led us to investigate other 

palladium sources [(Ph3P)(Y-C6H4)Pd(OH)]2 (Y = F, 57; CF3 64) with excess Ph3P and boronic 

acids such as 4-fluorophenylboronic acid 58, 4-trifluoromethylboronic acid 65 or 3-fluoro-

4methyoxyphenylboronic acid 66 (Table 1).  

To probe the effects of electron poor and rich boronic acids, 65 and 66 were both separately 

reacted with a THF solution containing 57 and Ph3P (1.5 equiv/Pd) in an NMR tube at −50 °C 

(Table 1). In both cases the starting materials reacted slowly at −50 °C, therefore the solutions 

were annealed at −40 °C over ~30 min, resulting in near quantitative conversions to both 67 an 68 

by 31P and 19F NMR spectroscopy. Additionally, electron deficient palladium complex 64 also 

reacted with boronic acid 58 upon annealing at −40 °C by 31P and 19F NMR spectroscopy.  
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Table 1: 19F, and 31P NMR chemical shifts (ppm) for starting materials, products and 
complexes using Ph3P as ligand.  

 
Entry Pd-Aryl/sm B-Aryl/sm Complex 

1a 

57 58 
63 

2 

57 65 
67 

3 

57 66 

68 

4 
64 58 

69 

Experiments were conducted by cooling in dewar to −78 °C and placing in the NMR 
spectrometer pre-cooled to −50 °C.  
 

 Unfortunately, the 31P and 19F NMR chemical shifts are not sufficient to unambiguously 

assign complexes 63, 67, 68 and 69 as Pd-O-B linkages, thus complex 63 was selected to 

investigate the remaining structure information such as 1H, 13C, and 11B NMR chemical shifts. 

However, the 11B NMR spectrum was non-conclusive due to significant broadening and 

borosilicate glass in the NMR probe. Furthermore, the complexity of the aromatic region in the 1H 

and 13C NMR spectra prohibited assignments thus making it impossible to unambiguously identify 

the structures of these new species. Therefore, to clear the aromatic region of interfering signals 

the Ph3P ligand was replaced with a trialkylphosphine, i-Pr3P, which readily forms stable 

mononuclear bis-phosphine palladium hydroxide complexes such as trans-(i-Pr3P)2(4-

FC6H4)Pd(OH) (70).57 Thus, our efforts switched to the study of mononuclear bis phosphine 

palladium complexes to identify the key intermediate. 
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Table 2: 19F, and 31P NMR chemical shifts (ppm) for starting materials, products and 
complexes using Ph3P as ligand.  

Entry complex 31P 19Fa
 19Fb

 

1 58 − − −111.21 
2 57 34.83 −123.79 − 
3 63 20.60 −125.40 −116.74 
4 65 − − −61.84 
5 57 34.83 −123.79 − 
6 67 21.30 −125.48 −62.18 
7 58 − − −111.21 
8 64 34.64 −62.18 − 
9 69 21.11 −61.10 −118.50 
10 66 − − −139.39 
11 57 34.83 −123.79 − 
12 68 19.95 −126.47 −141.31 

 

 
2.3.2. Investigations of trans-(i-Pr3P)2(4-FC6H4)Pd(OH) with 4-Fluorophenylboronic Acid and 4-

Fluorophenylboroxine 

  

 Combination of trans-(i-Pr3P)2(4-FC6H4)Pd(OH) (70) and arylboronic acid 58 with 2.0 

equiv of i-Pr3P59 in THF-d8 at −78 °C followed by warming to −60 °C did not result in the 

formation of a new intermediate. Upon annealing the solution at −30 °C for 3 h, quantitative 

conversion to a new discrete species was observed (Scheme 15, left). The use of extensive 1D and 

2D NMR techniques at −30 °C lead to the structure elucidation of the newly formed species as 

complex 71 containing a Pd−O−B linkage. The bonding connectivity of the new species was 

established by the observation of strong, through-space interactions between aryl protons Hb and 

Hd with the methyl hydrogens on the i-Pr3P group in the NOESY spectrum (Figure 15). This 

interaction reveals that both aryl residues were proximal to the phosphines and thus established 

the presence of a Pd-O-B linkage.  
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Scheme 15 

 

 
Figure 15. NOESY spectrum of complex 71.   
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Table 3 1H, 19F, 11B and 31P NMR chemical shifts (ppm) for starting materials, products and 
complexe 
Entry complex 11B 31P 19Fa

 19Fb
 1Ha

 1Hb 1Hc
 1Hd

 1HO 

1 70 − 33.00 −124.68 − 6.64 7.35 − − 3.60 
2 58 29 − − −111.21 − − 7.04 7.86 7.06 
3a 71 29 29.98 −123.77 −115.75 6.71 7.45 6.88 7.76 4.47 

4 76 − 30.36 −122.52 − 6.73 7.28 − − − 

5 79 4 − − −118.41 − − 6.79 7.43 3.74 

6b 71 N.D. 29.02 −123.72 − 
115.73 N.D N.D N.D N.D N.D. 

7c 71 28 29.98 −123.76 −115.74 6.72 7.46 6.88 7.78 4.48 
8 80 − 45.55 −122.61 − 6.67 7.36 − − −1.74 
9d 88 Broad 45.62 −123.67 −113.40 6.74 7.41 7.04 7.86 10.22 
10 90 − 43.99 −123.25 − 6.66 7.35 − − − 
11e 88 N.D. 46.12 −123.59 −113.36 6.72 7.39 7.06 7.87 10.21 

12 103 − 75.68 −125.18 − 6.58 7.30 − − −2.23 

13 104 N.D. N.D. N.D. N.D. 6.76 7.46, 
7.28 6.76 7.13 9.51 

14 106 28 −  −111.38   7.08 7.67 − 
15 107 9 51.00 −121.01 −118.33 6.85 7.45 6.95 7.68 4.02 
16g 107 − − − − 6.84 7.46 6.92 7.70 4.01 
17 58 − 34.83 −123.79 − 6.33 6.92 − − −1.78 
18 106 10 34.86 −121.09 −118.16 6.60 7.05 6.99 7.76 4.14 

19 109 − 28.42(P1) 
8.96(P2) −123.63 − 6.93 6.34 − − 0.45 

20 111 N.D. 33.06(P1) 
11.47(P2) −122.35 −116.47 7.08 6.97 6.45 6.97 N.D. 

21 73 − − −116.45 − 7.65 7.21 − − − 
a 6-B-3 complex 71 was prepared from 70 and 58. b6-B-3 complex 71 was prepared from 76 and 71. c 6-B-3 complex 71 was prepared from 70 and 76. d 

Complex 88 was prepared from 80 and 90. e Complex 88 was prepared from 90 and 79. f Complex 107 was prepared from 80 and 58 in THF/CH3OH. g 
Complex 107 was prepared from 80 and 106 in THF/CH3OH. 

 
 
 The identity of the carbon bound to the boron atom C(1) was revealed in the HMBC (1H-13C) 

spectrum by the observation of cross peaks between the BOH hydrogen with a single 13C signal at 

138.68 ppm (red bonds) (Figure 16). 



 
 

26 

 
Figure 16. gHMBC spectrum of 71 at −30 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 

 

 The coordination geometry at the palladium atom was established by the appearance of the 
13C NMR signal of the isopropyl methine carbon (PCH) at 25.38 ppm as an apparent triplet (JP-C 

= 10 Hz) owing to virtual coupling60 along with a solitary 31P NMR signal at 29.98 ppm. These 

data indicate a trans arrangement of phosphine ligands bound to palladium (Figure 17). 

 
Figure 17. Left is 13C NMR spectrum for complex 71 displaying signal at 25.38 ppm.  

2030405060708090100110120130140150160
(ppm)

THF-d8

THF-d8

25.526.026.5
(ppm)

PCH



 
 

27 

 The coordination geometry at boron was established by the observation of a 11B NMR 

signal at 29 ppm indicating a tricoordinate geometry (6-B-3), that was also seen in the Pt 50 and 

Rh 54 complexes mentioned above (Scheme 11) [Ph4BNa was used as a reference standard at 

−6.15 ppm]. The surprising observation that species 71 contained a trigonal boron atom required 

that the complexation resulted in the loss of a molecule of water from the kinetically generated 8-

B-4 complex that was expected (see Figure 10).  

 

 
Figure 18. 11B NMR spectrum for complex 71. 

 

 Support for the structural assignment of complex 71 was provided by an independent 

preparation from 4-fluorophenylboroxine (72) (0.33 equiv) and complex 70 with 2.0 equiv of i-

Pr3P in THF-d8 at −78 °C followed by warming to −60 °C. Under these conditions, a ca. 50% 

conversion to complex 71 was observed with the remainder forming 4,4’-difluorobiphenyl cross-

coupling product 73 (Scheme 15, right). The similarity of the spectroscopic data from these two 

independent syntheses, including the NOE cross peaks and 11B NMR chemical shifts, provides 

compelling support for the structural assignment of 71 as a 6-B-3 palladium(II) complex 

containing a Pd–O–B linkage.   

 

2.3.3. Investigations of trans-(i-Pr3P)2(2-napth)Pd(OH) with 4-Fluorophenylboronic Acid  

 

 The ability to prepare 6-B-3 complex 71 with a 4-fluorophenyl ligand bound to the 

palladium atom led us to explore the generality of this approach by preparing 2-

nathylpalladiumhydroxide dimer 74 followed by reacting it with 4-fluorophenylboronic acid 58 in 

the presence of 0.5 equiv of i-Pr3P in THF-d8 at −30 °C where a quantitative formation to 6-B-3 

complex 75 was observed by 31P and 1H NMR spectroscopy The 31P NMR chemical shift at 28.51 
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ppm is in good agreement with 6-B-3 complex 74. The 1H NMR chemical shifts were assigned 

with the aid of 1H-1H COSY experiment (Figure 19). This complex was ultimately prepared to 

create a larger  p-surface that could aid in crystallization experiments. However, all attempts at 

crystallizing this 6-B-3 complex failed.  

 
Scheme 16 

 

 
Figure 19. 1H NMR spectrum for 6-B-3 complex 75. 

 
2.3.4. Investigations of trans-(i-Pr3P)2(4-FC6H4)Pd(X) with 4-Fluorophenylboronate Salts 

 

  An alternative preparation of the intermediate involves the direct displacement of halide 

from the bis-phosphine ligated oxidative addition product, trans-(i-Pr3P)2(4-FC6H4)Pd(I) (76). To 

be a viable route, a convenient and reproducible preparation of 76 was needed. Therefore, complex 

76 was prepared by the combination of CpPdallyl 77 with 4-fluoroiodobenzene which formed 

complex 76 in a 78% yield. (Scheme 17). Complex 76 has remained shelf stable (freezer) for over 

2 years outside the glovebox. 
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Scheme 17 

 
 Treatment of a THF solution of complex 76 with 3.0 equiv of potassium 4-

fluorophenylboronate 78 at −30 °C in THF with 2.0 equiv of i-Pr3P resulted in no reaction (Scheme 

18, left). Even upon warming to 30 °C, no cross-coupling product 73 was observed. The lack of 

reaction is most likely due to the steric hindrance at the palladium center provided by the bulky 

phosphine ligands, as well as the low solubility of 78 in THF.  

 To activate the palladium center toward nucleophilic attack, complex 76 was combined 

with 3.0 equiv of thallium 4-fluorphenylboronate (79) containing 1.0 equiv of i-Pr3P and dibenzo-

22-crown-661 to facilitate halide abstraction (Scheme 18, right). Although only a 10% conversion 

to 71 was observed by 19F and 31P NMR spectroscopy, the experiment demonstrated that 

intermediate 71 could be formed directly from complex 76.  

 
Scheme 18 

 
 Based on the 10% conversion to 6-B-3 complex 71 using thallium boronate 79, we 

envisioned generating a cationic palladium complex from 80. Tri-isopropylphosphonium 

tetrafluoroborate was prepared and reacted with [(i-Pr3P)(4-FC6H4)Pd(OH)]2  (80) at room 

temperature where a quantitative conversion to a single cationic trans-(i-Pr3P)2Pd(4-

FC6H4)(OH2)+BF4
– (81) complex was observed which was characterized by NMR spectroscopy 

(Scheme 19). The cationic complex 81 was identified as trans because a single 31P NMR signal 

was observed. In addition to the aryl group and two i-Pr3P ligands, a molecule of H2O was 
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coordinated to the complex as observed by 1H NMR spectroscopy. Attempts to isolate this complex 

resulted in decomposition.62 

 
Scheme 19 

 
 This attempt at the synthesis of the 6-B-3 intermediate 71 involved combining cationic 

aqua complex trans-(i-Pr3P)2Pd(4-FC6H4)(OH2)+BF4
–(81) with sodium 4-fluorophenylboronate 82 

(Scheme 20). In this experiment, complex 81 and 1.0 equiv of i-Pr3P were added to a suspension 

of sodium 4-fluorophenylboronate 82 in THF-d8 at −78 °C in a dry ice acetone bath followed by 

placement into the NMR spectrometer set to −30 °C. A ~50% conversion to 6-B-3 complex 71 

was observed at −30 °C (Scheme 20). In an attempt to observe chemical exchange between 74 and 

unbound 4-flurophenylboronic acid 58, a 2D-EXSY experiment was performed. Although no 

exchange was detected between 74 and 58, exchange was observed between free arylboronic acid 

58 and sodium boronate 82 on the NMR time scale. However, for this route to be considered an 

independent synthesis of 6-B-3 complex 74 the possibility of 82 deprotonating complex 81 needed 

to be unambiguously ruled out. 

Scheme 20 

 
 To probe this hypothesis, an experiment was designed to react the aqua complex 81 with 

sodium 4-fluorophenylboronate 82 at a temperature in which the palladium hydroxide 70 and 
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hydroxide complex 70 and arylboronic acid 58 was being formed during the experiment they 

would be detected at low temperature by 19F NMR spectroscopy. Upon the combination of a THF 

solution of the aqua complex 81 and sodium 4-fluorophenylboronate 82 (3.0 equiv/Pd) at −55 °C 

the palladium hydroxide 70 and arylboronic acid 58 were observed by 19F NMR spectroscopy 

indicating that this reaction is proceeding through a deprotonation event and not through a direct 

displacement of water with the sodium arylboronate 82 (Scheme 21).  

Scheme 21 

 
 

2.3.5. Attempts to generate an 8-B-4 Complex from 71 

 

 The formation of 6-B-3 complex 71 must arise from a kinetically generated 8-B-4 complex 

83 followed by rapid elimination of a single molecule of water. Because these experiments were 

performed in anhydrous THF, it is conceivable that the 8-B-4 complex 83 is thermodynamically 

unstable. Thus, a number of attempts to add water back were undertaken, beginning with 

generating 71 in THF/H2O (99:1) mixtures. However, no change in the 31P, 19F or 11B NMR spectra 

were observed at −30 °C (Scheme 22).  
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Scheme 22 

 
 Secondly, the use of inorganic hydroxide bases were explored by combining 6-B-3 

complex 71 in THF at with a solution of CsOH•H2O in THF/CH3OH (10:1) in attempts to saturate 

the boron valences. [Attempts to solubilize MOH bases in aqueous THF mixtures resulted in 

insoluble hydroxides or bi-phasic mixtures.]  

 Complex 71 (from 70 and 58, vide supra) in THF at −78 °C was combined with a solution 

of CsOH•H2O (5.0 equiv) in methanol. The sample was monitored at −30 °C, but no changes in 

the 19F, 31P or 11B NMR spectra were observed. However, after warming the sample in 10 °C 

intervals up to 20 °C, cesium 4-fluorophenylboronate 84 and complex 70 were observed by 19F 

and 31P NMR spectroscopy indicting that the arylboronic acid had been displaced from the 

palladium center (Scheme 23, Figure 20). The identity of the cesium 4-fluorophenylboronate 59 

was confirmed by mixing an isolated sample in THF/CH3OH where an identical 19F NMR signal 

was observed. This experiment supported the notion that arylboronate complexes such as 83 are 

indeed unstable. The reason for their instability was revealed by thermochemical calculations as 

detailed below.  
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Scheme 23 

 

 
Figure 20. Black 1H NMR spectrum for 6-B-3 complex 71 in THF at −30 °C. Green 1H NMR 

spectrum for 6-B-3 complex 71 in THF/CH3OH at −30 °C. Blue 1H NMR spectrum for 6-B-3 

complex 71 in THF/CH3OH at 20 °C. 

 

2.3.6. Thermochemical calculations on 6-B-3 and 8-B-4 Complexes* 

 

 To gain further insight into the lack of stability of 8-B-4 complex 83, ground state 

equilibrium energies were calculated using M06-2X /6-31G(d) on B3LYP/6-31(d) optimized 

structures with a THF continuum solvent field. The loss of water from an initially formed 8-B-4 

complex 83 yielding 6-B-3 complex 74 was found to be highly exergonic (ΔG° = −10.8 kcal/mol). 

Surprisingly, the entropic advantage (ΔS° = 0.048 kcal/mol K) is not offset by the expected 

enthalpic disadvantage of creating a coordinatively unsaturated boron (ΔH° = 1.0 kcal/mol) (Figure 

                                                        
* Special thanks to Dr. Hao Wang and Andrew Zahrt for performing the DFT-calculations.  
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21).  

 Inspection of space filling models of 83 reveals that the OH groups on boron penetrate the 

van der Waals radii of the isopropyl methyl groups on phosphorus thus destabilizing the four-

coordinate geometry. Therefore, the instability of 83 is not related to the medium, but rather to the 

bulk of the two i-Pr3P groups attached to palladium (F- and B-strain).63 The solution to this 

problem then became obvious; remove a phosphine ligand from the complex. Indeed, calculation 

of the ground state energies for monoligated T-shaped complexes 86 and 87 reversed the 

equilibrium position now substantially favoring the 8-B-4 complex (ΔG° = −6.9 kcal/mol) despite 

an unfavorable entropy (ΔS° = −0.045 kcal/mol K). This preference is driven by the overwhelming 

enthalpic benefit of saturating the valences on boron (ΔH° = −17.9 kcal/mol). Accordingly, the 

focus of the investigation switched to the study of monoligated arylpalladium(II) complexes to 

enable the generation of the long-sought, 8-B-4 activated adduct.  

 
Figure 21. Calculated equilibria for loss of water from 8-B-4 species 83 and 86. 
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2.3.7. Reaction of [(i-Pr3P)(4-FC6H4)Pd(OH)]2 with 4-Fluorophenylboronic Acid  

 

 Addition of a THF solution of 58 (1.0 equiv/Pd) to dimeric complex [(i-Pr3P)(4-

FC6H4)Pd(OH)]2 (80) in THF-d8 at −78 °C followed by warming to −50 °C resulted in no change 

in the 1H NMR spectrum (Scheme 34). However, the 19F NMR spectrum displayed a sharp signal 

for Fa at −123.35 ppm but an extremely broadened signal for Fb at approximately −111.98 ppm 

signifying a dynamic process. Moreover, the staring dimeric complex 80 exists as a cis-trans 

mixture that upon the addition of the boronic acid 58 had converted to a single isomer further 

signifying a dynamic process. Upon cooling this solution to −100 °C new signals appeared in the 

aromatic region of the 1H NMR spectrum along with complete loss of the signals of 80 but 

surprisingly 50% of 58 remained (Scheme 24).  

Scheme 24 

 
 

 The incomplete consumption of the boronic acid could be interpreted as an unfavorable 

equilibrium or a different stoichiometry of complexation. The former interpretation was eliminated 

by the addition of 2.0 equiv/Pd of 58 to complex 80 whereupon no further incorporation of the 

arylboronic acid was observed (Scheme 25, Figure 22). 
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Scheme 25 

 

 
Figure 22. Black 1H NMR spectrum is 1.0 equiv/Pd of 58 to complex 80 at −100 °C. Green 1H 

NMR spectrum is 2.0 equiv/Pd of 58 to complex 80 at −100 °C.  

 
 The connectivity in complex 88 was established by the observation of 1D-NOE, positive 

cross peaks between Hb, Hd and the bridging OH group with the methyl hydrogens on the i-Pr3P 

group. The observation of positive NOE cross peaks indicates slow molecular movements 

(tumbling) consistent with the larger molecular size of the 2:1 complex. Interestingly, the 

resonances for Hb and for the methyl hydrogens on the i-Pr3P group were exceptionally broadened 

at −100 °C indicating an observable barrier to rotation about both the P-Pd and aryl-Pd bonds. On 

the basis of the available data, the structure of this complex was assigned as the bridged bis-

arylpalladium arylboronate complex 88, which represents direct insertion of 58 into the dimeric 

complex 80 without further dissociation.64  

 The unexpected 2:1 stoichiometry of complex 88 was confirmed by combining a THF-d8 

solution of 58 (0.5 equiv/Pd) with a THF-d8 solution of 80 at −60 °C, followed by cooling to −100 

°C whereupon a quantitative conversion to 88 was observed (Figure 23).  
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Figure 23. 1H NMR spectrum of 0.5 equiv/Pd of complex 88 at −100 °C.  

 

 The 11B NMR spectrum of complex 88 did not reveal a discrete signal, owing to the rapid 

exchange between the arylboronic acid 58 with the palladium hydroxide complex 80 as confirmed 

by EXSY experiments.  

 

2.3.8. Reaction of [(i-Pr3P)(4-FC6H4)Pd(I)]2 with Thallium 4-Fluorophenylboronate 

 

 To support our structural assignment an independent synthesis of complex 88 was desired. 

The success with the previous thallium boronate reaction led our next set of investigations to react 
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the combination of Pd(dba)2 to 25.0 equiv of 4-fluoroiodobenzene in THF with 1.1 equiv of i-Pr3P. 

Unfortunately, palladium black was observed which is most likely the result of disproportionation 

of subvalent LPd0 complexes.65 An alternative synthesis involved performing a stoichiometric 

cross-coupling reaction between [(i-Pr3P)(4-FC6H4)Pd(OH)]2  80 and 4-fluorophenylboronic acid 
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Pd
O B

O
PdO

O

H

HH

P-iPr3

F

F

H

F

88

i-Pr3P

Hb

Ha

Hc

Hd

0.51.52.53.54.55.56.57.58.59.5
(ppm)

B(OH)
Ha

HbHd Hc

THF-d8
THF-d8

H2O

PCH

PCH[CH3]



 
 

38 

addition to the aryl halide. 66 Interestingly, this method resulted in a 45 % yield of complex 90 after 

crystallization (Scheme 26).  

 

Scheme 26 

 
 With complex 90 in hand an independent synthesis was performed by combining 1.5 

equiv/Pd of thallium arylboronate 79 with [(i-Pr3P)(4-FC6H4)Pd(I)]2 (90) in THF-d8 at −78 °C 

followed by warming to −50 °C. By cooling the mixture to −100 °C the identity of complex 88 

was confirmed in a 1:1 ratio with cross-coupling product 73 by 1H, 19F and 31P NMR spectroscopy, 

indicating the ability to form the Pd-O-B linkage in 79 with complex 90 directly (Scheme 27).  

 

Scheme 27 
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2.3.9. Variable temperature NMR analysis of complex 88  

 

 The activation energy of exchange between complex 88 and arylboronic acid 58 was 

measured by variable temperature NMR spectroscopy. The 19F NMR spectra of a 1:1 ratio of 

complex 88 and unbound 58 were recorded at temperatures ranging from −100 °C to −10 °C in 

THF (Figure 24). The rapid exchange of 88 and unbound 58 is evidenced by the overlapping and 

broadening of their 19F NMR signals at higher temperatures (> −50 °C) and the slow exchange is 

evidenced at lower temperatures by the decoalescence of the 19F signals into well resolved peaks. 

An approximate coalescence temperature (Tc) was measured at –40 °C by the signals merging with 

the baseline. The rate constant kc at coalescence was measured using kc = πΔv/√2, where Δv is the 

maximum chemical shift difference (1068 Hz) between 88 and 58 at −100 °C. Using the Eyring 

equation ΔGe
≠ = −RTcln(kcħ/kBTc), the activation of exchange was measured to be approximately 

ΔGe
≠ = 11 kcal/mol. This low barrier of exchange between 88 and 58 suggests that the broad 11B 

NMR signal is caused by rapid changes in the coordination state of boron.  

 
Figure 24. Stacked plot of 19F NMR spectra recorded for a THF solution of 1.0 equiv of 88 and 
1.0 equiv of 58 over a range of temperatures (−100 °C to −10 °C).  
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2.3.10. Reaction of [(i-Pr3P)(Aryl)Pd(OH)]2 with arylboronic acids 
 

The inability to incorporate two boronic acids into the dimeric complex 80 is conceivably 

due to the strength of the Pd-(µ-OH)-Pd moiety as observed by Grushin.57 In attempts to favor a 

1:1 Pd/B stoichiometry additions of various [(i-Pr3P)(Y-C6H4)Pd(OH)]2 (Y = F, 80; CF3, 64; Me, 

93) with either 4-fluorophenylboronic acid 58, 4-trifluoromethylboronic acid 65 or 3-fluoro-

4methyoxyphenylboronic acid 66 were performed. Addition of boronic acid 58 to electron 

deficient complex 64 at −78°C followed by placement into the NMR set to −60°C resulted in a 

complex aromatic region in the 1H NMR spectrum. Upon cooling to −100 °C the 1H NMR spectra 

were indiscernible to interpret due to signal overlapping. However, the 19F NMR spectrum 

revealed two signals at −61.69 ppm and −113.18 ppm in a ratio of 6:1 indicating that the 

pseudodimer 94 was observed as in complex 88 (Table 4, entry 2). Furthermore complex 93 was 

unable to form 1:1 Pd/boron stoichiometries, however it did form a 2:1 (Pd/B) as observed by 

diagnostic signals in the 1H NMR spectrum (entry 3). Similarly, electron deficient complex 64 was 

also incapable of forming a 1:1 adduct even when electron deficient boronic acid 65 was employed 

(Table 4, entry 4). Ultimately, it also formed a 2:1 complex as in 88. It was conceivable that an 

electron rich boronic acid 66 was needed to form a 1:1 Pd/B adduct however it formed a 2:1 

complex as in complex 88 when subjected to the standard reaction conditions (entry 5).  
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Table 4: Screen of substrates in attempts to form 1:1 Pd/B complexes  

 
Entry Pd-Aryl/sm B-Aryl/sm 1,2-Complex 

1 
80 58 

88 

2 
64 58 

94 

3 
93 58 

96 

4 
64 65 

97 

5 
80 66 

98 

Experiments were conducted by cooling in dewar to −78 °C and placing in the NMR 
spectrometer pre-cooled to −60 °C followed by cooling to −100 °C. 

 

 

2.3.11. Reaction of [(t-Bu3P)(4-FC6H4)Pd(OH)]2 with 4-Fluorophenylboronic Acid 

 

 The inability to form a 1:1 Pd/B stoichiometry, was hypothesized to be caused by the i-

Pr3P ligand not being large enough to break the Pd-(µ-OH)-Pd dimer bond. Interestingly, upon 

comparison of mono-ligated phosphine halide complexes containing ligands such as i-Pr3P and t-

Bu3P the i-Pr3P ligand forms dimeric complexes (i.e. 90) where t-Bu3P is known to form T-shaped 

palladium halide complexes (i.e. 99) (Figure 25).20 Therefore, we were interested in preparing T-

shaped phosphine arylpalladium hydroxide complexes in monomeric form.  
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Figure 25. Dimeric and T-shaped phosphine complexes.   

 

 The first attempt at synthesizing (Path 1) T-Shaped t-Bu3P complex 100 was attempted by 

combining (t-Bu3P)2PdCl2 (101) with KOH, benzene, and 4-fluorochlorobenzene at reflux; 

however, palladium black was observed. Path 2 involved reacting T-shaped t-Bu3P complex 101 

with 10.0 equiv of CsOH•H2O in THF were palladium black was also observed. A third synthetic 

route was envisioned by first attempting to prepare TMEDAPd(Aryl)OH67 102 which then upon 

protonation and removal of TMEDA with t-Bu3PH•BF4 lead to complex 100 (Path 3). However, 

screening the three sets of reaction conditions all led to palladium black indicating that the 

hydroxide complex 102 was unstable. The final synthesis involved the addition of thallium 

hydroxide to complex 101 where a white solid was obtained in 17% yield (Scheme 28). We then 

investigated if the newly formed complex was a T-shaped or dimeric complex in solution. 

Scheme 28 
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 Upon dissolving the powder in THF a dimeric structure was observed in a trans:cis ratio 

of 1:1 indicating that the t-Bu3P ligand was not bulky enough to form a monomeric palladium 

hydroxide dimer (Figure 26). Nevertheless, complex 103 was reacted with boronic acid 58. 

 

 
Figure 26. 1H NMR spectrum of complex 103.  
 

 In an attempt to form a complex with 1:1 Pd/B stoichiometry, the larger t-Bu3P ligand was 

employed to weaken the Pd-(µ-OH)-Pd bonds and form a T-shaped palladium hydroxide complex. 

Thus, addition of a THF-d8 solution of complex 103 to a THF-d8 solution of 38 (1.0 equiv/Pd) at 

−78 °C followed by warming to −60 °C produced no new complexes. However, upon cooling the 

solution to −100 °C a new complex emerged with complete consumption of 103 with 1.0 equiv of 

58 remaining (Scheme 29). The structure of this complex was assigned as the bridged bis-

arylpalladium arylboronate complex, 104, by analogy to complex 88. Two discrete Hb signals were 

observed at −100 °C wherein the barrier to rotation about the palladium aryl bond was found to be 

10 kcal/mol (Figure 27).  
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Scheme 29 

 

 
Figure 27. VT-NMR spectra of complex 104.  

 

2.3.12. Reaction of [(i-Pr3P)(4-FC6H4)Pd(OH)]2 with 4-Fluorophenylboronic acid in 

THF/CH3OH 

 

 The surprising formation of 2:1 complex 88 raised a number of questions regarding the 

origin of its stability. Because this structure is heavily dependent upon the bridging capability of 

various oxygen atoms, it seemed logical to examine the effect of other donors, such as water, on 

the stability of this complex. Due to the low temperatures needed for intermediate formation 

methanol was chosen over water. In order to add methanol, the rapid injection NMR apparatus was 

used to performed the addition so we could monitor the sample accurately at low temperature. 
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 Rapid injection of CH3OH (60 µL) into a THF-d8 solution of 88 with 1.0 equiv of 58 (from 

80 and 58, vide supra) at −55 °C resulted in the quantitative formation of a new species 86 by 1H 

NMR spectroscopy (Figure 28). 

 

 

 
Figure 28. 1RI-NMR spectra (1H NMR) of methanol injection into complex 88.  

 
 Immediately, this experiment was repeated in CD3OD to characterize the newly formed 

complex by NMR spectroscopy (Figure 29). The presence of a Pd-O-B linkage in 105 was 
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73 over ~3-4 h at −55 °C indicating the complex was prone for transmetalation compared to 

complex 88.   

 
Scheme 30 

 
 

 
Figure 29. 1H NMR spectrum of complex 105.  

 

 The 11B NMR signal at 9 ppm was well within the chemical shift regime for tetracoordinate 

boron (8-B-4) complexes (Figure 30). However, the 11B NMR chemical shift of arylboronic acid 

58 was needed in THF/CH3OH (10:1) to confirm that methanol had not simply coordinated the 

boron atom. Addition of arylboronic acid 58 to a THF/CH3OH solution resulted in a broad signal 

at 30 ppm in the 11B NMR indicating that methanol is not sufficiently Lewis basic to coordinate to 

the boron atom whereas a Pd-OH is.  
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Figure 30. 11B NMR spectrum of 8-B-4 complex 105.  

 Attempts to confirm the incorporation of methanol into complex 105 by NMR 

spectroscopy were unsuccessful most likely because of rapid exchange with free methanol in 

solution. Attempting to prepare complex 105 with lower THF/CH3OH ratios resulted in cross 

coupling product even at low temperature (−55 °C) indicating that methanol may be incorporated 

into the structure and excess methanol in solution may stabilize the complex. To determine if 

methanol was incorporated into the structure an independent synthesis was investigated between 

4-fluorophenyldimethoxyboronate 106 and complex 80. 

  The identity of complex 105 was verified by the reaction of 1.0 equiv/Pd of 4-

fluorophenyldimethoxyboronate 106 with palladium dimer 80 at −78 °C in THF-d8/CD3OD 

followed by warming to −55 °C whereupon a quantitative formation to complex 105 was observed 

by 1H and 13C NMR spectroscopy (Scheme 31, right). This experiment clearly demonstrates that 

the hydroxyl groups had been replaced by methanol; however, this result did not provide any 

information on if the starting binuclear arylpalladium hydroxide complex had converted to a T-

shaped complex.  

Scheme 31 
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spectroscopy. Moreover, the addition of methanol (60 µL) to a THF solution of complex 88 at −78 

°C followed by warming to −60 °C resulted in a quantitative conversion to both 105 and 80 in a 

ratio of 1 : 0.5, indicating that the Pd-(µ-OH)-Pd is not broken by methanol (Figure 31). 

 

 
Figure 31. Black 1H NMR spectrum is complex 80 at −100 °C in THF/CH3OH. Green 1H NMR 

spectrum is complex 88 in THF. Blue 1H NMR spectrum is methanol addition to complex 88.  

 

2.3.13. Reaction of [(Ph3P)(4-FC6H4)Pd(OH)]2 with 4-Fluorophenylboronic acid in THF/CH3OH  

 

 To establish if similar 1:1 complexes can be formed with other ligands, [(Ph3P)(4-

FC6H4)Pd(OH)]2 (57) was combined with 1.0 equiv/Pd of 58 at −78 °C in THF-d8/CD3OD 

followed by warming to −55 °C. A new complex 107 was formed quantitatively, which displays 

spectroscopic characteristics similar to the other complexes (1H, 13C, 19F, 31P and 11B NMR) along 

with HMBC and HSQC experiments to establish connectivity (Scheme 32).  
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Scheme 32 

 
 

2.3.14. Reaction of [cis-(L2)(4-FC6H4)Pd(OH)] with 4-Fluorophenylboronic acid in THF 

 

 The preference for a tricoordinate boron atom in 6-B-3 complex 74 arose from the presence 

of two, bulky i-Pr3P ligands arranged in a trans configuration about the palladium (F− and 

B−strain).68 It was of interest to investigate whether arranging the ligands in a cis coordination 

geometry would allow the boron atom to adopt a tetracoordinate state. Therefore, following 

literature precedent,69 (DtBPP)(4-FC6H4)Pd(OH) 108 and (DPPF)(4-FC6H4)Pd(OH) 109 were 

prepared by combining complex 57 with 2.0 equiv of either DtBPP or DPPF in THF to form 

complexes 108 and 109 (Scheme 33). These complexes were characterized by NMR spectroscopy. 

The isolated arylpalladium hydroxide complexes showed two 31P signals accompanied by 2JPP cis 

coupling, indicating an unsymmetrically coordinating bis-phosphine ligand was present.  

Scheme 33 
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 Next, DtBPP complex 108 was combined with arylboronic acid 58 at −78 °C followed by 

warming to −55 °C which resulted in no reaction even upon warming to −30 °C, most likely due 

to the bulk of the chelate ligand (Scheme 34). 

Scheme 34 

 
 Secondly, complex 109 was combined with arylboronic acid 58 at −55 °C which resulted 

in the quantitative conversion to a new species, 111 (Scheme 35). Complex 111 was characterized 

by 1H, 31C, 19F, 11B and 31P NMR spectroscopy with the HMBC (1H−13C and 1H−31P) and HSQC 

(1H−31C) experiments establishing the connectivity. At −55 °C, the assignment of the P(1)-atom 

(11.47 ppm) in 111 was enabled by the observation of trans couplings across the Pd center to Hb 

(4JP-H) and to Ha (5JP-H), establishing a trans relationship between P(1) and the aryl group bound 

to palladium (Figure 32).70 The 11B NMR chemical shift was merged with the baseline, suggesting 

a rapid equilibrium between 111 and starting materials.  
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Figure 32. HMBC (1H-31P) spectrum of complex 111.  

 
2.4 Conclusions  
 
 
 For the first time Pd-O-B linkages “the missing links” in the Suzuki-Miyaura have been 

observed and fully characterized by NMR spectroscopy. The characterization of these complexes 

was made possible by low temperature and rapid injection NMR spectroscopy. During this study, 

four types of Pd-O-B linkages were formed and found to display different coordination 

environments about both the boron and palladium atoms. The structures are shown in general terms 

in Figure 33.  

 

 
Figure 33. Types of Pd-O-B linkages characterized with arylboronic acids.   

 The structures of these intermediates were assigned based on 1D and 2D NMR 

spectroscopy with the NOE and HMBC experiments being crucial in solving the structures. 
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Moreover, multiple independent synthesis validated our structure determinations. Additionally, 

these syntheses allowed for the coordination environments about boron to be confirmed. 

Interestingly, various phosphine ligands such as Ph3P, i-Pr3P and DPPF were found to form Pd-O-

B linkages that could be characterized by NMR spectroscopy. Furthermore, solvent was found to 

dramatically affect the structures of these complexes (ie 1:1 Pd/B ratio). The first goal of this 

project was completed upon the elucidation of these putative intermediates. The next chapter is 

centered on characterizing these species both kinetically and computationally allowing for the first 

structure reactivity relationships to be determined for pre-transmetalation intermediates in the 

Suzuki-Miyaura reaction.  
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CHAPTER 3: Kinetic and Computational Characterization of Pre-transmetalation  

Intermediates in the Suzuki-Miyaura Reaction with Aryl Boronic Acids 

 

3.1 Introduction and Background 

 

 The past 30 years has seen tremendous advancement in the realm of cross-coupling 

reactions. Specifically, the advent of electron rich and sterically hindered ligands has allowed for 

reaction conditions to be tuned in a manner that allows for the oxidative additions of aryl chlorides. 

Furthermore, the rate of reductive elimination has also been shown to be enhanced by the 

employment of large phosphine ligands (Scheme 36).71 The key to this technology is the ability of 

the ligand to control the coordination number of the palladium atom. Specifically, the Buchwald 

ligands and t-Bu3P work by both stabilizing and keeping an empty coordination site free on the 

metal center.  

Scheme 36 

 
 

 Interestingly, while the oxidative addition and reductive elimination steps have seen many 

investigations on the impact of ligand, solvent and various other reactions conditions these effects 

are virtually unknown for the transmetalation step in cross-coupling reactions except for the Stille 

and Hiyama-Denmark reactions. Echavarren and co-workers72,73 were able to investigate the 

intramolecular transmetalation event by forming pre-reductive elimination intermediates (Figure 

34). Oxidative addition of aryl iodide 112 with (Ph3P)4Pd in toluene at 40 ºC resulted in the 

formation of palladacycle 113. Interestingly, upon changing the ligand to DPPF oxidative addition 

product 114 was isolated. Evidently, the transmetalation to form palladacycle 114 is inhibited by 

the lack of an activated palladium center. However, the transmetalation was induced to form 

palladacycle 115 by the addition of Ag2CO3. These studies reveal the importance of choice of 

reaction conditions as well as the ligands employed. 
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Figure 34. Isolated pre-reductive elimination palladacycles in the Stille reaction. 

  

3.2 Objectives 

 

 The ability to generate pre-transmetalation intermediates with different coordination 

environments around both the boron and palladium atoms provided the opportunity to interrogate 

kinetic aspects of the transmetalation event. The primary objective is to explore the effect of ligand, 

solvent and organoboron sources on the transfer of the organic group from boron to palladium. 

These studies were performed by kinetically monitoring the decay of Pd-O-B linkages under 

different reaction conditions by 19F NMR spectroscopy as well as monitoring the rates of cross-

coupling products to determine the rate determining step. Additionally, Dr. Hao Wang and Andrew 

Zhart performed DFT calculations to validate my measured results. 
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3.3 Results and Discussion 

 

3.3.1. Kinetic analysis of Complex 88 from [(i-Pr3P)(4-FC6H4)Pd(OH)]2 and 4-

Fluorophenylboronic acid 

 

 Complex 88 was prepared as described in Section 2.3.8. by the addition of a THF solution 

of 58 (1.0 equiv/Pd) to a THF solution of 80 at −78 °C. To establish the kinetic behavior, the 

sample was warmed to −30 °C and the 19F NMR signals for both 86 and 73 were monitored. First 

order plots of [86] and [73] versus time were fitted using functions [A]=[A]0e−kt and 

[P]=[A]0(1−e−kt), respectively, where [A] is the concentration of 86, [A]0 is the initial concentration 

of 86, [P] is the concentration of 73, k is the rate constant, and t is time. These functions provided 

accurate values for k  (the observed kinetic constant) for the decay of 86 (5.78 ± 0.13 x 10−4 s−1) 

and the formation of 73 (7.59 ± 0.58 x 10−4 s−1) (Figure 35). The similarity of rates for appearance 

of 73 and consumption of 86 suggests that transmetalation is the rate-determining step for this 

process. Moreover, the first order behavior confirms that the transmetalation is in an intramolecular 

process proceeding through either 86 or 73. As described in chapter 2 it is not possible to confirm 

which complex is actually present at –30 ºC because of the rapid exchange among 88, 58, and 86 

and the resulting coincidence of their NMR signals. The proposal that arylboronate complex 88 

converts to 86 prior to transmetalation is supported by an Arrhenius analysis and computational 

investigation as described below. 
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Figure 35. Decay of complex 86 and formation of 73 at −30 °C.  

 

 To obtain the activation parameters, the rates of formation of 73 were measured by 19F 

NMR spectroscopy at four different temperatures ranging from −40 °C to −10 °C in THF. First 

order plots of [86] and [73] versus time were obtained for all measurements and fitted as described 

above. Upon plotting ln(k/T) vs. T−1  a linear slope was obtained which allowed for the activation 

parameters to be extracted from the data using the Eyring equation 1 (Figure 36).  
 

Equation 1.  

𝑙𝑛
𝑘
𝑇 =

−Δ𝐻‡

𝑅
1
𝑇 + 𝑙𝑛

𝑘-
ℎ +

Δ𝑆‡

𝑅  

 

 The enthalpic (ΔH≠
243.15

  = 15.98 ± 0.79 kcal/mol) and entropic (ΔS≠243.15
  = −0.0069 ± 

0.0032 kcal/mol) values obtained were strikingly similar to computationally derived parameters 

strongly suggest that complex 88 has rearranged to 86 prior to transmetalation (Table 5). 
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Table 5: Activation Parameters for the Transmetalation Step. 

 

entry ΔG≠
243.15

  kcal/mol ΔH≠
243.15 kcal/mol  ΔS≠ kcal/mol•K 

measureda 17.7 ± 1.1 15.98 ± 0.79 −0.0069 ± 0.0032 

calculated 15.38 14.57 −0.003 
a Average of triplicate runs. 

 

 
Figure 36. Eyring plot for the decay of complex 86 over a range of temperatures. 
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3.3.2. Effect of Phosphine ligand on the rate of the transmetalation step 

 

 To establish the effect of phosphine ligand (Ph3P, i-Pr3P, DPPF) on the rate of 

transmetalation, complexes 86, 116, and 111 were freshly generated at –78 ºC followed by 

warming to –10 ºC in THF such that their 19F NMR signals could be monitored. Each complex 

demonstrated first order behavior providing accurate values for k (Table 6, Figure 6). However, an 

accurate rate value for the formation of cross-coupling product 75 could not be obtained for DPPF 

complex 11 because its 19F NMR signal (–116.47 ppm) overlapped with the product 73 (–116.45). 

Furthermore, the matching of the decay and formation of products from Ph3P complex 116 

demonstrated that the transmetalation step is rate determining for this complex as well. The slower 

reaction rate from using the DPPF ligand compared to Ph3P and i-Pr3P ligated complexes 116 and 

86 respectively suggests that a ligand dissociation event must take place prior to the 

transmetalation event in complex 111. The rate of transmetalation from the Ph3P complex 116 was 

slightly faster than the i-Pr3P complex 86 indicating the increased rate is not related to the size of 

the ligand, but rather to the electrophilicity of the palladium center. This conclusion is supported 

by the observation of a positive rho value for a Hammett study on the transmetalation step in the 

related cross coupling of arylsilanolates.74 From these data the rate of the transmetalation process 

follows the trend Ph3P > i-Pr3P > DPPF, highlighting the need for generating a coordinatively 

unsaturated and electrophilic palladium atom during the transmetalation process.  

Table 6: Effect of Phosphine Ligand on Rate.a 

 

entry complex ligand k,a 10−3 s−1 (decay) k,a 10−3 s−1 (form) krel 

1 111 DPPF 2.75 ± 0.05 – 1.00 
2 86 i-Pr3P 8.09 ± 0.86 4.65 ± 0.36 2.94 
3 116 Ph3P 9.95 ± 0.71 10.6 ± 0.2 3.61 

a Average of triplicate runs.  
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3.3.3. Effect of solvent on transmetalation event 

 

 The observation of complex 105 in THF/CH3OH (10:1) raised a concern that the excess 

methanol in solution may impact the formation of cross-coupling product. This trepidation about 

the role of methanol sparked a series of kinetic experiments to probe the effect of solvent on the 

rate of transfer for the organic fragment from boron to palladium. First, the kinetic behavior of 

arylpalladium complex 105 in THF/CH3OH (a fully characterized 1:1 complex) revealed a clean, 

first-order decay of 105 and formation of 73 with k values of 1.55 ± 0.09 x 10−3 s−1 and 1.41 ± 0.02 

x 10−3 s−1 respectively, (Scheme 37, 1).  These values are very similar (krel = 2.68) to the rates 

observed with complex 86 in pure THF (Scheme 37, 2). 

Scheme 37 

 
 Secondly, the kinetic behavior of Ph3P complex 107 in (10:1) THF/CH3OH revealed a 

clean, first-order decay of 107 and formation of 73 with k values of 6.63 ± 0.32 x 10−3 s−1 and 7.45 

± 0.36 x 10−3 s−1 respectively (Table 7, entry 2). Comparing the rates of the i-Pr3P complex 105 in 

(10:1) THF/CH3OH revealed that the Ph3P complex was 4.8 times faster, which is a very similar 

magnitude increase in rate (krel was 2.27) for the reactions in pure THF (i.e. no methanol) as 

described above at −10 °C indicating that methanol does not have much of an impact on the rate 

between these two ligands (Table 7, entries 3 and 4). 
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Table 7: Effect of solvent and ligand on ratea 

 
 

entry complex Temp solvent ligand k,a 10−3 s−1 (decay) k,a 10−3 s−1 (form) krel 

1 105 −30 °C  THF/CH3OH i-Pr3P 1.41 ± 0.02 1.55 ± 0.09 
4.8 

2 107 −30 °C  THF/CH3OH Ph3P 6.63 ± 0.32 7.45 ± 0.36 

3 86 −10 °C  THF i-Pr3P 8.09 ± 0.86 4.65 ± 0.36 
2.27 

4 116 −10 °C  THF Ph3P 9.95 ± 0.71 10.6 ± 0.2 
a Average of triplicate runs. 

 

 The formation of i-Pr3P complex 105 in pure THF (from dimethyl ester 106 and 80) at −78 

°C followed by warming to −30 °C resulted in the first order formation of cross-coupling product 

73 with a remarkable rate increase at 12.4 ± 0.02 x 10−3 s−1 (Table 8). The decay of complex 105 

could not be monitored in this case because the 19F NMR signal was too broad to accurately 

integrate. The enhanced rate (21.45 times faster) for the appearance of 73 relative to the 

arylboronic acid complex 86 suggests two things: 1) there is a solvent effect and 2) the methyoxy 

groups in pure THF are increasing the rate for transmetalation. A full discussion for the origins of 

this effect is in chapter 4. Moreover, these observations led us to investigate the effects of the 

ligand bound to boron (i.e. arylboronate esters) on the rate for transmetalation. 
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Table 8: Effect of solvent on rate.a 

 

entry complex solvent ligand k,a 10−3 s−1 (decay) k,a 10−3 s−1 (form) krel 

1 86 THF i-Pr3P 0.759 ± 0.058 0.578 ± 0.013 1.00 

2 105 THF/CH3OH i-Pr3P 1.41 ± 0.02 1.55 ± 0.09 2.68 

3 105 THF i-Pr3P − 12.4 ± 0.2 21.45 
a Average of triplicate runs. 

 

3.3.4. Kinetic analysis of 6-B-3 Complex 71 

 

 Complex 71 was thermally stable at −30 °C for more than 24 h in the presence of i-Pr3P 

indicating that a higher temperature would be needed to form cross-coupling product 73. In fact, 

warming a THF solution of 71 to 20 °C resulted in the formation of 73 however, not with the first-

order behavior observed for the previous complexes, but rather exhibiting S-shaped concentration 

vs. time curves. The kinetic order in phosphine was determined by monitoring the rate of formation 

of 73 in THF solutions containing increasing amounts of i-Pr3P ranging from 97 to 294 mM at 20 

°C (Table 9). The S-shaped kinetic profiles were fitted using rate equation 2 to solve for kc (rate 

for catalyzed pathway) and q (a constant) (Figure 37). 75  

Equation 2.  

