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ABSTRACT

Entropy inequalities are very important in information theory and they play

a crucial role in various communication-theoretic problems, for example, in

the study of the degrees of freedom of interference channels. In this thesis,

we are concerned with the additive-combinatorial entropy inequalities which

are motivated by their combinatorial counterparts: cardinality inequalities

for subsets of abelian groups. As opposed to the existing approaches in the

literature in the study of the discrete and continuous entropy inequalities,

we consider a general framework of balanced linear entropy inequalities. In

particular, we show a fundamental equivalence relationship between these

classes of discrete and continuous entropy inequalities. In other words, we

show that a balanced Shannon entropy inequality holds if and only if the

corresponding differential entropy inequality holds. We also investigate these

findings in a more general setting of connected abelian Lie groups and in the

study of the sharp constants for entropy inequalities.
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CHAPTER 1

INTRODUCTION

1.1 Additive-combinatorial inequalities for cardinalities

In mathematics, the field of additive combinatorics is about the combinato-

rial estimates associated with arithmetic operations, especially addition and

subtraction, on sets that are arbitrary subsets of integers, or more generally,

any discrete abelian group. It has invited a lot of exciting mathematical

activity in recent years, partially thanks to some landmark results such as

Szemerèdi’s theorem and Green-Tao’s theorem, etc. An important repository

of tools in additive combinatorics is the sumset inequalities and the inverse

sumset theory. Sumset inequalities are concerned with relating the cardinal-

ities of the sumset and the difference set A± B = {a± b : a ∈ A, b ∈ B} to

those of A and B, where A and B are arbitrary subsets of an abelian group.

A simple example of such an inequality is the following: Given any three sets

A,B and C, that are subsets of a discrete abelian group, the Ruzsa triangle

inequality [1] states that

|A− C||B| ≤ |A−B||B − C|, (1.1)

where |S| denotes the cardinality of a set S. In inverse sumset theory, we

seek to characterize and find structure in sets A under some constraints on

the cardinalities of the sumset A+ A or the difference set A− A.

1.2 Extensions to Shannon entropy

While the field of additive-combinatorics by its very nature is host to a

wide variety of techniques and tools from number theory to combinatorics,

harmonic analysis and ergodic theory, which might be of independent interest

1



to mathematicians, what is important from an information-theoretic point-of-

view is that some interesting analogies can be drawn between these additive-

combinatorial inequalities and entropy inequalities.

This interesting connection between additive-combinatorial inequalities about

cardinalities of sumsets and the entropy inequalities for sums of random vari-

ables was identified by Tao and Vu [2] and Ruzsa [3]. The idea is that one can

consider the information-theoretic analogs of additive combinatorial inequal-

ities by replacing the sets by (independent, discrete, group-valued) random

variables and, correspondingly, the log-cardinality by the Shannon entropy,

defined as

H (X) ,
∑
x

P [X = x] log
1

P [X = x]
.

For example, the inequality

max{|A|, |B|} ≤ |A+B| ≤ |A||B|

translates to

max {H (X) , H (Y )} ≤ H (X + Y ) ≤ H (X) +H (Y ) , (1.2)

which follows from elementary properties of entropy, whereas (1.1) becomes

H(X − Z) +H(Y ) ≤ H(X − Y ) +H(Y − Z) (1.3)

for independent X, Y, Z which follows from the submodularity of Shannon

entropy. The motivation for this analogy comes from the well-known asymp-

totic equipartition property (AEP) [4] for discrete random variables: A ran-

dom vector Xn = (X1, . . . , Xn) consisting of n independent and identical

copies of X is concentrated on a set of cardinality exp(n(H(X) + o(1)) as

n → ∞. This interpretation has indeed been useful in deducing certain

entropy inequalities, e.g., Han’s inequality [5], directly from their set coun-

terpart, cf. [3, p. 5]. A similar approach might not be useful in general for

inequalities dealing with sums of random variables since the typical set of

sums can be exponentially larger than sums of individual typical sets, which

in turn necessitates a new set of tools when dealing with discrete entropy

inequalities.

It turns out that the functional submodularity property of Shannon en-
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tropy serves this role in proving the discrete entropy inequalities. The sub-

modularity property of Shannon entropy states that for any two random

variables X1 and X2,

H(X0) +H(X1,2) ≤ H(X1) +H(X2)

for X0 = f(X1) = g(X2) and X1,2 = h(X1, X2) where f, g and h are de-

terministic functions. Capitalizing on this submodularity of entropy, in the

past few years several entropy inequalities for sums and differences have been

obtained [2, 6, 7, 8, 9, 10], such as the sum-difference inequality [8, Eq. (2.2)]

H(X + Y ) ≤ 3H(X − Y )−H(X)−H(Y ), (1.4)

which parallels the following (cf., e.g., [11, Eq. (4)]):

|A+B| ≤ |A−B|
3

|A||B|
.

1.3 Extensions to differential entropy

Recall that the differential entropy of a real-valued random vector X with

probability density function (pdf) fX is defined as

h (X) =

∫
fX(x) log

1

fX(x)
dx.

Similar to the discrete case, in the sense of AEP, h(X) can be viewed as

the log-volume of the effective support of X [4]. In a similar fashion, one

can consider additive-combinatorial inequalities for differential entropies on

Euclidean spaces. Given this interpretation it is natural to ask: To what

extent do Shannon entropy inequalities extend to differential entropy? Kon-

toyiannis and Madiman [12] and Madiman and Kontoyiannis [9, 13] made

important progress in this direction by showing that while the submodular-

ity property, the key ingredient for proving discrete entropy inequalities, fails

for differential entropy, several linear inequalities for Shannon entropy never-

theless extend verbatim to differential entropy albeit using a different proof

strategy: the data processing inequality; for example, the sum-difference in-
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equality (1.4) admits an exact continuous analog [12, Theorem 3.7]:

h(X + Y ) ≤ 3h(X − Y )− h(X)− h(Y ). (1.5)

1.4 A general framework for entropy inequalities

Whereas a significant number of inequalities for Shannon entropy extend

verbatim to the continuous case, the proof techniques for the continuous en-

tropy inequalities are not generalizable since the vital ingredient for proving

the continuous entropy inequalities, the data processing inequality, has been

applied in a case-by-case manner and a principled way of extending the in-

equalities is missing in the existing literature. Forgoing this approach we

consider a more general framework of linear entropy inequalities of the form:

n∑
i=1

αiH

(
m∑
j=1

aijZj

)
≤ 0, (1.6)

and
n∑
i=1

αih

(
m∑
j=1

aijXj

)
≤ 0, (1.7)

where aij ∈ Z, αi ∈ R, Z1, . . . , Zm are independent discrete group-valued

random variables and Xj’s are independent Rd-valued continuous random

variables. Notice that all of the aforementioned results for Shannon entropy

and differential entropy can be cast into this generic form of (1.6) and (1.7)

respectively.

Motivated by the absence of a unified and principled framework for the

extension of these entropy inequalities from discrete to continuous case (and

vice versa) and to understand the fundamental relationship between these

two classes of inequalities, we ask the following question, which is the focus

point of this thesis:

Question 1. Do all linear inequalities of the form (1.6) for discrete entropy

extend to differential entropy inequalities of the form (1.7), and vice versa?
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1.5 Main contribution

Towards addressing Question 1, a simple but instructive observation reveals

that all linear inequalities for differential entropies are always balanced ; that

is, the sum of all coefficients must be zero. In other words, should (1.7) hold

for all independent Rd-valued Zj’s, then we must have
∑n

i=1 αi = 0. To see

this, recall the fact that h(aZ) = h(Z) + d log a for any a > 0; in contrast,

Shannon entropy is scale-invariant. Therefore, whenever the inequality (1.7)

is unbalanced, i.e.,
∑n

i=1 αi 6= 0, scaling all random variables by a and sending

a to either zero or infinity leads to a contradiction. For instance, in (1.2),

the left inequality (balanced) extends to differential entropy but the right

inequality (unbalanced) clearly does not.

With this observation in mind, we establish the equivalence of balanced

linear Shannon and differential entropy inequalities in Chapter 2, that is, a

balanced linear inequality holds for Shannon entropy if and only if it holds

for differential entropy, thereby fully resolving Question 1. This result, in a

way, demystifies the striking parallel between discrete and continuous entropy

inequalities, thereby bridging the gap between these two notions of entropy

inequalities. As a consequence, it follows that the results in [12, 13], which are

linear inequalities for mutual information such as I(X;X+Y ) = h(X+Y )−
h(Y ) or Ruzsa distance distR(X, Y ) , h(X−Y )− 1

2
h(X)− 1

2
h(Y ) [3, 8, 12])

and hence expressible as balanced linear inequalities for differential entropy,

can be deduced from their discrete counterparts [8] in a unified manner.

