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ABSTRACT 

 

While methods for dynamic tuning of surface wettability to manipulate water droplets 

have been widely explored for many applications including digital microfluidics, those based on 

dynamically changeable surface morphology have remained challenging to achieve. In this work, 

we present a structured shape memory polymer (SMP) surface which shows dynamically tunable 

surface wettability through changeable surface morphology in order to manipulate water 

droplets. The structured SMP surface involves a SMP pillar array consisting of nanotextured 

small and large pillars which can change its morphology between permanent and temporary 

shapes upon thermomechanical loading. Specifically, the structured SMP surface dynamically 

creates a surface morphological gradient and changes its surface wettability during thermally 

induced shape recovery of the SMP pillar array. Different wetting characteristics of the structured 

SMP surface between permanent and temporary shapes are theoretically predicted and 

experimentally verified. Based on these measured wetting characteristics, the structured SMP 

surface is designed to demonstrate that the morphological difference between two shapes under a 

water droplet overcomes contact angle hysteresis, resulting in driving a water droplet, when 

combined with the thermal Marangoni effect.  

  



 iii 

ACKNOWLEDGMENTS 

 

First of all, I would like to express the deepest appreciation to my adviser, Seok Kim, for 

his support and belief on me through the trials and errors. I am extremely fortunate to have got 

all the support along the assigned work. I respect and thank him for giving me an opportunity to 

involve in this assignment and providing me a great working environment. 

Also thanks to my laboratory members, Hohyun Keum, Jeffrey Eisenhaure, and Zining 

Yang who trained me and gave me a tip on experiment. This assignment cannot be successfully 

completed without their effort and help. Last but not least, I am really grateful to my family who 

endured and supported me financially and emotionally along this long process.  

 

 

 

 

 

 

 

 

 

 



 iv 

TABLE OF CONTENTS 

 

LIST OF SYMBOLS ............................................................................................................. VI 

CHAPTER 1 : INTRODUCTION ...........................................................................................1 

1.1 Droplet manipulation ..........................................................................................................1 

1.2 Literature review ................................................................................................................1 

1.3 Scope of research ................................................................................................................2 

CHAPTER 2 : METHODS ......................................................................................................4 

2.1 Fabrication of a structured SMP surface ............................................................................4 

2.2 Dynamic tuning of apparent contact angle .........................................................................5 

2.3 Droplet manipulation on horizontal surface .......................................................................5 

2.4 Droplet manipulation on tilted surface ...............................................................................6 

CHAPTER 3: RESULTS AND DISCUSSION ........................................................................7 

3.1 Characteristics of the fabricated structured SMP surface ...................................................7 

 

 



 v 

3.2 Dynamic tuning of apparent contact angle .......................................................................10 

3.3 Droplet manipulation on horizontal surface ..................................................................... 11 

3.4 Droplet manipulation on tilted surface .............................................................................16 

CHAPTER 4: CONCLUSIONS .............................................................................................17 

CHAPTER 5: FIGURES AND TABLES ...............................................................................18 

CHAPTER 6: SUPPORTING INFORMATION ....................................................................27 

CHAPTER 7: REFERENCES ................................................................................................30 

  



 vi 

LIST OF SYMBOLS 

CAH Contact angle hysteresis 

SMPs Shape memory polymer 

BOE Buffered oxide etchant 

DRIE Deep reative ion etch 

FDTS Heptadecafluoro tetra hydrodecyl-trichlorosilane 

ITO Indium tin oxide 

TCL Three phase contact line 

a lateral dimension of large pillar 

b lateral dimension of small pillar 

c lateral dimension of large pillar base 

d lattice size of pillar array 

f Solid fraction  

fori Solid fraction of original SMP pillar array 

fdef Solid fraction of deformed SMP pillar array 

fF Solid fraction of geometry beneath front of droplet 

fR Solid fraction of geometry beneath rear of droplet 

FT Thermal Marangoni force 



 vii 

FM Morphological gradient force 

FH Hysteresis force 

Ftot Total driving force 

g Gravitational acceleration constant 

hmen Meniscus height of droplet on original SMP pillar array 

hori Height difference between large and small pillar of original SMP pillar array 

hdef Height difference between large and small pillar of deformed SMP pillar array 