𝐴 = [𝐴]3 + 𝑞
[𝐴]3

[𝐴]3 + 𝑞 ∙ 𝑒𝑥𝑝 𝑘9 [𝐴]3 + 𝑞 𝑡
 

Equation 3.  

𝑣 = 𝑘9
[𝐴]3 + 𝑞

2

=

− 𝐴 −
[𝐴]3 + 𝑞

2

=

 

  

 Using equation 3 these values were used to generate a concentration [A] vs rate [v] plot 
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which allowed for a maximum rate vmax to be was extracted from the data (Figure 38).75 Plotting 

log[vmax] versus log[i-Pr3P] provided a straight line with a slope of –1.05 ± 0.05, consistent with 

an inverse dependence on phosphine (Scheme 38, Figure 39). This dependence indicates that a 

phosphine ligand must dissociate in a pre-equilibrium process that leads to putative 14-electron 

palladium complex 87 (Scheme 38). The requirement for this dissociation event is supported by 

computational studies that reveal high barriers for direct transmetalation from intermediates such 

as 87.  

Scheme 38 

 

 

Figure 37. Decay of complex 71 in the presence of varying amounts of i-Pr3P.  
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Figure 38. Rate vs. concentration curve for varying amounts of i-Pr3P.  
 

 

 

Figure 39. Order determination of i-Pr3P for complex 71 
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Table 9. Rates of cross-coupling product formation from 71.  

 

entry equiv i-Pr3P additive ratea 10−3 mM s−1 

1 2.85 − 4.48 ± 0.65 

2 3.81 − 3.24 ± 0.12 

3 5.41 − 2.42 ± 0.48 

4 8.62 − 1.37 ± 0.96 

5 3.81 − 3.24 ± 0.12 

6b 3.81 (i-Pr3P)2Pd 2.99 ± 0.36 

7b 3.81 (i-Pr3P)3Pd 2.19 ± 0.11 

8 5.41 − 2.42 ± 0.48 

9c 5.41 H2O 1.11 ± 0.04 

10 3.81 − 3.24 ± 0.12 

11d 3.81 − 3.26 ± 0.17 
a Average of triplicate runs. b 0.25 equiv of LxPd was 
added. c 10 equiv of water was added. d From 72 and 70.  

 

 3.3.4.1. Effect of (i-Pr3P)xPd on the Rate of the Transmetalation from 6-B-3 Complex 71 

 

 The S-shaped kinetic profiles observed during the reactions outlined above are indicative 

of autocatalytic behavior which conceivably could be caused by the Pd(0) initial byproduct (i-

Pr3P)Pd or (i-Pr3P)2Pd scavenging i-Pr3P. However, this should not be the case as there is an excess 

of i-Pr3P is in solution in a range from 2.85 to 8.62 equiv, which means the Pd(0) species should 

be saturated. To probe if this was the case ideally one would want to add mono-ligated complex 

(i-Pr3P)Pd to the system, however, zero valent mono-ligated palladium complexes are known to 

dispropionate and from palladium black.76 However, both (i-Pr3P)2Pd and (i-Pr3P)3Pd are known 

compounds which were prepared by performing a ligand exchange with TMEDAPdMe2
77 

followed by rapid reductive elimination to yield (i-Pr3P)2Pd and (i-Pr3P)3Pd depending on the 
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amount of i-Pr3P added (Scheme 39).78  

Scheme 39 

 
 Interestingly, upon dissolving (i-Pr3P)3Pd in THF both (i-Pr3P)2Pd and i-Pr3P are observed 

which means the palladium center cannot accept a third ligand in solution. Nevertheless, upon the 

addition of 0.25 equiv of (i-Pr3P)3Pd to a solution of 71 with 3.81 equiv of i-Pr3P the vmax was 

found to be (2.19 ± 0.11) x 10−3 mM s−1 which was slower than in the absence of the additive (3.24 

± 0.12) x 10−3 mM s−1  indicating that the (i-Pr3P)3Pd had released free i-Pr3P to the system (Table 

9). Additionally, 0.25 equiv of (i-Pr3P)2Pd was added to a freshly generated THF solution of 6-B-

3 complex 71 (from 58 and 70) with 3.81 equiv of i-Pr3P. The observed vmax was found to be 

slightly slower than without the additive (Table 9). The lack of rate increase further supports the 

notion that (i-Pr3P)2Pd does not have a strong affinity for i-Pr3P. These experiments clearly indicate 

that no order dependence is observed for the Pd(0) byproducts during the reaction, leaving only 

the boron by-products or water as the next most likely culprit for the S-shaped profiles.  

 
3.3.5. Probing the Transmetalation from 6-B-3 Complex 71 after Phosphine Dissociation: 

Autocatalysis Explained 

 

 Because 87 is formed in such a low equilibrium concentration, it is not possible to 

determine if transmetalation occurs directly from the 6-B-3 complex 87 or if coordination of 

another group on boron (to form an 8-B-4 species) is necessary. Two pathways (Path C and Path 

D) that differ in the coordination state of boron can be formulated for this process (Figure 40). In 

Path C the B-aryl group transfers directly to palladium from 87 whereas in Path D water (present 

in stoichiometric amounts, c.f. Chapter 2, Figure 21) combines with 87 to form 86 prior to the aryl 

migration. Accordingly, the next stage of this study focused on the role of water during the 

transmetalation event.  

 The reaction of 6-B-3 complex 71 (freshly generated in THF from 70 and 58) containing 

5.41 equiv of i-Pr3P and an additional 10.0 equiv of water was monitored by 19F NMR 

spectroscopy. The vmax was unexpectedly found to be slower than with no additional water present 
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(Table 9, entry 9). This observation suggests that if complex 86 were being formed (from 87 and 

water) that it reverts to 71 by recombination with i-Pr3P faster than it undergoes transmetalation at 

20 °C. 

 To test the validity of this hypothesis it was necessary to demonstrate the ability to 

independently convert 86 to 71 in the presence of i-Pr3P. Thus, a solution of complex 86 was 

prepared from 58 (1.0 equiv/Pd) and 80 in THF at –78 °C followed by warming to –55 °C. As 

previously described, a mixture of 88 (which is in equilibrium with 86) and 1.0 equiv of 58 was 

observed by 31P and 19F NMR analysis (Scheme 40). Upon addition of 60 µL of a 1.6 M THF 

solution of i-Pr3P at –78 °C to this solution followed by warming to 20 °C, 6-B-3 complex 71 was 

observed along with minor amounts of cross-coupling product 73. The formation of complex 71 

from this method was verified kinetically by monitoring the formation of cross-coupling product 

73 by 19F NMR which was found to have a vmax matching the formation of 71 from 70 and 58 

(Table 9, entries 2 and 11) further indicating that 71 was indeed formed. Thus, it appears that water 

is in fact inhibiting the cross coupling by shunting 87 to 8-B-4 intermediate 86 which is captured 

by the excess phosphine to arrive at the resting state 74. As a final proof of this scenario, complex 

71 would need to be prepared under anhydrous conditions thus forcing the reaction through Path 

C.  

Scheme 40 

 
 The water-free preparation of 74 has already been accomplished as part of the structural 

proof by combination of complex 70 and arylboroxine 72 (0.33 equiv) in THF. Repeating this 

procedure at –78 ºC in the presence of 5.41 equiv of i-Pr3P resulted in substantial amounts of cross-

coupling product 73. Therefore, complex 71 (from 40 and 72) was generated with 15.03 equiv of 

i-Pr3P which allowed for its kinetic competence to be studied (Scheme 41). Clean first order kinetic 

behavior was observed for decay of 71 (1.25 ± 0.60 x 10–4 s–1) and formation of 73 (7.14 ± 0.43) 

x 10–5 s–1). The absence of S-shaped kinetic profiles strongly suggests that water is somehow 
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involved in the rate increase during the reaction of 71 formed from 58 and 70. The equivalent of 

water generated from the combination of 58 and 70 (Figure 40) inhibits the transmetalation via 87 

by redirecting this intermediate to 8-B-4 complex 86 which is kinetically incompetent in the 

presence of excess i-Pr3P. However, as the reaction proceeds, the metaboric acid byproduct 

(BO(OH)) scavenges the water to form boric acid and consumes the inhibitor (water) thus 

accounting for the observed auto-catalytic behavior; ipso facto, path C, via a 6-B-3 species, is 

operative (Figure 40).  

Scheme 41 

 
 

 
Figure 40. Proposed mechanism for cross-coupling formation from 6-B-3 complex 71.  
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3.4. Computational Analysis of the Reaction Profile for Complexes Containing Pd-O-B 

Linkages 

 

 To gain further insight into the transmetalation step, transition state structures were 

calculated at the M06-2X/6-31G(d) on B3LYP/6-31(d) optimized structures with a THF 

continuum solvent field for the activated 8-B-4 complex 86 along with unactivated 6-B-3 complex 

87. Our previous computational investigation of arylpalladium arylsilanolate complexes revealed 

a significant difference in the energy profiles of isomeric, T-shaped arylpalladium complexes.79 

These three-coordinate species can exist in two configurations about palladium in which an empty 

site is either trans to the aryl group (TA) or to trans to the phosphine (TP). For completeness both 

isomers were calculated for all the ground states, intermediates, transition states and products. 

 
3.4.1. Computational analysis of Complex 86 

 

 The energy profile for the transmetalation event from 8-B-4 complex 86 is summarized in 

Figure 41. The experimentally observed ground state structure 86-GS has two bridging hydroxyl 

groups bound to the palladium atom; however, for the transmetalation event to take place, an empty 

coordination site is needed. The two bridging hydroxyl groups are nonequivalent, one is trans to 

the aryl group (red) and the other is trans to the phosphine (black). Cleavage of either of these 

groups will lead to their respective coordinatively unsaturated complexes described above which 

are “TA” (red) or the i-Pr3P group “TP” (black). The activation barriers for the formation for the 

two different T-shaped complexes 86-Inter-TA and 86-Inter-TP are 9.37 and 8.44 kcal/mol 

respectively. The electronic and steric parameters (aryl group and phosphine) lead to the observed 

differences in energies. Clearly, the steric parameter is the dominating factor because the arylgroup 

has a stronger kinetic trans effect80 when compared to the i-Pr3P ligand (leading to 86-InterTS-

TP). Moreover, in all succeeding steps on energy profile, the steric parameter is observed in the in 

the TA family as they are significantly higher energy than those in the TP family. The activation 

energies for the B-aryl transfer for 86-TS-TA and 86-TS-TP are 25.06 and 15.38 kcal/mol, 

respectively, reflecting a remarkable activation energy difference of 9.7 kcal mol−1. The greater 

activation barrier to B-aryl migration for 86-TS-TA can be attributed to the significant steric 

congestion around the palladium atom caused by the presence of the bulky i-Pr3P group, whereas 
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migration of the B-aryl group to the empty coordination site in 86-TS-TP is free of such repulsions 

and thus is energetically more favorable (Figure 42). An additional electronic contribution comes 

from migration of the B-aryl group to the site opposite to the substituent with the stronger trans 

effect in 86-TS-TA thus constituting a kinetic deterrent. The activation barrier for the 86-TS-TP 

(15.38 kcal/mol) transition state was found to be consistent with the experimentally measured 

value of 17.7 ± 1 kcal/mol (Table 5).  

 After the transmetalation event, the immediate product is either 86-Prod-Trans or 86-Prod-

Cis diarylpalladium complex with the coordinated B(OH)3 trans to i-Pr3P or the 4-fluorophenyl 

group. The reductive elimination is presumably initiated by the dissociation of boric acid, thus 

generating the active tricoordinate diarylpalladium complexes Pd-Prod-Trans or Pd-Prod-Cis, 

which are poised to form cross-coupling products.  

 
Figure 41. Energy profile for the transmetalation of 86. Free energies are calculated using 

M062X/LANL2DZ – 6-31G(d) with CPCM solvation modeling (solvent = THF) for single point 

energies with thermal corrections from B3LYP/LANL2DZ – 6-31G(d) at 243.15 K.
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Figure 42. Energy profile for the transmetalation of 86. Energies are single point solvation 

energies (THF) using M062X/6-31G(d) on the B3LYP/6-31G(d) optimized structures. 
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3.4.2. Computational analysis of Complex 87   

 

 The energy surface calculated for the 6-B-3 complex 87 is shown in Figure 11. Inspection 

of the energy profile reveals that the TA transition state and structures further along the energy 

profile are significantly higher in energy (~13 kcal mol−1) compared to the TP series. This behavior 

can be understood in terms of the same steric and electronic influences as was seen in the 8-B-4 

transition state structures (Figure 43). After the transmetalation event, the diarylpalladium 

complexes (87-Prod-Cis, 87-Prod-Trans) are only 0.78 – 1.13 kcal/mol downhill thus indicating 

very late transition states. The existence of late transition states is clearly signaled by the small 

difference in lengths of the forming bonds between the ipso carbon on the migrating group and the 

palladium atom for both 87-TS-TP (2.085 Å) and 87-TS-TA (2.171 Å) compared to 87-Prod-Cis 

(2.069 Å) and 87-Prod- Trans (2.154 Å), respectively. In this series the bonds are shortened by 

only 0.016 – 0.017 Å, whereas in the 8-B-4 series the corresponding changes for 87-TS-TP (2.199 

Å) and 87-TS-TA (2.285 Å) compared to 87-Prod-Cis (2.046 Å) and 87-Prod-Trans (2.103 Å), are 

much larger (0.153 – 0.182 Å, Figure 44).  

  
Figure 43. Energy profile for the transmetalation of 6-B-3 species 87. Free energies are calculated 
using M062X/LANL2DZ – 6-31G(d) with CPCM solvation modeling (solvent = THF) for single 
point energies with thermal corrections from B3LYP/LANL2DZ – 6-31G(d) at 243.15 K. 
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boron species to form free diarylpalladium complexes (Pd-Prod-Cis, Pd-Prod-Trans). However, 

the computational modeling of this event leads to a prohibitively endergonic process, which is 

most likely ascribable to the high energy of the O=B(OH) moiety. Solvation corrections lower the 

energies of the two products (32.7 kcal/mol and 19.1 kcal/mol for Pd-Prod-Trans and Pd-Prod-

Cis), but they are still higher than those in the 8-B-4 processes. To solve this problem, we assume 

that some kind of bimolecular oligomerization takes place to remove O=B(OH) as a byproduct. 

Thus, to calculate the energies of the final reductive elimination products, instead of directly using 

the energy of O=B(OH), one-third energy of the O=B(OH) trimer, metaboric acid, was computed 

and added to the tricoordinate diarylpalladium complexes, which in turn gives more reasonable 

energies to both Pd-Prod-Trans (−2.8 kcal/mol) and Pd-Prod-Cis (−16.5 kcal/mol).81 
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Figure 44. Transition-state and complexed product structures for transmetalation of 87. 
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3.5 Conclusions 

 The combination of low temperature and rapid injection NMR spectroscopic analysis has 

allowed the unambiguous demonstration that Pd-O-B linkages form prior to the transmetalation 

event in the Suzuki-Miyaura cross-coupling reaction. Structures of the intermediates identified 

were assigned by NMR spectroscopy with the NOE and HMBC experiments being crucial in 

determining the bonding connectivity (Chapter 2). These structural assignments were supported 

by independent synthesis, which clearly demonstrated that under certain reaction conditions both 

path A and B can lead to pre-transmetalation intermediates. The ability to form Pd-O-B linkages 

provided the unprecedented opportunity to probe the effect of the phosphine ligand on both 

structure and reactivity. Furthermore a series of structural, kinetic and computational 

investigations revealed two mechanistically distinct pathways: (1) transmetalation via a 6-B-3 

intermediate that dominates in the presence of excess phosphine, and (2) transmetalation via an 

anionic 8-B-4 intermediate that dominates in mono-ligated or cis-chelated systems. The 

demonstration of a direct transmetalation event from a tri-coordinate boron center (complex 86) 

challenges the current dogma that boron must have base activation prior to transmetalation. 

Overall, the critical feature that enables the transfer of the organic fragment from boron to 

palladium is the availability of an empty coordination site on the palladium atom. The importance 

of a coordinatively unsaturated palladium atom was revealed by both the inverse first order 

dependence on i-Pr3P and inhibitory effects of water for the formation of cross-coupling product 

from the 6-B-3 intermediate 71. The importance of a subligated palladium atom was further 

demonstrated by the DFT calculations and rapid transmetalation observed in 8-B-4 complex 105 

that contained a single i-Pr3P ligand bound to palladium. Further effects of solvent, boron sources 

and additives on the transmetalation event are discussed in Chapter 4.  
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CHAPTER 4: Kinetic and Computational Characterization of Pre-transmetalation 

Intermediates in the Suzuki-Miyaura Reaction with Aryl Boronic Acids 

 

4.1 Introduction 

 Currently, the Suzuki-Miyaura reaction is arguably the most practiced carbon-carbon 

forming reaction practiced in both academics and industrial settings as recognized by its share in 

the 2010 Nobel prize.6a The success of this coupling technology originates in its organo boron 

donor reagents innate ability to undergo rapid transmetalation with transition metals such as 

palladium and rhodium as well as the coinage metals in the presence of base.82 Moreover, these 

reagents are straightforward to prepare, exceptionally stable, and environmentally benign.83 From 

a historical perspective (1979) the first coupling reported was between catechol alkenylboranes 

and bromoalkenes (Scheme 42, 1). In 1981, Suzuki and Miyaura demonstrated that organoboronic 

acids could lead to favorable cross coupling reactions with organohalides (Scheme 42, 2).84  

Scheme 42 

 
Currently, boronic acids are the most employed coupling reagent in both the academic and 

industrial settings because of their ease of preparation and high atom economy. The primary 

method of preparing boronic acids is the trapping of organo lithium or magnesium reagents with 

boric esters such as B(O-i-Pr)3 and B(OMe)3 followed by an acidic workup (Scheme 43, 1).85
 

However, this method suffers from low functional group compatibility because of the employment 

of the lithium or magnesium based reagents and furthermore these reagents also can effectively 

serve as cross-coupling partners (Kumada). To circumvent this problem many mild methods of 

generating boronic acids have been developed which include boronic ester hydrolysis and 

palladium catalysis (Scheme 43, 2 and 3).86  
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Scheme 43 

 

 
Boronic acids have been employed in the commercial synthesis of BASFs fungicide 

Boscalide87 on more than a 1000 tonnes annually with a Suzuki-Miyaura cross coupling of an 

arylboronic acid being a key step.88 Additionally, Merck’s and Abbott laboratories have made 

extensive use of arylboronic acids in the synthesis of Losartan89 and ANT-96390 respectively on 

multikilogram scale (Figure 45). Additionally, countless examples of using these reagents have 

been employed in total synthesis of natural products.91  

 
Figure 45. Industrial examples of late stage coupling with boronic acids. 

 

However, these reagents are not without limitations as coupling partners such as vinyl, 

cyclopropyl, and electron rich heterocyclic derivatives are prone to undergo protodeboronation 

and oxidation. As these functional groups are ubiquitous in active pharmaceutical agents, 

especially heterocycles, intense effort over the past 30 years has gone into the development of a 

variety of masked reagents which include boronic esters, trifluoroborates and MIDA boronates to 

increase the stability of these coupling partners (Figure 46). [The masking term was defined by 

Lloyd Jones and co-workers: masking is distinct from “protection” because protection requires 

that a deprotection step take place prior to use.88] 
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Figure 46. Examples of some of the most popular boron coupling partners. 

 

4.2 Background 

 

4.2.1. Boronic esters 

 

 Boronic esters exhibit greater chemical stability than their corresponding boronic acids for 

a number of reasons.92 The primary reason is that the Lewis acidity of the boron atom is lower due 

to the increased overlap of the oxygen lone pairs into boron’s empty p orbital. Furthermore, these 

reagents are often liquids or free flowing powders which makes for the ease of isolation during 

synthesis. Two of the most common methods of accessing boronic esters is the hydroboration93 of 

alkenes or alkynes and the Miyaura borylation94 protocol. The Miyaura borylation protocol is a 

palladium catalyzed cross coupling reaction between an aryl or alkenyl halide with bis-pinacol 

borane as the typical borane source. Additionally, CH activation95 protocols have also been 

developed that have found widespread use. Moreover, boronic acids readily condense with 

alcohols or diols under dehydrating conditions such as a Dean Stark apparatus making them easily 

accessible (Scheme 44).  
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Scheme 44 

 
Boronic esters, especially pinacol boronates, have been employed as late stage coupling 

partners in many convergent syntheses of active pharmaceuticals agents. Two illustrative examples 

from Abbott Laboratories include the synthesis of kinase inhibitor ABT-869 which is under 

development for a possible cancer treatment and diacyl glycerolacyltransderase inhibitor DGAT-

1.96,97 Additionally, a potent and selective mesenchymal epithelial transition factor/anaplastic 

lymphoma kinase inhibitor Crizotinib has been synthesized via a late stage Suzuki-Miyaura 

coupling (Figure 47).98 

 
Figure 47. Industrial examples of late stage coupling with boronic esters. 
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 While, boronic esters enjoy increased stability on the bench they are prone to hydrolysis. 

As almost half of the reported Suzuki-Miyaura cross coupling reactions reported from 1981 to 

2011 are performed under basic biphasic systems it is suspected that the boronic esters are typically 

unmasked under the reaction conditions.39 Therefore, it is difficult to control the release of the 

valuable organic coupling partner which can be problematic and lead to decomposition as 

described above. Therefore, intense effort has gone into the development of masking agents that 

allow for slow or controlled release under the reaction conditions. Two of the most developed 

systems are N-methylimidodiacetic acid esters “MIDA boronates” by Burke and co-workers99 and 

potassium trifluoroborates by Molander and co-workers.100 

 

4.2.2. MIDA boronates 

 The N-methylimidodiacetic acid esters “MIDA boronates” have substantial chemical 

stability over boronic acids and esters because the boron atoms valences are saturated. The 

quaternisation of the boron atom makes these compounds free flowing powders that are stable to 

column chromatography and other standard purification techniques. The most common method of 

preparing these compounds is to condense boronic acids with methylimidodiacetic acid using a 

Dean Stark apparatus (Scheme 45).  

Scheme 45 

 

 
 

 MIDA boronates have found great utility as iterative cross-coupling partners in the 

synthesis of natural products by the development of halo-MIDA building blocks which has been 

applied to the synthesis of antifungal heptaene amphotericin B.101 The key to this coupling 

technology is the ability to control when the active coupling partner (boronic acid) is released. 

Specifically, MIDA boronates can be unmasked (hydrolysis) within minutes with aqueous NaOH 

at room temperature or remain relatively untouched by K3PO4.102,103 This allows for high 

chemoselectivity when multiple boron centers are present (Figure 48). Recently, Burke, Lloyd 

Jones, Cheong, and Houk identified two general mechanisms for the hydrolysis of MIDA 

boronates that differed in ester vs B-N cleavage.104 First, under the KOH conditions, the fast 
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release, was found to predominantly undergo rapid ester cleavage. Secondly, under K3PO4 

conditions the reagents were unmasked slowly by a B-N cleavage event.  

 
Figure 48. Iterative cross-coupling method with MIDA boronates. 

 
4.2.3. Potassium Trifluoroborates  

 

 In 1960, potassium trifluoroborate salts were characterized by Chambers; however, the 

utility of these reagents remained overlooked for almost 30 years.105 While Genet106 demonstrated 

the first cross-coupling with potassium trifluoroborate salts it was Molander107 who ultimately 

developed these reagents.108 These reagents exhibit similar stabilities to MIDA boronates 

described above because the boron atom is also quaternized. These reagents are predominantly 

free flowing powders that are typically prepared from the combination of HKF2 to the boronic acid 

of choice. Due to the corrosive nature of HKF2 milder methods have also been developed for the 

installation of fluoride by KF/tartaric acid (Scheme 46).109 ,110 
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Scheme 46 

 
Potassium trifluoroborates, have been employed as late stage coupling partners in many 

convergent syntheses in both synthetic and natural products as well as active pharmaceuticals 

agents.111 An illustrative example is the late stage installation of a vinyl group in the large scale 

synthesis of 4-hydoxyethylsulfonylstyrene.112 Additionally, a key carbon-carbon forming event in 

the synthesis of oximidine II was found to be effective by Molander and co-workers (Figure 49).113  

 
Figure 49. Examples of some of the most popular boron coupling partners  

 

 While, potassium trifluoroborates enjoy increased stability on the bench they must be 

hydrolyzed under the reaction conditions for the coupling reaction to take place. Indeed, an 

investigation by Lloyd Jones and co-workers demonstrated that a prior hydrolysis step precedes 

the cross-coupling event.114 Moreover, the unmasking event was found to be greatly affected by 

the pH of the solution, vessel and substrate indicating the reason why these reactions are often hard 

to control.  

 
4.3 Objectives 

 

While the reagents mentioned above have all been well documented to work under Suzuki-

Miyaura reaction conditions the precise manner in which the reagents undergo the crucial 

transmetalation event is lacking. A recent review by Lennox and Lloyd-Jones states that: 

 

“Evidently boronic esters exhibit greater stability than their corresponding boronic acids, but it 

is not clear what the active transmetalating species is during their Suzuki-Miyaura coupling.”116 
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intermediates can be formed from boronic esters by low temperature NMR spectroscopy. Specific 

goals include: (1) full characterization of reaction intermediates such as the pre-transmetalation 

species; (2) demonstration of the kinetic competence of the characterized species containing Pd-

O-B linkages to form cross-coupling product, and (3) quantum mechanical simulation of the 

transmetalation process involving these intermediates.115 

 

 
4.4 Results and Discussion 

 
4.4.1. Reactions of L2PdOH with arylboronate esters  

 
 The results presented in this section involve reactions between trans-(i-Pr3P)2(4-

FC6H4)Pd(OH) (70) and various arylboronate esters at low temperature (neopentyl, pinacol and 

catechol). It should be noted that this line of investigation presented below was performed prior to 

the synthesis of 1:1 B/Pd Pd-O-B linkages as described above. However, these results disserve 

some comment. 

 Addition of a THF solution of neopentyl ester 117 (1.0 equiv/Pd) to trans-(i-Pr3P)2(4-

FC6H4)Pd(OH) (70) in THF with 4.0 equiv of i-Pr3P at −78 °C followed by warming to −60 °C 

resulted in the observation of some cross coupling product 75 (<5%) by 19F NMR spectroscopy 

(Scheme 47, Figure 50). Interestingly, while the palladium complex 70 remained unchanged the 
19F NMR signal corresponding to ester 112 was extremely broadened. A possible explanation of 

the observed broadening is a rapid equilibrium between the starting materials.  
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Figure 50. 19F NMR spectrum of reaction mixture of 70 and 117. 

 Similarly the addition of a THF solution of pinacol ester 119 (1.0 equiv/Pd) to trans-(i-

Pr3P)2(4-FC6H4)Pd(OH) (70) in THF with 3.0 equiv of i-Pr3P at −78 °C followed by warming to 

−60 °C resulted in no detected intermediate. This suggests that the boron atoms in esters 119 and 

117 are not sterically accessible or Lewis acidic enough to coordinate with 70. 

Scheme 48 

 
 

 The last ester investigated with trans-(i-Pr3P)2(4-FC6H4)Pd(OH) (70) was the catechol ester 

121. Interestingly, upon the addition of a THF solution of catechol ester complex 121 (1.0 

equiv/Pd) to trans-(i-Pr3P)2(4-FC6H4)Pd(OH) (70) with 3.0 equiv of i-Pr3P in THF at −78 °C 

followed by warming to −60 °C resulted in new signals by 19F NMR spectroscopy (Scheme 49, 

Figure 51). At least one new species was being formed under these reaction conditions however 

the spectrum was difficult to interpret because of multiple fluorine signals were present. Therefore, 

our rapid injection apparatus was called into action. 
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Scheme 49 

 
 

 
Figure 51. 19F NMR spectrum of reaction of 70 and 121.  

 

 Injection of catechol ester 1.0 equiv/Pd into a THF solution of complex 70 at −60 °C 

resulted in the instantaneous formation of a clean 19F NMR spectrum containing two new signals 

at −121.98 ppm (Fa) and −119.58 ppm (Fb) (Figure 52). Interestingly, over a matter of minutes two 

broad peaks began to grow into the 19F NMR spectrum at −120.77 ppm and −117.43 ppm (Figure 

53). Upon collecting a 31P NMR spectrum (after ~10 min) the mixture two signals were observed 

at 29.90 ppm (P1) and 33.72 (P2) along with unbound i-Pr3P (Figure 54). The range of the 31P NMR 

chemical shifts suggests that two i-Pr3P ligands are bound to both complexes. Based on the 

similarity of both the 31P and 19F NMR chemical shifts between aqua cationic palladium complex 

81 (31P NMR at 33.02 ppm; 19F NMR at −122.49 ppm) suggests that the catechol boronate 

displaced hydroxide from palladium complex 70 and formed a cationic palladium species 123. 
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tetracoordinate boron complexes such as cesium trihydroxyboronate 84 (−120.81 ppm) as 

described in Chapter 2. This result suggests that boron in catechol ester 121 is more Lewis acidic 

than the palladium atom in complex 70.   

 
Scheme 50 

 
 

 
Figure 52. Initial 19F NMR spectrum of reaction mixture of complex 70 and 121. 

Pd
OH

Fa

i-Pr3P Pi-Pr3

70

i-Pr3P (8.0 equiv)

Fb

B

THF, −60 °C

O

O

Pd

Fc

i-Pr3P
Hb

Ha

123

1.0 equiv
121 Pd

O

Fa

i-Pr3P Pi-Pr3
Pi-Pr3

O
B

Fd

Hd
H

O

O

Hc

S

Pd

O

F

i-Pr3P

B

F

Hd

122

H
O

O

Hc

Pi-Pr3

Not Observed

Rapid Injection

Pd

Fc

i-Pr3P
Hb

Ha

Pi-Pr3

124

-124-122-120-118-116-114-112-110-108-106
(ppm)

FaFb

STD

Fc



 
 

86 

 
Figure 53. 19F NMR spectra of reaction mixture of complex 70 and 121. 

 

 
Figure 54. 31P NMR spectrum of reaction mixture of complex 70 and 121. 

 

4.4.2. Investigations of [(i-Pr3P)(4-FC6H4)Pd(OH)]2 with 4-Fluorophenylboronic acid esters  

 

 The successful formation of Pd-O-B linkages with arylboronic acid 58 and dimethoxy ester 

106 led to the investigation of whether some of the most common arylboronic esters (catechol, 

pinacol, and neopentyl etc.) utilized in the Suzuki-Miyaura reaction could also form stable, pre-

transmetalation complexes.116 Furthermore, the characterization of dimethyoxy ester Pd-O-B 

linkage 105 was investigated in pure THF. 
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 The addition of a THF solution of dimethyoxy ester 106 (1.0 equiv/Pd) to a THF solution 

of 86 at −78 °C followed by warming to −55 °C resulted in the formation of two new complexes 

in a ratio of 60:40 by the observation of two new sets of 19F NMR signals in a near 1:1 ratio. The 

first set of signals was assigned to complex 105 −121.58 ppm (Fa) and −118.85 ppm (Fb). The 

second set of signals was tentatively assigned as complex 125 −121.13 ppm (Fc) and −118.72 ppm 

(Fd) (Scheme 51, Figure 55). The observation of the two complexes in a 60:40 ratio is believed to 

be due to the kinetic binding of the boronic ester with the dimeric palladium complex as it exists 

in a 60:40 ratio typically. Furthermore, the 19F NMR chemical shifts for complex 105 in 

THF/CH3OH were measured to be −121.01 ppm (Fa) and −118.33 ppm (Fb) suggesting a solvent 

effect for the measurement of these chemical shifts. Moreover, this complex formed cross-

coupling product 73 readily at this temperature. The ability to form two dimethyoxy ester Pd-O-B 

linkages in THF led us to investigate more typical alkyl ester used in the Suzuki-Miyaura reaction 

such as isopropyl ester 126.  

Scheme 51 

 
 

 
Figure 55. 19F NMR spectrum of complex 105 and 125.  
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of the starting materials to two new species in a c.a. 1:1 ratio by 19F NMR spectroscopy. The first 

set of signals was assigned to complex 127 at −123.49 ppm (Fa) and −114.98 ppm (Fb). The second 

set of signals was tentatively assigned as complex 128 −123.10 ppm (Fc) and −114.35 ppm (Fd). 

Interestingly, allowing the reaction mixture to sit at −55 °C for ~1 h did not result in any further 

incorporation of the ester into the dimeric palladium complex. Warming the sample to −30 °C 

resulted in the formation of cross-coupling product 73. The incomplete consumption of starting 

materials suggests that the system is at equilibrium. The isopropyl groups are bulkier and more 

electron rich than the dimethyl ester suggesting that both steric and electronic parameters are 

involved in the formation of pre-transmetalation intermediates. This led us to investigate cyclic 

aryl boronate esters because both sterics and electronics (ie Lewis acidity of the boron atom) can 

be easily tuned.  

Scheme 52 

 

 

 
Figure 56. 19F NMR spectrum of reaction mixture of 127 and 128.  
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4.4.3. Investigations of [(i-Pr3P)(4-FC6H4)Pd(OH)]2 with cyclic 4-Fluorophenylboronic acid 

esters 

 

 The addition of a THF-d8 solution of catechol ester 121 (1.0 equiv/Pd) to a THF-d8 solution 

of 80 at −78 °C followed by warming to −55 °C produced complex 121 in quantitative yield by1H 

NMR spectroscopy (Scheme 53, Figure 57). It should be noted that this reaction was extremely 

sensitive to water and thus the THF-d8 was freshly distilled over NaK prior to each experiment 

and the catechol ester 121 was freshly sublimed. The use of extensive 1D and 2D NMR techniques 

at −55 °C lead to the structure elucidation of the newly formed species as complex 121 containing 

a Pd−O−B linkage. 

 
Scheme 53 

 

 
Figure 57. 1H NMR spectrum of complex 129. 
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catechol hydrogens and the i-Pr3P methyl groups because they are computationally predicted to be 

trans (Figure 58). Furthermore, the two possible isomers differ by ~2.5 kcal/mol signifying a 

greater thermodynamic stability for one complex over the other, suggesting the system is under 

thermodynamic control.  

 
Figure 58. Ground state calculation of two possible intermediates. 

 

 The identity of the carbons bound to the boron and palladium atoms C(1) and C(2) were 

revealed in the HMBC (1H-13C) spectrum by the observation of cross peaks between the Hc and 

Ha hydrogens with the 13C signals at 144.52 ppm (C(1)) and 136.85 ppm (C(2)) respectively (red 

bonds) (Figure 59).  

 
Figure 59. gHMBC spectrum of complex 129. 
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Figure 60. 11B NMR spectrum of complex 129. 

 Additionally, at −55 °C the 19 F NMR signals for (Fa) and (Fb) were observed as broad 

singlets with values of −120.77 ppm and −117.43 ppm respectively. This broadening is believed 

to be an effect of exchange or a rocking motion imparted by the catechol ring rotation (Figure 61).  

 

 
Figure 61. 19F NMR spectrum of complex 129. 
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followed by warming to −55 °C in THF resulted in no complex formation by 19F NMR 

spectroscopy (Scheme 54, Figure 62). Even upon warming to −30 °C no complexation was 

observed. Furthermore, the 19F NMR signals remained as sharp singlets indicating that no dynamic 

process was evident (Figure 62). The lack of formation of a Pd-O-B linkage is possibly due to the 

steric bulk imparted by the methyl substitutions on the pinacol ester. Therefore, our next line of 

investigations involved the glycol ester 131.   
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Scheme 54 

 

 
Figure 62. 19F NMR spectrum of complex 80 and pinacol ester 119. 

 Addition of a THF solution of glycol ester 131 (1.0 equiv/Pd) to dimeric complex [(i-

Pr3P)(4-FC6H4)Pd(OH)]2 (80) in THF-d8 at −78 °C followed by warming to −55 °C resulted in the 

conversion of the starting materials to two new complexes by 19F NMR spectroscopy in a ~90:10 

ratio (Scheme 55, Figure 64). The major complex 132 displayed 19F NMR signals at −121.65 ppm 

and −118.70 for Fa and Fb respectively. The minor complex 131 displayed 19F NMR signals at 

−121.97 ppm and −119.16 for Fg and Fe respectively. 
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Figure 63. 19F NMR spectrum of complex 132 and 127. 

 These complexes are most likely the result of two different isomers as depicted in Figure 

64. The observation of two complexes is supported by the calculated ground states that only differ 

by 1.5 kcal/mol indicating that both isomers could be observed experimentally (Figure 64).  

 
Figure 64. Ground state calculation for complex 132 and 133. 

 

 The observation of two complexes with the glycol ester and not the catechol ester is most 

likely not the result of the Lewis acidity of the boron atom, but the increased Lewis basicity of the 

oxygen atoms. This is a difficult parameter to probe because the boron and oxygen atoms interact 

with one another. However, upon binding the boron atom with Pd-OH should increase the Lewis 

basicity of the oxygen atoms making them stronger binders to palladium. As outlined in chapter 3 

the necessity of an empty coordination site on palladium is essential to induce transmetalation. 

Therefore, the next line of investigation involved the development of electron deficient boronate 

esters.   

 On this note we prepared 2-hydroxy-2-methyl propanoic acid boronate ester 134 by 

condensing the propanoic acid with 4-fluorophenylboronic acid 58 using a dean stark apparatus 

packed with 3 Å molecular sieves (Scheme 56).  
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Scheme 56 

 
 

 Combination of ester 134 (1.0 equiv/Pd) to dimeric complex 80 in THF at –78 °C followed 

by warming to −55 °C resulted in two new broad signals in the 19F NMR spectrum at –117.56 and 

–121.07 ppm which were assigned to complex 135 (Figure 65). The broadness of the signals in 

Pd-O-B linkage 135 is suspected to be the result of a rapid equilibrium between complex 135 and 

the staring materials.  
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Figure 65. 19F NMR spectrum of complex 135. 

  

F

B

F

B OH

OH HO OH

O

CH3
H3C

O

O
O

CH3

CH3
Benzene 3 Å sieves
reflux (dean stark)58 134

F

B

THF
 −55 °C then −30 °C

O

O

Pd

O

Fa

B

Fb

Hd

i-Pr3P
Hb

Ha

135

H
O

O

Hc

1.0 equiv/Pd
134

quantitative

Pd
i-Pr3P O

H

Fa

80

Ha

Hb

2 O

CH3

CH3

O
CH3

CH3

-126-125-124-123-122-121-120-119-118-117-116-115-114-113-112-111
(ppm)

STD

Fb

Fa

?



 
 

95 

 Finally, neopentyl ester 117 was investigated. Addition of a THF solution of neopentyl 

ester 117 (1.0 equiv/Pd) to dimeric complex [(i-Pr3P)(4-FC6H4)Pd(OH)]2 (80) in THF at −78 °C 

followed by warming to −55 °C resulted in no change in the 19F NMR spectrum. Even upon 

warming to −30 °C no Pd-O-B linkage was observed (Scheme 58). The lack of intermediate 

formation with pinacol 119 and neopentyl 117 esters 117 with 80 suggests that both sterics and 

electronics play a role in the formation of intermediate complexes. 

 
Scheme 58 
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indicating that complex 129 is most likely the complex that is transferring its organic group. 

Moreover, the similarity of rates for appearance of 73 and consumption of 129 suggests that 

transmetalation is the rate-determining step for this process. This led to a series of kinetic 

investigations with various arylboronate esters.  

Scheme 59 

 

 
Figure 66. Decay of complex 129 and formation of 73 at −30 °C.  

 

 Glycol ester complex 132 was prepared by the addition of a THF solution of 80 (1.0 
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monitored and found to provide a first order rate constant of k = 2.60  ± 0.17 x 10−3 s−1. 

Furthermore, the experimentally measured Gibbs free energy of 16.22 ± 0.1 kcal/mol is in good 

agreement with the calculated Gibbs free energy 15.9 kcal/mol. The decay of complex 132 was 

not monitored because of signal broadening and enhanced rate of its decay. Unlike the catechol 
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contains an electron withdrawing entity. Interestingly, the dimethyoxy ester complex 106 

displayed similar magnitudes for aryl group transfer as the glycol ester complex 132 suggesting 

that the alkyl substituents are playing similar roles (entry 4).  

 Attempts to measure rates for the formation of cross-coupling product from pinacol ester 

119 (Figure 68) and neopently ester 117 resulted in sigmoidal kinetics that could not be fitted using 

a first order decay. Furthermore, the S-shaped curves could not be fitted with a first order auto-

catalytic equation 1 as described earlier suggesting that this process was more complicated than 

other complexes. However, the pinacol ester did react over ~5.5 h to form cross-coupling product 

73 where the arylboronic acid 58 complex takes roughly 45 min to fully form cross coupling 

product 73. Similarly, the neopentyl ester also took longer to form (~1.5 h) cross-coupling product 

73. We suspected that the formation of cross coupling product was inhibited in esters 117 and 119 

due to the increased sterics. Because the pinacol and neopently esters did not form an observable 

intermediate, it is not surprising that they exhibit different reactivity profiles.    

 

 

 
Figure 67. Decay of complex 80 and formation of 73. 

 

Pd
i-Pr3P O

H

F
80

2

F

B

PdF

i-Pr3P

O
B F

130

H

O

2.0 equiv

−55 °C then −30 °C
THF

Not Observed
O

O
O

119



 
 

98 

Next, ester 134 was reacted with complex 80 at –78 °C followed by warming to –30 °C 

where the formation of cross-coupling product 73 could be monitored. A first order rate constant 

was obtained 2.26 ± 0.31 x 10−4 s−1. While this complex was slower (krel = 0.39) than the 

arylboronic acid 58 it was considerably faster than the pinacol ester 119.  

 Combining these results, we suspected that the driving force for the transmetalation event 

is centered on the ability to access an empty coordination site on the palladium atom. Therefore, 

the oxygen atoms bound to the aryl boron substrate needs to have low electron donation ability 

which should allow for rapid transmetalation. This led the investigation to oxalic acid arylboronate 

ester 132 which should allow for rapid transmetalation at low temperature. 

 Combination of oxalic acid ester 137 with complex 80 at –78 °C in THF resulted in cross-

coupling product instantly. In attempts to measure the rate for cross-coupling product 73 the rapid 

injection NMR apparatus was charged with the oxalic ester 137 in THF followed by lowering into 

an NMR tube containing complex 80 spinning inside the bore of the magnet at –100 °C. Upon 

injection of ester 137 into the solution of 80 at –100 °C only cross-coupling product 73 was 

detected after the first data set (9 s), (Scheme 60). This suggests that this reaction is instantaneous 

under these conditions. From these data the rate of the transmetalation event follows the trend 137 

>> 131 > 106 > 72 > 121 for B-aryl coupling partner.  
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Scheme 60  
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Table 10. Rate data for boronate esters 

 

 

Entry substrate  complex decay k, 10−3 s−1 form k, 10−3 s−1 krel 

1 

 
58 86 0.759 ± 0.058 0.578 ± 0.013 1.00 

2b 

 
72 87 − 5.39 ± 0.07 9.33 

4 
 

106 105 − 12.4 ± 0.2 21.45 

5 

 

121 129 2.74 ± 0.32 2.60 ± 0.17 4.49 

6 
 

131 132 − 13.3  ± 0.7 23.01 

7  

 

134 135 − 0.226 ± 0.031 0.39 

8 c 

 

119 120 − − − 

9 c 

 

117 118 − − − 

10 c 

 

137 138 − − − 

a Average of triplicate runs. b No intermediate was 
detected   
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4.6 Computational Analysis  

 

4.6.1 Computational analysis of Complex 129  

 

 The energy profile for the catechol ester complex 129 was computed in a similar manner 

as 8-B-4 complex 86 (Figure 68). In this case, the ground state is unsymmetrical creating two 

possible structures 129-React-TA (2.5 kcal/mol) and 129-React-TP (0 kcal/mol) that contain one 

hydroxyl group and an ester oxygen bound to the palladium center creating an energy difference 

of 2.5 kcal/mol. The dissociation of the ester oxygen in 129-React-TA and 129-React-TP have 

activation barriers of 14.9 and 15.7 kcal/mol respectively that led to two T-shaped complexes 129-

inter-TA and 129-inter-TP that differ by 1.2 kcal/mol, favoring 129-inter-TP which subsequently 

underwent transmetalation. Similarly, because of the steric repulsion created by the bulky i-Pr3P 

ligand, the transfer of the B-aryl group from the TA isomer (129-TS-TA) also possessed a 

significantly higher activation barrier than the TP isomer (129-TS-TP) by 9.4 kcal/mol (Figure 68). 

The experimental activation barrier, ΔG≠ = 17.0 ± 2 kcal/mol, is within error of the calculated 

transition state 129-TS-TP (ΔG≠ = 17.7). After the transmetalation event, the immediate product is 

either 129-Prod-Trans or 129-Prod-Cis diarylpalladium complex with the boron moiety 

coordinated trans to i-Pr3P or the 4-fluorophenyl group, indicating an early transition state (Figure 

69). After dissociation of the boron moiety, the reductive elimination proceeds from two different 

diarylpalladium complexes (Pd-Prod-Trans and Pd-Prod-Cis). Here again the species Pd-Prod-

Cis is created in a configuration immediately disposed to rapid reductive elimination where as 

species Pd-Prod-Trans must isomerize to achieve a favorable disposition of substituents. 
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Figure 68. Energy profile for the transmetalation of 129. Energies are single point solvation 

energies (THF) using M062X/6-31G(d) on the B3LYP/6-31G(d) optimized structures. 
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Figure 69. Energy profile for the transmetalation of 129. Energies are single point solvation 

energies (THF) using M062X/6-31G(d) on the B3LYP/6-31G(d) optimized structures. 

 

4.6.2. Computational analysis of Complex 132 
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dissociation of the ester oxygen in132-React-TA and 132-React-TP have activation barriers of 

12.9.0 and 14.1 kcal/mol respectively that led to two T-shaped complexes 132-inter-TA and 132-

inter-TP that are currently being calculated. Similarly, because of the steric repulsion created by 

the bulky i-Pr3P ligand, the transfer of the B-aryl group from the TA isomer (132-TS-TA) also 

possessed a significantly higher activation barrier than the TP isomer (132-TS-TP) by 9.2 kcal/mol 

(Figure 69). Interestingly, unlike the catechol ester complex the experimental activation barrier, 

ΔG≠ = 16.22 ± 0.1 kcal/mol, is within error of the calculated transition state 132-TS-TP (ΔG≠ = 

15.9 kcal/mol). The remainder or this energy profile is currently being calculated (Figure 70).   

 
Figure 70. Energy profile for the transmetalation of 132. Energies are single point solvation 

energies (THF) using M062X/6-31G(d) on the B3LYP/6-31G(d) optimized structures. 
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Table 11. Gibbs free energy comparison for cross-coupled product formation. A 

 

entry Complex ΔG≠
243.15

  kcal/mol (measureda) ΔG≠
243.15 kcal/mol (calculated)  

1b 83 17.7 ± 1.1 18.6 

2 129 16.99 ± 0.06 17.7 

3 132 16.22 ± 0.1  15.9 
a Average of triplicate runs. b Full Eyring analysis  

 
4.7 Conclusions 
 

 The combination of low temperature and rapid injection NMR spectroscopic analysis has 

allowed the unambiguous demonstration that under anhydrous conditions boronic esters form Pd-

O-B linkages prior to the transmetalation event in the Suzuki-Miyaura cross-coupling reaction. 

Structures of the intermediates identified were assigned by NMR spectroscopy with the NOE and 

HMBC experiments being crucial in determining the bonding connectivity. Furthermore, a series 

of structural, kinetic and computational investigations revealed that the esters can transmetalate 

directly without a prior hydrolysis step. Furthermore, depending on the ester used, dramatic rate 

enhancements for the transfer of the B-aryl groups were observed. Overall, the critical feature that 

enables the transfer of the organic fragment from boron to palladium is the availability of an empty 

coordination site on the palladium atom. The importance of a coordinatively unsaturated palladium 

atom was revealed by both the calculation profiles and the electron deficient oxalic acid ester 137. 