Our result that the differential entropy inequalities follow from their dis-

crete analogs relies on a result due to to Rényi [14] which gives the asymptotic

expansion of the Shannon entropy of a finely quantized continuous random

variable in terms of its differential entropy, namely,

H(bmXc) = d logm+ h(X) + o(1), m→∞ (1.8)

for continuous Rd-valued X. Our strategy is to utilize this result in approx-

imating differential entropy inequalities by their discrete counterparts via

this quantization, which enables the discrete entropy inequalities to carry

over exactly to their continuous analogs, and, even more generally, for con-

nected abelian Lie groups as we prove in Chapter 2. In establishing that all

linear discrete entropy inequalities follow from their continuous analogs, the
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following are the two key ideas of our approach: First we show that given

any finite collection of discrete Rd-valued random variables, we can embed

them into a high-dimensional Euclidean space and project them back to Rd

such that the Shannon entropy of any linear combination of the projected

random variables is equal to an arbitrarily large multiple of the given random

variables. Next we add independent noise, e.g., Gaussian, with arbitrarily

small variance to these projected discrete random variables and relate their

Shannon entropy to the differential entropy of their noisy versions. Sending

the variance to zero and then the dimension to infinity yields the desired

inequality for discrete entropy.

Chapter 3 explores the implications of our equivalence result in the con-

text of the sharp constants for additive-combinatorial entropy inequalities. In

particular, we establish that the sharp constants for the sum-difference ratio,
h(X−X′)−h(X)
h(X+X′)−h(X)

for i.i.d. continuous X,X ′ ∈ Rn, and H(U−U ′)−H(U)
H(U+U ′)−H(U)

for i.i.d. dis-

crete U,U ′ ∈ Zn, are equal and, moreover, dimension independent. Whereas

the equality of sharp constants for the discrete and continuous versions fol-

lows directly from our equivalence result in Chapter 2, the dimension-freeness

of the ratio relies on techniques similar to those used for establishing that the

continuous entropy inequalities carry over exactly to their discrete versions.
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CHAPTER 2

EQUIVALENCE OF SHANNON ENTROPY
AND DIFFERENTIAL ENTROPY
INEQUALITIES

In this chapter we present the equivalence between the discrete and contin-

uous entropy inequalities. This equivalence completely bridges the gap be-

tween these two classes of inequalities in the existing literature. Section 2.3

contains our main equivalence result. We also present the extensions of the

result to a more general setting of connected abelian Lie groups. The proofs

of the theorems are deferred to Section 2.4, and the key technical lemmas to

prove the theorems are proved in Appendix A.1. The material in this chapter

has appeared in part in [15].

2.1 Notation

We use the following notations throughout this chapter. For x ∈ R, let

bxc , max{k ∈ Z : k ≤ x} and {x} = x − bxc denote its integer and

fractional parts, respectively. For any k ∈ N, define

[x]k ,
b2kxc

2k
, {x}k ,

{2kx}
2k

. (2.1)

Hence,

x =
b2kxc

2k
+
{2kx}

2k
= [x]k + {x}k.

For x ∈ Rd, [x]k and {x}k are defined similarly by applying the above oper-

ations componentwise.

For N > 0, denote the hypercube B
(d)
N , [−N,N ]d. For a Rd-valued

random variable X, let X(N) denote a random variable distributed according

to the conditional distribution P
X|X∈B(d)

N
. If X has a pdf fX , then X(N) has
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the following pdf:

fX(N)(x) =
fX(x)1{x ∈ B(d)

N }
P[X ∈ B(d)

N ]
. (2.2)

For the sake of concision and excluding trivialities, we assume throughout

this thesis that the differential entropies exist and are finite.

2.2 Related work

Before we present the main results of this chapter, we would like to point

out that a similar study of establishing the equivalence of linear information

inequalities, for subsets of random variables, has been done by Chan in [16].

In particular, he established that the class of linear inequalities for Shan-

non entropy and differential entropy are equivalent provided the inequalities

are “balanced” in the following sense. For example, consider the following

entropy inequalities for discrete random variables X1 and X2:

H(X1) +H(X2)−H(X1, X2) ≥ 0, (2.3)

H(X1, X2)−H(X1) ≥ 0. (2.4)

The inequality (2.3) is said to be balanced because the sum of the coeffi-

cients of the entropy terms in which X1 appears equal zero and the same

is true for X2 as well. However, the inequality (2.4) is unbalanced because

X2 appears only in the first term. It is worth pointing out that the above

notion of balancedness is different from ours, which demands that the sum

of the coefficients of all the entropy terms, rather than each individual ran-

dom variable, be zero. However, the technique employed for extending the

discrete entropy inequalities to the continuous case is similar to ours, i.e.,

through discretization of continuous random variables. In establishing the

converse that the discrete inequality follows from its continuous counterpart

the method in [16] is to assume, without loss of generality, the discrete ran-

dom variables are integer-valued and use the fact that H(A) = h(A + U)

for any Z-valued A and U independently and uniformly distributed on [0, 1].

Clearly this method does not apply to sums of independent random variables.
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2.3 Main results

The following are our main results on linear entropy inequalities.

Theorem 1. Let (aij) ∈ Zn×m satisfy that ai1, . . . , aim are relatively prime,

for each i = 1, . . . , n. Let α1, . . . , αn ∈ R be such that
∑n

i=1 αi = 0. Suppose

for any independent Zd-valued random variables U1, . . . , Um, the following

holds:

n∑
i=1

αiH

(
m∑
j=1

aijUj

)
≤ 0. (2.5)

Then for any independent Rd-valued continuous random variables X1, . . . , Xm,

the following holds:

n∑
i=1

αih

(
m∑
j=1

aijXj

)
≤ 0 (2.6)

Remark 1. Without loss of any generality, we can always assume that the

coefficients of each linear combination of random variables in (2.5) are rela-

tively prime. This is because for each i we can divide ai1, . . . , aim by their

greatest common divisor so that the resulting entropy inequality remains the

same, thanks to the scale invariance of the Shannon entropy.

Theorem 2. Let (aij) ∈ Rn×m and α1, . . . , αn ∈ R be such that
∑n

i=1 αi = 0.

If

n∑
i=1

αih

(
m∑
j=1

aijXj

)
≤ 0

holds for any Rd-valued independent and continuous random variables X1, . . . , Xm,

then

n∑
i=1

αiH

(
m∑
j=1

aijUj

)
≤ 0

holds for any Rd-valued independent and discrete random variables U1, . . . , Um.

We now consider the extensions of the above theorems to i.i.d. random

variables and to general groups and present their proofs in Section 2.4.
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2.3.1 Extensions to i.i.d. random variables

When we further constrain the random variables in additive-combinatorial

entropy inequalities, we can obtain strengthened inequalities. For instance, if

U and U ′ are independent and identically distributed (i.i.d.) discrete random

variables, then (cf., e.g., [9, Theorems 1.1 and 2.1])

1

2
≤ H(U − U ′)−H(U)

H(U + U ′)−H(U)
≤ 2 (2.7)

and for i.i.d. continuous X,X ′,

1

2
≤ h(X −X ′)− h(X)

h(X +X ′)− h(X)
≤ 2, (2.8)

which are stronger than what would be obtained from (1.4) and (1.5) by

substituting Y = X ′. We refer to these inequalities as doubling-difference

inequalities which will be the focus of the study in the next chapter.

As evident from the proof, both Theorem 1 and Theorem 2 apply ver-

batim to entropy inequalities involving independent random variables with

arbitrary distributions. Consequently, (2.7) and (2.8) are in fact equivalent.

Formally, fix a partition S1, . . . , SK of [m] , {1, . . . ,m}. Then (2.5) holds

for independent U1, . . . , Um so that {Uj}j∈Sk
are i.i.d. for k ∈ [K] if and

only if (2.6) holds for independent X1, . . . , Xm so that {Xj}j∈Sk
are i.i.d. for

k ∈ [K]. It is worth noting that this result is not a special case of Theorems

1 and 2; nevertheless, the proofs are identical.

2.3.2 Extensions to general groups

We now consider a more general version of Theorem 1. The notion of differen-

tial entropy, consequently entropy inequalities, can be extended to a general

setting. To this end, let G be a locally compact abelian group equipped with

a Haar measure µ. Let X be a G-valued random variable whose distribu-

tion is absolutely continuous with respect to µ. Following [13], we define the

differential entropy of X as:

h (X) =

∫
f log

1

f
dµ = E

[
log

1

f(X)

]
,

10



where f denotes the pdf of X with respect to µ. This definition subsumes

the notion of both the Shannon entropy on Zd (with µ being the counting

measure) and the differential entropy on Rd (with µ being the Lebesgue

measure).