m Mass of droplet 

N1 The number of large pillars in repeating lattice 

N2 The number of small pillars in repeating lattice 

r Roughness ratio 

rori Roughness ratio of original SMP pillar array 

rdef Roughness ratio of deformed SMP pillar array 

rf Roughness ratio of geometry beneath front of droplet 

rr Roughness ratio of geometry beneath rear of droplet 

R Radius of droplet base 

Tg Glass transition temperature of SMP 

θ*
	 Apparent	contact	angle	



 viii 

θ*
ori	 Apprent	contact	angle	on	original	SMP	pillar	array	

θ*
def	 Apprent	contact	angle	on	deformed	SMP	pillar	array 

θ*
F	 Apprent	contact	angle	of	front	of	droplet	

θ*
R	 Apprent	contact	angle	of	rear	of	droplet	

θ*
m	 Measured	apparent	contact	angle	

θ*
t	 Theoretical	apparent	contact	angle	

θY	 Intrinsic	contact	angle	

θ𝑎dv	 Advancing	contact	angle	

θ𝑎dv,F	 Advancing	contact	angle	of	front	of	droplet 

θrec	 Receding	contact	angle	

θrec,R	 Receding	contact	angle	of	rear	of	droplet	

θtilt Substrate tilting angle 

θcrt Critical substrate tilting angle 

𝛾	 water/air	Surface	tension 
 



 1 

CHAPTER 1 

INTRODUCTION 

1.1 Droplet manipulation  

Droplet manipulation on a surface has found numerous applications including in lab-on-a-

chip devices,1–3 particularly when a programmable droplet motion is desired without requiring 

bulky instruments. To this end, extensive studies have been done on driving forces to manipulate 

water droplets.  

1.2 Literature review 

Above all, electrowetting-on-dielectric (EWOD) has been one of the most advanced droplet 

manipulation strategies. A droplet can be split, merged, and transported with high reversibility 

through surface tension control in EWOD devices.4–9 A voltage signal causes electric charge to 

accumulate at the solid–liquid interface which results in electrocapillary forces altering surface 

wettability.4,8,9 Applying sequential voltage signals on a circuit patterned beneath a dielectric 

layer, a droplet can be manipulated with unbalanced wettability over a surface.4,7,8 In addition to 

electrocapillary forces, alternative driving forces to manipulate droplets are available and they 

are based on thermal,10–13 chemical,13–16 and surface morphological gradients.17–19 For example, 

thermal gradients cause surface tension gradients of a water droplet on a surface, creating 

thermal Marangoni forces10–13 that may drive a water droplet in a favorable direction. Chemical 

gradients also causing surface tension gradients of a water droplet are achieved by applying 

functional groups to a surface with spatially varying densities14–16 or changing chemical 

components upon temperature gradients.13 Surface wettability gradients based on surface 

morphological gradients have also been demonstrated as driving forces for water droplet 
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manipulation.17–19 While these driving forces are well available, the manipulation of droplets 

using those forces is often difficult due to the contact angle hysteresis (CAH) of water droplets. 

In order to manipulate a droplet on a surface, driving forces should overcome the opposing force 

caused by CAH. It is widely known that CAH is reduced when droplets are in the Fakir wetting 

regime,18,20 particularly on a hierarchically structured surface.24–27 However, CAH is, in common 

cases, too high compared with available driving forces to manipulate water droplets. Therefore, 

highly optimized surface design and fabrication are often required to allow manipulation of 

water droplets using those forces. Other approaches may be adopted to bypass the requirement 

and to overcome CAH with external aids such as vibrating a surface where a droplet is 

placed.12,19 

1.3 Scope of research 

In this work, we present a novel strategy enabling the manipulation of water droplets 

without external aids by utilizing a surface morphological gradient created on a dynamically 

shape-changing structured shape memory polymer (SMP) surface in combination with the 

thermal Marangoni effect. SMPs are a broad range of responsive polymers with properties 

including a configurational memory of ‘permanent shape’ that is recovered from a deformed 

shape, i.e. ‘temporary shape,’ via external stimuli. Particularly for a thermoresponsive SMP, 

heating the polymer beyond its glass transition temperature (Tg) causes its dramatic elastic 

modulus transition from ‘glassy state’ to ‘rubbery state’.28,29 Due to these unique properties, 

SMPs have been extensively exploited for many applications including robotics,30,31 biomedical 

devices,32,33 microassembly,34 dry adhesives,35,36 and sensors.37,38 Moreover, recent studies on 

switchable wettability of a SMP pillar array extended SMPs into tunable wetting surfaces.39–41 

Once SMP pillars are bent in their temporary shape and coated with a metal layer with different 
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thicknesses, the SMP pillars after shape recovery become bent with different angles. By 

differentiating bending angles, various contact angles of water droplets, water droplet spreading, 

and directed water droplet shedding on the SMP pillar array are demonstrated.39–41 While this 

prior work exhibits the potential utility of SMPs for tunable wetting surfaces, dynamic water 

droplet manipulation using SMPs has still remained for further exploration. Here, we design and 

fabricate a structured SMP surface including a nanotextured SMP pillar array with a periodic 

square lattice where water droplets are manipulated. The structured SMP surface shows 

dynamically tunable wettability during sequential local heating and shape recovery within the 