The impacts of these results are currently being transferred to catalytic process and will be reported 

in due course.   
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CHAPTER 5: Platinum Investigations of Pt-O-B Linkages 
 
 Building on the literature precedents outlined in chapter 2 our initial investigations were 

centered on making fluorine labeled Pt-O-B linkages that could be isolated and serve as NMR 

standards which if detected allow for a fleeting Pd-O-B linkage to be assigned.52 Therefore, our 

preliminary studies comprised the investigation of fluorine labeled trans-(Ph3P)2(4-FC6H4)Pt(I) 

(139) with arylboronic acids. However, for this to be a viable route an efficient synthesis of 

complex 139 was needed. Platinum dichloride was dissolved in molten Ph3P (80 ºC) which allowed 

for the synthesis of cis-(Ph3P)2PtCl2.117 This platinum complex was converted to (Ph3P)4Pt0 by 

reduction with aqueous KOH in ethanol in the presence of Ph3P whereupon a yellow solid was 

obtained.117 The fluorine labeled trans-(Ph3P)2(4-FC6H4)Pt(I) was then prepared by the oxidative 

addition of 4-fluoroiodobenzene with (Ph3P)4Pt0 yielding 0.216 g, 88% (Figure 71).  

 
Figure 71. Synthesis of complex 139.   

 However, following the reaction conditions outlined by Osakada et. al.52 utilizing Ag2O the 

isolation of a pre-transmetalation intermediate 140 was not possible, furthermore the isolation of 

3a resulted in failure (Figure 72).  

 
Figure 72. Attempts at the synthesis of complex 140.   
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fluorophenylmagnesium afforded the cis-CODPtAryl2 complex 142.118 A ligand exchange 

reaction was performed with dimethylphenylphosphine in DCM to yield cis-(PhPMe2)2PtAryl2 

143. Refluxing the material in methanol with excess methyl iodide yielded the trans-(Me2PPh)2(4-

FC6H4)Pt(I) (144).119 However, it was difficult to isolate the complex in high purity due to the 

observation of Pt(IV) complexes. This line of investigation was abandoned due to the 

corresponding trans-(Me2PPh)2(4-FC6H4)Pd(OH) 145 complex is reported to120 be unstable and 

the observation of Pd-O-B linkages as outlined in Chapter 2. 120 

 
Figure 73. Attempts at the synthesis of complex 145.   
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General Experimental 
 

Reactions were performed using glassware that had been flame-dried under vacuum or 

oven-dried (210 oC) overnight. All reactions were conducted under an inert atmosphere using 

argon connected to a drying tube equipped with phosphorous pentoxide, calcium sulfate, and 

sodium hydroxide. Solvents used for extraction were reagent grade. Reaction solvents 

tetrahydrofuran (Fisher, HPLC grade), diethyl ether (Fisher, HPLC grade), toluene (Fisher, HPLC 

grade), hexane (Fisher, HPLC grade), and methylene chloride (Fisher, HPLC grade) were dried by 

percolation through two columns packed with neutral alumina under positive pressure of argon 

(solvent dispersion system method). Benzene (ACS grade) and pentane (ACS grade) were distilled 

over sodium while methanol (ACS grade) was distilled over magnesium.  

Commercial reagents were purified by distillation or recrystallization prior to use unless 

otherwise noted. Tetrafluoroboric acid diethyl ether complex, cesium hydroxide monohydrate, 

isopropylmagnesium chloride solution (2M in THF), triphenylphosphine, thallium formate and 

trichlorophosphine, pinacol, 2-hydroxyisobutyric acid were all purchased from Aldrich. Palladium 

chloride was purchased from Pressure Chemical. Platinum chloride and potassium 

tetrachloroplatinum were purchased from Strem. Sodium tetraphenylboron was purchased from 

Mallinkrodt Chemical. 4-Fluorophenylboronic acid, 1,4-fluoroiodobenzene, 1,1’-

bis(diphenylphosphino)ferrocene, and 1,4-difluorobenzene were all purchased from Oakwood 

Products. The following compounds were prepared by literature methods bis-4-

fluorophenylmagnesium. 121 
1H, 13C, 19F, and 31P, spectra were recorded on a Varian Unity, Agilent, or Bruker Avance 

600 MHz spectrometers (1H, 151 MHz; 13C, 565 MHz; 19F, 243 MHz; 31P, 193 MHz). 11B NMR 

spectra were reordered on a Varian Unity 400 MHz (11B NMR, 129 MHz). 

Spectra are referenced to residual chloroform (7.26 ppm, 1H; 77.00 ppm, 13C), residual 

THF (1.72 ppm, 1H; 68.21 ppm, 13C), 1,4-difluorobenzene (–120.00 ppm, 19F), Ph4BNa (−6.14 

ppm, 11B), triisopropylphosphine (19.00 ppm, 31P), and external HBF4•OEt2 (0.00 ppm, 11B). 

Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), d (doublet), t 

(triplet), q (quartet), p (pentet), h (hextet), m (multiplet) and br (broad).  Coupling constants, J, are 

reported in Hertz.  
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Experiment 1: Preparation of trans-(Ph3P)2Pt(4-FC6H4)(I) (139). 
 

 
A flame-dried, 100-mL, Schlenk flask was charged with (Ph3P)4Pt (0.324 g, 1.33 mmol, 

1.0 equiv) inside the glovebox followed by 40 mL of toluene. The vessel was taken out of the dry 

box and the contents were transferred to a round bottom flask equipped with a reflux condenser 

and stir bar under nitrogen followed by 1,4-fluoroiodobenene (0.354 g, 1.6 mmol, 1.2 equiv). The 

reaction was refluxed overnight. The following day the solvent was removed via roto evaporation. 

Then hexanes were added to precipitate the product which was collected 0.216 g, 88%.   

Data for 139: 
1H NMR: (600 MHz, THF-d8) 

7.52 (m, 12 HC(7)), 7.31 (m, 6 HC(8)), 7.22 (m, 6 HC(6)), 6.53 (dt, 3J(Pt-H) = 57 

Hz, 2 HC(4)), 5.89 (dd, 3J(H-H) = 7 Hz, 2 HC(2 
19F NMR: (565 MHz, THF-d8) 

   −126.24 (s, FC(1)) 
31P NMR: (243 MHz, THF-d8) 

   22.34 (d, 3J(Pt-H) = 3026 Hz, , 2 P(Pd)) 
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Figure 74. 1H NMR spectrum of 139, referenced to CDCl3 (7.2 ppm). 
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Figure 75. 31P NMR spectrum of 139. 
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Figure 76. 19F NMR spectrum of 139. 
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Experiment 2: Attempts to prepare (140). 
 

 
 

A flame-dried, 5-mL, Schlenk flask was charged with trans-(Ph3P)2Pt(4-FC6H4)(I) (50 mg, 

47 µmol, 1.0 equiv) followed by 2 mL of DCM. Then 4-fluorophenyl boronic acid 58 (7.8 mg, 57 

µmol, 1.2 equiv) and Ag2O (11 mg, 75 µmol, 1.6 equiv) were added and the reaction was stirred 

for 3 h followed by solvent removal to ~1 mL. Then ether (~5 mL) was added and the flask was 

placed in the freezer. This resulted in powder that was collected and found to contain multiple 

products.  
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Experiment 3: Preparation of cis-(COD)Pt(4-FC6H4)2 (142). 
 

 
 

A flame-dried, 5-mL, Schlenk flask was charged with cis-(COD)Pt(I)2 (75 mg, 134 µmol, 

1.0 equiv) followed by 2 mL of THF inside the glovebox. Then bis-4-fluorophenylmagnesium (28 

mg, 402 µmol, 3.0 equiv) was added as a powder. The reaction vessel was removed from the glove 

box and placed under nitrogen and allowed to stir overnight. The next morning ice chips were 

added to the flask. Once dissolved the THF was removed by roto evaporation leaving water and a 

white solid behind. The solid was collected and washed with water yielding 46 mg, 70%.   

 

Data for 142: 
1H NMR: (600 MHz, CDCl3) 

7.12 (dt, 3J(Pt-H) = 108 Hz, 4 HC(4)), 6.73 (m, 4 HC(8)), 5.06 (dt, 3J(Pt-H) = 31 

Hz, 4 HC(4)), 2.50 (m, 4 HC(8)), 
19F NMR: (565 MHz, THF-d8) 

   −122.06 (s, FC(1)) 
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Figure 77. 1H NMR spectrum of 142, referenced to CDCl3 (7.2 ppm). 
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Figure 78. 19F NMR spectrum of 142. 
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Experiment 4: Preparation of cis-(Me2PPh)Pt(4-FC6H4)2 (144). 
 

 
 

A flame-dried, 25-mL, Schlenk flask was charged with cis-(COD)Pt(Aryl2)2 (126 mg, 0.26 

mmol, 1.0 equiv) followed by 5 mL of benzene inside the glovebox. Then Me2(Ph)P (0.145 mg, 

1.04 mmol, 4.0 equiv) was added followed by capping the vessel. The reaction was allowed to stir 

overnight. The following morning the solvent was removed by roto-evaporation.  The powder was 

collected and washed with pentane yielding 0.162 mg, 94%.  

 

Data for 144: 
1H NMR: (600 MHz, CD2Cl2) 

7.45 (m, 4 HC(7-9, 3)), 7.36 (m, 4 HC(7-9, 3)), 6.70 (d, 4 HC(2)), 1.13 (m, 4 

HC(5)), 
19F NMR: (565 MHz, CD2Cl2) 

   −25.24 (s, FC(1)) 
31P NMR: (243 MHz, CD2Cl2) 

   −14.18 (d, 3J(Pt-H) = 1791 Hz, , 2 P(Pd)) 
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Figure 79. 1H NMR spectrum of 144, referenced to DCM (5.3 ppm). 
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Figure 80. 13P NMR spectrum of 144. 
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Figure 81. 19F NMR spectrum of 144. 
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Experiment 5: Preparation of trans-(Ph3P)2Pt(4-FC6H4)I (147). 
 

 
 

A flame-dried, 5-mL, round bottom flask / reflux condenser combo flask was charged with 

trans-(PhPMe2)2Pt(4-FC6H4)(I) (20 mg, 30 µmol, 1.0 equiv) followed by 2 mL of methanol and 

chloroform followed by methyl iodide (10 µL, 150 µmol, 5.0 equiv). The reaction was refluxed 

for 5 h where 3 complexes were present by 31P NMR spectroscopy. The starting material was 

converted to 147 major and two platinum IV complexes.  
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Figure 82. 13P NMR spectrum of 147 and platinum IV complexes. 
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General Experimental 
 

Reactions were performed using glassware that had been flame-dried under vacuum or 

oven-dried (210 oC) overnight. All reactions were conducted under an inert atmosphere using 

argon connected to a drying tube equipped with phosphorous pentoxide, calcium sulfate, and 

sodium hydroxide. Solvents used for extraction were reagent grade. Reaction solvents 

tetrahydrofuran (Fisher, HPLC grade), diethyl ether (Fisher, HPLC grade), toluene (Fisher, HPLC 

grade), hexane (Fisher, HPLC grade), and methylene chloride (Fisher, HPLC grade) were dried by 

percolation through two columns packed with neutral alumina under positive pressure of argon 

(solvent dispersion system method). Benzene (ACS grade) and pentane (ACS grade) were distilled 

over sodium while methanol (ACS grade) was distilled over magnesium.  

Commercial reagents were purified by distillation or recrystallization prior to use unless 

otherwise noted. Tetrafluoroboric acid diethyl ether complex, cesium hydroxide monohydrate, 

isopropylmagnesium chloride solution (2M in THF), triphenylphosphine, thallium formate and 

trichlorophosphine, pinacol, 2-hydroxyisobutyric acid were all purchased from Aldrich. Palladium 

chloride was purchased from Pressure Chemical. Sodium tetraphenylboron was purchased from 

Mallinkrodt Chemical. 4-Fluorophenylboronic acid, 1,4-fluoroiodobenzene, 1,1’-

bis(diphenylphosphino)ferrocene, and 1,4-difluorobenzene were all purchased from Oakwood 

Products. The following compounds were prepared by literature methods, 4-

fluorophenylboroxine,122 potassium 4-fluorophenyltrihydroxyboronate,123 bromo(4-

fluorophenyl)(tri-tert-butylphosphine)palladium124 and allylcyclopentyl-palladium(II).125 
1H, 13C, 19F, and 31P, spectra were recorded on a Varian Unity, Agilent, or Bruker Avance 

600 MHz spectrometers (1H, 151 MHz; 13C, 565 MHz; 19F, 243 MHz; 31P, 193 MHz). 11B NMR 

spectra were reordered on a Varian Unity 400 MHz (11B NMR, 129 MHz). 

Spectra are referenced to residual chloroform (7.26 ppm, 1H; 77.00 ppm, 13C), residual 

THF (1.72 ppm, 1H; 68.21 ppm, 13C), 1,4-difluorobenzene (–120.00 ppm, 19F), Ph4BNa (−6.14 

ppm, 11B), triisopropylphosphine (19.00 ppm, 31P), and external HBF4•OEt2 (0.00 ppm, 11B). 

Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), d (doublet), t 

(triplet), q (quartet), p (pentet), h (hextet), m (multiplet) and br (broad).  Coupling constants, J, are 

reported in Hertz.  

 Notes: Thallium compounds are extremely toxic and therefore extra precaution should be taken 

when handling such compounds, especially when cleaning glassware.   
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Chemical Shift Summary Table 

 

Table 12. 19F, and 31P NMR chemical shifts (ppm) for starting materials, products and complexes 
Entry complex 31P 19Fa

 19Fb
 

1 58 − − −111.21 
2 57 34.83 −123.79 − 
3 63 20.60 −125.40 −116.74 
4 58 − − −111.21 
5 64 34.64 −62.18 − 
6 69 21.11 −61.10 −118.50 
7 66 − − −139.39 
8 57 34.83 −123.79 − 
9 68 19.95 −126.47 −141.31 
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Chemical Shift Summary Table 
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Table 13. 1H, 19F, 11B and 31P NMR chemical shifts (ppm) for starting materials, products and 
complexe 
Entry complex 11B 31P 19Fa

 19Fb
 1Ha

 1Hb 1Hc
 1Hd

 1HO 

1 70 − 33.00 −124.68 − 6.64 7.35 − − 3.60 
2 58 29 − − −111.21 − − 7.04 7.86 7.06 
3a 71 29 29.98 −123.77 −115.75 6.71 7.45 6.88 7.76 4.47 

4 76 − 30.36 −122.52 − 6.73 7.28 − − − 

5 79 4 − − −118.41 − − 6.79 7.43 3.74 

6b 71 N.D. 29.02 −123.72 − 
115.73 N.D N.D N.D N.D N.D. 

7c 71 28 29.98 −123.76 −115.74 6.72 7.46 6.88 7.78 4.48 
8 80 − 45.55 −122.61 − 6.67 7.36 − − −1.74 
9d 88 Broad 45.62 −123.67 −113.40 6.74 7.41 7.04 7.86 10.22 
10 90 − 43.99 −123.25 − 6.66 7.35 − − − 
11e 88 N.D. 46.12 −123.59 −113.36 6.72 7.39 7.06 7.87 10.21 

12 103 − 75.68 −125.18 − 6.58 7.30 − − −2.23 

13 104 N.D. N.D. N.D. N.D. 6.76 7.46, 
7.28 6.76 7.13 9.51 

14 106 28 −  −111.38   7.08 7.67 − 
15 107 9 51.00 −121.01 −118.33 6.85 7.45 6.95 7.68 4.02 
16g 107 − − − − 6.84 7.46 6.92 7.70 4.01 
17 58 − 34.83 −123.79 − 6.33 6.92 − − −1.78 
18 106 10 34.86 −121.09 −118.16 6.60 7.05 6.99 7.76 4.14 

19 109 − 28.42(P1) 
8.96(P2) −123.63 − 6.93 6.34 − − 0.45 

20 111 N.D. 33.06(P1) 
11.47(P2) −122.35 −116.47 7.08 6.97 6.45 6.97 N.D. 

21 73 − − −116.45 − 7.65 7.21 − − − 
a 6-B-3 complex 71 was prepared from 70 and 58. b6-B-3 complex 71 was prepared from 76 and 71. c 6-B-3 complex 71 was prepared from 70 and 76. d 

Complex 88 was prepared from 80 and 90. e Complex 88 was prepared from 90 and 79. f Complex 107 was prepared from 80 and 58 in THF/CH3OH. g 
Complex 107 was prepared from 80 and 106 in THF/CH3OH. 
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Experiment 6: Reaction of Ph3P complex 57 with 47 and 4.0 equiv of Ph3P. 

 
A 1-mL volumetric flask was charged with 4-fluorophenylboroxine (88 mg, 240 µmol, 1.0 

equiv) followed by H2O (13 µL, 722 µmol, 3.0 equiv). Then ~0.5 mL of THF-d8 was added 

followed by sonication until the solid had dissolved. Once dissolved the flask was filled to the 

mark with THF-d8 yielding a 4-fluorophenylboronic acid solution (0.72 M). 

An oven dried, 5-mm, NMR tube as charged with [(Ph3P)Pd(4-FC6H4)(µ-OH)]2 (9.60 mg, 

10 µmol, 1.0 equiv), sublimed Ph3P (10.5 mg, 40 µmol, 4.0 equiv) and 500 µL of THF-d8 followed 

by shaking until dissolved. The tube was placed into a −78 °C dry-ice acetone bath followed by 

the addition of 4-fluorophenylboronic acid solution (28 µL, 20 µmol, 2.0 equiv). The tube was 

vortexed (not shaken) quickly wiped with a Kimwipe and placed into the probe of the NMR 

spectrometer pre-cooled to −50 °C. The complex could not be characterized by standard techniques 

due to the messy aromatic region. However, the structure was assigned by analogy to complex 51 

which has been fully characterized.  

Data for 63: 

 
19F NMR: (565 MHz, THF-d8) 

   −116.74 (s, FC(12)), −125.40 (s, FC(1))  
31P NMR: (243 MHz, THF-d8) 

   20.60 (s, 2 P(Pd)) 
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Figure 83. 1H NMR spectrum of 63 at −50 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 84. 13C NMR spectrum of 63 at −50 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 85. 31P NMR spectrum of 63 at −50 °C, referenced to Ph3P (−6.5 ppm). 
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Figure 86. 19F NMR spectrum of 63 at −50 °C, referenced to cross-coupled product 73 (−116.45 
ppm). 
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Experiment 7: Reaction of Ph3P complex 57 with 65 and 3.0 equiv of Ph3P. 

 
A dram vial was charged with 4-trifluoromethylphenylboronic acid (6 mg, 240 µmol, 1.0 

equiv) followed by 100 µL of THF-d8.  

An oven dried, 5-mm, NMR tube as charged with [(Ph3P)Pd(4-FC6H4)(µ-OH)]2 (14.4 mg, 

15 µmol, 1.0 equiv), sublimed Ph3P (12 mg, 45 µmol, 3.0 equiv) and 500 µL of THF-d8 followed 

by shaking until dissolved. The tube was placed into a −78 °C dry-ice acetone bath followed by 

the addition of 4-trifluoromethylphenylboronic acid solution (100 µL, 30 µmol, 2.0 equiv). The 

tube was shaken quickly wiped with a Kimwipe and placed into the probe of the NMR 

spectrometer pre-cooled to −50 °C. The complex could not be characterized by standard techniques 

due to the messy aromatic region. However, the structure was assigned by analogy to complex 71 

which has been fully characterized.  

Data for 67: 

 
19F NMR: (565 MHz, THF-d8) 

   −62.18 (s, FC(12)), −125.48 (s, FC(1))  
31P NMR: (243 MHz, THF-d8) 

   21.30 (s, 2 P(Pd)) 
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Figure 87. 19F NMR spectrum of 67 at −40 °C, referenced to excess 57  (−123.79 ppm). 
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Figure 88. 31P NMR spectrum of 67 at −40 °C, referenced to Ph3P (−6.5 ppm). 
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Experiment 8: Reaction of Ph3P complex 57 with 66 and 3.0 equiv of Ph3P. 

 
A 1-mL volumetric flask was charged with 4-methyoxy-3-fluorophenylboroxine (151 mg, 

331 µmol, 1.0 equiv) followed by H2O (18 µL, 993 µmol, 3.0 equiv). Then ~0.5 mL of THF-d8 

was added followed by sonication until the solid had dissolved. Once dissolved the flask was filled 

to the mark with THF yielding a 4-fluorophenylboronic acid solution (1.0 M). 

An oven dried, 5-mm, NMR tube as charged with [(Ph3P)Pd(4-CF3C6H4)(µ-OH)]2 (6.0 mg, 

6.25 µmol, 1.0 equiv), sublimed Ph3P (9.8 mg, 19 µmol, 3.0 equiv) and 500 µL of THF followed 

by shaking until dissolved. The tube was placed into a −78 °C dry-ice acetone bath followed by 

the addition of 4-fluorophenylboronic acid solution (13 µL, 13 µmol, 2.0 equiv). The tube was 

shaken quickly wiped with a Kimwipe and placed into the probe of the NMR spectrometer pre-

cooled to −50 °C. The sample was then warmed to −40 °C 

Data for 68: 

 
19F NMR: (565 MHz, THF-d8) 

   −141.31 (s, FC(12)), −126.47 (s, FC(1))  
31P NMR: (243 MHz, THF-d8) 

   19.95 (s, 2 P(Pd)) 
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Figure 89. 31P NMR spectrum of 68 at −40 °C, referenced to Ph3P (−6.5 ppm). 
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Figure 90. 19F NMR spectrum of 68 at −40 °C, referenced to externally to 4-
trifluoromethylbenzene  (−63.72 ppm). 
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Experiment 9: Reaction of Ph3P complex 64 with 58 and 2.0 equiv of Ph3P. 

 

 

A dram vial was charged with with 4-fluorophenylboronic acid- (3.0 mg, 20 µmol) 

followed by 50 µL of THF. 

An oven dried, 5-mm, NMR tube as charged with [(Ph3P)Pd(4-CF3C6H4)(µ-OH)]2 (10 mg, 

10.0 µmol, 1.0 equiv), sublimed Ph3P (5.3 mg, 10 µmol, 2.0 equiv) and 500 µL of THF followed 

by shaking until dissolved. The tube was placed into a −78 °C dry-ice acetone bath followed by 

the addition of 4-fluorophenylboronic acid solution (50 µL, 20 µmol, 2.0 equiv). The tube was 

shaken quickly wiped with a Kimwipe and placed into the probe of the NMR spectrometer pre-

cooled to −50 °C. The sample was then warmed to −40 °C where the observation of a new complex 

was observed.  

Data for 69: 

 
19F NMR: (565 MHz, THF-d8) 

   −118.50 (s, FC(12)), −61.10 (s, FC(1))  
31P NMR: (243 MHz, THF-d8) 

   21.11 (s, 2 P(Pd)) 
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Figure 91. 31P NMR spectrum of 68 at −60 °C, referenced to Ph3P (−6.5 ppm). 
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Figure 92. 19F NMR spectrum of 68 at −40 °C, referenced to excess 58  (−111.21 ppm). 
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Experiment 10: Preparation of 6-B-3 complex 71 from 70 and 58.  

 
A flame dried, 1.0 mL volumetric flask was charged with 4-fluorophenylboroxine (26 mg, 

71 µmol, 1.0 equiv), H2O (4 µL, 222 µmol, 3.1 equiv) and filled to the mark with freshly distilled 

(NaK) THF-d8 generating a 4-fluorophenylboronic acid solution (0.21 M). 

An oven-dried, 5-mm, quartz NMR tube was taken into the glove box and both trans-(i-

Pr3P)2Pd(4-FC6H4)(OH) (10.8 mg, 20 µmol, 1.0 equiv) and i-Pr3P (7.6 µL, 40 µmol, 2.0 equiv) 

were added, followed by the addition of 500 µL of freshly distilled (NaK) THF-d8. The tube was 

capped with a septum and Teflon taped followed by removal from the glove box. The tube was 

shaken and placed into a −78 °C dry-ice acetone bath followed by the addition of 95 µL (20 µmol, 

0.21 M, 1.0 equiv) of the freshly prepared 4-fluorophenylboronic acid solution (above). The tube 

was shaken and quickly cleaned with a Kimwipe then placed into the probe of the NMR 

spectrometer pre-cooled to −30 °C. After ~3 h the reaction was found to be at completion and the 

complex was characterized by 1D and 2D NMR experiments at −30 °C. (This reaction was 

performed multiple times where no reaction was observed between 70 and 57 at −60 °C). The 

following day the sample was placed into a −78 °C dry-ice acetone bath followed by the addition 

of internal standards 1,4-difluorobenzene (0.5 µL, 5 µmol, 0.25 equiv) and Ph4BNa (2.0 mg, 6 

µmol, 0.3 equiv) as a 100 µL THF-d8 solution to reference the 19F and 11B NMR spectra.  

Data for 71: 
1H NMR: (600 MHz, THF-d8) 

7.76 (dd, 3J(H-H) = 7 Hz, 2 HC(8)), 7.45 (dd, 3J(H-H) = 7 Hz, 2 HC(3)), 6.88 (m, 

2 HC(9)), 6.71 (m, 2 CH(2)), 4.47 (s, HO), 2.15 (m, 6 HC(5)), 1.23 (m, 36 HC(6)) 

 
13C NMR: (151 MHz, THF-d8) 

165.77, 164.16 (d, 1J(F-C) = 244 Hz, 1 C(10)), 162.60, 161.02 (d, 1J(F-C) = 241 

Hz, 1 C(1)), 141.59 (t, 2J(P-C) = 4 Hz, 1 C(4)), 140.84 (m, 2 C(3)), 138.68 (s, 1 

B(OH)2F
1.0 equiv
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C(7)), 137.90 (d, 3J(F-C) = 8 Hz, 2 C(8)), 114.77 (d, 2J(F-C) = 14 Hz, 2 C(9)), 

114.65 (d, 2J(F-C) = 14 Hz, 2 C(2)), 25.38 (t, J = 10 Hz, 6 C(5)), 20.88 (s, 12 C(6))  
19F NMR: (565 MHz, THF-d8) 

  −115.75 (s, FC(10)), −123.77 (s, FC(1))  
31P NMR: (243 MHz, THF-d8) 

  29.98 (s, 2 P(Pd)) 
11B NMR: (129 MHz, THF-d8) 

  29 ppm (br, B(O)) 
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Figure 93. 1H NMR spectrum of 71 at −30 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 94. 13C NMR spectrum of 71 at −30 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 95. 19F NMR spectrum of 71 at −30 °C, referenced to 1,4-difluorobenzene (−120.00 ppm). 
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Figure 96. 31P NMR spectrum of 71 at −30 °C, referenced to i-Pr3P (19.00 ppm). 
  

PdFa

i-Pr3P

i-Pr3P

O
B

HO
Fb

71

101214161820222426283032343638404244
(ppm)

i-Pr3P

P1

?



 
 

149 

 

 
Figure 97. 11B NMR spectrum of 71 at −30 °C, referenced to Ph4BNa (−6.14 ppm). 
  

PdFa

i-Pr3P

i-Pr3P

O
B

HO
Fb

71

-25-20-15-10-5051015202530354045
(ppm)

STD

B



 
 

150 

 
Figure 98. 11B NMR background spectrum of Ph4BNa (−6.14 ppm) in THF.  
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Figure 99. dgfCOSY spectrum of 71 at −30 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 100. gHSQC spectrum of 71 at −30 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Figure 101. gHMBC spectrum of 71 at −30 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Figure 102. NOESY spectrum of 71 at −30 °C, referenced to THF-d8 (1.72 ppm). 
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Experiment 11: Preparation of 6-B-3 complex 71 from 70 and 72.  

 
 An oven-dried, 5-mm, quartz NMR tube was taken into the glove box and both [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (7.58 mg, 10 µmol, 1.0 equiv) and i-Pr3P (8 µL, 40 µmol, 4.0 equiv) were added, 

followed by the addition of 500 µL of freshly distilled (NaK) THF-d8. The tube was capped with 

a septum and Teflon taped, then shaken. After ~24 h the formation of trans-(i-Pr3P)2Pd(4-

FC6H4)(OH) was observed and the tube was shaken and placed into a −78 °C dry-ice acetone bath 

followed by the addition of 4-fluorophenylboroxine 2.5 mg (6.8 µmol, 0.68 equiv) as a solid. The 

tube was shaken, and quickly cleaned with a Kimwipe and placed into the probe of the NMR 

spectrometer pre-cooled to −60 °C. After ~36 h a ~50% conversion to both cross-coupling product 

73 and complex 71 was observed. The species were confirmed by characterization at −30 °C by 

1D and 2D NMR experiments. (Internal standards 1,4-difluorobenzene (0.5 µL, 5 µmol) and 

Ph4BNa (2 mg, 6 µmol) were added as a THF-d8 solution at the end of the experiment to reference 

the 19F and 11B NMR spectra.) 

Data for 71: 
1H NMR: (600 MHz, THF-d8) 

7.78 (dd, 3J(H-H) = 6 Hz, 2 HC(8)), 7.46 (dd, 3J(H-H) = 6 Hz, 2 HC(3)), 6.88 (m, 

2 HC(9)), 6.72 (m, 2 CH(2)), 4.48 (s, HO), 2.15 (m, 6 HC(5)), 1.24 (m, 36 HC(6)) 
13C NMR: (151 MHz, THF-d8) 

165.77, 164.18 (d, 1J(F-C) = 245 Hz, 1 C(10)), 162.59, 161.01 (d, 1J(F-C) = 240 

Hz, 1 C(1)), 141.52 (t, 2J(P-C) = 4 Hz, 2 C(4)), 140.82 (m, 2 C(3)), 137.75 (s, 2 

C(7)), 137.95 (d, 3J(F-C) = 8 Hz, 2 C(8)), 114.76 (d, 2J(F-C) = 14 Hz, 2 C(9)), 

114.64 (d, 2J(F-C) = 14 Hz, 2 C(2)), 25.37 (t, J = 9 Hz, 6 C(5)), 20.87 (s, 12 C(6))  
19F NMR: (565 MHz, THF-d8) 

  −115.74 (s, FC(10)), −123.76 (s, FC(1)) 
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31P NMR: (243 MHz, THF-d8) 

  29.98 (s, 2 P(Pd)) 
11B NMR: (129 MHz, THF-d8) 

  28 ppm (br, 1 B(O) 
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Figure 103. 1H NMR spectrum of 71 and 73 at −30 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 104. 13C NMR spectrum of 71 and 73 at −30 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 105. 19F NMR spectrum of 71 and 73 at −30 °C, referenced to 1,4-difluorobenzene 
(−120.00 ppm). 
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Figure 106. 31P NMR spectrum of 70 and 71 at −30 °C, referenced to i-Pr3P (19.00 ppm). 
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Figure 107. 11B NMR spectrum of 71 and 73 at −30 °C, referenced to Ph4BNa (−6.14 ppm). 
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Figure 108. gCOSY spectrum of 71 and 73 at −30 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 109. gHSQC spectrum of 71 and 73 at −30 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
 
  

PdF

i-Pr3P

i-Pr3P

O
B

HO
F

F

F

71 73

1.01.52.02.53.03.54.04.55.05.56.06.57.07.5
(ppm)

10

20

30

40

50

60

70

80

90

100

110

120

130

(p
p
m
)



 
 

164 

 

 

 
Figure 110. gHMBC spectrum of 71 and 73 at −30 °C, referenced to THF-d8 (1.72 and 68.21 
ppm). 
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Figure 111. NOESY spectrum of 71 and 73 at −30 °C, referenced to THF-d8 (1.72 ppm). 
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Experiment 12: Reaction of 76 with potassium arylboronate 78. 

 

An oven-dried, 5-mm, NMR tube was taken into the glove box and potassium 4-

fluorophenylboronate (17.6 mg, 90 µmol, 3.0 equiv), 1,4-difluorobenzene (0.5 µL, 5.0 µmol, 0.16 

equiv) and i-Pr3P (11.6 µL, 60 µmol, 2.0 equiv) were added, followed by the addition of 500 µL 

of THF (SDS). The tube was capped with a septum and Teflon taped followed by removal from 

the glove box. The tube was shaken and sonicated for ~5 min until a fine suspension was observed.  

A 2-dram vial was charged with trans-(i-Pr3P)2Pd(4-FC6H4)(I) (19.4 mg, 30 µmol, 1.0 

equiv) and 200 µL of THF (SDS). The vial was capped and sonicated until the solid had dissolved 

~2-3 min.  

The potassium boronate solution was placed into a −78 °C dry-ice acetone bath followed 

by the addition of 200 µL (30 µmol, 1.0 equiv) of the freshly prepared trans-(i-Pr3P)2Pd(4-

FC6H4)(I) solution. The tube was shaken and quickly cleaned with a Kimwipe then placed into the 

probe of the NMR spectrometer pre-cooled to −30 °C. After ~3 h no reaction was observed thus 

the sample was warmed in 10 degree intervals until 20 °C at which point the tube was removed 

and shaken violently followed by placement into the probe at 30 °C where no reaction was 

observed. 
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Figure 112. 31P NMR spectrum of reaction mixture of 76 with 78 at −30 °C, referenced to i-Pr3P 
(19.00 ppm). 
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Figure 113. 19F NMR spectrum of reaction mixture of 76 with 78 at −30 °C (bottom) and 30 °C 
top, referenced to 1,4-difluorobenzene (−120.00 ppm). 
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Experiment 13: Preparation of 6-B-3 complex 71 from 76 and 79. 

 

An oven-dried, 5-mm, NMR tube was taken into the glove box and both thallium 4-

fluorophenylboronate (33.0 mg, 90 µmol, 3.0 equiv), dibenzo-22-crown-6 (12.5 mg, 30 µmol, 1.0 

equiv), 1,4-difluorobenzene (0.5 µL, 5.0 µmol, 0.16 equiv) and i-Pr3P (5.8 µL, 30 µmol, 1.0 equiv) 

were added, followed by the addition of 450 µL of THF (SDS). The tube was capped with a septum 

and Teflon taped followed by removal from the glove box. The tube was shaken and sonicated for 

~5 min until a fine suspension was observed.  

A 2-dram vial was charged with trans-(i-Pr3P)2Pd(4-FC6H4)(I) (19.4 mg, 30 µmol, 1.0 

equiv) and 200 µL of THF (SDS). The vial was capped and sonicated until the solid had dissolved 

~5 min.  

The thallium boronate solution was placed into a −78 °C dry-ice acetone bath followed by 

the addition of 200 µL (30 µmol, 1.0 equiv) of the freshly prepared trans-(i-Pr3P)2Pd(4-FC6H4)(I) 

solution. The tube was shaken and quickly cleaned with a Kimwipe then placed into the probe of 

the NMR spectrometer pre-cooled to −30 °C. After ~3 h the observation of ~30% conversion to 

cross-coupling product 73 and ~10% conversion to 6-B-3 complex 71 was observed.  
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Figure 114. 19F NMR spectrum of 71 at −30 °C, referenced to 1,4-difluorobenzene (−120.00 ppm). 
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Figure 115. 31P NMR spectrum of 71 at −30 °C, referenced to i-Pr3P (19.00 ppm). 
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Experiment 14: Preparation of 6-B-3 complex 75 from 74 and 58. 

 
A 1-mL volumetric flask was charged with 4-fluorophenylboroxine (88 mg, 240 µmol, 1.0 

equiv) followed by H2O (13 µL, 722 µmol, 3.0 equiv). Then ~0.5 mL of THF-d8 was added 

followed by sonication until the solid had dissolved. Once dissolved the flask was filled to the 

mark with THF-d8 yielding a 4-fluorophenylboronic acid solution (0.72 M). 

An oven dried, 5-mm, NMR tube as charged with [(i-Pr3P)Pd(aryl)(µ-OH)]2 (8.22 mg, 11 

µmol, 1.0 equiv), i-Pr3P (8 µL, 28 µmol, 2.5 equiv) and 500 µL of THF-d8 followed by shaking 

until dissolved. The tube was placed into a −78 °C dry-ice acetone bath followed by the addition 

of 4-fluorophenylboronic acid solution (31 µL, 22 µmol, 2.0 equiv). The tube was vortexed (not 

shaken) quickly wiped with a Kimwipe and placed into the probe of the NMR spectrometer pre-

cooled to −30 °C. The complex 1H and 31P NMR spectra could be analyzed however the 13C NMR 

spectrum could not be analyzed due to failed HSQC and HETCOR experiments. However, the 

structure was assigned by analogy to complex xx which has been fully characterized.  

Data for 75: 
1H NMR: (600 MHz, THF-d8) 

7.93 (s, 1 HC(2)), 7.85 (m, 1 HC(10)), 7.84 (m, 2 HC(15)), 7.65 (d, 3J(H-H) = 8 Hz 

1 CH(4)), 7.58 (d, 3J(H-H) = 7 Hz 1 CH(7)), 7.43 (d, 3J(H-H) = 7 Hz 1 CH(9)), 7.31 

(dd, 3J(H-H) = 7 Hz, 1 CH(5)), 7.24 (dd, 3J(H-H) = 7 Hz, 1 CH(6)), 6.92 (dd, 3J(H-

H) = 7 Hz, 1 CH(14)), 4.16 (s, HO), 2.22 (m, 6 HC(11)), 1.15 (m, 36 HC(12)) 
31P NMR: (243 MHz, THF-d8) 

   28.51 (s, 2 P(Pd))  
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Figure 116. 1H NMR spectrum of 75 at −30 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 117. 31P NMR spectrum of 75 at −30 °C, referenced to i-Pr3P (19.00 ppm). 
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Experiment 15: Preparation of cationic complex 81 

 

 
In the glove box, an oven-dried, 5-mm NMR tube was charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (80) (11 mg, 15 µmol, 1.0 equiv), and i-Pr3PH•BF4 (7.5 mg, 30 µmol, 2.0 equiv) 

followed by 600 µL of THF-d8. The tube was capped with a septum and removed from the box 

followed by sonication for ~5 min and shaken vigorously.  

 

Data for 81: 
1H NMR: (600 MHz, THF-d8) 

7.36 (dd, 3J(F-H) = 7 Hz, 3J(H-H) = 6 Hz, 2 HC(3)), 6.80 (dd, 2J(F-H) = 6 Hz), 
3J(H-H) = 6 Hz, 2 HC(2)), 5.00 (s, HO(1)), 2.05 (m, 6 HC(5)), 1.27 (m, 36 HC(6)) 

19F NMR: (565 MHz, THF-d8) 

   −122.49 (s, FC(1)), −152.00 (s, BF4) 
31P NMR: (242 MHz, THF-d8) 

   33.02 (s, 2 P(Pd))) 
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Figure 118. 1H NMR spectrum of 81 at −30 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 119.  31P NMR spectrum of 81 at −30 °C, referenced to i-Pr3P (19.00 ppm). 
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Figure 120. 19F NMR spectrum of 81 at −30 °C, referenced to 1,4-difluorobenzene (−120.00 ppm). 
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Experiment 16: Addition of 81 to 82.  

 
 

A dram vial was charged with sodium 4-fluorophenyltrihydroxyborate (6 mg, 33.3 µmol, 

2.2 equiv) followed by 200 µL of THF. 

An oven-dried, 5-mm, NMR tube was taken into the glove box and both [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (11.4 mg, 15 µmol, 1.0 equiv), i-Pr3P (5 µL, 26 µmol, 2 equiv), 1,4-

difluorobenzene (0.5 µL) and i-Pr3P•HBF4 (7.4 mg, 30 µmol, 2.0 equiv) were added, followed by 

the addition of 400 µL of THF. The tube was capped with a septum and Teflon taped, then placed 

in an ice bath in the sonicator for ~5 min. The tube was transferred to a dry-ice bath followed by 

the addition of the sodium boronate solution. The sample was placed into the NMR set to −55 °C 

for ~5 h. The observation of 71, 70, and 58 were observed by 19F NMR spectroscopy demonstrating 

that the aqua complex 81 was being deprotonated.  
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Figure 121. 19F NMR spectrum of reaction mixture between 81 and 82 at −55 °C, referenced to 
1,4-difluorobenzene (−120.00 ppm). 
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Figure 122.31P NMR spectrum of reaction mixture between 81 and 82 at −55 °C, referenced to i-
Pr3P (19.00 ppm). 
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Experiment 17: Formation of 6-B-3 complex 71 in THF/H2O 

 

 

 An oven-dried, 5-mm, quartz NMR tube was taken into the glove box and [(i-Pr3P)Pd(4-

FC6H4)(OH)]2 (7.58 mg, 10 µmol, 1.0 equiv), i-Pr3P (5.75 µL, 30 µmol, 3.0 equiv), 1,4-

difluorobenzene (0.5 µL, 5 µmol), and NaBPh4 (2.0 mg, 8 µmol) were added, followed by the 

addition of 500 µL of freshly distilled THF. The tube was capped with a septum and Teflon taped 

then removed from the glove box. Then H2O (6 µL) was added and the tube was shaken and placed 

into a −78 °C dry-ice acetone bath followed by the addition of 95 µL (20 µmol, 0.21 M) of the 

freshly prepared 4-fluorophenylboronic acid stock solution. The tube was shaken and quickly 

wiped with a Kimwipe then placed into the probe of the NMR spectrometer pre-cooled to −30 °C. 

No new species were observed by NMR spectroscopy at −30 °C other than complex 71.  The 

experiment was stopped after ~50% conversion with the lack of new species (8-B-4) being present.  
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Figure 123. 31P NMR spectrum of 71 at −30 °C, referenced to i-Pr3P (19.00 ppm). 
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Figure 124. 19F NMR spectra of 71 at −30 °C, referenced to 1,4-difluorobenzene (−120.00 ppm). 
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Figure 125. 11B NMR spectrum of 71 at −30 °C, referenced to Ph4BNa (−6.14 ppm). 
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Experiment 18: Addition of CsOH•H2O to 6-B-3 complex 71 in THF/CH3OH. 

 

A flame dried, 1.0 mL volumetric flask was charged with 4-fluorophenylboroxine (77 mg, 

210 µmol 1.0 equiv), H2O (11 µL, 631 µmol, 3.0 equiv) followed by ~0.5 mL THF. The flask was 

sonicated for ~1-2 min then filled to the mark with THF (0.63 M). 

An oven-dried, 5-mm, quartz NMR tube was taken into the glove box and [(i-Pr3P)Pd(4-

FC6H4)(OH)]2 (7.58 mg, 10 µmol, 1.0 equiv), i-Pr3P (8 µL, 40 µmol, 4.0 equiv), and 1,4-

difluorobenzene (0.5 µL, 5 µmol) were added, followed by the addition of 500 µL of THF (SDS). 

The tube was capped with a septum, Teflon taped, and removed from the glove box. The tube was 

shaken and placed into a −78 °C dry-ice acetone bath followed by the addition of 32 µL (20 µmol, 

0.63 M) of the freshly prepared 4-fluorophenylboronic acid solution. The tube was shaken and 

quickly wiped with a Kimwipe then placed into the probe of the NMR spectrometer pre-cooled to 

−30 °C for 14.5 h (overnight). The following day the tube was removed and placed into a −78 °C 

dry-ice acetone bath followed by the addition of CsOH•H2O (16 mg, 0.1 mmol, 10 equiv) dissolved 

in 50 µL of CH3OH. The tube was vortexed followed by the addition of NaBPh4 (1 mg, 4 µmol, 

0.4 equiv) and 1,4-difluorobenzene dissolved in 50 µL of THF (SDS). The tube was placed into 

the NMR spectrometer pre-cooled to either −30 °C or −50 °C. The 19F, 31P and 11B NMR chemical 

shifts had no significant change, however, unbound boronic acid species (always traces from 

formation) generated small amounts of boronates that are detected via NMR spectroscopy. Upon 

warming to room temperature the formation of 70 and 84 was observed. The complex was 

characterized via 1D NMR experiments over a course of similar experiments. 
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Figure 126. 19F NMR spectra of 71 with (top) and without (bottom) CsOH•H2O at −50 °C, 
referenced to 1,4-difluorobenzene (−120.00 ppm). 
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Figure 127. 31P NMR spectra of 71 with (top) and without (bottom) CsOH•H2O at −50 °C, 
referenced to i-Pr3P (19.00 ppm). 
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Figure 128. 11B NMR spectra of 71 with (top) and without (bottom) CsOH•H2O at −50 °C, 
referenced to Ph4BNa (−6.14 ppm) in THF.  
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Figure 129. 19F NMR spectra of 71 with (top) and without (bottom) CsOH•H2O at −30 °C, 
referenced to 1,4-difluorobenzene (−120.00 ppm). 
  

PdFa

i-Pr3P

i-Pr3P

O
B

HO
Fb

71

B(OH)x

Fc

B(OH)3X

Fd
Fe

Fe

73

-124.5-123.5-122.5-121.5-120.5-119.5-118.5-117.5-116.5-115.5-114.5-113.5-112.5-111.5
(ppm)

(6-B-3)-Before CsOH addition

(6-B-3)-After CsOH addition

CsOH

Fa

Fc

STD

Fd

Fb

Fa

Fb

STD

Fe

Fe



 
 

191 

 

 
Figure 130. 31P NMR spectra of 71 with (top) and without (bottom) CsOH•H2O at −30 °C, 
referenced to i-Pr3P (19.00 ppm). 
  

PdF

i-Pr3P

i-Pr3P

O
B

HO
F

71

PdF

i-Pr3P

i-Pr3P

OH

70

+
(1) (2)

57911131517192123252729313335373941
(ppm)

P1

P2 i-Pr3P

P2

P1

i-Pr3P



 
 

192 

 

 
Figure 131. 19F NMR spectra of 71 with CsOH•H2O at 20 °C and −30 °C (top, middle) and without 
(bottom) CsOH•H2O at −30 °C, referenced to 1,4-difluorobenzene (−120.00 ppm). 
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Figure 132. 31P NMR spectra of 71 with (top) and without (bottom) CsOH•H2O at 20 °C, 
referenced to i-Pr3P (19.00 ppm). 
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Figure 133. 11B NMR spectra of 71 with (top) and without (bottom) CsOH•H2O at 20 °C, 
referenced to Ph4BNa (−6.14 ppm) in THF.  
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Experiment 19: Preparation of i-Pr3P complex 88 from 80 and 1.0 equiv of 58.  

 

An oven dried, 5-mm, NMR tube was charged with 4-fluorophenylboroxine (20 mg, 182 

µmol, 1.0 equiv), H2O (6.5 µL, 564 µmol, 3.1 equiv) followed by 500 µL of freshly distilled (NaK) 

THF-d8 (0.33 M). The tube was capped with a septum and Teflon tapped. 

An oven-dried, 5-mm, NMR tube was taken into the glove box and [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (7.58 mg, 10 µmol, 1.0 equiv) was added, followed by the addition of 500 µL of 

freshly distilled THF-d8 (NaK). The tube was shaken and placed into a −78 °C dry-ice acetone bath 

followed by the addition of the freshly prepared 4-fluorophenylboronic acid solution (33 µL, 10 

µmol, 1.0 equiv). The tube was vortexed (not shaken) quickly wiped with a Kimwipe and placed 

into the probe of the NMR spectrometer pre-cooled to −60 °C. After a few minutes the sample was 

cooled to −100 °C where the complex was observed. The complex was characterized via 1D NMR 

experiments over a course of multiple experiments.  

Data for 88: 
1H NMR: (600 MHz, THF-d8) 

10.22 (s, HO), 7.86 (m, 2 HC(8)), 7.41 (m, 4 HC(3)), 7.04 (dd, 8 Hz, 2 HC(9)), 6.74 

(m, 4 CH(2)), 2.27 (br, 6 HC(5)), 1.26 (br, 36 HC(6)) 
19F NMR: (565 MHz, THF-d8) 

  −113.40 (s, FC(10)), −123.67 (s, 2 FC(1))  
31P NMR: (243 MHz, THF-d8) 

  45.62 (s, 2 P(Pd)) 
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Figure 134. 1H NMR spectrum of 88 at −100 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 135. 19F NMR spectrum of 88 at −100 °C, externally referenced to 1,4-difluorobenzene 
(−120.00 ppm). 
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Figure 136. 31P NMR spectrum of 88 at −100 °C, externally referenced to [(i-Pr3P)Pd(4-FC6H4)(µ-
OH)]2 (45.55 ppm). 
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Figure 137. 1D-Phase cycled NOE spectrum (CH3 irradiated at 1.26 ppm) (top) and 1H NMR 
spectrum (bottom) at −100 °C, referenced to THF-d8 (1.72 ppm). 
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Experiment 20: Preparation of i-Pr3P complex 88 with 2.0 equiv of 58.                                   

 
An oven dried, 1.0 mL volumetric flask was charged with 4-fluorophenylboroxine (66.5 

mg, 182 µmol 1.0 equiv), H2O (10 µL, 564 µmol, 3.1 equiv) and filled to the mark with freshly 

distilled (NaK) THF-d8 (0.56 M). 