We now state a generalization of Theorem 1, which holds for connected

abelian Lie groups.

Theorem 3. Under the assumptions of Theorem 1, suppose (2.5) holds for

any independent random variables Z1, . . . , Zm taking values in Zd×(Z/2kZ)n

for any k, d, n ∈ N. Then (2.6) holds for any connected abelian Lie group G′

and independent G′-valued random variables X1, . . . , Xm.

Denoting the unit circle in C by T, we first prove a special case of Theo-

rem 3 when G is a finite cyclic group and G′ is the torus Td. Theorem 3 then

follows easily since any connected abelian Lie group is isomorphic to product

of torus and Euclidean space. We need the following preliminary fact relat-

ing the Haar measures and differential entropies of random variables taking

values on isomorphic groups.

Lemma 1. Let φ : G′ → G be a group isomorphism between abelian topo-

logical groups (G,+) and (G′,+) and µ′ be a Haar measure on G′. Then the

pushforward measure1 µ = φ∗µ
′ is a Haar measure on G. Furthermore, for

any G-valued continuous random variable X,

h(X) = h
(
φ−1(X)

)
.

Proof. For any measurable subset A of G and any g ∈ G, then

µ(g + A) = µ′(φ−1(g + A)) = µ′(φ−1(g) + φ−1(A)) = µ′(φ−1(A)) = µ(A),

which follows the translation invariance of µ′. Similarly, using the fact that

φ−1 is a homeomorphism one can verify that µ is finite on all compacts as

well as its inner and outer regularity.

If f is the density function of X with respect to the Haar measure φ∗µ
′ on

G, then f ◦ φ is the pdf of φ−1 (X) with respect to the Haar measure µ′ on

1That is, (φ∗µ
′)(B) = µ′(φ−1(B)) for any measurable subset B of G.

11



G′. Hence,

h (X) =

∫
f log

1

f
d(φ∗µ

′)

=

∫
f ◦ φ log

1

f ◦ φ
dµ

= h
(
φ−1 (X)

)
.

Define the map φ : [0, 1)n → Tn by φ(θ1, . . . , θn) = (e2πiθ1 , . . . , e2πiθn). Let

the Haar measure on Tn be the pushforward of Lebesgue measure under φ.

For X ∈ Tn, let Θ = φ−1(X). Define the quantization operation of X in

terms of the angles

[X]k , φ

(
b2kΘc

2k

)
, [Θ]k =

b2kΘc
2k

. (2.9)

Since φ is a bijection, H ([X]k) = H
(
b2kΘc

)
. We are now ready to prove

Theorem 4.

Theorem 4. Under the assumptions of Theorem 1, suppose (2.5) holds for

any cyclic group (G)-valued independent random variables Z1, . . . , Zm. Then

(2.6) holds for any Tn-valued independent random variables X1, . . . , Xm.

Proof. Let X1, . . . , Xm be Tn-valued continuous independent random vari-

ables. For each i ∈ [m], let Θi = φ−1(Xi). Since b2kΘic is Z2k-valued and

Z2k is a cyclic group under modulo 2k addition, to prove Theorem 4, it suffices

to prove the following:

H ([X]k) = kn log 2 + h (X) + ok(1) (2.10)

for any Tn-valued continuous random variable X, and

H

([
m∑
i=1

aiXi

]
k

)
= H

(
m∑
i=1

ai [Xi]k

)
+ ok(1). (2.11)

Indeed, (2.10) follows from

H ([X]k) = H ([Θ]k)
(a)
= kn log 2 + h (Θ) + ok(1)

(b)
= kn log 2 + h (X) + ok(1),

where (a) is by Lemma 4 since Θ is a continuous [0, 1]-valued random variable

12



and (b) is by Lemma 1. To prove (2.11), for each i ∈ [m], let Θi = φ−1(Xi).

Define

Ak ,

⌊
2k

m∑
i=1

aiΘi

⌋
(mod 2k), A′k =

⌊
2k

m∑
i=1

aiΘi

⌋
,

Bk ,
m∑
i=1

ai
⌊
2kΘi

⌋
(mod 2k), B′k =

m∑
i=1

ai
⌊
2kΘi

⌋
,

Zk ,

⌊
m∑
i=1

ai
{

2kΘi

}⌋
.

Our aim is to prove that H(Ak) − H(Bk) = ok(1). Since A′k = B′k + Zk,

Ak = Bk + Zk (mod 2k). Also, H(Ak) − H(Bk) = I(Zk;Ak) − I(Zk;Bk).

Hence,

|H(Ak)−H(Bk)| ≤ I(Zk;Ak) + I(Zk;Bk)
(a)

≤ I(Zk;A
′
k) + I(Zk;B

′
k)

(b)→ 0 as k →∞,

where (a) follows from the data processing inequality and (b) follows from

Lemma 10 and Lemma 11. This completes the proof.

2.4 Proofs

In this section we prove Theorem 1 and Theorem 2. We included the lemmas

that are crucial for these theorems before their proofs. The proofs of the

lemmas are provided in Appendix A.1.

2.4.1 Proof of Theorem 1

The following lemma lies at the core of the proof of Theorem 1.

Lemma 2. Let X1, . . . , Xm be independent [0, 1]d-valued continuous random

variables such that both h (Xj) and H (bXjc) are finite for each j ∈ [m].

Then for any a1, . . . , am ∈ Z that are relatively prime,

lim
k→∞

(
H

([ m∑
i=1

aiXi

]
k

)
−H

( m∑
i=1

ai [Xi]k

))
= 0.

13



The next lemma allows us to restrict our focus on bounded random vari-

ables.

Lemma 3 (Truncation). Let X1, . . . , Xm be independent Rd-valued random

variables and a1, . . . , am ∈ R. If each Xj has an absolutely continuous dis-

tribution and h(Xj) is finite, then

lim
N→∞

h

(
m∑
j=1

ajX
(N)
j

)
= h

(
m∑
j=1

ajXj

)
.

The following lemma is a particularization of [14, Theorem 1] (see (1.8))

to the dyadic subsequence m = 2k:

Lemma 4. For any Rd-valued random variable X with an absolutely contin-

uous distribution such that both H (bXc) and h (X) are finite,

lim
k→∞

(H ([X]k)− dk log 2) = h (X) .

We now present the proof of Theorem 1.

Proof. We start by considering the case where Xj ∈ [0, 1]d for each j ∈ [m].

Since Xj’s are independent and 2k [Xj]k is Zd-valued for each j ∈ [m], by

assumption,

n∑
i=1

αiH

(
m∑
j=1

aij [Xj]k

)
≤ 0 (2.12)

holds where

n∑
i=1

αi = 0. (2.13)

By Lemma 4, H ([X]k) = dk log 2 + h (X) + ok(1). Thus,

h

(
m∑
j=1

aijXj

)
+ dk log 2 + ok(1) = H

[ m∑
j=1

aijXj

]
k


(a)
= H

(
m∑
j=1

aij [Xj]k

)
+ ok(1),
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where (a) follows from Lemma 2. Multiplying on both sides by αi and sum-

ming over i, and in view of (2.13), we have

n∑
i=1

αih

(
m∑
j=1

aijXj

)
+ ok(1) =

n∑
i=1

αiH

(
m∑
j=1

aij [Xj]k

)
.

By (2.12), sending k to infinity yields the desired result.

For the general case where Xj ∈ Rd, let Yi =
∑m

j=1 aijXj for i ∈ [n]. Let

X̃
(N)
j ,

X
(N)
j +N

2N
, which belongs to [0, 1]d. Thus,

n∑
i=1

αih

(
m∑
j=1

aijX̃
(N)
j

)
=

n∑
i=1

αih

(
m∑
j=1

aijX
(N)
j

)
+

n∑
i=1

αi · log

(
1

2N

)d
=

n∑
i=1

αih

(
m∑
j=1

aijX
(N)
j

)
, (2.14)

where (2.14) follows from (2.13). Hence,

n∑
i=1

αih (Yi)
(a)
= lim

N→∞

n∑
i=1

αih

(
m∑
j=1

aijX
(N)
j

)
(b)
= lim

N→∞

n∑
i=1

αih

(
m∑
j=1

aijX̃
(N)
j

)
(c)

≤ 0,

where (a) follows form Lemma 3 and (b) follows from (2.14), and (c) fol-

lows from the earlier result for [0, 1]d-valued random variables. The proof of

Theorem 1 is now complete.

2.4.2 Proof of Theorem 2

Theorem 2 relies on the following two lemmas. The first result, proved in in

Section B.3, is a well-known asymptotic expansion of the differential entropy

of a discrete random variable contaminated by weak additive noise. The sec-

ond result, proved in Section B.4, allows us to blow up the Shannon entropy

of linear combinations of discrete random variables arbitrarily.