Fakir regime that is favorable for a number of applications such as self-cleaning,24,25 anti-

fouling,42,43 and droplet manipulation.20,25 Therefore, the fine control over the motion of a droplet 

is achieved by surface morphological gradient and thermal Marangoni forces which overcome 

CAH on the structured SMP surface. It is worthwhile to note that the beginning of the droplet 

motion in this work is not aided by any other sources to alleviate CAH. 
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CHAPTER 2 

METHODS 

2.1 Fabrication of a structured SMP surface 

Fabrication steps of the structured SMP surface that consists of small and large pillars 

are depicted in Fig. 1. It involves polydimethylsiloxane (PDMS) and SMP molding processes, 

and starts with creating a Si pillar array as an original master. A thermally grown 1 µm thick 

SiO2 layer on a 500 µm thick Si substrate is patterned using an image reversal technique with an 

AZ5214 photoresist and selective SiO2 etching with buffered oxide etchant (BOE). The large Si 

pillars are formed using a deep reactive ion etch (DRIE) process (Pegasus STS DRIE) 

subsequently (Fig. 1a). Following photolithography and the second DRIE process define the 

small Si pillars. Here, the lithographically patterned photoresist layer and the previously 

patterned SiO2 layer are used as masking layers for the second DRIE process. After the second 

DRIE process (Fig. 1b), the removal of masking layers including the photoresist and SiO2 by 

acetone and BOE completes the fabrication of the Si master. 

To enable nanotexturing on top surfaces of the Si pillars, a three step black silicon (bSi) 

process (PlasmaTherm ICP RIE) is performed (Fig. 1c).44 The process starts with the formation 

of a thin SiO2 film with O2 plasma. The thin SiO2 film is incompletely etched by CHF3 plasma 

to form randomly scattered SiO2 islands. The islands are used as etch masks for the successive 

Si etching steps. With the etch masks, nanocones can be formed by selective Si etching with Cl2 

and Ar plasma. 

An anti-stick coating layer of heptadecafluorotetrahydro-decyl-trichlorosilane (FDTS) is 

deposited on the fabricated Si master in a molecular vapor deposition (MVD) chamber to ease 
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successive polymer casting processes. The SMP pillar array is fabricated via two separate 

casting processes with PDMS and SMP (Fig. 1d and e). PDMS and SMP precursors are fully 

degassed in a vacuum desiccator before curing in a convection oven. First, a PDMS precursor is 

poured into the Si master and cured at 60 °C for 120 minutes to form a PDMS mold with small 

and large holes. Next, a SMP precursor is cast between a flat smooth indium tin oxide (ITO) 

coated glass slide and the PDMS mold at 100 °C for 120 minutes. To allow spatially selective 

heating of SMP pillars, a glass slide with patterned ITO heaters is used during the SMP casting 

step. Lithographical patterning of a photoresist and a subsequent ITO etching with hydrochloric 

acid create ITO heaters on the glass. In this work, a particular formulation of thermoset SMP 

referred to as NGDE2 that is previously developed is used.29 It is worthwhile to note that the 

nanotexture formed on the Si master via a bSi process is transferred to the SMP pillars but it 

becomes coarse after the two step casting processes (Fig. 9). 

2.2 Dynamic tuning of apparent contact angle 

To demonstrate the dynamic tuning of apparent contact angles, a test sample with a 

built-in heat source is fabricated. An ITO heater on a glass slide is patterned, and the SMP pillar 

array is cured and shaped between a PDMS mold and the ITO heater in order to heat the SMP 

pillar array uniformly. Large pillars are axially compressed such that a water droplet can wet 

both large and small pillars simultaneously when it is placed on the compressed area. The 

apparent contact angle of a droplet is investigated during heating the SMP pillar array using the 

ITO heater with 5 W. Tg (∼60 °C) is achieved after around five to ten seconds, and the 

temperature reaches a steady state (∼130 °C) after 30 seconds. 

2.3 Droplet manipulation on a horizontal surface 
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To demonstrate a manipulated droplet, an ITO layer on a glass slide is patterned into 

separate ITO heaters so as to be activated independently (Fig. 5a). The independent ITO heaters 

are programmable for spatial gradual and local shape recovery of SMP pillars, enabling different 

local contact angles on the droplet base. Since heat dissipation through the SMP surface is 

inevitable, the local heating also generates temperature gradients over the SMP surface. 

Therefore, driving forces to manipulate droplets in this work are not only a morphological 

gradient force by the local shape recovery of SMP pillars but also a force caused by thermal 

gradients (Fig. 5a). Individual ITO heaters on a glass are sequentially activated as the rear of a 

droplet passes the individual heaters in order to apply a continuous driving force on the droplet. 