An oven-dried, 5-mm, NMR tube was taken into the glove box and [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (11.8 mg, 16 µmol, 1.0 equiv) was added, followed by the addition of 500 µL of 

freshly distilled THF-d8 (NaK). The tube was shaken and placed into a −78 °C dry-ice acetone bath 

followed by the addition of the freshly prepared 4-fluorophenylboronic acid solution (57 µL, 32 

µmol, 2.0 eqiuv). The tube was vortexed (not shaken), quickly wiped with a Kimwipe and placed 

into the probe of the NMR spectrometer pre-cooled to −50 °C. After a few minutes the sample was 

cooled to −100 °C and complex 63 was observed. The complex was characterized via 1D and 2D 

NMR experiments over a course of experiments. Using internal standards 1,4-difluorobenzene (0.5 

µL, 5 µmol, 0.25 equiv) and Ph4BNa (2.0 mg, 6 µmol, 0.3 equiv) 19F and 11B NMR chemical shifts 

were recorded.  

Data for 88: 
1H NMR: (600 MHz, THF-d8) 

10.25 (s, HO), 7.86 (m, 2 HC(8)), 7.42 (m, 4 HC(3)), 7.07 (dd, 8 Hz, 2 HC(9)), 6.72 

(m, 4 CH(2)), 2.27 (broad, 6 HC(5)), 1.26 (broad, 36 HC(6)) 
13C NMR: (151 MHz, THF-d8) 

167.00, 165.01 (d, 1J(F-C) = 248 Hz, 1 C(10)), 166.59, 164.64 (d, 1J(F-C) = 244 

Hz, 2 C(1)), 144.94 (m, 2 C(4)), 138.30 (m, 4 C(3)), 137.14 (s, 2, C(8), 135.38 (m, 

1 C(7), 115.19 (s, 2 C(9)), 114.62 (m, 4 C(2)), 25.96 (b, 6 C(5)), 19.68 (b, 12 C(6))  
19F NMR: (565 MHz, THF-d8) 
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  −113.43 (s, FC(10)), −123.65 (s, 2 FC(1)),  
31P NMR: (243 MHz, THF-d8) 

  45.62 (s, 2 P(Pd)) 
11B NMR: (129 MHz, THF-d8) 

  Br (B(O)) 
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Figure 138. 1H NMR spectrum of 80 and 58 at −50 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 139. 1H NMR spectrum of 88 and 58 at −100 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 140.. 13C NMR spectrum of 58 and 88 at −100 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 141. 19F NMR spectra of 88 and 58 at −50 °C (top) and −100 °C (bottom), referenced to 
1,4-difluorobenzene (−120.00 ppm). 
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Figure 142.31P NMR spectrum of 88 at −100 °C, externally referenced to [(i-Pr3P)Pd(4-FC6H4)(µ-
OH)]2 (45.55 ppm).  
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Figure 143. 11B NMR spectrum of 88 and 58 at −100 °C, referenced to Ph4BNa (−6.14 ppm). 
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Figure 144. COSY spectrum of 88 and 58 at −100 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 145. gHSQC spectrum of 88 and 58 at −100 °C, referenced to THF-d8 (1.72 and 68.21 
ppm). 
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Figure 146. gHMBC spectrum of 88 and 58 at −100 °C, referenced to THF-d8 (1.72 and 68.21 
ppm). 
  

F

B(OH)2

58

Pd

O
B

O

PdO

OH

i-Pr3P
H

HH

P-i-Pr3

F

F

F

88

0.51.52.53.54.55.56.57.58.59.510.5
(ppm)

0

20

40

60

80

100

120

140

160
(p
p
m
)



 
 

211 

 
Figure 147. NOESY/EXSY spectrum of 58 and 88 at −100 °C, referenced to THF-d8 (1.72 ppm). 
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Experiment 21: Preparation of i-Pr3P complex 88 with 4.0 equiv of 58. 

 
An oven dried, 2-dram vial was charged with 4-fluorophenylboroxine (7.4 mg, 20 µmol 

1.0 equiv), H2O (1 µL, 55 µmol, 5.5 equiv) followed by 100 µL THF-d8. The vial was shaken until 

the solid had dissolved.  

An oven-dried, 5-mm, NMR tube was taken into the glove box and [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (11.4 mg, 15 µmol, 1.0 equiv) was added, followed by the addition of 500 µL of 

THF-d8. The tube was shaken and placed into a −78 °C dry-ice acetone bath followed by the 

addition of the freshly prepared 4-fluorophenylboronic acid solution (100 µL, 60 µmol, 4.0 eqiuv). 

The tube was vortexed (not shaken) quickly wiped with a Kimwipe and palced into the probe of 

the NMR spectrometer pre-cooled to −50 °C. After a few minutes the sample was cooled to −100 

°C where complex 88 was observed. The complex was monitored via 1H NMR spectroscopy. 
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Figure 148. 1H NMR spectrum of 88 and 58 at −100 °C, referenced to THF-d8 (1.72 ppm). 
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Variable temperature Eyring analysis for i-Pr3P complex 88 with 1.0 equiv of 58                                                      

 

 
An approximate coalescence temperature (Tc) was measured at –40 °C by the signals 

merging with the baseline. The rate constant kc at coalescence was measured using kc = πΔv/√2, 

where Δv is the maximum chemical shift difference (1068 Hz) between 88 and 58  at −100 °C. 

Using the Eyring equation ΔGe
≠ = −RTcln(kcħ/kBTc) where R is the gas constant, kB is Boltzmann 

constant, ħ is Planck’s constant, the activation of exchange was measured to be approximately 

ΔGe
≠ = 11 kcal/mol.  

 
Figure 149. Eyring analysis of exchange at various temperatures, referenced to 1,4-
difluorobenzene (−120 ppm). 
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Experiment 22: Reaction of 90 with thallium arylboronate 79.                                                      

 
An oven-dried, 5-mm, NMR tube was charged with [(i-Pr3P)Pd(4-FC6H4)(µ-I)]2 (9.76 mg, 

10 µmol, 1.0 equiv) followed by the addition of 400 µL of THF-d8 (NaK).  

An oven dried, 5-mm, NMR tube as charged with thallium 4-fluorophenylboronate (11 mg, 

30 µmol 3.0 equiv) and 200 THF-d8 (NaK) and sonicated for ~2 min. The tube was placed into a 

−78 °C dry-ice acetone bath followed by the addition of the freshly prepared [(i-Pr3P)Pd(4-

FC6H4)(µ-I)]2 solution (400 µL). The tube was vortexed (not shaken) quickly wiped with a 

Kimwipe and placed into the probe of the NMR spectrometer pre-cooled to −50 °C. After ~1 h the 

sample was characteristic of complex 88 at −50 °C which was confirmed by cooling the 

spectrometer to −100 °C where 1H, and 19F NMR spectra were collected.  

Data for 88: 
1H NMR: (500 MHz, THF-d8) 

10.21 (s, HO), 7.87 (m, 2 HC(8)), 7.39 (m, 4 HC(3)), 7.06 (dd, 8 Hz, 2 HC(9)), 6.72 

(m, 4 CH(2)), 2.28 (broad, 3 HC(5)), 1.26 (broad, 18 HC(6)) 
19F NMR: (565 MHz, THF-d8) 

  −113.36 (s, FC(10)), −123.59 (s, 2 FC(1)) 
31P NMR: (243 MHz, THF-d8) 

  45.12 (s, 2 P(Pd)) 
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Figure 150.1H NMR spectrum of 88 at −50 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 151. 1H NMR spectrum of 88 at −100 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 152. 19F NMR spectrum of 88 at −100 °C, referenced externally to 1,4-difluorobenzene 
(−120 ppm). 
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Figure 153. 31P NMR spectrum of 88 at −100 °C, externally referenced to [(i-Pr3P)Pd(4-FC6H4)(µ-
OH)]2 (45.55 ppm). 
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Experiment 23: Preparation of i-Pr3P complex 94 with 2.0 equiv of 58.         

 

 
 

An oven dried, vial was charged with 4-trifluoromethylphenylboroxine (86 mg, 167 µmol 

1.0 equiv), H2O (9 µL, 500 µmol, 3.1 equiv) and 500 µL of THF to generate a 1 M solution. The 

solution was transfer to an NMR tube and capped with a septum. 

An oven-dried, 5-mm, NMR tube was taken into the glove box and [(i-Pr3P)Pd(4-

CF3C6H4)(µ-OH)]2 (8.6 mg, 10 µmol, 1.0 equiv) was added, followed by the addition of 500 µL of 

freshly distilled THF-d8 (NaK). The tube was shaken and placed into a −78 °C dry-ice acetone bath 

followed by the addition of the freshly prepared 4-trifluoromethylboronic acid solution (20 µL, 20 

µmol, 2.0 eqiuv). The tube was vortexed (not shaken), quickly wiped with a Kimwipe and placed 

into the probe of the NMR spectrometer pre-cooled to −50 °C. After a few minutes the sample was 

cooled to −100 °C and complex 94 was observed. The signals were not well separated in the 1H 

NMR spectrum.  

Data for 94: 
19F NMR: (565 MHz, THF-d8) 

  −113.18 (s, FC(10)), −61.69 (s, 2 FC(1)),  
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Figure 154. 1H NMR spectrum of 94 and 58 at −100 °C, referenced externally to 1,4-
difluorobenzene (−120.00 ppm). 
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Figure 155. 19F NMR spectrum of 94 and 58 at −100 °C, referenced to 58  (−111.21 ppm). 
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Experiment 24: Preparation of i-Pr3P complex 94 with 2.0 equiv of 58.         

 

 
An oven dried, 1.0 mL volumetric flask was charged with 4-fluorophenylboroxine (65 mg, 

182 µmol 1.0 equiv), H2O (10 µL, 564 µmol, 3.1 equiv) and filled to the mark with freshly distilled 

(NaK) THF-d8 (0.56 M). 

An oven-dried, 5-mm, NMR tube was taken into the glove box and [(i-Pr3P)Pd(4-

MeC6H4)(µ-OH)]2 (11.3 mg, 15 µmol, 1.0 equiv) was added, followed by the addition of 500 µL 

of freshly distilled THF-d8 (NaK). The tube was shaken and placed into a −78 °C dry-ice acetone 

bath followed by the addition of the freshly prepared 4-fluorophenyllboronic acid solution (54 µL, 

30 µmol, 2.0 eqiuv). The tube was vortexed (not shaken), quickly wiped with a Kimwipe and 

placed into the probe of the NMR spectrometer pre-cooled to −50 °C. After a few minutes the 

sample was cooled to −100 °C and complex 9 was observed. The signals were not well separated 

in the 1H NMR spectrum.  
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Figure 156. 1H NMR spectrum of 96 and 58 at −100 °C, referenced to THF-d8 (−120.00 ppm). 
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Experiment 25: Preparation of i-Pr3P complex 97 with 2.0 equiv of 65.         

 

 
 

An oven dried, vial was charged with 4-trifluoromethylphenylboroxine (86 mg, 167 µmol 

1.0 equiv), H2O (9 µL, 500 µmol, 3.1 equiv) and 500 µL of THF to generate a 1 M solution. The 

solution was transfer to an NMR tube and capped with a septum. 

An oven-dried, 5-mm, NMR tube was taken into the glove box and [(i-Pr3P)Pd(4-

CF3C6H4)(µ-OH)]2 (13.0 mg, 15 µmol, 1.0 equiv) was added, followed by the addition of 500 µL 

of freshly distilled THF-d8 (NaK). The tube was shaken and placed into a −78 °C dry-ice acetone 

bath followed by the addition of the freshly prepared 4-trifluoromethylboronic acid solution (30 

µL, 30 µmol, 2.0 eqiuv). The tube was vortexed (not shaken), quickly wiped with a Kimwipe and 

placed into the probe of the NMR spectrometer pre-cooled to −50 °C. After a few minutes the 

sample was cooled to −100 °C and complex 97 was observed. The signals were not well separated 

in the 1H NMR spectrum.  

Data for 97: 
19F NMR: (565 MHz, THF-d8) 

  −60.81 (s, FC(10)), −61.45 (s, 2 FC(1)),  
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Figure 157. 1H NMR spectrum of 97 and 65 at −100 °C, referenced externally to 1,4-
difluorobenzene (−120.00 ppm). 
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Figure 158. 19F NMR spectrum of 97 and 67 at −100 °C, referenced externally to 1,4-
difluorobenzene (−120.00 ppm). 
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Experiment 26: Preparation of i-Pr3P complex 80 with 2.0 equiv of 66.         

 

 
A dram vial was charged with 4-methyoxy-3-fluorophenylboroxine (4.56 mg, 10 µmol, 1.0 

equiv) followed by H2O (0.5 µL, 30 µmol, 3.0 equiv). Then 100 µL of THF-d8 was added followed 

by sonication until the solid had dissolved.  

An oven-dried, 5-mm, NMR tube was taken into the glove box and [(i-Pr3P)Pd(4-

MeC6H4)(µ-OH)]2 (11.5 mg, 15 µmol, 1.0 equiv) was added, followed by the addition of 500 µL 

of freshly distilled THF-d8 (NaK). The tube was shaken and placed into a −78 °C dry-ice acetone 

bath followed by the addition of the freshly prepared 4-fluorophenyllboronic acid solution (100 

µL, 30 µmol, 2.0 eqiuv). The tube was vortexed (not shaken), quickly wiped with a Kimwipe and 

placed into the probe of the NMR spectrometer pre-cooled to −50 °C. After a few minutes the 

sample was cooled to −100 °C and complex 98 was observed. The signals were not well separated 

in the 1H NMR spectrum.  

 

Data for 94: 
19F NMR: (565 MHz, THF-d8) 

  −140.29 (s, FC(10)), −124.1 (s, 2 FC(1)),  
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Figure 159. 1H NMR spectrum of 96 and 58 at −100 °C, referenced to THF-d8 (−120.00 ppm). 
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Figure 160. 19F NMR spectrum of 98 and 66 at −100 °C, referenced externally to 1,4-
difluorobenzene (−120.00 ppm). 
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Experiment 27: Preparation of t-Bu3P complex 104 from 103 with 2.0 equiv of 58. 

 
An flame dried vial was charged with 4-fluorophenylboroxine (2.5 mg, 6.8 µmol, 2.0 

equiv), H2O (0.6 µL, 20 µmol, 3.1 equiv) followed by 100 µL of freshly distilled (NaK) THF-d8 

.The tube was capped with a septum and Teflon tapped. 

An oven-dried, 5-mm, NMR tube was taken into the glove box and [(t-Bu3P)Pd(4-

FC6H4)(µ-OH)]2 (6.8 mg, 8.2 µmol, 1.0 equiv) was added, followed by the addition of 500 µL of 

freshly distilled THF-d8 (NaK). The tube was shaken and placed into a −78 °C dry-ice acetone bath 

followed by the addition of the freshly prepared 4-fluorophenylboronic acid solution. The tube 

was vortexed (not shaken) quickly wiped with a Kimwipe and placed into the probe of the NMR 

spectrometer pre-cooled to −60 °C. After a few minutes the sample was cooled to −100 °C where 

the complex was observed.  

Using the Eyring equation ΔGe
≠ = −RTcln(kcħ/kBTc) where R is the gas constant, kB is 

Boltzmann constant, ħ is Planck’s constant, the barrier to rotation about the Pd-Aryl bond was 

measured to be approximately ΔGr
≠ = 10 kcal/mol. The coalescence temperature (Tc) was 

measured approximately at –75 °C by the signals broadening and separating over a 10 °C 

difference. The rate constant kc at coalescence was measured using kc = πΔv/√2, where Δv is the 

maximum chemical shift difference (101 Hz) between Ha and Ha’  at −100 °C.  

Data for 104: 
1H NMR: (600 MHz, THF-d8) 

9.51 (s, HO), 7.84 (m, 2 HC(8)), 7.46, 7.28 (m, 4 HC(3)), 7.13 (dd, 8 Hz, 2 HC(9)), 

6.76 (m, 4 CH(2)), 1.32 (br, 54 HC(6)) 
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Figure 161. 1H NMR spectrum of 104 at −100 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 162.1H NMR spectrum of 104 at −60 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 163. 1H NMR spectrum of 104 over a range of temperatures, referenced to THF-d8 (1.72 

ppm). 
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Experiment 28: RI-NMR addition of CH3OH to complex 105. 

 
An oven-dried, 5-mm, NMR tube was charged with 4-fluorophenylboroxine (63.1 mg, 172 

µmol, 1.0 equiv) and H2O (9.5, 172 µmol, 3.1 equiv) followed by the addition of 750 µL of THF-

d8 yielding a 4-fluorophenylboronic acid solution (0.69 M). 

An oven dried, 5-mm, NMR tube as charged with [(i-Pr3P)Pd(4-FC6H4)(µ-OH)]2 (7.58 mg, 

10 µmol, 1.0 equiv) and THF-d8 (500  µL) then sonicated for ~2 min. The tube was placed into a 

−78 °C dry-ice acetone bath followed by the addition of 4-fluorophenylboronic acid solution (29 

µL, 20 µmol, 2.0 equiv). The tube was vortexed (not shaken) quickly wiped with a Kimwipe and 

placed into the probe of the NMR spectrometer pre-cooled to −60 °C with the cap off. The sample 

was warmed to −50 °C for ~10 min followed by cooling to −60 °C. Then CH3OH (30 µL, 741 

µmol, 37 equiv) was injected at a rate of 10 µL per sec. The injector was used to mix the sample 

followed by data collection. The formation of complex 105 was monitored by 1H NMR by 

collecting a spectrum every 6 min.  
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Figure 164. 1H NMR spectrum of 105 at −60 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 165. 1H NMR spectra (RI-NMR) of 105 at −60 °C, referenced to THF-d8 (1.72 ppm). 
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Experiment 29: Addition of CD3OD to i-Pr3P complex 105.  

 

The sample from Experiment 8 was removed from the spectrometer and placed into a −78 

°C dry-ice acetone bath followed by the addition of 100 µL of CD3OD. The tube was vortexed 

(not shaken), quickly wiped with a Kimwipe, and placed into the probe of the NMR spectrometer 

pre-cooled to −60 °C. After cooling the NMR spectrometer to −100 °C, a new complex 105 was 

observed and [(i-Pr3P)Pd(4-FC6H4)(µ-OH)]2 80 in a ratio of 1 : 0.5. The complex was observed 

via 1D NMR.  
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Figure 166. 1H NMR spectra at −100 °C, referenced to THF-d8 (1.72 ppm). 
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Experiment 30: Preparation of 8-B-4 complex 105 in THF/CD3OH/D from 88 and 58. 

 
An oven-dried, 5-mm, NMR tube was charged with 4-fluorophenylboroxine (44 mg, 120 

µmol, 1.0 equiv) and H2O (6.5 µL, 172 µmol, 3.1 equiv) followed by the addition of 500 µL of 

THF-d8 yielding a 4-fluorophenylboronic acid solution (0.72 M). 

An oven dried, 5-mm, NMR tube as charged with [(i-Pr3P)Pd(4-FC6H4)(µ-OH)]2 (7.58 mg, 

10 µmol, 1.0 equiv) and 500 THF-d8 followed by sonication for ~2 min. The tube was placed into 

a −78 °C dry-ice acetone bath followed by the addition of 4-fluorophenylboronic acid solution (28 

µL, 20 µmol, 2.0 equiv). The tube was vortexed (not shaken) quickly cleaned with a Kimwipe and 

placed into the −78 °C bath. Then CD3OD (60 µL, 1.48 mmol, 74 equiv) was added via syringe. 

The tube was vortexed (not shaken) quickly wiped with a Kimwipe and placed into the probe of 

the NMR spectrometer pre-cooled to −60 °C. The sample was found to be stable for ~8 h at −60 

°C. The complex was characterized via 1D and 2D NMR experiments over a course of multiple 

experiments using either CD3OH or CD3OD.  

Data for 105: 
1H NMR: (600 MHz, THF-d8) 

7.68 (m, 2 HC(8)), 7.45 (m, 2 HC(3)), 6.95 (m, 2 HC(9)), 6.85 (m, 2 CH(2)), 4.48 

(broad, HO), 2.20 (m, 6 HC(5)), 1.32 (m, 36 HC(6)) 

 
13C NMR: (151 MHz, THF-d8) 

164.44, 162.85 (d, 1J(F-C) = 241 Hz, 1 C(10)), 163.42, 161.83 (d, 1J(F-C) = 240 

Hz, 1 C(1)), 143.38 (m, 1 C(4)), 139.56 (m, 1 C(7)), 137.17 (m, 2 C(3)), 135.91 (m, 

2 C(8)) , 115.97, 115.84 (d, 2J(F-C) = 20 Hz, 2 C(9), 114.85, 114.71 (d, 2J(F-C) = 

18 Hz, 2 C(2)), 25.71 (UD, 3 C(5)), 20.18 (s, 6 C(6))  
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19F NMR: (565 MHz, THF-d8) 

  −118.33 (s, FC(10)), −121.01 (s, FC(1)),  
31P NMR: (243 MHz, THF-d8) 

  51.00 (s, 1 P(Pd)) 
11B NMR: (129 MHz, THF-d8) 

  9 ppm (br, 1 B(O)) 
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Figure 167. 1H NMR spectrum of 105 at −60 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 168. 13C NMR spectrum of 105 at −60 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 169. 19F NMR spectrum of 105 at −60 °C, referenced to 1,4-difluorobenzene (−120.00 
ppm). 
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Figure 170. 31P NMR spectrum of 105 at −60 °C, externally referenced to i-Pr3P (19.00 ppm). 
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Figure 171. 11B NMR spectrum of 105 at −60 °C, referenced to Ph4BNa (−6.14 ppm). 
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Figure 172. 11B NMR spectra of 58 (top) and 105 (bottom) at −60 °C, referenced to Ph4BNa (−6.14 
ppm). 
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Figure 173. gHSQC spectrum of 105 at −60 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Figure 174. 1D-Phase cycled NOE spectrum at −90 °C (CH3 irradiated at 1.32) (bottom) and 1H 
NMR spectrum (top) at −90 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 175. gHMBC spectrum of 105 at −60 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Experiment 31: Preparation of 8-B-4 complex 105 in THF/CD3OD from 80 and 106.  

 
An oven-dried, 5-mm, NMR tube was charged with dimethyl 4-fluorophenylboronate (60.5 

mg, 360 µmol, 1.0 equiv) followed by the addition of 500 µL of THF-d8 yielding a dimethyl 4-

fluorophenylboronate solution (0.72 M). 

An oven dried, 5-mm, NMR tube as charged with [(i-Pr3P)Pd(4-FC6H4)(µ-OH)]2 (7.58 mg, 

10 µmol, 1.0 equiv) and 500 THF-d8 followed by sonication for ~2 min. The tube was placed into 

a −78 °C dry-ice acetone bath followed by the addition of dimethyl 4-fluorophenylboronate 

solution (28 µL, 20 µmol, 2.0 equiv). The tube was vortexed (not shaken) quickly cleaned with a 

Kimwipe and placed into the −78 °C bath. Then CD3OD (60 µL, 1.48 mmol, 74 equiv) was added 

via syringe. The tube was vortexed (not shaken) quickly wiped with a Kimwipe and placed into 

the probe of the NMR spectrometer pre-cooled to −55 °C. The complex was characterized via 1D 

and 2D NMR experiments over a course of multiple experiments using either CD3OH or CD3OD. 

The solvents were dried and checked by Karl Fisher titration. Either THF-d8 or THF were distilled 

over (NaK) and placed over 3 Å molecular sieves, which was found to contain 10 ug/mL of H2O. 

Either CH3OH or CD3OD was placed over 3 Å molecular sieves for 3 days, which led to 12 µg/mL 

of H2O.  

Data for 105: 
1H NMR: (600 MHz, THF-d8) 

7.70 (m, 2 HC(8)), 7.46 (m, 2 HC(3)), 6.92 (m, 2 HC(9)), 6.84 (m, 2 CH(2)), 2.21 

(m, 6 HC(5)), 1.34 (m, 36 HC(6)) 
13C NMR: (151 MHz, THF-d8) 

164.45, 162.85 (d, 1J(F-C) = 241 Hz, 1 C(10)), 163.47, 161.87 (d, 1J(F-C) = 240 

Hz, 1 C(1)), 139.17 (m, 1 C(7)), 137.81 (m, 2 C(3)), 135.95 (m, 2 C(8)), 115.94, 

THF-d8, CD3OD
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115.81 (d, 2J(F-C) = 18 Hz, 2 C(9), 114.79, 114.67 (d, 2J(F-C) = 18 Hz, 2 C(2)), 

25.71 (UD, 3 C(5)), 20.19 (s, 6 C(6))  
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Figure 176. 1H NMR spectrum of 105 at −55 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 177. 13C NMR spectrum of 105 at −55°C, referenced to THF-d8 (68.21 ppm). 
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Figure 178. gHSQC spectrum of 105 at −55°C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Experiment 32: Preparation of Ph3P 8-B-4 complex 107 from 57 and 58 

 
A 1-mL volumetric flask was charged with 4-fluorophenylboroxine (88 mg, 240 µmol) 

followed by H2O (13 µL, 722 µmol, 3.0 equiv). Then ~0.5 mL of THF-d8 was added followed by 

sonication until the solid had dissolved. Once dissolved the flask was filled to the mark with THF-

d8 yielding a 4-fluorophenylboronic acid solution (0.72 M). 

An oven dried, 5-mm, NMR tube as charged with [(Ph3P)Pd(4-FC6H4)(µ-OH)]2 (9.60 mg, 

10 µmol, 1.0 equiv) and 500 THF-d8 followed by sonication for ~2 min. The tube was placed into 

a −78 °C dry-ice acetone bath followed by the addition of 4-fluorophenylboronic acid solution (28 

µL, 20 µmol, 2.0 equiv). The tube was vortexed (not shaken) quickly cleaned with a Kimwipe and 

placed into the −78 °C bath. Then CD3OD (60 µL, 1.48 mmol, 74 equiv) was added via syringe. 

The tube was vortexed (not shaken) quickly wiped with a Kimwipe and placed into the probe of 

the NMR spectrometer pre-cooled to −55 °C. The sample was found to form cross-coupling 

product over ~2 h at −55 °C. The complex was characterized via 1D and 2D NMR experiments 

over a course of multiple experiments using CD3OD.  

Data for 107: 
1H NMR: (600 MHz, THF-d8) 

7.76 (m, 2 HC(10)), 7.53 (m, 3 HC(8)), 7.51 (m, 6 HC(6)), 7.45 (m, 6 CH(7)), 7.05 

(m, 2 CH(3)), 6.99 (m, 2 CH(11)), 6.60 (m, 2 CH(2)) 4.14 (broad, HO) 
13C NMR: (151 MHz, THF-d8) 

164.57, 162.95 (d, 1J(F-C) = 243 Hz, 1 C(12)), 163.49, 161.91 (d, 1J(F-C) = 242 

Hz, 1 C(1)), 140.93 (m, 1 C(4)), 136.54 (m, 2 C(3)), 135.97 (m, 2 C(10)), 135.84, 

135.76 (d, 2J(P-C) = 12 Hz, 6 C(6)), 133.14 (m, 3 C(8)), 130.58, 130.50 (d, 3J(P-

C) = 7 Hz, 6 C(7)), 116.11, 116.00 (d, 2J(F-C) = 17 Hz, 2 C(2), 114.91, 114.79 (d, 

−78 °C then −55 °C
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2J(F-C) = 17 Hz, 2 C(11)) [Carbons 5 and 9 could not be determined] 
19F NMR: (565 MHz, THF-d8) 

  −118.16 (s, FC(10)), −121.09 (s, FC(1)),  
31P NMR: (243 MHz, THF-d8) 

  34.86 (s, 1 P(Pd)) 
11B NMR: (129 MHz, THF-d8) 

  10 ppm (br, 1 B(O)) 
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Figure 179. 1H NMR spectrum of 107 at −55 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 180. 13C NMR spectrum of 107 at −55 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 181. 19F NMR spectrum of 107 at −55 °C, referenced to 1,4-difluorobenzene (−120.00 
ppm). 
  

B(OH)2

Fc

58

PdFa

P
3

O
B

OCD3

Fb

107

H

O
D3C

Pd
Ph3P O

Fd

57

H

-126-125-124-123-122-121-120-119-118-117-116-115-114-113-112-111-110
(ppm)

STD

Fb

Fa

Fc Fd
?



 
 

261 

 

 
Figure 182. 31P NMR spectrum of 107at −55 °C, externally referenced to i-Pr3P (19.00 ppm). 
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Figure 183. 11B NMR spectrum of 107 at −55 °C, referenced to Ph4BNa (−6.14 ppm). 
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Figure 184. dgfCOSY spectrum of 107 at −55 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 185. gHSQC spectrum of 107 at −55 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Figure 186. gHMBC spectrum of 107 at −55 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Experiment 33: Preparation of DPPF 8-B-4 complex 109 from 58 and 111. 

 
A flame dried, 1.0 mL volumetric flask was charged with 4-fluorophenylboroxine (26 mg, 

71 µmol 1.0 equiv), H2O (4 µL, 222 µmol, 3.3 equiv) and filled to the mark with freshly distilled 

(NaK) THF-d8 (0.21 M).  

An oven dried, 5-mm, NMR tube as charged with (DPPF)Pd(4-FC6H4)(OH) (15.5 mg, 20 

µmol, 1.0 equiv) and  THF-d8 (500 µL) followed by heating gently with warm tap water until the 

solid had dissolved. The tube was placed into a −78 °C dry-ice acetone bath followed by the 

addition of 4-fluorophenylboronic acid solution (95 µL, 20 µmol, 2.0 equiv). The tube was 

vortexed (not shaken) quickly cleaned with a Kimwipe and placed into the −78 °C bath. The tube 

was then placed into the probe of the NMR spectrometer pre-cooled to −55 °C. The sample was 

found to be stable for over 24 h at −55 °C. The complex was characterized via 1D and 2D NMR 

experiments over a course of multiple experiments.   

Data for 111: 
1H NMR: (600 MHz, THF-d8) 

8.19 (m, 4 HC(10’)), 7.42 (m, 4 HC(12 and 12’)), 7.41 (m, 4 HC(11’)), 7.34 (m, 4 

HC(11)), 7.12 (m, 4 HC(10)), 7.08 (m, 2 HC(3)), 6.97 (m, 2 HC(7)), 6.45 (m, 2 

HC(6)), 6.38 (m, 2 HC(2)), 4.94 (m, 2 HC(15)), 4.67 (m, 2 HC(14)), 4.28 (m, 2 

HC(15’)), 3.50 (m, 2 HC(14’))  
13C NMR: (151 MHz, THF-d8) 

165.23, 163.62 (d, 1J(F-C) = 243 Hz, 1 FC(5)), 162.65, 161.25 (d, 1J(F-C) = 238 

Hz, 1 FC(1)), 154.35, 153.47 (dd, 2J(P-C) = 133 and 10 Hz, 1 HC(4)) 137.68 (d, 
3J(F-C) = 9 Hz, 2 C(7)), 135.84, (m, 1 BC(8)), 136.79, 136.70 (d, 2J(P-C) = 15 Hz, 

4 HC(10’)) 132.00 (m, 4 HC(12 and 12’)), 131.85 (m, 4 HC(11)), 130.02, 129.95 

(d, 3J(P-C) = 10 Hz, 4 HC(11’)), 129.58, 129.51 (d, 2J(P-C) = 12 Hz, 4 HC(10)), 
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78.52 to 78.14 (m, 2 PC(13 and 13’)), 76.13, 76.07 (d, 2J(P-C) = 8 Hz, 2 HC(14’)), 

75.43 (m, 2 HC(14)), 74.71, 74.44 (d, 3J(P-C) = 40 Hz, 2 HC(15’)), 73.95 (m, 2 

HC(15)) 
19F NMR: (565 MHz, THF-d8) 

  −116.47 (s, FC(5)), −122.35 (s, FC(1)) 
31P NMR: (243 MHz, THF-d8) 

33.14, 32.98 (d, 2J(P-P) = 36 Hz, 1 P(1)), 11.54, 11.41 (d, 2J(P-P) = 36 Hz, 1 P(2)) 
11B NMR: (129 MHz, THF-d8) 

  Cannot determine  
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Figure 187. 1H NMR spectrum of 111 at −55 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 188. 13C NMR spectrum of 111 at −55 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 189. COSY NMR spectrum of 111 at −55 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 190. gHSQC spectrum of 111 at −55 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Figure 191. gHMBC spectrum of 111 at −55 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Figure 192. gHMBC (1H-31P) spectrum of 111 at −55 °C, referenced to THF-d8 (1.72). 
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Figure 193. 11B NMR spectrum of 111 at −55 °C, referenced to Ph4BNa (−6.14 ppm). 
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Figure 194. 31P NMR spectrum of 111 at −55 °C, externally referenced to Ph3P (−6.00 ppm). 
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Figure 195. 19F NMR spectrum of 111 at −55 °C, referenced to 1,4-difluorobenzene (−120.00 
ppm). 
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Experiment 34: Preparation of trans-bis-(triisopropylphosphine)palladium dichloride 
 
 

 
trans-Bis-(triisopropylphosphine)palladium dichloride was prepared by modifying a 

procedure by Badshah and co-workers.126 A 500-mL, three-necked, round-bottomed flask was 

charged with a magnetic stir bar, PdCl2 (1.00 g, 5.7 mmol, 1.0 equiv) and fitted with a reflux 

condenser. The apparatus was purged for ~10 min with argon followed by the addition of 200 mL 

of freshly distilled methanol (Mg) and a drop of glacial HCl. The solution was heated to reflux for 

30 min (deep red solution was observed), then i-Pr3P (2.4 mL, 12.54 mmol, 2.2 equiv) was added 

at once via syringe. A canary yellow solid was observed instantly. After the addition, the 

suspension was heated to reflux for 7 h, then cooled to room temperature overnight (~12 h). A 

yellow solid was collected on a glass frit. The solid was dissolved in dichloromethane (~200 mL) 

followed by extraction in triplicate with water (50 mL). The organic layer was dried with MgSO4 

until flocculent, followed by gravity filtration. The solvent was removed by rotary-evaporation (30 

mm Hg, 30 °C). The solid was collected over a glass-fritted funnel and was washed with ether 

(100-150 mL) yielding 2.67 g (81%) of a canary yellow solid, which was used without further 

purification. The spectra matched those previously reported by Grushin and Alper.127 
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reflux
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Experiment 35: Preparation of trans-bis-(triphenylphosphine)palladium dichloride 
 

 
trans-Bis-(triphenylphosphine)palladium dichloride was prepared by modifying a 

procedure by Badshah and co-workers. A 500-mL, round-bottomed flask was charged with a 

magnetic stir bar, PdCl2 (1.0 g, 5.7 mmol, 1.0 equiv) and 150 mL of methanol was added followed 

by fitting with a reflux condenser. Then ~0.5 mL of HCl was added and the mixture was refluxed 

for 40 min (deep red solution was observed), then Ph3P (3.3 g, 12.6 mmol, 2.2 equiv) was added 

at once via a funnel dissolved in 25 mL of acetone. A canary yellow solid was observed instantly. 

After the addition, the suspension was heated to reflux for 4 h, then cooled to room temperature 

overnight (~12 h). A yellow solid was collected on a glass frit. The solid was dissolved in hot 

chloroform (~200 mL) followed by extraction with water (100 mL). The organic layer was dried 

with MgSO4 until flocculent, followed by gravity filtration. The solvent was removed by rotary-

evaporation (30 mm Hg, 30 °C). The solid was collected over a glass-fritted funnel and was washed 

with a small amount of acetone (~10 mL) yielding 3.50 g (88%) of a canary yellow solid, which 

was used without further purification. The spectra matched those previously reported by Grushin 

and Alper. 
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Experiment 36: Preparation of [(i-Pr3P)Pd(4-FC6H4)(µ-OH)]2 90 

 
Compound 90 was synthesized by a modification of a procedure by Grushin and Alper as 

described below (51). A 100-mL, round-bottomed flask was charged with a magnetic stir bar, (i-

Pr3P)2PdCl2 (0.5 g, 1.0 mmol, 1.0 equiv) and KOH (10 g, 178 mmol, 178 equiv). Then 1,4-

iodofluorobenzene (0.88 g, 4.0 mmol, 4.0 equiv) was added via syringe. The flask was fitted with 

a reflux condenser and purged with high purity argon for ~5 min followed by addition of 10 mL 

of degassed benzene and 5 mL of degassed H2O. The mixture was stirred vigorously for ~12 h at 

reflux, during which time the reaction mixture turned from light yellow to deep red after ~1 hour. 

After 12 h, the water layer was removed via syringe and 5 mL of H2O and KOH (10 g, 178 mmol, 

178 equiv) were added and the mixture was stirred for another 3 hour at reflux. The organic layer 

was separated and filtered through glass wool (remove Pd-Black). The organic layer was extracted 

with H2O (5 mL X 5) separated and the solvent was removed under reduced pressure. THF (1 mL) 

was added to the flask followed by ~10 mL hexanes and the solution was placed into the freezer 

for ~15 hours. The following day a white precipitate had formed and was collected on a glass-

fritted funnel followed by dissolving with THF (~15 mL). The solution was filtered through a 

syringe filter (0.20 µm) followed by removing the THF at reduced pressure. Then 10 mL of hexane 

was added while stirring and a white precipitate was observed over 30 min. The solid was collected 

on a glass frit followed by washing with 200 mL of hexanes. The precipitate was then dried under 

high vacuum (4 mm Hg) yielding 102 mg (27 %) of a white solid. A mixture of trans / cis isomers 

were observed in a ratio of 3:2.  

Data for trans 90: 
1H NMR: (600 MHz, THF-d8) 

7.36 (m, 4 HC(3)), 6.67 (m,  4 HC(2)), 1.92 (m. 6 HC(5)), 1.24 (m. 6 HC(36)), 

−1.74 (s, 2 (OH)) 
13C NMR: (151 MHz, THF-d8) 

162.69, 161.11 (d, 1J(F-C) = 241 Hz, 2 C(1)), 147.15 (m, 2 C(4)), 139.15, (m, 6 
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C(3)), 114.48, 114.35 (d, 1J(F-C) = 18 Hz, 4 C(2)), 24.36 (m, 6 C(5)), 19.69 (m, 12 

C(6)) 
19F NMR: (565 MHz, THF-d8) 

  −122.61 (s, FC(1)) 
31P NMR: (243 MHz, THF-d8) 

  45.55 (s, P(Pd)) 

Data for cis 90: 
1H NMR: (600 MHz, THF-d8) 

7.31 (m, 4 HC(3)), 6.62 (m, 4 HC(2)), 2.03 (m. 6 HC(5)), 1.24 (m. 6 HC(36)) 

−1.55 (s, 2 (OH)) 
13C NMR: (151 MHz, THF-d8) 

162.82, 161.24 (d, 1J(F-C) = 239 Hz, 2 C(1)), 145.40 (m, 2 C(4)), 139.83, (m, 6 

C(3)), 114.40, 114.28 (d, 1J(F-C) = 18 Hz, 4 C(2)), 24.16 (m, 6 C(5)), 19.73 (m, 12 

C(6)) 
19F NMR: (565 MHz, THF-d8) 

  −122.82 (s, FC(1)) 
31P NMR: (243 MHz, THF-d8) 

  45.55 (s, P(Pd)) 
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Figure 196. 1H NMR spectrum of 90 at −30 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 197. 13C NMR spectrum of 90 at −30 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 198. 19F NMR spectrum of 90 at −30 °C, referenced to 1,4-difluorobenzene (−120.00 ppm). 
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Figure 199. 31P NMR spectrum of 90 at −30 °C, externally referenced to i-Pr3P (19.00 ppm). 
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Experiment 37: Preparation of [(t-Bu3P)Pd(4-FC6H4)(µ-OH)]2 (103) 

 
A scintillation vial was charged with (4-C6H4)t-Bu3PPd-Br (50 mg, 0.1 mmol, 1.0 equiv) 

and a magnetic stir bar. Then TlOH (120 mg, 6.48 mmol, 64.8 equiv) was placed into a 2nd 

scintillation vial and dissolved with H2O (2 mL) via pipette. While stirring the palladium bromide 

solution the thallium hydroxide solution was added dropwise by pipette where a white precipitate 

was observed. The mixture was stirred for ~5 min followed by decanting the DCM layer by 

syringe. The TlBr was removed by passing the DCM solution through a 0.2 micron syringe filter. 

The DCM was removed by rotary evaporation yielding 10.2 mg, 17% of an off white solid.  

Data for trans-103: 
1H NMR: (600 MHz, THF-d8) 

7.30 (m, 4 HC(3)), 6.58 (m,  4 HC(2)), 1.39, 1.36 (d, 3J(P-H) = 12 Hz, 54 C(1)), 

−2.23 (s, 2 (OH)) 
13C NMR: (151 MHz, THF-d8) 

162.85, 161.27 (d, 1J(F-C) = 239 Hz, 2 C(1)), 143.11 (m, 2 C(4)), 138.64, 138.46 

(d, , 3J(F-C) = 28 Hz, 4 C(3)), 114.13 (m, 4 C(2)), 41.30, 41.23 (d, 1J(P-C) = 11 Hz, 

6 C(5)), 34.06 (b, 18 C(6)) 
19F NMR: (565 MHz, THF-d8) 

  −125.18 (s, FC(1)) 
31P NMR: (243 MHz, THF-d8) 

  75.68 (s, P(Pd)) 
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Data for cis-103: 
1H NMR: (600 MHz, THF-d8) 

7.18 (m, 4 HC(3)), 6.49 (m,  4 HC(2)), 1.46, 1.43 (d, 3J(P-H) = 12 Hz, 54 C(1)), 

−2.56, −3.19 (s, 2 (OH)) 
13C NMR: (151 MHz, THF-d8) 

162.85, 161.27 (d, 1J(F-C) = 239 Hz, 2 C(1)), 143.11 (m, 2 C(4)), 139.72, 139.54 

(d, 3J(F-C) = 28 Hz, 4 C(3)), 113.87 (m, 4 C(2)), 41.40, 41.33 (d, 1J(P-C) = 11 Hz, 

6 C(5)), 34.06 (b, 18 C(6)) 
19F NMR: (565 MHz, THF-d8) 

  −125.02 (s, FC(1)) 
31P NMR: (243 MHz, THF-d8) 

  74.71 (s, P(Pd)) 
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Figure 200. 1H NMR spectrum of 103 at −50 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 201. 13C NMR spectrum of 103 at −50 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 202.  31P NMR spectrum of 103 at −30 °C, externally referenced to i-Pr3P (19.00 ppm). 
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Figure 203. 19F NMR spectrum of 103 at −30 °C, referenced externally to 1,4-difluorobenzene 
(−120.00 ppm). 
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Experiment 38: Preparation of [(Ph3P)Pd(4-FC6H4)(µ-OH)]2 (57) from 59 
 

 
A 250-mL, Schlenk flask was charged with trans-(Ph3P)2Pd(C6H4F)I (0.523 g, 0.614 

mmol) and a magnetic stir bar followed by placement into the glovebox. Then THF (40 mL) was 

added followed by CsOH•H2O (1.5 g, 9.0 mmol, 15 equiv). The reaction was filtered through glass 

wool followed by removal of the THF. Then freshly distilled CHCl3 was added ~3 mL followed 

by freshly distilled pentane ~5 mL. The flask was placed into the freezer and allowed to sit 

overnight. The following day ~16 h white needles and black cube crystals were observed. The 

contents were collected on a filter paper followed by separating the crystals by hand yielding 87 

mg, 30%. Spectra matched those described in the following experiment.  

 
Experiment 39: Preparation of [(Ph3P)Pd(4-FC6H4)(µ-OH)]2 (57) 

 
Compound 46 was synthesized by a modification of a procedure by Grushin and Alper as 

described below. A 100-mL, round-bottomed flask was charged with a magnetic stir bar, 

(Ph3P)2PdCl2 (0.5 g, 1.0 mmol, 1.0 equiv), KOH (10 g, 178 mmol, 178 equiv) and a chip of 18-

crown-6. Then 1,4-iodofluorobenzene (0.88 g, 4.0 mmol, 4.0 equiv) was added via syringe. The 

flask was fitted with a reflux condenser and purged with argon for ~5 min followed by addition of 

25 mL of degassed benzene and 5 mL of degassed H2O. The mixture was stirred vigorously for ~6 

h at 80 °C, during which time the reaction mixture turned from yellow to deep red then slowly 

changed to a colorless solution with a white precipitate (Ph3PO). The organic layer was separated 
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and filtered through glass wool (remove Pd-Black and Ph3PO). The organic layer was extracted 

with H2O (5 mL X 5) separated and the solvent was removed under reduced pressure. THF (1 mL) 

was added to the flask followed by ~10 mL ether and the solution was placed into the freezer for 

~12 hours (overnight). The following day a white precipitate had formed and was collected on a 

glass-fritted funnel followed by dissolving with THF (~15 mL). The solution was filtered through 

a syringe filter (0.20 µm) followed by removing the THF at reduced pressure. The solid was 

collected on a glass frit followed by washing with 250 mL of ether. The precipitate was then dried 

under high vacuum (4 mm Hg) yielding 192 mg (56 %) of a white solid. A mixture of trans / cis 

isomers were observed. 

 
Data for trans 57: 
1H NMR: (600 MHz, THF-d8) 

7.53 (m, 6 HC(7)), 7.37 (m, 6 HC(8)), 7.29 (m, 6 CH(6)), 6.92 (m, 2 CH(3)), 6.33 

(m, 2 CH(2)), −1.78 (broad, HO) 
13C NMR: (151 MHz, THF-d8) 

162.79, 161.22 (d, 1J(F-C) = 239 Hz, 1 C(1)), 145.54, 145.50 (d, 2J(P-C) = 5 Hz, 1 

C(4)), 138.24 (m, 2 C(3)), 135.94 (m, 6 C(7)), 133.09, 132.76 (d, 1J(P-C) = 50 Hz, 

3 C(5)), 132.02 (m, 3 C(8)), 129.88 (m, 6 C(6)), 114.57, 114.44 (d, 2J(F-C) = 19 

Hz, 2 C(2)) 
19F NMR: (565 MHz, THF-d8) 

  −123.79 (s, FC(1))  
31P NMR: (243 MHz, THF-d8) 

  34.83 (s, 1 P(Pd)) 

 

Data for cis 57 
1H NMR: (600 MHz, THF-d8) 

7.53 (m, 6 HC(7)), 7.43 (m, 3 HC(8)), 7.29 (m, 6 CH(6)), 6.86 (m, 2 CH(3)), 6.32 

(m, 2 CH(2)), −0.56, 0.11 (broad, HO) 
13C NMR: (151 MHz, THF-d8) 

162.84, 161.25 (d, 1J(F-C) = 239 Hz, 1 C(1)), 144.73, 144.69 (d, 2J(P-C) = 6 Hz, 1 

C(4)), 138.24 (m, 2 C(3)), 135.94 (m, 6 C(7)), 132.79, 132.45 (d, 1J(P-C) = 49 Hz, 



 
 

293 

3 C(5)), 131.92 (m, 3 C(8)), 129.88 (m, 6 C(6)), 114.25, 114.13 (d, 2J(F-C) = 18 

Hz, 2 C(2)) 
19F NMR: (565 MHz, THF-d8) 

  −123.93 (s, FC(1)) 
31P NMR: (243 MHz, THF-d8) 

  33.52 (s, 1 P(Pd)) 
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Figure 204. 1H NMR spectrum of 57 at −55 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 205. 13C NMR spectrum of 57 at −55 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 206. 19F NMR spectrum of 57 at −55 °C, referenced to 1,4-difluorobenzene (−120.00 ppm). 
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Figure 207. 31P NMR spectrum of 57 at −55 °C, externally referenced to Ph3P (−6.5 ppm). 
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Experiment 40: Preparation of trans-(i-Pr3P)2Pd(4-FC6H4)(OH) (70).  

’ 
Compound 6 was synthesized by a modification of a procedure by Grushin and Alper (51). 

A flame-dried, 25-mL, round-bottomed flask was charged with 17 (30 mg, 40 µmol, 1.0 equiv) 

and a magnetic stir bar. The vessel was taken into the dry box and i-Pr3P (18 µL, 78 µmol, 2.2 

equiv) was added followed by 3 mL of freshly-distilled, degassed THF. The flask was capped with 

a septum and the solution was stirred for 30 min, followed by solvent removal under reduced 

pressure. The tan solid was dissolved in 3 mL of pentane, capped and placed into the freezer at 

−27 °C. Colorless crystals were observed ~16 h later. The crystals were collected and washed with 

cold (−27 °C) pentane (2 mL) followed by drying under high vacuum (3 mm Hg) over night 

yielding 31.2 mg (72%) of compound 70 as colorless crystals.  