Lemma 5. Let U be a discrete Rd-valued random variable such that H(U) <

15



∞ and Z be a Rd-valued continuous random variable with h(Z) > −∞. If U

and Z are independent, then

h(U + εZ) = h(Z) + log ε+H(U) + oε(1).

Lemma 6. Let U1, . . . , Um be Rd-valued discrete random variables. Let k ∈
N. Then for any A = (aij) ∈ Rn×m, there exist Rd-valued discrete random

variables U
(k)
1 , . . . , U

(k)
m such that

H

(
m∑
j=1

aijU
(k)
j

)
= kH

(
m∑
j=1

aijUj

)
,∀i ∈ [n].

We now prove Theorem 2.

Proof. Let Zj be independent Rd-valued Gaussian random variables with zero

mean and U1, . . . , Um be independent Rd-valued discrete random variables.

Let U
(k)
1 , . . . , U

(k)
m be independent Rd-valued discrete random variables such

that H
(∑m

j=1 aijU
(k)
j

)
= kH

(∑m
j=1 aijUj

)
for each i ∈ [n], guaranteed by

Lemma 6.

Let ε > 0. For each j ∈ [m], let Xj = U
(k)
j + εZj. Then we have

h (Xj) = H(U
(k)
j ) + h(Zj) + log ε+ oε(1).

Hence, for each i ∈ [n],

h

(
m∑
j=1

aijXj

)
= h

(
m∑
j=1

aijU
(k)
j + ε

m∑
j=1

aijZj

)
(a)
= H

(
m∑
j=1

aijU
(k)
j

)
+ h

(
m∑
j=1

aijZj

)
+ log ε+ oε(1)

= kH

(
m∑
j=1

aijUj

)
+ h

(
m∑
j=1

aijZj

)
+ log ε+ oε(1),

where (a) follows from Lemma 5. Since Xj’s are independent, by assumption,∑n
i=1 αih

(∑m
j=1 aijXj

)
≤ 0 where

∑n
i=1 αi. Hence,

k
n∑
i=1

αiH

(
m∑
j=1

aijUj

)
+

n∑
i=1

αih

(
m∑
j=1

aijZj

)
+ oε(1) ≤ 0.
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Thus,

n∑
i=1

αiH

(
m∑
j=1

aijUj

)
+

∑n
i=1 αih

(∑m
j=1 aijZj

)
k

+
oε(1)

k
≤ 0.

The proof is completed by letting ε→ 0 followed by k →∞.
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CHAPTER 3

ON SHARPNESS OF THE
ADDITIVE-COMBINATORIAL LINEAR
ENTROPY INEQUALITIES

In the previous chapter we have proved the equivalence of the class of discrete

entropy and the class of continuous entropy inequalities. In this chapter

we will investigate the implications of this result with regards to the sharp

constants in certain additive-combinatorial linear entropy inequalities. In

fact, our motivation to study the class of linear entropy inequalities arose

from our effort to prove that the constant “2” is the best in the information

theoretic analog of the following additive-combinatorial inequality proved by

Ruzsa [17]: For any finite A ⊂ Zn( or any abelian group)

log
|A− A|
|A|

≤ 2 log
|A+ A|
|A|

. (3.1)

The information theoretic analogs of the inequality (3.1) are the following: If

U and U ′ are independent and identically distributed (i.i.d.) discrete random

variables, then (cf., e.g., [9, Theorems 1.1 and 2.1])

1

2
≤ H(U − U ′)−H(U)

H(U + U ′)−H(U)
≤ 2 (3.2)

and for i.i.d. continuous X,X ′,

1

2
≤ h(X −X ′)− h(X)

h(X +X ′)− h(X)
≤ 2. (3.3)

The constant “2” in (3.1) is known to be sharp (see [18] or [19, p. 107]), i.e.,

there exists a sequence of sets {An} such that LHS
RHS
→ 2 as n → ∞ . It is

not known whether the constants 1/2 and 2 are the best possible in (3.2)

and (3.3). However, as we prove in this chapter, it can be established that

the sharp constants for both the discrete and the continuous versions are the

same, and dimension-free as a consequence of Theorem 1 and Theorem 2.

Since the best constants are unknown theoretically, we performed some nu-
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merical simulations for various probability distributions to find out the best

possible constants, which we present towards the end of this chapter. So far

the best constant we found is around “1.4” achieved for both the Poisson and

geometric distributions. From hereafter we refer to the inequalities (3.2) and

(3.3) as doubling-difference inequalities and the ratio in these inequalities as

the sum-difference ratio.

3.1 Simplex construction for the sharpness of

additive-combinatorial doubling-difference

inequality

The idea behind proving that the constant “2” is the best possible in (3.1) is

to construct a set whose difference is “much larger” than the sum. Since the

precise cardinalities of the sumset and the difference set might be difficult to

compute and analyze in general, the idea is to construct sets which contain

the lattice points inside a convex body and approximate their cardinality

by volume of the body. More formally, for any convex body K in Rn, we

consider the set A in (3.1) to be its quantized version [K]L , K ∩ ( 1
L
Zn),

where L ∈ N. The sum and difference sets of [K]L is related to those of K

through [K ±K]L = [K]L± [K]L. If we fix the dimension n and let L→∞,

it is well-known that the cardinality of [K]L is related to the volume of K

via |[K]L| = vol(K)Ln(1 + o(1)). Thus,

|[K]L ± [K]L|
|[K]L|

=
vol(K ±K)

vol(K)
(1 + o(1)).

A classical result of Rogers and Shephard [20] states that for any convex

K ∈ Rn, vol(K − K) ≤
(

2n
n

)
vol(K) with equality if and only if K is a

simplex. Since K is convex, K +K = 2K and thus vol(K +K) = 2nvol(K).

Now taking K to be the standard simplex ∆n =
{
x ∈ Rn

+ :
∑n

i=1 xi ≤ 1
}

, we

obtain

log |[∆n]L−[∆n]L|
|[∆n]L|

log |[∆n]L+[∆n]L|
|[∆n]L|

=
log

(2n
n )
n!
− log 1

n!
+ oL(1)

log 2n

n!
− log 1

n!
+ oL(1)

=
log
(

2n
n

)
+ oL(1)

n log 2 + oL(1)
,
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where we used vol(∆n) = 1
n!
, vol(∆n −∆n) = 1

n!

(
2n
n

)
and vol(∆n + ∆n) = 2n

n!
.

Sending L→∞ followed by n→∞ yields the sharpness of (3.1).

3.2 On sharpness of the doubling-difference entropy

inequality

Analogous to the tightness of the inequality (3.1), it is natural to ask if the

same can be said about the inequalities (3.2) and (3.3). It is unclear if the

constants 1/2 and 2 are indeed the best possible. However, one can establish

that the sharp constants for the discrete and the continuous versions are the

same as a direct consequence of Theorem 1 and Theorem 2. Moreover, these

sharp constants are independent of the dimension n. First, we begin with

the doubling-difference entropy inequality.

Theorem 5. ([9, Theorems 1.1 and 2.1]) If U and U ′ are two discrete i.i.d.

random variables, and X and X ′ are two continuous i.i.d. random variables,

then:

1

2
≤ H(U − U ′)−H(U)

H(U + U ′)−H(U)
≤ 2,

1

2
≤ h(X −X ′)− h(X)

h(X +X ′)− h(X)
≤ 2.

Proof. See Appendix A.1

Remark 2. A careful analysis of the above proof reveals that the equality in

the upper bound for the continuous case holds only when X is deterministic

in which case it fails to have an absolutely continuous distribution. As a

result we can conclude that there exists no continuous distribution for which

the equality is attained in (3.3); however, this does not rule out the possibility

that we can get arbitrarily close to “2” by a sequence of distributions.

Now we present our main result of this chapter which establishes the

uniqueness of the sharp constants for both the continuous and discrete ver-

sions.
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Theorem 6. For i.i.d. U and U ′ and i.i.d. X and X ′,

1

2
≤ inf

U∈Zn

H(U − U ′)−H(U)

H(U + U ′)−H(U)
= inf

X∈Rn

h(X −X ′)− h(X)

h(X +X ′)− h(X)
(3.4)

≤ sup
X∈Rn

h(X −X ′)− h(X)

h(X +X ′)− h(X)
= sup

U∈Zn

H(U − U ′)−H(U)

H(U + U ′)−H(U)
≤ 2. (3.5)

Furthermore, the infimum and the supremum are independent of the dimen-

sion n.