Manipulation of a droplet starts with activation of the nearest heater from the rear of a droplet. 

After the rear-most part of the droplet passes over the next adjacent heater along droplet 

pathway, the next heater is activated. The same strategy is applied for the following individual 

ITO heaters. 

2.4 Droplet manipulation on tilted surface 

The total net force to drive a water droplet is experimentally measured by matching the 

total net force to the gravitational force on a tilted substrate. The structured SMP surface on an 

ITO heater patterned glass substrate is placed on a Dual-Axis Goniometer (THORLABS). After a 

droplet is placed on the deformed SMP surface, the substrate is tilted by rotating the goniometer 

knob (Fig. 7a). Once the substrate reaches the target tilting angle, an ITO heater located right 

behind a droplet is activated to move the droplet uphill. 
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CHAPTER 3 

RESULT AND DISCUSSION 

3.1 Characteristics of the fabricated structured SMP surface 

3.1.1 Wetting characteristics of the SMP and a hydrophobic coating 

The SMP used in this work is inherently hydrophilic and has an intrinsic contact angle of 

79.6°. However, in order to get a Fakir droplet on the SMP surface, the surface must have an 

intrinsic contact angle over 90.0°, which is a hydrophobic threshold. To change the surface 

chemistry, a FDTS hydrophobic coating monolayer is deposited on the SMP surface. The 

intrinsic contact angle on a FDTS coated smooth and flat SMP surface is measured as 114.7°. It 

is noteworthy that FDTS coating forms a monolayer on the SMP surface which is not seriously 

damaged from heat and mechanical loads.45 Therefore, the FDTS coated SMP surface with small 

and large pillars can be used repetitively without significant function deterioration.  

3.1.2 Permanent and temporary shape of the SMP pillar array with different wetting 

characteristics 

The structured SMP surface is designed such that a water droplet only wets top surfaces 

of large pillars when the surface is in the permanent shape (Fig. 3). However, when large pillars 

are in the temporary shape or axially compressed, a water droplet wets not only large pillars but 

also small pillars. As depicted in Fig. 3c, the theoretically required height difference between 

large and small pillars (hori) to ensure non-wetting on small pillars in the permanent shape is 

larger than the meniscus height (hmen) of a water droplet placed on large pillars. Assuming a two 

dimensional interface of a droplet, the meniscus height can be obtained theoretically as shown in 

eqn (1). 
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ℎDEF =

2 𝑑 − 𝑎
2 𝑠𝑒𝑐(𝜋 − 𝜃Q)−𝑡𝑎𝑛(𝜋 − 𝜃Q)  (1) 

 

where θY is the intrinsic contact angle of a FDTS coated smooth and flat SMP surface, d is the 

lattice size of the large pillar array, and a is the lateral dimension of the large pillars. Here 

2 𝑑 − 𝑎  indicates the diagonal distance between corner pillars. Based on pre-determined θY, 

d, and a, hmen is calculated to be 30 µm. Here, hori is set to be 80 µm, larger than hmen in the 

permanent shape so that a water droplet on an original SMP pillar array only wets large pillars, 

yet without causing large pillars to be buckled during axial compression. However, in the 

temporary shape, hdef is 20 µm, smaller than hmen so that a water droplet wets all deformed large 

pillars and top surfaces of small pillars (Fig. 3). It is important to note that the threshold hori 

value should be higher than hmen in real experiments due to the water hammer effect during 

dispensing a water droplet on the SMP surface.46 

The apparent contact angle of a water droplet is defined as the contact angle of a water 

droplet on the structured SMP surface. Theoretically, the apparent contact angle (θ*) is calculated 

from the intrinsic contact angle (θY) and geometric parameters such as the solid fraction and 

roughness ratio of a surface. In the Fakir wetting regime, a water droplet sits on top of pillars and 

air pockets (Fig. 3c). Therefore, the projected area of a droplet base becomes a heterogeneous 

surface with the wetted solid area and the area of air. The portion of the wetted solid area divided 

by the projected area is the solid fraction ( f ). On the other hand, the roughness ratio ( r ) is the 

ratio between the actual wetted surface area and the projected wetted area. In this work, a water 

droplet is assumed to wet the nanotexture on the SMP surface completely. The apparent contact 

angle is derived from the surface tension balance and it is shown in eqn (2).47  
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 cos 𝜃∗ = 𝑟 ∙ 𝑓 ∙ cos 𝜃Q + 𝑓 − 1 (2) 
 

In a repeating lattice, there are N1 large pillars and N2 small pillars (Fig. 3d). The large 

and small square pillars have the lateral dimensions of a and b, respectively. Because of the axial 

compression, the height of the large pillars is reduced to hdef, and the lateral dimension of the 

large pillar base ( c ) becomes larger due to the Poisson effect as depicted in Fig. 2b. The solid 

fraction of original and deformed SMP pillar arrays, fori and fdef, respectively, is written as eqn (3) 

and (4).  