Data for 70: 
1H NMR: (600 MHz, THF-d8) 

7.35 (dd, 3J(H-H) = 7 Hz, 2 HC(3)), 6.64 (dd, 3J(H-H) = 7 Hz, 2 HC(2)), 3.60 (s, 

HO), 2.17 (m, 6 HC(5)), 1.23 (m, 36 HC(6)) 
13C NMR: (151 MHz, THF-d8) 

161.90, 160.38 (d, 1J(F-C) = 243 Hz, 1 C(1)), 148.07 (m, 1 C(4)), 140.81 (d, 3J(F-

C) = 5 Hz, 3 C(3)), 114.40, 114.29 (d, 2J(F-C) = 17 Hz, 2 C(2)), 24.73 (t, J = 10 

Hz, 6 C(5)), 20.82 (s, 12 C(6))  
19F NMR: (565 MHz, THF-d8) 

  −124.68 (s, FC(1)) 
31P NMR: (243 MHz, THF-d8) 

  33.00 (s, 2 P(Pd)) 

 
 
 

70

Pd OHF

P

i-Pr3P

CH3H3C

1

2 3

4

5
6

Pd O
H

F

i-Pr3P

THF

i-Pr3P (2.2 equiv)

80



 
 

299 

 

 
Figure 208. 1H NMR spectrum of 70 at −30 °C, referenced to residual THF (1.72 ppm). 
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Figure 209. 13C NMR spectrum of 70 at −30 °C, referenced to THF-d8 (68.29 ppm). 
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Figure 210. 31P NMR spectrum of 70 at −30 °C, referenced to i-Pr3P (19.00 ppm). 
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Figure 211. 19F NMR spectrum of 70 at −30 °C, externally referenced to 1,4-difluorobenzene 
(−120.00 ppm). 
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Experiment 41: Preparation of DPPF complex 109 

 
A flame dried, 25 mL Schlenk flask was charged with [(Ph3P)Pd(4-FC6H4)(µ-OH)]2 (50 

mg, 52 µmol, 1.0 equiv), DPPF (58 mg, 104 µmol, 2.0 equiv), stir bar and transferred into the 

glovebox. THF (5 mL) was added and the reaction was allowed to stir for 30 min. While stirring 

hexane (5 mL) was added via syringe and the vessel was capped with a septum and placed in the 

freezer (~12 h). Bright yellow crystals were observed which were collected on a glass frit and dried 

under high vacuum yielding 53 mg 66% of orange crystals.  

Data for 109: 
1H NMR: (600 MHz, THF-d8) 

8.29 (m, 4 HC(6’)), 7.42 (m, 4 HC(7’)), 7.39 (m, 4 HC(7)), 7.33 (m, 2 HC(8’)), 

7.30 (m, 2 HC(8)), 7.14 (m, 4 HC(6)), 6.93 (m, 2 HC(3)), 6.34 (m, 2 HC(2)), 4.68 

(m, 2 HC(10)), 4.53 (m, 2 HC(11)), 4.28 (m, 2 HC(11’)), 3.67 (m, 2 HC(10’), 0.45 

(t, 3J(P-C) = 7 Hz, OH) 

 
13C NMR: (151 MHz, THF-d8) 

162.52, 160.95 (d, 1J(F-C) = 238 Hz, 1 C(1)), 160.90, 160.04 (dd, 2J(P-C) = 132 

and 9 Hz, 1 C(4)), 137.30 (m, 2 C(3)), 136.00 (m, 4 C(6’)), 135.91 (m, 4 C(8 and 

8’), 131.50 (m, 4 C(7’)), 129.47 (m, 4 C(7)), 129.30 (m, 4 C(6)), 114.59 (m, 2 C(2)), 

78.76, 78.49 (d, 1J(P-C) = 42 Hz, 1 C(9)), 77.49, (m, 2 C(10)), 76.04 (m, 2 C(10’)), 

75.54, 75.27 (d, 1J(P-C) = 39 Hz, 1 C(9’)), 75.01 (m, 2 C(11)), 73.88 (m, 2 C((11’)) 

[carbons 5 and 5’ could not be determined]  
19F NMR: (565 MHz, THF-d8) 

−123.63 (s, FC(1)) 
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31P NMR: (243 MHz, THF-d8) 

28.50, 28.35 (d, 2J(P-P) = 30 Hz, 1 P(1)), 9.08, 8.83 (d, 2J(P-P) = 30 Hz, 1 P(2)) 
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Figure 212. 1H NMR spectrum of 109 at −55 °C, referenced to THF-d8 (1.72 ppm). 
  

Fe Pd
P OH

P

Ph

Ph F

Ha
Hb

Hf

HgHi

Hc

HdHe

Hk

Hl

H j

Hm

109

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
(ppm)

7.17.27.37.47.5
(ppm)

PdOH

Ha

Hb

Hf

Hc

Hd

Hg

He Hi

Hm

Hl

Hk
Hj

H2O ?
?

THF-d8

THF-d8



 
 

306 

 

 
Figure 213. 13C NMR spectrum of 109 at −55 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 214. dqfCOSY spectrum of 109 at −55 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 215. gHSQC spectrum of 109 at −55 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Figure 216. gHMBC spectrum of 109 at −55 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Figure 217. gHMBC (1H-31P) spectrum of 109 at −55 °C, referenced to THF-d8 (1.72). 
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Figure 218. 31P NMR spectrum of 109 at −55 °C, referenced to Ph3P (−6.00 ppm). 
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Figure 219. 19F NMR spectrum of 109 at −55 °C, referenced to 1,4-difluorobenzene (−120.00 
ppm). 
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Experiment 42: Preparation of [(i-Pr3P)Pd(4-FC6H4)( µ-I)]2 (90) 

 
A 2-dram vial was charged with 4-fluorophenylboroxine (16 mg, 44 µmol 1.0 equiv), H2O 

(3 µL, 132 µmol, 3.0 equiv) and ~1 mL of THF. 

A 25-mL, flame dried Schlenk flask was charged with a magnetic stir bar, [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (80 mg, 0.106 mmol, 1.0 equiv) and NaI (0.159 g, 1.06 mmol, 10 equiv). The 

flask was fitted with a septum and purged with argon for 5 min followed by addition of 5 mL of 

benzene, 4-fluoroiodobenzene (2 mL, 17.4 mmol, 164 equiv) and 2 mL of degassed H2O. The 

mixture was degassed for ~5 min followed by the addition of the 4-fluorophenylboronic acid 

solution at once. The mixture was stirred vigorously for 1 h at 50 °C, during which time the reaction 

mixture turned from colorless to deep red. After 1 h, the benzene layer was separated and filtered 

through glass wool followed by benzene removal via rotary-evaporation (30 mm Hg, 30 °C).  The 

remaining liquid was charged with 10 mL of hexanes and placed in the freezer overnight yielding 

a red-brown precipitate. The solid was collected on a glass frit followed by recrystallization with 

dichloromethane/hexanes affording a red microcrystalline solid (46 mg, 45%). The compound was 

found to exist as trans and cis isomers (55:445) in solution. The 1H and 13C chemicals shifts are 

indistinguishable.  

Data for 90: 
1H NMR: (600 MHz, THF-d8) 

7.35 (m, 2 HC(3)), 6.66 (m,  2 HC(2)), 2.22 (m. 3 HC(5)), 1.31 (m. 6 HC(18)) 
13C NMR: (151 MHz, THF-d8) 

162.84, 161.26 (d, 1J(F-C) = 244 Hz, 2 C(1)), 146.67 (m, 2 C(4)), 139.13, (m, 6 

C(3)), 115.25, 115.13 (d, 1J(F-C) = 20 Hz, 4 C(2)), 27.64 (m, 6 C(5)), 21.17 (m, 12 

C(6)) 
19F NMR: (565 MHz, THF-d8) 

  −123.15 (cis) (s, FC(1)) and −123.25 (trans) (s, FC(1)) 
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31P NMR: (243 MHz, THF-d8) 

  43.99 (trans) (s, P(Pd)) and 41.29 (cis) (s, P(Pd)) 
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Figure 220. 1H NMR spectrum of 90 at −30 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 221. 13C NMR spectrum of 90 at −30 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 222. 19F NMR spectrum of 90 at −30 °C, referenced to 1,4-difluorobenzene (−120.00 ppm). 
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Figure 223. 31P NMR spectrum of 90 at −30 °C, externally referenced to i-Pr3P (19.00 ppm). 
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Experiment 43: Preparation of trans-(i-Pr3P)2Pd(4-FC6H4)(I) (76) 

 
Inside the glove box an 25-mL, oven dried round bottom flask was charged with a magnetic 

stir bar, allylCpPd (0.212 g, 1 mmol, 1.0 equiv) and 10 mL of THF. Once stirring was started i-

Pr3P (0.483 g, 3 mmol, 3.0 equiv) was added at once via syringe. It was allowed to stir for ~5 min 

followed by the addition of 4-fluoroiodobenzene (2 mL, 17.4 mmol, 17.4 equiv) at once. The deep 

red solution turned to a light orange color after ~30 s. The reaction was allowed to stir overnight 

(~15 h). The following day the THF was removed under reduced pressure. The flask was removed 

from the glove box and pentane (~10 mL) was added followed by placement for ~2 h in an acetone 

bath cooled to −35 °C, yielding yellow crystals (0.416 g, 64%).  

Data for 76: 
1H NMR: (600 MHz, THF-d8) 

7.36 (m, 2 HC(3)), 6.76 (m,  2 HC(2)), 2.49 (m. 6 HC(5)), 1.24 (m. 36 HC(6)) 
13C NMR: (151 MHz, THF-d8) 

163.03, 161.42 (d, 1J(F-C) = 242 Hz, 2 C(1)), 145.49 (m, 2 C(4)), 141.10, (m, 6 

C(3)), 115.18, 115.06 (d, 1J(F-C) = 18 Hz, 4 C(2)), 27.86 (t, J(P-C) = 10 Hz, 6 

C(5)), 21.58 (m, 12 C(6)) 
19F NMR: (565 MHz, THF-d8) 

  −122.52 (s, FC(1)) 
31P NMR: (243 MHz, THF-d8) 

  30.36 (s, P(Pd)) 
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Figure 224. 1H NMR spectrum of 76 at −30 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 225. 13C NMR spectrum of 76 at −30 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 226. 19F NMR spectrum of 76 at −30 °C, referenced to 1,4-difluorobenzene (−120.00 ppm). 
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Figure 227. 31P NMR spectrum of 76 at −30 °C, referenced to i-Pr3P (19.00 ppm). 
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Experiment 44: Formation of cross-coupling product 73 and (i-Pr3P)2Pd. 

 

 
A flame-dried, 2-dram vial was charged with 4-fluorophenylboroxine (2.5 mg, 6.8 µmol, 

0.68 equiv), and H2O (0.4 µL, 22 µmol, 1.1 equiv) followed by dissolving with THF-d8 (100 µL, 

Na/K distilled). 

An oven dried, 5-mm, NMR tube was taken into the glove box and charged with [(i-

Pr3P)Pd(4-FC6H4)(µ-OH)]2 (7.58 mg, 10.0 µmol, 1.0 equiv), and i-Pr3P (3.8 µL, 20 µmol, 2.0 

equiv) followed by THF-d8 (500 µL, NaK distilled). The tube was capped with a septum and Teflon 

taped and shaken until the solid had dissolved. Then 4-fluorophenylboronic acid (100 µL, 20 µmol) 

was added via a µL glass syringe. The NMR tube was shaken and wiped with a Kimwipe and 

placed into the NMR probe set to 20 °C. The reaction was allowed to take place over ~10 min, 

followed by the collection of spectra at −30 °C. (1,4-Difluorobenzene (0.1 µL) was added at the 

end of the experiment to obtain a referenced fluorine spectrum.) 

Data for 73: 
1H NMR: (600 MHz, THF-d8) 

7.65 (m, 4 HC(3)), 7.21 (dd, 4J(F-H) = 9 Hz, 4 HC(2)),  
13C NMR: (151 MHz, THF-d8) 

165.41, 163.41 (d, 1J(F-C) = 238 Hz, 2 C(1)), 138.05. 138.03 (d, 1J(F-C) = 3 Hz, 2 

C(4)), 130.39, 130.33 (d, 1J(F-C) = 8 Hz, 4 C(3)), 117.36, 117.21 (d, 1J(F-C) = 21 

Hz, 4 C(2)) 
19F NMR: (565 MHz, THF-d8) 

  −116.45 (s, FC(1)) 

 

Data for (i-Pr3P)2Pd: 
1H NMR: (600 MHz, THF-d8) 

1.90 (m, 6 HC(5)), 1.20 m, 36 HC(6))  
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13C NMR: (151 MHz, THF-d8) 

25.61, (t, J(P-C) = 6 Hz, 6 C(5)), 17.66, (m, 12 C(6)),  
31P NMR: (243 MHz, THF-d8) 

  53.43 (s, 2 P(Pd)) 
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Figure 228. 1H NMR spectrum of 73 and 1.0 equiv of [i-Pr3P]2Pd0 at −30 °C, referenced to THF-
d8 (1.72 ppm). 
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Figure 229.13C NMR spectrum of 73 and 1.0 equiv of [i-Pr3P]2Pd0 at −30 °C, referenced to THF-
d8 (68.21 ppm). 
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Figure 230. gHMQC spectrum of 73 and 1.0 equiv of [i-Pr3P]2Pd0 at −30 °C, referenced to residual 
THF (1.72 ppm) and THF-d8 (68.21 ppm). 
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Figure 231. gHMBC spectrum of 73 and 1.0 equiv of [i-Pr3P]2Pd0 at −30 °C, referenced to residual 
THF (1.72 ppm) and THF-d8 (68.21 ppm). 
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Figure 232. 31P NMR spectrum of 73 and 1.0 equiv of [i-Pr3P]2Pd0 at −30 °C, referenced externally 
to i-Pr3P (19.00 ppm). 
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Figure 233. 19F NMR spectrum of 73 and 1.0 equiv of [i-Pr3P]2Pd0 at −30 °C, referenced to 1,4-
difluorobenzene (−120.00 ppm). 
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Experiment 45: Preparation of (i-Pr3P)3Pd 

 
A flame dried, 100 mL Schlenk flask was charged with [TMEDA]PdMe2 (400 mg, 1.6 

mmol, 1.0 equiv), stir bar and capped with a septum followed by an evacuation purge cycle in 

triplicate with argon. Then 25 mL of benzene (Na) was added along with i-Pr3P (1.07 g 3.5 equiv, 

5.6 mmol) followed by heating to 70 °C and stirring for 2 h where the reaction was found to be at 

completion by 1H and 31P NMR. The benzene was removed by high vacuum while gently heating 

with a heat gun. Then the vessel was placed into the glove box and 10 mL of pentane was added 

dissolving the solid. The flask was placed into the freezer (−25 °C) and colorless crystals were 

observed yielding (210 mg, 22%). In solution the compound exists as (i-Pr3P)2Pd along with 

unbound i-Pr3P which matched the previously published spectra.128 
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Experiment 46: Preparation of thallium 4-fluorophenylboronate (79). 

 
A scintillation vial was charged with thallium hydroxide (0.442 g, 2.0 mmol, 1.0 equiv) 

and a magnetic stir bar. Then 4-fluorophenylboronic acid (0.38 g, 2.0 mmol, 1.0 equiv) dissolved 

in THF (10 mL) was added via pipette. Upon stirring a white precipitate was observed. The 

reaction was allowed to stir for 1 h after which the white solid was collected on a glass fritted 

funnel yielding 0.61 g, 85%.  

Data for 79: 
1H NMR: (600 MHz, THF:CD3OD) 

7.43 (t, J=6.5 Hz, 2 HC(3)), 6.79 (t, J=7.2 Hz, 2 HC(2)), 3.74 (s, 3 (OH)) 

13C NMR: (151 MHz, THF:CD3OD) 

164.14, 162.54 (d, J=240 Hz, 1 C(1)), 135.86, 135.81 (d, J=7 2 C(3)) 114.17, 114.05 

(d, J=20 Hz, 4 2 C(2)), (Signals 1 and 4 not determined)  
19F NMR: (565 MHz, THF:CD3OD) 

−118.41 (s, 1 FC(1))   
11B NMR: (193 MHz, D2O) 

4 (s, 1 B))   
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Figure 234. 1H NMR spectrum of 79, referenced to residual THFd8 (1.72 ppm). 
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Figure 235. 19F NMR spectrum of 79, externally referenced to 1,4-difluorobenzene (−120.00 
ppm). 
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Figure 236.  11B NMR spectrum of 79, referenced externally to NaBPh4 (−6.14 ppm). 
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Figure 237. 13C NMR spectrum of 79 at −30 °C, referenced to THF-d8 (68.29 ppm). 
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Experiment 47: Preparation of 4-fluorophenyldimethyloxyboronate 106.  

 
A 500-mL, round-bottomed flask was charged with a magnetic stir bar, 4-fluorophenylboroxine 

(3.0 g, 8.2 mmol, 1.0 equiv) followed by adding 250 mL of benzene (Na) and 25 mL of CH3OH 

(Mg). The flask was fitted with a Dean Stark apparatus filled with 3 Å molecular sieves and 

submerged into a pre-heated oil bath (120 °C). The reaction was refluxed for 15 h followed by 

benzene removal via rotary-evaporation. The product was distilled under high vacuum at 42 °C 

yielding 1.2 g, 29% of product as a colorless liquid.   

Data for 106: 
1H NMR: (600 MHz, THF-d8/CD3OD) 

7.67 (m, 2 HC(3)), 7.08 (m, 2 HC(2)), 3.72 (s, 6 HC(5)),  
13C NMR: (151 MHz, THF-d8/CD3OD) 

166.69, 164.80 (d, 1J(F-C) = 250 Hz, 1 C(1)), 137.99, 137.94 (d, 3J(F-C) = 8 Hz, 2 

C(3), 130.20 (m, 1 C(4)), 116.04, 115.91 (d, 2J(F-C) = 20 Hz, 2 C(2)), 53.58(m, 2 

C(5)) 
19F NMR: (565 MHz, THF:CD3OD) 

−111.38 (s, 1 FC(1))   
11B NMR: (193 MHz, D2O) 

28 (s, 1 B))   
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Figure 238. 1H NMR spectrum of 106 at 20 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 239. 13C NMR spectrum of 106 at 20°C, referenced to THF-d8 (68.21 ppm). 
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Figure 240. 19F NMR spectrum of 106 at 20°C, referenced to 1,4-difluorobenzene in THF (−120 
ppm). 
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Figure 241. HMBC spectrum of 106 at 20 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Figure 242. 11B NMR spectrum of 106 at 20°C in THF, referenced to Ph4BNa  (−6.15 ppm). 
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Experiment 48: Preparation of tri-isopropylphosphonium tetrafluoroborate  

 

 
A flame dried, 500-mL round bottom flask fitted with a y-adapter, gas adapter and a septum 

was purged for ~10 min. The flask was charged with diethyl ether (250 mL) and 

isopropylmagnesium chloride (111 mL, 1.7 M, 188 mmol, 3.3 equiv) then chilled to an external 

temperature of −78 °C with a dry-ice acetone bath. The solution was allowed to sit for 10 min for 

temperature equilibration, followed by the dropwise addition of neat, freshly distilled 

trichlorophosphine (5.0 mL 57 mmol, 1.0 equiv) over 10 minutes via syringe. The solution was 

allowed to warm to room temperature over night (14 h). The solution was cooled to 0 °C with an 

ice bath, then ice-chips were added slowly (~15 min) to quench the excess Grignard. Then 

HBF4•OEt2 (22 mL, 140 mmol, 2.5 equiv) and HBF4•OH2 (30 mL, 140 mmol, 2.5 equiv, 48 wt%) 

were added over 20 min via pipette. Once the addition was complete 50 mL of water was added 

followed by extraction in triplicate with dichloromethane (300 mL). The cloudy combined organic 

layers were dried over MgSO4 until flocculent, followed by gravity filtration. The dichloromethane 

was removed by reduced pressure (40 mm Hg at 30 °C). The white solid was collected and 

dissolved in dichloromethane (15 mL) and added dropwise to a stirred solution of diethyl ether 

(200 mL) yielding a white power 10.25 g, 75%. The spectra matched those previously reported.129 
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Experiment 49: Preparation of tri-isopropylphosphine 
 

 

A 500-mL round-bottomed flask with a gas inlet was charged with tri-

isopropylphosphonium tetrafluoroborate (8.80 g, 35 mmol, 1.0 equiv) and a magnetic stir bar. The 

flask was placed into the glove box and washed NaH (1.02 g, 42 mmol, 1.2 equiv) followed by 

200 mL of THF. The solution was stirred for 5 h and then it was filtered through dry, activated 

basic alumina 58 Å (~3 g). The THF was removed by high vacuum (~3 mm Hg) inside the glove 

box and left for 5 h at which point the THF was removed yielding 4.2 g (74%) of tri-

isopropylphosphine as a colorless liquid. The spectra matched those previously reported by Olah 

and co-workers.130 

 
Experiment 50: Preparation of thallium hydroxide. 
 

 

 Thallium hydroxide was prepared by a modification of a procedure by Rolfe and co-workers 

as described below (52). A scintillation vial was charged with thallium formate (1.97 g, 8.0 mmol, 

1.0 equiv), water (2 mL) and a magnetic stir bar. Then 3 mL of a freshly prepared 10 M solution 

of NaOH (30 mmol, 8 equiv) was added via pipette. A bright yellow precipitate formed which was 

collected on a small Büchner funnel. The yellow solid was washed with ice water (2 mL) and 

collected to afford 0.4469 g (~24%). Using ICP analysis the Na+, and Tl+ content was found to be 

1.41% and 83.86% respectively which resulted in the molecular formula shown.   
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Experiment 51: Preparation of dibenzo-22-crown-6. 

 

Dibenzo-22-Crown-6 was prepared using a modified procedure by Weber and Ouchi (32). 

An oven-dried, 1-L, round-bottomed flask was charged with washed NaH (2.16 g, 88 mmol, 2.2 

equiv) in the glove box. The flask was capped with a septum and placed under argon. Then 300 

mL of toluene (SDS) was added followed by freshly distilled diethylene glycol (4.24 g, 40 mmol, 

1.0 equiv). The flask was then placed into an oil bath set to 60 °C and the solution was stirred for 

90 min. Then a solution of α,α-dibromo-ο-xylene (10.5 g, 40 mmol, 1.0 equiv) in 150 mL of 

toluene was added at once. The mixture was allowed to stir for 6 h. The flask was removed from 

the bath and was cooled in a saturated salt bath with an external temperature of 0 °C for 1 h.  The 

solids were removed by filtration through a Celite (5 g) plug followed by toluene removal under 

vacuum (30 mm Hg, 60 ºC). The remaining oil was purified by column chromatography on neutral 

alumina (160 g) by eluting with tetrahydrofuran. The fractions were combined and the solvent was 

removed by rotary-evaporation (30 mm Hg, 40 °C). The yellowish solid was placed under high 

vacuum overnight (3 mm Hg).  The following day the compound was distilled via Kugelrohr (1 × 

10−4 mm Hg, 250 ºC). A yellow, semi-solid material was collected (562 mg) and the material was 

dissolved in 5.6 mL of freshly distilled acetonitrile. The solution was placed at −20 °C for 6 h 

whereupon white crystals formed. The crystals were harvested while cold on a glass-fritted funnel 

and washed with freshly distilled pentane (3 × 5 mL). (The crystals are soluble at room temperature 

in CH3CN). The precipitate was then dried under high vacuum (3 mm Hg) at room temperature 

for 12 h to afford  (496 mg, 6%) white crystals. The spectral data for dibenzo-22-Crown-6  matched 

those previously reported by Weber and Ouchi. 
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CHAPTER 7: Experimental for Chapter 3 
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Experiment 52: Eyring analysis of cross-coupling formation from complex 71 in THF 

 
A 5-mL volumetric flask was charged with 4-fluorophenylboroxine (128 mg, 350 µmol, 

1.0 equiv) followed by H2O (19 µL, 1.05 mmol, 3.0 equiv). Then ~2 mL of THF was added 

followed by sonication until the solid had dissolved. Once dissolved the flask was filled to the 

mark with THF (SDS) generating a 0.21 M solution. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol, 1.0 equiv) and 1,4-difluorobenzene (2.5 µL, 24 µmol) 

followed by dissolving with THF (SDS) to the 2-mL mark. An oven dried, 5-mm, NMR tube was 

taken into the dry box and 500 µL of the freshly prepared solution was added. The tube was capped 

with a septum and Teflon taped. The sample was removed from the glove box and inserted into a 

−78 °C acetone dry-ice bath followed by the addition of (95 µL, 20.5 µmol, 2.0 equiv) of 4-

fluorophenylboronic acid Stock Sol. via a 100 µL glass syringe. The NMR tube was vortexed (not 

shaken), and cleaned with a Kimwipe then placed into the NMR probe set to −10, −20, −30 or −40 

°C.  

Using the fluorine channel to collect a spectrum every 37 or 162 s, the progress of the 

reaction was monitored by the decay of the 8-B-4 complex (−123.20 ppm) and formation of cross-

coupling product (−116.45 ppm) in comparison with the internal reference 1,4-difluorobenzene 

(−120.00 ppm). The first order decay and formation profiles were fitted with OrginPro 2015 

software using equation 4 and 5 respectively. This procedure was performed three times to obtain 

an average rate.131 Then using the Eyring equation 3 ∆G‡, ∆H‡, and ∆S‡ were calculated. 

Equation 4. 

𝐴 = [𝐴]3𝑒>?@ 
Equation 5. 

𝑃 = 𝐴 3(1 − 𝑒>?@) 
Equation 6. 
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Table 14.. Results from the cross-coupling reaction. 

Entry Temp.  
(K) 

k (s−1)  
(Decay 60) 

k (s−1)  
 (Form 53) 

A0 [mM]  
(Decay 71) 

A0 [mM]  
(Form 73) 

1 263.15 (7.26 ± 0.03) x 10−3 (4.64 ± 0.02) x 10−3 36.78 ± 1.27 25.51 ± 0.21  
2 263.15 (8.02 ± 0.02) x 10−3 (5.01 ± 0.02) x 10−3 31.98 ± 0.76 25.53 ± 0.18 
3 263.15 (8.99 ± 0.03) x 10−3 (4.29 ± 0.02) x 10−3 40.05 ± 0.98 27.75 ± 0.26 
4 253.15 (3.07 ± 0.05) x 10−3 (2.79 ± 0.02) x 10−3 22.09 ± 0.33 26.20 ± 0.33 
5 253.15 (2.44 ± 0.06) x 10−3 (2.45 ± 0.02) x 10−3 22.19 ± 0.51 24.91 ± 0.30 
6 253.15 (2.70 ± 0.08) x 10−3 (2.56± 0.02) x 10−3 20.71 ± 0.54 25.62 ± 0.33 
7 243.15 (8.24 ± 0.09) x 10−4 (6.47 ± 0.02) x 10−4 23.11 ± 0.20 21.34 ± 0.23 
8 243.15 (8.47 ± 0.02) x 10−4 (6.00 ± 0.02) x 10−4 21.94 ± 0.24 21.95 ± 0.30 
9 243.15 (6.06 ± 0.01) x 10−4 (4.85 ± 0.02) x 10−4 24.13 ± 0.29 21.49 ± 0.34 
10 233.15 (1.33 ± 0.03) x 10−4 (2.00 ± 0.04) x 10−4 21.49± 0.24 18.98 ± 0.16 
11 233.15 (1.59 ± 0.03) x 10−4 (1.67 ± 0.03) x 10−4 24.98 ± 0.33 21.21 ± 0.18 
12 233.15 (1.25 ± 0.01) x 10−4 (1.39 ± 0.03) x 10−4 26.27 ± 0.16 20.12 ± 0.18 
 
Table 15.. Averages of results from the cross-coupling reaction. 

Entry T (K) 
k (s−1)  

(Avg. decay 71) 
k (s−1)  

(Avg. form 73) 
1 263.15 (8.09 ± 0.86) x 10−3 (4.65 ± 0.36) x 10−3 
2 253.15 (2.74 ± 0.32) x 10−3 (2.60 ± 0.17) x 10−3 
3 243.15 (7.59 ± 0.58) x 10−4 (5.78 ± 0.13) x 10−4 
4 233.15 (1.39 ± 0.17) x 10−4 (1.68 ± 0.29) x 10−4 

 
Table 16. Data for Eyring analysis. 

Entry T (K) kavg-decay (s−1)  ln(k/T)  1/T 
1 263.15 (8.09 ± 0.86) x 10−3  −10.39 0.00380 
2 253.15 (2.74 ± 0.32) x 10−3  −11.43 0.00395 
3 243.15 (7.59 ± 0.58) x 10−4  −12.68 0.00411 
4 233.15 (1.39 ± 0.17) x 10−4  −14.33 0.00429 
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Figure 243. Eyring plot. 

 
Table 17. Results from Eyring analysis. 

Entry Value 
ΔG‡ 17.7 ± 1.1 (kcal/mol) at −30 °C 
ΔH‡ 15.98 ± 0.79 (kcal/mol) 
ΔS‡ −0.0069 ± 0.0032 (kcal/mol K) 

 

y = −(8065 ± 398)x + (20.3 ± 1.6)              
R² = 0.995 ± 0.145    
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Figure 244.Decay of complex 71 and formation of 73 at −10 °C (Run 1). 

 
Table 18. Data for the decay of complex 71 and formation of 73 at −10 °C (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

37 1524 1877 216 25.17 1.45 
74 1286 1509 738 23.98 5.87 
111 1264 1109 1237 17.95 10.01 
148 1277 873 1605 13.97 12.84 
185 1318 713 1925 11.06 14.93 
222 1255 391 2055 6.37 16.73 
259 1277 310 2341 4.96 18.73 
296 1274 206 2499 3.30 20.04 
333 1283 147 2515 2.35 20.04 
370 1295 66 2772 1.04 21.87 
407 1242 58 2831 0.96 23.30 
444 1289 23 2757 0.37 21.86 
481 1305 4 2905 0.07 22.74 
518 1299 -5 2847 -0.08 22.41 
555 1294 6 2886 0.10 22.80 
592 1261 16 2880 0.26 23.33 
629 1290 9 2874 0.15 22.78 
666 1214 8 3053 0.13 25.69 
703 1265 5 3011 0.08 24.32 
740 1292 6 2966 0.09 23.46 
777 1288 3 2980 0.05 23.64 
814 1222 1 3148 0.02 26.32 
851 1329 9 3061 0.14 23.55 
888 1259 2 3040 0.03 24.68 
925 1294 5 3187 0.07 25.17 
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Table 18. (cont.) 
 

962 1261 12 3147 0.19 25.50 
999 1290 7 3225 0.11 25.54 
1036 1287 -3 3202 -0.05 25.44 
1073 648 0 1564 0.00 24.66 
1110 1507 1 3699 0.01 25.09 
1147 1541 -3 3883 -0.03 25.76 
1184 1501 0 3751 -0.01 25.55 
1221 1485 0 3776 0.00 25.98 
1258 1552 1 3920 0.01 25.81 
1295 1534 14 3777 0.18 25.16 
1332 1539 0 3812 0.01 25.32 
1369 1535 3 3819 0.04 25.43 
1406 1480 1 3931 0.01 27.14 
1443 1565 15 3988 0.20 26.04 
1480 1540 20 3779 0.26 25.07 

 
 

 
Figure 245. Decay of complex 70 and formation of 73 at −10 °C (Run 2). 

 
Table 19. Data for the decay of complex 70 and formation of 73 at −10 °C (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

37 1523 1686 270 22.63 1.82 
74 1524 1340 950 17.97 6.37 
111 1506 1089 1564 14.79 10.62 
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Table 19. (cont.) 
 

148 1581 826 2119 10.68 13.70 
185 1499 561 2382 7.65 16.24 
222 1514 352 2658 4.75 17.94 
259 1513 273 2838 3.69 19.17 
296 1513 161 2909 2.18 19.66 
333 1517 109 3118 1.46 21.00 
370 1532 77 3233 1.03 21.57 
407 1502 35 3268 0.48 22.24 
444 1515 23 3365 0.32 22.69 
481 1508 20 3468 0.28 23.50 
518 1507 5 3460 0.07 23.46 
555 1552 8 3505 0.10 23.08 
592 1483 18 3505 0.24 24.16 
629 1390 2 3624 0.03 26.64 
666 1523 8 3574 0.11 23.99 
703 1561 2 3560 0.03 23.31 
740 1450 0 3619 -0.01 25.51 
777 1500 2 3609 0.03 24.59 
814 1489 3 3661 0.04 25.12 
851 1528 -1 3628 -0.01 24.26 
888 1486 2 3624 0.02 24.92 
925 1535 5 3751 0.07 24.98 
962 1515 1 3757 0.01 25.35 
999 1553 5 3689 0.07 24.28 
1036 1524 2 3735 0.03 25.04 
1073 1472 2 3743 0.03 25.99 
1110 1507 1 3699 0.01 25.09 
1147 1541 -3 3883 -0.03 25.76 
1184 1501 0 3751 -0.01 25.55 
1221 1485 0 3776 0.00 25.98 
1258 1552 1 3920 0.01 25.81 
1295 1534 14 3777 0.18 25.16 
1332 1539 0 3812 0.01 25.32 
1369 1535 3 3819 0.04 25.43 
1406 1480 1 3931 0.01 27.14 
1443 1565 15 3988 0.20 26.04 
1480 1540 20 3779 0.26 25.07 
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Figure 246. Decay of complex 70 and formation of 73 at −10 °C (Run 3). 

 
Table 20. Data for the decay of complex 71 and formation of 73 at −10 °C (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

37 1685 2230 164 27.05 0.99 
74 1502 1695 864 23.07 5.88 
111 1565 1133 1561 14.80 10.20 
148 1647 892 2093 11.07 12.99 
185 1691 650 2600 7.86 15.71 
222 1652 382 2837 4.73 17.55 
259 1482 281 3015 3.88 20.80 
296 1689 169 3115 2.04 18.85 
333 1570 121 3431 1.58 22.34 
370 1639 53 3504 0.66 21.85 
407 1579 13 3439 0.17 22.25 
444 1552 0 3510 0.00 23.11 
481 1546 5 3814 0.07 25.21 
518 1628 -1 3821 -0.02 23.99 
555 1564 -7 3963 -0.09 25.89 
592 1501 1 3948 0.01 26.89 
629 1537 -1 3995 -0.02 26.57 
666 1569 1 3990 0.01 25.99 
703 1535 -4 4007 -0.05 26.67 
740 1575 1 3986 0.01 25.86 
777 1518 -4 3982 -0.05 26.81 
814 1560 3 3763 0.04 24.65 
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Table 20. (cont.) 
851 1476 4 3840 0.06 26.59 
888 1544 0 3945 0.01 26.11 
925 1568 0 4172 0.00 27.19 
962 1528 -4 4061 -0.06 27.17 
999 1487 -1 4191 -0.02 28.81 
1036 1572 1 3804 0.01 24.73 
1073 1560 -1 4147 -0.01 27.17 
1110 1518 -1 3951 -0.02 26.60 
1147 1502 1 3950 0.01 26.88 
1184 1571 0 4282 0.00 27.86 
1221 1531 -1 4220 -0.01 28.17 
1258 1557 -1 4242 -0.02 27.85 
1295 1513 9 4239 0.13 28.63 
1332 1555 -4 4276 -0.05 28.11 
1369 1557 -1 4262 -0.02 27.97 
1406 1581 -1 4346 -0.01 28.10 
1443 1583 -1 4398 -0.02 28.40 
1480 1515 -1 4209 -0.02 28.40 

 
Figure 247. Decay of complex 71 and formation of 73 at −20 °C (Run 1). 

 
Table 21. Data for the decay of complex 71 and formation of 73 at −20 °C (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

162 847 1123 401 27.10 4.84 
324 1076 710 1233 13.48 11.71 
486 1103 430 1722 7.96 15.95 
648 1140 291 2152 5.22 19.29 
810 1103 160 2288 2.96 21.19 
972 1114 108 2417 1.98 22.17 
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Table 21. (cont.) 
 

1134 1121 60 2578 1.10 23.51 
1296 1102 31 2647 0.58 24.56 
1458 1084 19 2730 0.35 25.73 
1620 1103 2 2768 0.05 25.63 
1782 1129 2 2862 0.03 25.92 
1944 1069 0 2756 0.01 26.36 
2106 1083 9 2798 0.16 26.39 
2268 1096 2 2767 0.04 25.80 
2430 1088 2 2872 0.04 26.99 
2592 668 1 1772 0.04 27.11 

 
 

 
Figure 248. Decay of complex 71 and formation of 73 at −20 °C (Run 2). 
Table 22. Data for the decay of complex 70 and formation of 73 at −20 °C (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

162 987 1122 281 23.25 2.91 
324 970 726 957 15.30 10.09 
486 979 453 1388 9.45 14.49 
648 980 314 1626 6.55 16.96 
810 982 236 1813 4.90 18.87 
972 973 159 1986 3.34 20.86 
1134 975 106 2114 2.23 22.16 
1296 981 64 2200 1.34 22.93 
1458 983 51 2267 1.06 23.56 
1620 983 41 2313 0.85 24.05 
1782 982 16 2346 0.34 24.41 
1944 986 5 2376 0.11 24.63 
2106 975 5 2382 0.11 24.96 
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Table 22. (cont.) 
 

2268 980 3 2419 0.07 25.23 
2430 984 6 2428 0.12 25.21 
2592 975 2 2430 0.05 25.48 

 
 

 
Figure 249. Decay of complex 71 and formation of 73 at −20 °C (Run 3). 
Table 23. Data for the decay of complex 71 and formation of 73 at −20 °C (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

162 801 1253 358 31.95 4.56 
324 1209 796 1258 13.45 10.63 
486 1210 484 1794 8.17 15.16 
648 1195 351 2071 6.00 17.71 
810 1202 235 2371 4.00 20.17 
972 1185 128 2539 2.21 21.90 
1134 1175 86 2606 1.49 22.66 
1296 1170 44 2761 0.76 24.12 
1458 1195 23 2825 0.39 24.17 
1620 1180 9 2826 0.16 24.47 
1782 1170 3 2900 0.06 25.34 
1944 1198 2 2872 0.04 24.49 
2106 1155 4 2957 0.07 26.16 
2268 1179 3 2995 0.05 25.96 
2430 1182 4 3031 0.06 26.20 
2592 1158 4 3021 0.07 26.66 
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Figure 250. Decay of complex 71 and formation of 73 at −30 °C (Run 1). 
 
Table 24. Data for the decay of complex 71 and formation of 73 at −30 °C (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

162 4772 4605 653 19.72 1.40 
324 4695 4047 1502 17.62 3.27 
486 4656 3642 2405 15.99 5.28 
648 4853 3180 3315 13.39 6.98 
810 4692 2837 3997 12.36 8.71 
972 4676 2463 4683 10.77 10.23 
1134 4687 2125 5326 9.27 11.61 
1296 4720 1812 5860 7.85 12.69 
1458 4770 1535 6092 6.58 13.05 
1620 4795 1386 6413 5.91 13.67 
1782 4738 1255 6798 5.41 14.66 
1944 4657 1078 7122 4.73 15.63 
2106 4864 947 7563 3.98 15.89 
2268 4786 800 7565 3.42 16.15 
2430 4802 695 7878 2.96 16.77 
2592 4786 593 7964 2.53 17.01 
2754 4866 539 8305 2.26 17.44 
2916 4713 473 8483 2.05 18.39 
3078 4722 408 8531 1.76 18.46 
3240 4786 377 8677 1.61 18.53 
3402 4673 320 8804 1.40 19.26 
3564 4600 267 8954 1.19 19.89 
3726 4708 281 9106 1.22 19.77 
3888 4731 187 9166 0.81 19.80 
4050 4790 192 9076 0.82 19.36 
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Table 24. (cont.) 
 

4212 4789 211 9348 0.90 19.95 
4374 4742 151 9259 0.65 19.96 
4536 4714 92 9115 0.40 19.76 

 
 

 
Figure 251. Decay of complex 71 and formation of 73 at −30 °C (Run 2). 

 
Table 25. Data for the decay of complex 71 and formation of 73 at −30 °C (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

162 4621 4373 479 19.34 1.06 
324 4606 3587 1305 15.92 2.90 
486 4579 3236 2176 14.44 4.86 
648 4625 2837 2990 12.54 6.61 
810 4527 2531 3639 11.43 8.21 
972 4446 2207 4342 10.14 9.98 
1134 4546 1949 4800 8.76 10.79 
1296 4519 1723 5284 7.79 11.95 
1458 4672 1436 5800 6.28 12.69 
1620 4521 1266 6196 5.72 14.01 
1782 4633 1054 6633 4.65 14.63 
1944 4580 907 6957 4.05 15.52 
2106 4575 812 7250 3.63 16.19 
2268 4579 725 7298 3.24 16.29 
2430 4484 598 7769 2.73 17.71 
2592 4662 535 7970 2.35 17.47 
2754 4534 464 8011 2.09 18.06 
2916 4687 400 8122 1.75 17.71 
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Table 25. (cont.) 
 

3078 4545 331 8016 1.49 18.03 
3240 4505 285 8337 1.29 18.92 
3402 4620 209 8401 0.92 18.58 
3564 4515 208 8638 0.94 19.55 
3726 4599 146 8853 0.65 19.68 
3888 4620 153 8768 0.68 19.39 
4050 4554 134 8968 0.60 20.13 
4212 4539 99 9031 0.45 20.33 
4374 4537 68 8991 0.31 20.25 
4536 4562 53 9047 0.24 20.27 

 
 

 
Figure 252. Decay of complex 71 and formation of 73 at −30 °C (Run 3). 

 
Table 26. Data for the decay of complex 71 and formation of 73 at −30 °C (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

162 4662 4875 416 21.37 0.91 
324 4647 4428 1043 19.48 2.29 
486 4520 4159 1743 18.81 3.94 
648 4645 3736 2452 16.44 5.39 
810 4508 3378 3040 15.32 6.89 
972 4480 3102 3564 14.15 8.13 
1134 4684 2739 4086 11.95 8.91 
1296 4573 2497 4520 11.16 10.10 
1458 4633 2170 5034 9.57 11.10 
1620 4644 1886 5361 8.30 11.80 
1782 4586 1705 5800 7.60 12.92 
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Table 26. (cont.) 
 

1944 4648 1569 6068 6.90 13.34 
2106 4596 1434 6239 6.38 13.87 
2268 4555 1359 6649 6.10 14.92 
2430 4582 1206 6762 5.38 15.08 
2592 4475 1083 6745 4.95 15.41 
2754 4590 974 7117 4.34 15.85 
2916 4676 956 7234 4.18 15.81 
3078 4485 856 7369 3.90 16.79 
3240 4686 811 7588 3.54 16.55 
3402 4553 728 7806 3.27 17.52 
3564 4570 622 8093 2.78 18.10 
3726 4590 647 8029 2.88 17.88 
3888 4623 606 8045 2.68 17.79 
4050 4593 531 8211 2.36 18.27 
4212 4623 448 8408 1.98 18.59 
4374 4500 451 8429 2.05 19.14 
4536 4509 409 8432 1.85 19.11 

 
 

 
Figure 253. Decay of complex 71 and formation of 73 at −40 °C (Run 1). 
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Table 27. Data for the decay of complex 71 and formation of 73 at −40 °C (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

162 1276 1474 38 23.61 0.30 
324 1245 1307 95 21.46 0.78 
486 1237 1292 146 21.35 1.20 
648 1213 1201 198 20.23 1.67 
810 1208 1118 248 18.91 2.09 
972 1220 1104 312 18.49 2.61 
1134 1216 1097 373 18.44 3.14 
1296 1222 1062 429 17.77 3.59 
1458 1234 1039 493 17.20 4.08 
1620 1217 1014 569 17.04 4.78 
1782 1172 997 617 17.38 5.38 
1944 1143 979 693 17.50 6.19 
2106 1149 936 747 16.65 6.64 
2268 1134 927 772 16.70 6.96 
2430 1188 895 840 15.39 7.22 
2592 1156 866 865 15.31 7.65 
2754 1216 860 903 14.46 7.59 
2916 1201 847 979 14.40 8.33 
3078 1185 831 1060 14.32 9.14 
3240 1199 726 1089 12.38 9.29 
3402 1194 806 1121 13.81 9.60 
3564 1181 759 1128 13.14 9.76 
3726 1170 744 1146 12.99 10.01 
3888 1235 740 1228 12.26 10.17 
4050 1212 671 1307 11.31 11.02 
4212 1201 738 1303 12.57 11.09 
4374 1184 714 1376 12.32 11.88 
4536 1218 591 1408 9.91 11.81 
4698 1264 659 1368 10.66 11.06 
4860 1200 645 1455 10.98 12.39 
5022 1225 571 1399 9.53 11.67 
5184 1262 574 1485 9.29 12.02 
5346 1198 632 1532 10.79 13.07 
5508 1279 597 1512 9.54 12.08 
5670 1251 589 1555 9.62 12.70 
5832 1255 603 1610 9.82 13.11 
5994 1239 571 1589 9.42 13.11 
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Table 27. (cont.) 
 

6156 1236 572 1575 9.46 13.02 
6318 1225 495 1668 8.25 13.92 
6480 1241 479 1712 7.89 14.10 
6642 1200 508 1739 8.66 14.81 
6804 1221 477 1750 7.98 14.65 
6966 1268 510 1746 8.22 14.07 
7128 1180 446 1670 7.73 14.46 
7290 1244 505 1787 8.29 14.68 
7452 1266 442 1808 7.14 14.60 
7614 1264 425 1776 6.87 14.36 
7776 1233 449 1877 7.45 15.56 
7938 1273 507 1813 8.14 14.55 
8100 1250 399 1804 6.52 14.76 
8262 1248 409 1888 6.70 15.46 
8424 1241 461 1860 7.59 15.31 
8586 1277 446 1928 7.15 15.43 
8748 1212 429 1924 7.24 16.22 
8910 1173 388 1843 6.76 16.05 
9072 1259 371 2002 6.02 16.25 
9234 1215 387 1941 6.51 16.33 
9396 1230 365 2007 6.06 16.67 
9558 1231 355 1958 5.89 16.26 
9720 1263 412 2018 6.67 16.33 
9882 1246 336 2022 5.52 16.59 
10044 1266 360 1990 5.80 16.06 
10206 1254 338 1986 5.50 16.18 
10368 1246 345 1967 5.66 16.13 
10530 1249 337 1992 5.52 16.30 
10692 1264 322 2017 5.20 16.30 
10854 1265 329 2054 5.32 16.60 
11016 1230 310 1979 5.15 16.45 
11178 1273 316 2015 5.07 16.18 
11340 1198 319 2102 5.43 17.93 
11502 1244 303 2035 4.98 16.72 
11664 1256 305 2133 4.96 17.35 
11826 1245 314 2125 5.16 17.45 
11988 1232 269 2103 4.47 17.44 
12150 1228 317 2106 5.28 17.53 
12312 1230 272 2148 4.51 17.85 
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Table 27 (cont.) 
 

12798 1265 290 2154 4.68 17.41 
12960 1248 281 2141 4.60 17.53 
13122 1261 292 2122 4.74 17.20 
13284 1260 336 2128 5.46 17.26 
13446 1241 267 2136 4.39 17.59 
13608 1251 252 2064 4.12 16.87 
13770 1225 262 2137 4.37 17.82 
13932 1265 239 2132 3.87 17.23 
14094 1273 242 2198 3.88 17.65 
14256 1220 222 2211 3.71 18.53 
14418 1236 271 2221 4.48 18.36 

 
 

 
Figure 254. Decay of complex 71 and formation of 73 at −40 °C (Run 2). 