Proof. First we will prove that the infima of the ratios for both the discrete

and continuous versions are the same. Let αn = infU∈Zn
H(U−U ′)−H(U)
H(U+U ′)−H(U)

and

βn = infX∈Rn
h(X−X′)−h(X)
h(X+X′)−h(X)

. For any U ∈ Zn, by definition,

H(U − U ′)−H(U)

H(U + U ′)−H(U)
≥ αn,

which in view of Theorem 1 implies that for any X ∈ Rn

h(X −X ′)− h(X)

h(X +X ′)− h(X)
≥ αn,

and thus

βn ≥ αn.

In a similar manner using the definition of βn and Theorem 2 gives

αn ≥ βn,

which completes the proof that αn = βn. The same argument holds for the

result for the supremum. Now we will prove that the infimum and supremum

are dimension independent. Clearly αn ≤ α1 by the tensorization property

of Shannon entropy. For any U ∈ Zn and its identical copy U ′, using a

similar argument as in the proof of Lemma 6, we can find a linear embedding

f : Zn → Z that preserves the Shannon entropy of U +U ′, U −U ′, U and U ′.

Thus

H(U − U ′)−H(U)

H(U + U ′)−H(U)
=
H(f(U))− f(U ′))−H(f(U))

H(f(U) + f(U ′))−H(f(U))
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and α1 ≤ αn. The proof for the supremum is the same after replacing αn

and α1 with βn and β1 respectively.

It is worth pointing out that the dimension-freeness of the best Shan-

non entropy ratio follows from standard arguments (tensorization and linear

embedding of Zn into Z), which have been previously used for proving anal-

ogous results for set cardinalities [18]; however, it is unclear how to directly

prove that the ratio of differential entropy is dimension-independent without

resorting to Theorem 1.

3.3 Numerical plots for the sum-difference ratio

Since the role of the constant “2” being the best upper bound in the doubling-

difference inequalities is unclear, we resort to numerically finding the best

possible constant for some known distributions. We consider distributions

that are not symmetric around 0; otherwise, the sum-difference ratio equals

1. This clearly rules out the possibility of Gaussian and uniform random

variables. Since the sum-difference ratio can be rewritten as I(X−X′;X)
I(X+X′;X)

, in-

tuitively, to make the ratio arbitrarily close to “2” we need to consider dis-

tributions that are highly “asymmetric” where the difference X −X ′ reveals

much more “information” about X than X +X ′ does about the same.

3.3.1 Bernoulli distribution

Let X be a Bernoulli random variable with parameter p ∈ [0, 1]. Since X and

X ′ are i.i.d., it follows that X+X ′ takes values in {0, 1, 2} with probabilities

(1 − p)2, 2p(1 − p), and p2 respectively. Similarly, X − X ′ takes values in
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{−1, 0, 1} with probabilities p(1− p), p2 + (1− p)2, and p(1− p) respectively.

H(X −X ′)−H(X)

H(X +X ′)−H(X)
=
I(X;X −X ′)
I(X;X +X ′)

=
H(X)−H(X|X −X ′)
H(X)−H(X|X +X ′)

=
H(X)−H(X|X −X ′ = 0)

H(X)−H(X|X +X ′ = 1)

=
h(p)− (p2 + (1− p)2)h

(
p2

p2+(1−p)2)

)
h(p)− 2p(1− p)h

(
1
2

) ,

where h(p) = p log 1
p

+ (1 − p) log 1
1−p denotes the binary entropy function.

Figure. 3.1 is the plot of the sum-difference ratio vs. p for Bernoulli random

variables. As can be seen, the ratio achieves a maximum value of 1.369 for

both p = 0.06 and p = 0.94.

Figure 3.1: Sum-difference ratio vs. p

3.3.2 Poisson distribution

Let X ∼ Poi(λ), λ > 0. Thus X + X ′ ∼ Poi(2λ). The pmf of the difference

is given through the modified Bessel functions of first-kind Ik(·):

P [X −X ′ = k] = e−2λI|k|(2λ), k ∈ Z.
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Using the well-known formula for entropy of Poisson random variables, we

have

H(X) = λ(1− log λ) + e−λ

(
∞∑
k=0

λk log k!

k!

)
,

H(X +X ′) = 2λ(1− log 2λ) + e−2λ

(
∞∑
k=0

(2λ)k log k!

k!

)
.

For the difference, H(X − X ′) = p0 log 1
p0

+ 2
∑∞

k=1 pk log 1
pk

where pk =

P [X −X ′ = k]. Since there are no simplified expressions for these entropies,

we truncated the summations to around 10000 terms for good-approximation.

We obtained the plot in Figure. 3.2 for the sum-difference ratio as we varied

the mean λ.

Figure 3.2: Sum-difference ratio vs. λ

Since a Poisson distribution with a large λ resembles a normal distribution

with mean and variance λ due to the central limit theorem, it is expected

that the ratio is close to 1 for reasonably large values. Figure. 3.2 reveals that

it saturates to 1 for λ around 6 after achieving an approximate maximum

value of 1.399 for λ close to 0.1.

3.3.3 Geometric distribution

Let X ∼ Geom(p) be a geometric random variable with parameter p ∈ [0, 1]

whose pmf is given by P [X = k] = (1−p)pk−1 for k ≥ 1. It is straightforward
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using the convolutions to derive that the sum and the difference have the

following probability mass functions:

P [X +X ′ = k] = (k − 1)p2(1− p)k−2, k ≥ 1,

P [X −X ′ = k] =
p

2− p
(1− p)|k|, k ∈ Z.

Thus the discrete entropies for X +X ′ and X −X ′ are given by

H(X +X ′) = −E[logPX+X′(X +X ′)] = −2 log p− 2 log(1− p)E[X +X ′ − 2]

− E[log(X +X ′ − 1)]

=
2h(p)

p
− E[log(X +X ′ − 1)],

and

H(X −X ′) = −E[logPX−X′(X −X ′)] = log
2− p
p
− log(1− p)E|X −X ′|

= log
2− p
p
− 2(1− p)
p(2− p)

log(1− p),

where we used the fact that min{X,X ′} ∼ Geom(1−(1−p)2) and |X−X ′| =
X +X ′ − 2 min{X,X ′}. Plugging the above entropies in the sum-difference

ratio together with the fact that H(X) = h(p)
p

, we obtain

H(X −X ′)−H(X)

H(X +X ′)−H(X)
=

log 2−p
p
− 2(1−p)

p(2−p) log(1− p)− h(p)
p

2h(p)
p
− E[log(X +X ′ − 1)]− h(p)

p

=
p log 2−p

p
− 2(1−p)

(2−p) log(1− p)− h(p)

h(p)− pE[log(X +X ′ − 1)]
.

After numerically computing E[log(X+X ′−1)] using the pmf of X+X ′, we

obtain the plot in Figure. 3.3. The maximum value of the ratio in this case

is approximately 1.4 attained at p = 0.89 as can be seen from the figure.
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Figure 3.3: Sum-difference ratio vs. p for geometric random variables

3.3.4 Exponential distribution

LetX ∼ Exp(λ), λ > 0. Using the notation Gamma(α, β) to denote a gamma

random variable with parameters α > 0 and β > 0 with the pdf

fX(x) =
βα

Γ(α)
xα−1e−βx,

we know that X + X ′ ∼ Gamma(2, λ). Plugging α = 2 and β = λ in the

expression for the differential entropy of a gamma random variable, we obtain

h(X +X ′) = α− log β + log(Γ(α)) + (1− α)ψ(α)|α=2,β=λ = 2− ψ(2)− log λ

= γ + 1− log λ,

where γ ≈ 0.5772 is Euler’s constant. Similarly, h(X) = 1− log λ using the

fact that Exp(λ) random variable can be viewed as a Gamma(1, λ) random

variable. The difference X −X ′ follows the Laplace distribution whose pdf

and entropies are given by

fX−X′(z) =
λ

2
e−λ|z|, z ∈ R,

h(X −X ′) = 1 + log
2

λ
.
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Plugging all these values together in the sum-difference ratio, we get

h(X −X ′)− h(X)

h(X +X ′)− h(X)
=

1 + log 2− log λ− 1 + log λ

γ + 1− log λ− 1 + log λ

=
log 2

γ

≈ 1.2008.

Since the ratio is independent of the mean parameter λ, we obtain the con-

stant plot in Figure. 3.4.

Figure 3.4: Sum-difference ratio vs. λ for exponential random variables

Remark 3. An alternative way to derive that the ratio is independent of λ

is through observing that our sum-difference ratio is scale invariant. Since

λX ∼ Exp(1), we see that the ratio for any exponential random variable

equals that of a Exp(1) random variable which evaluates to log 2
γ

.