 𝑓[\] =
𝑁_ ∙ 𝑎`

𝑑`  (3) 

 𝑓aEb =
𝑁_ ∙ 𝑐` + 𝑁` ∙ 𝑏`

𝑑`  (4) 

 

The roughness ratio on the original pillar array ( rori ) originating from the nanotexture is 

calculated by equating the measured apparent contact angle on the original pillar array (θ*
ori ) and 

θY as shown in eqn (5). The roughness ratio from the nano-texture is also assumed to be uniform 

throughout the surface, which is verified by investigating the SEM images. 

 𝑟[\] =
[(cos 𝜃∗[\] + 1)/𝑓[\] − 1]

cos 𝜃Q
 (5) 

 

In addition, the sidewall of compressed large pillars is assumed vertical and smooth 

since bSi is not formed on sidewalls but only on top surfaces due to the vertical etching nature of 

the bSi process. On deformed large pillars, a water droplet also wets the sidewalls of the large 

pillars. This creates another fraction of roughness in addition to that from the nanotexture, which 
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is shown in eqn (6). 

 𝑟aEb = 𝑟[\] +
4 ∙ 𝑁_ ∙ 𝑎 ∙ ℎaEb
𝑁_ ∙ 𝑐` + 𝑁` ∙ 𝑏`

 (6) 

 

From the SEM images (Fig. 2b), the dimensions of pillars are measured and the 

theoretical apparent contact angles are calculated using eqn (2)–(6), accordingly. Table 1 

summarizes all measured and calculated parameters. The detailed calculation procedure is 

described in the supporting information. 

3.2 Dynamic tuning of apparent contact angle 

The apparent contact angle significantly increases after shape recovery of the 

nanotextured SMP pillar array upon uniform heating. It was experimentally observed that a water 

droplet gradually loses its contact with small pillars, resulting in the gradual reduction of the 

solid fraction of the SMP surface and the increasing apparent contact angle of the droplet. This 

means that the water droplet becomes the Fakir droplet that exclusively wets large pillars. 

Interestingly, when the nanotextured SMP pillar array is only heated up to Tg, the dynamic 

increase in the apparent contact angle is negligible. This shows that the shape recovery of the 

SMP large pillars is not the sole reason for the significant increase in the apparent contact angle. 

From this aspect, the dynamic tuning of apparent contact angles is presumably achieved not only 

by shape recovery of the SMP surface but also by thermal energy input although further 

investigation remains for future work. It is worthwhile to note that a similar observation has been 

pointed out previously. Adera achieved a Fakir droplet on a superhydrophilic structured surface 

aided by a thermal energy input. His observation is supported by the fact that partial water 

evaporation at the droplet base creates vapor pressure against the complete wetting.48 
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Furthermore, Liu showed a Wenzel to Fakir droplet transition by heating a Wenzel droplet up to 

the reduced Leidenfrost point.49 del Cerro also demonstrated that a microstructured surface could 

facilitate the same transition by further lowering the reduced Leidenfrost point.50 

The effect of the nanotexture of SMP pillars on the dynamic tuning of apparent contact 

angles is evaluated by comparing the dynamic transition results using both smooth and 

nanotextured SMP pillar array samples. On the smooth sample, the apparent contact angle of a 

water droplet after shape recovery of SMP pillars slightly increases but fails to reach the value 

measured on the smooth original SMP pillar array (θ* = 158.2° in Table 1) as depicted in Fig. 4c. 

On the other hand, the complete dynamic transition of a water droplet with an almost 20° contact 

angle change is achieved on the nanotextured sample, and the transition is more gradual 

compared to that for the smooth sample. These results indicate that the nanotexture has a positive 

influence on the dynamic tuning of apparent contact angles by lowering the required thermal 

energy input for the complete transition, which agrees with del Cerro's results.50 

3.3 Droplet manipulation on horizontal surface 

The surface tension between water and air depends on the temperature of a water 

droplet, and thus the surface temperature gradient creates the surface tension gradient on the 

droplet base. Internal water flow, also called Marangoni flow, is induced inside the water droplet 

due to the surface tension gradient. Thermal Marangoni force is a force driven from the flow that 

causes a droplet to move forward and the magnitude of thermal Marangoni force is expressed in 

eqn (7). R is the radius of droplet base, γ is water/air surface tension, and x is displacement in 

parallel with temperature gradient.10,11,13  
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 𝐹h = 𝜋 ∙ 𝑅`
𝑑𝛾
𝑑𝑥 (7) 