 
Table 28. Data for the decay of complex 71 and formation of 73 at −40 °C (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

162 1065 1482 38 28.46 0.37 
324 1114 1407 85 25.82 0.78 
486 1178 1355 135 23.52 1.17 
648 1212 1312 173 22.13 1.46 
810 1179 1315 212 22.81 1.84 
972 1186 1333 251 22.97 2.17 
1134 1144 1103 318 19.69 2.84 
1296 1176 1064 372 18.49 3.23 
1458 1160 1183 447 20.85 3.94 
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Table 28. (cont.) 
1620 1148 1033 508 18.40 4.52 
1782 1157 967 563 17.09 4.97 
1944 1158 1082 625 19.10 5.51 
2106 1148 925 688 16.47 6.12 
2268 1138 998 741 17.93 6.66 
2430 1206 988 794 16.75 6.73 
2592 1160 905 846 15.95 7.46 
2754 1154 934 892 16.54 7.90 
2916 1167 909 944 15.94 8.27 
3078 1143 889 1002 15.90 8.96 
3240 1147 814 1045 14.51 9.31 
3402 1168 790 1087 13.82 9.51 
3564 1174 794 1081 13.82 9.41 
3726 1161 745 1107 13.12 9.75 
3888 1155 687 1167 12.15 10.32 
4050 1157 688 1179 12.15 10.41 
4212 1146 675 1240 12.04 11.06 
4374 1150 658 1273 11.69 11.31 
4536 1157 645 1306 11.39 11.54 
4698 1156 625 1326 11.06 11.73 
4860 1162 623 1323 10.95 11.63 
5022 1158 586 1370 10.34 12.09 
5184 1116 575 1424 10.53 13.05 
5346 1156 571 1460 10.10 12.91 
5508 1160 553 1441 9.74 12.69 
5670 1150 538 1500 9.57 13.33 
5832 1174 510 1538 8.88 13.40 
5994 1148 520 1557 9.25 13.86 
6156 1177 491 1605 8.52 13.93 
6318 1173 496 1621 8.64 14.13 
6480 1168 477 1631 8.35 14.27 
6642 1188 448 1638 7.71 14.09 
6804 1187 434 1679 7.47 14.46 
6966 1175 441 1668 7.67 14.50 
7128 1193 435 1713 7.46 14.67 
7290 1168 422 1732 7.38 15.15 
7452 1174 403 1765 7.01 15.36 
7614 1185 412 1728 7.10 14.90 
7776 1170 386 1827 6.74 15.96 
7938 1175 379 1767 6.60 15.37 
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Table 28. (cont.) 
8100 1175 372 1773 6.48 15.42 
8262 1175 364 1841 6.33 16.01 
8424 1141 364 1819 6.53 16.30 
8586 1144 350 1777 6.26 15.87 
8748 1158 370 1847 6.54 16.31 
8910 1157 341 1791 6.02 15.82 
9072 1147 342 1873 6.10 16.69 
9234 1143 328 1854 5.87 16.58 
9396 1134 324 1890 5.85 17.03 
9558 1189 312 1918 5.36 16.48 
9720 1153 309 1940 5.47 17.20 
9882 1164 317 1950 5.56 17.12 
10044 1179 285 1909 4.94 16.55 
10206 1185 293 1953 5.05 16.84 
10368 1176 303 1967 5.26 17.09 
10530 1142 286 2006 5.12 17.96 
10692 1152 278 1978 4.93 17.55 
10854 1177 288 2037 5.01 17.69 
11016 1179 275 1995 4.77 17.29 
11178 1151 278 1988 4.93 17.65 
11340 1158 293 1998 5.18 17.64 
11502 1178 276 2047 4.79 17.76 
11664 1134 279 2040 5.02 18.39 
11826 1117 261 2056 4.77 18.82 
11988 1170 253 2057 4.42 17.97 
12150 1151 250 1998 4.45 17.74 
12312 1156 249 2091 4.40 18.49 
12474 1155 246 2094 4.36 18.52 
12636 1140 252 2058 4.52 18.44 
12798 1148 232 2095 4.14 18.66 
12960 1136 237 2120 4.26 19.06 
13122 1135 240 2074 4.33 18.67 
13284 1140 229 2073 4.10 18.59 
13446 1143 247 2110 4.42 18.86 
13608 1127 230 2140 4.18 19.41 
13770 1156 215 2140 3.80 18.92 
13932 1127 230 2101 4.16 19.06 
14094 1151 228 2211 4.05 19.64 
14256 1136 241 2146 4.33 19.31 
14418 560 103 1116 3.76 20.38 
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Figure 255. Decay of complex 71 and formation of 73 at −40 °C (Run 3). 

 
Table 29. Data for the decay of complex 71 and formation of 73 at −40 °C (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

162 1328 1642 28 25.27 0.21 
324 1284 1627 68 25.88 0.54 
486 1303 1562 111 24.50 0.87 
648 1274 1410 148 22.61 1.18 
810 1258 1492 203 24.25 1.65 
972 1292 1455 262 23.02 2.08 
1134 1289 1434 286 22.73 2.26 
1296 1281 1479 366 23.60 2.92 
1458 1325 1375 396 21.21 3.05 
1620 1296 1420 469 22.40 3.69 
1782 1300 1356 504 21.33 3.96 
1944 1261 1322 551 21.44 4.46 
2106 1290 1281 613 20.30 4.85 
2268 1284 1288 665 20.51 5.29 
2430 1299 1311 704 20.63 5.54 
2592 1300 1192 742 18.75 5.83 
2754 1305 1175 817 18.41 6.40 
2916 1300 1187 825 18.65 6.49 
3078 1298 1125 866 17.72 6.82 
3240 1305 1096 928 17.16 7.27 
3402 1280 1081 934 17.27 7.46 
3564 1283 1084 981 17.27 7.82 
3726 1290 1065 1023 16.86 8.11 
3888 1280 1017 1063 16.24 8.49 
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Table 29. (cont.) 
4050 1279 987 1089 15.78 8.70 
4212 1258 974 1123 15.82 9.12 
4374 1280 917 1177 14.65 9.40 
4536 1298 921 1197 14.50 9.43 
4698 1287 914 1249 14.52 9.92 
4860 1257 857 1291 13.94 10.50 
5022 1308 885 1285 13.83 10.04 
5184 1321 826 1325 12.78 10.26 
5346 1288 826 1334 13.10 10.59 
5508 1296 828 1370 13.05 10.80 
5670 1302 803 1381 12.60 10.84 
5832 1296 783 1441 12.35 11.36 
5994 1305 777 1481 12.17 11.60 
6156 1283 727 1507 11.58 12.00 
6318 1298 735 1482 11.58 11.66 
6480 1302 712 1538 11.17 12.08 
6642 1289 708 1534 11.23 12.16 
6804 1269 685 1556 11.03 12.53 
6966 1270 658 1616 10.59 13.00 
7128 1276 663 1639 10.63 13.13 
7290 1277 645 1629 10.32 13.03 
7452 1256 644 1624 10.48 13.22 
7614 1305 609 1680 9.53 13.15 
7776 1292 584 1693 9.23 13.39 
7938 1265 581 1721 9.40 13.90 
8100 1268 585 1724 9.44 13.90 
8262 1286 561 1739 8.92 13.81 
8424 1266 583 1755 9.42 14.17 
8586 1288 552 1802 8.75 14.29 
8748 1289 558 1788 8.84 14.17 
8910 1283 519 1780 8.27 14.19 
9072 1318 530 1838 8.21 14.25 
9234 1275 489 1837 7.84 14.73 
9396 1278 508 1845 8.13 14.75 
9558 1286 502 1855 7.97 14.74 
9720 1273 534 1873 8.57 15.05 
9882 1305 471 1909 7.38 14.95 
10044 1273 532 1914 8.54 15.37 
10206 1303 445 1941 6.98 15.23 
10368 1301 439 1899 6.90 14.92 
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Table 29. (cont.) 
10530 1294 465 1950 7.34 15.40 
10692 1295 449 1967 7.08 15.52 
10854 1298 433 1961 6.82 15.44 
11016 1275 412 2010 6.60 16.11 
11178 1299 390 2015 6.13 15.85 
11340 1249 397 1991 6.49 16.29 
11502 1267 403 1982 6.51 15.99 
11664 1282 384 2010 6.12 16.02 
11826 1262 425 1999 6.88 16.19 
11988 1290 377 1996 5.98 15.82 
12150 1301 354 2061 5.57 16.19 
12312 1318 359 2054 5.58 15.93 
12474 1280 346 2092 5.53 16.70 
12636 1270 412 2104 6.63 16.94 
12798 1263 330 2048 5.34 16.57 
12960 1286 340 2124 5.41 16.88 
13122 1269 338 2046 5.44 16.48 
13284 1283 339 2085 5.40 16.62 
13446 1284 380 2100 6.04 16.71 
13608 1279 316 2144 5.06 17.13 
13770 1263 296 2149 4.79 17.40 
13932 1270 325 2180 5.23 17.55 
14094 1289 308 2113 4.89 16.76 
14256 1269 291 2168 4.69 17.46 
14418 1252 275 2176 4.49 17.76 
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Experiment 53: Kinetic Measurements for decay of 8-B-4 Ph3P complex 107 in THF/CH3OH 

at –30 °C 

 
A 1-mL volumetric flask was charged with 4-fluorophenylboroxine (77.0 mg, 210 µmol) 

followed by H2O (11 µL, 3.0 equiv, 631 µmol). Then ~0.5 mL of THF (SDS) was added and 

sonicated until the solid had dissolved. Once dissolved the flask was filled to the mark with THF 

(SDS) generating a 0.63 M solution of 4-fluorophenylboronic acid. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Ph3P)Pd(4-

FC6H4)(µ-OH)]2 (39.1 mg, 41 µmol) and 1,4-difluorobenzene (2.5 µL, 24 µmol) followed by 

dissolving with THF (SDS) to the 2-mL mark. An oven dried, 5-mm, NMR tube was taken into 

the dry box and 500 µL of the freshly prepared solution was added. The tube was capped with a 

septum and Teflon taped. The sample was removed from the glove box and inserted into a −78 °C 

acetone dry-ice bath followed by the addition of the 4-fluorophenylboronic acid solution (35 µL, 

20.5 µmol, 2.0 equiv) via a 100 µL glass syringe. The NMR tube was vortexed (not shaken) and 

cleaned with a Kimwipe followed by re-insertion into the −78 °C bath. Then 60 µL of CH3OH 

(Mg) was added via syringe and the tube was vortexed (not shaken) and placed into the NMR 

probe set to −55 °C. The formation of the 8-B-4 species was observed after ~10-15 min. The tube 

was removed and placed back into the −78 °C followed by re-insertion into the NMR probe set to 

−30 °C. 

Using the fluorine channel to collect a spectrum every 37 s the progress of the reaction was 

monitored by the decay of the 8-B-4 complex (−118.19 ppm) and formation of cross-coupling 

product (−116.45 ppm) in comparison with the internal reference 1,4-difluorobenzene (−120.00 

ppm). The first order decay and formation profiles were fitted with OrginPro 2015 software using 

equations 3 and 4 respectively. This procedure was performed three times to obtain an average 

rate. 

  

Pd
Ph3P O

H

F

−30 °C
THF

F

F−78 °C →  −30 °C

2.0 equiv

    1,4-Difluorobenzene, 10.22 mM

Internal Standard

B(OH)2

F Pd OF

Ph3P

BO F

CH3

OCH3H

THF, CH3OH
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Table 30. Results from the cross-coupling reaction. 

Entry k (s−1) 
(Decay 8-B-4) 

k (s−1) 
(Form CCP) 

A0 [mM] 
(Decay 8-B-4) 

A0 [mM] 
(Form CCP) 

Run 1 (6.97 ± 0.11) x 10−3 (7.17 ± 0.38) x 10−3 38.38 ± 0.48 35.17 ± 0.48 
Run 2 (6.34 ± 0.19) x 10−3 (7.32 ± 0.62) x 10−3 30.45 ± 0.72 34.38 ± 0.75 
Run 3 (6.59 ± 0.23) x 10−3 (7.86 ± 0.54) x 10−3 38.03 ± 1.04 38.25 ± 0.64 

k avg. Decay of 8-B-4 = (6.63 ± 0.32) x 10−3 s−1 

k avg. Formation of CCP = (7.45 ± 0.36) x 10−3 s−1 

 

 
Figure 256. Formation of cross-coupled product from 107 (Run 1).  

 
 

Table 31. Data for formation of cross-coupled product from 107 (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−118.19 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

37 1432 2064 1045 29.47 7.46 
74 1410 1596 1865 23.13 13.52 
111 1390 1247 2653 18.34 19.51 
148 1424 933 3236 13.39 23.23 
185 1486 743 3557 10.22 24.46 
222 1451 534 4019 7.52 28.31 
259 1442 429 4296 6.08 30.45 
296 1571 367 4678 4.78 30.43 
333 1538 296 4760 3.93 31.63 
370 1488 221 4960 3.03 34.06 
407 1521 191 5046 2.56 33.91 
444 1514 131 5244 1.77 35.39 
481 1541 104 5365 1.38 35.59 
518 1574 115 5282 1.49 34.30 



 
 

372 

Table 31. (cont.) 
 

555 1578 81 5403 1.05 35.00 
592 1575 99 5389 1.28 34.97 
629 1565 46 5160 0.61 33.69 
666 1613 39 5447 0.50 34.51 
703 1632 50 5057 0.62 31.67 

 
 

 
Figure 257. Formation of cross-coupled product from 107 (Run 2).  

 
Table 32. Data for formation of cross-coupled product from 107 (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−118.19 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

37 1571 1868 1195 24.31 7.78 
74 1570 1459 2139 19.00 13.92 
111 1582 1133 2842 14.64 18.35 
148 1572 894 3392 11.62 22.05 
185 1623 700 3799 8.82 23.93 
222 1243 571 4111 9.38 33.79 
259 1573 424 4408 5.51 28.63 
296 1584 369 4601 4.76 29.68 
333 1549 277 4720 3.66 31.15 
370 1574 238 4909 3.09 31.86 
407 1635 206 4884 2.57 30.53 
444 1647 89 5085 1.10 31.56 
481 1491 129 5279 1.77 36.18 
518 1592 65 5267 0.83 33.81 
555 1632 51 5282 0.64 33.09 
592 1655 34 5324 0.42 32.89 
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Table 32. (cont.) 
629 1562 26 5399 0.35 35.32 
666 1607 31 5390 0.39 34.29 
703 1631 25 5399 0.31 33.84 

 

 
Figure 258. Formation of cross-coupled product from 107 (Run 3).  

 
Table 33. Data for formation of cross-coupled product from 107 (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−118.19 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

37 1142 1746 971 31.25 8.69 
74 1113 1241 1772 22.80 16.27 
111 1173 966 2417 16.83 21.06 
148 1179 792 2741 13.73 23.75 
185 1062 563 3319 10.84 31.96 
222 1061 418 3405 8.05 32.79 
259 1068 397 3630 7.60 34.75 
296 1079 303 3752 5.73 35.55 
333 1140 231 3637 4.14 32.61 
370 1133 219 3931 3.95 35.44 
407 1093 198 4253 3.70 39.77 
444 1105 146 4131 2.69 38.22 
481 1106 150 4162 2.78 38.45 
518 1201 103 4390 1.75 37.36 
555 1110 32 4179 0.60 38.47 
592 1115 72 4127 1.33 37.81 
629 1159 77 4216 1.36 37.17 
666 1178 36 4214 0.62 36.55 
703 1204 39 4229 0.66 35.89 
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Experiment 54: Kinetic Measurements for decay of 8-B-4 Ph3P complex 89 in THF at –10 °C 

 
A 5-mL volumetric flask was charged with 4-fluorophenylboroxine (128 mg, 350 µmol) 

followed by H2O (19 µL, 3.0 equiv, 1.05 mmol). Then ~2 mL of THF was added followed by 

sonication until the solid had dissolved. Once dissolved the flask was filled to the mark with THF 

(SDS) generating a 0.21 M solution. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Ph3P)Pd(4-

FC6H4)(µ-OH)]2 (39.1 mg, 41 µmol) and 1,4-difluorobenzene (2.5 µL, 24 µmol) followed by 

dissolving with THF (SDS) to the 2-mL mark. An oven dried, 5-mm, NMR tube was taken into 

the dry box and 500 µL of the freshly prepared solution was added. The tube was capped with a 

septum and Teflon taped. The sample was removed from the glove box and inserted into a −78 °C 

acetone dry-ice bath followed by the addition of (95 µL, 20.5 µmol, 1.0 equiv) of 4-

fluorophenylboronic acid Stock Sol. via a 100 µL glass syringe. The NMR tube was vortexed (not 

shaken), and cleaned with a Kimwipe then placed into the NMR probe set to −10°C.  

Using the fluorine channel to collect a spectrum every 25 s the progress of the reaction was 

monitored by the decay of the 8-B-4 complex (−123.28 ppm) and formation of cross-coupling 

product (−116.45 ppm) in comparison with the internal reference 1,4-difluorobenzene (−120.00 

ppm). The first order decay and formation profiles were fitted with OrginPro 2015 software using 

equations 3 and 4 respectively. This procedure was performed three times to obtain an average 

rate. 
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H
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F
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2.0 equiv
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Table 34. Results from the cross-coupling reaction. 

Entry k (s−1) 
(Decay 89) 

k (s−1) 
(Form 73) 

A0 [mM] 
(Decay 89) 

A0 [mM] 
(Form 73) 

Run 1 (1.02 ± 0.05) x 10−2 (1.04 ± 0.06) x 10−2 25.44 ± 0.97 28.65 ± 0.66 
Run 2 (9.14 ± 0.34) x 10−3 (1.07 ± 0.13) x 10−2 23.77 ± 0.68 27.14 ± 1.10 
Run 3 (1.05 ± 0.63) x 10−2 (1.08 ± 0.75) x 10−2 23.92 ± 1.15 27.81 ± 2.64 

k avg. Decay of 8-B-4 complex 73 = (9.95 ± 0.71) x 10−3 s−1 

k avg. Formation of CCP 53 = (1.06 ± 0.02) x 10−2 s−1 

 

 
Figure 259. Decay of complex 89 and formation of 73 (Run 1).  
Table 35. Data for the decay of complex 89 and formation of 73 (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.28 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

25 535 523 431 19.99 8.22 
50 533 380 608 14.57 11.66 
75 521 282 814 11.08 15.98 
100 528 265 957 10.26 18.52 
125 529 202 1023 7.79 19.78 
150 519 144 1172 5.68 23.07 
175 513 119 1196 4.74 23.84 
200 543 84 1279 3.16 24.08 
225 543 65 1368 2.45 25.77 
250 542 49 1377 1.83 25.97 
275 523 5 1400 0.18 27.38 
300 539 29 1454 1.11 27.57 
325 553 3 1551 0.11 28.68 
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Figure 260. Decay of complex 89 and formation of 73 (Run 2). 

 
Table 36. Data for the decay of complex 89 and formation of 73 (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.28 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

25 547 510 423 19.05 7.90 
50 533 383 644 14.70 12.36 
75 535 321 762 12.27 14.55 
100 547 239 961 8.92 17.96 
125 538 204 1019 7.76 19.34 
150 532 158 1107 6.09 21.28 
175 529 149 1132 5.77 21.90 
200 549 107 1160 3.99 21.59 
225 522 81 1417 3.18 27.72 
250 581 66 1472 2.34 25.90 
275 556 54 1291 1.97 23.73 
300 526 23 1430 0.89 27.78 
325 535 3 1373 0.13 26.23 
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Figure 261. Decay of complex 89 and formation of 73 (Run 3). 

 
Table 37. Data for the decay of complex 89and formation of 73 (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.28 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

25 538 493 458 18.72 8.71 
50 534 367 624 14.05 11.96 
75 533 249 816 9.56 15.65 
100 534 234 952 8.94 18.21 
125 549 174 1094 6.49 20.35 
150 547 167 1125 6.24 21.01 
175 552 128 1246 4.74 23.06 
200 535 83 1236 3.18 23.63 
225 547 55 1341 2.06 25.04 
250 551 47 1425 1.74 26.44 
275 535 3 1427 0.13 27.26 
300 532 3 1432 0.11 27.52 
325 566 1 1486 0.03 26.85 
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Experiment 55: Kinetic measurement for decay of 8-B-4 DPPF complex 111 in THF at –10 

°C                   

 
A 5-mL volumetric flask was charged with 4-fluorophenylboroxine (128 mg, 350 µmol, 

1.0 equiv) followed by H2O (19 µL, 1.05 mmol, 3.0 equiv). Then ~2 mL of THF was added 

followed by sonication until the solid had dissolved. Once dissolved the flask was filled to the 

mark with THF (SDS) generating a 0.21 M solution. 

A 2-mL volumetric flask was taken into the dry box and charged with (dppf)Pd(4-

FC6H4)(OH) (62 mg, 80.3 µmol, 1.0 equiv) and 1,4-difluorobenzene (2.5 µL, 24 µmol) followed 

by dissolving with THF (SDS) to the 2-mL mark. An oven dried, 5-mm, NMR tube was taken into 

the dry box and 500 µL of the freshly prepared solution was added. The tube was capped with a 

septum and Teflon taped. The sample was removed from the glove box and inserted into a −78 °C 

acetone dry-ice bath followed by the addition of (95 µL, 20.5 µmol, 1.0 equiv) of 4-

fluorophenylboronic acid Stock Sol. via a 100 µL glass syringe. The NMR tube was vortexed (not 

shaken), and cleaned with a Kimwipe then placed into the NMR probe set to −10°C.  

Using the fluorine channel to collect a spectrum every 37 or 100 s, the progress of the 

reaction was monitored by the decay of the 8-B-4 complex (−122.35 ppm) in comparison with the 

internal reference 1,4-difluorobenzene (−120.00 ppm). [The cross-coupling product could not be 

monitored due to the 8-B-4 fluorine signal overlapping.] The first order decay profile was fitted 

with OrginPro 2015 software using equation 3. This procedure was performed three times to obtain 

an average rate.131 

 
 
Table 38. Results from the cross-coupling reaction. 

Entry k (s−1)  
(Decay 8-B-4) 

A0 [mM]  
(Form CCP) 

Run 1 (2.7 ± 0.2) x 10−3 27.98 ± 1.5 
Run 2 (2.78 ± 0.09) x 10−3 31.03 ± 0.72 
Run 3 (2.78 ± 0.08) x 10−3 30.32 ± 0.63 

k avg. Decay of 8-B-4 = (2.75 ± 0.05) x 10−3 s−1 
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Figure 262. Decay of complex 111 (Run 1). 

 
Table 39. Data for the decay of complex 111 (Run 1). 

 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8B4  

(−117.36 ppm) 
[mM]  
8-B-4 

100 2416 2427 20.53 
200 2427 1920 16.17 
300 2350 1501 13.05 
400 2361 1258 10.89 
500 2289 945 8.44 
600 2373 691 5.95 
700 2416 458 3.87 
800 2437 300 2.52 
900 2497 182 1.49 
1000 2483 85 0.70 
1100 2436 11 0.10 
1200 321 -2 -0.15 
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Figure 263. Decay of complex 111 (Run 2). 

 
Table 40. Data for the decay of complex 111 (Run 2). 

 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8B4  

(−117.36 ppm) 
[mM]  
8-B-4 

37 902 1225 27.75 
74 916 1104 24.64 
111 925 966 21.35 
148 903 874 19.79 
185 932 814 17.85 
222 847 753 18.17 
259 935 694 15.18 
296 908 640 14.40 
333 850 593 14.27 
370 888 525 12.09 
407 868 482 11.36 
444 934 448 9.82 
481 936 414 9.04 
518 865 363 8.57 
555 913 326 7.30 
592 850 284 6.82 
629 948 252 5.44 
666 903 219 4.95 
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Table 40. (cont.) 
 

703 896 188 4.29 
740 936 179 3.91 
777 937 140 3.05 
814 906 102 2.29 
851 947 85 1.83 
888 920 74 1.64 
925 951 49 1.05 
962 891 44 1.00 
999 930 46 1.01 
1036 929 31 0.68 
1073 930 12 0.26 
1110 935 -2 -0.04 
1147 932 -7 -0.15 
1184 929 -4 -0.09 
1221 942 -1 -0.02 
1258 948 -4 -0.08 
1295 871 -3 -0.07 
1332 878 -4 -0.10 
1369 838 -7 -0.17 
1406 966 -4 -0.08 
1443 861 -6 -0.14 

 
 

 
Figure 264. Decay of complex 111 (Run 3). 
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Table 41. Data for the decay of complex 72 (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8B4  

(−117.36 ppm) 
[mM]  
8-B-4 

37 902 1225 26.65 
74 916 1104 23.71 
111 925 966 22.14 
148 903 874 20.46 
185 932 814 18.13 
222 847 753 15.82 
259 935 694 14.93 
296 908 640 13.71 
333 850 593 12.41 
370 888 525 11.84 
407 868 482 11.36 
444 934 448 10.87 
481 936 414 8.61 
518 865 363 7.80 
555 913 326 7.38 
592 850 284 6.19 
629 948 252 5.60 
666 903 219 4.67 
703 896 188 4.03 
740 936 179 3.55 
777 937 140 3.08 
814 906 102 2.49 
851 947 85 2.57 
888 920 74 1.71 
925 951 49 1.34 
962 891 44 1.10 
999 930 46 0.69 
1036 929 31 0.54 
1073 930 12 0.59 
1110 935 -2 0.20 
1147 932 -7 -0.04 
1184 929 -4 -0.13 
1221 942 -1 -0.10 
1258 948 -4 -0.02 
1295 871 -3 -0.05 
1332 878 -4 -0.08 
1369 838 -7 -0.15 
1406 966 -4 -0.14 
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Experiment 56: Kinetic Measurement for decay of 8-B-4 complex 105 in THF/CH3OH at –

30 °C. 

 

 
A 1-mL volumetric flask was charged with 4-fluorophenylboroxine (77.0 mg, 210 µmol, 

1.0 equiv) followed by DI-H2O (11 µL, 631 µmol, 3.0 equiv). Then ~0.5 mL of THF (SDS) was 

added followed by sonication until the solid had dissolved. Once dissolved the flask was filled to 

the mark with THF (SDS) generating a 0.63 M solution of 4-fluorophenylboronic acid. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol, 1.0 equiv) and 1,4-difluorobenzene (2.5 µL, 24 µmol) 

followed by dissolving with THF (SDS) to the 2-mL mark. An oven dried, 5-mm NMR tube was 

taken into the dry box and 500 µL of the freshly prepared solution was added. The tube was capped 

with a septum and Teflon taped. The sample was removed from the glove box and inserted into a 

−78 °C acetone dry-ice bath followed by the addition of (35 µL, 20.5 µmol, 2.0 equiv) of the 4-

fluorophenylboronic acid solution via a µL glass syringe. The NMR tube was vortexed (not 

shaken) and cleaned with a Kimwipe followed by re-insertion into the −78 °C bath. Then 60 µL 

of CH3OH (Mg) was added via syringe and the tube was vortexed (not shaken) followed by 

placement into the NMR probe set to −55 °C. The formation of the 8-B-4 species was observed 

after ~10-15 min. The tube was removed and placed back into the −78 °C followed by re-insertion 

into the NMR probe set to −30 °C. 

Using the fluorine channel to collect a spectrum every 37 s the progress of the reaction was 

monitored by the decay of the 8-B-4 complex fluorine signal (−118.40 ppm) and formation of 

cross-coupling product fluorine signal (−116.45 ppm) in comparison with the internal reference 

1,4-difluorbenzene (−120.00 ppm). The first order decay and formation profiles were fitted with 

OrginPro 2015 software using equations 3 and 4 respectively. This procedure was performed three 

times to obtain an average rate. 
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Table 42. Results from the cross-coupling reaction from the 8-B-4 complex 68 at −30 °C in 
THF:CH3OH. 

Entry k (s−1)  
(Decay 105) 

k (s−1)  
 (Form 73) 

A0 [mM]  
(Decay 105) 

A0 [mM]  
(Form 73) 

Run 1 (1.64 ± 0.03) x 10−3 (1.65 ± 0.03) x 10−3 44.42 ± 0.64 41.42 ± 0.24 
Run 2 (1.32 ± 0.03) x 10−3 (1.53 ± 0.06) x 10−3 28.58 ± 0.43 32.07 ± 0.44 
Run 3 (1.28 ± 0.05) x 10−3 (1.47 ± 0.04) x 10−3 31.80 ± 0.53 31.28 ± 0.33 

k avg. Decay of 8-B-4 complex 68 = (1.41 ± 0.02) x 10−3 s−1 

k avg. Formation of 53 = (1.55 ± 0.09) x 10−3 s−1 

 

 
Figure 265. Decay of 8-B-4 complex 105 and formation of cross-coupling product 73 at −30 °C 
in THF:CH3OH. (Run 1).  

 
 

Table 43. Data for decay of 8-B-4 complex 105 and formation of cross-coupling 73 product at −30 
°C in THF:CH3OH. (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

37 1284 2450 299 39.01 2.38 
74 1156 2244 526 39.68 4.65 
111 1113 2185 770 40.12 7.07 
148 1176 2054 1002 35.70 8.71 
185 1197 2011 1250 34.33 10.67 
222 1211 1713 1455 28.90 12.27 
259 1172 1703 1648 29.71 14.37 



 
 

385 

Table 43. (cont.) 
 

296 1185 1679 1854 28.96 15.99 
333 1195 1251 2031 21.40 17.37 
370 1202 1381 2219 23.48 18.86 
407 1157 1341 2292 23.69 20.25 
444 1161 1240 2452 21.83 21.59 
481 1199 1194 2578 20.36 21.97 
518 1165 1112 2761 19.51 24.22 
555 1151 1044 2913 18.54 25.88 
592 1148 965 2982 17.19 26.56 
629 1159 923 3056 16.27 26.95 
666 1155 869 3020 15.39 26.73 
703 1166 844 3305 14.81 28.98 
740 1167 799 3304 13.99 28.93 
777 1183 757 3479 13.08 30.06 
814 1176 719 3533 12.50 30.69 
851 1160 496 3469 8.73 30.56 
888 1178 461 3671 7.99 31.84 
925 1196 655 3763 11.19 32.16 
962 1239 598 3830 9.86 31.59 
999 1191 388 3882 6.66 33.31 
1036 1158 387 3831 6.83 33.83 
1073 1191 347 3924 5.95 33.67 
1110 1194 373 4142 6.39 35.45 
1147 1169 415 4115 7.26 35.98 
1184 1193 330 4223 5.66 36.19 
1221 1195 419 4214 7.16 36.05 
1258 1207 284 4331 4.81 36.68 
1295 1200 275 4410 4.68 37.54 
1332 1169 333 4375 5.81 38.24 
1369 1212 300 4400 5.07 37.11 
1406 1203 258 4434 4.38 37.68 
1443 1201 218 4363 3.71 37.13 
1480 1240 264 4504 4.36 37.13 
1517 1296 294 4621 4.64 36.44 
1554 1259 250 4600 4.06 37.34 
1591 1204 174 4574 2.95 38.84 
1628 1197 216 4627 3.69 39.51 
1665 1286 165 4605 2.63 36.60 
1702 1219 152 4712 2.54 39.49 
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Table 43. (cont.) 
1739 1202 203 4691 3.45 39.88 
1776 1192 202 4676 3.46 40.10 
1813 1204 165 4728 2.80 40.14 
1850 1242 140 4930 2.30 40.56 
1887 1214 134 4711 2.25 39.66 
1924 1269 129 5001 2.07 40.29 
1961 1292 146 5088 2.32 40.25 
1998 1237 148 4808 2.44 39.72 
2035 1284 115 4945 1.83 39.37 
2072 1285 137 4915 2.18 39.09 
2109 1252 101 4840 1.65 39.49 
2146 1252 74 4872 1.21 39.77 
2183 1285 102 4855 1.63 38.61 
2220 1213 74 4918 1.24 41.44 

 

 
Figure 266. Decay of 8-B-4 complex 105 and formation of cross-coupling product 73 at −30 °C 
in THF:CH3OH. (Run 2).  
Table 44. Data for decay of 8-B-4 complex 105 and formation of cross-coupling product 73 at −30 
°C in THF:CH3OH. (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

37 2070 2740 148 27.05 0.73 
74 1896 2350 377 25.32 2.03 
111 1843 2273 787 25.22 4.37 
148 1806 2154 1065 24.39 6.03 
185 1930 2179 1362 23.08 7.22 
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Table 44 (cont.) 
 

222 1978 2028 1597 20.96 8.25 
259 1930 1884 1846 19.95 9.77 
296 1804 1872 2010 21.21 11.39 
333 1825 1713 2372 19.19 13.28 
370 1840 1569 2511 17.43 13.95 
407 1913 1542 2708 16.47 14.46 
444 1934 1409 2904 14.90 15.35 
481 1845 1325 2963 14.68 16.42 
518 1868 1266 3206 13.85 17.54 
555 1855 1229 3353 13.54 18.48 
592 1826 1216 3447 13.62 19.29 
629 1833 1078 3403 12.02 18.97 
666 1918 1037 3668 11.05 19.54 
703 1863 999 3853 10.96 21.13 
740 1638 937 3892 11.70 24.28 
777 1906 916 4082 9.82 21.89 
814 1807 595 4162 6.73 23.54 
851 1890 825 4255 8.92 23.01 
888 1877 839 4287 9.14 23.34 
925 1771 765 4402 8.83 25.40 
962 1778 785 4637 9.02 26.65 
999 1858 697 4574 7.66 25.16 
1036 1785 657 4493 7.52 25.72 
1073 1851 635 4461 7.01 24.64 
1110 1858 631 4634 6.94 25.49 
1147 1791 614 4879 7.00 27.84 
1184 1893 578 5035 6.24 27.18 
1221 1798 326 4853 3.70 27.59 
1258 1790 322 4962 3.68 28.33 
1295 1863 546 4773 5.99 26.18 
1332 1797 500 5011 5.69 28.51 
1369 1793 437 4934 4.98 28.12 
1406 1835 299 4999 3.33 27.85 
1443 1761 278 5153 3.22 29.91 
1480 1543 418 4958 5.54 32.83 
1517 1923 234 5239 2.49 27.84 
1554 1726 236 5164 2.80 30.58 
1591 1850 302 5003 3.33 27.65 
1628 1746 364 5404 4.26 31.63 
1665 1820 309 5217 3.47 29.29 
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Table 44. (cont.) 
 

1702 1912 248 4916 2.65 26.28 
1739 1797 326 5255 3.71 29.88 
1776 1739 327 5287 3.85 31.08 
1813 1807 235 5404 2.66 30.56 
1850 1829 209 5342 2.33 29.84 
1887 1874 314 5576 3.43 30.41 
1924 1793 240 5261 2.74 29.99 
1961 1850 282 5127 3.11 28.32 
1998 1889 239 5567 2.59 30.12 
2035 1772 248 5431 2.87 31.33 
2072 1816 274 5713 3.08 32.15 
2109 1842 241 4978 2.67 27.63 
2146 1784 237 5701 2.72 32.67 
2183 1901 175 5645 1.88 30.35 
2220 1925 238 5631 2.53 29.90 

 
 

 
Figure 267. Decay of 8-B-4 complex 105 and formation of cross-coupling product 73 at −30 °C 
in THF:CH3OH. (Run 3).  
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Table 45. Data for decay of 8-B-4 complex and formation of cross-coupling product at −30 °C in 
THF:CH3OH. (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 8-B-4  
(−123.20 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
8-B-4 

[mM]  
CCP 

37 2091 2625 135 25.66 0.66 
74 1484 2282 392 31.44 2.70 
111 1523 2264 639 30.40 4.29 
148 1738 2262 916 26.60 5.39 
185 1747 2141 1192 25.04 6.97 
222 1729 2034 1411 24.04 8.34 
259 1748 1943 1636 22.73 9.57 
296 1702 1871 1862 22.47 11.18 
333 1806 1780 2029 20.15 11.49 
370 1705 1685 2363 20.21 14.17 
407 1724 1577 2432 18.70 14.42 
444 1712 1503 2542 17.95 15.18 
481 1778 1461 2677 16.80 15.39 
518 1710 1382 2791 16.52 16.68 
555 1785 1318 2983 15.09 17.08 
592 1717 1281 3153 15.25 18.76 
629 1658 1173 3231 14.47 19.92 
666 1726 1169 3364 13.85 19.92 
703 1675 1100 3434 13.41 20.95 
740 1714 1035 3557 12.34 21.20 
777 1749 1005 3726 11.74 21.77 
814 1703 952 3773 11.43 22.65 
851 1655 956 3775 11.81 23.31 
888 1763 811 3817 9.41 22.13 
925 1735 684 3757 8.06 22.13 
962 1731 846 4020 9.99 23.74 
999 1696 794 4056 9.58 24.45 
1036 1711 751 4125 8.97 24.64 
1073 1770 712 4232 8.22 24.44 
1110 1678 431 4165 5.25 25.36 
1147 1682 501 4146 6.09 25.20 
1184 1748 625 4225 7.31 24.71 
1221 1725 356 4499 4.22 26.65 
1258 1750 555 4519 6.48 26.39 
1295 1709 568 4282 6.79 25.60 
1332 1731 380 4656 4.49 27.49 
1369 1700 373 4555 4.48 27.37 
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Table 45. (cont.) 
 

1406 1805 319 4755 3.62 26.92 
1443 1698 317 4669 3.81 28.09 
1480 1777 378 4442 4.34 25.55 
1517 1773 372 4692 4.28 27.05 
1554 1740 399 4811 4.69 28.25 
1591 1688 308 4766 3.73 28.85 
1628 1713 384 4839 4.58 28.86 
1665 1716 362 4781 4.31 28.48 
1702 1867 392 4759 4.29 26.05 
1739 1748 405 4817 4.73 28.16 
1776 1703 264 4768 3.17 28.62 
1813 1600 360 4860 4.60 31.05 
1850 1716 239 4810 2.85 28.65 
1887 1691 324 4801 3.91 29.02 
1924 1720 288 5067 3.42 30.11 
1961 1801 313 5045 3.55 28.63 
1998 1746 260 4976 3.05 29.13 
2035 1706 222 4654 2.66 27.88 
2072 1706 223 5239 2.67 31.38 
2109 1687 235 5160 2.84 31.26 
2146 1723 267 5130 3.17 30.43 
2183 1666 206 4947 2.53 30.35 
2220 1708 203 5335 2.43 31.92 
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Experiment 57. Kinetic Measurement for decay of 6-B-3 complex 71 at 20 °C with 2.85 equiv 
of i-Pr3P (Runs 1-3) 

 
A 2-mL volumetric flask was charged with 4-fluorophenylboroxine (51.3 mg, 140 µmol, 

1.0 equiv) followed by H2O (8 µL, 420 µmol, 3.0 equiv). Then ~1 mL of THF was added and 

sonicated until the solid had dissolved. Once dissolved the flask was filled to the mark with THF 

(SDS) generating a 0.21 M solution. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol, 1.0 equiv), 1,4-difluorobenzene (2.5 µL, 24 µmol) and i-Pr3P 

(60 µL, 313 µmol, 7.63 equiv). Then the solution was diluted to the 2-mL mark.  

An oven dried, 5-mm, NMR tube was taken into the dry box and 500 µL of Stock Solution 

was added. The tube was capped with a septum and Teflon taped. The sample was removed from 

the glove box and inserted into a −78 °C acetone dry-ice bath followed by the addition of the 4-

fluorophenylboronic acid Stock Solution (95 µL, 20.5 µmol, 1.0 equiv) via a 100 µL glass syringe. 

The NMR tube was shaken and cleaned with a Kimwipe then placed into the NMR probe pre-

cooled to −30 °C.  The formation of the 6-B-3 complex was found to be complete after ~3-4 h by 
31P and 19F NMR spectroscopy. The sample was removed from the spectrometer and placed into a 

−78 °C acetone dry-ice bath, followed by shaking and reinserting into the spectrometer set to 20 

°C. Using the fluorine channel to collect a spectrum every 24.2 min the progress of the reaction 

was monitored by the decay of the 6-B-3 complex fluorine signal (−115.74 ppm) in comparison 

with the internal reference (1,4-difluorobenzene, −120.00 ppm). The S-shaped curve was fitted 

with OrginPro 2015 software using equation 4. Using the calculated values for kc, q, and [A]0 a 

maximum rate was determined using equation 5. This procedure was performed three times to 

obtain an average maximum rate (44). 

 

Equation 7. 

𝐴 = [𝐴]3 + 𝑞
[𝐴]3

[𝐴]3 + 𝑞 ∙ 𝑒𝑥𝑝 𝑘9 [𝐴]3 + 𝑞 𝑡
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Equation 8. 

𝑣 = 𝑘9
[𝐴]3 + 𝑞

2

=

− 𝐴 −
[𝐴]3 + 𝑞

2

=

 

 

Table 46. Calculated values from the decay of 71 with 2.85 equiv of i-Pr3P.   

Entry kc q A0 [mM] vmax (mM s−1) 
Run 1 (1.406 ± 0.17) x 10−5 9.522 ± 2.17 28.82 ± 0.77 0.00517 
Run 2 (1.384 ± 0.15) x 10−5 6.472 ± 1.50 26.98 ± 0.67 0.00387 
Run 3 (1.774 ± 0.04) x 10−5 3.796 ± 0.182 27.75 ± 0.14 0.00441 

vmax avg. = (4.48 ± 0.65) x 10−3 mM s−1 

 
Figure 268. Decay of complex 71 with 2.85 equiv of i-Pr3P (Run 1).  

 
Figure 269. Rate vs. concentration of complex 71 with 2.85 equiv of i-Pr3P (Run 1).  

 
Table 47. Data for the decay of the complex 71 with 2.85 equiv of i-Pr3P (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 29646 32367 22.32 
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Table 47. (cont.) 
 

2908 31598 22497 14.55 
4362 30620 13353 8.91 
5816 31396 6839 4.45 
7270 30957 3184 2.10 
8724 30831 1231 0.82 
10178 30781 536 0.36 
11632 30538 289 0.19 
13086 31559 195 0.13 

 

 
Figure 270. Decay of complex 71 with 2.85 equiv of i-Pr3P (Run 2).  

 

 
Figure 271. Rate vs. concentration of complex 71 with 2.85 equiv of i-Pr3P (Run 2).  

 
Table 48. Data for the decay of complex 71 with 2.85 equiv of i-Pr3P (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 31407 35167 22.89 
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Table 48. (cont.) 
 

2908 31411 26336 17.14 
4362 31983 18505 11.83 
5816 31075 11904 7.83 
7270 30846 6398 4.24 
8724 32127 3215 2.05 
10178 31781 1563 1.01 
11632 31837 662 0.43 
13086 31864 332 0.21 

 
Figure 272. Decay of complex 71 with 2.85 equiv of i-Pr3P (Run 3).  

 

 
Figure 273. Rate vs. concentration of complex 71 with 2.85 equiv of i-Pr3P (Run 3).  
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Table 49. Data for the decay of complex 71 with 2.85 equiv of i-Pr3P (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 30648 36170 24.12 
2908 29898 27158 18.57 
4362 29243 17562 12.28 
5816 29087 9900 6.96 
7270 29253 5073 3.54 
8724 29411 2326 1.62 
10178 29419 953 0.66 
11632 28331 428 0.31 
13086 28916 352 0.25 
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Experiment 58. Kinetic Measurement for decay of complex 71 at 20 °C with 3.81 equiv of i-
Pr3P (Runs 1-3) 

 
A 5-mL volumetric flask was charged with 4-fluorophenylboroxine (128 mg, 350 µmol, 

1.0 equiv) followed by H2O (19 µL, 1.05 mmol, 3.0 equiv). Then ~2 mL of THF was added 

followed by sonication until the solid had dissolved. Once dissolved the flask was filled to the 

mark with THF (SDS) generating a 0.21 M solution. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol, 1.0 equiv), 1,4-difluorobenzene (2.5 µL, 24 µmol) and i-Pr3P 

(75 µL, 9.54 equiv, 391 µmol) followed by dissolving with THF (SDS) to the 2-mL mark.  

An oven dried, 5-mm, NMR tube was taken into the dry box and 500 µL of Stock Solution 

was added. The tube was capped with a septum and Teflon taped. The sample was removed from 

the glove box and inserted into a −78 °C acetone dry-ice bath followed by the addition of the 4-

fluorophenylboronic acid Stock Solution (95 µL, 20.5 µmol, 1.0 equiv) via a 100 µL glass syringe. 

The NMR tube was shaken and cleaned with a Kimwipe then placed into the NMR probe set to 

−30 °C.  The formation of the 6-B-3 complex was found to be complete after ~3-4 h by 31P and 
19F NMR spectroscopy. The sample was removed from the spectrometer and placed into a −78 °C 

acetone dry-ice bath, followed by shaking and reinserting into the spectrometer set to 20 °C. Using 

the fluorine channel to collect a spectrum every 24.2 min the progress of the reaction was 

monitored by the decay of the 6-B-3 complex fluorine signal (−115.74 ppm) in comparison with 

the internal reference (1,4-difluorobenzene, −120.00 ppm). The S-shaped curve was fitted with 

OrginPro 2015 software using equation 3. Using the calculated values for kc, q, and [A]0 a 

maximum rate was determined using equation 4. This procedure was performed three times to 

obtain an average maximum rate. 
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Table 50. Calculated values from the decay of 71 with 3.81 equiv of i-Pr3P.   
Entry kc q A0 [mM] vmax (mM s−1) 
Run 1 (1.534 ± 0.16) x 10−5 3.733 ± 0.675 25.81 ± 0.47 0.00335 
Run 2 (1.371 ± 0.06) x 10−5 3.965 ± 0.416 26.54 ± 0.27 0.00312 
Run 3 (1.107± 0.17) x 10−5 6.295 ± 2.10 27.93 ± 0.95 0.00324 

vmax avg. = (3.24 ± 0.12) x 10−3 mM s−1 

 

 
Figure 274. Decay of complex 71 with 3.81 equiv of i-Pr3P (Run 1). 

 

 
Figure 275. Rate vs. concentration of complex 71 with 3.81 equiv of i-Pr3P (Run 1). 
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Table 51. Data for the decay of complex 71 with 3.81 equiv of i-Pr3P (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 35030 39080 22.80 
2908 33325 32308 19.82 
4362 34793 24079 14.15 
5816 35325 16544 9.57 
7270 35049 10345 6.03 
8724 35499 6198 3.57 
10178 35962 3585 2.04 
11632 34600 1850 1.09 
13086 35706 924 0.53 
14540 35478 543 0.31 
15994 35573 303 0.17 
17448 33954 309 0.19 
18902 33004 211 0.13 

 

 
Figure 276. Decay of complex 71 with 3.81 equiv of i-Pr3P (Run 2). 

 
Figure 277. Rate vs. concentration of complex 71 with 3.81 equiv of i-Pr3P (Run 2). 



 
 

399 

Table 52. Data for the decay of complex 71 with 3.81 equiv of i-Pr3P (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 34275 40147 23.94 
2908 35127 35024 20.38 
4362 34579 26360 15.58 
5816 34509 19197 11.37 
7270 35468 13206 7.61 
8724 35469 7706 4.44 
10178 33612 4461 2.71 
11632 34361 2309 1.37 
13086 34759 1155 0.68 
14540 35384 645 0.37 

 

 
Figure 278. Decay of complex 71 with 3.81 equiv of i-Pr3P (Run 3). 

 
Figure 279. Rate vs. concentration of complex 71 with 3.81 equiv of i-Pr3P (Run 3). 
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Table 53. Data for the decay of complex 71 with 3.81 equiv of i-Pr3P (Run 3). 

 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 38441 46582 24.77 
2908 39232 39014 20.33 
4362 38963 28270 14.83 
5816 37009 22677 12.52 
7270 39331 13960 7.25 
8724 39563 8835 4.56 
10178 39531 5684 2.94 
11632 39563 3428 1.77 
13086 38820 1599 0.84 
14540 39509 935 0.48 
15994 37548 473 0.26 
17448 38573 279 0.15 
18902 34879 102 0.06 
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Experiment 59. Kinetic Measurement for decay of 6-B-3 complex 71 at 20 °C with 5.41 equiv 
of i-Pr3P (Runs 1-3) 

 

A 5-mL volumetric flask was charged with 4-fluorophenylboroxine (128 mg, 350 µmol, 

1.0 equiv) followed by H2O (19 µL, 1.05 mmol, 3.0 equiv). Then ~2 mL of THF was added 

followed by sonication until the solid had dissolved. Once dissolved the flask was filled to the 

mark with THF (SDS) generating a 0.21 M solution. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol, 1.0 equiv), 1,4-difluorobenzene (2.5 µL, 24 µmol) and i-Pr3P 

(100 µL, 521 µmol, 12.71 equiv) followed by dissolving with THF (SDS) to the 2-mL mark.  

An oven dried, 5-mm, NMR tube was taken into the dry box and 500 µL of Stock Solution 

was added. The tube was capped with a septum and Teflon taped. The sample was removed from 

the glove box and inserted into a −78 °C acetone dry-ice bath followed by the addition of the 4-

fluorophenylboronic acid Stock Solution (95 µL, 20.5 µmol, 1.0 equiv) via a 100 µL glass syringe. 