3.3.5 Gamma distribution

Let X ∼ Gamma(N, 1), N ∈ N. Here we assumed, without loss of generality,

that the scale parameter β equals 1 because of the scale invariance of the

sum-difference ratio. Thus, X +X ′ ∼ Gamma(2N, 1). Hence

h(X) = N + log(Γ(N)) + (1−N)ψ(N),

h(X +X ′) = 2N + log(Γ(2N)) + (1− 2N)ψ(2N),
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where ψ(x) = d
dx

Γ(x) denotes the digamma function. The probability den-

sity function for the difference X −X ′ is given through the modified Bessel

functions of the second-kind Kα(·) as follows:

fX−X′(z) =
1√

πΓ(N)

(
|z|
2

)N− 1
2

K 1
2
−N(|z|), z ∈ R.

Since there are no simplified expressions for the entropy of X − X ′ in this

case, we numerically computed the integral for evaluating h(X − X ′) =

−
∫
R fX−X′(z) log 1

fX−X′ (z)
dz. We obtained the plot in Figure. 3.5 for the

sum-difference ratio.

Figure 3.5: Sum-difference ratio vs. N for gamma random variables

Remark 4. We can verify from Figure. 3.5 that the ratio stays close to 1 for

large values of N as expected since h(X ± X ′) − h(X) = I(X;X ± X ′) →
1
2

log 2 because of the central limit theorem. The ratio attains a maximum

value of around 1.2 for N = 1 and monotonically decreases thereafter.

3.3.6 Binomial distribution

Let X ∼ Bin(n, p). Then X + X ′ ∼ Bin(2n, p). Since the Shannon entropy

is translation invariant, we get H(X − X ′) = H(X + n − X ′) where X +

n − X ′ ∼ Bin(n, p) + Bin(n, 1 − p). Though a closed form expression for

H(X) can be found (H(X) = nh(p)−E log
(
n
X

)
), we used the definition that
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H(X) =
∑n

k=0 pk log 1
pk

and similarly for H(X +X ′) and H(X −X ′) to plot

the sum-difference ratio for values of n and p. Due to the symmetry of the

ratio around p = 0.5, we plotted only for values of p in the range [0, 0.5], and

Figures 3.6− 3.10 are the corresponding plots for sum-difference ratio vs. n

for p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

Figure 3.6: Sum-difference ratio vs. n for p = 0.1.

Figure 3.7: Sum-difference ratio vs. n for p = 0.2.
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Figure 3.8: Sum-difference ratio vs. n for p = 0.3.

Figure 3.9: Sum-difference ratio vs. n for p = 0.4.
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Figure 3.10: Sum-difference ratio vs. n for p = 0.5.

Remark 5. Since a binomial random variable is a sum of n i.i.d. Bernoulli

random variables, in view of the central limit theorem, we expect that the

above ratio converges to one for large values of n for all p. The plots reveal

the same behavior with the decay of the ratio to 1 being faster for larger

values of p. Since both X +X ′ and X + n−X ′ are identical in distribution

for p = 0.5, we get a constant ratio value of 1 for all values of n.

Remark 6. Notice that the maximum values for the ratio occur at n = 1 for

all p. Thus it is equivalent to finding the maximum value for the Bernoulli

case which we found to be approximately 1.369 for both p = 0.06 and p =

0.94.
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CHAPTER 4

CONCLUSION

In this thesis, we explored the nature of the relationship between the linear

entropy inequalities for Shannon entropy and differential entropy. In particu-

lar, we established the equivalence of the balanced linear entropy inequalities

for the discrete and the continuous versions. We further extended these re-

sults for a general group setting. We investigated the implications of our

equivalence result in understanding the best constants for certain additive-

combinatorial entropy inequalities, in particular, the doubling-difference in-

equality, where we established that the best constants for the continuous and

the discrete cases are the same.

To conclude this chapter, we discuss some open problems related to this

work.

4.1 Uniform distribution on simplex

In Chapter 3 we proved that the sharp constants for the discrete and con-

tinuous versions are the same, and dimension-free. In view of the success

of continuous approximation in proving the sharpness of (3.1), proving the

sharpness of (3.3) for differential entropies might be more tractable than its

discrete counterpart (3.2). Similar to the simplex construction in Section 3.1,

one can consider X to be a uniform random variable on simplex ∆n and let

n→∞ to verify whether this specific construction achieves the upper bound

2 in (3.3). However, the analysis of the entropies of the difference X − X ′

as well as the sum X + X ′ seems intractable in this case. It remains an

open question whether the uniform distribution on simplex, or any other

distribution in general, achieves the constant 2.
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APPENDIX A

PROOFS OF CHAPTER 3

A.1 Proof of Theorem 5

We prove the theorem for the continuous version and the same argument

holds for the discrete case too. Let X, Y and Z be independent continuous

random variables in Rn. By data processing inequality,

I(X;X − Y, Y − Z) ≥ I(X;X − Z), (A.1)

which is equivalent to

h(X − Z) + h(Y ) ≤ h(X − Y, Y − Z).

Using the non-negativity of the mutual information we further obtain that

h(X − Z) + h(Y ) ≤ h(X − Y ) + h(Y − Z), (A.2)

which is also known in the additive-combinatorial literature as Ruzsa triangle

inequality for differential entropy [7]. Replacing −Y by Y and taking X, Y

and Z to be i.i.d., we obtain

h(X − Z) + h(Y ) ≤ h(X + Y ) + h(Y + Z)

and further,

h(X − Y )− h(X) ≤ 2 (h(X + Y )− h(X)) .
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This proves the upper bound. For the lower bound, for any independent

X, Y and Z, using the data processing inequality we have

I(X + Y + Z;X) ≤ I(X + Y, Z;X) = I(X + Y ;X).

This is equivalent to

h(X + Y + Z) + h(Y ) ≤ h(X + Y ) + h(Y + Z).

Hence,

h(X + Z) + h(Y ) ≤ h(X + Y + Z) + h(Y ),

≤ h(X + Y ) + h(Y + Z).

Replacing −Y by Y and taking X, Y and Z to be i.i.d. implies the lower

bound:

h(X + Y )− h(X) ≤ 2 (h(X − Y )− h(X)) .

Remark 7. The equality in the upper bound holds if and only if we have

equalities in (A.1) and (A.2). This happens only when (1) X → X − Z →
(X+Y, Y +Z) is a Markov chain and (2) X+Y and Y +Z are independent,

where X, Y and Z are i.i.d.. The second condition implies that Cov(X +

Y, Y + Z) = 0 which gives Cov(Y, Y ) = 0. Thus X, Y and Z should have

degenerate distributions to achieve the equality in which case their differential

entropies are not finite.
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APPENDIX B

PROOFS OF CHAPTER 2

B.1 Proof of Lemma 2

Let a1, . . . , am ∈ Z and X1, . . . , Xm be Rd-valued random variables. Then

[
m∑
i=1

aiXi

]
k

=

⌊
2k
∑m

i=1 aiXi

⌋
2k

=

⌊∑m
i=1 aib2kXic+ b

∑m
i=1 ai{2kXi}

⌋
2k

=
m∑
i=1

ai[Xi]k +
b
∑m

i=1 ai{2kXi}c
2k

.

Define

Ak , 2k

[
m∑
i=1

aiXi

]
k

, Bk , 2k
m∑
i=1

ai [Xi]k , Zk ,

⌊
m∑
i=1

ai{2kXi}

⌋
.

It is easy to see thatAk, Bk, Zk ∈ Zd andAk = Bk+Zk. Since {2kX} ∈ [0, 1)d,

each component of Zk takes integer values in the set a1[0, 1) + . . .+ am[0, 1)

and hence Zk ∈ Z , {a, a + 1, . . . , b − 1}d, where b ,
∑m

i=1 ai1{ai>0} and

a ,
∑m

i=1 ai1{ai<0}. Hence Zk takes at most (b−a)d values, which is bounded

for all k.

Next we describe the outline of the proof:

1. The goal is to prove |H(Ak) − H(Bk)| → 0. Since Ak = Bk + Zk, we

have

H (Ak)−H (Bk) = I (Zk;Ak)− I (Zk;Bk) . (B.1)

Hence it suffices to show that both mutual informations vanish as k →
∞.

2. Lemma 10 proves I (Zk;Bk)→ 0 based on the data processing inequal-
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ity and Lemma 7 which asserts that asymptotic independence between

the integral part b2kXc and the fractional part {2kX}, in the sense

of vanishing mutual information. As will be evident in the proof of

Lemma 7, this is a direct consequence of Rényi’s result (Lemma 4).