 

In the meantime, by well controlled local heating of the deformed structured SMP 

surface, a liquid droplet can be placed on the SMP pillar array such that the rear of the droplet is 

on the shape-recovered pillars while the front of the droplet is still on the deformed pillars. The 

different solid fraction and apparent contact angles between the rear and front of the water 

droplet cause the imbalance of Laplace pressure inside the droplet. In case that the rear of droplet 

has a larger apparent contact angle, the unbalanced pressure generates a force to move the water 

droplet forward. The amount of the force from this morphological gradient causing the 

unbalanced pressure is written in eqn (8). θ *
F and θ*

R are the apparent contact angles of a droplet 

at the front and rear.13,16,17,19 

 𝐹k = 𝜋 ∙ 𝑅 ∙ 𝛾 𝑐𝑜𝑠𝜃∗m − 𝑐𝑜𝑠𝜃∗n  (8) 
 

There is the third force, i.e., hysteresis force, involved in the interaction between a 

droplet and the SMP pillar array and it is a major resistance against droplet manipulation. To 

model the hysteresis force, an advancing contact angle is defined as the maximum contact angle 

before three phase contact line (TCL) advancing while a receding contact angle is the minimum 

contact angle before TCL receding. CAH is the difference between advancing and receding 

contact angles, and a hysteresis force is the pinning force defined via CAH. Since a droplet 

experiencing a morphological gradient sits on the deformed SMP pillars and intact SMP pillars 

simultaneously with different wettability, the hysteresis force is defined as the sum of front and 

rear pinning forces as shown in eqn (9).16,17,18,20 
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 𝐹o = 𝜋 ∙ 𝑅 ∙ 𝑟n ∙ 𝑓n ∙ 𝑐𝑜𝑠𝜃∗n − 𝑐𝑜𝑠𝜃paq,n + 𝑟m ∙ 𝑓m ∙ 𝑐𝑜𝑠𝜃\Er,m − 𝑐𝑜𝑠𝜃∗m  (9) 
 

rF and rR are roughness ratios of SMP pillar surfaces beneath the front and rear of a water droplet. 

fF and fR are solid fractions of the SMP pillar array beneath the front and rear of a water droplet, 

respectively. θadv,F and θrec,R are advancing and receding contact angles at the front and rear of a 

droplet. Therefore, the first two and second two terms of eqn (9) represent the pinning forces at 

the front and rear of a droplet, respectively. The CAH on intact and deformed nanotextured SMP 

pillar arrays is measured by the tilting-plate method.21,23 The CAH on a flat SMP surface is also 

measured using the sessile drop method.22,23 Table 2 summarizes the CAH values. As expected, a 

FDTS coated flat SMP surface is highly adhesive. Furthermore, even on the nanotextured pillar 

array, CAH is not as small as those for hierarchical structures shown in prior studies presumably 

due to lower roughness ratio of the nanotextured pillar array.24-27 

The total net force applied to a droplet is calculated by adding those three involved 

forces as shown in eqn (10). 

𝐹s[s = 𝐹h + 𝐹k − 𝐹o (10) 
 

If the total net force ( Ftot ) is greater than zero a droplet moves. However, if it is equal 

to or smaller than zero, a droplet does not move. It is noted that eqn (7), (8), (9), and (10) are 

valid only at the onset of droplet motion and not necessarily valid during droplet motion. 

Therefore, the balance between those three forces provides an indication of whether the 

structured SMP surface can initiate the motion of a droplet or not. Here, geometric and 

wettability parameters at the rear of a droplet, θ*
R, θrec,R, rR, fR, are assumed to equal the 
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measured values on an intact SMP pillar array, θ*
ori, θrec,ori, rori, fori, respectively. Also it is 

assumed that those at the front of a droplet, θ*
F, θadv,F, rF, fF, are equivalent to the measured 

values on a deformed SMP pillar array, θ*
def, θadv,def, rdef, fdef, respectively (Table 1. & 2.). 

Fig. 5b shows a series of still frames of a manipulated water droplet with thermal 

Marangoni and morphological gradient forces. The motion can be characterized as repetitive 

spreading and shrinking of a droplet. When a droplet undergoes the morphological gradient and 

the thermal Marangoni effect, the shape of droplet is altered to balance the forces by decreasing 

the rear apparent contact angle and increasing the front contact apparent angle. Once the front 

apparent contact angle exceeds the front advancing contact angle, the droplet moves forward, 

however, the rear of a droplet is still pinned, which causes spreading of a droplet. After a droplet 

spreads, the rear apparent contact angle becomes smaller than the rear receding contact angle. At 

this moment, a droplet begins to shrink and the rear of droplet shows stick and slip motion. It is 

observed that the droplet spreading occurs ahead of the droplet shrinking. This is because the 

rear pinning force is larger than the front pinning force of a water droplet on the structured SMP 

surface. 