The NMR tube was shaken and cleaned with a Kimwipe then placed into the NMR probe pre-

cooled to −30 °C.  The formation of the 6-B-3 complex was found to be complete after ~3-4 h by 
31P and 19F NMR spectroscopy. The sample was removed from the spectrometer and placed into a 

−78 °C acetone dry-ice bath, followed by shaking and reinserting into the spectrometer set to 20 

°C. Using the fluorine channel to collect a spectrum every 24.2 min the progress of the reaction 

was monitored by the decay of the 6-B-3 complex fluorine signal (−115.74 ppm) in comparison 

with the internal reference (1,4-difluorobenzene, −120.00 ppm). The S-shaped curve was fitted 

with OrginPro 2015 software using equation 3. Using the calculated values for kc, q, and [A]0 a 

maximum rate was determined using equation 4. This procedure was performed three times to 

obtain an average maximum rate. 
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Table 54. Calculated values from the decay of 71 with 5.41 equiv of i-Pr3P.   
Entry kc q A0 [mM] vmax (mM s−1) 
Run 1 (6.403 ± 0.38) x 10−6 9.278 ± 1.07 29.31 ± 0.33 0.00238 
Run 2 (6.110 ± 0.32) x 10−6 9.066 ± 0.940 31.35 ± 0.31 0.00245 
Run 3 (6.968 ± 0.64) x 10−6 7.353 ± 1.39 30.07 ± 0.55 0.00244 

vmax avg. = (2.42 ± 0.48) x 10−3 mM s−1 

 

 
Figure 280. Decay of complex 71 with 5.41 equiv of i-Pr3P (Run 1). 

 

 
Figure 281. Rate vs. concentration of complex 71 with 5.41 equiv of i-Pr3P (Run 1). 
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Table 55. Data for the decay of complex 71 with 5.41 equiv of i-Pr3P (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 40329 52666 26.69 
2908 40130 44983 22.91 
4362 40446 40119 20.27 
5816 39667 32861 16.93 
7270 40735 26105 13.10 
8724 40935 20227 10.10 
10178 40786 15492 7.76 
11632 41035 11708 5.83 
13086 40241 8460 4.30 
14540 40350 6306 3.19 
15994 39945 4554 2.33 
17448 40728 3239 1.63 
18902 40649 2153 1.08 
20356 40052 1584 0.81 
21810 41339 1037 0.51 

 

 
Figure 282. Decay of complex 71 with 5.41 equiv of i-Pr3P (Run 2). 
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Figure 283. Rate vs. concentration of complex 71 with 5.41 equiv of i-Pr3P (Run 2). 

 
 
Table 56. Data for the decay of complex 71 with 5.41 equiv of i-Pr3P (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 37359 52558 28.76 
2908 38408 47297 25.17 
4362 39290 41902 21.80 
5816 39185 35051 18.28 
7270 39867 28110 14.41 
8724 39580 23458 12.11 
10178 39561 17487 9.04 
11632 40376 12630 6.39 
13086 40340 9399 4.76 
14540 40625 6799 3.42 
15994 39346 4666 2.42 
17448 39565 3614 1.87 
18902 38243 2294 1.23 
20356 38219 1726 0.92 
21810 41804 1202 0.59 
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Figure 284. Decay of complex 71 with 5.41 equiv of i-Pr3P (Run 3). 

 
 

Figure 285. Rate vs. concentration of complex 71 with 5.41 equiv of i-Pr3P (Run 3). 
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Figure 286. Data for the decay of complex 71 with 5.41 equiv of i-Pr3P (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 40129 54597 27.81 
2908 40099 46496 23.70 
4362 40122 43386 22.10 
5816 40324 34981 17.73 
7270 40526 28287 14.27 
8724 40861 21490 10.75 
10178 40457 16243 8.21 
11632 39857 12154 6.23 
13086 40170 8723 4.44 
14540 40631 6156 3.10 
15994 41885 4434 2.16 
17448 31805 3098 1.99 
18902 40194 2254 1.15 
20356 38405 1491 0.79 
21810 39107 1110 0.58 
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Experiment 60. Kinetic Measurement for decay of 6-B-3 complex 51 at 20 °C with 8.62 equiv 
of i-Pr3P (Runs 1-3) 

 

A 5-mL volumetric flask was charged with 4-fluorophenylboroxine (128 mg, 350 µmol, 

1.0 equiv) followed by H2O (19 µL, 1.05 mmol, 3.0 equiv). Then ~2 mL of THF was added 

followed by sonication until the solid had dissolved. Once dissolved the flask was filled to the 

mark with THF (SDS) generating a 0.21 M solution. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol, 1.0 equiv), 1,4-difluorobenzene (2.5 µL, 24 µmol) and i-Pr3P 

(150 µL, 12.71 equiv, 521 µmol) followed by dissolving with THF (SDS) to the 2-mL mark.  

An oven dried, 5-mm, NMR tube was taken into the dry box and 500 µL of Stock Solution 

was added. The tube was capped with a septum and Teflon taped. The sample was removed from 

the glove box and inserted into a −78 °C acetone dry-ice bath followed by the addition of the 4-

fluorophenylboronic acid Stock Solution (95 µL, 20.5 µmol, 1.0 equiv) via a 100 µL glass syringe. 

The NMR tube was shaken and cleaned with a Kimwipe then placed into the NMR probe pre-

cooled to −30 °C.  The formation of the 6-B-3 complex was found to be complete after ~3-4 h by 
31P and 19F NMR spectroscopy. The sample was removed from the spectrometer and placed into a 

−78 °C acetone dry-ice bath, followed by shaking and reinserting into the spectrometer set to 20 

°C. Using the fluorine channel to collect a spectrum every 24.2 min the progress of the reaction 

was monitored by the decay of the 6-B-3 complex fluorine signal (−115.74 ppm) in comparison 

with the internal reference (1,4-difluorobenzene, −120.00 ppm). The S-shaped curve was fitted 

with OrginPro 2015 software using equation 4. Using the calculated values for kc, q, and [A]0 a 

maximum rate was determined using equation 5. This procedure was performed three times to 

obtain an average maximum rate. 
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Table 57. Calculated values from the decay of 71 with 8.62 equiv of i-Pr3P.   
Entry kc q A0 [mM] vmax (mM s−1) 
Run 1 (9.050 ± 0.61) x 10−6 1.958± 0.363 23.54 ± 0.36 0.00147 
Run 2 (1.007 ± 0.07) x 10−5 1.880 ± 0.333 20.67 ± 0.31 0.00128 
Run 3 (8.519 ± 0.26) x 10−6 2.097 ± 0.171 23.13 ± 0.16 0.00136 

vmax avg. = (1.37 ± 0.96) x 10−3 mM s−1 

 
 

 
Figure 287. Decay of complex 71 with 8.62 equiv of i-Pr3P (Run 1). 

 

 
 

Figure 288. Rate vs. concentration of complex 71 with 8.62 equiv of i-Pr3P (Run 1). 
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Table 58. Data for the decay of complex 71 with 8.62 equiv of i-Pr3P (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 40547 45116 22.74 
2908 39764 42395 21.79 
4362 39764 41035 21.09 
5816 40583 37791 19.03 
7270 38811 35574 18.74 
8724 40648 29112 14.64 
10178 38418 25700 13.67 
11632 39650 22079 11.38 
13086 37083 17954 9.90 
14540 40222 14465 7.35 
15994 40383 11254 5.70 
17448 37347 8730 4.78 
18902 38710 6526 3.45 
20356 40239 4906 2.49 
21810 41672 3703 1.82 
23264 38525 2602 1.38 
24718 42041 1728 0.84 
26172 41032 1319 0.66 
27626 41947 1122 0.55 

 
 

 
Figure 289. Decay of complex 71 with 8.62 equiv of i-Pr3P (Run 2). 
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Figure 290. Rate vs. concentration of complex 71 with 8.62 equiv of i-Pr3P (Run 2). 

 
Table 59. Data for the decay of complex 71 with 8.62 equiv of i-Pr3P (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 41203 39248 19.47 
2908 41616 38948 19.13 
4362 41048 36701 18.28 
5816 38846 33690 17.73 
7270 40166 30063 15.30 
8724 38917 25895 13.60 
10178 38570 22396 11.87 
11632 41429 18240 9.00 
13086 37930 14932 8.05 
14540 39246 12242 6.38 
15994 37415 9765 5.33 
17448 39410 7290 3.78 
18902 37186 5703 3.13 
20356 36696 4307 2.40 
21810 39014 3325 1.74 
23264 40512 2556 1.29 
24718 38811 1808 0.95 
26172 40375 1546 0.78 
27626 42380 1189 0.57 
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Figure 291. Decay of complex 71 with 8.62 equiv of i-Pr3P (Run 3). 

 
Figure 292. Rate vs. concentration of complex 71 with 8.62 equiv of i-Pr3P (Run 3). 
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Table 60. Data for the decay of complex 71 with 8.62 equiv of i-Pr3P (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 40324 44037 22.32 
2908 39736 42445 21.83 
4362 39773 38913 20.00 
5816 39844 37822 19.40 
7270 39837 34663 17.79 
8724 40705 31445 15.79 
10178 39659 27584 14.22 
11632 41108 23599 11.73 
13086 40620 19839 9.98 
14540 40149 16090 8.19 
15994 40481 12692 6.41 
17448 39823 10265 5.27 
18902 39724 8063 4.15 
20356 41107 6205 3.09 
21810 40457 4744 2.40 
23264 41306 3551 1.76 
24718 40976 2663 1.33 
26172 41488 2042 1.01 

 
Table 61. Compiled Data for Order Determination of i-Pr3P. 

Entry i-Pr3P [mM] log[i-Pr3P] vmax avg. (mM s−1) log[vmax avg] 
1 97 1.988 (4.48 ± 0.65) x 10−3 −2.348 
2 131 2.114 (3.24 ± 0.12) x 10−3 −2.490 
3 185 2.267 (2.42 ± 0.48) x 10−3 −2.616 
4 294 2.469 (1.37 ± 0.96) x 10−3 −2.863 
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Figure 293. Order Determination of i-Pr3P. 
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Experiment 61. Kinetic Measurement for decay of complex 51 at 20 °C with 3.81 equiv of i-
Pr3P and 0.25 equiv of (i-Pr3P)2Pd (Runs 1-3) 

 
A 5-mL volumetric flask was charged with 4-fluorophenylboroxine (128 mg, 350 µmol) 

followed by H2O (19 µL, 3.0 equiv, 1.05 mmol). Then ~2 mL of THF was added followed by 

sonication until the solid had dissolved. Once dissolved the flask was filled to the mark with THF 

(SDS) generating a 0.21 M solution. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol), 1,4-difluorobenzene (2.5 µL, 24 µmol), (i-Pr3P)2Pd (8.7 mg, 

20.4 µmol, 0.49 equiv) and i-Pr3P (75 µL, 9.54 equiv, 391 µmol) followed by dissolving with THF 

(SDS) to the 2-mL mark.  

An oven dried, 5-mm, NMR tube was taken into the dry box and 500 µL of Stock Solution 

was added. The tube was capped with a septum and Teflon taped. The sample was removed from 

the glove box and inserted into a −78 °C acetone dry-ice bath followed by the addition of the 4-

fluorophenylboronic acid Stock Solution (95 µL, 20.5 µmol, 1.0 equiv) via a 100 µL glass syringe. 

The NMR tube was shaken and cleaned with a Kimwipe then placed into the NMR probe set to 

−30 °C.  The formation of the 6-B-3 complex was found to be complete after ~3-4 h by 31P and 
19F NMR spectroscopy. The sample was removed from the spectrometer and placed into a −78 °C 

acetone dry-ice bath, followed by shaking and reinserting into the spectrometer set to 20 °C. Using 

the fluorine channel to collect a spectrum every 24.2 min the progress of the reaction was 

monitored by the decay of the 6-B-3 complex fluorine signal (−115.74 ppm) in comparison with 

the internal reference (1,4-difluorobenzene, −120.00 ppm). The S-shaped curve was fitted with 

OrginPro 2015 software using equation 3. Using the calculated values for kc, q, and [A]0 a 

maximum rate was determined using equation 4. This procedure was performed three times to 

obtain an average maximum rate. 
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Table 62. Calculated values from the decay of 71 with 3.81 equiv of i-Pr3P.   
Entry kc q A0 [mM] vmax (mM s−1) 
Run 1 (1.19 ± 0.10) x 10−5 3.63 ± 0.75 26.96 ± 0.37 0.00279 
Run 2 (1.18 ± 0.16) x 10−5 3.92 ± 1.3 29.09 ± 0.89 0.00321 
Run 3 (1.31 ± 0.26) x 10−5 3.98 ± 1.7 24.08 ± 1.05 0.00259 

vmax avg. = (2.86 ± 0.36) x 10−3 mM s−1 

 
Figure 294. Decay of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-Pr3P)2Pd (Run 1). 

 
Figure 295. Rate vs. concentration of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-
Pr3P)2Pd (Run 1). 

 



 
 

416 

Table 63. Data for the decay of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-Pr3P)2Pd  
(Run 1). 

 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 5101 5436 22.67 
2908 5019 4614 20.97 
4362 5000 3903 19.28 
5816 5180 3048 16.25 
7270 5070 1738 13.36 
8724 5108 1361 8.61 
10178 3904 807 6.48 
11632 5032 571 4.58 
13086 4952 338 3.04 

 

 
Figure 296. Decay of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-Pr3P)2Pd (Run 2). 
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Figure 297. Rate vs. concentration of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-
Pr3P)2Pd (Run 2). 

 
Table 64. Data for the decay of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-Pr3P)2Pd  
(Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 4764 5884 25.24 
2908 4862 5073 21.33 
4362 4761 4360 18.72 
5816 4836 3449 14.58 
7270 4784 2471 10.56 
8724 4822 1679 7.12 
10178 4724 1087 4.70 
11632 4811 694 2.95 
13086 4770 404 1.73 
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Figure 298. Decay of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-Pr3P)2Pd (Run 2). 

 
Figure 299. Rate vs. concentration of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-
Pr3P)2Pd (Run 2). 
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Table 65. Data for the decay of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-Pr3P)2Pd  
(Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 4377 5594 26.12 
2908 4085 4879 24.41 
4362 4209 3830 18.60 
5816 4371 3006 14.06 
7270 4237 2107 10.16 
8724 4351 1357 6.37 
10178 4070 879 4.41 
11632 4320 543 2.57 
13086 4311 314 1.49 
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Experiment 62. Kinetic Measurement for decay of complex 51 at 20 °C with 3.81 equiv of i-
Pr3P and 0.25 equiv of (i-Pr3P)3Pd (Runs 1-3) 

 

A 5-mL volumetric flask was charged with 4-fluorophenylboroxine (128 mg, 350 µmol, 

1.0 equiv) followed by H2O (19 µL, 1.05 mmol, 3.0 equiv). Then ~2 mL of THF was added 

followed by sonication until the solid had dissolved. Once dissolved the flask was filled to the 

mark with THF (SDS) generating a 0.21 M solution. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol, 1.0 equiv), 1,4-difluorobenzene (2.5 µL, 24 µmol), (i-Pr3P)3Pd 

(12 mg, 20.4 µmol, 0.50 equiv) and i-Pr3P (75 µL, 9.54 equiv, 391 µmol) followed by dissolving 

with THF (SDS) to the 2-mL mark.  

An oven dried, 5-mm, NMR tube was taken into the dry box and 500 µL of Stock Solution 

was added. The tube was capped with a septum and Teflon taped. The sample was removed from 

the glove box and inserted into a −78 °C acetone dry-ice bath followed by the addition of the 4-

fluorophenylboronic acid Stock Solution (95 µL, 20.5 µmol, 1.0 equiv) via a 100 µL glass syringe. 

The NMR tube was shaken and cleaned with a Kimwipe then placed into the NMR probe set to 

−30 °C.  The formation of the 6-B-3 complex was found to be complete after ~3-4 h by 31P and 
19F NMR spectroscopy. The sample was removed from the spectrometer and placed into a −78 °C 

acetone dry-ice bath, followed by shaking and reinserting into the spectrometer set to 20 °C. Using 

the fluorine channel to collect a spectrum every 24.2 min the progress of the reaction was 

monitored by the decay of the 6-B-3 complex fluorine signal (−115.74 ppm) in comparison with 

the internal reference (1,4-difluorobenzene, −120.00 ppm). The S-shaped curve was fitted with 

OrginPro 2015 software using equation 3. Using the calculated values for kc, q, and [A]0 a 

maximum rate was determined using equation 4. This procedure was performed three times to 

obtain an average maximum rate. 
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Table 66. Calculated values from the decay of 51 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-
Pr3P)3Pd.   
 

Entry kc q A0 [mM] vmax (s−1) 
Run 1 (1.45 ± 0.09) x 10−5 1.61 ± 0.56 23.75 ± 0.52 0.00232 
Run 2 (1.36 ± 0.10) x 10−5 2.24 ± 0.75 22.67 ± 0.51 0.00210 
Run 3 (1.46 ± 0.07) x 10−5 1.27 ± 0.18 22.93 ± 0.28 0.00214 

vmax avg. = (2.19 ± 0.11) x 10−3 s−1 

 
 

 
Figure 300. Decay of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-Pr3P)3Pd.   (Run 
1). 
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Figure 301. Rate vs. concentration of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-
Pr3P)3Pd (Run 1). 

 
Table 67. Data for the decay of complex 71 with 3.81 equiv of i-Pr3P 0.25 equiv of (i-Pr3P) (Run 
1). 

 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 5092 5648 22.67 
2908 5051 5182 20.97 
4362 4924 4644 19.28 
5816 5210 4141 16.25 
7270 4905 3207 13.36 
8724 5456 2299 8.61 
10178 5164 1638 6.48 
11632 5307 1189 4.58 
13086 5376 800 3.04 
14540 5131 501 2.00 
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Figure 302. Decay of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-Pr3P)3Pd (Run 2). 

 
Figure 303. Rate vs. concentration of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-
Pr3P)3Pd (Run 2). 
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Table 68. Data for the decay of complex 71 with 3.81 equiv of i-Pr3P 0.25 equiv of (i-Pr3P) (Run 
2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 5327 5613 21.53 
2908 5485 5173 19.28 
4362 5209 4555 17.87 
5816 5530 3875 14.32 
7270 5410 3169 11.97 
8724 5444 2189 8.22 
10178 5377 1571 5.97 
11632 5557 1171 4.31 
13086 5582 765 2.80 
14540 5465 477 1.78 

 

 
Figure 304. Decay of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-Pr3P)3Pd.   (Run 
3). 
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Figure 305. Rate vs. concentration of complex 71 with 3.81 equiv of i-Pr3P and 0.25 equiv of (i-
Pr3P)3Pd (Run 3). 

 
Table 69. Data for the decay of complex 71 with 3.81 equiv of i-Pr3P 0.25 equiv of (i-Pr3P) (Run 
3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 5487 5932 22.09 
2908 5481 5607 20.91 
4362 5454 5117 19.18 
5816 5389 4529 17.18 
7270 5311 3699 14.24 
8724 5325 2753 10.57 
10178 5435 2101 7.90 
11632 5564 1467 5.39 
13086 5571 1045 3.83 
14540 5428 680 2.56 
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Experiment 63. Kinetic Measurement for decay of complex 71 at 20 °C with 5.41 equiv of i-
Pr3P and 10.0 equiv of water (Runs 1-3) 

 

 
A 5-mL volumetric flask was charged with 4-fluorophenylboroxine (128 mg, 350 µmol, 

1.0 equiv) followed by H2O (209 µL, 11.6 mmol, 33.14 equiv). Then ~2 mL of THF was added 

followed by sonication until the solid had dissolved. Once dissolved the flask was filled to the 

mark with THF (SDS) generating a 0.21 M solution of 4-fluorophenylboronic acid and 2.1 M 

solution of H2O. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol, 1.0 equiv), 1,4-difluorobenzene (2.5 µL, 24 µmol) and i-Pr3P 

(100 µL, 12.71 equiv, 521 µmol) followed by dissolving with THF (SDS) to the 2-mL mark.  

An oven dried, 5-mm, NMR tube was taken into the dry box and 500 µL of Stock Solution 

was added. The tube was capped with a septum and Teflon taped. The sample was removed from 

the glove box and inserted into a −78 °C acetone dry-ice bath followed by the addition of the 4-

fluorophenylboronic acid Stock Solution (95 µL, 20.5 µmol, 1.0 equiv) via a 100 µL glass syringe. 

The NMR tube was shaken and cleaned with a Kimwipe then placed into the NMR probe pre-

cooled to −30 °C.  The formation of the 6-B-3 complex was found to be complete after ~3-4 h by 
31P and 19F NMR spectroscopy. The sample was removed from the spectrometer and placed into a 

−78 °C acetone dry-ice bath, followed by shaking and reinserting into the spectrometer set to 20 

°C. Using the fluorine channel to collect a spectrum every 24.2 min the progress of the reaction 

was monitored by the decay of the 6-B-3 complex fluorine signal (−115.74 ppm) in comparison 

with the internal reference (1,4-difluorobenzene, −120.00 ppm). The S-shaped curve was fitted 

with OrginPro 2015 software using equation 3. Using the calculated values for kc, q, and [A]0 a 

maximum rate was determined using equation 4. This procedure was performed three times to 

obtain an average maximum rate. 
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Table 70. Calculated values from the decay of 71 with 5.41 equiv of i-Pr3P.   
Entry kc q A0 [mM] vmax (s−1) 
Run 1 (2.707 ± 0.228) x 10−6 7.368 ± 1.28 33.41 ± 0.46 0.00115 
Run 2 (3.229 ± 0.304) x 10−6 4.433 ± 1.00 33.29 ± 0.57 0.00113 
Run 3 (3.258 ± 0.292) x 10−6 4.872 ± 1.00 31.49 ± 0.51 0.00108 

vmax avg. = (1.11 ± 0.04) x 10−3 s−1 

 
Figure 306. Decay of complex 71 with 5.41 equiv of i-Pr3P and 10 equiv of H2O (Run 1). 

 
Figure 307. Rate vs. concentration of complex 71 with 5.41 equiv of i-Pr3P and 10 equiv of H2O 
(Run 1). 
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Table 71. Data for the decay of complex 71 with 5.41 equiv of i-Pr3P and 10 equiv of H2O (Run 
1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

172 3761 6172 33.54 
1892 3671 5880 32.74 
3612 3663 5344 29.82 
5332 3843 5939 31.59 
7052 3643 5106 28.65 
8772 3772 4618 25.02 
10492 3622 4831 27.26 
12212 3694 4264 23.59 
13932 3746 3689 20.13 
15652 3615 3751 21.21 
17372 3844 3326 17.69 
19092 3394 2631 15.84 
20812 3637 2621 14.73 
22532 3533 2290 13.25 
24252 3752 1886 10.27 
25972 3706 1625 8.96 
27692 3696 1300 7.19 
29412 3666 1120 6.24 
31132 3640 958 5.38 
32852 3661 790 4.41 
34572 3838 783 4.17 
36292 3748 573 3.12 
38012 3764 434 2.36 
39732 3730 358 1.96 
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Figure 308. Decay of complex 71 with 5.41 equiv of i-Pr3P and 10 equiv of H2O (Run 2). 

 
Figure 309. Rate vs. concentration of complex 71 with 5.41 equiv of i-Pr3P and 10 equiv of H2O 
(Run 2). 
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Table 72. Data for the decay of complex 71 with 5.41 equiv of i-Pr3P and 10 equiv of H2O (Run 
2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

172 3588 5792 33.00 
1892 3279 5370 33.47 
3612 3655 5428 30.36 
5332 3440 4912 29.19 
7052 3644 4484 25.15 
8772 3425 4465 26.65 
10492 3432 4196 24.99 
12212 3662 3885 21.68 
13932 3676 3574 19.87 
15652 3661 3285 18.34 
17372 3654 2927 16.37 
19092 3555 2542 14.62 
20812 3512 2212 12.87 
22532 3538 1976 11.42 
24252 3492 1693 9.91 
25972 3288 1320 8.21 
27692 3479 1238 7.27 
29412 3586 1063 6.06 
31132 3619 836 4.72 
32852 3398 719 4.33 
34572 3299 539 3.34 
36292 3430 530 3.16 
38012 3448 445 2.64 
39732 3498 388 2.27 
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Figure 310. Decay of complex 71 with 5.41 equiv of i-Pr3P and 10 equiv of H2O (Run 3). 

 
 

 
Figure 311. Rate vs. concentration of complex 71 with 5.41 equiv of i-Pr3P and 10 equiv of H2O 
(Run 3). 
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Table 73. Data for the decay of complex 71 with 5.41 equiv of i-Pr3P and 10 equiv of H2O (Run 
3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

172 3809 5792 31.08 
1892 3639 5370 30.16 
3612 3519 5428 31.53 
5332 3505 4912 28.65 
7052 3627 4484 25.27 
8772 3654 4465 24.98 
10492 3846 4196 22.30 
12212 3631 3885 21.87 
13932 3688 3574 19.81 
15652 3562 3285 18.85 
17372 3547 2927 16.87 
19092 3162 2542 16.43 
20812 3500 2212 12.92 
22532 3617 1976 11.17 
24252 3623 1693 9.55 
25972 3500 1320 7.71 
27692 3617 1238 7.00 
29412 3588 1063 6.06 
31132 3627 836 4.71 
32852 3519 719 4.18 
34572 3614 539 3.05 
36292 3581 530 3.03 
38012 3606 445 2.52 
39732 3605 388 2.20 
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Experiment 64. Kinetic Measurement for decay of complex 71 at 20 °C from independent 
synthesis with 3.81 equiv of i-Pr3P from 86 and 58. 

 
A 1-mL volumetric flask was charged with 4-fluorophenylboroxine (77.0 mg, 210 µmol, 

1.0 equiv) followed by H2O (11 µL, 631 µmol, 3.0 equiv). Then ~0.5 mL of THF (SDS) was added 

and sonicated until the solid had dissolved. Once dissolved the flask was filled to the mark with 

THF (SDS) generating a 0.63 M solution of 4-fluorophenylboronic acid. 

A 1-mL volumetric flask was charged with i-Pr3P (307 µL, 1.60 mmol) followed by filling 

to the mark with THF (SDS) generating a 1.60 M solution of i-Pr3P.  

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol, 1.0 equiv) and 1,4-difluorobenzene (2.5 µL, 24 µmol) 

followed by dissolving with THF (SDS) to the 2-mL mark. An oven dried, 5-mm, NMR tube was 

taken into the dry box and 500 µL of the freshly prepared solution was added. The tube was capped 

with a septum and Teflon taped. The sample was removed from the glove box and inserted into a 

−78 °C acetone dry-ice bath followed by the addition of the 4-fluorophenylboronic acid solution 

(35 µL, 20.5 µmol, 2.0 equiv) via a 100 µL glass syringe. The NMR tube was vortexed (not shaken) 

and cleaned with a Kimwipe followed by re-insertion into the −78 °C bath. Then 60 µL of i-Pr3P 

(96 µmol, 4.81 equiv) solution was added via syringe and the tube was vortexed (not shaken) and 

placed into the NMR probe set to −55 °C. The formation of the 8-B-4 species was observed after 

~10-15 min. The tube was removed and placed back into the −78 °C followed by re-insertion into 

the NMR probe set to 20 °C. 

Using the fluorine channel to collect a spectrum every 1454 s the progress of the reaction 

was monitored by the decay of the 8-B-4 complex (−118.40 ppm) and formation of cross-coupling 

product (−116.45 ppm) in comparison with the internal reference 1,4-difluorobenzene (−120.00 

ppm). The first order decay and formation profiles were fitted with OrginPro 2015 software using 

equations 1 and 2 respectively. This procedure was performed three times to obtain an average 

rate. 
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Table 74. Calculated values from the decay of 71 with 3.81 equiv of i-Pr3P.   
Entry kc q A0 [mM] vmax (mM s−1) 
Run 1 (1.354 ± 0.068) x 10−5 6.090 ± 0.63 25.11 ± 0.28 0.00330 
Run 2 (1.646 ± 0.062) x 10−5 4.912 ± 0.40 24.02 ± 0.21 0.00344 
Run 3 (1.350 ± 0.434) x 10−5 4.867 ± 0.35 25.13 ± 0.18 0.00304 

vmax avg. = (3.26 ± 0.17) x 10−3 s−1 

 

 
Figure 312. Decay of complex 71 with 3.81 equiv of i-Pr3P (Run 1). 

 

 
Figure 313. Rate vs. concentration of complex 71 with 3.81 equiv of i-Pr3P (Run 1). 
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Table 75. Data for the decay of complex 71 with 3.81 equiv of i-Pr3P (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 9530 10089 21.64 
2908 9578 7894 16.84 
4362 9472.69 5749.33 12.41 
5816 9639.18 3854.94 8.17 
7270 9602.73 2416.27 5.14 
8724 9520.88 1370.62 2.94 
10178 9651.22 689.682 1.46 
11632 9674.15 377.682 0.80 
13086 9483.52 212.826 0.46 
14540 9516.06 92.4787 0.20 
15994 9652.73 67.6269 0.14 
17448 1785.33 14.0607 0.16 

 

 
Figure 314. Decay of complex 71 with 3.81 equiv of i-Pr3P (Run 2). 
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Figure 315. Rate vs. concentration of complex 71 with 3.81 equiv of i-Pr3P (Run 2). 

Table 76. Data for the decay of complex 71 with 3.81 equiv of i-Pr3P (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 9429.91 9490.89 20.57 
2908 9427.25 7322.45 15.88 
4362 9498.9 5087.3 10.95 
5816 9395.47 3201.72 6.97 
7270 9565.18 1785.61 3.82 
8724 9556.56 916.56 1.96 
10178 9569.97 459.446 0.98 
11632 9478.31 252.737 0.55 
13086 9464.42 157.079 0.34 
14540 9441.69 104.939 0.23 
15994 9435.12 75.3278 0.16 
17448 9591.93 30.6784 0.07 
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Figure 316. Decay of complex 71 with 3.81 equiv of i-Pr3P (Run 3). 

 
Figure 317. Rate vs. concentration of complex 71 with 3.81 equiv of i-Pr3P (Run 3). 

 
Table 77. Data for the decay of complex 71 with 3.81 equiv of i-Pr3P (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.74 ppm) [mM] 6-B-3 

1454 9370.46 10229.5 22.31 
2908 9469.09 8453.91 18.25 
4362 9325.23 6441.28 14.12 
5816 9359.61 4524.27 9.88 
7270 9406.12 2963.35 6.44 



 
 

438 

Table 77. (cont.) 
 

8724 9333.19 1840.09 4.03 
10178 9423.92 1029.36 2.23 
11632 9351.33 568.514 1.24 
13086 9438.9 296.284 0.64 
14540 9406.59 203.278 0.44 
15994 9489.67 81.2297 0.17 
17448 9357.63 103.932 0.23 
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Experiment 65: Kinetic measurement for decay of 6-B-3 complex 71 at 20 °C from 

independent synthesis with 15.03 equiv of i-Pr3P from 72 and 70. 

 
A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol, 1.0 equiv), i-Pr3P (250 µL, 1.30 mmol, 31.7 equiv) and 1,4-

difluorobenzene (2.5 µL, 24 µmol) followed by dissolving with THF (NaK) to the 2-mL mark 

generating a 40.1 mM solution. An oven dried 5-mm NMR tube was charged with 4-

fluorophenylboroxine (2.5 mg, 6.8 µmol) and 95µL of THF (NaK) followed by capping with a 

septum and Teflon taped. The sample was inserted into a −78 °C acetone dry-ice bath followed by 

the addition of (500 µL, 20.3 µmol, 3.0 equiv) of the arylpalladium Stock Sol. via a 1 mL glass 

syringe. The NMR tube was removed from the bath and shaken for 45 s. It was then cleaned with 

a Kimwipe then placed into the NMR probe set to 20 °C.  

Using the fluorine channel to collect a spectrum every 1454 s, the progress of the reaction 

was monitored by the decay of the 6-B-3 complex (−115.75 ppm) and formation of cross-coupling 

product (−116.45 ppm) in comparison with the internal reference 1,4-difluorobenzene (−120.00 

ppm). The first order decay and formation profiles were fitted with OrginPro 2015 software using 

equations 4 and 5 respectively. This procedure was performed three times to obtain an average 

rate.131  

Table 78. Results from the cross-coupling reaction. 

 

Entry k (s−1)  
(Decay 71) 

k (s−1)  
 (Form 73) 

A0 [mM]  
(Decay 71) 

A0 [mM]  
(Form 73) 

Run 1 (1.184 ± 0.008) x 10−4 (7.020 ± 0.04) x 10−5 21.47 ± 0.12 23.46 ± 0.55 
Run 2 (1.297 ± 0.032) x 10−4 (7.617 ± 0.03) x 10−5 22.97 ± 0.44 23.63 ± 0.29 
Run 3 (1.275 ± 0.026) x 10−4 (6.776 ± 0.04) x 10−5 22.96 ± 0.36 24.69 ± 0.56 

k avg. Decay of 6-B-3 51 = (1.25 ± 0.60) x 10−4 s−1 

k avg. Formation of 53 = (7.14 ± 0.43) x 10−5 s−1 
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Figure 318. Decay of complex 71 and formation of 73 (Run 1). 

 
Table 79. Data for the decay of complex 71 and formation of 73 (Run 1). 

 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.75 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
6-B-3 

[mM]  
CCP 

1454 9464 8410 2482 18.16 2.68 
2908 9847 7346 4191 15.25 4.35 
4362 10628 6432 5925 12.37 5.70 
5816 10356 5498 7860 10.85 7.76 
7270 10249 4631 9453 9.24 9.43 
8724 10425 3945 10672 7.74 10.46 
10178 10465 3304 12065 6.45 11.78 
11632 10170 2732 13205 5.49 13.27 
13086 10299 2345 14402 4.65 14.29 
14540 10043 1876 15820 3.82 16.10 
15994 10050 1602 16054 3.26 16.33 
17448 10605 1329 16982 2.56 16.37 
18902 10235 1173 17962 2.34 17.94 
20356 9383 907 17990 1.98 19.59 
21810 9555 769 18620 1.64 19.92 
23264 9775 638 19380 1.33 20.26 
24718 10264 533 19513 1.06 19.43 
26172 10268 449 19784 0.89 19.69 
27626 9891 376 19943 0.78 20.61 
29080 10047 310 20817 0.63 21.17 
30534 10070 224 20957 0.45 21.27 
31988 9129 214 21109 0.48 23.63 
33442 9663 169 21273 0.36 22.50 
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Table 79. (cont.) 
 

34896 9778 136 21044 0.29 21.99 
36350 9850 133 21217 0.28 22.01 
37804 9968 119 21124 0.24 21.66 

 

 
Figure 319. Decay of complex 71 and formation of 73 (Run 2). 

 
Table 80. Data for the decay of complex 71 and formation of 73 (Run 2). 

 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.75 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
6-B-3 

[mM]  
CCP 

1454 9863 8550 2482 17.72 2.57 
2908 9580 7756 4191 16.55 4.47 
4362 9756 6472 5925 13.56 6.21 
5816 9769 5469 7860 11.44 8.22 
7270 10138 4512 9453 9.10 9.53 
8724 9670 3675 10672 7.77 11.28 
10178 9993 3034 12065 6.21 12.34 
11632 9760 2405 13205 5.04 13.83 
13086 9527 1962 14402 4.21 15.45 
14540 9778 1602 15820 3.35 16.53 
15994 9974 1231 16054 2.52 16.45 
17448 9949 1010 16982 2.07 17.44 
18902 9811 823 17962 1.72 18.71 
20356 9873 628 17990 1.30 18.62 
21810 9814 512 18620 1.07 19.39 
23264 9644 427 19380 0.91 20.54 
24718 10312 288 19513 0.57 19.34 
26172 10247 247 19784 0.49 19.73 
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Table 80. (cont.) 
 

27626 9677 201 19943 0.43 21.06 
29080 10006 171 20817 0.35 21.26 
30534 10088 105 20957 0.21 21.23 
31988 9887 103 21109 0.21 21.82 
33442 10077 77 21273 0.16 21.57 
34896 10089 66 21044 0.13 21.32 
36350 9869 47 21217 0.10 21.97 
37804 9610 46 21124 0.10 22.46 

 

 
Figure 320. Decay of complex 71 and formation of 73 (Run 3). 

 
 

Table 81. Data for the decay of complex 71 and formation of 73. (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 6-B-3  
(−115.75 ppm) 

Integral CCP  
(−116.45 ppm) 

[mM]  
6-B-3 

[mM]  
CCP 

1454 9801 8697 2820 18.14 2.94 
2908 9797 7734 4181 16.14 4.36 
4362 10000 6698 5778 13.69 5.90 
5816 10036 5525 7490 11.25 7.63 
7270 9973 4666 8809 9.56 9.03 
8724 9949 3814 10196 7.84 10.47 
10178 9698 3187 11937 6.72 12.58 
11632 10023 2581 13014 5.26 13.27 
13086 9999 2071 13683 4.23 13.99 
14540 9963 1591 14833 3.26 15.22 
15994 9874 1316 15995 2.72 16.55 
17448 9912 1028 16679 2.12 17.20 
18902 9323 862 17539 1.89 19.23 
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Table 81. (cont.) 
 

20356 10122 674 18028 1.36 18.20 
21810 9488 507 18729 1.09 20.17 
23264 10092 446 19259 0.90 19.50 
24718 9497 346 20068 0.74 21.59 
26172 9918 273 20026 0.56 20.64 
27626 9815 200 20338 0.42 21.18 
29080 10288 164 19614 0.33 19.48 
30534 9991 130 20975 0.27 21.46 
31988 10130 106 20940 0.21 21.13 
33442 9989 74 21454 0.15 21.95 
34896 9797 103 21362 0.22 22.28 
36350 9358 74 21648 0.16 23.64 
37804 10008 42 21491 0.09 21.95 
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General Experimental 
 

Reactions were performed using glassware that had been flame-dried under vacuum or 

oven-dried (210 oC) overnight. All reactions were conducted under an inert atmosphere using 

argon connected to a drying tube equipped with phosphorous pentoxide, calcium sulfate, and 

sodium hydroxide. Solvents used for extraction were reagent grade. Reaction solvents 

tetrahydrofuran (Fisher, HPLC grade), diethyl ether (Fisher, HPLC grade), toluene (Fisher, HPLC 

grade), hexane (Fisher, HPLC grade), and methylene chloride (Fisher, HPLC grade) were dried by 

percolation through two columns packed with neutral alumina under positive pressure of argon 

(solvent dispersion system method). Benzene (ACS grade) and pentane (ACS grade) were distilled 

over sodium while methanol (ACS grade) was distilled over magnesium.  

Commercial reagents were purified by distillation or recrystallization prior to use unless 

otherwise noted. Tetrafluoroboric acid diethyl ether complex, cesium hydroxide monohydrate, 

isopropylmagnesium chloride solution (2M in THF), triphenylphosphine, thallium formate and 

trichlorophosphine, pinacol, 2-hydroxyisobutyric acid were all purchased from Aldrich. Palladium 

chloride was purchased from Pressure Chemical. Sodium tetraphenylboron was purchased from 

Mallinkrodt Chemical. 4-Fluorophenylboronic acid, 1,4-fluoroiodobenzene, 1,1’-

bis(diphenylphosphino)ferrocene, and 1,4-difluorobenzene were all purchased from Oakwood 

Products. The following compounds were prepared by literature methods, 4-

fluorophenylboroxine,132 potassium 4-fluorophenyltrihydroxyboronate,133 bromo(4-

fluorophenyl)(tri-tert-butylphosphine)palladium134 and allylcyclopentyl-palladium(II).135 
1H, 13C, 19F, and 31P, spectra were recorded on a Varian Unity, Agilent, or Bruker Avance 

600 MHz spectrometers (1H, 151 MHz; 13C, 565 MHz; 19F, 243 MHz; 31P, 193 MHz). 11B NMR 

spectra were reordered on a Varian Unity 400 MHz (11B NMR, 129 MHz). 

Spectra are referenced to residual chloroform (7.26 ppm, 1H; 77.00 ppm, 13C), residual 

THF (1.72 ppm, 1H; 68.21 ppm, 13C), 1,4-difluorobenzene (–120.00 ppm, 19F), Ph4BNa (−6.14 

ppm, 11B), triisopropylphosphine (19.00 ppm, 31P), and external HBF4•OEt2 (0.00 ppm, 11B). 

Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), d (doublet), t 

(triplet), q (quartet), p (pentet), h (hextet), m (multiplet) and br (broad).  Coupling constants, J, are 

reported in Hertz.  
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Experiment 66: Reaction of complex 70 with 117 and 4.0 equiv of i-Pr3P. 

 
An oven-dried, 5-mm, NMR tube was taken into the glove box and both [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (7.58 mg, 10 µmol, 1.0 equiv) and i-Pr3P (12 µL, 60 µmol, 6.0 equiv) were added, 

followed by the addition of 500 µL of freshly distilled (NaK) THF-d8. The tube was capped with 

a septum and Teflon taped, then the tube was shaken and placed into a −78 °C dry-ice acetone bath 

followed by the addition of 4-fluorophenylneopentyl boronate (4.2 mg, 20 µmol, 2.0 equiv) 

dissolved in THF (100 µL). The tube was shaken, and quickly cleaned with a Kimwipe and placed 

into the probe of the NMR spectrometer pre-cooled to −30 °C.  
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Figure 321. 19F NMR spectrum of 70 and 117 at −30 °C, referenced to 1,4-diflurobenzene 
(−120.00 ppm). 
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Experiment 67: Reaction of complex 70 with 119 and 3.0 equiv of i-Pr3P. 

 
An oven-dried, 5-mm, quartz NMR tube was taken into the glove box and both [(i-

Pr3P)Pd(4-FC6H4)(µ-OH)]2 (7.58 mg, 10 µmol, 1.0 equiv) and i-Pr3P (10 µL, 50 µmol, 5.0 equiv) 

were added, followed by the addition of 600 µL of freshly distilled (NaK) THF-d8. The tube was 

capped with a septum and Teflon taped, then the tube was shaken and placed into a −78 °C dry-

ice acetone bath followed by the addition of 4-fluorophenylpinacol boronate (4.5 mg 20 µmol, 2.0 

equiv) dissolved in THF (100 µL). The tube was shaken, and quickly cleaned with a Kimwipe and 

placed into the probe of the NMR spectrometer pre-cooled to −30 °C. Substantial cross-coupling 

product 73 was observed by fluorine NMR. 
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Figure 322. 19F NMR spectrum of 70 and 119 at −30 °C, referenced to 1,4-difluorobenzene 
(−120.00 ppm). 
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Experiment 68: Addition of 121 into 70. 

 
An oven-dried, 5-mm, NMR tube was taken into the glove box and both [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (7.58 mg, 10 µmol, 1.0 equiv) and i-Pr3P (19 µL, 100 µmol, 10.0 equiv) were 

added, followed by the addition of 500 µL of freshly distilled (NaK) THF-d8. The tube was capped 

with a septum and Teflon taped, then the tube was shaken and placed into a −78 °C dry-ice acetone 

bath followed by the addition of 4-fluorophenylcatechol boronate (4.3 mg, 20 µmol, 2.0 equiv) 

dissolved in THF (100 µL). The tube was shaken, and quickly cleaned with a Kimwipe and placed 

into the probe of the NMR spectrometer pre-cooled to −60 °C. Multiple specie were present by 19F 

NMR spectroscopy.  
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Figure 323. 19F NMR spectrum of 121 and 70  at −60 °C, referenced to 1,4-diflurobenzene 
(−120.00 ppm). 
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Experiment 69: RI-NMR injection of 121 into 70. 

 

 
 

An oven-dried, 5-mm, quartz NMR tube was taken into the glove box and both [(i-

Pr3P)Pd(4-FC6H4)(µ-OH)]2 (7.58 mg, 10 µmol, 1.0 equiv) and i-Pr3P (19 µL, 100 µmol, 10.0 equiv) 

were added, followed by the addition of 500 µL of freshly distilled (NaK) THF-d8. The tube was 

capped with a septum and Teflon taped, then the tube was shaken and placed into a −78 °C dry-

ice acetone bath followed by the addition of 4-fluorophenylcatechol boronate (4.3 mg, 20 µmol, 

2.0 equiv) dissolved in THF (100 µL). The tube was shaken, and quickly cleaned with a Kimwipe 

and placed into the probe of the NMR spectrometer pre-cooled to −60 °C. Multiple specie were 

present by 19F NMR spectroscopy.  
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Figure 324. 19F NMR spectrum of 121 and 70  at −60 °C, referenced to 1,4-diflurobenzene 
(−120.00 ppm). 
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Figure 325. 19F NMR spectra of 121 and 70  at −60 °C, referenced to 1,4-diflurobenzene (−120.00 
ppm). 
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Figure 326. 31P NMR spectra of 121 and 70  at −60 °C, referenced i-Pr3P (−19.00 ppm). 
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Experiment 70: Preparation of 8-B-4 complex 129 in THF 

 
An oven-dried, NMR tube was charged with catechol 4-fluorophenylboronic ester (44 mg, 

120 µmol, 1.0 equiv) and 500 µL of THF-d8 yielding a 0.72 M solution. 

An oven dried, 5-mm, Quartz NMR tube was charged with [(i-Pr3P)Pd(4-FC6H4)(µ-OH)]2 

(7.58 mg, 10 µmol, 1.0 equiv) and 500 µL of THF-d8 followed by sonication for ~2 min. The tube 

was shaken and placed into a −78 °C dry-ice acetone bath followed by the addition of the catechol 

4-fluorophenylboronic ester (95 µL, 20 µmol, 2.0 equiv) solution. The tube was vortexed (not 

shaken) quickly cleaned with a Kimwipe and placed into the −78 °C bath. The tube was then placed 

into the probe of the NMR spectrometer pre-cooled to −55 °C. The sample was found to be stable 

for ~3-4 h at −55 °C. The complex was characterized via 1D and 2D NMR experiments over a 

course of multiple experiments. 

Data for 129: 
1H NMR: (600 MHz, THF-d8) 

7.66 (m, 2 HC(8)), 7.31 (m, 2 HC(3)), 6.90 (m, 2 HC(9)), 6.82 (m, 2 CH(2)), 6.38 

(m, 2 CH(12)), 6.20 (m, 2 CH(13)), 5.00 (broad, HO), 2.28 (m, 6 HC(5)), 1.24 (m, 

36 HC(6)) 

 
13C NMR: (151 MHz, THF-d8) 

164.64, 163.06 (d, 1J(F-C) = 241 Hz, 1 C(10)), 163.80, 162.20 (d, 1J(F-C) = 240 

Hz, 1 C(1)), 153.88 (s, 2 C(11)), 144.52 (Obs. in HMBC, 1 C(4)), 138.02 (m, 2 

C(8)), 136.85 (Obs. in HMBC, 1 C(7)), 135.02, 134.98 (d, 3J(F-C) = 7 Hz 2 C(3)), 

119.28 (s, 2 C(12)), 115.48, 115.34 (d, 2J(F-C) = 18 Hz, 2 C(9)), 114.88, 114.75 (d, 
2J(F-C) = 18 Hz, 2 C(2)), 110.83 (s, 2 C(13)), 25.88 (UD, 3 C(5)), 20.19 (s, 6 C(6))  
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19F NMR: (565 MHz, THF-d8) 

  −117.43 (s, FC(10)), −120.77 (s, FC(1)),  
31P NMR: (243 MHz, THF-d8) 

  51.85 (s, 1 P(Pd)) 
11B NMR: (129 MHz, THF-d8) 

  12 ppm (br, 1 B(O)) 
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Figure 327. 1H NMR spectrum of 129 at −55 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 328. 13C NMR spectrum of 129 at −55 °C, referenced to THF-d8 (68.21 ppm). 
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Figure 329. 19F NMR spectrum of 129 at −55 °C, referenced to 1,4-difluorobenzene (−120 ppm). 
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Figure 330. 19F NMR spectrum of 129 at −55 °C, referenced externally to i-Pr3P (19 ppm). 
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Figure 331. 11B NMR spectrum of 129 at −55 °C, referenced to Ph4BNa (−6.14 ppm). 
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Figure 332. COSY NMR spectrum of xx at −55 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 333. 1D-Phase cycled NOE spectrum at −55 °C (CH3 irradiated at 1.24 ppm) (TOP) and 
1H NMR spectrum (bottom) at −55 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 334. gHSQC spectrum of 129 at −55 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Figure 335. gHMBC spectrum of 129 at −55 °C, referenced to THF-d8 (1.72 and 68.21 ppm). 
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Experiment 71: Preparation of 8-B-4 complex 132 in THF 

 
An oven-dried, 5-mm, NMR tube was charged with freshly sublimed 4-

fluorophenylboronic acid glycol ester (20 mg, 120 µmol, 1.0 equiv) followed by the addition of 

500 µL of THF (NaK) yielding a 4-fluorophenylboronic acid solution (0.72 M). 