3. Since Zk takes a bounded number of values, I(Zk;Ak)→ 0 is equivalent

to the total variation between PZk,Ak
and PZk

⊗PAk
vanishing, known as

the T -information [21, 22]. By the triangle inequality and data process-

ing inequality for the total variation, this objective is further reduced

to proving the convergence of two pairs of conditional distributions in

total variation: one is implied by Pinsker’s inequality and Lemma 10,

and the other follows from an elementary fact on the total variation

between a pdf and a small shift of itself (Lemma 9). Lemma 11 con-

tains the full proof; notably, the argument crucially depends on the

assumption that a1, . . . , am are relatively prime.

We start with the following auxiliary result.

Lemma 7. Let X be a [0, 1]d-valued continuous random variable such that

both h (X) and H (bXc) are finite. Then

lim
k→∞

I(b2kXc; {2kX}) = 0.

Proof. Since X ∈ [0, 1]d, we can write X in terms of its binary expansion as:

X =
∑
i≥1

Xi2
−i, Xi ∈ {0, 1}d.

In other words, b2kXc = 2k−1X1 + . . .+Xk. Thus, b2kXc and (X1, . . . , Xk)

are in a one-to-one correspondence and so are {2kX} and (Xk+1, . . .). So,

I(b2kXc; {2kX}) = I(Xk
1 ;X∞k+1) , I (X1, . . . , Xk;Xk+1, . . .) .

Then I
(
Xk

1 ;X∞k+1

)
= limm→∞ I(Xk

1 ;Xk+m
k+1 ) cf. [23, Section 3.5]. Let ak ,

H
(
Xk

1

)
− dk log 2 − h (X). Then Lemma 4 implies limk→∞ ak = 0. Hence
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for each k,m ≥ 1, we have

I(Xk
1 ;Xk+m

k+1 ) = H(Xk
1 ) +H(Xk+m

k+1 )−H(Xk+m
1 )

= h(X) + dk log 2 + ak − (h(X) + d(k +m) log 2 + ak+m)

+H(Xk+m
k+1 ) (B.2)

= ak − ak+m +H(Xk+m
k+1 )−md log 2

≤ ak − ak+m, (B.3)

where (B.3) follows from the fact that Xk+m
k+1 can take only 2md values. Since

I(Xk
1 ;Xk+m

k+1 ) ≥ 0, by (B.3), sending m→∞ first and then k →∞ completes

the proof.

Recall that the total variation distance between probability distributions

µ and ν is defined as:

dTV (µ, ν) , sup
F
|µ(F )− ν(F )|,

where the supremum is taken over all measurable sets F .

Lemma 8. Let X, Y, Z be random variables such that Z = f (X) = f (Y ),

for some measurable function f . Then for any measurable E such that

P [Z ∈ E] > 0,

dTV

(
PX|Z∈E, PY |Z∈E

)
≤ dTV (PX , PY )

P [Z ∈ E]
.

Proof. For any measurable F ,

∣∣PX∈F |Z∈E − PY ∈F |Z∈E∣∣ =
|P [X ∈ F, f (X) ∈ E]− P [Y ∈ F, f (Y ) ∈ E]|

P [Z ∈ E]

≤ dTV (PX , PY )

P [Z ∈ E]
.

The claim now follows from taking supremum over all F .

Lemma 9. If X is a R-valued continuous random variable, then:

dTV(PX , PX+a)→ 0 as a→ 0.

Proof. Let f be the pdf of X. Since continuous functions with compact
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support are dense in L1(R), for any ε > 0, there exists a continuous and

compactly supported function g such that ‖f − g‖1 < ε
3
. Because of the

uniform continuity of continuous functions on compact sets, there exists a

δ > 0 such that, whenever |a| < δ, ‖g(·+ a)− g(·)‖1 <
ε
3
. Hence ‖f(·+ a)−

f(·)‖1 < 2‖f(·)−g(·)‖1 +‖g(·+a)−g(·)‖1 < ε. Hence the claim follows.

Lemma 10. If X1, . . . , Xm are independent [0, 1]d-valued continuous random

variables such that both h (Xj) and H (bXjc) are finite for each j ∈ [m], then

lim
k→∞

I (Zk;Bk) = 0.

Proof. We have

I(Zk;Bk) = I
(⌊ m∑

i=1

ai{2kXi}
⌋
;
m∑
i=1

aib2kXic
)

= I
(⌊ m∑

i=1

ai{2kXi}
⌋
;
⌊ m∑
i=1

aib2kXic
⌋)

(a)

≤ I
(
a1{2kX1}, . . . , am{2kXm}; a1b2kX1c, . . . , amb2kXmc

)
(b)
=

m∑
i=1

I({2kXi}; b2kXic),

where (a) follows from the data processing inequality and (b) follows from

the fact that X1, . . . , Xm are independent. Applying Lemma 7 to each Xi

finishes the proof.

In view of (B.1), Lemma 2 follows from Lemma 10 and the next lemma:

Lemma 11. Under the assumptions of Lemma 10 and if a1, . . . , am ∈ Z are

relatively prime,

lim
k→∞

I(Zk;Ak) = 0.

Proof. Define the T -information between two random variables X and Y as

follows:

T (X;Y ) , dTV(PXY , PXPY ).

By [22, Proposition 12], if a random variable W takes values in a finite set

W , then

I(W ;Y ) ≤ log(|W| − 1)T (W ;Y ) + h(T (W ;Y )), (B.4)
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where h(x) = x log 1
x

+ (1− x) log 1
1−x is the binary entropy function.

Since Zk takes at most (b− a)d values, by (B.4), it suffices to prove that

limk→∞ T (Zk;Ak) = 0. It is well-known that the uniform fine quantization

error of a continuous random variable converges to the uniform distribu-

tion (see, e.g., [24, Theorem 4.1]). Therefore {2kXi}
L−→ Unif[0, 1]d for each

i ∈ [m]. Furthermore, since Xi are independent, Zk = b
∑m

i=1 ai{2kXi}c
L−→

b
∑m

i=1 aiUic where U1, . . . , Um are i.i.d. Unif[0, 1]d random variables.

Let Z ′ , {z ∈ Z : P [b
∑m

i=1 aiUic = z] > 0}. Since Zk
L−→ b

∑m
i=1 aiUic,

limk→∞ P [Zk = z] > 0 for any z ∈ Z ′ and limk→∞ P [Zk = z] = 0 for any

z ∈ Z\Z ′. Since

T (Zk;Ak) =
∑
z∈Z

P [Zk = z] dTV(PAk
, PAk|Zk=z)

≤
∑
z∈Z′

dTV(PAk
, PAk|Zk=z) +

∑
z∈Z\Z′

P [Zk = z] ,

it suffices to prove that dTV(PAk
, PAk|Zk=z)→ 0 for any z ∈ Z ′.

Using the triangle inequality and the fact that

PAk
=
∑
z′∈Z

P [Zk = z′]PAk|Zk=z′ ,

we have

dTV(PAk
, PAk|Zk=z) ≤

∑
z′∈Z

P [Zk = z′] dTV(PAk|Zk=z, PAk|Zk=z′)

≤
∑
z′∈Z′

dTV(PAk|Zk=z, PAk|Zk=z′) +
∑

z∈Z\Z′
P [Zk = z] .

Thus it suffices to show that dTV(PAk|Zk=z, PAk|Zk=z′)→ 0 for any z, z′ ∈ Z ′.
Since Ak = Bk + Zk, we have

dTV(PAk|Zk=z, PAk|Zk=z′) = dTV(PBk+Zk|Zk=z, PBk+Zk|Zk=z′)

= dTV(PBk+z|Zk=z, PBk+z′|Zk=z′)

≤ dTV(PBk+z|Zk=z, PBk+z|Zk=z′)

+ dTV(PBk+z|Zk=z′ , PBk+z′|Zk=z′) (B.5)

= dTV(PBk|Zk=z, PBk|Zk=z′) (B.6)

+ dTV(PBk+z|Zk=z′ , PBk+z′|Zk=z′). (B.7)
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Thus it suffices to prove that each term on the right-hand side of (B.7)

vanishes. For the first term, note that

dTV(PBk|Zk=z, PBk|Zk=z′) ≤ dTV(PBk|Zk=z, PBk
) + dTV(PBk|Zk=z′ , PBk

),

where dTV(PBk|Zk=z, PBk
) → 0 for any z ∈ Z ′ because, from the Pinsker’s

inequality,

I(Zk;Bk) =
∑
z∈Z

P [Zk = z]D(PBk
‖PBk|Zk=z)

≥ 2
∑
z∈Z

P [Zk = z] d2
TV(PBk

, PBk|Zk=z)

≥ 2P [Zk = z] d2
TV(PBk

, PBk|Zk=z),

and I(Zk;Bk) → 0 by Lemma 10 and lim infk→∞ P [Zk = z] > 0 for any

z ∈ Z ′.
Thus it remains to prove the second term on the right-hand of (B.7) van-

ishes for any z, z′ ∈ Z ′. Since a1, . . . , am are relatively prime, for any p ∈ Z,

there exists q1, . . . , qm ∈ Z such that p =
∑m

i=1 aiqi. Hence, for any z, z′ ∈ Zd,
there exists b1, . . . , bm ∈ Zd such that

z′ − z =
m∑
i=1

aibi.