To study the influence of the surface morphological gradient force on droplet 

manipulation compared to that of thermal Marangoni force on it, three control experiments are 

performed. The first control experiment is done on a flat and smooth SMP surface coated with 

FDTS. The same amount of temperature gradient is formed over a sample surface with pre-

dispensed droplet (R ≈ 3 mm). However, no meaningful droplet motion is observed. This result 

shows that thermal Marangoni force induced by the given temperature gradient cannot overcome 

hysteresis force to drive a water droplet (R ≈ 3 mm) on flat SMP surface. Unlike droplet 

manipulation on flat hydrophilic surface,10 droplet manipulation on hydrophobic surface is often 
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challenging because droplet base radius becomes significantly small on a hydrophobic surface 

compared to a hydrophilic surface.  

The second control experiment is done on an intact SMP pillar array and the same 

amount of temperature gradient is given over a sample surface with pre-dispensed droplet. The 

result demonstrates that the thermal Marangoni force is not sufficiently high to overcome the 

hysteresis force to move a droplet (R ≈ 3 mm) on the structured SMP surface although the CAH 

on the intact SMP pillar array is even lower. Therefore, the morphological gradient is regarded to 

play a key role in overcoming the CAH for this range of droplet size. It is worthwhile to note that 

a large droplet may move solely by thermal Marangoni force ( FT ) without the morphological 

gradient force ( FM ) since FT is a quadratic function of R but FM and FH are linear functions of 

R as shown in eqn (7), (8), (9). The theoretically calculated total net forces ( Ftot ) on deformed 

and intact SMP pillar arrays versus the radius of droplet base are plotted in Fig 6. According to 

the plot, a droplet can move only with FT on an intact SMP pillar array if the radius of droplet 

base increases further (R > 3 mm), which is also experimentally observed (Fig. 6). 

The third control experiment is done on a SMP pillar array with pre-defined surface 

morphological gradient (Fig. 7). To prepare this sample, a SMP pillar array is deformed and a 

part of the deformed area is recovered with localized heating and subsequent cooling. A droplet 

is then dispensed on the SMP pillar array in the region between shape deformed area and shape 

recovered area (Fig. 7a). After the droplet resides on the surface, it is observed that the left part 

of droplet only wets top surface of large pillars in shape recovered area but the right part of 

droplet wets both large and small pillars in shape deformed area (Fig. 7c and d). This 

heterogeneous wetting creates morphological gradient force and propels the droplet to the right. 

Even after the droplet loses the surface morphological gradient, droplet moves further with 



 16 

inertia (Fig. 7e and f). However, when the droplet loses the kinetic energy due to hysteresis force, 

the droplet becomes stationary (Fig. 7g). 

3.4 Droplet manipulation on tilted surface 

The total net force to manipulate a water droplet is experimentally measured by 

matching the total net force to a gravitational force on a tilted substrate. The structured SMP 

surface on an ITO heater patterned glass substrate is placed on Dual-Axis Goniometer 

(THORLABS). After a droplet is placed on the deformed SMP surface, the substrate is tilted by 

rotating the goniometer knob (Fig. 8a). Once the substrate reaches a target tilting angle, an ITO 

heater located right behind of droplet is activated to move the droplet uphill to observe the 

initiation of droplet manipulation. A critical tilting angle ( θcrt ) is defined as the lowest tilting 

angle on which the droplet does not move since gravitational force equals the total net force. At 

the threshold tilting angle the total net force and the gravitational force are related as shown in 

eqn (11). 

𝐹s[s = 𝑚𝑔 sin 𝜃r\s (11) 
 

The theoretical value of θcrt is calculated as 2.6ᵒ based on eqn (7-11) and Table 2. The 

experimentally measured θcrt lies around 3.5ᵒ, which substantiates the validity of theoretical 

calculations to a great extent (Fig. 8b). 
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CHAPTER 4 

CONCLUSIONS 

In conclusion, dynamically tunable wetting characteristics of a structured SMP surface 

are studied in this work. The surface includes nanotextured small and large SMP pillars that can 

be deformed by axial compression to exhibit different surface wettability. Different contact 

angles of a water droplet on the structured SMP surface in an intact permanent shape and in a 

deformed temporary shape are theoretically predicted and experimentally verified. The structured 

SMP surface is designed such that the morphological difference between two shapes under the 

droplet base overcomes contact angle hysteresis to manipulate a water droplet, when combined 

with the thermal Marangoni effect. Theoretically calculated total net forces to cause the onset of 

droplet manipulation are experimentally verified by investigating the motion of a droplet on a 

tilted substrate. This work opens up a new strategy of extending shape memory polymers into 

further applications requiring dynamic surface wettability tuning and droplet manipulation. 