An oven dried, 5-mm, NMR tube as charged with [(i-Pr3P)Pd(4-FC6H4)(µ-OH)]2 (7.58 mg, 

10 µmol, 1.0 equiv) and 500 THF (NaK)  followed by sonication for ~2 min. The tube was placed 

into a −78 °C dry-ice acetone bath followed by the addition of 4-fluorophenylboronic acid glycol 

ester solution (95 µL, 20 µmol, 2.0 equiv). The tube was vortexed (not shaken) quickly cleaned 

with a Kimwipe and placed into the −78 °C bath. The tube was then placed into the probe of the 

NMR spectrometer pre-cooled to −55 °C. The sample was found to be stable for ~3-4 h at −55 °C. 

The complex was characterized via 1D experiments over a course of multiple experiments. 

Data for 132: 
19F NMR: (565 MHz, THF-d8) 

  −118.65 (s, FC(10)), −121.64 (s, FC(1)),  
31P NMR: (243 MHz, THF-d8) 

  56.00 (s, 1 P(Pd)) 
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Figure 336. 1H NMR spectrum of 132 at −55 °C, referenced to THF-d8 (1.72 ppm). 
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Figure 337. 31P NMR spectrum of 132 at −55 °C, externally referenced to i-Pr3P (19.00 ppm). 
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Experiment 72: Addition of 117 to 80 

 
An oven-dried, 5-mm, NMR tube was charged with 4-fluorophenylboronic neopently acid 

solution (22 mg, 105 µmol) and 500 µL of THF (NaK) followed by sonication until the solid had 

dissolved yielding a 0.21 M solution. 

An oven dried, 5-mm, NMR tube as charged with [(i-Pr3P)Pd(4-FC6H4)(µ-OH)]2 (7.58 mg, 

10 µmol, 1.0 equiv) and 500 THF (NaK) followed by sonication for ~2 min. The tube was placed 

into a −78 °C dry-ice acetone bath followed by the addition of 4-fluorophenylboronic neopently 

acid solution (95 µL, 20 µmol, 2.0 equiv). The tube was vortexed (not shaken) quickly wiped with 

a Kimwipe and placed into the probe of the NMR spectrometer pre-cooled to −55 °C. No 

intermediate was observed via 19F NMR. The reaction mixture was found to give cross-coupled 

product slowly at −55 °C thus it was warmed to −30 °C where cross-coupled product was observed 

over ~20 min. 
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Figure 338. 19F NMR spectrum of 117 and 80 at −55 °C, referenced to 1,4-difluorobenzene (−120 
ppm). 
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Figure 339. Cross-coupled product 73 formation at −30 °C, referenced to 1,4-difluorobenzene 
(−120 ppm). 
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Experiment 73: Reaction of complex 80 with 119 

 
An oven-dried, 5-mm, NMR tube was charged with 4-fluorophenylboronic pinacol acid 

solution (23 mg, 105 µmol) and 500 µL of THF (NaK) followed by sonication until the solid had 

dissolved yielding a 0.21 M solution. 

An oven dried, 5-mm, NMR tube as charged with [(i-Pr3P)Pd(4-FC6H4)(µ-OH)]2 (7.58 mg, 

10 µmol, 1.0 equiv) and 1,4-difluorobenzene (0.5 µL, 4.8 µmol) followed by 500 µL of THF 

(NaK). The tube was placed into a −78 °C dry-ice acetone bath followed by the addition of 4-

fluorophenylboronic pinacol acid solution (95 µL, 20 µmol, 2.0 equiv). The tube was vortexed (not 

shaken) quickly wiped with a Kimwipe and placed into the probe of the NMR spectrometer pre-

cooled to −55 °C. No intermediate was observed via 19F NMR. The reaction mixture was found to 

give cross-coupled product slowly −30 °C where cross-coupled product was observed over ~4.5 

hr. 
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Figure 340. 19F NMR spectrum of 119 and 80 at −55 °C, referenced to 1,4-difluorobenzene (−120 
ppm). 
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Figure 341. Cross-coupled product 73 formation at −30 °C, referenced to 1,4-difluorobenzene 
(−120 ppm). 
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Experiment 74: Preparation of 8-B-4 complex 135 

 
A 1-mL volumetric flask was charged with freshly sublimed 2-hydroxy-2-methylpropanoic 

acid 4-fluorophenylboronate (44.0 mg, 210 µmol). Then ~0.5 mL of THF (NaK) was added and 

sonicated until the solid had dissolved. Once dissolved the flask was filled to the mark with THF 

(NaK) generating a 0.21 M solution of 2-hydroxy-2-methylpropanoic acid 4-

fluorophenylboronate. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol) and 1,4-difluorobenzene (2.5 µL, 24 µmol) followed by 

dissolving with THF (NaK) to the 2-mL mark. An oven dried, 5-mm, NMR tube was taken into 

the dry box and 500 µL of the freshly prepared solution was added. The tube was capped with a 

septum and Teflon taped. The sample was removed from the glove box and inserted into a −78 °C 

acetone dry-ice bath followed by the addition of the 2-hydroxy-2-methylpropanoic acid 4-

fluorophenylboronate solution (95 µL, 20.5 µmol, 2.0 equiv) via a 100 µL glass syringe. The NMR 

tube was vortexed (not shaken) and cleaned with a Kimwipe followed by re-insertion into the −78 

°C bath. Then the tube was placed into the NMR probe set to −30 °C. Two broad 19F NMR signals 

were observed after the addition.  

Data for 135: 
19F NMR: (565 MHz, THF-d8) 

  −117.53 (s, FC(10)), −116.74 (s, FC(1)),  
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Figure 342. 19F NMR spectrum of 135 at −55 °C, referenced to 1,4-difluorobenzene (−120 ppm). 
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Experiment 75: Injection of oxalic acid 137 

 
A 50-mL volumetric flask was charged with oxalic acid 4-fluorophenylboronate (0.97 g, 5 

mmol). Then ~15 mL of THF (NaK) was added and sonicated until the solid had dissolved. Once 

dissolved the flask was filled to the mark with THF (NaK) generating a 0.1 M solution of oxalic 

acid 4-fluorophenylboronate. The rapid injection apparatus was then charged with the solution.   

A 2-mL volumetric flask was charged with [(i-Pr3P)Pd(4-FC6H4)(µ-OH)]2 (38.3 mg, 50.5 

µmol) and 1,4-difluorobenzene (3 µL, 29 µmol) followed by dissolving with THF (NaK) to the 2-

mL mark. An oven dried, 5-mm, NMR tube was taken into the dry box and 395 µL of the freshly 

prepared solution was added. The tube was capped with a septum and Teflon taped. The sample 

was removed from the glove box and inserted into a −78 °C acetone dry-ice bath followed by 

insertion into the NMR probe with the cap off set to −100 °C. Then the injector system was lowered 

into the magnet and allowed to cool for 15 min. Then 200 µL (2.0 equiv, 20 µmol) of the oxalic 

acid 4-fluorophenylboronate solution was injected at a rate of 50 µL/s over 5 s. The first 19F NMR 

spectrum displayed only cross-coupled product 73. 
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Figure 343. 19F NMR spectra (RI-NMR) of 80 with 137 at −100 °C, referenced to 1,4-
difluorobenzene (−120 ppm). 
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Experiment 76: Cross-coupling formation from complex 129 in THF                   

 
A oven dried 5-mm NMR tube was charged with freshly sublimed 4-fluorophenylboronic 

acid catechol ester (23 mg, 107 µmol) followed by 500 µL of THF (NaK) generating a 21 mM 

solution. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol) and 1,4-difluorobenzene (2.5 µL, 24 µmol) followed by 

dissolving with THF (SDS) to the 2-mL mark. An oven dried, 5-mm, NMR tube was taken into 

the dry box and 500 µL of the freshly prepared solution was added. The tube was capped with a 

septum and Teflon taped. The sample was removed from the glove box and inserted into a −78 °C 

acetone dry-ice bath followed by the addition of (95 µL, 20.3 µmol, 2.0 equiv) of 4-

fluorophenylboronic acid catechol ester Stock Sol. via a 100 µL glass syringe. The NMR tube was 

vortexed (not shaken), and cleaned with a Kimwipe then placed into the NMR probe set to −30 

°C.  

Using the fluorine channel to collect a spectrum every 37 s, the progress of the reaction 

was monitored by the decay of the ester complex (−117.36 ppm) and formation of cross-coupling 

product (−116.45 ppm) in comparison with the internal reference 1,4-difluorobenzene (−120.00 

ppm). The first order decay and formation profiles were fitted with OrginPro 2015 software using 

equations 1 and 2 respectively. This procedure was performed three times to obtain an average 

rate.136 The rate obtained was used to calculate ΔG‡ using the Eyring equation 3.  

 

Equation 9. 

𝐴 = [𝐴]3𝑒>?@ 
Equation 10. 

𝑃 = 𝐴 3(1 − 𝑒>?@) 
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Equation 11. 

𝑘 =
𝐾-𝑇
ℎ 𝑒

>∆F‡
GH  

 
 
Table 82. Results from the cross-coupling reaction. 

Entry k (s−1)  
(Decay 8-B-4) 

k (s−1)  
 (Form CCP) 

A0 [mM]  
(Decay 8-B-4) 

A0 [mM]  
(Form CCP) 

Run 1 (2.98 ± 0.19) x 10−3 (2.06 ± 0.74) x 10−3 24.44 ± 0.67 22.88 ± 0.26 
Run 2 (3.35 ± 0.13) x 10−3 (2.34 ± 0.10) x 10−3 30.31 ± 0.86 23.28 ± 0.30 
Run 3 (3.08 ± 0.14) x 10−3 (3.00 ± 0.12) x 10−3 27.79 ± 0.90 18.91 ± 0.19 

k avg. Decay of 8-B-4 = (2.74 ± 0.32) x 10−3 s−1 

k avg. Formation of CCP = (2.60 ± 0.17) x 10−3 s−1 

ΔG‡ = (16.99 ± 0.06) kcal/mol at −30 °C 
ΔG‡ = Calculated = (17.7) kcal/mol at −30 °C 

 

 
Figure 344. Decay of complex 129 and formation of 73 (Run 1). 

 
Table 83. Data for the decay of complex 129 and formation of 73 (Run 1). 

 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 129  

(−117.36 ppm) 
Integral 73  

(−116.45 ppm) 
[mM]  
129 

[mM]  
73 

37 1929 1871 121 19.82 0.64 
74 1613 1644 380 20.83 2.40 
111 1558 1499 644 19.67 4.22 
148 1448 1274 905 17.98 6.39 
185 1502 1025 1078 13.95 7.34 
222 1491 878 1371 12.04 9.40 
259 1499 742 1474 10.13 10.05 
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Table 83. (cont.) 
 

296 1563 718 1572 9.39 10.28 
333 1305 579 1752 9.08 13.72 
370 1546 507 1845 6.70 12.20 
407 1494 465 1966 6.36 13.45 
444 1424 431 2005 6.19 14.40 
481 1479 371 2080 5.12 14.37 
518 1481 279 2181 3.85 15.05 
555 1395 313 2279 4.59 16.70 
592 1496 204 2322 2.79 15.87 
629 1403 221 2338 3.22 17.03 
666 1504 243 2461 3.30 16.72 
703 1480 242 2418 3.34 16.70 
740 1438 181 2466 2.57 17.52 
777 1537 193 2545 2.57 16.93 
814 1443 215 2573 3.04 18.23 
851 1420 230 2671 3.31 19.22 
888 1467 174 2719 2.42 18.94 
925 1375 165 2725 2.45 20.26 
962 1467 135 2663 1.88 18.55 
999 1475 148 2710 2.05 18.78 
1036 1438 129 2747 1.84 19.52 
1073 1500 113 2776 1.54 18.91 
1110 1486 94 2819 1.29 19.39 
1147 1449 111 2792 1.57 19.69 
1184 1428 102 2881 1.45 20.63 
1221 1446 115 2925 1.62 20.68 
1258 1447 100 2840 1.41 20.06 
1295 1374 72 2905 1.08 21.61 
1332 1396 64 2956 0.94 21.64 
1369 1347 69 2859 1.05 21.70 
1406 1369 85 2952 1.27 22.04 
1443 1337 62 2949 0.95 22.54 
1480 1337 60 2978 0.91 22.76 
1517 1402 51 2980 0.74 21.73 
1554 1390 57 3018 0.83 22.19 
1591 1366 63 3059 0.94 22.88 
1628 1386 7 2993 0.10 22.06 
1665 1381 42 3100 0.63 22.94 
1702 1412 43 3000 0.62 21.71 
1739 1412 32 3061 0.46 22.16 
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Table 83. (cont.) 
 

1776 1358 1 3038 0.01 22.86 
1813 1383 21 3051 0.31 22.55 
1850 1338 10 3113 0.15 23.77 

 
Figure 345. Decay of complex 129 and formation of 73 (Run 2). 

 
Table 84. Data for the decay of complex 129 and formation of 73 (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 129  

(−117.36 ppm) 
Integral 73  

(−116.45 ppm) 
[mM]  
129 

[mM]  
73 

37 1818 2120 79 23.83 0.44 
74 1327 1703 346 26.22 2.67 
111 1254 1478 691 24.10 5.63 
148 1270 1122 903 18.05 7.27 
185 1322 1097 1178 16.97 9.11 
222 1357 939 1366 14.14 10.29 
259 1342 782 1549 11.92 11.80 
296 1308 615 1694 9.60 13.24 
333 1293 663 1787 10.47 14.12 
370 1451 596 1920 8.39 13.53 
407 1507 452 2073 6.13 14.06 
444 1465 414 2159 5.77 15.06 
481 1291 359 2162 5.68 17.11 
518 1489 276 2308 3.79 15.85 
555 1461 245 2421 3.42 16.94 
592 1503 228 2446 3.10 16.63 
629 1529 306 2633 4.09 17.60 
666 1391 233 2562 3.42 18.82 
703 1536 238 2692 3.17 17.91 
740 1545 245 2793 3.25 18.47 
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Table 84. (cont.) 
 

777 1554 216 2776 2.84 18.26 
814 1420 235 2711 3.38 19.51 
851 1517 179 2903 2.42 19.56 
888 1480 170 2909 2.35 20.09 
925 1522 159 2844 2.14 19.10 
962 1489 182 2910 2.50 19.98 
999 1532 138 3178 1.84 21.19 
1036 1589 120 3255 1.55 20.94 
1073 1418 126 2923 1.82 21.06 
1110 1504 124 3072 1.69 20.88 
1147 1531 126 3266 1.68 21.80 
1184 1549 113 3319 1.49 21.90 
1221 1479 114 3065 1.57 21.18 
1258 1540 88 3393 1.16 22.52 
1295 1483 105 3220 1.45 22.20 
1332 1577 78 3497 1.02 22.66 
1369 1519 50 3341 0.67 22.48 
1406 1472 65 3326 0.91 23.09 
1443 1484 39 2889 0.54 19.90 
1480 1504 51 3181 0.70 21.61 
1517 1539 47 3315 0.62 22.02 
1554 1392 45 3136 0.66 23.03 
1591 1532 8 3060 0.10 20.41 
1628 1452 6 3443 0.08 24.24 
1665 1523 4 3545 0.05 23.79 
1702 1499 42 3577 0.57 24.39 
1739 1522 32 3435 0.43 23.06 
1776 1303 5 3261 0.08 25.58 
1813 1433 5 3400 0.07 24.24 
1850 1459 8 3393 0.11 23.77 
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Figure 346. Decay of complex 129 and formation of 73 (Run 3). 

 
 

Table 85. Data for the decay of complex 129 and formation of 73. (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 129  

(−117.36 ppm) 
Integral 73  

(−116.45 ppm) 
[mM]  
129 

[mM]  
73 

37 1922 1895 76 20.16 0.40 
74 1311 1743 303 27.16 2.36 
111 1319 1384 667 21.45 5.17 
148 1367 1253 926 18.73 6.92 
185 1421 1078 1170 15.51 8.41 
222 1275 913 1239 14.63 9.93 
259 1417 777 1500 11.21 10.82 
296 1376 689 1610 10.23 11.95 
333 1482 626 1729 8.64 11.92 
370 1448 605 1881 8.54 13.28 
407 1497 517 2032 7.06 13.87 
444 1423 442 2106 6.35 15.12 
481 1502 432 2145 5.88 14.60 
518 1443 419 2214 5.93 15.68 
555 1514 318 2323 4.30 15.68 
592 1573 358 2359 4.65 15.33 
629 1616 304 2471 3.85 15.63 
666 1679 260 2492 3.16 15.17 
703 1643 257 2578 3.20 16.04 
740 1575 214 2611 2.77 16.94 
777 1662 205 2588 2.52 15.92 
814 1735 235 2690 2.77 15.85 
851 1739 157 2774 1.84 16.30 
888 1718 181 2810 2.15 16.72 
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Table 85. (cont.) 
 

925 1780 213 2903 2.44 16.66 
962 1526 173 2870 2.31 19.23 
999 1732 135 2940 1.60 17.35 
1036 1687 119 2972 1.44 18.01 
1073 1678 160 2964 1.95 18.06 
1110 1710 132 3048 1.58 18.21 
1147 1700 145 2953 1.74 17.75 
1184 1819 105 3098 1.18 17.41 
1221 1824 109 3065 1.22 17.18 
1258 1657 106 3156 1.31 19.47 
1295 1723 126 3094 1.50 18.35 
1332 1685 76 3153 0.92 19.13 
1369 1766 90 3187 1.05 18.45 
1406 1780 78 3148 0.90 18.08 
1443 1683 66 3166 0.81 19.23 
1480 1778 -3 3186 -0.03 18.31 
1517 1793 59 3312 0.67 18.88 
1554 1662 52 3124 0.64 19.21 
1591 1733 49 3212 0.58 18.94 
1628 1731 64 3183 0.76 18.79 
1665 1744 -37 3248 -0.43 19.04 
1702 1709 3 3299 0.04 19.73 
1739 1801 37 3211 0.42 18.22 
1776 1698 42 3365 0.51 20.25 
1813 1775 48 3422 0.55 19.70 
1850 1714 2 3345 0.03 19.94 
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Experiment 77: Cross-coupling formation from complex 132 in THF                   

 
A oven dried 1 mL volumetric flask was charged with freshly sublimed 4-

fluorophenylboronic acid glycol ester (34.8 mg, 210 µmol) followed by filling to the mark with 

THF (NaK) generating a 0.21 M solution. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol) and 1,4-difluorobenzene (2.5 µL, 24 µmol) followed by 

dissolving with THF (NaK) to the 2-mL mark. An oven dried, 5-mm, NMR tube was taken into 

the dry box and 500 µL of the freshly prepared solution was added. The tube was capped with a 

septum and Teflon taped. The sample was removed from the glove box and inserted into a −78 °C 

acetone dry-ice bath followed by the addition of (95 µL, 20.3 µmol, 2.0 equiv) of 4-

fluorophenylboronic acid glycol ester Stock Sol. via a 100 µL glass syringe. The NMR tube was 

vortexed (not shaken), and cleaned with a Kimwipe then placed into the NMR probe set to −30 

°C.  

Using the fluorine channel to collect a spectrum every 9 s, the progress of the reaction was 

monitored by the formation of cross-coupling product (−116.45 ppm) in comparison with the 

internal reference 1,4-difluorobenzene (−120.00 ppm). The first order formation profiles were 

fitted with OrginPro 2015 software using equation 2. This procedure was performed three times to 

obtain an average rate.136 
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Table 86. Results from the cross-coupling reaction. 

Entry k (s−1)  
 (Form CCP) 

A0 [mM]  
(Form CCP) 

Run 1 (1.33 ± 0.36) x 10−2 30.11 ± 0.18 
Run 2 (1.32 ± 0.39) x 10−2 30.43 ± 0.20 
Run 3 (1.34 ± 0.38) x 10−2 30.35 ± 0.19 

k avg. Formation of CCP = (1.33 ± 0.07) x 10−2 s−1 

 

 
Figure 347. Formation of 73 from 132. (Run 1). 

 
Table 87. Data for the formation of 73 from 132. (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 73  

(−116.45 ppm) 
[mM]  

73 
9 254.764 51.7227 2.07 
18 253.934 105.717 4.25 
27 242.048 169.056 7.14 
36 237.523 256.964 11.06 
45 239.187 322.273 13.77 
54 233.392 375.806 16.46 
63 234.333 418.953 18.27 
72 232.435 462.001 20.31 
81 235.098 470.89 20.47 
90 227.69 511.5 22.96 
99 238.008 516.946 22.20 
108 228.403 528.615 23.65 
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Table 87. (cont.) 
117 232.611 543.742 23.89 
126 226.054 558.612 25.26 
135 234.131 569.999 24.88 
144 236.392 580.296 25.09 
153 232.516 589.523 25.91 
162 235.137 590.637 25.67 
171 235.148 606.981 26.38 
180 234.187 609.319 26.59 
189 231.285 612.839 27.08 
198 233.59 620.06 27.13 
207 232.709 619.637 27.21 
216 227.967 613.949 27.52 
225 233.371 631.827 27.67 
234 231.194 629.206 27.81 
243 234.184 644.014 28.11 
252 230.052 648.808 28.82 
261 233.181 650.712 28.52 
270 230.534 655.002 29.04 
279 229.192 639.118 28.50 
288 230.505 663.478 29.42 
297 229.098 670.623 29.92 
306 230.742 674.126 29.86 
315 227.534 675.651 30.35 
324 229.801 675.306 30.03 
333 230.279 661.896 29.38 
342 232.72 676.732 29.72 
351 242.488 670.988 28.28 
360 233.627 684.117 29.93 
369 230.73 678.815 30.07 
378 236.296 693.288 29.99 
387 232.105 699.037 30.78 
396 238.934 695.411 29.75 
405 229.191 682.122 30.42 
414 234.281 690.056 30.10 
423 232.875 699.447 30.70 
432 234.495 697.668 30.41 
441 231.566 688.503 30.39 
450 235.037 706.371 30.71 
459 231.083 697.322 30.84 
468 231.274 713.147 31.51 
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Table 87. (cont.) 
 

477 235.33 712.844 30.96 
 

 
Figure 348. Formation of 73 from 132. (Run 2).  

 
Table 88. Data for the formation of 73 from 132. (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 73  

(−116.45 ppm) 
[mM]  

73 
9 261.868 53.9886 2.11 
18 262.268 124.107 4.84 
27 260.043 190.318 7.48 
36 243.875 270.19 11.32 
45 248.723 353.392 14.52 
54 242.33 401.879 16.95 
63 243.175 436.499 18.34 
72 246.249 479.677 19.91 
81 244.336 493.34 20.64 
90 236.338 535.952 23.18 
99 247.321 540.02 22.32 
108 245.146 555.945 23.18 
117 242.596 582.907 24.56 
126 245.687 596.595 24.82 
135 242.225 602.626 25.43 
144 245.859 619.099 25.74 
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Table 88. (cont.) 
 

153 243.452 625.253 26.25 
162 246.55 638.474 26.47 
171 244.088 633.735 26.53 
180 240.185 625.758 26.63 
189 246.122 650.323 27.00 
198 249.372 638.632 26.17 
207 245.259 660.012 27.50 
216 254.339 655.144 26.33 
225 243.409 683.409 28.69 
234 241.163 675.558 28.63 
243 243.272 695.035 29.20 
252 243.082 683.054 28.72 
261 239.265 686.527 29.32 
270 242.113 696.669 29.41 
279 237.811 686.316 29.49 
288 234.649 690.851 30.09 
297 247.493 704.377 29.09 
306 247.208 711.701 29.42 
315 241.088 714.101 30.27 
324 245.525 714.107 29.72 
333 244.302 695.637 29.10 
342 250.626 717.251 29.25 
351 243.698 726.074 30.45 
360 240.996 722.319 30.63 
369 246.903 717.01 29.68 
378 242.446 729.313 30.74 
387 243.764 720.28 30.20 
396 251.294 740.136 30.10 
405 242.181 726.809 30.67 
414 240.546 746.57 31.72 
423 243.708 720.8 30.23 
432 247.424 745.58 30.80 
441 241.545 751.145 31.78 
450 245.797 746.419 31.04 
459 238.78 744.595 31.87 
468 236.293 750.547 32.46 
477 247.624 740.784 30.57 
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Figure 349. Formation of 73 from 132. (Run 3).  

 
Table 89. Data for the formation of 73 from 132. (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 73  

(−116.45 ppm) 
[mM]  

73 
9 249.188 59.0079 2.42 
18 241.209 125.223 5.31 
27 243.152 200.677 8.43 
36 238.157 277.485 11.91 
45 237.943 338.726 14.55 
54 234.895 392.689 17.09 
63 239.766 425.069 18.12 
72 236.897 477.002 20.58 
81 235.396 488.568 21.21 
90 233.489 521.558 22.83 
99 238.723 538.537 23.06 
108 236.351 529.852 22.91 
117 231.33 544.719 24.07 
126 233.032 554.233 24.31 
135 233.472 582.389 25.49 
144 235.166 590.639 25.67 
153 233.471 579.779 25.38 
162 231.962 589.994 25.99 
171 242.52 611.337 25.76 
180 235.726 600.135 26.02 
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Table 89. (cont.) 
 

189 231.254 617.317 27.28 
198 226.977 623.414 28.07 
207 230.234 618.42 27.45 
216 232.818 630.779 27.69 
225 235.152 639.05 27.77 
234 233.124 637.877 27.96 
243 232.54 654.291 28.76 
252 231.494 642.834 28.38 
261 226.529 663.506 29.93 
270 237.744 663.955 28.54 
279 231.08 667.063 29.50 
288 230.365 652.795 28.96 
297 229.645 677.351 30.14 
306 234.402 672.075 29.30 
315 235.703 677.096 29.36 
324 236.671 676.298 29.20 
333 230.738 675.573 29.92 
342 236.998 678.357 29.25 
351 233.149 687.08 30.12 
360 231.769 694.848 30.64 
369 234.251 692.478 30.21 
378 237.688 689.465 29.65 
387 233.293 695.658 30.48 
396 233.764 697.893 30.51 
405 229.484 708.601 31.56 
414 234.681 700.168 30.49 
423 232.796 701.577 30.80 
432 232.625 705.728 31.01 
441 230.488 715.812 31.74 
450 231.489 714.224 31.53 
459 232.758 719.151 31.58 
468 230.39 721.39 32.00 
477 235.21 720.426 31.30 
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Experiment 78: Cross-coupling formation from complex 105 in THF                   

 
A oven dried 1 mL volumetric flask was charged with freshly distilled 4-

fluorophenylboronic acid methyl ester (35 mg, 210 µmol) followed by filling to the mark with 

THF (NaK) generating a 0.21 M solution. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol) and 1,4-difluorobenzene (2.5 µL, 24 µmol) followed by 

dissolving with THF (NaK) to the 2-mL mark. An oven dried, 5-mm, NMR tube was taken into 

the dry box and 500 µL of the freshly prepared solution was added. The tube was capped with a 

septum and Teflon taped. The sample was removed from the glove box and inserted into a −78 °C 

acetone dry-ice bath followed by the addition of (95 µL, 20.3 µmol, 2.0 equiv) of 4-

fluorophenylboronic acid glycol ester Stock Sol. via a 100 µL glass syringe. The NMR tube was 

vortexed (not shaken), and cleaned with a Kimwipe then placed into the NMR probe set to −30 

°C.  

Using the fluorine channel to collect a spectrum every 9 s, the progress of the reaction was 

monitored by the formation of cross-coupling product (−116.45 ppm) in comparison with the 

internal reference 1,4-difluorobenzene (−120.00 ppm). The first order formation profiles were 

fitted with OrginPro 2015 software using equation 1. This procedure was performed three times to 

obtain an average rate.136  
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Table 90. Results from the cross-coupling reaction. 

Entry k (s−1)  
 (Form CCP) 

A0 [mM]  
(Form CCP) 

Run 1 (1.53 ± 0.64) x 10−2 38.47 ± 0.34 
Run 2 (0.99 ± 0.33) x 10−2 26.45 ± 0.24 
Run 3 (1.20 ± 0.28) x 10−2 25.96 ± 0.15 

k avg. Formation of CCP = (1.24 ± 0.02) x 10−2 s−1 

 

 
Figure 350. Formation of 73 from 105. (Run 1). 

 
Table 91. Data for the formation of 73 from 105. (Run 1). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 73  

(−116.45 ppm) 
[mM]  

73 
9 174.335 51.7227 3.03 
18 174.486 105.717 6.19 
27 179.253 169.056 9.64 
36 171.265 256.964 15.33 
45 171.134 322.273 19.25 
54 159.418 375.806 24.09 
63 169.331 418.953 25.29 
72 164.502 462.001 28.70 
81 168.014 470.89 28.64 
90 165.897 511.5 31.51 
99 174.625 516.946 30.25 
108 172.84 528.615 31.26 
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Table 91. (cont.) 
 

117 171.342 543.742 32.43 
126 183.366 558.612 31.13 
135 177.998 569.999 32.73 
144 174.743 580.296 33.94 
153 177.122 589.523 34.02 
162 175.495 590.637 34.40 
171 184.924 606.981 33.55 
180 174.349 609.319 35.72 
189 168.978 612.839 37.07 
198 174.982 620.06 36.22 
207 178.34 619.637 35.51 
216 176.176 613.949 35.62 
225 200.702 631.827 32.17 
234 182.541 629.206 35.23 
243 176.634 644.014 37.26 
252 179.604 648.808 36.92 
261 171.379 650.712 38.80 
270 176.391 655.002 37.95 
279 170.987 639.118 38.20 
288 184.331 663.478 36.79 
297 173.333 670.623 39.54 
306 185.493 674.126 37.14 
315 188.88 675.651 36.56 
324 176.138 675.306 39.18 
333 168.491 661.896 40.15 
342 178.823 676.732 38.68 
351 179.612 670.988 38.18 
360 183.001 684.117 38.21 
369 176.795 678.815 39.24 
378 187.816 693.288 37.73 
387 191.376 699.037 37.33 
396 190.561 695.411 37.30 
405 177.251 682.122 39.33 
414 183.018 690.056 38.53 
423 179.591 699.447 39.80 
432 172.457 697.668 41.34 
441 177.685 688.503 39.60 
450 172.05 706.371 41.96 
459 185.761 697.322 38.36 
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Figure 351. Formation of 73 from 105. (Run 2). 

 
Table 92. Data for the formation of 73 from 105. (Run 2). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 73  

(−116.45 ppm) 
[mM]  

73 
9 286.699 23.7818 0.85 
18 268.384 56.2848 2.14 
27 256.513 96.5488 3.85 
36 252.627 144.27 5.84 
45 242.445 190.577 8.03 
54 236.901 238.605 10.29 
63 229.555 281.477 12.53 
72 236.473 320.34 13.84 
81 226.774 349.884 15.77 
90 239.885 379.419 16.16 
99 222.87 398.929 18.29 
108 223.349 418.961 19.17 
117 232.38 432.131 19.00 
126 243.28 454.844 19.11 
135 243.879 470.601 19.72 
144 237.742 473.674 20.36 
153 233.078 490.947 21.53 
162 244.254 505.784 21.16 
171 235.238 514.473 22.35 
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Table 92 (cont.) 
 

180 246.936 516.785 21.39 
189 244.266 530.645 22.20 
198 237.056 530.64 22.88 
207 243.463 552.218 23.18 
216 245.653 548.114 22.80 
225 241.901 554.108 23.41 
234 248.438 554.019 22.79 
243 245.185 569.938 23.76 
252 244.014 556.943 23.33 
261 238.265 576.35 24.72 
270 244.301 571.716 23.92 
279 237.646 582.347 25.04 
288 242.073 594.51 25.10 
297 241.57 591.118 25.01 
306 249.979 598.085 24.45 
315 243.872 601.185 25.19 
324 246.099 601.584 24.98 
333 248.435 609.716 25.08 
342 239.981 613.892 26.14 
351 250.93 608.418 24.78 
360 233.038 609.384 26.72 
369 245.144 615.556 25.66 
378 240.198 627.347 26.69 
387 250.854 615.173 25.06 
396 242.62 608.455 25.63 
405 247.664 625.794 25.82 
414 250.487 623.265 25.43 
423 244.58 628.916 26.28 
432 246.682 632.833 26.22 
441 247.708 640.468 26.42 
450 249.835 641.178 26.23 
459 238.466 642.515 27.54 
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Figure 352. Formation of 73 from 105. (Run 3). 

 
Table 93. Data for the formation of 73 from 105. (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 73  

(−116.45 ppm) 
[mM]  

73 
9 252.385 56.3024 2.28 
18 245.733 99.0967 4.12 
27 251.998 146.509 5.94 
36 230.427 189.39 8.40 
45 240.173 242.45 10.32 
54 235.646 283.125 12.28 
63 231.642 323.488 14.27 
72 235.341 352.776 15.32 
81 228.64 382.355 17.09 
90 220.619 402.331 18.64 
99 233.768 422.28 18.46 
108 228.898 446.199 19.92 
117 225.432 456.824 20.71 
126 236.636 466.487 20.15 
135 232.084 484.811 21.35 
144 238.281 485.816 20.84 
153 240.04 502.031 21.37 
162 244.078 510.867 21.39 
171 237.383 527.723 22.72 
180 243.916 533.699 22.36 
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Table 93 (cont.) 
 

189 249.322 540.241 22.15 
198 236.922 546.83 23.59 
207 237.426 544.542 23.44 
216 237.074 563.122 24.28 
225 243.354 562.238 23.61 
234 235.951 564.756 24.46 
243 243.232 573.216 24.09 
252 244.031 574.948 24.08 
261 246.22 575.941 23.91 
270 239.552 591.453 25.23 
279 237.242 588.048 25.33 
288 237.975 589.196 25.30 
297 246.152 590.47 24.52 
306 238.582 592.531 25.38 
315 240.769 594.482 25.23 
324 241.415 596.474 25.25 
333 250.535 610.148 24.89 
342 240.635 611.858 25.99 
351 248.039 610.358 25.15 
360 247.69 608.081 25.09 
369 249.286 610.176 25.02 
378 242.667 618.706 26.06 
387 246.132 618.278 25.67 
396 246.574 637.26 26.41 
405 249.662 626.978 25.67 
414 245.713 634.661 26.40 
423 244.116 630.68 26.40 
432 253.404 632.711 25.52 
441 244.789 630.596 26.33 
450 235.549 632.564 27.45 
459 245.831 633.967 26.36 
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Experiment 79: Cross-coupling formation from 72 and 80 at −30 °C. 

 
 

A 5-mL volumetric flask was charged with 4-flurophenylboroxine (128 mg, 350 µmol) 

followed by 2-3 mL of THF (NaK). Then sonication was performed (~10 min) until the solid had 

dissolved. Once dissolved the flask was filled to the mark with THF (NaK) generating a 20.5 mM 

solution. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol) and 1,4-difluorobenzene (2.5 µL, 24 µmol) followed by 

dissolving with THF (SDS) to the 2-mL mark. An oven dried, 5-mm, NMR tube was taken into 

the dry box and 500 µL of the freshly prepared solution was added. The tube was capped with a 

septum and Teflon taped. The sample was removed from the glove box and inserted into a −78 °C 

acetone dry-ice bath followed by the addition of (95 µL, 20.5 µmol, 0.67 equiv) of 4-

fluorophenylboroxine Stock Solution  via a µL glass syringe. The NMR tube was vortexed (not 

shaken) and cleaned with a Kimwipe then placed into the NMR probe set to −30 °C.  

Using the fluorine channel to collect a spectrum every 37 s the progress of the reaction was 

monitored by the formation of cross-coupling product fluorine signal (−116.45 ppm) in 

comparison with the internal reference 1,4-difluorbenzene (−120.00 ppm). The first order 

formation profile was fitted with OrginPro 2015 software using equation 12. This procedure was 

performed three times to obtain an average rate. 

Equation 12. 

𝑃 = 𝐴 3(1 − 𝑒>?@) 
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Table 94. Results from cross-coupling reaction. 

Entry k (s−1)  
(Form CCP) 

A0 [mM]  
(Form CCP) 

Run 1 (5.99 ± 0.03) x 10−3 19.01 ± 0.19 
Run 2 (4.57 ± 0.02) x 10−3 23.58 ± 0.20 
Run 3 (5.60 ± 0.09) x 10−3 23.69 ± 0.15 

k avg. Formation of CCP = (5.39 ± 0.07) x 10−3 s−1 

 

 
Figure 353. Formation of cross-coupled product from 73 (Run 1).  

 
 

Table 95. Data for formation of cross-coupled product from 73 (Run 1). 

time (s) 
Integral IS 

(−120.00 ppm) 
Integral 73 

 (−116.45 ppm) 
[mM] 

73 
37 2324 1176 5.17 
74 1922 1545 8.22 
111 1993 1993 10.22 
148 1935 2330 12.30 
185 2022 2621 13.25 
222 2019 2839 14.37 
259 2012 2826 14.35 
296 1964 3053 15.88 
333 2017 3120 15.81 
370 2008 3170 16.13 
407 1997 3227 16.51 
444 1979 3264 16.85 
481 2034 3310 16.63 
518 1973 3409 17.65 
555 2047 3391 16.93 
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Table 95. (cont.) 
 

592 2063 3345 16.57 
629 1987 3506 18.04 
666 2018 3498 17.72 
703 2012 3558 18.07 
740 2022 3536 17.87 
777 2021 3622 18.32 
814 2018 3674 18.60 
851 2025 3612 18.23 
888 1988 3695 19.00 
925 2086 3735 18.30 
962 2053 3802 18.93 
999 2025 3759 18.98 
1036 2007 3893 19.82 
1073 2009 4021 20.45 
1110 2027 3911 19.72 
1147 2059 4002 19.87 
1184 2089 3951 19.33 
1221 2074 3979 19.60 
1258 2042 4023 20.13 
1295 2015 4005 20.31 
1332 2089 4034 19.73 
1369 2054 4068 20.24 
1406 2061 4005 19.86 
1443 2102 4034 19.61 

 

 
Figure 354. Formation of cross-coupled product from 73 (Run 2).  
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Table 96. Data for formation of cross-coupled product from 73 (Run 2). 

time (s) 
Integral IS 

(−120.00 ppm) 
Integral 73 

(−116.45 ppm) 
[mM] 

73 
37 1834 1013 5.64 
74 1615 1363 8.62 
111 1611 1694 10.75 
148 1586 1924 12.40 
185 1655 2121 13.10 
222 1593 2311 14.82 
259 1633 2384 14.92 
296 1473 2589 17.96 
333 1570 2822 18.37 
370 1571 2917 18.98 
407 1586 3000 19.34 
444 1560 3140 20.58 
481 1563 3083 20.16 
518 1556 3223 21.17 
555 1595 3195 20.47 
592 1549 3317 21.88 
629 1584 3385 21.84 
666 1568 3353 21.85 
703 1533 3391 22.61 
740 1479 3434 23.73 
777 1559 3435 22.53 
814 1546 3410 22.54 
851 1575 3481 22.59 
888 1578 3529 22.86 
925 1570 3556 23.15 
962 1547 3516 23.23 
999 1557 3531 23.17 
1036 1572 3525 22.92 
1073 1490 3591 24.64 
1110 1565 3582 23.39 
1147 1537 3608 23.98 
1184 1578 3755 24.32 
1221 1585 3620 23.35 
1258 1585 3535 22.80 
1295 1519 3566 24.00 
1332 1557 3632 23.84 
1369 1477 3629 25.11 
1406 1589 3650 23.48 
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Figure 355. Formation of cross-coupled product from 73 (Run 3).  

 
Table 97. Data for formation of cross-coupled product from 73 (Run 3). 

time (s) 
Integral IS 

(−120.00 ppm) 
Integral 73 

(−116.45 ppm) 
[mM] 

73 
37 1826 886 4.96 
74 1711 1327 7.93 
111 1704 1755 10.52 
148 1656 2187 13.50 
185 1600 2394 15.29 
222 1651 2775 17.17 
259 1627 2999 18.83 
296 1672 2903 17.75 
333 1588 3334 21.45 
370 1568 3161 20.61 
407 1630 3300 20.70 
444 1642 3578 22.26 
481 1629 3560 22.33 
518 1598 3508 22.44 
555 1558 3470 22.76 
592 1607 3535 22.49 
629 1601 3495 22.31 
666 1655 3754 23.18 
703 1605 3537 22.52 
740 1589 3570 22.97 
777 1631 3760 23.57 
814 1643 3721 23.14 
851 1647 3736 23.18 
888 1637 3594 22.45 
925 1676 3567 21.75 
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Table 97. (cont.) 
 

962 1648 3668 22.75 
999 1624 3792 23.86 
1036 1641 3688 22.97 
1073 1584 3857 24.89 
1110 1553 3639 23.95 
1147 1600 3700 23.63 
1184 1651 3847 23.81 
1221 1637 3811 23.79 
1258 1595 3900 25.00 
1295 1644 3912 24.31 
1332 1546 3737 24.70 
1369 1583 3759 24.26 
1406 1638 3766 23.50 
1443 1649 3903 24.19 
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Experiment 80: Cross-coupling formation from complex 135 in THF                   

 

 
A 1-mL volumetric flask was charged with freshly sublimed 2-hydroxy-2-methylpropanoic 

acid 4-fluorophenylboronate (44.0 mg, 210 µmol). Then ~0.5 mL of THF (NaK) was added and 

sonicated until the solid had dissolved. Once dissolved the flask was filled to the mark with THF 

(NaK) generating a 0.21 M solution of 2-hydroxy-2-methylpropanoic acid 4-

fluorophenylboronate. 

A 2-mL volumetric flask was taken into the dry box and charged with [(i-Pr3P)Pd(4-

FC6H4)(µ-OH)]2 (30.8 mg, 41 µmol) and 1,4-difluorobenzene (2.5 µL, 24 µmol) followed by 

dissolving with THF (NaK) to the 2-mL mark. An oven dried, 5-mm, NMR tube was taken into 

the dry box and 500 µL of the freshly prepared solution was added. The tube was capped with a 

septum and Teflon taped. The sample was removed from the glove box and inserted into a −78 °C 

acetone dry-ice bath followed by the addition of the 2-hydroxy-2-methylpropanoic acid 4-

fluorophenylboronate solution (95 µL, 20.5 µmol, 2.0 equiv) via a 100 µL glass syringe. The NMR 

tube was vortexed (not shaken) and cleaned with a Kimwipe followed by re-insertion into the −78 

°C bath. Then the tube was placed into the NMR probe set to −30 °C.  

Using the fluorine channel to collect a spectrum every 101 s the progress of the reaction 

was monitored by the and formation of cross-coupling product (−116.45 ppm) in comparison with 

the internal reference 1,4-difluorobenzene (−120.00 ppm). The first order decay and formation 

profiles were fitted with OrginPro 2015 software using equations 1 and 2 respectively. This 

procedure was performed three times to obtain an average rate. 
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Table 98. Results from the cross-coupling reaction. 

Entry k (s−1)  
 (Form CCP) 

A0 [mM]  
(Form CCP) 

Run 1 (2.59 ± 0.05) x 10−4 11.56 ± 0.13 
Run 2 (2.63 ± 0.11) x 10−4 12.23 ± 0.35 
Run 3 (1.84 ± 0.05) x 10−2 10.63 ± 0.18 

k avg. Formation of CCP = (2.26 ± 0.31) x 10−4 s−1 

 
 
Figure 356. Formation of 73 from 135. (Run 3). 

 
Table 99. Data for the formation of 73 from 135. (Run 3). 

time (s) 
Integral IS  

(−120.00 ppm) 
Integral 73  

(−116.45 ppm) 
[mM]  

73 
101 286.699 37.0951 0.14 
202 268.384 119.789 0.61 
303 256.513 172.32 0.67 
404 252.627 211.216 0.82 
505 242.445 266.369 1.04 
606 236.901 337.288 1.44 
707 229.555 365.777 1.43 
808 236.473 388.161 1.55 
909 226.774 437.934 1.76 
1010 239.885 499.11 2.01 
1111 222.87 520.427 2.09 
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Table 99. (cont.) 
 

1212 223.349 585.01 2.34 
1313 232.38 605.499 2.38 
1414 243.28 657.95 2.55 
1515 243.879 676.203 2.67 
1616 237.742 712.489 2.83 
1717 233.078 763.338 2.98 
1818 244.254 778.389 3.04 
1919 235.238 810.986 3.20 
2020 246.936 845.311 3.30 
2121 244.266 880.017 3.44 
2222 237.056 900.474 3.47 
2323 243.463 944.449 3.69 
2424 245.653 981.717 3.84 
2525 241.901 1002.45 3.93 
2626 248.438 1044.36 4.06 
2727 245.185 1057.39 4.13 
2828 244.014 1098.17 4.28 
2929 238.265 1128.31 4.39 
3030 244.301 1141.91 4.47 
3131 237.646 1165.13 4.58 
3232 242.073 1186.96 4.65 
3333 241.57 1210.98 4.79 
3434 249.979 1245.49 4.88 
3535 243.872 1276.66 5.02 
3636 246.099 1299.93 5.07 
3737 248.435 1327.28 5.20 
3838 239.981 1352 5.31 
3939 250.93 1369.6 5.34 
4040 233.038 1382.4 5.41 
4141 245.144 1426.38 5.59 
4242 248.435 1461.61 5.77 
4343 248.435 1447.35 5.71 
4444 239.981 1493.86 5.87 
4545 250.93 1537.23 6.02 
4646 233.038 1521.42 5.97 
4747 245.144 1559.94 6.10 
4848 240.198 1565.6 6.20 
4949 250.854 1620.02 6.35 
5050 239.981 1626.52 6.38 
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Table 99. (cont.) 
 

5151 250.93 1660.2 6.60 
5252 248.435 1655.93 6.55 
5353 239.981 1685.55 6.68 
5454 250.93 1702.58 6.72 
5555 233.038 1756.36 6.87 
5656 245.144 1745.21 6.89 
5757 240.198 1775.18 6.95 
5858 250.854 1787.06 6.99 
5959 233.038 1824.58 7.21 
6060 245.144 1832.45 7.24 
6161 240.198 1849.86 7.29 
6262 250.854 1846.7 7.35 
6363 240.198 1861.84 7.38 
6464 250.854 1880.9 7.39 
6565 242.62 1909.08 7.60 

 
Experiment 81: Preparation of 4-fluorophenylglycol ester 

 
A 250-mL, round-bottomed flask was charged with a magnetic stir bar, 4-fluorophenyl 

boronic acid (4.2 g, 30 mmol, 1.0 equiv), ethylene glycol (1.86 g, 30 mmol, 1.0 equiv) and 150 

mL of toluene (SDS). A dean stark trap apparatus filled with 4 Å molecular sieves was fitted and 

the reaction was refluxed for 16 h. Toluene was removed by roto-evaporation and the remaining 

solid was sublimed at 60 °C under high vacuum yielding a white powder 1.45 g, 72%. The spectra 

matched those previously published by Sigman and co-workers.137 

 

Experiment 82: Preparation of 2-hydroxy-2-methyl propanoic ester 134 
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A 500-mL, round-bottomed flask was charged with a magnetic stir bar, 4-fluorophenyl 

boronic acid (1.0 g, 8.2 mmol, 1.0 equiv), 2-hydroxy-2-methyl propanoic (0.86 g, 8.2 mmol, 1.0 

equiv) and 150 mL of benzene. A dean stark trap apparatus filled with 3 Å molecular sieves was 

fitted and the reaction was refluxed for 15 h. Benzene was removed by roto-evaporation and the 

remaining solid was sublimed at 50 °C under high vacuum yielding a white powder 1.04 g, 61%.  

 
 

Experiment 83: Preparation of oxalic acid ester 137 

 
 

A 250-mL, round-bottomed flask was charged with a magnetic stir bar, 4-fluorophenyl 

boronic acid (4.2 g, 30 mmol, 1.0 equiv), oxalic acid dihydrate (3.78 g, 30 mmol, 1.0 equiv) and 

150 mL of benzene. A dean stark trap apparatus filled with 3 Å molecular sieves was fitted and 

the reaction was refluxed for 16 h. A white powder was observed it was collected and washed with 

hot benzene to yield 0.83 g, 14%. 

Data for 137: 
1H NMR: (600 MHz, THF-d8) 

8.39 (m, 2 HC(3)), 7.23 (m, 2 HC(2)),  
19F NMR: (565 MHz, THF-d8) 

   −108.8 (s, FC(1))  
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Figure 357. 1H NMR spectrum of 137. 
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Figure 358.19F NMR spectrum of 137 −100 °C, referenced to 1,4-diflurobenzene (−120.00 ppm). 
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