Then,

Bk + (z′ − z) =
m∑
i=1

aib2kXic+
m∑
i=1

aibi =
m∑
i=1

ai

⌊
2k(Xi +

bi
2k

)
⌋
.

By definition, Zk = b
∑m

i=1 ai{2kXi}c = b
∑m

i=1 ai{2k(Xi + bi
2k

)}c. Consider
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the second term on the right-hand of (B.7). We have

dTV(PBk+z|Zk=z′ , PBk+z′|Zk=z′) = dTV(PBk+(z′−z)|Zk=z′ , PBk|Zk=z′)

= dTV

(
P∑m

i=1 aib2k(Xi+
bi
2k

)c|Zk=z′
,

P∑m
i=1 aib2kXic|Zk=z′

)
(a)

≤ dTV(P
X1+

b1
2k
,...,Xm+ bm

2k
|Zk=z′

, PX1,...,Xm|Zk=z′)

(b)

≤ 1

P [Zk = z′]
dTV(P

X1+
b1
2k
,...,Xm+ bm

2k
, PX1,...,Xm)

(c)

≤ 1

P [Zk = z′]

m∑
i=1

dTV(P
Xi+

bi
2k
, PXi

),

where (a) follows from the data processing inequality for total variation

and (b) follows from Lemma 8, and (c) follows from the independence of

X1, . . . , Xm. Letting k →∞ in view of Lemma 9 finishes the proof.

B.2 Proof of Lemma 3

Proof. Let X1, . . . , Xm be independent and Rd-valued continuous random

variables. Without loss of generality, we may assume ai 6= 0. For each

i ∈ [m], P
[
Xi ∈ B(d)

N

]
N→∞−−−→ 1. Recall the conditional pdf notation (2.2).

For x ∈ Rd, we have

f
aiX

(N)
i

(x) =
1

|ai|
f
X

(N)
i

(
x

ai

)
=

1
|ai|fXi

(
x
ai

)
1

{
x
|ai| ∈ B

(d)
N

}
P
[
Xi ∈ B(d)

N

] (B.8)

=
faiXi

(x)1
{

x
|ai| ∈ B

(d)
N

}
P
[
Xi ∈ B(d)

N

] . (B.9)

By the independence of the Xi’s, the pdf of
∑m

i=1 aiXi is given by:

g(z) , fa1X1+...+amXm(z)

=

∫
Rd×···×Rd

fa1X1 (x1) . . . famXm (z − x1 − . . .− xm−1) dx1 · · · dxm−1.
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Similarly, in view of (B.9), the pdf of
∑m

i=1 aiX
(N)
i is given by:

gN(z) , f
a1X

(N)
1 +...+amX

(N)
m

(z)

=

∫
f
a1X

(N)
1

(x1) . . . f
amX

(N)
m

(z − x1 − . . .− xm−1) dx1 . . . dxm−1

=
1∏m

i=1 P
[
Xi ∈ B(d)

N

] · ∫ fa1X1 (x1) . . . famXm (z − x1 − . . .− xm−1)

· 1
{
x

|ai|
∈ B(d)

N , . . . ,
z − x1 − . . .− xm−1

|am|
∈ BN

}
dx1 . . . dxm−1.

Now taking the limit on both sides, we have limN→∞ gN(z) = g(z) a.e., which

follows the dominated convergence theorem and the fact that g(z) is finite

a.e.

Next we prove that the differential entropy also converges. Let N0 ∈ N be

so large that
m∏
i=1

P
[
Xi ∈ B(d)

N

]
≥ 1

2

for all N ≥ N0. Now,∣∣∣∣∣h
(

m∑
j=1

ajXj

)
− h

(
m∑
j=1

ajX
(N)
j

)∣∣∣∣∣ =

∣∣∣∣∫
Rd

g log
1

g
−
∫
Rd

gN log
1

gN

∣∣∣∣
≤
∫
gN log

gN
g

+

∫ ∣∣∣∣(g − gN) log
1

g

∣∣∣∣
= D

(
P∑m

i=1 aiX
(N)
i
‖P∑m

i=1 aiXi

)
+

∫
|(g − gN) log g|

(a)

≤
m∑
i=1

D
(
P
X

(N)
i
‖PXi

)
+

∫
|(g − gN) log g|

(b)
= log

1∏m
i=1 P

[
Xi ∈ B(d)

N

]
+

∫
|(g − gN) log g|

(c)→ 0 as N →∞,
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where (a) follows from the data processing inequality and (b) is due to

D
(
PX|X∈E‖PX

)
= log 1

P[X∈E]
, and (c) follows from the dominated conver-

gence theorem since |(g − gN) log g| ≤ 3g |log g| for allN ≥ N0 and
∫
g |log g| <

∞ by assumption. This completes the proof.

B.3 Proof of Lemma 5

Proof. In view of the concavity and shift-invariance of the differential entropy,

without loss of generality, we may assume that h(Z) < ∞. Since U and Z

are independent, we have

I (U ;U + εZ) = h (U + εZ)− h (U + εZ|U) = h (U + εZ)− h(Z)− log ε.

Hence it suffices to show that limε→0 I(U ;U + εZ) = H(U). Notice that

I(U ;U + εZ) ≤ H(U) for all ε. On the other hand, (U,U + εZ)
L−→ (U,U)

and U + εZ
L−→ U in distribution, by the continuity of the characteristic

function. By the weak lower semicontinuity of the divergence, we have

lim inf
ε→0

I(U ;U + εZ) = lim inf
ε→0

D (PU,U+εZ‖PUPU+εZ)

≥ D (PU,U‖PUPU) = H(U),

completing the proof.

B.4 Proof of Lemma 6

Proof. For any Rd-valued discrete random variable U , let U[k] ,
(
U(1), . . . , U(k)

)
,

where U(i) are i.i.d. copies of U . ThusH
(
U[k]

)
= kH(U) and

∑m
j=1 bj(Uj)[k] =(∑m

j=1 bjUj

)
[k]

for any b1, . . . , bm ∈ R and any discrete random variables

U1, . . . , Um ∈ Rd.

Let U1, . . . , Um be Rd-valued discrete random variables and A = (aij) ∈
Rn×m. Let U ⊂ Rd be a countable set such that

∑m
i=1 aijUj ∈ U for each

i ∈ [n]. Let fM : Rd×k → Rd be given by fM(x1, . . . , xk) =
∑m

i=1 xiM
i for

M > 0. Since for any x = (x1, . . . , xk) and y = (y1, . . . , yk) in Uk, there

are at most k values of M such that fM(x) = fM(y). Since Uk is countable,
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fM is injective on Uk for all but at most countably many values of M . Fix

an M0 > 0 such that fM0 is injective on Uk and abbreviate fM0 by f . Let

U
(k)
j = f((Uj)[k]) for each j ∈ [m]. Thus, for each i ∈ [n],

H

(
m∑
j=1

bjU
(k)
j

)
= H

(
m∑
j=1

aijf
(

(Uj)[k]

))
(a)
= H

(
f

(
m∑
j=1

aij(Uj)[k]

))

= H

f
( m∑

j=1

aijUj

)
[k]

 (b)
= H

( m∑
j=1

aijUj

)
[k]


= kH

(
m∑
j=1

aijUj

)
,

where (a) follows from the linearity of f and (b) follows form the injectivity

of f on Uk and the invariance of Shannon entropy under injective maps.

B.5 Proof of Theorem 3

Proof of Theorem 3. The proof is almost identical to that of Theorem 4. By

the structure theorem for connected abelian Lie groups (cf., e.g., [25, Corol-

lary 1.4.21]), G′ is isomorphic to Rd × Tn. By Lemma 1 and Lemma 3,

we only need to prove the theorem for [0, 1]d × Tn-valued random variables.

Along the lines of the proof of Theorem 4, it suffices to establish the counter-

parts of (2.10) for any [0, 1]d × Tn-valued continuous X, and (2.11) for any

[0, 1]d×Tn-valued independent and continuous X1, . . . , Xm, where the quan-

tization operations are defined componentwise by applying the usual uniform

quantization (2.1) to the real-valued components of X and the angular quan-

tization (2.9) to the Tn-component of X. The argument is the same as that

of Theorem 4, which we omit for concision.
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