.  
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CHAPTER 5 

FIGURES AND TABLES 

Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 

 

  

 

Fig. 5 Manipulation of a droplet on a deformed SMP pillar array with thermal Marangoni and 
morphological gradient forces. (a) A schematic diagram illustrating a manipulated droplet. A 
droplet is placed on a deformed SMP pillar array and individually operating ITO heaters beneath 
it. An operating ITO heater is in yellow and connected with a power source. (left) Side view of the 
schematic diagram. (right) Upper cartoon depicts a droplet on a deformed SMP pillar array that is 
ready to move and lower cartoon illustrates the initiation of droplet motion with an activated ITO 
heater and associated driving forces. (b) Still frames of a manipulated water droplet on the SMP 
pillar array arranged in time sequence.
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Table 1. 

Table 1. A summary of solid fraction (f), roughness ratio (r), and apparent 

contact angles ( measured and theoretical, θ* ) of intact and deformed SMP 

pillar arrays with and without nanotexturing. (* For nano-textured intact surface 

theoretical value is matched to measured one to acquire roughness value of 

nano-texture using equation (5).) 

Surface State 
f r 

Measured 

𝜃∗ 

Theoretical 

𝜃∗ 

Smooth Original 0.10 1.00 158° 160.63° 

Deformed 0.46 1.19 141° 139.42° 
Nano- 

textured 
Original 0.10 1.58 165° 165.00° 

Deformed 0.46 1.76 148° 150.35° 

 

Table 2. 

Table 2. Advancing and receding contact angles and corresponding con-tact 

angle hysteresis of a water droplet on a flat SMP surface, an original SMP 

pillar array, and a deformed SMP pillar array. All SMP pillar arrays are 

nanotextured and all samples are FDTS coated 

 𝜃paq 𝜃\Er CAH 

Flat	surface 115.9°	 33.7°	 82.2°	

Original	
pillar	array	

175.5°	 138.7°	 36.8°	

Deformed	
pillar	array	

162.1°	 100.5°	 61.6°	
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CHAPTER 6 

SUPPORTING INFORMATION 

 

Fig	9.	SEM	images	of	nanostructures	on	SMP	pillar	array	and	Si	master.	White	scale	bars	indicate	
1	μm	(a)	Nanostructure	on	SMP	pillar	array	(	top	view	),	(b)	Nanostructure	on	Si	master	(	top	view	),	
(c)	60ᵒ	 tilted	view	of	Nanostructure	on	SMP	pillar	array,	 (d)	 Side	view	of	Nanostructure	on	Si	
master	
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Step by step calculation of values in Table. 1 

Used values in calculations 

- Geometric values : N1, N2, a, b, c, and d 
 

N1 N2 a b c d 
1 27 96.82 µm 24.84 µm 158.60 µm 300.00 µm 

 

- Measured values : Apparent contact angle on nanotextured original pillar array, θori
* 

 

1. Calculating solid fractions. 

On original structure  

10.02

2
1 =
⋅

=
d

aN
orif  

On deform structure  

46.02

2
2

2
1 =

⋅+⋅
=

d

bNcN
deff  

2. Calculating roughness ratio. 

Smooth texture ; for droplet on smooth original pillar array, roughness ratio is considered as 1   

1=orir
 

19.02
2

2
1

14
=

⋅+⋅

⋅⋅⋅
+=

bNcN

defhaN

orirdefr  

Nano-texture ; roughness ratio from nano-texture, rori, is back-calculated from the measured 
apparent contact angle on nano-textured original pillar array. 

58.1
cos

11*cos
=

⎥⎦
⎤

⎢⎣
⎡ −⎟

⎠
⎞⎜

⎝
⎛ +

=

Y

orifori
orir θ

θ
 

77.12
2

2
1

14
=

⋅+⋅

⋅⋅⋅
+=

bNcN

defhaN

orirdefr  

3. Calculating theoretical apparent contact angles 

With Smooth texture ; values of rori and rdef are used those of smooth texture. 
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- On original structure  
°=−+⋅⋅= 8.1601cos*cos orifYoriforir θθ  

- On deformed structure  
°=−+⋅⋅= 0.1401cos*cos deffYdeffdefr θθ   

With Nano-texture ; no calculation is done for the apparent contact angles on nano-textured 
original pillar array. value of rdef is used that of nano-texture. 

- Deformed structure  
°=−+⋅⋅= 5.1511cos*cos deffYdeffdefr θθ  
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